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Introduction. Blood pressure (BP) has been a potential risk factor for cardiovascular diseases. BP measurement is one of the most
useful parameters for early diagnosis, prevention, and treatment of cardiovascular diseases. At present, BP measurement mainly
relies on cuff-based techniques that cause inconvenience and discomfort to users. Although some of the present prototype cuffless
BP measurement techniques are able to reach overall acceptable accuracies, they require an electrocardiogram (ECG) and
a photoplethysmograph (PPG) that make them unsuitable for true wearable applications. -erefore, developing a single PPG-
based cuffless BP estimation algorithmwith enough accuracy would be clinically and practically useful.Methods.-eUniversity of
Queensland vital sign dataset (online database) was accessed to extract raw PPG signals and its corresponding reference BPs
(systolic BP and diastolic BP).-e online database consisted of PPG waveforms of 32 cases from whom 8133 (good quality) signal
segments (5 s for each) were extracted, preprocessed, and normalised in both width and amplitude. -ree most significant pulse
features (pulse area, pulse rising time, and width 25%) with their corresponding reference BPs were used to train and test three
machine learning algorithms (regression tree, multiple linear regression (MLR), and support vector machine (SVM)). A 10-fold
cross-validation was applied to obtain overall BP estimation accuracy, separately for the three machine learning algorithms. -eir
estimation accuracies were further analysed separately for three clinical BP categories (normotensive, hypertensive, and hy-
potensive). Finally, they were compared with the ISO standard for noninvasive BP device validation (average difference no greater
than 5mmHg and SD no greater than 8mmHg). Results. In terms of overall estimation accuracy, the regression tree achieved the
best overall accuracy for SBP (mean and SD of difference: −0.1± 6.5mmHg) and DBP (mean and SD of difference: −0.6±
5.2mmHg). MLR and SVM achieved the overall mean difference less than 5mmHg for both SBP and DBP, but their SD of
difference was >8mmHg. Regarding the estimation accuracy in each BP categories, only the regression tree achieved acceptable
ISO standard for SBP (−1.1± 5.7mmHg) and DBP (−0.03± 5.6mmHg) in the normotensive category. MLR and SVM did not
achieve acceptable accuracies in any BP categories. Conclusion. -is study developed and compared three machine learning
algorithms to estimate BPs using PPG only and revealed that the regression tree algorithm was the best approach with overall
acceptable accuracy to ISO standard for BP device validation. Furthermore, this study demonstrated that the regression tree
algorithm achieved acceptable measurement accuracy only in the normotensive category, suggesting that future algorithm
development for BP estimation should be more specific for different BP categories.

1. Introduction

Blood pressure (BP) is one of the main risk factors for car-
diovascular diseases. Abnormal BP has been a potent issue
that causes strokes, heart attacks, and kidney failure [1]. At
present, cuff-based BPmeasurement devices have been widely
used in hospital settings to detect abnormal BP [2]. However,
they are not convenient and comfortable for the users.

In the past few years, various research groups have
attempted numerous techniques in order to achieve cuffless
BP measurement. -e key measuring principle for cuffless BP
estimation is based upon the time taken by a pulse from the
heart to the finger.-ey are known as pulse transit time (PTT)
or pulse arrival time (PAT) [3–10]. Other researchers used
vascular transit time (VTT) which was calculated from the
time difference between photoplethysmograph (PPG)
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measured at the fingertip and phonocardiograph measured at
the chest [11]. Cuffless BPs were also measured using the
tonometry technique based on the information from multiple
pressure sensors on the radial artery tree [6, 12]. Another
group of researchers introduced the cuffless BP measurement
technique using modified normalised pulse volume and heart
rate [13]. Multiple magnetic sensors have also been used to
measure pulse wave velocity (PWV) for the estimation of
cuffless BP [14]. Although some of the cuffless BP devices
achieved overall acceptable accuracies, the above mentioned
algorithms required at least two sensors [15], making them
unsuitable for true wearable applications. -erefore, de-
veloping a single PPG-based cuffless BP estimation algorithm
with enough accuracy would be clinically and practically
useful.

