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Abstract: Laser shock peening has become a commonly applied industrial surface treatment, 
particularly for high-strength steel and titanium components. Effective application to aluminum 
alloys, especially in the thin sections common in aerospace structures, has proved more challenging. 
Previous work has shown that some peening conditions can introduce at-surface tensile residual 
stress in thin Al sections. In this study, we employ finite element modeling to identify the conditions 
that cause this to occur, and show how these adverse effects can be mitigated through selection of 
peen parameters and patterning. 

Keywords: laser peening; residual stress; aluminum alloys 

1. Introduction 

Over the past three decades, laser peening (LP) has emerged as a viable commercial 
technology for introducing beneficial residual compression into the near-surface regions of metallic 
components [1,2]. First introduced by Battelle Laboratories, Columbus, Ohio, in the 1970s [3,4], LP 
uses a high-power-density, short-duration pulsed laser to create a mechanical impact on the surface of 
a component. The amplitude of the impact, typically at least double the Hugoniot elastic limit (HEL) 
of the target material, is great enough that the resultant shock wave creates a region of localized plastic 
deformation in the target material. The elastic springback of the surrounding material around this 
plastic core creates a state of self-equilibrating residual stress in the component. Good reviews of the 
LP process can be found in [5–7]. 

Because the depth of compression resulting from an LP treatment is typically on the order of 1 mm 
or greater, depending on the component material, geometry, and selected peening parameters, LP has 
the potential to significantly mitigate fatigue-inducing tensile stresses that can result from applied 
cyclic loading. This is of particular interest as a potential means for enhancing the fatigue response 
of military aircraft in which mission changes and extended lifing requirements often tax the fatigue 
resistance of the airframes beyond their original design specifications [8]. 

One application of recent interest is LP of thin aluminum components, on the order of 2–3 mm or 
less such as aircraft skin or web structure, to mitigate surface damage or enhance fatigue response. 
If LP parameters and process variables are designed appropriately, a favorable compressive state 
throughout much of the component depth can be induced [9]; however, as is discussed in more detail 
below, under certain circumstances LP can also induce detrimental tensile stresses into the near-surface 
regions of thin sections, extending into the component to depths as great as 0.5 mm [10–12]. 

A number of factors can contribute to the challenge of developing favorable residual stress states 
in thin structures: First, if the laser power density and subsequent plasma pressure are too high, the 
resulting distortion in the thin section can reduce the magnitude of the compressive stresses [9,13]. 
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Second, even in the absence of significant distortion, the limited depth of material along the propagation 
direction of the shock wave constrains the induced plastic field, which in turn can limit the magnitude 
of the residual stresses. Third, because the plastic wave will typically not completely attenuate 
through the material depth, reflected waves from the opposite free surface can form, with the effect of 
altering the residual stresses from compressive to tensile [14]. Fourth, the work hardening resulting 
from LP affects a greater percentage of the depth of a thin component than a thicker one, and can 
therefore impact the development of the residual stress fields and also the fatigue response [15]. Finally, 
the rolling process typically used to produce thin plates induces a crystallographic texture that can 
influence the development of residual stresses [16]. 

In early studies, some of these thin section challenges were addressed by splitting the laser beam 
to peen both sides of the plate simultaneously [9]. While this technique was designed to help minimize 
overall distortion, the mid-plane collision of the two compressive shock fronts resulted in detrimental, 
high-magnitude internal tensile stresses [17]. In addition, for many in situ components, such as an 
aircraft skin, implementation of two-sided peening is not feasible. 

More recently, Dorman et al. [10] investigated the use of LP to treat surface scribe marks on thin 
Al 2024-T351 sheets. Specimens were peened from one side only, with a single layer of square spots 
patterned in either a line overlaying the scribe mark or a patch covering it, and using an ablative 
coating on the peen surface and an acoustic damping material on the back surface. The resulting 
residual stresses were then measured using incremental hole drilling and synchrotron X-ray diffraction. 
In all cases—regardless of the depth of the scribe mark, the use of an ablative layer, or the intensity of 
the peening—the near-surface residual stress, measured in the center of the peen spots normal to the 
peen line, was either tensile or only slightly compressive. The tensile stresses persisted to subsurface 
depths ranging from 80 µm at the lowest laser power density to 320 µm at the highest, with magnitudes 
reaching as high as 100 MPa. In addition, in all cases in which the peening pattern was a single line, 
the resultant residual stress fields were strongly non-biaxial, with higher compression parallel to the 
peen line axis than in the transverse direction. 

