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ABSTRACT The use of millimeter wave technologies offer a promising solution for dense small cell
 
networks, despite having to contend with challenging propagation characteristics. In particular, user-induced
 
effects can lead to significant channel variations depending on the user equipment (UE) usage mode which
 
in turn, can impact the quality of service. Estimation of UE operating conditions is therefore critical for
 
optimal radio resource management. We propose a new approach to user activity recognition which makes
 
use of both supervised and unsupervised machine learning. In particular, using information extracted from the
 
received signal strength (RSS), a common metric readily available from many receiver chipsets, we perform
 
a classification of user state (static or mobile relative to an access point) and UE mode of operation (voice
 
call, using an app or in pocket). To develop and then train our classification system, measured RSS data was
 
obtained using a custom 60 GHz measurement system for a range of indoor office scenarios which considered
 
various UE to ceiling mounted access point configurations. In our approach, differentiation between static
 
and mobile states is performed in preprocessing using a k-means algorithm. Small-scale fading features
 
are then estimated from the RSS data and, using different feature scaling mechanisms, various supervised
 
learning approaches are applied to investigate the optimal classification accuracy for the considered use
 
cases in this work. We compare the classification performance of various window sizes and types, and show
 
that a sliding window length of 1s without overlap performs best for time series segmentation at 60 GHz
 
for the activities considered in this study. Among the different supervised learning approaches, the Decision
 
Tree (DT) classifier performs best for both the user static and mobile cases with an accuracy of 100% and
 
98.0%, respectively. For static cases, user orientation, i.e., line-of-sight (LOS), quasi-LOS, and non-LOS,
 
can also be classified and here the DT classifier also performs best with an accuracy of 98.2%, 97.6% and
 
100% for the voice call, using an app or in pocket use cases. Additionally, a feature ranking algorithm, called
 
ReliefF, is adopted to determine the small-scale fading features that have the most significant influences on
 
the classification accuracy and three different feature sets, namely Full, Reduced and Constrained sets,
 
are then proposed based on feature ranking results. This allows the proposed techniques to be deployed on
 
wireless platforms with different levels of processing capability.
 

INDEX TERMS Human activity recognition, millimeter wave, received signal strength, supervised learning,
 
unsupervised learning, user equipment, wireless networks.
 

I. INTRODUCTION mobile broadband services which will occur over the next 
Millimeter wave (mmWave) technologies are set to play decade [1]. To help meet these requirements, the IEEE 
an important role in supporting the explosive demands for 802.11 Task Group ay (802.11ay) was formed in 2015 to 

define physical and medium access control layer amendments 
The associate editor coordinating the review of this manuscript and which will enable Wi-Fi devices to achieve 100 Gb/s using the 

approving it for publication was Cunhua Pan . significant bandwidth available in the unlicensed mmWave 
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spectrum [2]. Capitalizing on the bandwidth available at 
60 GHz and the short-range propagation characteristics, 
mmWave technologies will help to facilitate network densifi­
cation [3]. However, these smaller network topologies, where 
the access points (APs), or equivalently eNodeBs (eNBs) 
in cellular systems, are typically positioned at lower eleva­
tion compared to conventional systems are particularly prone 
to user-induced effects such as human body blockage and 
shadowing. While understanding these effects is essential for 
ensuring the success of future small cell deployments [4] 
within indoor environments, the APs (or eNBs) are usually 
placed at a height that is close to the ceiling in [5]–[8]. 

User-induced channel effects vary significantly with activ­
ity and user equipment (UE) operating mode and tend to 
be more pronounced at mmWave frequencies [9], [10]. 
One way to guarantee the quality of service QoS) at the 
user side and further evolve traditional wireless networks 
towards smart networks is to utilize network radio resource 
management (RRM) optimization techniques based on 
identifying the UE use case (e.g., making a call, tex­
ting messages etc.) and the user activity (e.g., walking, 
standing, sitting, laying down etc.) or whether the UE is 
in a line-of-sight (LOS)/Non-LOS (NLOS) condition rele­
vant to the access point (AP) [11]–[15]. Furthermore, user 
activity recognition also provides opportunities to optimize 
emerging applications, such as smart home automation, enter­
tainment, healthcare, safety protection and well-being moni­
toring/management [16], [17]. 

