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For a comprehensive set of 21 equity premium predictors we find extreme variation in out-of-sample 

predictability results depending on the choice of the sample split date. To resolve this issue we propose 

reporting in graphical form the out-of-sample predictability criteria for every possible sample split, and 

two out-of-sample tests that are invariant to the sample split choice. We provide Monte Carlo evidence 

that our bootstrap-based inference is valid. The in-sample, and the sample split invariant out-of-sample 

mean and maximum tests that we propose, are in broad agreement. Finally we demonstrate how one can 

construct sample split invariant out-of-sample predictability tests that simultaneously control for data 

mining across many variables. 
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1 Apart from equity premium predictability, another interesting and active field of 
1. Introduction 

The question of whether asset returns are predictable is impor-

tant not only from the theoretical (asset-pricing) perspective but

also from the practical (market-timing) perspective. An important

concern is whether in-sample or instead out-of-sample economet-

ric methods should be used to assess the predictability of returns.

According to Ashley et al. (1980 , p. 1149), “the out-of-sample fore-

casting performance” provides “the best information” and should

therefore be preferred. More recently, Inoue and Kilian (2004) ar-

gue that out-of-sample tests are less able to reject a false null hy-

pothesis; that loss of power is due to splitting the finite sample

into an in-sample estimation period and an out-of-sample eval-

uation period, although the authors acknowledge there is a role

for out-of-sample methods in choosing the best (though possibly

misspecified) forecasting model among the few competitors. Hence

most attention in the recent literature on returns predictability has
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ocused on out-of-sample forecasting methods and inference (see,

mong others, Goyal and Welch, 2003; Rapach and Wohar, 2006;

ampbell and Thompson, 2008; Kolev, 2008; Welch and Goyal,

008; Rapach et al., 2010 ). 1 

Out-of-sample methods involve splitting the available data into

n in-sample estimation period, which is used to produce an initial

et of regression estimates, and an out-of-sample forecast evalua-

ion period over which forecasts are generated and then both eval-

ated (in terms of some specified criterion of goodness) and com-

ared with results from competing models West (200 6 , p. 10 6).

he natural question that arises in this context is just how the

ample should be split into these two periods. This paper con-

iders a set of 21 predictors (including those used in the influen-

ial paper of Welch and Goyal, 2008 ). We demonstrate that some
nance addresses whether mean-variance optimization improves on the naive 1/ N 

ortfolio allocation rule on an out -of-sample basis ( DeMiguel et al., 2009; Kirby and 

stdiek, 2012 ). The issues we raise as well as our proposed inferential methods are 

pplicable also to this problem—provided the expected portfolio return under the 

ull (e.g., with naive 1/ N portfolio weights) and the expected portfolio return un- 

er the alternative (e.g., with mean-variance–optimal weights) can be written as a 

egression function of the returns of the underlying assets constituting the portfo- 

io. Britten-Jones (1999) shows how mean-variance optimization can be recast as a 

egression problem. 
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uch splits yield results indicating that returns are not predictable

hereas other splits lead to the opposite conclusion. That is: for

ny given predictor and any given data set, the derived predictabil-

ty of returns is sensitive to where the sample is split between the

stimation and forecast evaluation subsamples. 

To address this problem and resolve contradictory findings, we

ropose two simple (but computationally intensive) methods that

o not suffer from this dependence on the choice of split date.

he first approach is to report in graphical form the out-of-sample

redictability results for every possible sample split. Thus we re-

ort the p -values for the Clark and West (2007) mean squared pre-

iction error–adjusted (MSPE-adj) statistic for every possible sam-

le split, where the sample split date τ falls within the interval

 int (. 05 T ) , T − int (. 05 T )] ; here int( ·) denotes the argument’s inte-

er part. It follows that neither the in-sample estimation period

or the out-of-sample evaluation period ever contains less than

% of the total number T of observations. Computationally, we de-

ermine the p -value by generating 9999 bootstrap samples under

he null of no predictability and then calculating the t -statistic

ssociated with the MSPE-adj for each τ ; let us call this with

 ( MSPE − adj ) τ to emphasize that one such statistic goes with

ach individual sample split indexed by τ . Then the p -value for

ach sample split τ is the fraction of bootstrap samples for which

he bootstrap t -statistic is larger than the t -statistic calculated from

he original data for the corresponding τ . 

The second approach is to calculate, again across all possible

ample splits, some summary statistic of an out-of-sample pre-

ictability criterion and then, via a bootstrap procedure, to deter-

ine (for inferential purposes) the distribution of that statistic un-

er the null hypothesis of no return predictability. Thus we calcu-

ate mean τ { t ( MSPE − adj ) τ } and max τ { t ( MSPE − adj ) τ } , the mean

nd the maximum taken over τ . In this way we capture the en-

ire sequence of statistics t ( MSPE − adj ) τ for each τ . We evaluate

he 15 predictors considered in Welch and Goyal (2008) and six

dditional, behavioral predictors (that end up failing to predict the

quity premium). We show that some of the traditional forecasting

ariables work very well for some sample splits. The satisfactory

albeit episodic) performance of traditional predictors is in contrast

o the widespread failure of behavioral predictors. The hypothesis

hat investor sentiment predicts future stock returns is a plausible

ne, and it is not unreasonable to suppose that such sentiment can

e measured (howsoever imperfectly) by behavioral factors. Yet of

ll the behavioral sentiment variables we examine, only one is pre-

ictive of the equity premium: Equity Share in New Issues . 

We can summarize as follows the issues at hand and our pa-

er’s contributions. 

1. Scholars who are interested in such general questions as “Are

stock returns predictable?” and who want to use out-of-sample

methods should not take the sample split date as given. We

propose two methods of dealing with this sample split prob-

lem: (i) report the results for each possible sample split; or

(ii) calculate a statistic that is invariant to the chosen sample

split within any given set of possible sample splits. 

2. We document that conclusions about stock market predictabil-

ity when using out-of-sample methods are strongly depen-

dent on the choice of a sample split date. In fact, a re-

searcher may derive evidence supporting (or refuting) pre-

dictability simply by adjusting the sample split date. We also

show that traditional predictors of stock returns exhibit sat-

isfactory performance often but not for all sample splits; in

contrast, behavioral predictors hardly ever exhibit satisfactory

performance. 

3. As soon as one allows any possible sample split to be cho-

sen (e.g., via the mean or maximum of results based on vari-

ous forecasting criteria taken across all possible sample splits),
most debates over competing in- or out-of sample methods

and splits become moot. Results from using in-sample methods

are in broad agreement with those from using sample split–

invariant out-of-sample methods. 

4. We show how to construct out-of-sample predictability tests

that (i) are sample split invariant and (ii) control for data min-

ing. Using this out-of-sample, sample split independent joint

test of predictive power of 21 predictors we reject the null hy-

pothesis of no predictability - contrary to results of Welch and

Goyal (2008) . 

5. We provide Monte Carlo evidence to support the validity of our

bootstrap-based inference. 

Four other works are closely related to this paper. Hubrich and

est (2010) and Clark and McCracken (2012) propose taking the

axima of various statistics for simultaneously judging whether a

mall set of alternative models that nest a benchmark model im-

rove upon the benchmark model’s MSPE. After completing this

aper, we became aware of independent and contemporaneous

ork by Rossi and Inoue (2012) and Hansen and Timmermann

2012) . Both of these papers examine in great detail the theoret-

cal econometric properties of the sample split problem. Rossi and

noue derive the theoretical distribution of (general) sample split–

nvariant mean and maximum tests; Hansen and Timmermann

ropose a “minimum p -value” approach to sample split–invariant

nference. 

For nested model comparisons, such as our paper’s asset pricing

pplication, Rossi and Inoue (2012) propose taking either the mean

r the maximum over all possible sample splits of the Clark and

cCracken (2001) ENC-NEW test statistic. Rossi and Inoue char-

cterize and tabulate the distributions of their mean and maxi-

um tests. We show via Monte Carlo experiments that their tab-

lated null distributions poorly approximate the true null distri-

utions for asset pricing applications such as ours. Take, for ex-

mple, our Monte Carlo simulation where calibration is based on

ime-series properties of the dividend-to-price ratio (with 1200

ime-series observations). At the 5% nominal significance level, the

ossi and Inoue (2012) mean test statistic has empirical size of

.81%; similarly, at the 5% nominal significance level their maxi-

um test statistic has empirical size of 13.25%. So for a predic-

or with the time series properties of the dividend-to-price ratio

heir tests over-reject the true null even for samples as large as

200 observations. 

Hence our paper differs from both Rossi and Inoue (2012) and

ansen and Timmermann (2012) along several dimensions. First,

e employ bootstrap techniques so that we can evaluate empiri-

ally the null distributions of the mean and maximum tests. Do-

ng so renders our testing procedure robust not only to the nearly

onstationary behavior of the predictors (since the autoregressive

arameters of the predictive variables are approximately 1) but

lso to the high correlation between innovations of the predic-

ive variables and innovations of the predicted term (e.g., returns).

ote that those high correlations and also predictor nonstationar-

ty are characteristic of real-world financial data. Second, we eval-

ate comprehensively the out-of-sample forecasting performance

f 21 equity premium predictors; we find that it is possible to

redict the equity premium and also show that the distributions

f test statistics are not pivotal. Hence, we argue that any sam-

le split independent test based on a theoretical distribution that

s not a function of the predictor’s autoregressive parameter and

f the correlation between innovations of predictor and predictand

like those derived by Rossi and Inoue and by Hansen and Tim-

ermann) will not work well in practice. Third, we show that our

ootstrap procedure allows one to control for data-mining issues

y evaluating the joint forecasting ability of a set of predictive vari-
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Table 1 

Summary statistics. 