Cellard et al. [15] noted similar results in their measurements of LP-induced residual stresses in 
very thin (1 mm) Ti-17 plates. The specimens were peened from one side only using square laser spots of 
varying size, intensity, duration, and coverage. Using X-ray diffraction to measure the surface residual 
stresses, they found that nearly all of the thin specimens had some level of tension at the surface, 
ranging from 13 to 150 MPa. When the same peening parameters were applied to thick specimens (9 
mm), however, nearly all demonstrated compressive residual stress on the surface. They attribute this 
“thickness effect” to the redistribution of stresses required to maintain equilibrium over a cross-section 
of the specimen, and suggested that two-sided peening could yield more favorable stress fields in 
thin specimens. 

In contrast, several researchers studying the effects of LP in aluminum sheet have not observed 
tensile stresses at the surface. Hong and Chengye [18] and Yang et al. [19] peened 2.5-mm-thick 
Al2024 and observed compressive surface stresses at the centers of round LP spots using conventional 
XRD. However, as noted in [16], surface XRD measurements can be distorted by rolling-induced 
texture and thus a secondary stress measurement technique is recommended to reduce uncertainties. 
Ivetic et al. [20] studied the effects of LP on slightly thicker Al 6082-T6 plates, 3 mm in thickness, and 
measured near-surface compression using synchrotron X-ray diffraction. However, the depth at which 
the measurements were recorded was slightly subsurface, 50–250 µm, so that any tensile stresses that 
might have formed in shallower regions might not have been detected. 

In the present work, three-dimensional non-linear finite element modeling is used to investigate 
the effects of laser peening on residual stresses in thin aluminum plates. We explore the relationship 
between spot layering and peen patterning, with the objective being to better understand the effects of 
processing technique on the resulting residual stress fields. 
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2. LP Process Modeling 

Owing to its flexibility and relative ease of use, finite element analysis (FEA) has emerged as 
a powerful tool for predicting the full residual stress state that results from the laser peening of an 
arbitrary three-dimensional metallic body. First used by Braisted and Brockman [21] to simulate single 
LP shots on semi-infinite bodies, FEA techniques have evolved significantly over the past decade as 
computer processing has become faster and multiprocessing environments have become mainstream. 
Recent FEA studies of note include the work of Ding and Ye [22], who used three-dimensional FEA 
to create detailed stress maps for LP steel; Ocaña et al. [23], who developed a multi-shot FEA model 
capable of realistic LP simulation; Singh et al. [24], who coupled FEA with numerical optimization; 
Brockman et al. [25], who used a highly refined, fully three-dimensional model to study local variations 
in surface residual stresses arising from shot patterning; and Hasser et al. [26], who developed a 
first-ever FEA capability for studying LP-induced surface roughness. 

In the present work, a series of finite element analyses were performed using the commercial 
FEA package Abaqus [27]. The objective of the analyses was to explore computationally the effects 
of various peening parameters and processing variables on the resulting residual stress fields in thin 
structures in order to better understand the experimental findings discussed in the previous section: 
(1) the formation of surface tensile stresses in spot centers that tend to occur in thin plates but not thicker 
sections, (2) the observed inequality of the residual stresses that occur parallel to and perpendicular to 
a peen line, and (3) the effects of peen patterning on the resulting stress fields. 

The key aspects in using FEA to model an LP shock event are the selection of appropriate input 
models, namely the material model and the pressure model, and selection of a computational strategy 
and associated computational parameters that provide for an accurate and efficient solution. In this 
section, we discuss the material model used to capture high-strain-rate effects, the pressure model 
used to approximate the laser-induced plasma impact, and the computational model used to develop 
the stress predictions. 