One approach often employed in the literature makes use of 
wearable sensors. The application of wearable sensors can be 
broadly categorized into one of three groups namely: received 
signal strength (RSS)/RSS Indicator (RSSI) or Radio Fre­
quency (RF) signal based; inertial sensor data based; and 
finally the combination of the RSS/RSSI and inertial sen­
sor data based methods. Considering the RSS/RSSI-based 
method, Geng et al. [18] proposed a RF based motion clas­
sification approach combined with some statistical measures 
obtained from the RSS collected by on-body sensors. These 
metrics included mean, variance, level crossing rate (LCR) 
and fading duration, etc. A Support Vector Machine (SVM) 
[19] was utilized in the classifier and an accuracy of between 
82.7% and 90.4% was obtained for correctly identifying 
human motions, e.g., standing, walking and running, etc. The 
authors of [20] classified a series of human motions, such 
as running, walking, sitting, sleeping, etc., using the RSS 
data obtained from numerical simulation and measurement 
campaigns at 403.5 MHz and 2.45 GHz. It was found that 
the Back Propagation and SVM classifiers provided the best 
classification accuracy of between 63.8% and 95.7%. Sim­
ilarly, in [21], Chi et al. proposed human activity recogni­
tion using monitoring middleware. This middleware, named 
Harmony, utilized coarse-grained RSS measurements from 
the radios of loT devices at 2.45 GHz and a state-transition 
based Markov model was then applied to understand the 
states and events including the daily, accident, fitness and 
steady categories with an accuracy between 74% and 90%. 

Now turning attention to the inertial sensor data based 
method, in [22], an inertial sensor coupled with a super­
vised based approach to learning was proposed. Using data 
collected by the tri-axial accelerometer and gyroscope of a 
smartphone, a series of statistical features were extracted 
from the time domain information, including the mean, stan­
dard deviation, and interquartile range as well as weighted 
average, skewness and kurtosis in the frequency domain. 
The authors of [22] proposed an online framework using 
Naive Bayes (NB) [23] and K-Nearest Neighbors (KNN) 
[24]. Both static user activities, e.g., standing, sitting, and 
laying down and dynamic user activities, e.g., walking and 
climbing up and down stairs were classified with an accu­
racy of up to 90.1%. In [25], a Single Layer Feedforward 
Neural Network with same carefully chosen features as 
in [22] was utilized to assist a Long Short-Term Memory 
network. Three-dimensional linear acceleration, total accel­
eration and gyroscope data from a smartphone was used to 
classify static and dynamic activities achieving an accuracy 
as high as 97.7%. Studies on the combination of RSS/RSSI 
and inertial sensor data based methods have included [26], 
which used a combined RSS and inertial sensor approach 
along with the Echo State Network to classify the daily user 
activities at 2.4 GHz (within the frequency band defined 
by the IEEE 802.15.4 standard), such as bending, cycling, 
laying, and walking etc., with an overall accuracy of between 
95.6% and 98.8%. In [27], the RSSI, Transmission Con­
trol Protocol TCP) throughputs, cellular based-station IDs 
for Long-Term Evolution (LTE), together with acceleration 
sensor data were analyzed as a means of recognizing dif­
ferent user transportation modes, e.g., static, walking, riding 
a bicycle, on a bus or a train, etc. A convolutional neural 
network (CNN) model was applied to the data, providing a 
classification accuracy of between 77.0% and 96.5%. While 
clearly proficient at estimating user activity, these sensor 
based approaches do require supplementary sensors, data 
analysis, and processing capability at the UE. 