Variable Mean Standard deviation Min. Max. T 

Equity Premuim, (Rm − Rf) 0 .0062 0 .0559 −0 .2877 0 .4162 1020 

Variables downloaded from Amit Goyal’s web site 

Dividend to Price Ratio −3 .3239 0 .4511 −4 .524 −1.8732 1021 

Dividend Yield −3.3197 0 .4494 −4 .5313 −1.9129 1020 

Book to Market Ratio 0 .5868 0 .2654 0 .1205 2 .0285 1021 

Earnings to Price Ratio −2.7141 0 .4255 −4 .8365 −1.775 1021 

Dividend Payout Ratio −0.6097 0 .3229 −1 .2247 1 .3795 1021 

Treasury Bill Rate 0 .0366 0 .0306 0 .0 0 01 0 .163 1021 

Long Term Yield 0 .053 0 .028 0 .0182 0 .1482 1021 

Long Term Return 0 .0047 0 .0239 −0 .1124 0 .1523 1020 

Term Spread 0 .0163 0 .0131 −0 .0365 0 .0455 1021 

Default Yield Spread 0 .0114 0 .0071 0 .0032 0 .0564 1021 

Default Return Spread 0 .0 0 03 0 .0132 −0 .0975 0 .0737 1020 

Inflation Lagged 2 Months 0 .0024 0 .0053 −0 .0208 0 .0574 1021 

Net Equity Expansion 0 .0191 0 .0246 −0 .0575 0 .1732 1009 

Stock Variance 0 .0025 0 .005 0 .0 0 01 0 .0558 1021 

Cross Sectional Premium 0 .0 0 04 0 .0024 −0 .0042 0 .0077 788 

Variables downloaded from Jeffrey Wurgler’s web site 

Dividend Premium −2.2399 16 .2884 −50 .23 32 .9 600 

Number of IPOs 26 .2516 23 .6031 0 122 612 

Average First-day IPO Returns 16 .3867 20 .0237 −28 .8 119 .1 612 

NYSE Share Turnover 0 .5084 0 .3665 0 .105 1 .738 636 

Closed-end Fund Discount 8 .9577 7 .4353 −10 .91 25 .28 548 

Equity Share in New Issues 0 .1827 0 .1092 0 .0167 0 .6349 636 
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2 The choice of estimator m does not affect the predictive regression slope’s bias. 
ables. Such control is not feasible under the approaches adopted by

Rossi and Inoue (2012) and Hansen and Timmermann (2012) . 

Several limitations of this study are worth mentioning. First, we

study only single predictors; that is, we do not study combinations

of them (as in Rapach et al., 2010; Welch and Goyal, 2008 ), in-

cluding combinations based on principal components (e.g., Neely

et al., 2014 ). Neither do we follow Welch and Goyal by looking at

rolling regressions. Also, recent research indicates that the accu-

racy of traditional predictors (e.g., ratio of dividend to price) can

be improved by enlarging the predictive information set with the

information implied by derivative markets ( Binsbergen et al., 2011;

Golez, 2014; Kostakis et al., 2011 ). To keep the number of variables

that we study tractable we do not include these refinements in our

study. Finally, we limit ourselves to standard ordinary least-squares

(OLS) regressions that incorporate neither the economic gains nor

the utility gains of potential investors. All these extensions should

be tractable when pursued within the framework described here,

and they constitute a fruitful research agenda. 

2. Methodology and data 

Following much of the extant literature, we estimate OLS bi-

variate predictive regressions. In particular, we regress the eq-

uity premium—constructed as the return on the S&P 500 index

(including dividends distributions) minus the risk-free rate, R t ≡
(R m 

− R f ) t —on a constant and on a lagged value of a predictor 

R t = β0 + β1 X t−1 + u t . (1)

The predictor X is one of the variables listed in Table 1 (in

Section 2.5 ), depending on the specification. The βs are population

parameters (to be estimated), and u is a disturbance term. 

2.1. In-sample predictability 

The in-sample predictive ability of X is assessed via the t -

statistic corresponding to b 1 , the OLS estimate of β1 in Eq. (1) .

Under the null hypothesis that X t−1 is uncorrelated with R t , the

expected returns are constant and β1 = 0 (the sign of β1 is typi-

cally suggested by theory). The tables presented in this paper are

agnostic concerning whether the alternative hypothesis is one- or
wo-sided and simply report t -statistics associated with the esti-

ates. The estimated slopes for all variables are in the direction

redicted by theory and so, roughly speaking, one can consider a

 -statistic whose absolute value exceeds 1.65 to be significant ei-

her at the 10% significance level for the two-sided alternative or

t the 5% significance level for the one-sided alternative. 

When predictive regressions employ a highly persistent predic-

or whose innovations are correlated with those in the predictand,

evere small-sample biases may occur ( Mankiw and Shapiro, 1986;

elson and Kim, 1993; Stambaugh, 1986; 1999 ). To test whether

he in-sample results could be an artifact of this small-sample

ias, we follow the bias correction methodology of Amihud and

urvich (2004) . The model is defined over the whole sample t =
 , 2 , . . . , T , 

 t = β0 + β1 X t−1 + u t , (2)

 t = μ + ρX t−1 + w t ; (3)

here the disturbances ( u t , w t ) are serially independently and

dentically distributed as bivariate normal, and the autoregressive

oefficient in Eq. (3) is less than 1. 

We shall use superscript c to denote a bias-corrected estimator.

irst, we estimate Eq. (3) to obtain the OLS estimator r of ρ . We

an then use r to compute the bias-corrected estimator of ρ as

ollows: 

 

c = r + 

1 + 3 r 

T 
+ 

3(1 + 3 r) 

T 2 
. (4)

his bias-corrected estimator r c is, in turn, used to compute the

orrected residuals ˆ w 

c 
t of Eq. (3) : 

ˆ 
 

c 
t = X t − (m + r c X t−1 ) , 

here m is the OLS estimator of μ. 2 

Next, we run an auxiliary regression of R t on an intercept, X t−1 

nd ˆ w 

c 
t . In this auxiliary regression, let b c 

1 
(resp., f c ) be the OLS

stimator of the slope parameter on X t−1 (resp., on ˆ w 

c 
t ). Here b c 

1 
is

he bias-corrected estimator of β1 , our variable of interest. 
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Fig. 1. Plots of the 90th, 95th, and 99th percentiles of the null distribution of t (MSPE-adj) τ statistic versus τ (the start of the out-of-sample forecasting exercise), together 

with straight horizontal lines at 1.2815, 1.6448 and 2.3263 that mark the respective percentiles in the standard normal distribution, when the Dividend to Price Ratio (left) 

and the Equity Share in New Issues (right) are used as a predictor of the Equity Premium. 
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3 We present only some of the plots in order to conserve space; all plots are 

available from the authors upon request. 
Finally, to conduct inferences based on β1 we need the bias-

orrected standard error (SE) of b c 
1 
, which is given by 

 SE 

c (b c 1 )] 2 = [ f c ] 2 ∗ [1 + 3 /T + 9 /T 2 ] 2 ∗ [ SE (r)] 2 + [ SE (b c 1 )] 2 , (5)

here SE( r ) denotes the usual OLS standard error of r produced by

ny regression package and SE (b c 
1 
) denotes the usual OLS standard

rror of b c 
1 
, which comes as a direct output from the auxiliary re-

ression of R t on an intercept, X t−1 and ˆ w 

c 
t . 

.2. Out-of-sample predictability: fixed sample split date 

We generate out-of-sample predictions by the following recur-

ive scheme. First we split the available sample into an in-sample

stimation period and an out-of-sample evaluation period. Let T

enote the total number of observations and let dates run from

 to T inclusive. As described in the Introduction, we fix a date

∈ [ int (. 05 T ) , T − int (. 05 T )] . We use the first period, [1 , τ − 1] ,

or the in-sample estimation and use the second period, [ τ , T ], for

aking out-of-sample predictions. For time t , we use R pn ,t = b 0 ,t−1 

o denote the null model prediction and R pa ,t = b 0 ,t−1 + b 1 ,t−1 X t−1 

o denote the alternative model prediction. Here “pn” stands for

prediction with the null imposed” (i.e., when b 1 is constrained to

e 0), and “pa” stands for “prediction under the alternative” (i.e.,

sing Eq. (1) ). 

The b -values are estimated by OLS using data no more recent

han one period before the forecast is made. Thus the first predic-

ion under Eq. (1) is R pa ,τ = b 0 ,τ−1 + b 1 ,τ−1 X τ−1 , where each b is

stimated using only data points from t = 1 through t = τ − 1 . The

econd prediction is R pa ,τ+1 = b 0 ,τ + b 1 ,τ X τ , where the b -values are

stimated using only data points from the 1st period though the

th period. The last prediction is R pa ,T = b 0 ,T −1 + b 1 ,T −1 X T −1 ; here

ach b is estimated using only data points from period 1 though

eriod T − 1 . 

In this way we obtain, for each fixed τ , a sequence of predic-

ions under the null model and also a sequence of predictions un-

er the alternative model. As an informal measure of the predic-

ive regression’s out-of-sample performance, we calculate the out-

f-sample R-squared of Campbell and Thompson (2008) : 

 

2 
os (τ ) = 1 −

∑ 

t= τ, ... ,T (R t − R pa ,t ) 2 
∑ 

t= τ, ... ,T (R t − R pn ,t ) 2 
(6) 

here “os” stands for “out-of-sample”). 

We formally test the null hypothesis—that Eq. (1) does not

mprove on the historical average return—by employing the
lark and West (2007) mean squared prediction error–adjusted

tatistic: 

SPE − adj (τ ) = 

∑ 

t= τ, ... ,T { (R t − R pn ,t ) 2 − [(R t − R pa ,t ) 2 − (R pn ,t − R pa ,t ) 2 ] } 
∑ 

t= τ, ... ,T 1 

. (7) 

lark and West (2007) observe that under the null that β1 = 0 , the

lternative model in Eq. (1) estimates additional parameters whose

opulation values are 0, and that the estimation induces additional

oise. Hence under the null hypothesis the MSPE of the alternative

odel is expected to be larger than the null model’s. These authors

ropose an adjustment to the alternative model’s MSPE. In Eq. (7) ,

he term in brackets is the adjusted MSPE of the alternative model.

e calculate the t -statistic associated with Eq. (7) ; following Clark

nd West, we denote it t ( MSPE − adj ) τ . We regress the quantity in

races in Eq. (7) on a constant; the t -statistic from this regression,

 ( MSPE − adj ) τ , is calculated for each sample split τ . 