2.1. LP Process 

The basic LP process is illustrated in Figure 1. In typical applications, an ablative coating, such 
as aluminum tape or black paint, along with a transparent overlay, usually water, are applied to the 
surface of the target material prior to peening. When used together, the confined ablation increases the 
intensity of the plasma pressure, which results in a higher intensity shock wave in the target material. 
During the peening process, the component is exposed to a very high intensity (1–9 GW/cm2) laser 
pulse, typically from an Nd:YAG or Nd:glass laser system operating at a FWHM of about 6–30 ns per 
pulse with a beam dimension of less than 10 mm [6,28]. 
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Figure 1. (a) A high-intensity, pulsed laser vaporizes an ablative layer on the surface of the component, 
producing a rapidly expanding plasma. (b) The plasma is constrained by a confining medium, which 
creates a high-amplitude pressure pulse and induces a shock wave in the component. 
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The resulting pressure pulse generally lasts about 2–3 times the duration of the laser pulse and 
has a peak magnitude of about 1–10 GPa [28]. The spatial distribution of the plasma pressure can 
either be uniform or variable, depending upon the laser system employed. In order to generate the 
near-surface plasticity required to induce a residual stress, the plasma pressure needs to exceed the 
HEL of the target material for a sufficient amount of time, with an optimal value typically about 2–2.5 
times the HEL [29]. 

2.2. Computational Model 

The commercial finite element package ABAQUS [27] was used to solve for the stresses, strains, and 
displacements that result from the application of laser peening on thin sheets of Al2024-T351. Based on 
previous work [11,25,30–33], all simulations were run using explicit time integration (ABAQUS/Explicit) 
to solve the dynamic system. As discussed in [25], using an explicit solver to model both the impact 
event and the subsequent return to equilibrium is quicker, more scalable, and uses less memory than 
performing the equilibrium analysis with an implicit solver. Each impact pulse was modeled using 
two distinct solution steps so that the computational parameters could be adjusted for improved 
efficiency and convergence. The first solution step, designated as the pulse phase, starts with the initial 
application of the pressure pulse and ends when no further plastic deformation occurs (2.5 µs was 
used). The second solution step, termed the equilibrium phase, introduces Rayleigh damping [34] 
into the model to return the system to a state of near-zero kinetic energy (approximately 10−6 to 
approximate equilibrium: 100 µs was used). One pair of analyses is performed for each laser pulse. 

Three-dimensional linear eight-node brick elements with reduced integration (C3D8R in Abaqus 
terminology) were used throughout, with a mesh size of 50 µm in the laser peened region. This mesh 
size was selected using the results of convergence studies that showed less than 2% difference in 
predicted residual stresses with further refinement. External to the peened region the element size was 
increased gradually from 50 µm to 250 µm using mesh biasing to curtail computational costs. 

2.3. Material Model 

During the laser peening process, the induced shock waves can produce very high strain rates, 
on the order of 106 s−1, resulting in a material response that is significantly different from that under 
static or quasi-static loading conditions [35]. To capture these strain rate effects, a Johnson–Cook [36] 
material model was used. Following earlier work [11], thermal effects resulting from the LP process are 
considered to be negligible and thus temperature dependence is eliminated from the material model:    

.n
σ =

 
A + B(εp)

  
1 + C ln ε 

. p
/ε0 (1) 

.
Here, σ is the flow stress; εp is the effective plastic strain; ε 

. p 
is the effective plastic strain rate; ε0 is 

a reference plastic strain rate (typically taken to be 1.0 s−1); n is the work hardening exponent; and A, B, 
and C are empirically-derived constants. 

Lesuer [37] used split-Hopkinson-bar testing to measure the deformation response of Al 2024-T3 
at moderately high strain rates (103–104 s−1), and used the data to define the material constants in 
Equation (1) (Table 1). Although the strain rates typically experienced during LP are an order of 
magnitude higher, recent flyer-plate testing has confirmed that Lesuer’s constants reasonably model 
the LP material response, with a maximum deviation of less than 10% as compared to the measured 
values [38]. Comparisons between predicted residual stresses based on a Johnson–Cook material 
model and measured values have also validated the use this mode for LP simulations [39,40]. Thus, 
the Johnson–Cook material constants for Al 2024-T3 as shown in Table 1 were used for all simulations 
in the current work. 
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Table 1. Johnson–Cook material constants [37]. 