Another popular approach commonly used for activity 
recognition in wireless networking is vision-based, typically 
requiring video camera monitoring to recognize different 
human actions. For instance, mmWave human blockage pre­
diction using RGB-D (depth) cameras was used to assisted 
with handovers in [28]. A test-bed consisting of a Kinect 
sensor [29] and IEEE 802.11 ad compliant WLAN devices 
was constructed to estimate the position and velocity of 
pedestrians, with the aim of avoiding throughput degrada­
tion by predicting potential human body blockage incidents. 
Moreover, Okamoto et al. studied throughput estimation at 
mmWave frequencies using images from an RGB-D cam­
era along with machine learning [30]. An online algorithm, 
called adaptive regularization of weight vectors, was applied 
to process the image depth, thus building a relationship 
between image depth and unexpected throughput degrada­
tion. Although human blockage at mmWave frequencies has 
been effectively avoided in these studies, the application of 
video cameras is not always practical, for example when 
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the necessary infrastructure is unavailable or where there 
are privacy concerns. Furthermore, image processing can be 
computationally expensive, which may mean that it may not 
be able to adapt in response to the the real-time nature of 
wireless communications. 

Motivated by the need for accurate user activity recog­
nition in mmWave networks and some of the limitations 
of the previously discussed work, we propose a combined 
supervised and unsupervised approach that is able to rec­
ognize UE use case and user activity for indoor scenarios. 
An extensive mmWave measurement campaign involving 
different user states and some common UE use cases has 
been conducted in an indoor office measurement environment 
considering a ceiling-mounted wireless AP. Subsequently, 
a series of small-scale fading features of the mmWave chan­
nel are correctly extracted after an unsupervised preprocess­
ing stage and various supervised classifiers are trained based 
on the extracted small-scale fading features. We compare 
the classification accuracy and computation performance of 
different supervised classifiers, namely multi-SVM, Deci­
sion Tree (DT) [31], NB, and Ensemble Learning (EL) 
[32]. Moreover, we investigate the influence of various RSS 
segmentation window types and sizes on the classification 
accuracy. Furthermore, by using a feature ranking algo­
rithm, called ReliefF [33], we determine the most significant 
small-scale fading features which should be used to train the 
supervised classifier at 60 GHz for UE usage identification. 
Based on the feature ranking results, we demonstrate fea­
ture subsets with reduced dimensions which will be suitable 
for implementation on platforms with differing processing 
ability. 

The remainder of this paper is organized as follows. 
The proposed automated classification approach is presented 
in Section II. The custom 60 GHz measurement system 
and measurement scenarios are described in Section III. 
A description of the measurement data and how it is pro­
cessed is given in Section IV. Section V firstly inves­
tigates the effects of choosing the correct window size 
and type to provide the optimal classification performance 
at 60 GHz. Afterwards, the results of applying the classi­
fication techniques to the empirical mmWave channel data 
collected during our experiments are discussed and some 
insights related to different subsets of the selected features 
is also presented. Finally, the conclusions are summarized 
in Section VI. 

II. CLASSIFICATION METHODOLOGY 
The proposed classification system is illustrated in Fig. 1. 
There are five key stages which make up the system. These 
are (1) data preprocessing, (2) data segmentation and label­
ing, (3) RSS feature extraction, (4) RSS feature scaling, 
and (5) supervised learning based classification. After pre­
processing, the system segments the user state into either 
static or mobile scenarios. The UE use cases for both static 
and mobile can be classified after the supervised learning 
based classification. In particular, for the user static scenario, 

FIGURE 1. Flow diagram indicating the different stages of the proposed 
classification system. 

user orientation (LOS, QLOS, and NLOS) is additionally 
classified. 

Fig. 2 illustrates the geometry of the different measurement 
scenarios. As can be seen, three common UE use cases are 
considered in this study: (1) Call scenario, where the user 
holds the UE at his right ear while imitating the action of 
making a voice call; (2) App scenario, where the user holds 
the UE with his two hands in front of his chest, replicating 
the behavior of using an application; (3) Pocket scenario, 
where the user keeps the UE in the right waist pocket of his 
clothing. Consequently, the antenna boresight was oriented 
outwards away from the user’s right ear, front chest, and right 
waist pocket for the Call, App and Pocket scenarios, respec­
tively. In addition, in the static scenario, the LOS, QLOS 
and NLOS cases are specified in terms of the orientation 
angle relative to the direct geometric path to the wireless 
AP, i.e. 0◦ for LOS, 90◦/270◦ for QLOS and 180◦ for NLOS 
cases, respectively. The relationship between the orientation 
angles (0◦, 90◦/270◦ and 180◦) relative to the wireless AP 
and the user orientations (LOS, QLOS and NLOS) was inves­
tigated in [34], [35]. We have followed this convention for 
the UE orientations in the measurement set-up within this 
work. 
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FIGURE 2. Geometry of measurement scenarios. 

