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Abstract: The impact of riparian wetlands on the cycling, retention and export of nutrients from land 
to water varies according to local environmental conditions and is poorly resolved in catchment 
management approaches. To determine the role a specific wetland might play in a catchment mitigation 
strategy, an alternative approach is needed to the high-frequency and spatially detailed monitoring 
programme that would otherwise be needed. Here, we present a new approach using a combination 
of novel and well-established geochemical, geophysical and isotope ratio methods. This combined 
approach was developed and tested against a 2-year high-resolution sampling programme in a 
lowland permeable wetland in the Lambourn catchment, UK. The monitoring programme identified 
multiple pathways and water sources feeding into the wetland, generating large spatial and temporal 
variations in nutrient cycling, retention and export behaviours within the wetland. This complexity of 
contributing source areas and biogeochemical functions within the wetland were effectively identified 
using the new toolkit approach. We propose that this technique could be used to determine the 
likely net source/sink function of riparian wetlands prior to their incorporation into any catchment 
management plan, with relatively low resource implications when compared to a full high-frequency 
nutrient speciation and isotope geochemistry-based monitoring approach. 

Keywords: nitrogen; phosphorus; nutrient cycling; biogeochemistry; geochemistry; geophysics; 
wetlands; catchment management 

1. Introduction 

As the international scientific literature produced over the past three decades attests, 
biogeochemical cycling in wetland systems shows a significant degree of inter- and intra-site variability, 
leading to highly variable rates, patterns and speciation of C, N and P within and from these wetlands 
to adjacent surface waters [1–8]. Such variability may be related to the geomorphology and specific 
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soil physical, soil organic, chemical and vegetation character of the wetland, the nature and extent of 
seasonal, short-term and inter-annual wetting-drying cycles, the specific nutrient speciation of inflowing 
waters, or to anthropic modifications [9–14]. In permeable catchments, there is added complexity in 
terms of vertical and lateral nutrient exchange with adjacent surface waters and groundwater via the 
hyporheic zone [4,5,15,16]. Whilst riparian wetlands have been shown to act as biogeochemical cycling 
hotspots, with the potential to transform and attenuate the nutrient and geochemistry signal from 
the catchment as it moves from land to water [1,3,17–19], the efficacy of this function in real terms is 
controlled by the specific distribution of functional zones or biogeochemical cycling hotspots within 
the wetland. These in turn are controlled by the chemical character and distribution of contributing 
source areas of flow to the wetland between and within a water year, flow routing through the wetland, 
the residence time of water within the wetland and contact or exposure time between the microbial 
community and the nutrient parcel transitioning through the wetland; while soil organic carbon content 
and dissolved organic matter in porewaters acts as an energy resource to support denitrification, with 
redox status varying laterally, vertically and over time [7,11,20,21]. Reported denitrification rates vary 
widely within and between riparian wetlands, and over time, with annual rates reported to vary from 
<3 kg N ha−1 to >500 kg N ha−1 in denitrification hotspots in wet meadow systems, and <4 kg N ha−1 

to >65 kg N ha−1 in riparian forests [22]. 
A wide range of papers have been published on wetland biogeochemistry, demonstrating what 

often appear to be conflicting behaviours in systems within apparently similar hydrogeological and 
climatic zones. However, these conflicts are largely attributable to within and between site variability 
in the size and hydrological connectivity of the major biogeochemical functional zones within the 
wetlands, differences in the range of variables determined in each programme, and the differences in 
the frequency of sample collection in both space and time. All too often, a low-resolution sampling 
programme is implemented, with sampling of wetland soil water at relatively few sites and depths, 
and for a limited range of nutrient species, due to resource constraints or to the need to employ less 
invasive sampling techniques in an ecologically sensitive environment. The resulting data are often 
misleading, suggesting for example, that functions such as denitrification can account for nitrate ‘loss’ 
across large wetland tracts without ever accounting for the spatial variability in the distribution of that 
function in the subsurface zone, or over time in response to hydrological flushing events. Meanwhile 
the catchment management literature often contains gross assumptions regarding the potential rates of 
nutrient ‘removal’, ‘attenuation’ or ‘loss’ achievable in both natural and constructed wetlands and 
buffer strips. Nutrient cycling and transformation, temporary storage within the soil matrix, plant and 
microbial communities of the wetland, and subsequent export of organic nutrient forms to adjacent 
waters under high flow conditions are all too often missed as alternative causes of the observed patterns. 
Reported rates of nutrient ‘removal’ following the installation of riparian wetlands or ‘buffer strips’ are 
then erroneously low for catchment managers [8], or highly variable over the hydrological year [15]. 
Where a high frequency sampling programme has been undertaken which adopts an holistic approach 
to assessing C, N and P cycling and flux [23–25], very often different conclusions are drawn, and the 
capacity of wetlands to attenuate nutrient flux from catchment sources, to transform inorganic nutrient 
influx to organic nutrient forms stored within the wetland, and to export accumulated dissolved organic 
nutrient stores during flushing events becomes apparent [5,23,26–28]. The best environmental policy 
is underpinned by sound and holistic science, but the resources required to undertake such holistic 
assessment are significant and often prohibitive even for single-site investigations. An alternative 
approach is required that can identify the likely distribution of functional zones across large and/or 
multiple wetland systems without the need to undertake costly, invasive and time-consuming high 
resolution spatial and temporal monitoring. Here we present such an approach, building on the 
HydroGeoMorphic UNIT (HGMU) classification of wetlands [29], using a novel toolkit of geophysical, 
geochemical and natural abundance isotopic methods to identify the distribution of functional zones 
in complex permeable riparian wetlands and determine their likely impact on nutrient transport, 
transformation and export to adjacent waters [30–33]. This recognises the need to understand the 
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subsurface structure and hydrological function within wetlands, given their potentially significant 
impact on the hydrological and biogeochemical behaviour of catchments, as well as their effects on the 
wetland habitat itself, and to derive an understanding of where water comes from, how it affects soil 
redox status and how long it is in contact with the wetland plant and microbial communities. 

This approach was developed as part of the project on Hydrogeochemical Functioning of Lowland 
Permeable Catchments funded from 2002–2005 under the United Kingdom Natural Environment 
Research Centre (NERC) Lowland Catchment Research (LOCAR) programme [34,35]. The research 
was undertaken on an instrumented riparian wetland adjacent to the River Lambourn with the aim of 
identifying the role of these wetlands in modifying the nutrient chemistry of waters draining to the 
Lambourn from its catchment. The wetland had been the subject of a previous investigation into total 
nitrogen (N) and total phosphorus (P) cycling dynamics in the wetland soil water and the adjacent 
river reach [5]. Key findings from the earlier work on this wetland indicated that: 

•	 Wetlands in these permeable catchments act as a sink for N and P under baseflow conditions, with 
high concentrations of dissolved organic N (DON) and P (DOP) accumulated in soil porewaters 
following plant assimilation of nitrate (NO3-N) and orthophosphate (PO4-P), plant dieback and 
microbial decomposition of dead organic matter. 

•	 The wetland acts as a nutrient source under high flow conditions, with nutrient-rich porewater 
exported to the adjacent River Lambourn, predominantly in the form of DON and DOP. 

•	 Wet-warm periods, with associated changes in soil redox status provide the optimum conditions 
for gaseous N flux from the wetland via denitrification, and for the desorption of P from the soil 
matrix and its subsequent flux in aqueous form to the adjacent River Lambourn. 

•	 The wetland source/sink function varies both from baseflow to high flow conditions, and also 
from wet year to dry year, with greater rates of nutrient export to the adjacent Lambourn in wetter 
years, and greater retention of both N and P in the soil porewaters in drier years. 

Further work on P and sediment transport and transformations undertaken on the adjacent reach 
provides additional context for the interpretation of P cycling trends in the current study [36–38]. 
Allied projects funded under LOCAR on the Lambourn and its catchment provide further detailed 
understanding for this project to draw upon on the biogeochemical process controls on nutrient 
exchange between groundwater, surface water and the hyporheic zone upstream from the Boxford 
wetland [31,39], on streamflow generation and surface water-groundwater interactions along the length 
of the Lambourn [40,41] and the specific role of alluvial deposits in the Lambourn valley wetlands on 
groundwater–surface water exchange processes [42], and on process controls on nutrient exchange 
between surface and subsurface zones in the adjacent reach of the Lambourn [43–45]. 