Material A/MPa B/MPa C n 

Al 2024-T3 369 684 0.014 0.93 

It should be noted that the constitutive model was not updated in the multi-shot simulations to 
account for LP-induced cyclic deformation effects [41]. 

2.4. Pressure Model 

In this work, the laser-matter interaction and subsequent plasma formation were not modeled 
directly; rather, the resulting pressure pulse was applied to the FE model over the area corresponding 
to the laser pulse as a spatially-uniform, time-varying surface traction. While small transition regions 
likely exist along the spot perimeters, measurements by the LP vendor indicate the generated pressures 
are essentially uniform across the spot area. 

The confined ablation model developed by Fabbro et al. [42], modified to account for the absorption 
fraction of the laser energy in the treated plasma, was used to determine the applied pressure P(x,t) 
= P(t). We can express the energy density at the plasma, E(t), to the nominal energy density of the 
laser, I(t), using the expression E(t) = A(t)I(t), where A(t) = 1 − R(t) is the absorbed energy and R(t) 
represents the change in energy density. However, owing to the very short time between the laser 
pulse and the plasma formation, it is generally assumed that the loss R(t) is negligible and hence A(t) is 
approximately 1.0 [43–46]. 

During the heating phase (while the laser is on), this relationship is then described by: 

dL 3 d
E(t) = P(t) + [P(t)L(t)] 

dt 2α dt 
(2) 

while during the cooling phase (after the laser is switched off):   γL(τ)
P(t) = P(τ)

L(t)
(3) 

Here, L(t) is the thickness at time t of the interface between the ablative coating and the transparent 
overlay, given by: 

dL(t) 2 
= P(t) (4)

dt Z 
and α is the fraction of the internal energy transferred to the workpiece, γ is the adiabatic cooling rate, 
and Z is the effective acoustic impedance of the interface, defined by: 

2 1 1 
= + (5)

Z Zcoating Zoverlay 

Zcoating and Zoverlay are the acoustic impedances of the ablative coating and the transparent 
overlay, respectively. With water as the overlay (Zoverlay ≈ 0.15 × 106 g cm−2 s−1) and aluminum tape 

−2 s −2 s−1as the coating (Zcoating ≈ 1.7 × 106 g cm −1), Z has a value of about 0.3 × 106 g cm . 
Assuming a Gaussian laser energy density E(t), a typical pressure profile resulting from these 

equations is shown in Figure 2 for a maximum energy density of 3 GW/cm2, laser pulse width of 18 ns, 
α = 0.09, and γ = 1.3. For these parameters, the maximum applied pressure, Pmax is about 1.95 GPa 
and the width (FWHM) of the pressure pulse is about 47 ns. 
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2.5. Model Confirmation 

Residual stress predictions using the model discussed in the previous sections were compared 
against experimental stress measurements. From previous studies, the value of α was set to 0.09 and 
γ was 1.3. The measured residual stress profiles were extracted from two laser-peened test samples 
of 12.7-mm-thick Al2024-T351 aluminum (unclad) using incremental hole drilling (IHD). The IHD 
diameter was 2 mm and the depth increments ranged from 32 to 128 µm to a total hole depth of 1408 
µm. Each sample (IHD-1 and IHD-2) was peened with a single 5 mm × 5 mm square spot located 
sufficiently far from the boundaries to avoid edge effects and using a power density of 3 GW/cm2 and 
a pulse width of 18 ns. The residual stresses were measured at the spot center. 

Results from the comparison are shown in Figure 3. The FE results represent the average principal 
stresses over the equivalent volume of material removed at each IHD step and are reported depthwise 
at the center of the IHD increment. Numerical integration over the disk-shaped IHD region was used 
to compute the averages. As is shown, the predicted stresses agree well with the stress measurements, 
confirming the performance of the model for LP applications. 
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3. Results and Discussion 

The FEA model developed in the previous section was used to investigate the stress distributions 
resulting from different peening schemes in order to better understand how combinations of peening 
parameters influence residual stress distributions in thin sections. Only one-sided peening without a 
backing material was considered, reflecting the potential future application of in situ treatment of thin 
aircraft components. All simulations used a 5 mm × 5 mm square laser spot. 