A. DATA SEGMENTATION AND LABELING 

Windowing approaches are normally used for time-series sig­
nal segmentation in human activity recognition [36]. In this 
work, sliding windows with overlap and without overlap have 
both been applied in the data segmentation stage to investigate 
the optimal window type for 60 GHz indoor scenarios. Given 
that T is the sliding window size and the overlap ratio is 
defined as p (0 ≤ p < 1), thus the overlap size is given by 
T ∗ p. Suppose there are N available RSS segments in total 
after the data segmentation process, the RSS vector R can be 
defined as 

R = [R1, . . . , Rn, . . . , RN ] , (1 ≤ n ≤ N ) (1) 

where Rn is the RSS vector of the n-th segment, thus Rn can 
be written as follows   

1 t TRn = rn , . . . , rn, . . . , r , (1 ≤ t ≤ T ) (2)n

where rt is the linear RSS value at time instant t in the n 
n-th segment. Afterwards, the labels are assigned in the data 
labeling stage for later used by the supervised learning based 
classifier. The label vector L is denoted as 

L = [L1, . . . , Ln, . . . , LN ] , (1 ≤ n ≤ N ) (3) 

where Ln is the assigned label for the n-th RSS segment. 
It is relatively easy to assign the label, if only one activity 
occurs during one segmentation window, however, if more 
than one activity occurs within a segment, it becomes difficult 
to allocate the corresponding label. In this work, since we are 
more concerned about the current UE use case rather than the 
previous state, the label is assigned based on the latter state 
of the window segmentation, e.g., if the Call and App states 
occur in succession within the n-th segment, then the label Ln 
will be given as App. 

B. K-MEANS PREPROCESSING 

To extract the small-scale fading for analysis, the path loss 
and large-scale fading must first be removed. Typically, 

the path loss and large-scale fading components can be 
acquired by applying a low-pass filter to the raw RSS data in 
the linear scale. However, the correct length of the low-pass 
filter depends on the actual user activities. For instance, 
in the static case, the path loss and large-scale fading can 
be assumed to be fairly constant, thus the length of low-pass 
filter can be conveniently set as exactly the same as the 
segmentation window size, However for the mobile case, 
the path loss and large-scale fading components can vary 
over time, thus following convention, we choose a length of 
ten wavelengths for the low pass filter [37]. At 60 GHz, this 
equates to a distance of 50 mm. The effective sampling rate of 
the RSS measurement system used in this study was 1 kHz, 
with a user walking speed of 1 m/s, the moving window size 
is exactly 50 samples. Due to choices of different lengths of 
low-pass filter window size, an initial decision on whether 
the user is standing static or walking needs to be made. For 
this purpose, unsupervised k-means clustering [38] is used. 
More precisely, the variance of the small-scale fading (on a 
logarithmic scale) in each segment and the cluster number of 
2 are set as the inputs to the k-means algorithm. 

An example of the output of the k-means preprocessing is 
shown in the top part of Fig. 3 which uses a segmentation 
window with no overlap (i.e., T = 1000 and p = 0) applied 
to the raw RSS. From the output, it can be seen that accurate 
state estimation can be achieved with approximately 99.8% 
success, verifying that the static and mobile activities can 
be accurately differentiated using this simple preprocessing 
technique. A detailed discussion on selecting the segmenta­
tion window type and size will be presented in Section V-A. 
Although a very high estimation accuracy was achieved at the 
preprocessing stage, incorrect estimation was still observed 
to occur. An example of this is illustrated in the bottom 
part of Fig. 3. The incorrect estimation occurs in the 84th 
segmentation element, as the segment element in fact consists 
of both mobile and static states. The majority of this element 
is dominated by the mobile state, however, as discussed in 
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TT 

FIGURE 3. The output of k-means preprocessing with a segmentation window of size T = 1000 and no overlap p = 0 is shown at the top. Meanwhile, 
an example of where the k-mean preprocessing failed to estimate the correct state is demonstrated at the bottom. 

