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Abstract 

Using baffles in exhaust mufflers is known to improve transmission loss and reduce the noise emitted to the 

environment. This paper postulates that baffle cut ratio affects the muffler performance in the same effect as a 

shell-and-tube heat exchanger, consequently the baffle cut ratio should affect the muffler performance. This 

study presents a parametric study on the effect of baffle configuration on predicted transmission loss and 

pressure drop. The effect of baffle cut ratio, baffle spacing, number of baffle holes, and hole pattern distribution 

on transmission loss was investigated. Results showed that reducing the baffle cut ratio increased the 

transmission loss at intermediate frequencies by up to 45% while decreasing the spacing between muffler plates 

improved the muffler transmission loss by 40%.  The assessment of the baffle effect on flow using a thermal 

baffle approach model indicated a sudden drop in fluid temperature in axial flow direction by 15% as the baffle 

cut ratio changed from 75% to 25. To the best of authors knowledge, the effect of baffle cut ratio configuration 

on acoustic response and back pressure has not been previously reported or investigated. 

 

Index Terms: Baffles, Exhaut systems, Transmission Loss. 

 

© 2017 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research 

Association of Modern Education and Computer Science. 

1. Introduction 

Transmission loss (TL) is usually measured using the three-point approach (decomposition method) or four 

pole methods; the four pole method is carried out by a two-source method and two-load method [1]. Several 

numerical approaches have been used to model TL in exhaust mufflers such as finite element software: Actran 

[2] and COMSOL Multiphysics[3], Boundary element methods (BEM) using Coustyx [4], and transfer matrix 
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approach using Ricardo wave [5;6;7]. 

 

Nomenclature 
C0                sound velocity [m/s] 

C1, C2,k,    empirical turbulent model constants with values   1.44, 1.9, 1, and 1.2 [-] 

dA                cross sectional area [m
2
] 

Gk                       rate generation of TKE due to mean velocity gradients [kg/(m.s
3
)] 

Gb                  rate generation of TKE the arises due to buoyancy [kg/(m.s
3
)] 

          density [Kg/m
3
] 

p          sound Pressure [Pa] 

P                     sound power [W] 

Sε , Sk            source terms [kg/(m.s
3
)] 

S                     rate of strain tensor [1/s] 

T           temperature [K] 

TL           transmission loss [-] 

x,y,z,xi,xj      cartesian coordinates [m] 

          Reynolds stress [Pa] 

YM                fluctuating dilation due to the overall dissipation rate [kg/(m.s
3
)] 

u,v,w,ui,uj    velocity components in Cartesian coordinates[m/s] 

µ                    dynamic viscosity [Pa.s] 

k                     mean turbulent kinetic energy [m
2
/s

3
] 

                     Turbulence kinetic energy dissipation rate [m
2
/s

3
] 

Subscritpt 

in               incident wave  

tr     transmitted wave 

t                  turbulent 

 

Using baffles in exhaust mufflers have been reported to enhance the TL of muffler by more than 50% [8; 9; 

10]. Roy [11] investigated the effect of internal completely circular baffles with single centred holes on the 

transmission loss using harmonic Boundary Element Method (BEM) with and without extensions on baffles. It 

was found that the TL in the lower frequency spectrum is reduced while the mid to high frequency spectrum is 

greatly increased using baffles. Horoub [12] investigated the effect of tapered connected expansion chambers 

by connecting different sizes of expansion chambers. Computational Fluid Dynamics (CFD) studies for the 

several connected expansion chambers showed that extension on baffles reduced the pressure drop in the 

muffler compared to single expansion chamber of the same size due to the reduction in the secondary flow 

losses and separations [13]. Other studies investigated the effect of baffle spacing on the Sound Pressure Level 

(SPL) [14] showing that reducing spacing between baffle reduced the SPL. Another parameter that was 

investigated by Gupta and Tiwari [15] was the effect of hole arrangements in perforated tubes on transmission 

loss.  

Ricardo-wave is a one-dimensional gas dynamics code based on finite volume method for simulating engine 

cycle performance. It is widely used by automotive and exhaust manufacturers such as Eberspächer [16; 17] 

and Jaguar-LandRover (JLR) [18]. Also, COMSOL Multiphysics modelling software is widely known for its 

capability to model transmission loss of different mufflers such as reactive, absorptive and hydride mufflers. 

Therefore, Ricardo-wave and COMSOL Multiphysics have been proposed for the prediction of TL in this study 

to investigate the effect of baffle configuration on both TL and back pressure in exhaust mufflers as it has not 

been previously reported. This paper highlights the effect of geometrical baffle configurations associated with 

four main parameters; baffle cut ratio, number of holes, holes distribution and baffle spacing. 

' '

i ju u
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2. Tested Configurations and Methodology 

The effect of three baffle cut-off ratio configurations was investigated, as depicted in Fig. 1. The muffler 

chamber length was 202.2 mm with a diameter of 153.289 mm. The muffler inlet and outlet pipes diameters 

were the same as muffler dimensions used in experimental validation section (104.78 mm). 