Clark and West (2007 , p. 298) justify the approximate normal-

ty of their t ( MSPE − adj ) τ statistic by observing that its null dis-

ribution obeys the following inequalities across a large set of sim-

lations: (90thpercentile) ≤ 1.282 ≤ (95thpercentile); and (95th- 

ercentile) ≤ 1.645 ≤ (99thpercentile). In these expressions, the

ercentiles refer to the distribution of the t ( MSPE − adj ) τ statistic

nder the null of no predictability (i.e., the t -ratio associated with

SPE-adj). Indeed, these inequalities are usually satisfied in our

ootstrap simulations. Fig. 1 (left) shows the predictor for which

he previous inequalities are most often violated, which is the

ividend-to-price ratio. This figure plots the 90th, 95th and 99th

ercentiles of the bootstrap null distribution of t ( MSPE − adj ) τ for

ach sample split date τ ; the horizontal lines at 1.2815, 1.6448,

nd 2.3263 mark the respective percentiles in the standard normal

istribution. All violations of these inequalities are slight, so is rea-

onable to infer that predictability is approximately normal. 

More troublesome is that, for the other predictive variables, the

orresponding plots look like Fig. 1 (right, for the Equity Share in

ew Issues’ predictor). 3 For these 20 predictors, the inequalities in

lark and West (2007 , p. 298) are satisfied yet the approximately

ormal inference is usually too conservative. In particular: for most

f the sample splits τ and most of the predictive variables, the

0th percentile of the bootstrap null distribution of t ( MSPE − adj ) τ
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is slightly less than 1—instead of about 1.282 (the 90th percentile

in the standard normal distribution). 

We therefore eschew the normal approximation of Clark and

West (2007) and instead use bootstrapping to calculate the

t ( MSPE − adj ) τ statistic’s p -value at each sample split. The p -value

for t ( MSPE − adj ) τ , which we shall denote pv( τ ), is calculated by

drawing 9999 bootstrap samples under the null hypothesis of no

predictability and, for each draw, calculating t ( MSPE − adj ) τ . Then

pv( τ ) is the fraction of times that this statistic calculated from the

null distribution bootstrap sample is greater than the same statistic

calculated from the original data. 

After calculating R 2 os (τ ) and pv( τ ) for each possible sample split

date τ , we can construct a graph that plots those two calculated

terms against τ . This graph contains all the information needed to

assess how well an investor making decisions in real time would

have done, on an out-of-sample basis, by using the predictor in

question starting at sample split date τ . 

2.3. Out-of-sample predictability: invariant to sample split date 

If the aim is to distill into a single indicator whether the equity

premium is predictable on an out-of-sample basis, then one can

construct a summary statistic of the distribution of t ( MSPE − adj ) τ
across the sample split dates τ . For instance, Roy ’s (1953) union-

intersection principle dictates that we do not reject the null of

no predictability if none of the t ( MSPE − adj ) τ statistics reject it.

We shall therefore reject that null only if at least one of the

t ( MSPE − adj ) τ rejects the null for at least one τ . Formally, that

approach is equivalent to using 

max τ { t ( MSPE − adj ) τ } (8)

as a test statistic; alternatively, we could use 

mean τ { t ( MSPE − adj ) τ } (9)

as a test statistic. 

There is no clear basis ex ante for preferring one of Eqs. (8) and

(9) over the other, since the null distribution is not known for ei-

ther test statistic. Hence we determine the null distribution of both

the maximum and the mean statistics just displayed by generating

9999 bootstrap samples under the null of no predictability. After

computing the two statistics for each of these bootstrap samples,

we calculate the p -value of the maximum (resp. mean) test statis-

tic by counting how often the bootstrap maximum (resp. mean)

statistic is larger than the maximum (resp. mean) statistic calcu-

lated from the original data. As before, the bootstrap samples are

generated while imposing the null hypothesis of no predictability. 

2.4. Bootstrap procedure: description 

To generate our 9999 bootstrap samples under the null hy-

pothesis of no predictability, we follow Kilian (1999) , Mark (1995) ,

Rapach and Wohar (2006) , and Welch and Goyal (2008) . (For a

general treatment of bootstrap hypothesis testing, see MacKinnon,

2009 —especially its section on the residual bootstrap.) We use the

original data to estimate Eqs. (2) and (3) by ordinary least squares

and then store the residuals ( ̂  u t and ˆ w t ) for resampling. 4 Next we

use the original data to estimate Eqs. (2) and (3) via OLS while im-

posing the null hypothesis of no predictability ( β1 = 0 ); the result-

ing restricted estimates are denoted 

˜ β0 , ˆ μ, and ˆ ρ and are stored

for later use to generate bootstrap data under the null. 
4 Rapach and Wohar (2006 , p. 237) resample the restricted model residuals (i.e., 

the residuals when β1 = 0 ); Welch and Goyal (2008 , p. 1462) resample the unre- 

stricted residuals. According to MacKinnon (2009 , p. 195), “there might be a slight 

advantage in terms of power if we were to use unrestricted rather than restricted 

residuals.” We therefore opt to resample the unrestricted residuals. 

t  

e  

f  

t  

i  

I  
The sample is restricted in that X t is available only for times

 = 0 , . . . , T and R t is available only for times t = 1 , . . . , T . To ini-

iate the recursion in Eq. (3) , we randomize (with equal probabil-

ty) over dates t = 0 , . . . , T , denote the draw t 0 , and set X b 
0 

= X t 0 .

hen we randomize again with equal probability but now with

eplacement over dates t = 1 , . . . , T ; we use t ∗ to signify a sin-

le draw from this randomization. For one bootstrap round we

enerate T such draws. Then we set u b t = ˆ u t ∗ and w 

b 
t = ˆ w t ∗ for

 = 1 , . . . , T , thereby drawing (with replacement) the residuals ˆ u t 
nd ˆ w t as a pair that are matched by t to preserve their cross

orrelation. For each bootstrap round, we generate R b t = 

˜ β0 + u bt 
nd X b t = ˆ μ + ˆ ρX b 

t−1 
+ w 

b 
t for t = 1 , . . . , T . Finally, the 9999 boot-

trap samples generated under the null of no predictability are ob-

ained by following the same procedure another 9999 times. We

stimate the unrestricted model in Eqs. (2) and (3) for each of

he 9999 bootstrap-generated data sets on R b t and on X b t and then

alculate, for each set, the statistics described previously: R 2 os (τ )

nd t ( MSPE − adj ) τ for each τ as well as max τ { t ( MSPE − adj ) τ }
nd mean τ { t ( MSPE − adj ) τ } . These 9999 replicates of each are

sed to estimate each statistic’s distribution under the null hy-

othesis of no predictability. For example, we evaluate the p -

alue of the maximum statistic by checking for how many of

he 9999 bootstrap samples max τ { t ( MSPE − adj ) τ } is larger than

ax τ { t ( MSPE − adj ) τ } calculated for the original data. 

.5. Data 

The equity premium measure that we use, R t ≡ (R m 

− R f ) t , is

ased on monthly returns on the S&P 500 index, including divi-

ends. The end-of-month values are a series provided by the Cen-

er for Research in Security Prices for the period January 1926 to

ecember 2010; we subtract the risk-free rate, defined as the con-

emporaneous 1-month US Treasury bill (T-bill) rate. 

We study the predictive performance of 21 variables. Of these,

he first 15 are from Welch and Goyal (2008) and are downloaded

rom Amit Goyal’s website. The remaining six are behavioral pre-

ictors; they are downloaded from Jeffrey Wurgler’s Web page. 

Summary statistics for the equity premium and for all of the

redictors are given in Table 1 . 

. Results 

.1. In-sample predictability 

Table 2 reports the in-sample regression results. The predictand

s always the equity premium, and the predictor variable is named

t the start of each row. We estimate Eq. (1) by OLS; the b 1 value,

he t -statistic for that value, and the R-squared from estimating

q. (1) are given in (respectively) the first, second, and third data

olumns of the table. 

The fourth column reports the bias-corrected estimator b c 
1 

f β1 from the predictive regression, calculated as explained in

ection 2 (cf. Amihud and Hurvich, 2004 ), and the fifth column

eports the t c -statistic (= b c 
1 
/ [ SE c (b c 

1 
)]) . The values in the sixth col-

mn are for r , the OLS estimate of the autoregressive parameter ρ
n Eq. (3) ; the seventh column gives r c , the bias-corrected estima-

or of ρ . The table’s last column reports f , an unbiased estimator

f [Cov( u t , w t )]/[Var( w t )] ( Amihud and Hurvich, 2004 , Lemma 1). 

An examination of Table 2 reveals that, even after bias correc-

ion, many variables remain significant in-sample predictors of the

quity premium. At the same time, not even a liberal cut-off point

or “significant” (e.g., 1.28) and carrying out a one-sided test at

he 10% level are enough to make the following variables signif-

cantly predictive: Dividend Payout Ratio, Default Return Spread,

nflation Lagged 2 Months, Stock Variance, Dividend Premium,
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Table 2 

In-sample predictive regressions estimates, and bias corrected in-sample estimates. 

b 1 t −stat R −sq b c 1 t c −stat r r c Cov( u t , w t )/Var w t 

Dividend to Price Ratio 0 .0087 2 .26 0 .0050 0 .0050 1 .28 0 .99 1 .00 −0 .96 

Dividend Yield 0 .0101 2 .59 0 .0066 0 .0098 2 .51 0 .99 1 .00 −0 .08 

Book to Market Ratio 0 .0196 2 .98 0 .0087 0 .0157 2 .38 0 .98 0 .99 −1 .01 

Earnings to Price Ratio 0 .0088 2 .13 0 .0044 0 .0063 1 .54 0 .99 0 .99 −0 .62 

Dividend Payout Ratio 0 .0018 0 .34 0 .0 0 01 0 .0015 0 .28 0 .99 1 .00 −0 .08 

Treasury Bill Rate −0 .0 966 −1 .69 0 .0028 −0 .1011 −1 .77 0 .99 1 .00 −1 .14 

Long Term Yield −0 .0750 −1 .20 0 .0014 −0 .0862 −1 .38 1 .00 1 .00 −2 .86 

Long Term Return 0 .1153 1 .57 0 .0024 0 .1155 1 .57 0 .04 0 .04 0 .25 

Term Spread 0 .1823 1 .37 0 .0018 0 .1823 1 .37 0 .96 0 .96 0 .01 

Default Yield Spread 0 .4105 1 .67 0 .0027 0 .3733 1 .52 0 .98 0 .98 −9 .67 

Default Return Spread 0 .1378 1 .03 0 .0011 0 .1382 1 .04 −0 .12 −0 .12 0 .57 

Inflation Lagged 2 Months −0 .3491 −1 .06 0 .0011 −0 .3503 −1 .07 0 .55 0 .55 −0 .46 