Section II-A, the label allocated to this element is based on 1) VARIANCE 

T T
the more recent state, thus this type of incorrect estimation is       

      
2 

unavoidable. 1 t 1  q 
nVar (7)−yn y y= After the static and mobile activities are differentiated, nT − 1 T 

t=1 q=1the low-pass filter of correct window type and length will be 
tapplied on each RSS segment based on the estimated user where y is the logarithmic small-scale fading at the time n 

activity. Thus the exact small-scale fading of the mmWave instant t in the n-th segment. 
channel can be extracted and the small-scale fading vector Sn 
is obtained as 2) RICE K FACTOR 

The probability density function (PDF) of Rice distribu-
Sn = [s1, . . . , sn, . . . , sN ] , (1 ≤ n ≤ N ) (4) tion [39] is defined by     

where sn is the linear small-scale fading of the n-th segment 
and sn can be expressed as 

2 
+ ν̂2− (sn)

I0( 
snν̂
σ̂ 2 

) (8)
sn p(sn|ν̂, σ̂ ) = 
ˆ

exp
σ 2 2σ̂ 2

1 t Tsn = sn, . . . , sn, . . . , s , (1 ≤ t ≤ T ) (5)n 

where st is the linear small-scale fading of time instant t inn 
the n-th segment. Correspondingly, the small-scale fading of 
the n-th segment in the logarithmic scale, denoted as yn, can 
be calculated as 

yn = 20 · log10(sn). (6) 

C. SMALL-SCALE FADING FEATURE EXTRACTION 

where ν̂ and σ̂ are estimated Rice shape parameters. The Rice 
K factor, which characterizes the ratio between the power 
carried by the LOS component and the power contained the 
scattered waves, is defined as 

K(sn) = 
ν̂2 

σ 2 
.

2 ̂
(9) 

3) NAKAGAMI m PARAMETER 

The PDF of the Nakagami distribution [40] may be written as   Six statistical features were extracted from the segmented m̂2m̂ m̂2m̂−1 2p(sn; m̂, Q̂) = (10)−small-scale fading time-series in this work: 1) variance, (sn) (sn)exp
f(m̂)Q̂ ˆ Q̂m 

2) Rice K factor, 3) Nakagami m parameter, 4) channel 
coherence time, 5) AFD, and 6) LCR. Details of each feature where Q̂ (Q̂ > 0) is the estimated parameter controls the 
in the n-th segment are shown as follows spread and m̂ (m̂ > 0.5) is the estimated shape parameter, 
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which represents the multipath fading severity and defined 
by 

E2 2 

m̂(sn) = 
(sn)

2 
. (11)

Var (sn)

4) CHANNEL COHERENCE TIME 

The time-series autocorrelation function (ACF) for time 
lag i [41] is given by 

ci ciRi = = (12) 
c0 Var [sn] 

where ci is the autocovariance function of time lag i and 
defined as ⎛ ⎞⎛ ⎞ TT −i T TT T1 1 1t q t+i qci = ⎝s − s ⎠⎝s − s ⎠ (13)n n n nT T T 

t=1 q=1 q=1 

and the channel coherence time Tc is defined as 

Tc(γ ) = i(Ri > γ ) · Ts (14) 

where γ (0 < γ < 1) is a selected ACF threshold and Ts 
represents the sampling time. 

5) AFD 

The AFD is defined as the average time duration of a fading 
event [42]. The empirical AFD below a pre-defined thresh­
old δ may be written as   

d yt < δnAFD(yn, δ) = (15)
N (yt < δ)n 

where d denotes the overall time duration of fading events 
below a threshold δ within the n-th segment, and N denotes 
the total number of fading events within the n-th segment. 