The limitation of this earlier work, however, was that the proportion of catchment flow routed 
through the wetland and the specific spatial origins of the water in the wetland at any point in time 
were not known. The latter might comprise any, or a combination, of diffuse flow into the wetland from 
adjacent hillslopes, road runoff, diffuse influx from groundwater recharge through the valley gravels 
underlying the wetland, or influx of water from the adjacent river. The dominant hydraulic gradient 
and thus the source of wetland soil porewaters is likely to vary both in time and space, altering the 
rate and origins of nutrient influx to the wetland, and the contact time between the wetland plant and 
microbial communities and the nutrient load in transit which has been reported in previous studies to 
be a key control on processes such as soil redox and ultimately denitrification in wetland soils [11,20]. 
This in turn would influence the speciation of the nutrient load as it moves through the wetland. 

In this programme, therefore, we adopted a 3-step approach to determine: 

1.	 the sub-surface structure, hydrological connectivity and function of the wetland using geophysical 
mapping and geochemical ratio techniques to identify the likely origins and residence times of 
waters within the wetland soil matrix as these varied in space and time. In combination these 
would allow identification of the potential location of biogeochemical cycling hotspots within 
the wetland. 
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2.	 the nutrient cycling, retention and export behaviour in the wetland using a high temporal and 
spatial resolution sampling and analysis programme for all N species and P fractions flushed to 
and through the wetland and out to the adjacent aquifer and river, including the use of isotope 
ratios to discover direct evidence of the rates and locations of denitrification hotspots in the 
wetland. From this, we could then determine: 

a.	 the biogeochemical cycling hotspots within the wetland; 
b.	 the extent to which inorganic N and P ‘loss’ could be accounted for via denitrification, 

biotic uptake, and degradation of dead organic matter leading to the accumulation and 
subsequent flushing of dissolved organic nutrient fractions within soil porewaters; and 

c.	 the whole system nutrient attenuation behaviour and capacity of natural riparian wetlands 
in intensively farmed permeable catchments. 

3.	 Whether an alternative, lighter touch approach could effectively identify the wetland 
biogeochemical functional zones and likely wetland nutrient ‘removal’ efficiency by using 
geochemical, geophysical and natural abundance isotopic techniques, testing the outcomes from 
this approach against the fine-resolution but more time-consuming identification of these zones 
achieved in step 2. 

2. Materials and Methods 

All research was conducted on the Boxford experimental wetland, UK, instrumented with field 
sampling equipment included porous cup samplers, dipwells and automatic water samplers (see 
Section 2.1). The methods used included the characterisation of (1) wetland functional zones using 
vegetation mapping (Section 2.2), (2) subsurface stratigraphy using geophysical survey techniques 
(Section 2.3), (3) and biogeochemical functional zones using nutrient speciation, major ion geochemistry 
and isotope geochemistry analytical approaches (Section 2.4). 

2.1. Site Description: The Boxford Wetland 

The Boxford experimental wetland lies adjacent to the River Lambourn which drains a 
predominantly chalk catchment with a complex mixture of alluvial silts and gravels overlying 
the Seaford chalk in the riparian zone [42,46]. The catchment is farmed intensively, with a mixture 
of sheep grazing on steep scarp slopes and in the river corridor, and intensive arable production on 
the dip slopes, occupying 90% of the land area in the catchment [37]. Fertiliser application rates to 
crops and grass vary from 125 kg N ha−1 on arable crops and permanent grassland to 155 kg N ha−1 

on temporary (rotational) grassland. P fertiliser applications vary from 10 kg P ha−1 on grassland to 
27 kg P ha−1 on cereal crops and over 50 kg P ha−1 on root crops [43]. 

The relationship of the Boxford wetland to local catchment topography and geology is shown in 
Figure 1. The wetland lies on the east bank of the River Lambourn just upstream from the village of 
Boxford, at the base of a major dry valley feature orientated N–S veering NW–SE closer to the river 
channel. Topographically this feature appears to indicate a downslope gradient for water to drain 
through the wetland to the River Lambourn. The wetland soils comprise silty alluvium with a high 
proportion of nodular flint. These are underlain by a flint gravel matrix of varying thickness which is 
in turn underlain by Seaford chalk. These alluvial gravels occupy a critical zone controlling surface 
water–groundwater interactions at the study site and provide an important lateral flow pathway for 
pollutant transport along the river valley corridor and between the wetland and the adjacent river [42]. 
However, there are areas of discontinuity along the length of the river and, we propose, under the 
parts of the wetlands in the river corridor, leading to complex flow pathways and domains within the 
riparian wetlands. These in turn will generate variable hydrologic residence times within the wetlands, 
impacting on the extent to which nutrient load delivered to these wetlands is in contact with the key 
biogeochemical cycling process functions in the wetland. 
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The River Lambourn flows adjacent to the site from NW to SW, with steeper hillslopes to the north 
and east. Site elevation varies from 1.8 m along the site margins to −0.8 m above local datum, at the base 
of a proto-stream channel which drains across the site from NE to SW in alignment with the dry valley 
feature which adjoins the site at point X (see Figure 2). The proto-stream is a dominant feature within 
the wetland, with intra-site topography trending downslope from the outer margins of the wetland to 
the proto-stream network to form a surface topographic micro-catchment. Its alignment with the dry 
valley feature feeding into the upslope margin of the wetland suggests a linked geomorphic origin to 
both features, and potentially a major flow path through the wetland from land to stream. Water 2020, 1, x FOR PEER REVIEW 5 of 32 

 

 
Figure 1. Dry valley features of the Lambourn catchment. The location of the Boxford wetland is 
marked with a red circle. The dry valley surface topographic catchment is shown shaded to the north 
of the wetland. Figure reproduced with permission of the British Geological Survey. 

The River Lambourn flows adjacent to the site from NW to SW, with steeper hillslopes to the 
north and east. Site elevation varies from 1.8 m along the site margins to −0.8 m above local datum, 
at the base of a proto-stream channel which drains across the site from NE to SW in alignment with 
the dry valley feature which adjoins the site at point X (see Figure 2). The proto-stream is a dominant 
feature within the wetland, with intra-site topography trending downslope from the outer margins 
of the wetland to the proto-stream network to form a surface topographic micro-catchment. Its 
alignment with the dry valley feature feeding into the upslope margin of the wetland suggests a 
linked geomorphic origin to both features, and potentially a major flow path through the wetland 
from land to stream. 

Figure 1. Dry valley features of the Lambourn catchment. The location of the Boxford wetland is 
marked with a red circle. The dry valley surface topographic catchment is shown shaded to the north 
of the wetland. Figure reproduced with permission of the British Geological Survey. Water 2020, 1, x FOR PEER REVIEW 6 of 32 

 

 
Figure 2. Instrumentation, showing the location of the porous cup sampler nests, piezometers, and 
Boxford borehole. Shading shows topographic variation across the site. 

2.2. Characterisation of Wetland Functional Zones Using Vegetation Mapping 

Plant community species composition varies across wetlands as a function of variations in site 
hydrology, hydrochemistry, soil character and subsurface stratigraphy where this impacts on the 
rooting zone. It can be used as a simple indicator of the effective biogeochemical cycling functional 
zones within the wetland and was, therefore, mapped in this programme to determine the extent to 
which it reflected observed nutrient cycling function identified in the traditional high resolution 
sampling and analysis programme implemented across the site under Step 2. Similarly, hydrologic 
and geomorphic character have been used to classify the major functional zones within wetlands, 
stemming from the HGMU classification scheme for wetlands [29]. This provides a static 
classification of the major functional units within a wetland from a structural perspective, and has 
been widely applied internationally in wetland assessment schemes, though questions remain over 
whether, as a stand-alone tool, it can reflect the distribution of biogeochemical function at a process 
scale in wetlands. Therefore, mapping of these variations, and classification using the HGMU and 
UK National Vegetation Classification (NVC) scheme [47] was undertaken. The site is dominated by 
sparse stands of Phragmites australis along the NW-S margins of the site adjacent to the River 
Lambourn, with Phalaris arundinacea, Glyceria maxima and Carex paniculata common in the wetter and 
lower lying Tall Grass Washlands (NVC G18) close to the proto-stream channel and the adjacent road. 
To the NW of the site, Tall Herb Fen (NVC M16) is the dominant vegetation community, dominated 
by Filipendula ulmaria, Glyceria maxima and Urtica dioica. 