In general, a favorable state of residual stress for mitigating fatigue has several key characteristics. 
First, sufficient compression should exist at the surface and in the near-surface regions of critical areas 
of the component to offset fatigue-inducing tensile stresses. Second, the distribution and magnitude 
of the compensatory tension that arises from the LP process should not initiate a failure event when 
fatigue loads are applied. Third, for a line of peen spots that align with and overlay a surface scratch, 
such as the geometry considered in [10,12], near-surface tensile stresses transverse to the peen line 
should be absent to prevent premature initiation of a crack from the scratch. 

3.1. Single Shot Simulations 

Simulations of a single LP shot were used to develop a better understanding of the shock response 
of laser-peened thin plates under different peening conditions. All thin-section simulations were run 
on a 2-mm-thick plate of Al2024-T351 (unclad), with the peened area located sufficiently far from the 
plate boundaries to avoid the effects of reflected waves. Note that due to symmetry, only one half of 
the plate was modeled. 

3.1.1. Effects of Peening Pressure 

Figure 4 shows the effects of varying the applied pressure for a single layer of peening with a fairly 
large (5 × 5 mm2) square spot. The contour plots represent a cross-section of the plate taken through 
the spot center, with the colors representing the range of the in-plane stress component S22 normal to 
the cross-sectional surface. Line plots of stress as a function of depth through the spot center are also 
shown. Note that in these plots, in contrast to the plots in Figure 3, the stresses are not averaged over a 
volume; rather, they are extracted directly from the element integration points. 

At low pressures (Figure 4a), less than about twice the HEL, surface tensile stresses are absent in 
the spot center. However, the magnitude of the maximum compressive stress is fairly low and fairly 
shallow—only about 80 MPa that tapers out after about 0.5 mm depth—and tensile stress persists 
through the thickness reaching about 60 MPa at a depth just over three-quarters of the way through 
the thickness. 

At pressures about twice the HEL (Figure 4b), small tensile zones appear in the spot centers similar 
to the experimental findings in [10]. The magnitude of the stress at the surface is about 100 MPa, and 
the tension persists in a region around the spot center that measures about 250 µm at the surface and 
extends about 35 µm subsurface. The maximum compressive stresses in this pressure regime are greater 
than those realized at lower pressures, reaching about −130 MPa, but are not significantly deeper 
(about 100 µm). It should be noted that the size of the tensile zones predicted by these simulations 
are generally smaller than what was reported in [10]. This likely results from the pressure pulse 
approximation assumption of a spatially uniform distribution along with averaging effects in the 
experimental values. 

Increasing the applied pressure to three times the HEL (Figure 4c) increases the size of the surface 
tensile zone slightly but also drives the compressive stresses deeper into the component thickness. Near 
to the spot centerline the compression persists throughout the plate thickness; however, the stress state 
is not uniform across the spot width, with tensile pockets forming subsurface around the compressed 
region. At very high applied pressures, about four times the HEL (Figure 4d), through-thickness 
compression is no longer achievable, with tensile stresses forming at the back surface. 
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It should be noted that the specific results for this series of single-shot simulations depend on not 
only the maximum applied pressure, but also on the shape and length of the pressure pulse and the 
thickness of the plate. For thicker or thinner sheets, and for different pulse shapes, the precise points at 
which the nature of the residual stresses change will vary; however, the basic trends are similar. 
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A comparison between the LP response of a thicker plate (10 mm) and the response of a thin 
section (2 mm) is shown in Figure 5. Both simulations used a maximum applied pressure of 2.5 times 
the HEL, with the plate thickness as the only difference. As can be seen from the line plot in Figure 5, 
the near-surface tensile stresses around the spot center in the thin section are completely absent from 
the thick section. In addition, because the thick section does not experience stress reversals resulting 
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from wave reflections off the back surface, the maximum residual compressive stresses are significantly 
greater in magnitude than that of a thin section, by a factor of about two. 
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Figure 5. Effect of plate thickness on predicted in-plane residual stress (single square LP shot, 5 × 5 
mm2, on a 2-mm-thick Al2024-T351 plate). 