Recently, machine learning algorithms, including support
vector machine (SVM), multiple linear regression (MLR), and
neural networks algorithms, have been used to estimate
cuffless BP. Zhang and Feng applied the SVM algorithm to
waveform features that were extracted from PPG signal
segments collected from the University of Queensland Vital
Signs dataset [16]. Nevertheless, their study only achieved the
SBP and DBP measurement accuracies of 11.6± 8.2mmHg
and 7.6± 6.7mmHg [16]. Kawanaka et al. tested MLR al-
gorithm with their own collected dataset. -eir training data
included old individuals while testing datasets gathered from
young individuals [17]. Visvanathan et al. also used PPG
signal features with both linear regression and SVM algo-
rithms to estimate cuffless BP [18]. However, these studies
failed to meet ISO noninvasive BP device accuracy (average
difference no greater than 5mmHg and SD no greater than
8mmHg). Other researchers also developed a cuffless BP
measurement device with acceptable accuracy in terms of
mean difference (3.8mmHg for SBP and 4.6mmHg for DBP)
accuracy, but unfortunately, their measurement techniques
have not been described in detail [19]. Furthermore, in all the
published studies, the measurement accuracies have not been
evaluated specifically in different clinical BP categories
(normotensive, hypertensive, and hypotensive).

-is research aimed to develop and compare three ma-
chine learning algorithms (regression tree,MLR, and SVM) to
estimate BPs only using pulse waveform features derived from
good quality PPG signals. In addition, their estimation ac-
curacy would be evaluated for three different clinical BP
categories (normotensive, hypertensive, and hypotensive).

2. Methods

-e overall flow diagram of the proposed research meth-
odology is presented in Figure 1, which is summarised in the
following steps:

(1) Extract PPG signal segments and reference BPs (SBP
and DBP). Only the acceptable quality of 5 s data
segments was saved.

(2) Preprocess PPG signal segments, including baseline
removal and PPG pulse waveform normalization.

(3) Derive waveform features from preprocessed PPG
signal segments.

(4) Train and test with 10-fold cross-validation of three
different machine learning algorithms to compare
the overall estimation accuracy.

(5) Evaluate estimation accuracy of the three machine
learning algorithms specifically for each BP category.

2.1. Online Database. -e University of Queensland vital
signs dataset (accessed on February 2017) was used in this
study. -e dataset was recorded from 32 cases in Royal
Adelaide Hospital using Phillips IntelliVue MP70 and MP30
with the sampling rate of 100Hz. -e signal length from
each case ranged from 13 minutes to 5 hours. Raw PPG
signal waveforms with their corresponding noninvasive BP
(NIBP) data were extracted [20]. -e length of each
extracted segment was 5 seconds. During data segmentation,
a manual check was performed to avoid unacceptable quality
of the PPG signal with the movement artefact and to exclude
the segments without corresponding reference SBP and DBP
data. -e manual check was performed to ensure our ma-
chine learning models being developed did not have any
interference of bad signals, allowing the BP results from
different machine learning approaches to be more compa-
rable. -e number of unacceptable signal segments and the
segments without reference SBP and DBP data were 9772
and 5572. Figure 2 illustrates some examples of bad quality
PPG segments.

Raw PPG segment

Reference

SBP and DBP

Pre-processing

Feature extraction

Estimated SBP

Input signal & reference BPs

Three different machine
learning algorithms

(10-fold cross-validation)

Estimated DBP

Categorical evaluation of
algorithms

Figure 1: Flow diagram of research methodology.
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In total, as given in Table 1, 8133 signal segments of both
good quality PPG and reference NIBP data were collected
from the online database of 23617 signal segments. Next,
each of the good quality segments was grouped into three
different BP categories according to their reference BPs and
the BP classification chart, as shown in Figure 3(a). -e
normotensive category included 6482 segments which were
about 80% of the total good quality segments.-e remaining
hypertensive and hypotensive categories contained 1015
(12%) and 636 (8%), respectively, as shown in Figure 3(b).
Since the BPs varied during the long period of recording,
each case included variable BP segments under different BP
categories, as shown in Table 1.

2.2. PPG Signal Preprocessing. Each PPG segment was firstly
processed with a 4th order and 19 frame length Savitzky–
Golay filter. -is filter is a moving average filter to smooth
the PPG signal. It was selected due to the advantage of sharp
edge preservation [21]. Baseline wandering caused by the
respiratory activity was also removed from the segments.
-e 2-dimensional normalization (in both width and am-
plitude) was then performed. Figure 4 shows how a raw PPG
segment is transformed to a normalised pulse. Since the
reference NIBP was constant during the 5-second period of
the segment, no further preprocessing of reference NIBP was
required.