The HGMU classification effectively separated the higher margins of the site from the 
agricultural land upslope, the hawthorn and blackthorn scrub which occurs along the higher upslope 
margins of the wetland, the public footpath running NW to SE across the top of the site, the private 
fishing bank (mowed grass) running along the western edge of the wetland, and the lower lying land 
of the wetland proper, but it makes no distinction between the wetter and drier areas of the wetland 
proper, nor of those areas lying along the proto-stream channel which is the dominant surface flow 
pathway through the site, where bypass flow is likely to lead to minimal contact between the nutrient 

Figure 2. Instrumentation, showing the location of the porous cup sampler nests, piezometers, and 
Boxford borehole. Shading shows topographic variation across the site. 
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2.2. Characterisation of Wetland Functional Zones Using Vegetation Mapping 

Plant community species composition varies across wetlands as a function of variations in site 
hydrology, hydrochemistry, soil character and subsurface stratigraphy where this impacts on the 
rooting zone. It can be used as a simple indicator of the effective biogeochemical cycling functional 
zones within the wetland and was, therefore, mapped in this programme to determine the extent 
to which it reflected observed nutrient cycling function identified in the traditional high resolution 
sampling and analysis programme implemented across the site under Step 2. Similarly, hydrologic 
and geomorphic character have been used to classify the major functional zones within wetlands, 
stemming from the HGMU classification scheme for wetlands [29]. This provides a static classification 
of the major functional units within a wetland from a structural perspective, and has been widely 
applied internationally in wetland assessment schemes, though questions remain over whether, as 
a stand-alone tool, it can reflect the distribution of biogeochemical function at a process scale in 
wetlands. Therefore, mapping of these variations, and classification using the HGMU and UK National 
Vegetation Classification (NVC) scheme [47] was undertaken. The site is dominated by sparse stands 
of Phragmites australis along the NW-S margins of the site adjacent to the River Lambourn, with 
Phalaris arundinacea, Glyceria maxima and Carex paniculata common in the wetter and lower lying Tall 
Grass Washlands (NVC G18) close to the proto-stream channel and the adjacent road. To the NW of the 
site, Tall Herb Fen (NVC M16) is the dominant vegetation community, dominated by Filipendula ulmaria, 
Glyceria maxima and Urtica dioica. 

The HGMU classification effectively separated the higher margins of the site from the agricultural 
land upslope, the hawthorn and blackthorn scrub which occurs along the higher upslope margins of 
the wetland, the public footpath running NW to SE across the top of the site, the private fishing bank 
(mowed grass) running along the western edge of the wetland, and the lower lying land of the wetland 
proper, but it makes no distinction between the wetter and drier areas of the wetland proper, nor of 
those areas lying along the proto-stream channel which is the dominant surface flow pathway through 
the site, where bypass flow is likely to lead to minimal contact between the nutrient load delivered 
from the catchment and the biological communities of the wetland. The NVC provides a finer level of 
distinction, separating the higher and drier areas of the wetland to the W of the site from the lower 
lying areas of the wetland to the S and E, but still does not distinguish the wetter areas along the line of 
the proto-stream channel as a potentially distinct functional zone. 

2.3. Characterisation of Subsurface Stratigraphy Using Geophysical Techniques 

Geophysics can provide spatial information on the continuity and structure of the wetland 
subsurface zone [32,48–50]. We therefore used electrical resistivity tomography (ERT) and ground 
penetrating radar (GPR) to characterise the subsurface stratigraphy of the wetland [51]. The geophysical 
surveys were undertaken at the start of the programme along a number of transects across the 
site. Figure 2 shows the location of these transects, the results from which are reported here. 
Electrical resistivity was measured in January 2004 using linear electrode arrays, 2 m spaced, in the 
Wenner configuration. Data were inverted to a 2-D resistivity image, an Occam’s based inversion [52]. 
GPR surveys were performed in June 2004 using 200 MHz antennae, with 0.1 m spacing between 0.5 m 
separation common offset measurements. GPR two-way travel times of reflections were converted to 
depths using velocities derived from common mid-point (CMP) surveys along the transects. 

Example results from the ERT and GPR are presented in Figures 3 and 4, along with results from 
shallow soil coring. The soil coring revealed a typical sequence of 0.5 to 1 m of alluvium overlying a 
1 to 2 m thick gravel layer, which lies above weathered chalk (noted to the 4.5 m maximum depth of 
the auger profiles). 
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The ERT images, presented in Figure 4, revealed a shallow (0.5 to 1 m thick) electrically conductive 
(low resistivity) surface layer, which clearly coincides with the alluvial soil horizon. The ERT images 
are, by the nature of the method, over-smoothed. However, the GPR provides evidence of a clear 
continuous reflector that matches the alluvium/gravel boundary. Below this boundary the resistivity 
increases rapidly to a maximum of between 150 and 200 Ωm at 2 to 3 m depth and then decreases to a 
relatively uniform 80 Ωm. The transition from gravel to chalk is not seen in the GPR profiles because 
of (1) high attenuation and (2) scatter resulting from the coarse sediments in the gravel layer. 

The geophysical surveys reveal that the thickness of the alluvial soil horizon varies across the site 
and, in particular, thins near the proto-stream channel. The ERT images show that close to the stream 
channel the gravel layer is relatively resistive. We attribute this to a greater abundance of coarser, 
clean gravel noted from soil cores near the channel. The gravels away from the channel were noted to 
contain much greater fines content, with clear layers of putty chalk, which will lead to a similar low 
resistivity electrical signature as the underlying chalk. In fact, Musgrave and Binley, through time-lapse 
monitoring of one ERT transect over one year, revealed evidence of potential groundwater connection to 
the proto-stream channel through observations of the suppression of subsurface temperature dynamics, 
attributed to direct connection to stable groundwater temperatures [51]. 

Note that there is also a coincidence between the composition of the plant community distribution 
and the ERT survey findings, with much lower resistivity occurring in the area to the NW of the 
site supporting Tall Herb Fen (NVC M16) than in the SE where Tall Grass Washlands (NVC G18) 
dominate. Both likely reflect the wetter conditions and thinner layer of alluvial soils in the area of the 
wetland closest to the proto-stream channel. Thus, the geophysical surveys provide a more detailed 
discrimination of the surface structure and distribution of hydrological functional zones across the 
wetland than the HGMU method and appear to reflect the variation of wetland vegetation character 
across the site. 

2.4. Characterisation of the Biogeochemical Functional Zones Using Nutrient Speciation Chemistry, Major Ion 
Geochemistry and Isotope Geochemistry Analysis Approaches 

2.4.1. Site Instrumentation 

The decision to continue to use the Boxford wetland for this study was made in part because the 
wetland geophysical structure and vegetation community are fairly typical of tall herb wetlands in 
lowland permeable UK catchments, and also because of the location of the wetland at the base of a 
key dry valley feature. The wetland was instrumented with a 5 × 4 network of nested Teflon porous 
cup samplers which were installed in the soil matrix at 20, 40 and 60 cm below the wetland surface. 
Teflon porous cup samplers were selected as they are chemically inert for the purposes of N and P 
hydrochemistry investigations. These were sampled weekly from 16 September 2003 to 16 January 
2005, augmenting earlier sampling and nutrient analysis at the site [5]. Adjacent to each sampler nest, 
dipwells were installed to the upper surface of the gravels underlying the wetland and used to monitor 
water level fluctuations across the wetland weekly over the same time period. 

Further porous cup samplers were installed along the line of the proto-stream channel, and 
piezometers were installed into the underlying gravel layer to a depth of 2.0 to 3.5 m below the wetland 
soil surface at 5 locations. Samples were collected from these additional samplers fortnightly in the 
final year of study. Access was also arranged to the 30 m deep Boxford borehole adjacent to the wetland 
(marked X, Figure 2), with samples collected approximately monthly over the period of monitoring. 
Analyses conducted on these samples confirmed that the groundwater feeding through the wetland 
was from the underlying chalk aquifer. Finally, in the last 6 months of the study, a fifth line of porous 
cup samplers were installed along the roadside margin of the site (see Figure 2) and sampled weekly, 
following the discovery of phosphorus and ammonium enriched water along this margin which might 
be derived from seepage from a sewage treatment works (STW) located in an adjacent quarry or 
alternatively from phosphatic rock (5% P2O5) recorded in this same quarry in an earlier study [53]. 
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All of the samplers were surveyed in, relative to Ordnance Datum (OD), so that the absolute 
elevation of the sampler, the vegetation community with which the sampler was associated, and 
its relative proximity to the River Lambourn, the proto-stream channel and the road were known. 
A summary of sampling undertaken at the site is given in Table 1. 

Table 1. Sampling programme details. 

Sampling Programme Dates 

Weekly Water Sampling: 

Water level at dipwells 16 September 2003–16 January 2005 
Soil porewaters in wetland alluvial soils, 23 nests, 20, 40, 60 cm 16 September 2003–16 January 2005 
Water levels in wetland alluvial soils, 23 dipwells, 7 January 2004–16 January 2005 
Proto-stream surface water, 3 sites, 7 January 2004–16 July 2004 
Boxford borehole, 30 m depth 1 December 2004–16 January 2005 
Piezometers in gravels, 5 sites, 2 m, 3 m depth 1 July 2004–16 January 2005 
Puncture tensiometers in wetland alluvial soils 1 September 2004–16 January 2005 

Plant Sampling: 

Plant species list April 2004, June 2004 
Biomass sampling, single and mixed species stands, monthly Monthly 
Structural measurements, including canopy height, stem density per Monthlyunit area, average stem diameter recorded monthly 
Plant health monitored monthly using fluorimeter Monthly 

Wetland Soil Porewater and Source Water Geochemistry: 

Soil porewaters, piezometers, river and groundwater sampled twice and July 2004, December 2004 analysed to determine geochemical signature. 