Net Equity Expansion −0 .1455 −2 .03 0 .0041 −0 .1461 −2 .04 0 .97 0 .98 −0 .16 

Stock Variance −0 .2 039 −0 .58 0 .0 0 03 −0 .2142 −0 .61 0 .62 0 .63 −3 .65 

Cross Sectional Premium 2 .1014 3 .03 0 .0115 2 .0595 2 .96 0 .98 0 .98 −3 .44 

Dividend Premium 0 .0 0 0 0 0 .07 0 .0 0 0 0 −0 .0 0 0 0 −0 .17 0 .98 0 .99 −0 .00 

Number of IPOs −0 .0 0 0 0 −0 .38 0 .0 0 02 −0 .0 0 0 0 −0 .35 0 .86 0 .87 0 .00 

Average First-day IPO Returns 0 .0 0 0 0 0 .33 0 .0 0 02 0 .0 0 0 0 0 .36 0 .67 0 .68 0 .00 

NYSE Share Turnover −0 .0022 −0 .46 0 .0 0 03 −0 .0023 −0 .48 0 .97 0 .98 −0 .02 

Closed-End Fund Discount 0 .0 0 01 0 .20 0 .0 0 01 0 .0 0 01 0 .26 0 .96 0 .97 0 .00 

Equity Share in New Issues −0 .0402 −2 .58 0 .0104 −0 .0404 −2 .59 0 .69 0 .69 −0 .02 
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5 A test statistic is either significant or insignificant at the chosen (a priori) sig- 

nificance level (e.g., 5%). It follows that such modifiers as “less” or “more” or “very”

(in)significant are, strictly speaking, abuses of statistical terminology. Such wording 

serves as shorthand for a longer statement; for example, a claim that some predic- 

tor is “less significant” judged by test X than by test Y is supposed to mean that if 

the null hypothesis were true, the probability of observing as large or larger Y as 

actually observed is smaller than the probability of observing as large or larger X 

as actually observed. 
umber of IPOs, Average First-day IPO Returns, NYSE Share

urnover, and Closed-end Fund Discount. 

Predictors that appear to be significant at better than the 5%

evel (i.e., even when we consider the test to be two-sided) are

ividend Yield, Book to Market Ratio, Net Equity Expansion, Cross

ectional Premium, and Equity Share in New Issues; all of these

ariables have bias-corrected t -statistics greater than 2 in absolute

alue (fifth column of Table 2 ). With the lone exception of Equity

hare in New Issues, all of the predictors that have a bias-adjusted

 -statistic greater than 2 also have an autoregressive root greater

han 0.97—that is, fairly close to 1. Curiously enough, the bias cor-

ections make a big difference only for Dividend to Price Ratio and

arnings to Price Ratio and matter somewhat for Book to Market

atio; note that these three are exactly the variables by which such

orrections were motivated in the first place. The bias correction

as little effect on the other 18 predictors. 

The behavioral variables—Dividend Premium, Number of IPOs,

verage First-day IPO Returns, NYSE Share Turnover and Closed-

nd Fund Discount —are not statistically significant predictors of

he equity premium when judged by the in-sample criterion (with

r without bias corrections). 

Overall, we have evidence that a large number of variables are

tatistically significant predictors of the equity premium, even after

ias corrections are applied. 

.2. Out-of-sample inference about predictability: invariant to sample 

plit date 

Table 3 presents, side by side, the in-sample results and

he out-of-sample (split sample–invariant) results on predictabil-

ty. Column [1] gives the bias-corrected in-sample t -statistic, and

olumn [2] gives the probability that a standard normal vari-

ble is larger than the absolute value of that t c -statistic. Col-

mn [3] reports mean τ { t ( MSPE − adj ) τ } , where the mean is com-

uted over τ ; column [4] gives the bootstrap-determined p -value

f the previous column’s statistic. Analogously, column [5] re-

orts max τ { t ( MSPE − adj ) τ } with the maximum taken over τ ; its

ootstrap-determined p -value is given in column [6]. 

The following observations can be made about the results re-

orted in Table 3 . 

• None of the variables that are in-sample insignificant at the 10%

level are significant at the 10% level in the two out-of-sample

tests. Results of the in-sample bias-corrected test and of the
out-of-sample, sample split–invariant tests are in broad agree-

ment. 

• All but one of the predictors appear to be somewhat “less sig-

nificant” when judged by the two out-of-sample tests. 5 

• Dividend to Price Ratio is the only variable that appears “more

significant” when judged by the two out-of-sample criteria than

by the in-sample criterion. 

• The two out-of-sample criteria agree in a rough sense. In par-

ticular, their p -values are usually within a multiple of 2. 

• There are five variables for which the in-sample bias-corrected

t -statistic exceeds 2 in absolute value (fifth column of Table 2 ):

Dividend Yield, Book to Market Ratio, Net Equity Expansion,

Cross Sectional Premium, and Equity Share in New Issues. Of

these, only Net Equity Expansion is insignificant out-of-sample.

Each of the other four variables is significant at the 5% level by

at least one of the two out-of-sample criteria. 

• Every variable shown to be “very insignificant” in-sample (here,

having the in-sample bias-corrected t -statistic’s p -value exceed

15%) is shown to be “even more insignificant” by the two out-

of-sample statistics (i.e., the p -values for the two out-of-sample

statistics exceed 30%). 

Overall, we do not find much disagreement between in-sample

nd out-of-sample predictability criteria—provided the latter are

nvariant to the choice of sample split date. The bias-corrected in-

ample t -test as well as the mean and the maximum out-of-sample

ests all tell much the same story as regards whether the equity

remium is or is not reliably predicted by a given variable. 

.3. Bootstrap null distribution: selected percentiles of mean and 

aximum statistics 

For our proposed out-of-sample mean τ { t ( MSPE − adj ) τ } and

ax τ { t ( MSPE − adj ) τ } sample split–invariant tests, p -values are

 function of the test statistic’s observed value and also of its
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Table 3 

The in-sample bias corrected t-statistic (column 1) is followed by its p -value (column 2). The out-of-sample sample 

split invariant mean τ t ( MSPE − adj ) τ (column 3) is followed by its bootstrap determined p -value (column 4). The 

out-of-sample sample split invariant max τ t ( MSPE − adj ) τ (column 5) is followed by its bootstrap determined p - 

value (column 6). 

t c ← p -value Mean τ t ← p -value Max τ t ← p -value 

Dividend to Price Ratio 1 .2817 0 .10 0 0 1 .3838 0 .0451 2 .7530 0 .0514 

Dividend Yield 2 .5106 0 .0060 1 .4412 0 .0197 2 .8287 0 .0129 

Book to Market Ratio 2 .3800 0 .0087 0 .7450 0 .1233 2 .4635 0 .0609 

Earnings to Price Ratio 1 .5410 0 .0617 0 .7922 0 .1135 2 .1455 0 .1170 

Dividend Payout Ratio 0 .2827 0 .3887 −1 .3445 0 .9333 −0 .0266 0 .8496 

Treasury Bill Rate −1 .7667 0 .0386 0 .8038 0 .0903 1 .7881 0 .1380 

Long Term Yield −1 .3796 0 .0839 0 .7718 0 .0989 1 .6793 0 .1728 

Long Term Return 1 .5738 0 .0578 0 .7897 0 .1029 1 .4374 0 .2240 

Term Spread 1 .3675 0 .0857 0 .6290 0 .1273 1 .4914 0 .2154 

Default Yield Spread 1 .5188 0 .0644 0 .1110 0 .2893 1 .4789 0 .2297 

Default Return Spread 1 .0364 0 .1500 −0 .0611 0 .3528 0 .2500 0 .7138 

Inflation Lagged 2 Months −1 .0671 0 .1430 −0 .4874 0 .5523 0 .5439 0 .5930 

Net Equity Expansion −2 .0350 0 .0209 −0 .3316 0 .4658 1 .2130 0 .3260 

Stock Variance −0 .6112 0 .2705 −0 .7976 0 .7147 −0 .3131 0 .9179 

Cross Sectional Premium 2 .9554 0 .0016 1 .4509 0 .0205 2 .4760 0 .0297 

Dividend Premium −0 .1682 0 .4332 0 .2934 0 .2151 1 .3407 0 .2717 

Number of IPOs −0 .3466 0 .3644 0 .0124 0 .3341 1 .1921 0 .3188 

Average First-Day IPO Returns 0 .3578 0 .3603 −0 .0266 0 .3351 1 .3230 0 .2596 

NYSE Share Turnover −0 .4836 0 .3143 −0 .4910 0 .5476 0 .0106 0 .8267 

Closed-End Fund Discount 0 .2571 0 .3985 0 .1304 0 .2727 1 .1134 0 .3626 

Equity Share in New Issues −2 .5853 0 .0049 1 .3748 0 .0285 1 .9659 0 .0929 

Table 4 

The 90th, 95th, and the 99th percentiles of the bootstrap null distribution for our mean τ [ t ( MSPE − adj ) τ ] and max τ [ t ( MSPE − adj ) τ ] 

sample split invariant statistics, together with the OLS estimate ˆ ρ of the autoregressive parameter in Eq. (3) and the correlation 

between the residuals in Eqs. (2) and (3) . 