2.3. Features Extraction and Selection. Five different wave-
form features were initially extracted from each of the
preprocessed PPG segments, which consisted of pulse area,
pulse rising time, width 25%, width 50%, and width 75%.-e
“pulse area” feature of the PPG segment reflects the vascular
tone changes [22]. Pulse rising time is associated with BP
changes. It has been reported that it appeared earlier in
younger than in older individuals [23]. Sinha et al. included
this important feature in their algorithm to estimate cuffless
BP [18]. -e PPG pulse widths are associated with the
systemic vascular resistance [24].

To select the most significant features, the multi-
collinearity test was applied in this study. -e presence of
multicollinearity among the predictor variables affects the
generalizability of the algorithm, causing a high estimated
mean square error of the algorithm. Variance inflation factor
(VIF) as an important diagnostic tool for multicollinearity
among predictors, was used to determine the presence of
collinearity among predictors [25]. If VIF of a predictor is
larger than 10, it indicates that the predictor is highly col-
linear with another predictor. -e most significant features
were identified with the multicollinearity test on the basis of
their VIF. After the multicollinearity, width_50% and
width_75% were eliminated from the training dataset due to
their VIF> 10.

2.4. Machine Learning Algorithms to Estimate BPs. -e
training and testing dataset consisted of three most signif-
icant PPG waveform features (pulse area, pulse rising time,
and Width_25%) from each of the 8133 PPG segments and
their corresponding reference BPs (SBP and DBP). Due to
the continuous nature of data, three commonly used
regression-based machine learning algorithms were applied
in this study as follows.

2.4.1. Multiple Linear Regression (MLR). MLR is a type of
the machine learning algorithm that has been widely used
by previous researchers to estimate cuffless BP [3, 7, 26].
-e algorithm started with the random selection of co-
efficients of the linear algorithm (θ0, θ1, θ2, and θ3). Each
predictor was associated with a coefficient as shown in
a virtual box in Figure 5(a). After each iteration, the co-
efficients and random error (ε, the difference between the
estimated and reference BP) were updated. -e least square
algorithm was used to minimize the squared error as shown
in Equation (1). Iterative minimization of the squared error
continued until it converged when BP estimation was
generated:
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Figure 2: Examples of the bad quality PPG signal segments that cannot be processed and used to extract their waveform features.
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Table 1: -e number of segments for each BP categorical groups, separately for each case.

Case Normotensive Hypertensive Hypotensive Bad quality signals Without reference BPs Total
Case 1 581 — 64 419 376 1440
Case 2 12 — 14 166 — 192
Case 3 1099 — 50 1400 1051 3600
Case 4 496 — — 649 295 1440
Case 5 50 32 — 352 1726 2160
Case 6 357 56 69 158 80 720
Case 7 128 — 56 289 247 720
Case 8 248 — — 296 152 696
Case 9 465 — — 178 77 720
Case 10 44 1 — 195 — 240
Case 11 395 51 71 203 — 720
Case 12 312 — 392 468 268 1440
Case 13 324 — 8 223 165 720
Case 14 — — 61 95 — 156
Case 15 — — 12 158 — 170
Case 16 — — 46 86 28 160
Case 17 65 — 4 70 27 166
Case 18 81 — — 81 — 162
Case 19 40 15 — 84 20 159
Case 20 286 3 11 256 164 720
Case 21 101 0 59 119 81 360
Case 22 56 52 11 167 74 360
Case 23 22 76 — 226 — 324
Case 24 20 — — 160 — 180
Case 25 101 57 19 468 75 720
Case 26 152 21 7 367 173 720
Case 27 98 — — 388 101 720
Case 28 231 — — 403 79 720
Case 29 211 — 27 480 — 720
Case 30 48 — — 84 — 132
Case 31 315 72 34 798 221 1440
Case 32 144 200 — 286 90 720
Total 6482 636 1015 9772 5570 23617
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Figure 3: (a) BP classification chart to define the three BP categories and (b) categorical distribution of reference BPs of good quality PPGs
in the database.
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where m � total number of training data (90% of 8133),
ε� random error, θ0–3 � coefficients, h(x) � estimated BP,
and y � reference BP.