Isotopic Signatures of Wetland Biogeochemical Function: 
15N/14N and 18O/16O determined on water samples collected from October 2004 
porous cup samplers along transects, piezometers, borehole, river 
15N/14N determined on vegetation samples collected along transects October 2004 

2.4.2. Samples Analysis to Determine N Species and P Fraction Concentrations in Porewaters 

In order to provide a full assessment of the cycling of nitrogen (N) and phosphorus (P) within and 
through the wetland, all water samples collected from the wetland soil water, gravels and chalk were 
analysed to determine the concentrations of dissolved inorganic N (NO3-N, NO2-N, NH4-N), dissolved 
organic N (DON), and soluble reactive P (SRP, measured as PO4-P), dissolved organic P (DOP), and 
dissolved organic C (DOC) as Non-Purgeable Organic Carbon (NPOC), using standard operating 
procedures and quality assurance protocols [23,25]. Samples were collected over a period of 4 h at each 
sampler nest on a weekly basis and returned to the laboratory at 4 ◦C in the dark. All samples were 
analysed within 24 h of collection using a Chemlab System 40 autoanalyser to determine total oxidised 
N (TON = NO3-N + NO2-N), total ammonium (NH4-N + NH3-N) and SRP as orthophosphate (PO4-P). 
A second run with modified manifold yielded NO2-N concentrations which, when subtracted from 
TON generated NO3-N concentrations for each sample. Samples were then digested using a modified 
method to determine total dissolved N (TDN) and P (TDP) concentrations [23,54]. This procedure 
oxidises all N in the sample using potassium persulphate (K2S2O8) in a strongly alkaline environment 
under high temperature and pressure, yielding nitrate with some residual ammonium. The by-product 
of this reaction simultaneously creates the acidic conditions needed to support the oxidation of P in 
the presence of K2S2O8 to yield orthophosphate under conditions of high temperature and pressure. 
The technique uses a CEM MARS-Express Microwave Digestion Unit to create high temperature and 
pressure under controlled conditions. Sample digests were then analysed to determine TDN as TON 
and TDP as PO4-P using standard methods. DON was then calculated as TDN minus total inorganic 
N (TON + NH4-N). DOP was calculated as TDP minus SRP. All sample digests were completed within 
48 h of sample collection to minimise sample degradation prior to analysis and analysed within 72 h 
of collection. 
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2.4.3. Sample Analysis to Determine Major Element Geochemistry 

Major element geochemistry was determined on a subset of these samples. This included samples 
collected from the soil matrix, gravels and chalk underlying the wetland, and from the adjacent river 
reach, borehole, and a second borehole array at Westbrook Farm, located 300 m upstream from the 
wetland, the data from which have been reported in detail in a number of earlier publications [30,37]. 
These data were collected to help determine, using similarity indices, the likely origins of waters 
draining through the wetland. As chalk groundwaters are dominantly of Ca-HCO3 type and subject 
to a greater degree of incongruent dissolution with residence time, greatest separation of trends in 
sample geochemistry is often best achieved by examining the ratio of base cations, in particular the 
strontium/calcium (Sr/Ca) and magnesium/calcium (Mg/Ca) ratios. Higher ratios are likely to be 
indicative of relatively longer residence time of chalk groundwater, whereas lower ratios are more 
typical of surface water input or rainwater. 

Sampling was carried out using a small submersible pump and included on-site measurements of 
temperature, specific electrical conductance (SEC) and alkalinity (by titration) as well as pH, dissolved 
oxygen (DO) and redox potential (Eh). The latter parameters were measured in a flow-through cell to 
minimise contact with the atmosphere. To ensure a representative sample was taken, a minimum of 
2–3 well volumes was removed from the piezometers prior to sampling and samples were collected 
after on-site readings of temperature, conductivity, pH, DO and Eh had stabilised. Samples for 
major ion chemistry were collected in Nalgene bottles and filtered through 0.45 µm membrane filters. 
Analysis of major cations and sulphate was carried out by ICP-OES and anions were analysed by 
automated colorimetry. 

2.4.4. Sample Analysis to Determine Isotope Ratios in Soil Water, Alluvial Gravels and Wetland Vegetation 

Isotope geochemistry has a wide range of applications in the study of the natural environment, 
and the study of natural abundance isotopic ratios has become a well- established technique for the 
investigation of elemental cycling in a wide range of ecosystems. In the study of nutrient cycling and 
flux in wetland systems, the isotopes commonly studied include the 15N/14N and 18O/16O ratios in 
nitrate, where the lighter isotopes are preferentially taken up in vegetation over the heavier isotopes. It is 
also used as an indicator of the denitrification and ammonia volatilisation processes. Because molecular 
bonds involving 14N are weaker than identical bonds involving 15N, reaction of 14N molecules is 
kinetically favoured relative to reaction of 15N molecules. As a consequence, in bacterially-mediated 
processes such as denitrification, the δ15N value of the instantaneously-formed product is lower than 
the value of the substrate. During denitrification, the residual nitrate becomes enriched in both 15N 
and 18O, and combined 15N/14N and 18O/16O analysis of nitrate has been shown to be a particularly 
effective way of identifying denitrification in riparian systems [55–57]. 

Samples of waters entering the wetland at the gravel-alluvial boundary, and accumulated within 
the soil porewaters of the wetland alluvial soil can be collected as transient indicators of these processes, 
but a longer term indication of the distribution of N metabolism across a wetland can also be derived 
by examination of the isotope ratios in non-migratory resident organisms in a wetland, such as the 
wetland plant community. In the latter case, variation in the stable isotope composition of the plants 
across the wetland will reflect the dominant processes operating in the subsurface zone. This approach 
was therefore adopted in this study, with leaf material of plants collected for 15N/14N analysis from 
a number of sites in the wetland and River Lambourn. Sampling concentrated on a single species, 
Phalaris arundinacea, to avoid inter-species variability. Water samples were collected for 15N/14N and 
18O/16O analysis of nitrate from the Boxford borehole, the Westbrook borehole array, the proto-stream, 
and a few of the piezometers. 

Nitrate in waters was collected on anion exchange resins and processed to silver nitrate [58,59]. 
Plant samples, comprising the top 4–5 leaves of a plant were dried at 80 ◦C and homogenised. 15N/14N 
ratios of the silver nitrate and plants were analysed by combustion in a FlashEA nitrogen and carbon 
analyser on-line to a Delta Plus XL mass spectrometer (ThermoFinnigan, Bremen, Germany), with 
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ratios calculated as δ15N values versus air (atmospheric N2) by comparison with standards calibrated 
against the International Atomic Energy Authority IAEA-N-1 and IAEA-N-2 (ammonium sulphate) 
isotope standards. 18O/16O ratios of the silver nitrate were analysed by thermal conversion to CO 
gas at 1400 ◦C in a TC-EA on-line to a Delta Plus XL mass spectrometer (ThermoFinnigan, Bremen, 
Germany), with ratios calculated as δ18O values versus VSMOW (Vienna Standard Mean Ocean Water) 
by comparison with the IAEA-NO-3 (potassium nitrate) isotope standard. 

Data generated from each of these methods are deposited in the NERC Environmental Information 
Data Centre (EIDC) LOCAR repository and are publicly available along with subsequent monitoring 
at the Centre for Ecology and Hydrology (CEH) River Lambourn Observatory at Boxford here: 
http://eidc.ceh.ac.uk/ and from the lead author. 

3. Results 

3.1. Characterising Wetland Hydrological Function through Hydrological Monitoring and Geochemical Indices 

An indication of the variation in site hydrology over the sampling period is given in Figure 5. 
Here, water level variations at each sampler nest are presented for the period 16 September 2003 
to 16 January 2005. Along each SW–NE transect (A, B, C, D–see Figure 2) maximum water level is 
recorded in the period March–April, in accordance with observations of water level in the adjacent 
reach of the Lambourn [5,36]. Minimum water level occurs in the early autumn (September to October) 
in both years studied. 
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Groundwater level was typically 30–60 cm below the wetland soil surface along transect A, the 
closest to the river (Figure 2), indicating that sampler nests installed at 20 cm depth at A1–A5 will 
have consistently sampled the unsaturated zone of the soil. Samples collected at 20 cm depth along 
this transect are likely, therefore, to include water stored in both micropores and macropores in the 
soil matrix. At 40 cm depth the samples collected in the period January to May will have been taken 

http://eidc.ceh.ac.uk/
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from the saturated soil zone, but for the remainder of the year these will have been taken from the 
unsaturated soil zone. At 60 cm virtually all samples will have been taken from the saturated soil zone. 
According to theories of nutrient hydrochemical function derived from the earlier work on the Boxford 
wetland, the unsaturated zone soil samples are likely to include water stored over a relatively long 
period of time in the wetland and are therefore likely to exhibit a significantly different (processed) 
hydrochemistry than that of possible source waters (river water, groundwater) [5]. Conversely, water 
samples taken from the saturated zone are likely to include substantial contributions of source water, 
and the chemistry of these waters is likely to show a greater similarity to that of potential contributing 
source areas. 