Mean t 90 Mean t 95 Mean t 99 Max t 90 Max t 95 Max t 99 ˆ ρ Corr ( ̂ u t , ˆ w t ) 

Dividend to Price Ratio 1 .0194 1 .3464 1 .9006 2 .4700 2 .7584 3 .3726 0 .99 −0 .98 

Dividend Yield 0 .7398 1 .0694 1 .7019 1 .9404 2 .2846 2 .9325 0 .99 −0 .08 

Book to Market Ratio 0 .8566 1 .2002 1 .8243 2 .2068 2 .5456 3 .1729 0 .98 −0 .83 

Earnings to Price Ratio 0 .8513 1 .1801 1 .7814 2 .2284 2 .5810 3 .1719 0 .99 −0 .84 

Dividend Payout Ratio 0 .7748 1 .1038 1 .7740 2 .0050 2 .3316 2 .9493 0 .99 −0 .01 

Treasury Bill Rate 0 .7506 1 .0681 1 .7385 1 .9486 2 .3087 2 .9246 0 .99 −0 .03 

Long Term Yield 0 .7632 1 .1166 1 .7847 2 .0014 2 .3532 3 .0198 0 .98 −0 .12 

Long Term Return 0 .8055 1 .1507 1 .7940 1 .8994 2 .2129 2 .7914 0 .04 0 .13 

Term Spread 0 .7614 1 .0887 1 .7607 1 .9315 2 .2600 2 .8933 0 .96 −0 .04 

Default Yield Spread 0 .7615 1 .1121 1 .7419 1 .9691 2 .2842 2 .8938 0 .98 −0 .25 

Default Return Spread 0 .7815 1 .1261 1 .7596 1 .9044 2 .2201 2 .8275 −0.15 0 .11 

Inflation Lagged 2 Months 0 .8093 1 .1607 1 .7556 1 .9101 2 .2208 2 .8156 0 .52 −0 .03 

Net Equity Expansion 0 .7761 1 .1037 1 .7784 1 .9469 2 .3134 2 .9186 0 .97 −0 .06 

Stock Variance 0 .8330 1 .1597 1 .7575 1 .9730 2 .2711 2 .8478 0 .60 −0 .36 

Cross Sectional Premium 0 .7797 1 .0876 1 .7025 1 .9584 2 .2737 2 .8716 0 .98 −0 .03 

Dividend Premium 0 .7507 1 .0860 1 .7068 1 .9992 2 .3322 2 .9943 0 .96 −0 .27 

Number of IPOs 0 .7866 1 .1126 1 .7594 1 .9368 2 .2736 2 .9246 0 .89 0 .09 

Average First-day IPO Returns 0 .80 0 0 1 .1293 1 .7643 1 .9031 2 .2460 2 .8650 0 .61 0 .15 

NYSE Share Turnover 0 .7674 1 .1086 1 .7464 1 .9773 2 .3083 2 .9197 0 .96 −0 .02 

Closed-End Fund Discount 0 .7598 1 .1011 1 .7463 1 .9704 2 .2945 2 .9526 0 .97 0 .13 

Equity Share in New Issues 0 .8175 1 .1506 1 .7459 1 .9185 2 .2423 2 .8515 0 .63 −0 .07 
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6 The null distribution of the t ( MSPE − adj ) τ statistic does depend on the con- 
bootstrap determined null distribution. As a result, Table 3 is not

informative regarding the distributions of the mean and maximum

statistics under the null hypothesis of no predictability. Yet we are

interested in such questions as: What do the null distributions of

these two statistics look like? Are the mean and maximum statis-

tics pivotal, or do they depend on the parameters of the (bootstrap)

data-generating process? 

Suppose we found a single null distribution for the mean statis-

tic across all 21 predictors and also a single null distribution for

the maximum statistic across those same predictors. In that case,

our proposed statistics would be pivotal and independent of the

parameters used to generate the data. If, on the contrary, we found

the null distributions to be considerably different across the 21

predictors, the implication would be that the two statistics are not

pivotal and so are sensitive to those data-generating parameters. 

Table 4 reports the 90th, 95th, and 99th percentiles of the

bootstrap determined null distribution of the mean and maximum

s

tatistics. We can make the following remarks regarding the null

istributions of the sample split–invariant mean τ { t ( MSPE − adj ) τ }
nd max τ { t ( MSPE − adj ) τ } statistics reported in that table. 

It seems reasonable to suppose that the

ean τ { t ( MSPE − adj ) τ } and max τ { t ( MSPE − adj ) τ } statistics

re pivotal because their null distributions do not depend strongly

n the parameters of the bootstrap data-generating process.

he percentiles under the null hypothesis of no predictabil-

ty across the 21 focal predictors are similar, and they are not

ore dissimilar across predictive variables than are the per-

entiles of t ( MSPE − adj ) τ . Under conditional homoskedasticity,

 ( MSPE − adj ) τ is known to be pivotal with respect to the param-

ters of the data-generating process and for the type of forecasting

egressions considered here ( Clark and McCracken, 2001 ). 6 
tant to which the ratio of evaluation data points to estimation data points con- 
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However, the bootstrap distributions generated under the null

f no predictability depend to some extent on the correlation be-

ween the error term in Eq. (2) and that in Eq. (3) . More specifi-

ally: the higher the correlation, the higher the percentiles of the

ull distribution for the corresponding predictor. Thus the previous

oint’s conjecture might just as well turn out to be false. 

If we are comfortable (for exploratory purposes) with the rough

ense in which t ( MSPE − adj ) τ is approximately normal for a fixed

ample split, then we can propose the following rough criterion:

f the data-based mean τ { t ( MSPE − adj ) τ } is greater than 1 (resp.,

.5, 2), then the bootstrap sample split–invariant test would likely

eject the null of no predictability at the 10% (resp., 5%, 1%)

evel of significance. Similarly, we can say that if the data-based

ax τ { t ( MSPE − adj ) τ } is greater than 2 (resp., 2.5, 3) then the

ample split–invariant bootstrap test would probably reject the

ull of no predictability at the 10% (resp., 5%, 1%) level of signif-

cance. Even a rule of this approximate nature could save some

rogramming and simulation time, though it must be used with

n eye toward the in-sample results. From Table 3 we see that the

n-sample test of predictability for a given variable is extremely in-

ormative about the complete out-of-sample simulation outcomes. 

.4. Summarizing out-of-sample predictability in graphical form 

Fig. 2 displays complete information on a real-time investor’s

nvestment outcomes as a function of the sample split. Each sub-

gure within Fig. 2 presents the out-of-sample R-squared and

he bootstrap-determined p -value for the MSPE-adj t -statistic for

ach sample split date τ ∈ [ int (. 05 T ) , T − int (. 05 T )] . For each τ
e bootstrap the t ( MSPE − adj ) τ statistic, rather than the MSPE-

dj( τ ) statistic, because the former is pivotal and the latter is not.

acKinnon (2009) emphasizes that one should bootstrap pivotal

uantities whenever possible because doing so yields an asymp-

otic refinement: the error in rejection probability committed by

he pivot-based bootstrap test is of lower order in the sample size

han is the error in rejection probability of the asymptotic test

ased on the same pivot ( Beran, 1988; Hall, 1992 ). 

The 21 sub-figures show how well an investor (starting in,

ay, January 20 0 0; the actual years plotted vary depending on

ata availability) would have done by using each of our 21 focal

redictors—as compared with using the recursive mean—to fore-

ast the equity premium out-of-sample. The following list offers

rief comments about the out-of-sample predictive success of each

ariable as a function of the sample split date τ . (When discussing

verall in-sample and sample split–invariant out-of-sample infer-

nce about predictability, we refer always to the results in Table 3 .

e discuss the predictors in Fig. 2 consecutively from left to right,

nd down Fig. 2 .) 

The (log of the) Dividend to Price Ratio is a reasonably accu-

ate out-of-sample predictor of the equity premium. It loses pre-

ictive power around year 1973, but it regains power in the late

990s and at the start of the new millennium. Then, from about

ear 2002, it is once again unable to outperform the recursive

ean. The sample split–invariant mean and maximum tests show

hat the dividend-to-price ratio outperforms the recursive mean

verall. This is the only variable for which our out-of-sample tests

eject the null of no predictability at better significance levels than

oes the in-sample test. The out-of-sample R-squared is negative

or the most part; it becomes positive only for a short period
erges as the sample size grows to infinity. The assumption that this ratio is con- 

tant is not supported by our calculations for each possible sample split. Of course, 

tatistical behavior as the sample size approaches infinity is an abstraction with no 

lear meaning in practice; our sample is always finite. Hence the only question is 

hether or not this abstraction yields an accurate approximation for the samples 

hat are typically available. 

w

 

m  

u  

f  

s  

u  
round year 20 0 0. The (log of the) Dividend Yield displays the

ame predictive pattern as Dividend to Price Ratio. All tests—in-

ample and sample split–invariant out-of-sample—show this pre-

ictor to be significant at better than the 2% significance level. 

The Book to Market Ratio loses predictive power around Jan-

ary 1950 and regains it only for a short period around the start

f the new millennium. Although the in-sample tests of predic-

ive power for Book to Market Ratio and Dividend Yield have sim-

lar p -values, the out-of-sample tests yield conflicting results for

hese two variables; thus, for most of the sample splits, the book-

o-market ratio would not have been an accurate predictor for an

nvestor making decisions in real time. However, that ratio would

ave been helpful to an investor starting to time the market a few

onths before or after January 20 0 0. 

The (log of the) Earnings to Price Ratio lost out-of-sample pre-

ictive power shortly after year 1950 and has never regained it. As

xpected, both the mean and the maximum sample split–invariant

ut-of-sample tests show this variable to be only marginally sig-

ificant. The (log of the) Dividend Payout Ratio has never been

n accurate out-of-sample predictor of the equity premium for

he simple reason that it consistently underperforms the recursive

ean benchmark. 

The Treasury Bill Rate outperforms the recursive mean bench-

ark out-of-sample until the start of the 1970s but never there-

fter. This predictor is shown to be marginally significant by the

ample split–invariant out-of-sample tests. The Long Term Yield

xhibits forecasting patterns strongly similar to the T-bill rate,

hich suggests that these two variables capture the same infor-

ation regarding the economy’s future state. We expected to see

 dramatic difference between the two since the Great Recession

tarted; their continued similarity is puzzling given that short-term

S debt has in recent years come to resemble money ( Cochrane,

011 ), an asset that differs from long-term debt. 