3.1.2. Effects of Peen Layers 

When additional layers of peening are considered on a thin section, as shown in Figure 6, the 
near-surface tensile stresses are mitigated. For the case shown, with an applied pressure of 2.5 times 
the HEL, a second layer of peening reduces the size and magnitude of the surface tensile field by 
more than 50%. Adding a third layer of peening completely suppresses the near-surface tension and a 
fourth layer drives the surface into compression. The maximum subsurface compressive stress is only 
minimally affected by additional layers, increasing by less than 50 MPa from one layer to four, but the 
depth of compression more than doubles. At the same time, however, the additional peen layers result 
in larger tensile stresses on the back surface. 
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Figure 6. Effect of peen layering on predicted in-plane residual stress in thin sections (single square LP 
shot, 5 × 5 mm2, on a 2-mm-thick Al2024-T351 plate). 
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3.1.3. Observations 

It should be noted that in all single-shot simulations, the predicted in-plane residual stresses are 
equi-biaxial, as would be expected due to symmetry. The S22 stresses in the plane normal to the y-axis 
are equivalent to the S11 stresses in the plane normal to the x-axis. 

The results of these single-shot simulations suggest that a favorable state of residual stress in 
thin sections can be realized by selecting a peening pressure high enough to achieve the desired 
compression without the detrimental subsurface tensile stresses, along with sufficient peen layers to 
suppress the near-surface tension. As discussed in the following sections, however, a third parameter, 
namely, the peen patterning, can also strongly influence the resulting stresses in thin sections, and, as 
will be discussed, observations for single shots do not necessarily hold in multi-shot scenarios. 

3.2. Simulation of a Peened Line 

Although the single shot simulations provide insight into the effects of applied pressure and 
layering, they cannot capture the interactions between adjacent and overlapping spots, or the effects 
of shot order and patterning. To investigate these effects, the FEA model used for the single shot 
simulations—a 2 mm thick plate of Al2024-T351—was extended lengthwise to accommodate the 
simulation of peened line under various peening conditions. 

3.2.1. Effects of Adjacent Spots 

Figure 7 shows the simulation results for a scenario similar to that considered in [10], namely, 
a single layer of peen spots applied edge-to-edge along a line with minimal overlap. The applied 
pressure used in the simulations was 2.5 times the HEL. As is shown, the center of each peen spot in 
the line exhibits a surface tensile stress normal to the peen line with a magnitude of about 110 MPa 
and extending about 50 µm subsurface. The corresponding stress for a single peen spot is shown for 
comparison. Although the magnitude of the surface tensile stress is similar for the single spot and 
the peen line, the magnitude of the maximum compression resulting from the line configuration is 
about 20% lower than that of a single spot. The overall depth of compression is smaller in the line 
configuration as well, by about 0.25 mm. 

Although the near-surface tensile stresses are contained only in the central regions near the spot 
center, significant tension (with a peak value of about 100 MPa) builds up subsurface in the regions 
between adjacent spots. For many fatigue applications these large subsurface tensile stresses can be 
undesirable, as they can lead to subsurface crack initiation that is undetectable by visual inspection of 
the component surface. 

Figure 7 also compares the through-thickness profiles for the in-plane stresses taken parallel 
to (S11) and transverse to (S22) the peen line; as is shown, the stress states in the two directions are 
noticeably different, with as much as a 50 MPa variation in some locations. In general, the stresses 
transverse to the peened line are less compressive (or more tensile) than those in the longitudinal 
direction. This could pose a concern for certain applications in which the peen line was designed to 
overlay a surface scratch. Because the stresses are of lower magnitude (or even more tensile) in the 
critical direction (i.e., the direction that would tend to encourage crack formation and opening), the true 
potential of the LP treatment would not be realized, and could even exacerbate the situation. It should 
also be noted that through the spot centers, the stresses transverse to the peen line are generally more 
tensile than those predicted by single shot simulations. 
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3.2.2. Effects of Peen Layers 

As was the case for single shots, augmenting the peen line with additional layers can help alleviate 
the surface tensile stresses at the spot centers. In Figure 8, second and third layers of peen spots are 
applied along the peen line at a 50% offset between one layer and the next, as shown in the schematic. 
The line plots illustrate the in-plane stress through the center of a spot on the topmost layer (denoted 
Location L1). Similar to the case of a single peen spot, the surface tensile zones in the spot centers 
are reduced as additional layers are applied; however, the effects of adjacent spots are very apparent. 
A second layer flips the surface stress to compression (from 108 MPa to −243 MPa) while a third layer 
flips it again (from −243 MPa to 46 MPa). The end result is that although the stress at this location 
is reduced with additional peen layers, shallow tensile regions—about 20 µm deep and 20 µm in 
width—persist in the center of each spot that comprises the topmost layer of the plate. 