Water level along transect B, aside from that recorded at B2, is similar to that recorded along 
transect A. B2 shows a more flashy response in terms of water table fluctuations, as does B5 to a lesser 
extent. When piezometers were installed at B2, the coring evidence revealed the presence of putty 
chalk below the wetland at this site, indicating poor connectivity between wetland soil porewaters 
and groundwater, which is consistent with the geophysical survey findings for the site [51]. The data 
collected for B2 are likely to show unsaturated zone chemistry typical of a longer hydraulic residence 
time in the wetland. Of the remainder of the samplers, only those at B5 will have consistently been 
taken from the saturated zone of the wetland and are therefore likely to show a chemistry consistent 
with other areas of the wetland well-connected with potential source waters. 

Water levels along transect C which runs close and parallel to the proto-stream channel (Figure 6) 
are variable along the Transect. C1 is located immediately adjacent to the proto-stream channel and 
the water level data indicate saturated conditions at this site for the whole of the sampling period and 
at all three sampling depths. The hydrochemistry data for C1 are, therefore, likely to show similarity 
to the data for proto-stream channel itself and other saturated sites across the wetland. Samplers at 
C4 are also very close to the proto-stream channel and the water level data indicate that here also 
the samplers at all 3 depths are likely to have extracted samples from the saturated rather than the 
unsaturated zone. The nutrient chemistry and geochemistry of these samples would be expected to 
show similarities with that of the proto-stream channel and other source waters. At C2, C3 and C5 
the sampler nests are further away from the proto-stream channel. In all three sites the samplers at 
60 cm are likely to be sampling from the saturated zone, with samplers at 20 and 40 cm at C3 and C5 
sampling from the unsaturated zone over the period July to February. 
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Water levels along transect D, adjacent to the road, indicate that few of the samples drawn at 
20 cm are likely to have been from the saturated zone. At 40 cm most of the samples collected from 
3 September to 2004 July are likely to have been drawn from the saturated zone. At 60 cm all samples 
are likely to have been drawn from the saturated wetland soils. This is again likely to be reflected in 
the nutrient chemistry and geochemistry of the samples drawn from these sites and the extent to which 
this is like that of potential source waters to the wetland. 

These variations in the hydrological function, soil wetness and redox are picked up in the 
geochemistry results produced for the site and presented in Figure 6. Sample transects are shown 
in Figure 2. A total of 66 elements were determined on samples collected along these two transects 
running from A2 to D2 and from C1 to C5. Samples were also collected from the proto-stream channel, 
the Boxford borehole adjacent to the wetland (marked X on Figure 2), and the Westbrook borehole array, 
300 m upstream from the wetland. Good separation of trends in sample geochemistry are evident 
in the Sr/Ca and the Mg/Ca ratios for these samples. Samples from the groundwater boreholes, the 
proto-stream channel and the three porous cup samplers at C1 show a similar geochemistry, with 
high Sr/Ca and Mg/Ca ratios. Water samples were collected from samplers in the unsaturated zone 
of the wetland, at a greater distance from the groundwater, river and proto-stream (A2, B2, C3 and 
C5) have more depleted Sr/Ca and Mg/Ca ratios, indicative of waters which, if originally derived 
from groundwater sources, have been subject to modification (e.g., ion exchange) while resident in 
the wetland soil matrix. The remaining samples, taken from C4, C2, and C2, which are closer to the 
proto-stream channel than those at A2, B2, C3 and C5, but further from the channel than those at C1, 
show an intermediate chemistry. 

The geochemical survey of the wetland soil waters appears to provide a robust characterisation 
of the spatial distribution of the major functional zones within this wetland, where there is a distinct 
signature, providing a relatively simple technique for such systems. It requires far fewer samples in 
both space and time than the detailed high-resolution sampling and analysis needed to characterise 
the full range of nutrient species in wetland porewaters as these vary over space and time. Analytical 
methods to determine major ion chemistry are also more straightforward. This technique is likely 
to work well in other calcareous wetlands fed by CaCO3-rich groundwater. In wetlands receiving 
water from complex sources, alternative approaches to characterise subsurface chemical transport 
and wetland-stream-aquifer interactions under a wider range of conditions would use 222Rn [60,61], 
3H/3He tracer techniques [62], or 87Sr/88Sr [63] while analysis for chlorofluorocarbons (CFCs) and 
sulphur hexafluoride (SF6) have also been shown to be a valuable and relatively inexpensive method 
for calculating the age of waters in the groundwater-dependent wetlands [64,65]. 

The geochemical analyses undertaken here appear to support the hypothesis that water stored 
for longer periods of time in the wetland soil matrix will undergo greater transformation in terms 
of its chemistry, and water which is more immediately derived from source waters is likely to share 
similar geochemical characteristics to the source waters. This suggests that the nutrient chemistry and 
geochemistry of waters within the wetland are likely to vary according to hydraulic residence time. 
It can also be postulated that waters sampled from the rooting zone of the wetland (typically those 
taken at 20 cm, with some rooting down to 40 cm in these tall herb fenlands) are likely to show greater 
depletion in terms of their nutrient concentrations than those from samplers below the rooting zone, 
and that depletion of inorganic nutrient chemistry and enrichment with dissolved organic nutrient 
fractions is likely to be most common in the rooting zone. This pattern is evident in the data collected 
from the porous cup samplers under baseflow conditions. An example of this pattern in the nutrient 
hydrochemistry of the wetland is given for 3 August 2004 in Figure 7 (N) and Figure 8 (P). 
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Figure 7. Soil porewater N speciation under baseflow conditions (3 August 2004). Sampler locations 
are shown as black dots, as detailed in Figure 2. (a) shows NO3-N concentrations across the wetland at 
20, 40 and 60 cm depth, while (b) shows DON concentrations, and (c) shows NH4-N concentrations 
across the site at these same depths. 
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20, 40 and 60 cm depth, while (b) shows DOP concentrations across the site at these same depths. 

These data were collected in the growing season at the end of the summer period, when plant 
uptake was likely to be depleting inorganic nutrient concentrations in the rooting zone, and there 
had been plant uptake and microbial breakdown of dead organic matter in the surface soil layers of 
the wetland during the warm summer months. The nitrogen chemistry data reflect these controls, 
with nitrate present only at 60 cm depth, and only at sampler C1, close to the proto-stream channel, 
reflecting continued input of nitrate rich groundwater to this part of the wetland. Across the remainder 
of the site there was a substantial build-up of DON, particularly in those areas of the wetland with the 
longest hydraulic residence time along transects A and B and at site C3. The greatest accumulation 
of DON occurred in the rooting zone (20 cm). There was some ammonium present in the wetland, 
notably along transect D, and the proximity of these samplers to potential leakage from the adjacent 
STW at this site, or the possibility of ammonium volatilisation from the STW and local deposition 
along this transect is the most likely cause of this pattern, though it could also be due to mineralization 
of DON in the rooting zone. 

The P fractionation data collected on this day showed SRP enrichment along transect D at 60 cm 
depth. The most likely cause is seepage of SRP rich waters from the adjacent STW, though it is possible 
that the phosphatic rock present at the top of this exposed chalk section may also be responsible 
for part of the background P concentrations along this transect [53]. Generally, however, there is 
<0.02 mg/L PO4-P in the wetland in the rooting zone, and there is some evidence of DOP accumulation 
at all depths across the site, with the highest concentrations in those areas of the wetland located 
furthest from the faster flushing proto-stream corridor, where water input from the groundwater 
aquifer and rainfall has the longest hydraulic residence time. 