The Long Term Return outperforms the recursive mean from

he mid-1950s until the mid-1970s. The Term Spread outperforms

he recursive mean until the start of the 1970s. This variable’s sam-

le split–invariant mean statistic has a p -value of .14 and its max-

mum statistic has a p -value of .21. It is probably fair to interpret

ig. 2 as indicating that the term spread is actually a better out-of-

ample predictor than our two out-of-sample tests would suggest. 

The Default Yield Spread is an accurate out-of-sample predic-

or of the equity premium from the mid-1950s to the mid-1960s.

hereafter, it fails to outperform the recursive mean benchmark.

he Default Return Spread exhibits stable but unimpressive out-

f-sample performance. The Lagged Inflation has never been an

ccurate out-of-sample predictor of the equity premium. 

The Net Equity Expansion is one of the few variables that

he in-sample test shows to be a significant predictor of the eq-

ity premium. However, all of the out-of-sample evidence points

o unimpressive out-of-sample predictive performance when com-

ared with the recursive mean. This is the variable on which in-

ample tests and sample split–invariant out-of-sample tests dis-

greed the most. 

The Stock Variance has never been an accurate out-of-sample

redictor of the equity premium. 

The Cross Sectional Premium ( Polk et al., 2006 ) is an excel-

ent predictor according to both in-sample and out-of-sample tests.

ote, however, that data for the cross-sectional premium is not

vailable for recent years; hence we cannot say how this variable

ould have performed during the last decade or so. 

The (log) Dividend Premium has outperformed the recursive

ean only sporadically: around the mid-1960s and around Jan-

ary 20 0 0. The Number of Initial Public Offerings nearly outper-

orms the recursive mean in late 1960s. In general, this variable

eems not to be an accurate out-of-sample predictor of the eq-

ity premium. The Average First-day IPO Returns comes close to
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Fig. 2. Plots of the p -value of the t (MSPE-adj) statistic and the out-of-sample R-squared versus τ (the start of the out-of-sample forecasting exercise). 
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t  
utperforming the recursive mean around January 20 0 0, but over-

ll it is not an accurate out-of-sample predictor. The NYSE Share

urnover is not an accurate predictor of the equity premium on

n out-of-sample basis. The Closed-end Fund Discount is a poor

ut-of-sample predictor of the equity premium, which is surpris-

ng in light of how much attention this variable has received as an

ndicator of sentiment ( Lee et al., 1991; Neal and Wheatley, 1998;

weig, 1973 ). The Equity Share in New Issues is a reliable pre-

ictor of the equity premium when judged by any in-sample or

ut-of-sample criterion. It loses predictive power for most of the

990s but regains it in later years. 

We can summarize the preceding analysis in two main points,

s follow. First, there are periods during which the equity premium

s difficult to predict and so a forecaster can hardly do any better

han simply using the recursive mean. From the mid-1970s until

he mid-1990s, for example, reliable predictors are hard to find; in

act, the only variables of any use in this time span are the Cross

ectional Premium and the Equity Share in New Issues. (Even so,

here are a number of sample split dates τ during this period for

hich those two predictors fail to outperform the recursive mean.)

his finding has implications for “combination” forecast methods

uch as those proposed by Rapach et al. (2010) . Such a method

orks for most sample split dates because it “irons out” parameter

nstability across models and model uncertainty. Yet there seem al-

ays to be some sample split dates for which good predictors are

ard to find, and it is an open question whether forecast combina-

ion can deliver superior performance when few (a fortiori none)

f the constituent predictors can improve on the recursive mean

enchmark. 7 

Second, the observed predictive patterns are fairly similar

cross variables derived from related economic intuition. Predic-

ors reflecting economic fundamentals, i.e., dividend/price, divi-

end yield, book/market, earnings/price) exhibit strikingly similar

orecasting patterns. The “interest rate” variables (T-bill rate, long-

erm yield, long-term return, term spread, default return spread,

efault yield spread, and inflation) likewise exhibit closely similar

orecasting patterns. Another group of variables that exhibit simi-

ar predictive patterns includes net equity expansion, the number

f IPOs, and the equity share in new issues. In short: the graphs

lotted in Fig. 2 confirm our expectation that economically similar

ariables display similar patterns of predictive strength and weak-

ess, versus the recursive mean, as a function of the chosen sample

plit date. 

.5. Out-of-sample inference about predictability: invariant to sample 

plit date and robust to data mining 

When testing the ability of financial variables to predict stock

eturns, data mining is a serious concern. 8 Lo and MacKinlay

1990) and Foster et al. (1997) stress this issue for in-sample

ests of security returns predictability. Until recently, out-of-sample

ests have been viewed as a viable preventive against data min-

ng. However, Inoue and Kilian (2004) and also Rapach and Wohar

2006) argue that data mining should be of concern also in out-of-

ample tests of predictability, and especially when a large number

f predictive variables is considered. They suggest addressing this
7 Rapach et al. (2010) start their out-of sample forecasting exercises in the first 

uarters of 1965, 1976, and 20 0 0. One can infer from the preceding analysis of each 

ariable that the first quarter of 1976 is the most challenging split date; nonethe- 

ess, significant individual predictors can be found even for that choice. Not sur- 

risingly, these authors find that particular sample split to generate the weakest 

though still significant) result. Hence an intriguing question is whether a forecast 

ombination technique could deliver superior performance for a date on which none 

f the individual predictors could. 
8 We are grateful to an anonymous referee for proposing tests that are not only 

ample split–invariant but also robust to data mining. 

n  

t  

m  

s  

t  

s  

o  

m

r  
roblem by using corrected critical values obtained via a bootstrap

rocedure. 

More recently, Hubrich and West (2010) and Clark and Mc-

racken (2012) propose taking the maxima of various statistics for

imultaneously judging whether a small set of alternative models

hat nest within a benchmark model improve upon that bench-

ark model’s MSPE. Clark and McCracken (2012) propose a fixed-

egressor “wild” bootstrap procedure for evaluating the sampled

istributions of the maximum statistics they study. 

In this paper we consider only the variables surveyed by Welch

nd Goyal (2008) plus a few behavioral predictors. Although we do

ot use data-mining methods to detect viable predictors, data min-

ng still could be a concern given that we study so many (21) vari-

bles. That is, their sheer number makes it more likely that one or

ore exhibit, just by chance, a statistically significant association

ith the predictand. Inoue and Kilian (2004) ; Rapach and Wohar

2006) , and Clark and McCracken (2012) present ideas that are rel-

vant to our own paper’s data-mining issues. 

So far, our bootstrap procedure has assumed that the predictive

ower of each variable is tested separately. That we examine 21

ossible predictors actually increases the chances of coming to a

rong conclusion. Therefore, when testing predictability we con-

rol for data mining by applying to our test statistic the ideas first

roposed by Inoue and Kilian (2004) and also used by Rapach and

ohar (2006) . 

For this purpose, we start by specifying the null hypothesis as

 0 : β
j 

1 
= 0 for all j , where j = 1 , . . . , 21 indexes the variables being

ested for predictive power. We specify the alternative hypothesis

s H 1 : β
j 

1 
� = 0 for some j , where β j 

1 
is the slope in Eq. (2) when

he predictive variable is X 
j 

t . 

As in-sample test statistics, we use the maximum and the mean

f the square of the in-sample t –statistic for testing that the slope

s 0 across the variables of interest for a two sided test. Note that

n such bivariate regressions the square of that in-sample t -statistic

s numerically equivalent to the F -statistic from testing for whether

hat slope is 0. In other words, we use both max j= 1 , ... , 21 { t 2 ˆ β j 
1 

} ,
here t 2 

ˆ β j 
1 

is the square of the t -statistic corresponding to ˆ β j 
1 

(we

ill call this statistic max-t-squared ), and mean j= 1 , ... , 21 { t 2 ˆ β j 
1 

} (or

ean-t-squared ). We use the square of the t -statistic because this

s a two-sided test. 

Our two out-of-sample test statistics are as follows. 

1. mean j= 1 , ... , 21 { mean τ t j ( MSPE − adj ) τ } , also known as the dou-

ble mean . In words, we take the mean across the 21 variables

of the sample split–invariant mean statistic; this is a “double”

mean because we first average across sample split dates and

then average across variables. 

2. max j= 1 , ... , 21 { max τ t j ( MSPE − adj ) τ } , or the double max . Here we

take the maximum across the 21 variables of the sample split–

invariant max statistic; it is a “double” max because we first

take the maximum across sample split dates and then across

variables. 

Inoue and Kilian (2004) derive asymptotic distributions for

heir maximum in-sample and out-of-sample statistics under the

ull hypothesis of no predictability. But since the limiting dis-

ributions are generally data dependent, these authors recom-

end that bootstrap procedures be used in practice. Our boot-

trap method (described in Section 2.4 ) is used—while imposing

he null hypothesis H 0 : β
j 

1 
= 0 for all j = 1 , . . . , 21 in the boot-

trap data-generating process—to determine the null distributions

f our mean-t-squared, max-t-squared, double mean, and double

ax statistics. 

The results are reported in Table 5 . The in-sample data-mining–

obust test based on mean-t-squared ( mean j= 1 , ... , 21 { t 2 ˆ β j 
1 

} ) rejects
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Table 5 

The mean-t-squared ( mean j∈ 1 , ... , 21 t 
2 
ˆ β j 

1 

), max-t-squared ( max j∈ 1 , ... , 21 t 
2 
ˆ β j 

1 

), double mean 

mean j∈ 1 , ... , 21 [ mean τ t j ( MSPE − adj ) τ ] and double max max j∈ 1 , ... , 21 [ max τ t j ( MSPE − adj ) τ ] 

test statistics (column 1), their bootstrap determined p -value (column 2) and the 90th, 95th 

and 99th percentiles of the bootstrap determined null distribution of the respective statistic 

(last three columns). 