2.4.2. Support Vector Machine (SVM). SVM is a non-
parametric algorithm that uses kernel function. SVM re-
gression has a similar goal as in the least square method of
MLR to minimize the error function (squared error be-
tween the estimated and reference BP). However, its ap-
proach for minimizing the function is different with MLR
as it uses epsilon (ε), and the goal is to find a function

whose error was no greater than ε. In this study, linear
epsilon SVM (ε-SVM) regression which is also called L1 loss
was implemented. ε-SVM has two boundaries across the
hyperplane (regression line), as shown in the line across
hyperplane in Figure 5(b). However, in reality, not all re-
siduals were laid in epsilon boundary. -erefore, slack var-
iables (another boundary) were introduced to cover all the
remaining residuals, as shown in a dashed line across hy-
perplane in Figure 5(b). Slack variables were added to make
a dual objective. Each iteration updated the vectors existing in
a dual objective, and the equation was analytically solved by
Lagrangian function.

In SVM, the convergence criteria were based on the
following equation:

Δ �
J(β) + L(α)

J(β) + 1
, (2)

where J(β) is called the primal objective. L(α) is a dual
objective that was solved by the Lagrangian function. -e
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Figure 4: Illustration of preprocessing of raw PPG signals to normalised pulses and demonstration of extracted waveform features. (a) -e
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segment with extracted features indicated by alphabets (A� pulse area, B� pulse rising time, C�width_75%, D�width_50%, and
E�width_25%).
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goal was to minimize the Lagrangian function to get BP
estimations. Δ represents the feasibility gap. To converge the
algorithm, feasibility gap should be less than the gap tol-
erance [27].

2.4.3. Regression Tree. Regression tree algorithm is another
nonparametric machine learning approach for making
predictions. It is a relatively fast algorithm to train the data as
compared to the SVM algorithm. It carries decisions from
the root nodes to the leaf nodes. Regression trees are the
binary trees, and the leaf that contains responses is in nu-
meric form [28]. It splits the data with the best optimization
criteria (that subject to tree depth (α); minimum leaf size (β))
on each predictor (pulse area, pulse rising time, and
width_25%). Criterion for stopping the split to make a pure
node based on the mean square error (MSE) is shown as
follows:

MSE(observed response)

<MSE(observed response from all data) × tolerance.
(3)

A pure node indicates that the MSE of the observed
response is less than the MSE of the observed response
from all the data multiplied by the tolerance [28]. For
optimization, the algorithm splits the branches of trees to
minimize the prediction error as shown in Figure 5(c).

2.4. TenfoldCross-Validation. In total, 8131 × 3 good quality
PPG signal features and reference BPs were used to train
and test the above three machine learning algorithms with
10-fold cross-validation. In each iteration, 9 folds were
used to train an algorithm, and the remaining fold was
used to test that algorithm. -e process continued until
10 iterations were completed. In the end, there was one
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Figure 5: (a) Simplified flow diagrams of MLR in which coefficients and the random error were updated in each iteration to converge the
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nodes. Each node (small black colour-filled circles) contains an estimation result.

6 Journal of Healthcare Engineering



estimated SBP and one DBP for each of the 8133 signal
segments.

2.5.DataAnalysis toEvaluateOverallMeasurementAccuracy.
-e three machine learning algorithms (regression tree,
MLR, and SVM) were firstly evaluated in terms of overall BP
estimation accuracy. After the 10-fold cross-validation of all
available segments, each segment contained reference BPs
(mmHg), estimated BPs (mmHg), and the difference
(mmHg) between reference and estimated BP.

-e averaged BPs (including both reference and estimated
BPs) were calculated for each case based on all the available
segments in that case.-e final mean and SD of estimated BPs
were then calculated for all 32 cases as an overall estimation
for SBP and DBP, separately for the three machine learning
algorithms. -ey were then compared with their reference
BPs in each case to obtain overall estimation accuracy (mean
difference and SD of difference).

2.6. DataAnalysis to EvaluateMeasurementAccuracy in Each
BP Category. For the categorical evaluation, the estimated
BPs for each of the available PPG segments in each case were
separated into three groups according to their reference BP
category (normotensive, hypertensive, and hypotensive).
For each case, the averaged BPs were then calculated from all
the available segments under each category, which were used
to obtain overall BPs across all the 32 cases, separately for
each BP category. Finally, the mean difference and SD of
difference between the reference and estimated BPs were
calculated for each BP category and plotted using the Bland-
Altman method.