These patterns are clearly evident in the baseflow N chemistry data presented in Figure 9. For each 
porous cup sampler, piezometer, the Boxford borehole and the River Lambourn adjacent to the wetland, 
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the mean annual nitrate, DON and ammonium concentrations are presented. The X axis is labelled 
with samplers at 20 cm labelled ‘a’, 40 cm labelled ‘b’ and 60 cm labelled ‘c’. Thus, the first 5 columns 
are A1 (20 cm), A2 (20 cm), A3 (20 cm), A4 (20 cm) and A5 (20 cm), where A1a refers to the sampler at 
transect A, row 1, 20 cm depth. 
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A number of trends are apparent in this figure: 

•	 Groundwater nutrient chemistry is predominantly in the form of nitrate, with a mean concentration of 
9 mg/L nitrate (NO3-N) and 1.5 mg/L DON in the Boxford borehole over the period 16 September 2003 
to 16 January 2005. Similar chemistry is evident in the proto-stream, the River Lambourn and the 
piezometers at 2–3.5 m below the wetland. The data suggest that all of these sites share a similar 
source, and it is likely that they are all recently derived from groundwater sources. 

•	 Mean DON concentrations in the River Lambourn, the piezometers and the proto-stream all 
show some enrichment over the 1.5 mg/L DON recorded at the Boxford borehole adjacent to the 
wetland, and this is likely to reflect mixing of groundwater with enriched soil porewaters draining 
from the wetland under baseflow conditions, and/or biogeochemical cycling within the River 
Lambourn [5,36–38]. 

•	 Samplers within the wetland soil matrix which are very close to the proto-stream channel also 
share this chemistry, notably those at C1 (20 cm), and at all three depths at D5. Sampler nest D5 
is very close (<5 m) to the Boxford borehole, and lies outside the wetland proper, in the line of 
blackthorn scrub at the margins of the site. It may be that this indicates shared source water with 
that sampled from the borehole. 

•	 Samplers further from the proto-stream channel, with a longer hydraulic residence time, show 
depletion of inorganic N under baseflow conditions, and this is likely to reflect both plant uptake 
and gaseous N loss through denitrification. 

•	 These samples also show enrichment with DON concentrations up to a maximum of 4 mg/L. 
•	 Samples collected at 60 cm depth along transect A show a chemistry similar to that of the adjacent 

River Lambourn, with a notable increase in nitrate concentrations from 20 to 60 cm depth at all 
stations along this transect. This may reflect riverine incursion from the Lambourn. 
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3.2. Identifying Biogeochemical Cycling Hotspots Using Isotope Geochemical Analysis 

The extent to which these patterns could be explained by faster flushing through the proto-stream 
channel corridor and denitrification in the wetter parts of the wetland was explored using isotope 
geochemical analysis of wetland soil porewaters, river water and groundwater samples and plant 
material collected from the site in October 2004. The δ15N and δ18O values for nitrate in water samples 
are presented in Table 2 and Figure 10. There are no data for the porous cup samplers, where low 
nitrate concentrations combined with low water volumes resulted in insufficient nitrate for analysis by 
the silver nitrate method. Future studies employing these types of samples would benefit from using 
the ‘denitrifier’ method of nitrate analysis, which requires much smaller samples [66]. 

Table 2. 15N/14N and 18O/16O composition of nitrate in water samples. Boxford borehole is marked X 
on Figure 2. The Westbrook array is 300 m upstream from piezometer A5 on Figure 2. 

Sites Sampled δ15N 
(%0 vs. AIR) 

δ18O 
(%0 vs. SMOW) 

NO3-N 
mg/L 

Boreholes 
Westbrook array 

PL26 D-1, SO4-01126 +3.9 +2 5.84 
PL26 D-2, SO4-01127 +4.0 +6 6.29 
PL26 N-4, SO4-01131 +4.3 +1 6.87 
PL26 H-2, SO4-01134 +3.9 +5 6.09 
PL26 E-2, SO4-01138 +4.1 +3 6.05 

Boxford borehole (sampled 02-October-2004) +4.0 +3 
Boxford wetland (sampled 27-October-2004) 
B2 ‘short’ piezometer +4.5 +2 5.76 
C1 piezometer +4 4.70 
C1 proto-stream lower +5.0 +3 5.58 
C5 piezometer +4.6 +3 6.67 
D1 proto-stream main +4.8 +1 5.60 

Water samples from the Westbrook borehole array yielded nitrate with consistent isotope 
composition averaging δ15N = +4.0 ± 0.2%0 (1 SD) and δ18O = +3 ± 2%0; the Boxford borehole 
adjacent to the wetland yielded groundwater of identical composition (Table 2). Waters sampled from 
three piezometers and two positions on the proto-stream also exhibited a consistent isotope composition, 
δ15N = +4.7 ± 0.2%0 (1 SD) and δ O = +3 ± 1%0 (Table 2). Their δ15N values are therefore only very 
slightly higher than (and their δ18O values unchanged from) those of the groundwater samples. 

The δ15N values for plants are shown in Figure 10. Leaves from three individual Phalaris arundinacea 
plants were collected at 16 positions across the wetland close to porous cup nests, and at three 
sites along the margins of the river. Values were again consistent, with no evidence of any spatial 
pattern across the wetland (Figure 10), and no significant difference between the wetland (average 
δ15N = +5.9 ± 1.0%0 (1 SD)) and river margin (average δ15N = +5.4 ± 2.1%0). 

The δ15N values of the groundwater are within the range typical for non-denitrified nitrate in 
chalk aquifers [67] and Heaton, unpublished data. The δ18O values are also what would be expected 
for unmodified nitrate originating from bacterial nitrification in soils through which the waters 
recharge [68]. Thus, if the stoichiometry of nitrate formation derives two thirds of the oxygen from H2O 
(average δ18O value of water in the Westbrook borehole array = −7.2%0 and one third from atmospheric 
O2 (δ18O = +24%0 [69], we expect a nitrate δ18O value of (2/3 × −7.2%0) + (1/3 × +24%0) = +3%0; 
which is the same as the average measured value for groundwater nitrate in Table 2. Given the 
consistency of the isotope composition of the groundwater nitrate samples in Table 2, and the relatively 
homogeneous nature and long residence time of groundwater, we assume that δ15N = +4.0%0 and 
δ18O = +3%0 are representative of the values for groundwater nitrate input to the wetland over the 
study period. The wetland piezometer and proto-stream waters analysed had essentially identical 
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δ18O values, and δ15N values only 0.7%0 higher, suggesting that these were derived from proximal 
groundwater sources, rather than biogeochemically processed wetland or riverine waters. 
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close to ceramic cup samplers; numbers marked with an asterisk* are for plants sampled from the 
river bank. 

During denitrification the reaction of nitrate molecules containing the lighter isotopes 14N and 16O, 
is kinetically favoured, resulting in the remaining nitrate becoming enriched in the heavier isotopes. 
In a well-mixed system, therefore, denitrification results in the δ15N and δ18O values of the remaining 
nitrate increasing above the values of the initial nitrate, and such patterns have formed the basis for 
identifying denitrification in a wide variety of studies [68,70,71]. 

In vivo estimates of isotope fractionation for nitrogen (εN2 NO3 ≈ δ15NN2−δ
15NNO3) typically 

range from −25%0 to −5%0 [72]. From the relationship: 

δ15NNO3 = δ15N0 + εN2 NO3 × ln (f) 

where δ15NNO3 and δ15N0 are the δ15N values of the remaining and initial nitrate, and f is the fraction 
of remaining nitrate, it can be shown that loss of only 13% of nitrate by denitrification (i.e., f = 0.87) 
would lead to an increase in the δ15N of the remaining nitrate by +0.7%0 (εN2 NO3 = −5%0) to +3.5%0 
(εN2 NO3 = −25%0). As εN2 NO3 is very rarely less than −5%0 (in terms of its absolute value), the 0.7%0 
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difference between the δ15N value of nitrate in the groundwater and the wetland samples, if it was due 
to denitrification, would imply that the amount of denitrification was not more than 13%. 

Because the isotope data for wetland nitrate was based on relatively few samples, δ15N analyses 
of Phalaris arundinacea were used as a proxy indicator of the pattern of nitrate δ15N over a wider area of 
the wetland. While some isotope fractionation may occur during the uptake of nitrogen, it is probably 
small in an environment where N is somewhat limited [73]. The uniformity of Phalaris arundinacea δ15N 
values across the wetland therefore suggests that the isotope composition of nitrate is also relatively 
uniform, with no evidence for regions of higher δ15N which might be indicative of denitrification. 
It must of course be born in mind that these plant δ15N values will reflect those of the water at the 
rooting depth only and, especially important, the values are an integration of the δ15N values of those 
waters over the period of growth of the plant’s uppermost leaves and are, therefore, reflective of 
conditions in the rooting zone over the full growing season. In this sense, they provide a simpler and 
more integrated assessment of denitrification in the rooting zone than if samples had been infrequently 
collected directly from the soil water pool. 