6) LCR 

The LCR is defined by the average number of times per sec­
ond that a fading signal crosses a pre-defined threshold δ [42]. 
It is given by 

tN (y < δ)nLCR(yn, δ) = . (16)
T 

The rationale for choosing the Rice K factor and Nakagami 
m parameter features is that both models have shown a good 
fit to the small-scale fading observed in 60 GHz small cell 
deployments [9]. Additionally, as shown in [43], the second-
order statistics, such as AFD and LCR, are highly correlated 
to different UE use cases. Therefore, the UE use cases could 
potentially be classified by exploiting the characteristics of 
these statistical features. The Rice K factor and Nakagami 
m parameter were estimated using maximum likelihood esti­
mation (MLE) performed in MATLAB, the first empirical 
ACF threshold γ was selected to be 0.5, since the coher­
ence time is defined as the time over which the ACF is 
above 0.5 [44]. A second ACF threshold γ of 0, indicating 
the first time instance that the small-scale fading observed 
to become entirely decorrelated, was also selected. It can be 

seen from Fig. 3 that the majority of the small-scale fading 
occurred in the range of −20 dB to 10 dB. Subsequently, δ 
was set between [−20, 10] dB with a 1 dB step size. As a 
result, the dimensions of the adopted statistical features were 
N × 67 in the proposed approach. 

D. SMALL-SCALE FADING FEATURE SCALING 

During the exploratory data analysis, it was noticed that the 
range of each feature’s values varies widely. If one feature’s 
value has a much broader range than the others, it is very 
likely that the object function’s distance of the classifier could 
be dominated by this wide-range feature [45]. Additionally, 
it is known that the gradient descent converges much faster 
with feature scaling than without it [46]. For these reasons, 
the values of all features were scaled before being used as 
an input to a classifier. This scaling process is also known as 
feature normalization. There are four different scaling mech­
anisms adopted in this work, namely: 1) min-max normal­
ization (min-max) [47], 2) mean normalization (mean) [48], 
3) standardization (standard) [49], and 4) unit length scaling 
(unit length) [50]. Each of the scaling mechanisms is defined 
below where fj denotes the j-th extracted feature before nor­
malization, while f /j denotes the j-th normalized feature: 

1) MIN-MAX 

fj − min(fj )fj
/
= (17)

max(fj ) − min(fj ) 

where max(fj ) and min(fj ) denote the maximum and mini­
mum value of the j-th extracted feature, respectively. 

2) MEAN 

fj − f̄  jfj
/
= (18)

max(fj ) − min(fj ) 

where f̄  j denotes the mean value of the the j-th extracted 
feature. 

3) STANDARD 

fj − f̄  jfj 
/ 
= (19)

Std(fj ) 

where Std(fj ) denotes the standard deviation of the j-th 
extracted feature. 

4) UNIT LENGTH 

fjfj 
/ 
=   (20)   

where  fj denotes the l2-norm of the j-th extracted feature. 

 fj
E. SUPERVISED LEARNING BASED CLASSIFIER 

As shown in Fig. 1, the input provided to the supervised 
learning based classifier are the scaled RSS statistical features 
and the assigned data labels. It is noted that the order of the 
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FIGURE 4. Floor plan for mmWave indoor measurement scenario. 

input features is as described in Section II-C, i.e., starting 
from the Var through to LCR. Furthermore, aiming to train 
the corresponding classifier model, the data is partitioned 
randomly into three parts, i.e., training, validation and test 
data. Additionally, 10-fold cross validation [51] has been 
performed to ensure that the trained classifier model is inde­
pendent of the unknown data set and avoids the problem 
of overfitting or selection bias. In 10-fold cross validation, 
the segmented data is randomly partitioned into 10 equal-size 
sub-samples. Subsequently, a single sub-sample is retrained 
as validating data, while the remaining 9 sub-samples are 
used as training data. In this way, the cross-validation is 
repeated 10 times and these results are averaged to produce a 
unique estimation. 