 

Fig.1. Baffle Cut Ratio Configurations and Their Middle Section A-A 

A fixed baffles spacing of 101.6 mm was used in investigation the effect of the baffle cut ratio. The small 

baffle spacing was investigated with half of this distance positioning the 50% cut ratio baffle at 50.80 mm 

spacing. To investigate the effect of holes’ number, the number of holes was changed from 1 hole up to 5 holes, 

ensuring that the hole was centred to the muffler baffles for all configurations as presented in section 6. The 

hole diameter used was 34.925 mm and positioned at the centre of the baffles. 

 

 

Fig.2. Methodology of Acquiring Muffler Transmission Loss (Ricardo Wave – Left and COMSOL– Right)

 
Design 1(Baffle cut ratio 25%) 

 
Design 2(Baffle cut ratio = 50%) 

 
Design 3 (Baffle cut ratio 75%) 
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For arrangements with more than one single hole, holes were arranged on a pitch circle radius of 47.9 mm 

with keeping one hole at the centre. Regarding the effect of baffle distribution, two configurations were 

investigated. The first one considered three inline holes each of 34.925 mm diameter with one of the holes 

fixed in the centre. The second configuration had three holes with a diameter of 34.925 mm distributed on a 

pitch circle radius of 47.9 mm without any holes in the centre. Fig. 2 illustrates the methodology of handling 

the Computer Aided Design (CAD) geometry to post-processing of the TL in both software.  In order to 

visualize the flow effects, computational fluid dynamics (CFD) simulations were performed using OpenFoam 

2.3.x, which has a CFD solver based on control volume discretization, to assess the effect of the baffles on the 

flow. Compressible steady state solver rhoSimplecFoam was used. Inlet velocity of 45 m/s and outlet pressure 

of 1.1 bars were used. The baffle thermal conductivity was set to 16 W/m.K, the specific heat to 490 J/kg.K and 

density of 8000 kg/m
3
. In order to ensure robust convergence and accurate results, a relative tolerance of 10

-8
 

was used. A relaxation factor of 0.3 was selected for all variables except pressure and density, where a value of 

0.9 was used. The Reynolds-averaged Navier-Stokes equation (RANS) approach has been chosen in the 

Turbulence analysis. The flow was assumed to be a compressible steady state ideal gas, the gravity effects and 

source terms were neglected and the forced convection was selected to dominant. Viscosity was calculated 

based on a Sutherland model; velocity inlet and pressure outlet were utilized. The turbulent model used within 

RANS is the k-epsilon realizable, which is suitable to model flows involving rotation, boundary layers under 

strong adverse pressure gradients, separation, and recirculation. The realizable k-ɛ model has been selected to 

simulate the flow turbulence as it demonstrates a superior ability to capture the mean flow of the complex 

structures [19]. The mesh was adjusted so that y+ values were above 25-30 (below 75) in order to model the 

turbulence accurately.  

The Compressible Continuity equation 1:  

     
0

u v w

x y z

    
  

  
                                                                                                                  (1) 

Momentum equation 2: 
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                                                                (2) 

Transport equations3 and 4 for the turbulence energy generation and dissipation rates [20]: 
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Gk represents the rate generation of Turbulent Kinetic Energy (TKE) that arises due to mean velocity 

gradients, Gb being the rate generation of turbulent kinetic energy the arises due to buoyancy, and YM 

represents the fluctuating dilation in compressible turbulence that contributes to the overall dissipation rate. Sε 

and Sk are source terms defined by the user. 
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The sound pressure p, was calculated with HelmHoltz equation using COMSOL by equation 5 [3]: 

2

0 0

1
0

k p
p

 

 
    
 

                                                                                                                                     (5) 

k=2f/c0 is the wave length, 0 is the density of the air, and C0 is the speed of sound. The TL is usually referred 

as a muffler characteristic property, not dependent on the internal flow conditions. TL (equation 6) is defined as 

the incident sound (equation 7) over transmitted sound powers (equation 8). 
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3. Validation of Baffle Modelling in Ricardowave and COMSOL 

Double chamber exhaust chamber with the dimensions previously reported [4] was used for validation, the 

diameters of pipes used were 34.925 mm, and 153.289 mm. The model has been built up in Ricardo wave with 

mesh 20 mm element sizes.  The software predicted the experimental transmission loss with good agreement 

for most frequency ranges, as depicted in Fig. 3. It can be observed that both finite element models using 

COMSOL Multi-physics and Ricardo Wave predicted the TL of experimental data accurately over a wide range 

of operating frequencies. 

 

 

Fig.3. Validation of Double Chamber 

4. Effect of Baffle Cut-off Ratio 

The effect of baffle configuration on the transmission loss using Ricardo-wave and COMSOL Multi-physics 
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is presented in Fig.4 to Fig. 6. It can be observed that reducing the baffle size shifted the TL peak to a higher 

frequency. Also, mufflers with large baffle sizes were more efficient in the intermediate frequency region of 

design 1 (25% baffle cut ratio) than design 2 (50% baffle cut ratio) and design 3 (75% baffle cut ratio) (60% 

improvement at frequency 1200). This may be attributed to the increased possibility of wave reflections in each 

muffler chamber leading to a reduction in the source noise and enhancement in the transmission loss. This 

technique is more effective at low traveling speed sound waves (low and intermediate frequencies). As the 

baffle size became smaller, increasing the wave frequency could help in enhancing the transmission loss by 

increasing the wave reflections as the wave travels faster for the same chamber length.  