Thus, the isotope characterisation approach indicated that δ15N and δ18O values of nitrate from a 
small number of wetland water samples were very similar to those of the local groundwater, with 
δ15N suggesting that any denitrification would have been minor (≤13%). This may be a function of 
short residence times of oxidising groundwater as it discharges through the soil zone. Plant δ15N also 
showed no evidence for significant denitrification over the course of the growing season, providing 
an integrated assessment of this process that was less time consuming, less costly and less invasive 
than an analysis of high-frequency samples collected from porous cup samplers across the wetland. 
However, these conclusions must be tempered by realisation that episodic denitrification would not 
have been detected using this approach. 

3.3. Developing a Conceptual Model of Wetland Biogeochemical Function under Baseflow versus 
Stormflow Conditions 

A range of sources of information can be drawn together to interpret the trends in this analysis of 
hydrochemical wetland function under baseflow conditions. These include the baseflow geochemistry 
and nutrient hydrochemistry data, the known nutrient uptake behaviour of the wetland plant 
community, the geophysical data providing a structural framework, and the observations of water level 
fluctuations across the site. Taken together it is possible to generate a conceptual model of the sources 
of water draining through the wetland under baseflow conditions. This is outlined in Figure 11. 

Under baseflow conditions this study suggests that the wetland is largely groundwater fed, 
with a significant proportion of groundwater bypassing the biogeochemically active wetland soil 
matrix and running NE to SW through the proto-stream channel to discharge to the River Lambourn. 
The proto-stream channel chemistry and isotope geochemistry suggests that under baseflow conditions 
there is only slight transformation of groundwater geochemistry and nutrient chemistry along this 
preferential flow pathway, resulting from the drainage of DON and DOP rich porewaters from the rest 
of the wetland site to this channel and/or the hyporheic zone beneath the wetland. This is most likely 
to be due to the short residence time of groundwater in the soil as it discharges to the proto-stream. 
This may also be enhanced by the large areas of unsaturated soils away from the proto-stream where 
nitrate will remain stable in the presence of oxygen. 

The porous cup sampler chemistry from sites with a higher hydraulic residence time indicate 
that the wetland has the capacity to transform the inorganic nutrient chemistry and geochemistry of 
source waters (groundwater), with depletion of inorganic N and SRP fractions. However, it is also 
apparent that these fractions are not simply lost from the system. Rather, there is substantial evidence 
of reduction in nitrate concentrations resulting from assimilation and uptake by the plant community 
and release back to the porewaters under baseflow conditions in the form of DON, following microbial 
decomposition of DOM within the rooting zone. The SRP is similarly cycled, transformed and stored 
within the micro and macropores in the form of DOP. 
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These conclusions can be drawn for the site under baseflow conditions. However, as site hydrology 
is clearly important in influencing these trends, it can be postulated that as the site undergoes rapid 
hydrological fluctuations under extreme flow conditions the proportion of water entering the various 
wetland zones can be expected to vary, soil redox status is likely to change, and this is likely, in 
turn, to affect the nutrient cycling processes operating within the wetland and the speciation of the 
nutrient load, compromising the nutrient storage capacity of the wetland soil zone. This is illustrated 
in Figures 12 and 13 which illustrate the rapid flushing of accumulated dissolved organic-rich N and 
P from porewaters under high flow (storm) conditions, with riverine discharge in the Lambourn 
increasing from 0.9 to over 1.5 m3/s over the course of the event [5]. 

These data represent the nutrient flushing response of the wetland to an intense and prolonged 
storm event sampled under wet and cold antecedent conditions, in the absence of active plant uptake, 
at the end of the autumn period (from 16 November 1996 to 23 November 1996). The storm event 
drove an increased flow into and through the wetland, with no over-bank inundation of the site, this 
being a rare occurrence in permeable lowland catchments in the UK with a high baseflow index (BFI). 
The River Lambourn had a BFI of 0.98 at Boxford during the period of study [36]. 

TDP concentrations (DOP + SRP) rose fourfold across the site from a maximum of 0.7 mg/L at the 
start of the storm to over 3.0 mg/L at the height of the flushing event on 19 November 96 (Figure 12). 
There is evidence that the highest concentrations of TDP were observed moving along the line of the 
proto-stream channel with the highest concentrations observed in the 20–40 cm samplers, largely in 
the form of DOP (data not presented). TDN concentrations (TON + NH4-N + DON) presented in 
Figure 13 showed a clearer pattern, with concentrations rising fivefold from a maximum of 3 mg/L N 
to over 16 mg/L N at the peak of the flushing event (19 November 1996). Over 90% of the flux was in 
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the form of DON (data not presented). Note that the scale changes on the plots over the duration of 
the event. A clear pattern emerges from these data, with nitrate rich water entering the site along the 
alignment of the dry valley, and DON enriched water flushing from the site to the River Lambourn 
along the line of the proto-stream channel. Water 2020, 1, x FOR PEER REVIEW 23 of 32 

 

 
Figure 12. Total dissolved P (TDP) dynamics under storm conditions, 16 November 1996 to 23 
November 1996. Note that the scale varies the over course of the event. 
Figure 12. Total dissolved P (TDP) dynamics under storm conditions, 16 November 1996 to 
23 November 1996. Note that the scale varies the over course of the event. 
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These data, and other data collected from the site under a range of storm flow conditions in 
the spring and autumn period, 2004 (not presented here) confirm the conclusions reached in the 
earlier study at this site regarding the source/sink function of these lowland permeable wetlands [5]. 
Under baseflow conditions the wetland is groundwater fed, with most of the water bypassing the 
nutrient transformation function of the site by flowing along preferential flow pathways including the 
proto-stream channel. For groundwater entering the wetland soil matrix, there is evidence of rapid 
transformation and storage of both nitrate and SRP in the plant biomass, in particulate form, and 
in the form of DON and DOP in the wetland soil micropores and macropores following microbial 
decomposition of dead organic matter from the plant and animal biomass in the wetland. Some nitrate 
is ‘lost’ from the wetland through the process of denitrification, as proposed in other studies on 
riparian wetlands, but by no means all of this load is ‘lost’. Rather, the wetland acts to attenuate 
the delivery of both N and P from the catchment to the river through transformation, uptake and 
storage in the biomass, soil and porewaters, at least for the waters which drain through the soil 
matrix. Under high flow events, however, particularly in the autumn and early spring, and under wet 
antecedent conditions, the wetland flushes these accumulated nutrient stores from the porewaters, 
and this is routed either vertically to the gravel layer, or laterally to the proto-stream channel and 
thence to the Lambourn where it contributes to the increased N and P concentrations instream reported 
previously [5,36–38]. 

4. Discussion 

Wetlands in permeable catchments clearly act as biogeochemical cycling hotspots, zones of 
pollutant and flow attenuation, and temporary stores for nutrients exported from diffuse agricultural 
sources in the wider catchment. Placed at the base of the dry valleys and hillslopes as they are within 
the Lambourn catchment (and elsewhere across permeable landscapes of NW Europe), it is likely 
that they play an important role in regulating the rates, timing and speciation of the nutrient load 
delivered to the River Lambourn from its catchment. This is pertinent in many permeable catchments, 
where high nitrate concentrations in the unsaturated zone and groundwater will provide a legacy of 
nitrate inputs to surface waters for some time to come. However, the evidence from storm sampling 
of these systems must also be considered, notably the importance of residence time and connectivity 
in regulating the amount of groundwater flow which actually passes through these biogeochemical 
cycling hotspots. Similarly, the full range of nutrient species studied here demonstrates the importance 
in assessing all forms of N and P in these biogeochemically active systems. The evidence is clear 
that very little nitrate is actually ‘lost’ or ‘removed’ over the annual cycle. Rather, once the dissolved 
organic nutrient fractions are factored in, it is clear that the wetland acts to assimilate, breakdown and 
re-release inorganic nutrient fractions in the form of DOM, which is then flushed out to adjacent waters 
during high flow events. The process is one of transformation and attenuation, rather than removal 
or ‘loss’. 

In interpreting these findings, it is clear that the combination of geophysical survey, and 
low-resolution sampling of porewater geochemistry, in combination with targeted isotope analysis 
of plant material in the wetland was able to clearly distinguish the key functional zones within the 
wetland. A separation of those wetter areas of the wetland likely to support denitrification, versus those 
with a longer contact time between nutrient load and the plant and microbial communities was clearly 
achieved. The findings map closely onto the key trends evident in the nutrient speciation data collected 
for the site under baseflow conditions. We argue, here, that this combination of approaches was able 
to diagnose the likely nutrient cycling, retention and export behaviour of the wetland, presenting a 
cost-effective method for catchment managers contemplating the use of riparian wetlands to ameliorate 
or transform nutrient flux from land to water. 