It should be noted that while Figure 8 suggests that limiting the peening to two layers would 
alleviate the surface tensile stress at Location L1, detrimental stresses form elsewhere. Figure 9 
illustrates this by extracting stress plots at location L2 after one and two layers of peening. As is shown, 
the surface stress at this location decreases more than 50% with the addition of the second layer (from 
108 MPa to 48 MPa), but the tension persists. 
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3.2.3. Effects of Peen Patterning 

In Figure 10, we consider the effects of altering the peen patterning while still maintaining a 
coverage of 300% along the central portion of the peen line. Two additional scenarios were evaluated: 
Pattern 2, which is similar in application to the scenario considered in Section 3.2.2 (denoted in this 
section as Pattern 1) but reduces the offset between layers from one-half the spot width to one-third 
(Figure 10a); and Pattern 3, which uses a running overlap (Figure 10b) pattern. As is shown, both of 
these patterns achieve exactly three layers of peening along the central portion of the peen line. Metals 2019, 9, x FOR PEER REVIEW 13 of 16 
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was confirmed using experimental measurements of residual stress obtained by incremental hole 
drilling. The following conclusions can be drawn: 

Figure 10. Schematics for achieving 300% peen coverage: (a) Pattern 2; (b) Pattern 3. Figure 8 shows 
Pattern 1. 

The corresponding contour and line plots for peen Patterns 2 and 3 are shown in Figure 11. As is 
illustrated, decreasing the offset from one-half to one-third the spot width does not alleviate the tensile 
stresses at the surface. As was observed with Pattern 1, small regions of tension persist in the spot 
centers of the topmost layer for Pattern 2. However, the build-up of subsurface tensile stresses is 
significantly reduced by reducing the offset. 

The running peen pattern (Pattern 3), on the other hand, does result in a complete suppression 
of surface and near-surface tensile stress (Figure 11b), to a depth of almost 1 mm. For the peening 
parameters used in the simulations, the surface stress in the spot centers decreases from about 60 MPa 
to about −135 MPa, while the subsurface tension at mid-section decreases from a maximum of 100 MPa 
for Pattern 1 to about 0 MPa for Pattern 3. Note that the more compressive surface stresses observed 
from the running overlap pattern result from the beneficial interactions of subsequent peen spots 
applied over previously induced fields; for other combinations of peening parameters and specimen 
geometry other surface conditions may arise. 
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4. Conclusions 

In this work, finite element analysis was used to study the effects of peen patterning on the 
residual stress fields induced by laser peening of thin aluminum plates. The accuracy of the model was 
confirmed using experimental measurements of residual stress obtained by incremental hole drilling. 
The following conclusions can be drawn: 

1.	 In thin plates of aluminum, above a threshold value of peak applied pressure, laser peening can 
lead to undesirable local “hotspots” of tensile residual stress as a consequence of the interaction 
of the shock wave with the geometry. In thin sections, reflected stress waves occur that, in 
combination with the smaller amount of constraining material, can lead to tensile stress on the 
peened surface through localized reverse yielding. 

2.	 Mitigation of the tensile regions can be affected by layering of the peen spots, where additional 
layers can reduce the tensile zones and generate compression. However, for a given specimen or 
component geometry, the resultant stress fields are dependent upon the peening parameters and 
the precise geometry of the patterning that is applied. 

3.	 In thin structures, the residual stresses resulting from applying multiple peen spots to a single 
location do not necessarily match the results obtained from applying multiple peen spots using 
offset peen patterning. 

4.	 Peen patterning can affect the biaxiality of the residual stress field, most notably if a line of peen 
spots is generated to overlay a surface scratch, for example, where the lowest magnitude of 
residual stress is found to be perpendicular to the peen line. 
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