3. Results

3.1. Comparison of Overall BP Measurement Accuracy.
-e overall BP measurement accuracy, as shown in
Figures (6(a) and 6(b)) and Table 2, showed that the re-
gression tree achieved the smallest mean difference of SBP
(−0.1mmHg between reference and estimated SBP) and SD of
difference (6.5mmHg) when compared with the MLR and
SVM algorithms. Similarly, the regression tree achieved an
acceptable mean difference (−0.6mmHg between reference
and estimated SBP) and SD of difference (5.2mmHg) for
DBP. It was also observed that only the regression treemethod
achieved overall acceptable accuracy to ISO standard for NIBP
device validation with an average difference no greater than
5mmHg and SDno greater than 8mmHg. Figures (6(c)–6(h))
shows the Bland–Altman plots between the reference and
estimated BPs from the three machine learning algorithms.

3.2. BP Measurement Accuracy under Each BP Category.
-e estimation accuracies of the three machine learning
algorithms under each BP category are presented in Figure 7.
It can be seen that only the regression tree achieved ac-
ceptable accuracy to meet the ISO standard for device
evaluation, and it was only observed in normotensive BP
category. Its mean differences and SDs of difference for SBP

and DBP were −1.1± 5.7mmHg and −0.3± 5.6mmHg. -e
detailed results from the regression tree for each BP category
are presented in Tables 3 and 4. It can be seen that the
regression tree algorithm produced higher mean differences
and SD of difference under both hypertensive and hypo-
tensive BP categories in comparison with normotensive
category. It was also observed that, although the mean
differences for the MLR and SVM algorithms were ac-
ceptable in the normotensive category, they did not achieve
an acceptable ISO standard for device evaluation in terms of
SD of difference, as shown in Figure 7.

4. Discussion

In this study, the overall BP estimation accuracy from three
supervised machine learning algorithms (regression tree,
MLR, and SVM)was compared to determine which algorithm
was better to estimate cuffless BPs using PPG signals only. To
prevent the selection of an overfitted algorithm, the 10-fold
cross-validation was used to test the overall measurement
accuracy of the algorithms. -e results showed that the re-
gression tree achieved better overall accuracy in terms of
mean and SD of BP difference as required by the ISO [29].

Researchers have attempted to develop the MLR algo-
rithm for PTT-based cuffless BP estimation [7, 30]. Although
the MLR algorithm in those studies achieved acceptable
measurement accuracy, their research was still susceptible to
the practical issues with two sensors for the measurement.
Measurements from multiple wearable sensors could cause
restricted movement and discomfort to the users [31].
Another group also used theMLR algorithm with tonometry
for the estimation of cuffless BP, and they succeeded to pass
the ISO requirement [12], butMLR is sensitive to the outliers
as shown in Figure 6(e), suggesting that MLR is probably not
an ideal algorithm for BP estimation [32]. In this study, SD
of BP difference was higher than the requirement of no more
than 8mmHg, and this was partially due to the presence of
outliers.

-e SVM algorithm has been used to estimate cuffless BP
using heart sound signals, where acceptable BP measure-
ment accuracy was achieved [33]. Similarly, in our study, the
SVM algorithm was applied to PPG signal features to es-
timate cuffless BP. However, the SVM algorithm did not
achieve acceptable accuracy with high SD of BP difference.
-e performance of the SVM algorithm is mostly based on
the selection of the kernel. -ree different kernels (linear,
Gaussian, and polynomial) have been widely used [34]. In
this study, the linear kernel was used to get the estimation
output because the selected signal features and their cor-
responding BPs were in linear relationships. Zhang and Feng
used the same database (University of Queensland) but with
different PPG signal features to test three machine learning
algorithms (MLR, neural network, and SVM). In their study,
SVM achieved best measurement accuracy for SBP (11.6±
8.2mmHg) and DBP (7.6± 6.7mmHg), which were not up
to the ISO standard [16]. -erefore, there is a need to better
understand the potential reasons to improve the algorithm
development.