It is also worth noting that the placement of the wetland systems within the wider hydrogeological 
framework of lowland permeable catchments must be born in mind when contemplating their potential 
role in catchments. This is illustrated in Figure 14. 
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While it is clear that they have the capacity to transform inorganic nutrient inputs to dissolved 
organic nutrient fractions stored within the wetland porewaters, this function only applies to that 
water which passes through the wetland soil matrix, primarily that passing through the rooting zone 
where assimilation is the dominant process. In reality, in permeable catchments much of the flow 
from the saturated groundwater zone to the river is likely to bypass these wetland systems, upwelling 
directly through the hyporheic zone to the bed of the river without passing through the wetland 
soil matrix. If this is the case then wetlands, despite their potential to transform and attenuate the 
nutrient chemistry and geochemistry signal from the catchment, may not realise this potential and 
may therefore play little part in the modification of nutrient flux from land to stream in permeable 
catchments. The Boxford wetland is a good exemplar for wetlands typically found in permeable 
catchments, and the findings from this programme provide a useful indication of the likely function of 
similar wetlands in other permeable catchments. However, further wetland research is needed at this 
scale in other geoclimatic regions to determine the extent to which this sporadic and spatially confined 
functionality is common to all or some wetland types. 

The importance, then, of being able to identify subsurface architecture and its probable impact 
on wetland hydrological function and, in particular, to have tools capable of identifying dominant 
flushing behaviours through structures such as the proto-stream channel in the Boxford wetland is 
key to providing the capacity to upscale knowledge acquired from such in-depth research to larger 
tracts of wetland, or multiple wetlands within catchments. One approach to upscaling knowledge 
is through the development of coupled hydrological and biogeochemical models at the catchment 
scale, building the nutrient and flow attenuation properties of wetlands studied in detail into a wider 
system scale model. Once this is complete, it will be possible to simulate the hydrological and coupled 
hydrochemical function of these permeable wetlands and to test their significance by building them 
into catchment scale coupled surface-groundwater models. 

An alternative approach is to evaluate the range of methods adopted in this study by comparing 
the information they yield against information gained from the high frequency sampling programme 
implemented at the site. Of the approaches tested, the HGMU method was the least sensitive, lumping 
the whole wetland zone into a single functional unit. The NVC vegetation mapping was more subtle, 
dividing the wetland proper into two zones representing plant communities with differing affinities 
to water logging. However, this too did not distinguish those areas of the wetland where soil redox 
status supported denitrification, from those where longer residence time supported the uptake, storage, 
breakdown and release of inorganic nutrient loads export from the wetland in the form of dissolved 
organic nutrient flux. The geophysical techniques adopted were useful in identifying an anomaly at 
the B2 sampler nest, later confirmed as a lens of putty chalk through the installation of a piezometer at 
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that leading to a locally perched water table. It also identified the variable depth of the alluvial gravels 
across the site previously confirmed as an important feature supporting lateral and downstream 
transfer of water and its associated chemical load [39]. Perhaps more significantly, the geophysical 
survey methodology also confirmed the existence of the proto-stream channel morphometry as a 
feature of the subsurface architecture likely to promote preferential flow from land to stream through 
the wetland, assisting in the interpretation of nutrient flux behaviours both in terms of spatial variations 
across the wetland under baseflow conditions and flushing under storm flow conditions. 

The geochemical characterisation of the site, in association with work on stable isotope ratios in 
plant, river, groundwater and waters sampled from the gravels underlying the wetland provided further 
detail. The determination of selected geochemical ratios helped to characterise the signature of the 
differing source areas contributing water to the wetland soil matrix, confirming the conceptual model 
of biogeochemical functional zones within the wetland derived from the high-frequency sampling and 
nutrient analysis programme, providing the potential to use a lower intensity of nutrient sampling 
in combination with geochemical analyses to derive a robust conceptual model of biogeochemical 
functioning for less well-resourced or multiple site investigations into wetland biogeochemical function 
in future. Finally, the isotope work was invaluable in providing, at a seasonally averaged scale, the 
evidence for the distribution of the denitrification function across the wetland, and in identifying 
the limited spatial extent of this function, at least for the period studied in this programme. Future 
studies, bringing together initial site assessment using a combination of geophysical, geochemical and 
isotopic characterisation are likely to be able to derive an initial conceptual model of biogeochemical 
and hydrological functional zones within complex wetlands, significantly reducing the need for costly 
and invasive high-frequency nutrient flux monitoring. 

Such studies must consider the wider environmental and historical context for any site. Historical 
changes in land use may have impacted on the spatial extent of riparian wetlands along river channels, 
affecting the catchments ability to attenuate and transform nutrient export to rivers. Climate variability 
and change may also reduce wetland area and limit these natural attenuation processes, as demonstrated 
in this study in the differing functional behaviours of the wetland under baseflow versus stormflow 
conditions, and in the earlier work on the differing stormflow responses generated under wet versus 
dry, and cold versus warm antecedent conditions [5]. Certainly, there is no single and uniformly 
dominant wetland biogeochemical function across whole wetland systems. This will vary from wet to 
dry year, over the seasons, in relation to the history of nutrient enrichment of the site, and from year to 
year in response to climatic and groundwater flow variations. Careful consideration should be given to 
management options that consider rehabilitation of wetland areas, particularly considering the legacy 
of historical anthropogenic inputs of nutrients, much of which is still present in the unsaturated zone 
of aquifers, and in soil stores throughout catchments. 

5. Conclusions 

The combination of approaches adopted in this investigation of wetland biogeochemical function 
allowed an unusually detailed assessment for the Boxford experimental wetland. Key conclusions are 
as follows: 

•	 Attenuation of pollutant delivery from land to stream appears to occur both within the hyporheic 
zone and the adjacent riparian wetland ecosystem. 

•	 The primary pathway for modification of the nutrient speciation of inflowing waters is through 
plant uptake of inorganic nutrient species and microbiological breakdown of DOM to release 
DON and DOP compounds to soil porewaters. 

•	 The reciprocity in inorganic and organic nutrient fraction concentrations across the wetland 
suggests no net storage of nutrients within the soil porewaters, nor substantial net export of 
nitrogen to atmospheric sources through denitrification. 

•	 The primary mechanism for the export of nutrients accumulated in soil porewaters appears to 
be flushing of the macropores and micropores during storm events, with nutrient-rich waters 
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exported primarily via the proto-stream channel, but also through lateral flow to the Lambourn 
and vertical exchange with groundwater through the alluvial gravels. 

•	 The findings from the geochemical analyses of soil porewaters and source waters suggest that 
the wetland is groundwater fed, with flows likely to be delivered from the major dry valley 
feature which appears, topographically, to be aligned upslope with the line of the wetland 
proto-stream channel. 

•	 The extent to which nutrient chemistry of inflowing waters is modified by wetland biogeochemical 
cycling depends on the residence time for the water within the wetland 

•	 Well-drained areas of the wetland with a short hydraulic residence time exhibit soil porewater 
nutrient chemistry and major and trace element geochemistry comparable to chalk groundwater, 
suggesting little transformation of the nutrient load moving along these flow pathways. 

•	 Surface and subsurface features identified through the site topographic and geophysical surveys, 
supplemented by soil coring, such as the existence and extent of the proto-stream channel, the 
depth of the alluvial gravels, and the presence of putty chalk lenses, are also critical in defining 
the hydrological function of wetland systems and the likely role any wetland may play in the 
transport and transformation of nutrient loads exported from land to stream. 

•	 Geophysical methods, in association with limited site characterisation through geochemical, 
isotope and nutrient hydrochemical techniques may be useful in future studies to indicate the 
likely role played by wetlands in the nutrient hydrochemical function of permeable catchments, 
allowing them to be built into catchment scale models of biogeochemical function. 

•	 This combination of techniques, building on recent advances in geophysical, geochemical and 
isotope characterisation provides a novel approach for improved understanding of biogeochemical 
function in permeable wetlands. Perhaps more importantly, no single technique on its own would 
have given an unambiguous representation of the hydrological and biogeochemical function of 
the wetland, and a toolkit comprising a range of complementary methods will provide a more 
complete and robust indication of wetland function at a process scale. 

Overall, the multi-proxy approach adopted in this study has highlighted the important role that 
wetlands play in modifying the nutrient chemistry of waters draining through them in permeable 
catchments, and their role in the transient storage of waters under baseflow conditions, in the 
transformation of nutrient chemistry during these periods, and in the flushing of these accumulated 
nutrient stores in the form of DON and DOP under high flow conditions. However, the wetland is rarely 
‘wet’, a common characteristic in permeable wetlands, and apart from the zone of the proto-stream 
channel, water level rarely reaches 20 cm below the wetland surface, suggesting that the majority of 
groundwater flow does not pass through these functions. At catchment scale, their significance in 
terms of attenuation or modification of the nutrient enrichment of surface waters from land-based 
sources in their catchments may be very limited under present land-use and climate scenarios. 
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