III. EXPERIMENTAL SET-UP 
The custom 60 GHz wireless channel measurement sys­
tem used in this study was based on the HMC6000LP711E 
transmitter (TX) and HMC6001LP711E receiver (RX) mod­
ules manufactured by Analog Devices. Both units fea­
tured an identical linearly-polarized antenna-in-package 
with +7.5 dBi gain. The measured half power beam 
width (HPBW) of the antenna is approximately 120◦ [52]. 
At the beginning of each set of measurements, the TX was 
configured to transmit a continuous wave signal at 60.05 GHz 
with an Equivalent Isotropically Radiated Power (EIRP) 
of +10.9 dBm. The received signal power at the RX was 
recorded using a v1.4 Red Pitaya data acquisition platform 
at a sample rate of 96 kHz. Afterwards, the data was down-
sampled by averaging 96 consecutive samples to improve 
the signal to noise ratio (SNR) performance, thus giving an 
effective sampling rate of 1 kHz after downsampling. 

The measurements were conducted in an open office area 
(10.62 m × 12.23 m) [53], located on the first floor of the 
ECIT Institute, Queen’s University Belfast, UK, as illustrated 
in Fig. 4. The indoor office area consists of metal studded 
dry wall with a metal tiled floor covered with polypropylene 
fiber, rubber backed carpet tiles and metal ceiling with min­
eral fiber tiles and recessed louvered luminaries suspended 

2.70 m above the floor level. It also contained a number of 
soft partitions, cabinets, PCs, chairs and desks. During the 
measurements, the RX board was placed above the ceiling 
at the point indicated by the red circle (Fig. 4), with the 
antenna boresight facing downwards, i.e., towards the floor, 
emulating a mmWave wireless AP. The TX board was fixed to 
the inside of a compact acrylonitrile butadiene styrene (ABS) 
enclosure, allowing the test user to carry the TX board as 
they would a smart phone during the measurement process. 
The test user was an adult male of height of 1.72 m and 
mass 75 kg. Additionally, the horizontal, i.e., floor projected 
distance between the mmWave AP and the test user was 
always maintained at 3 m for the static scenarios and varied 
from 0 m to 7 m for the mobile scenarios, respectively. 

During the mobile scenarios, the user walked at a constant 
speed of approximately 1 m/s along different paths (in both 
directions), i.e., Path a, b, c, and d as shown in Fig. 4. The 
lengths of Path a, b, c, and d are 10 m, 9 m, 9 m and 9 m, 
respectively. The user alternated between each of UE use 
cases (Call, App and Pocket) in a random manner. For the 
static scenario, measurements were conducted in the gray 
color-filled area indicated in Fig. 4 during which the user 
stood stationary and randomly cycled through the UE use 
cases. A digital camera was utilized to record the experiments 
and generate the ground truth of the measurement as well as 
the labels for the training data. 

IV. DATA VALIDATION 
To improve the robustness of the measurement results, each 
of the aforementioned measurement scenarios were repeated 
three times. Afterwards, all of the collected RSS data was 
fed in to the data segmentation stage of the classification 
system, as shown in Fig. 1. The overall measurement data 
set consisted of approximately 570,000 samples, equivalently 
570s length in time (210s for the mobile scenarios and 360s 
for the static scenarios). This included the measurement data 
for all the four mobile paths, i.e., paths a, b, c, and d , to make 
sure that the small-scale fading for various user walking cases 
was fully captured. In the static scenarios, the minimum 
duration for each user orientation (LOS, QLOS and NLOS) 
measurement was 10s to ensure that various physiological 
effects such as breathing were adequately recorded. Subse­
quently, the data was randomly divided into three indepen­
dent sets, i.e., training (70%), validation (15%) and test sets 
(15%). Additionally, the 10-fold cross validation (described 
in Section II-E) was performed on the acquired data to make 
sure that the problem of overfitting can be effectively avoided. 