Journal of Healthcare Engineering 7



Regression tree algorithm is robust to the noisy data and
able to make a better-fitted algorithm for discrete target data
[28]. Researchers used the regression tree algorithm for
PTT-based cuffless BP estimation and achieved acceptable
results [35]. In this study, the regression tree algorithm was
among the best algorithm for BP estimation. -e possible
reason behind the success of regression tree is their non-
vulnerability to the outliers. Another strong characteristic of

this algorithm is that it also produces a well-fitted algorithm
in the presence of slight nonlinearity within the data [28].

Most importantly, this study further analysed the esti-
mation accuracy of the three machine learning algorithms
under different BP categories (normotensive, hypertensive, and
hypotensive) and found that most of the algorithms exhibited
better accuracy in the normotensive category. Previous re-
search only presented overall BP accuracies (overall mean of
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Figure 6: (a, b) Overall BP measurement accuracy from the 10-fold cross-validation, separately for the three machine learning algorithms;
(c–h) Bland–Altman plots for the BPs estimated from the regression tree, MLR, and SVM. (c), (e), and (g) are for SBP, and (d), (f ), and (h)
are for DBP. MLR, multiple linear regression; SVM, support vector machine.
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Table 2: Estimated BPs (SBP and DBP) from the regression tree with their corresponding reference BPs and their difference. -e results are
given separately for each case.

Case
SBP (mmHg) DBP (mmHg)

Reference BP Estimated BP Difference Reference BP Estimated BP Difference
1 96.8 97.1 −0.3 49.1 49.1 0.0
2 102.1 112.0 −9.9 43.2 64.7 −21.5
3 98.7 100.7 −1.9 53.1 53.1 0.0
4 107.5 108.1 −0.6 58.2 58.6 −0.3
5 139.6 135.7 4.0 71.8 69.3 2.5
6 112.3 108.3 4.1 58.4 56.7 1.7
7 91.5 96.3 −4.8 44.4 46.8 −2.5
8 103.6 105.3 −1.8 52.1 53.1 −1.0
9 103.0 100.7 2.4 46.0 46.0 −0.1
10 118.4 107.1 11.3 51.8 50.5 1.3
11 109.9 111.0 −1.1 67.4 66.0 1.4
12 89.6 93.5 −3.9 53.0 53.2 −0.2
13 101.2 101.8 −0.6 64.4 61.5 2.9
14 84.8 86.9 −2.1 56.7 56.4 0.3
15 84.5 87.6 −3.1 49.6 52.4 −2.8
16 85.0 86.6 −1.6 56.2 57.3 −1.1
17 92.9 105.1 −12.1 57.5 59.4 −1.9
18 113.6 117.7 −4.1 59.3 62.6 −3.2
19 116.9 116.3 0.6 58.1 63.9 −5.8
20 115.2 115.7 −0.6 59.8 62.8 −3.0
21 94.4 103.0 −8.6 45.4 51.2 −5.7
22 128.3 117.7 10.7 59.7 60.1 −0.4
23 148.4 132.4 16.1 80.5 71.1 9.4
24 95.0 100.0 −5.0 61.4 70.1 −8.7
25 124.2 123.1 1.0 65.8 63.6 2.1
26 121.3 116.1 5.2 59.0 60.5 −1.6
27 124.0 118.6 5.4 71.1 68.2 2.8
28 108.3 115.0 −6.7 59.6 62.4 −2.8
29 103.2 101.6 1.6 61.3 60.3 1.0
30 108.0 118.3 −10.3 71.1 63.3 7.8
31 118.0 118.7 −0.7 72.3 69.8 2.5
32 147.2 135.1 12.0 77.4 71.6 5.8
Mean 108.9 109.1 −0.1 59.2 59.8 −0.6
SD 16.8 12.8 6.5 9.4 7.2 5.2
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Figure 7: BP estimation accuracy under each BP category, separately for the three machine learning algorithms (regression tree, MLR, and
SVM). -e data are presented with mean BP difference± SD of BP difference. MLR, multiple linear regression; SVM, support vector
machine.

Journal of Healthcare Engineering 9



difference± SD of difference) rather than individual categorical
BP accuracies [3, 9, 36]. Some studies only included normo-
tensive subjects [10, 17, 37]. In our study, regression tree was
found with higher mean BP difference and SD of difference in
hypertensive and hypotensive categories in comparison with
the normotensive group. -is could be caused by the low
amount of data within the hypertensive and hypotensive
categories of the online database. To make an accurate algo-
rithm for each BP category, it is therefore suggested that the
specific algorithm approach for different BP categories should
be considered in a future study.