Statistic p -value 90 percentile 95 percentile 99 percentile 

Mean-t-squared 2 .8473 0 .0 0 0 0 1 .4553 1 .6007 1 .9365 

Max-t-squared 9 .1607 0 .0647 8 .3271 9 .6241 12 .6491 

Double mean 0 .3231 0 .0 0 03 −0 .0639 0 .0041 0 .1532 

Double max 2 .8287 0 .1627 3 .0051 3 .2067 3 .7371 
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the hypothesis of no predictability at any standard significance

level, and the max-t-squared statistic ( max j= 1 , ... , 21 { t 2 ˆ β j 
1 

} ) rejects the

same hypothesis at the 6% significance level. Similarly, the out-of-

sample data-mining–robust double mean test rejects the null hy-

pothesis (of no predictability) at any level and the double max

test fails to reject the null at standard significance levels (yet since

the p -value of .16 is relatively low, there is some evidence against

the null). 

In sum, three of our four predictability tests that control for

data mining reject the null hypothesis of no predictability. This

conclusion is evidently not driven by the distinction between in-

sample and out-of-sample testing, and it runs counter to Welch

and Goyal ’s (2008) claim of no predictability. 

This extension of our bootstrap method to sample split–

invariant out-of-sample inference that is also robust to data mining

demonstrates the flexibility of our method—especially as compared

to the tests proposed by Rossi and Inoue (2012) and Hansen and

Timmermann (2012) . 

4. Monte Carlo experiments: validity of the bootstrap 

procedure 

In this section we use Monte Carlo experiments to study the

validity of our bootstrap procedure. We also examine how accurate

is the distribution characterized and tabulated by Rossi and Inoue

(2012) . Throughout, we assume that the sample split date τ falls

within the interval [ int (. 15 T ) , T − int (. 15 T )] . This choice reflects

our intention to compare this test procedure to the one described

by Rossi and Inoue (2012) , who do not tabulate critical values for

τ ∈ [ int (. 05 T ) , T − int (. 05 T )] . 

When studying the 21 predictors we use τ ∈ [ int (. 05 T ) , T −
int (. 05 T )] because (a) the predictor with the smallest sample size

has 548 observations and (b) traditional predictors such as the

dividend-to-price ratio have about 1020 observations available. We

consider int (. 05 × 548) = 27 to be a sufficient sample size for de-

riving an initial set of parameter estimates or reliable out-of-

sample averages. We remark that the Rossi and Inoue (2012) dis-

tributions being tabulated only for certain intervals renders their

method less attractive because an empiricist would be constrained

by those particular tabulations; our bootstrap method does not

suffer from that limitation. 

All our Monte Carlo experiments are calibrated to the moments

of the actual data. We start by estimating the systems in Eqs.

(2) and (3) for a given predictor (e.g., dividend/price). We estimate

the system parameters via ordinary least squares and then store

them. Let ˆ β0 , 
ˆ β1 , ˆ μ, ˆ ρ, Std ( ̂  u t ) , Std ( ̂  w t ) and Corr ( ̂  u t , ˆ w t ) be the

respective unrestricted estimates, including the parameters and the

residuals. Let ˜ β0 be the restricted estimate with β1 = 0 imposed

(i.e., the unconditional average of the equity premium). 

For each Monte Carlo round we initiate the recursion in Eq.

(3) by drawing with equal probability from the actual sample path

of X t and setting X m 

0 
equal to that value (here the superscript

m = 1 , 2 , . . . identifies the Monte Carlo round). Then we generate
 

m 

t = ˆ μ + ˆ ρX m 

t−1 
+ w 

m 

t for t = 1 , . . . , T . For each t we generate a bi-

ariate normal vector of true errors [ u m 

t , w 

m 

t ] that is serially inde-

endent and identically distributed (i.i.d.) and whose covariance

atrix is calibrated to have the same parameters as the covari-

nce matrix of the residual vector [ ̂  u t , ˆ w t ] . Thus Std ( ̂  u t ) = Std (u m 

t ) ,

td ( ̂  w t ) = Std (w 

m 

t ) , and Corr ( ̂  u t , ˆ w t ) = Corr (u m 

t , w 

m 

t ) . 

If we generate Monte Carlo data under the null hypothesis, then

 

m 

t = 

˜ β0 + u m 

t ; that is, the equity premium is just the sample’s av-

rage equity premium plus the error term. If we generate data un-

er the alternative hypothesis, then R m 

t = 

ˆ β0 + 

ˆ β1 X 
m 

t−1 
+ u m 

t . 

In this section our Monte Carlo experiments are calibrated to

he moments of Eqs. (2) and (3) , where the dividend-to-price ra-

io plays the role of X t . In particular, Corr (u m 

t , w 

m 

t ) = −0 . 9768 ,

td (u m 

t ) = . 0557 , Std (w 

m 

t ) = . 0565 , and ˆ ρ = . 9931 . Recall that, in

heory, the dividend-to-price ratio cannot be nonstationary in the

opulation ρ < 1. Since the price is simply the discounted sum of

uture dividends, it follows that the dividend-to-price ratio cannot

ust drift away (up or down) to infinity; the dividend and the price

eries must be co-integrated. Yet when Eqs. (2) and (3) are cali-

rated to the dividend/price ratio, their respective systems will—in

mall samples—be rather ill behaved and “nonstationary looking”.

erhaps it would be more accurate to say “in finite samples” given

hat T = 1020 is not really that small. 

In Experiment 1, we generate 300 Monte Carlo paths of

ength T = 1020 under the null hypothesis (of no return pre-

ictability) that R m 

t = . 0062 + u m 

t , X m 

t = −. 0240 + . 9931 X m 

t−1 
+ w 

m 

t ,

nd Corr (u m 

t , w 

m 

t ) = −0 . 9768 . Then, for each of those Monte Carlo

aths we carry out 300 bootstrap replications as described in

ection 2.4 . For each sample path and across the 300 replica-

ions we determine the 90th, 95th, and 99th percentiles—in the

ootstrap distribution generated under the null—of the statis-

ics mean τ { t ( MSPE − adj ) τ } and max τ { t ( MSPE − adj ) τ } . In other

ords, for each Monte Carlo path we repeat exactly the same boot-

trap procedure described in Section 2.4 and applied to the 21 pre-

ictors. 

Now, if the calculated max τ { t ( MSPE − adj ) τ } statistic for the

onte Carlo path is larger than the 90th percentile of the

ootstrap distribution of that statistic, then we record rejec-

ion at the 10% significance level. We proceed analogously for

he 5% and 1% significance levels and then proceed likewise for

ean τ { t ( MSPE − adj ) τ } . The number of Monte Carlo and bootstrap

eplications is fairly low because the computational burden quickly

ecomes an obstacle (recall that each calculation must be per-

ormed 300 × 300 times. We experimented with various numbers

f bootstrap replications (100, 190, 300, 999, 2999, 9999) and as-

embled the results as in Table 3 . Overall we find that more than

99 replications seldom yield non-negligible differences but that

ewer than 300 replications nearly always yield erratic results. The

deal scenario would involve performing 999 bootstrap replications

n 999 Monte Carlo paths rather than 300 by 300. 

Table 6 shows that our bootstrap tests are slightly oversized but

till fairly accurate. The mean test has better size than the maxi-

um test. At the 10% nominal significance level, the mean (resp.
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Table 6 

Panel A contains the Monte Carlo determined actual size of our mean and maximum tests at the stated significance level. For each of 300 Monte 

Carlo paths, sample size T = 1020 , the given statistic is calculated, say mean τ t . Then for this given Monte Carlo path 300 bootstrap replications are 

used to calculate, e.g., the 90th percentile of the mean τ t null bootstrap determined distribution. If the original mean τ t exceeds the 90th percentile 

of the bootstrap null distribution for this Monte Carlo path, the test rejects at the 10% significance level, and the average of this rejection indicator 

is calculated across the 300 Monte Carlo paths. Similar procedure is followed for the max statistic and for the other significance levels. Panel B: 

reports the average and the standard deviations of say 90th percentile in the null bootstrap distribution of the statistics across the 300 Monte Carlo 

rounds. Note that for each Monte Carlo round the 90th percentile of say the mean statistic is a number and only this number is used as a cut off

point to determine the rejection of the test. Panel B simply reports the average of these numbers across Monte Carlo rounds, in other words, the 

numbers in Panel B are not used to determine rejection in Panel A at this stage. τ ∈ [ int (. 15 T ) , T − int (. 15 T )] . 

Panel A Panel B 

Rejection rate at Bootstrap critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean τ t 11 .00% 6 .67% 1 .67% Mean (respective percentile) 1 .0060 1 .3650 2 .0200 

Standard deviation (respective percentile) 0 .1100 0 .1270 0 .2020 

Max τ t 13 .67% 8 .00% 2 .67% Mean (respective percentile) 2 .1320 2 .5010 3 .1560 

Standard deviation (respective percentile) 0 .1510 0 .1650 0 .2100 

Table 7 

Panel C contains the Monte Carlo determined actual size of our mean and maximum tests, and of the mean L and max L tests of Rossi 

and Inoue (2012) at the stated significance level. For each of 10,0 0 0 Monte Carlo paths of size T = 1020 the given statistic is calculated, 

say mean L ( Rossi and Inoue, 2012 , eq.(11) p. 436) and max L ( Rossi and Inoue, 2012 , eq.(10) p.436). Then for this given Monte Carlo 

path the calculated statistic is compared to the respective percentile of the null distribution. If the original statistic exceeds the 90th 

percentile of the null distribution for this Monte Carlo path, the test rejects at 10% significance level, and the average of this rejection 

indicator is calculated across the 10,0 0 0 Monte Carlo paths. For the mean L and max L tests the critical values of the null distribution 

are taken from ( Rossi and Inoue, 2012 , Table 2(b) p.438). For mean τ t and max τ t the critical values are taken from Experiment 1, 

Table 6 Panel B mean(respective percentile). Panel D: repeats the average of say 90th percentile in the null bootstrap distribution of 

the statistics across the 300 Monte Carlo rounds in Experiment 1, and this average percentile is used as a critical value in all of the 

10,0 0 0 Monte Carlo rounds here. τ ∈ [ int (. 15 T ) , T − int (. 15 T )] . 