 

 

Fig.4. Transmission Loss Design 1 

 

Fig.5. Transmission Loss Design 2 

 

Fig.6. Transmission Loss Design 3
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The effect of the baffle cut ratio showed a clear dropping in the gas temperature due the axial conduction in 

the baffle. It was found that the larger the baffle size, the lower outlet gas temperature (Fig. 7). In design 1 and 

2, the temperature increased near the baffle due to the conversion of dynamic head and reduction of velocity 

because of the geometry change in the fluid domain, leading to an increase in static pressure and temperature 

rise. After the baffle, there was a temperature drop due to both the heat transfer to the baffle and the drop in the 

static pressure behind the baffle. In design 3 the baffle height (baffle diameter-centre/baffle tip distance) was 

small and without changing the direction of the core fluid at the centre of the muffler, the flow path length was 

considered to have less influence than other geometries leading to a higher outlet temperature compared to 

other configurations. 

 

 

Fig.7. Temperature Change in Flow Direction 

The flow with large baffle sizes exposed to large changes in direction compared to other configurations, as 

depicted in Fig. 8 and 9, leading to larger pressure drop and lower outlet temperatures from the muffler, which 

was also confirmed by Fig. 10. Using a half baffle cut could improve the performance from both an acoustic 

and pressure drop combination. 

 

 

Fig.8. Effect of Baffle Cut on Back Pressure
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Fig.9. Effect of Baffle Cut on Outlet Temperature 

5. Effect of Number of Holes  

The performance of a single hole regarding TL was found to be enhanced in case of a single hole than a 

higher number of holes, as shown in Fig. 11. The throttling of fluid through a single hole helped to damp the 

noise through an increased number of reflections in each chamber volume as there was only single connection 

between different chamber volumes. The damping of noise was apparent at intermediate sound wave speed 

resulting in increased number of wave reflections and noise cancellation. However, using two or three holes is 

recommended to reduce the back pressure without much deterioration in transmission loss. Throttling the flow 

through single hole could lead to excessive pressure loss and deterioration of engine performance; passing the 

flow through multi-holes introduces the flow through parallel paths that helps to reduce the back pressure with 

some loss in acoustic performance as the transmission loss decreases with increasing the number of holes. 

 

  
25% Baffle cut ratio (design1) 25 % Baffle cut ratio (design 1) 
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50 % Baffle cut ratio (design2) 50 % Baffle cut ratio (design 2) 

  
75% Baffle cut ratio (design3) 75% Baffle cut ratio (design3) 

Temperature distribution Velocity Magnitude 

Fig.10. Temperature and Velocities through Different Designs 

6. Arrangement of Hole (Distribution of Holes from the Centre of the Baffle) 

Two designs were investigated with the same number of holes and holes diameters.  It was observed that 

holes placed at the centre of baffles enhanced the TL in the middle frequency range as shown in Fig. 12. It is 

desirable for a high performing muffler to achieve high TL with less back pressure to avoid engine losses. The 

creation of centre holes could secure the return of reflected wave close to the inlet chamber and enhances the 

noise attenuation. 
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Fig.11. Effect of Number of Holes with Centered Hole 

 

Fig.12. Effect of Three Holes Distribution on Baffles 

7. Baffle Spacing 

Closer baffle spacing enhanced the TL at intermediate and high frequencies ranges as shown in Fig. 13. This 

could be attributed to the smaller gap (SG) between the baffles having the effect of throttling the fluid and 

dampens the noise through small cross sections [21; 22]. The attenuation is evident at intermediate and high 

frequencies as the sound wave travelled with high speed in same small gaps increasing the number of wave 

reflections with muffler wall and helped to reduce the noise in the incident waves. 
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Fig.13. Effect of Baffle Spacing on Transmission Loss 

8. Conclusions 

The presented work investigates the effect of baffle size on muffler transmission loss and back pressure. The 

study highlights some design parameters on transmission loss that has not been covered in previous literature 

including baffle cut ratio, number of holes, holes distribution and baffle spacing. Increasing the baffle size was 

found to increase the back pressure and shift the peak TL to lower frequencies. Increasing the number of holes 

in baffles deteriorated the transmission loss compared to centred single hole. However, multiple holes are 

preferable to reduce the back pressure. Using centred holes was found to be more effective than distributing the 

holes on the baffle surface. Reducing the baffle spacing was found to enhance the transmission loss at high and 

medium frequency regions. The transmission loss could be improved by more than 40% by adjusting the 

highlighted parameters. The current research proofs that baffle cut ratio could be used as a noise control 

technique, further investigations are required to understand how this technique is effective for different muffler 

sizes and types. 
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