-is study has some limitations. Firstly, manual check to
determine the quality of PPG signal segments is not practical
in real scenario.-e development of advanced preprocessing
algorithms to automatically determine signal quality is
important. It is also worth investigating the effect of noise on
the estimation accuracy of machine learning models. Sec-
ondly, the training and test of the three machine learning
algorithms were limited to the database of the University of
Queensland. It would be useful to test the algorithms in
a new database. -irdly, due to the lack of the basic clinical

variables (e.g., BMI, gender, weight, and height) in the
dataset, these variables were not included to train the ma-
chine learning algorithms, which may improve the mea-
surement accuracy of some of the algorithms [12]. Finally,
the BP estimation was performed on the basis of each
segment and only noninvasive intermittent BPs were
available to be used as reference BPs to train the algorithms.
In a future study, using continuous BP as reference BPs may
improve the algorithms, allowing beat-to-beat BP
estimation.

5. Conclusions

-is study developed and compared three machine learning
algorithms to estimate BPs using PPG only and revealed that
the regression tree algorithm was the best approach with
overall acceptable measurement accuracy to the ISO stan-
dard for device validation. Furthermore, this study dem-
onstrated that the regression tree algorithm achieved
acceptable measurement accuracy only in the normotensive
category, suggesting that the future algorithm development

Table 3: Estimated SBP from the regression tree for each individual case under the three categories and its difference with reference SBP.

Case
Normotensive Hypertensive Normotensive

Reference
SBP

Estimated
SBP Difference Reference

SBP
Estimated

SBP Difference Reference
SBP

Estimated
SBP Difference

1 98.0 97.6 0.4 — — — 85.7 92.4 −6.7
2 120.2 108.2 12.1 — — — 85.1 115.7 −30.6
3 99.5 100.7 −1.1 — — — 80.2 99.1 −18.9
4 107.6 108.2 −0.6 — — — — — —
5 121.8 120.4 1.4 188.7 185.6 3.2 — — —
6 108.5 104.5 4.0 188.9 155.4 33.5 84.2 93.2 −9.0
7 97.3 101.6 −4.3 — — — 87.6 90.7 −3.1
8 104.4 105.9 −1.5 — — — — — —
9 105.7 103.2 2.4 — — — — — —
10 117.7 107.0 10.7 104.0 104.0 0.0 — — —
11 111.1 110.2 1.0 131.9 130.6 1.3 87.7 100.5 −12.8
12 103.0 103.3 −0.3 — — — 78.9 85.7 −6.8
13 101.7 102.2 −0.6 — — — 84.0 86.5 −2.5
14 — — — — — — 84.8 87.0 −2.1
15 — — — — — — 84.6 88.2 −3.6
16 — — — — — — 85.0 86.6 −1.6
17 93.6 103.9 −10.3 — — — 82.5 124.4 −41.9
18 113.7 117.1 −3.4 — — — — — —
19 106.3 115.9 −9.6 145.0 117.3 27.8 — — —
20 116.0 115.8 0.2 144.0 105.9 38.1 87.0 116.0 −29.0
21 99.9 106.3 −6.4 — — — 85.0 97.8 −12.8
22 116.0 111.6 4.4 150.4 124.9 25.5 87.0 117.4 −30.4
23 123.2 134.1 −11.0 155.7 131.8 23.9 — — —
24 95.0 97.7 −2.7 — — — — — —
25 119.5 120.2 −0.7 147.8 127.7 20.1 83.7 125.9 −42.1
26 117.0 114.9 2.0 162.0 124.3 37.7 87.0 109.5 −22.5
27 124.0 118.6 5.4 — — — — — —
28 106.3 115.2 −8.9 135.5 121.2 14.3 — — —
29 105.7 102.9 2.8 — — — 83.8 91.8 −8.0
30 108.0 118.3 −10.3 — — — — — —
31 114.9 118.5 −3.6 147.0 125.0 22.0 85.2 105.7 −20.5
32 118.7 122.7 −4.0 171.6 146.0 25.6 — — —
Mean 109.4 110.5 −1.1 151.7 130.7 21.0 84.6 100.7 −16.0
SD 8.9 8.6 5.7 22.9 21.5 12.9 2.3 13.5 13.3
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for BP estimation should be more specific for different BP
categories.
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