Panel C Panel D 

Rejection rate at Theoretical critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean L 16 .60% 9 .81% 2 .76% Mean L 0 .8620 1 .4560 2 .8620 

Max L 21 .39% 13 .25% 4 .23% Max L 2 .0430 3 .0640 5 .6200 

Rejection rate at Bootstrap critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean τ t 11 .12% 5 .52% 1 .07% Mean (respective percentile) 1 .0060 1 .3650 2 .0200 

Max τ t 12 .40% 6 .42% 1 .35% Mean (respective percentile) 2 .1320 2 .5010 3 .1560 
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9 Rossi and Inoue (2012) characterize the distributions of mean L and max L 

statistics and then tabulate those distributions in their Table 2 (b) for the case of 

a recursive forecasting scheme. The Monte Carlo experiments that we conduct, e.g., 

panel C of Table 7 , indicate that the distribution tabulated by Rossi and Inoue is a 

poor approximation for asset pricing applications. A high autoregressive parameter 

of the predictor (e.g., ρ > .9) shifts the distributions of mean L and max L sharply 

to the right, even for large sample sizes such as 1020 time-series observations. The 

problem is even worse for combinations where ρ is close to unity and the absolute 

value of Corr (u m t , w 

m 
t ) is high. Yet in asset pricing applications, ρ near 1 and large 

Corr (u m t , w 

m 
t ) are more the rule than the exception. All traditional predictors (divi- 

dend/price, dividend yield, book/market, earnings/price, etc.) have such time-series 

properties. 
ax) test’s actual size is 11% (resp. 13.67%). At the 5% nominal

ignificance level, the mean (resp. max) test’s actual size is 6.67%

resp. 8.00%). 

In Experiment 2 (under the null hypothesis of no return pre-

ictability) we generate 10,0 0 0 Monte Carlo paths in the same way

s in Experiment 1 but independent of the paths in that previous

xperiment. Here, however, we do not generate the bootstrap dis-

ributions for each Monte Carlo round and instead simply use as

ritical values the averages reported in panel B of Table 6 . For ex-

mple, from Experiment 1 we have the 90th percentile (a num-

er) of the bootstrap distribution of (say) mean τ { t ( MSPE − adj ) τ }
or each of the 300 Monte Carlo rounds. We take the average

f these 300 numbers (1.0060) and report that value in panel B

f Table 6 and also in panel D of Table 7 . Then, for each of

he 10,0 0 0 Monte Carlo rounds, we reject the null hypothesis

f Experiment 2 (at the 10% significance level) if the calculated

ean τ { t ( MSPE − adj ) τ } statistic exceeds 1.0060. Finally, the rejec-

ion rate is the average number of rejections across the 10,0 0 0

aths. 

Table 7 shows that the size of our bootstrap tests is close to the

ominal significance level. In particular, that size is more accurate

han in Table 6 ; this result suggests that the oversized Table 6 tests

ere due in part to an insufficient number of Monte Carlo and

ootstrap replications. Here again, our mean bootstrap test has bet-

er size than our maximum test. At the 5% nominal significance

evel, the mean (resp. max) bootstrap test’s actual size is 5.52%

resp. 6.42%); at the 1% nominal significance level, the mean (resp.

ax) test’s actual size is 1.07% (resp. 1.35%). 

In Table 7 we can also see that the tests proposed by Rossi

nd Inoue (2012) are grossly oversized and perform worse than
ur tests. For example: at the 5% nominal significance level, their

ean L test ( Rossi and Inoue, 2012 , eq. (11)) has actual size of

.81% and their max L test ( Rossi and Inoue, 2012 , eq. (10)) has

ctual size of 13.25%; at the 1% nominal significance level the cor-

esponding values are 2.76% and (respectively) 4.23%. 9 

In Experiment 3, we generate 300 Monte Carlo paths of length

 = 1020 under the alternative hypothesis (of return predictabil-

ty) that R m 

t = . 0353 + . 0087 X m 

t−1 
+ u m 

t calibrated to the sample OLS

stimates for the dividend-to-price ratio, where X m 

t = −. 0240 +
 9931 X m 

t−1 
+ w 

m 

t and Corr (u m 

t , w 

m 

t ) = −0 . 9768 . Then we repeat the

rocedure from Experiment 1. Experiment 3 establishes that our

ests are consistent in that they do reject the incorrect null hypoth-

sis. The rejection rates in Table 8 are equivalent to the empirical

ower of our test under the alternative hypothesis that β1 = . 0087 .

In Experiment 4, we generate 10,0 0 0 Monte Carlo paths of

ength T = 1020 under the alternative hypothesis (of return pre-

ictability) that R m 

t = . 0353 + . 0087 X m 

t−1 
+ u m 

t before repeating the

rocedure from Experiment 2. Experiment 4 also confirms that our
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Table 8 

Description of Table 6 applies with the only difference being that the Monte Carlo paths of size T = 1020 here are generated under the alternative 

hypothesis: R m t = . 0353 + . 0087 X m t−1 + u m t . Notice that if the test procedure is consistent it must reject the incorrect null hypothesis. 

Panel A Panel B 

Rejection rate at Bootstrap critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean τ t 84 .67% 66 .67% 24 .00% Mean (respective percentile) 1 .0020 1 .3600 2 .0100 

Standard deviation (respective percentile) 0 .1120 0 .1370 0 .1980 

Max τ t 77 .67% 59 .00% 22 .67% Mean (respective percentile) 2 .1210 2 .4950 3 .1700 

Standard deviation (respective percentile) 0 .1600 0 .1630 0 .2130 

Table 9 

Description of Table 7 applies with the only difference being that the Monte Carlo paths of size T = 1020 here are generated under the alternative 

hypothesis: R m t = . 0353 + . 0087 X m t−1 + u m t . Notice that if the test procedure is consistent it must reject the incorrect null hypothesis. 

Panel C Panel D 

Rejection rate at Theoretical critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean L 98 .27% 93 .39% 62 .61% Mean L 0 .8620 1 .4560 2 .8620 

Max L 99 .05% 94 .26% 63 .71% Max L 2 .0430 3 .0640 5 .6200 

Bootstrap 

Rejection rate at Bootstrap critical values 

significance level 10% 5% 1% 90 percentile 95 percentile 99 percentile 

Mean τ t 86 .71% 66 .46% 21 .92% Mean (respective percentile) 1 .0060 1 .3650 2 .0200 

Standard deviation (respective percentile) 0 .1100 0 .1270 0 .2020 

Max τ t 79 .37% 58 .20% 20 .00% Mean (respective percentile) 2 .1320 2 .5010 3 .1560 

Standard deviation (respective percentile) 0 .1510 0 .1650 0 .2100 
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tests are consistent. The mean L and max L tests of Rossi and In-

oue (2012) appear to have greater power; yet because their tests

are considerably oversized as seen in Table 7 , such a comparison

is misleading. One can easily construct a test with 100% power: if

one calculates any test statistic but rejects all resulting values, then

that test’s power will always be 100%. 

5. Conclusion 

The recent literature on equity premium predictability has fo-

cused on out-of-sample evaluation methods. These methods re-

quire the researcher to choose a sample split date that divides

the data into an in-sample estimation period and an out-of-sample

evaluation period. Because the sample split date is always treated

as a priori given, reported out-of-sample predictability results are

germane only to the particular date used by the researcher. 

In this paper we document that conclusions about predictability

in this context are strongly dependent on the choice of a sample

split date. In fact, this dependence is so prevailing that—with re-

spect to proven in-sample equity premium predictors—a researcher

may derive evidence supporting (or refuting) predictability simply

by adjusting the sample split date. Hence there are many sample

splits indicating strong out-of-sample predictability but also many

other splits that indicate no evidence of such predictability. 

We describe two ways of addressing this unfortunate state of

affairs. The firs t approach is simply to plot (graph) the out-of-

sample predictability results for every possible sample split. In this

paper we plot the (bootstrap-determined) p -value of the MSPE-adj

statistic, as well as the out-of-sample R-squared, against each pos-

sible sample split date τ ∈ [ int (. 05 T ) , T − int (. 05 T )] , where T is

the total number of observations. 

The second approach is to calculate the maximum and the

mean of the set of the t -statistics associated with the MSPE-adj

for each possible sample split. We let t ( MSPE − adj ) τ denote the

t -statistic associated with the MSPE-adj, and we take both the

maximum and the mean of that term calculated across each pos-

sible sample split date τ . We determine the null distribution of

the mean and the maximum statistics via a bootstrap procedure

that imposes the null hypothesis of no predictability. In this sec-

ond approach we distill the complete set of t ( MSPE − adj ) τ values
or each τ ∈ [ int (. 05 T ) , T − int (. 05 T )] into two numbers: the mean

nd the maximum of the set. In this way we produce two tests of

ut-of-sample predictability—one each based on the mean and the

aximum—that are invariant to the choice of a sample split date.

e also provide Monte Carlo evidence that our bootstrap approach

o inference is valid. 

Each of these proposed approaches has advantages. The graph-

cal approach transmits all the relevant information on out-of-

ample performance, and the human eye can absorb this informa-

ion quickly. The second approach yields a general test of out-of-

ample predicability that has the advantage of being easily com-

ared to the test of in-sample predictability. 

We apply each approach to a comprehensive set of 21 eq-

ity premium predictors. We find occasionally impressive out-of-

ample predictability for most of the traditional variables. That is

o say, many investors making decisions in real time could have

enefitted from forecasts given by traditional predictors on an out-

f-sample basis. We find that results from the in-sample test of

redictability agree, by and large, with our two proposed out-of-

ample tests—which are invariant to the sample split date. Finally,

e extend these results by demonstrating how to construct out-of-

ample tests of predictability that are not only sample split invari-

nt but also robust to data mining. 

The most important conclusions to be drawn from this work

an be summarized as follows. On the one hand, there are widely

arying results reported for out-of-sample predictability tests that

iffer only in the chosen sample split date. On the other hand,

here are but minor disagreements between in-sample predictabil-

ty test results and results from our proposed (mean and maxi-

um) sample split–invariant out-of-sample predictability tests. All

hree of these tests tell the same story about predictability: when

plit-invariant tests are used, the equity premium is well forecast

y only few traditional predictors on an out-of-sample basis. 
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