V. RESULTS AND ANALYSIS 
A. EFFECTS OF VARIOUS WINDOW SIZES AND TYPES 

After obtaining the measurement data from the mobile state 
(including different walking paths) and static state (includ­
ing various user orientations), firstly the RSS data needs 
to be segmented as described in Section II-A. Nonetheless, 
choosing the optimal window type and size for the RSS 
segmentation is a critical issue in the classification process. 

14934 VOLUME 8, 2020 



L. Zhang et al.: An RSS-Based Classification of User Equipment Usage 

FIGURE 5. Effect of various window sizes and types upon classification 
accuracy. 

On one hand, a larger window size is needed for com­
plex activities but requires more computational resources. 
On the other hand, a smaller window size enables a faster 
recognition rate, but the limited information in the smaller 
window may result in poorer classification performance. 
Generally speaking, there is not a specific optimal window 
type and size for activity recognition work, the selected win­
dow type and size is often dependent on the device and system 
requirements [36]. 

The classification accuracy performance after k-means 
preprocessing for different window types is presented 
in Fig. 5. Specifically, the performance of various sliding 
window sizes T without overlap (p = 0) and sliding windows 
with different overlapping ratios for the T = 1000 case are 
shown. As the RSS sampling rate in this work was 1 kHz, 
the time duration of each segmentation window of T = 1000 
is exactly T /1000 = 1s. The highest classification accuracy 
obtained was 99.8% for T = 1000 and p = 0. Thus this 
segmentation format was used to obtain the results presented 
in the remainder of this paper. Additionally, the mean normal­
ization described in Section II-D was observed to provide the 
highest classification accuracy throughout all the considered 
scenarios, thus it is also adopted in the sequel. 

B. PERFORMANCE METRICS 

A confusion matrix, also know as an error matrix, allows the 
visualization of an algorithm’s performance in statistical clas­
sification problems. In a typical confusion matrix, each row of 
the matrix represents the instances in a predicted/output class, 
while each column represents the instances in an actual/target 
class. The diagonal cells correspond to ratios of observa­
tions that are correctly classified and the off-diagonal cells 
correspond to ratios of incorrectly classified observations. 
Additionally, the Recall, also called true positive rate (TPR) 
and Precision, also called positive predictive value (PPV) 
metrics are also provided in the confusion matrices given 
in Tables 1 to 7. Recall is defined by the fraction of the 
number of correct positive results and the number of positive 
results that should have been returned, while Precision is 
defined by the fraction of the number of correct positive 
results and the number of all positive results predicted in the 

TABLE 1. Confusion matrix for multi-class SVM classifier. 

test set. The values of Recall and Precision are given by 

TP TP
Recall = = (21)

P TP + FN 
TP TP

Precision = = (22)
P̂ TP + FP 

where TP is the number of true positive samples, P is the 
number of all actual positive results, FN is the number of 
false negative samples, P̂ is the number of all predicted pos­
itive results and FP is the number of false positive samples. 
Also, the overall accuracy of correctly classified classes is 
given in the bottom right corner (boxed) of the confusion 
matrix table, i.e., the cross-section of the Recall and Precision 
entries 

Moreover, in order to consider both the Precision and 
Recall of the test to compute the score of classification accu­
racy, the F-measure [54] and Matthews correlation coefficient 
(MCC) [55] are commonly applied in the machine learning 
field. The main difference between the F-measure and MCC 
is that, MCC takes into account TP, true negative (TN), FP, 
and FN even if the classes are of very different sizes, while the 
F-measure does not include TN and performs better when the 
sizes of classes are exactly same. In this work, since the time 
the user spends in each UE use case may be slightly different, 
we adopt MCC as the classification score for our proposed 
recognition approach. The MCC under the multi-class case, 
also called the RU statistic (for U classes), is generally 
defined in terms of a U × U -size confusion matrix V in [56] 
and shown in Equation (23), as shown at the bottom of the 
netx page. In Equation (23), Vuv corresponds to the element 
of u-th row and v-th column in the confusion matrix V and 
{u, u', v, v', z ∈ Z : 1 ≤ u, u', v, v', z ≤ U} = {1, 2, . . . , U}. 
The maximum value of MCC is always +1 and the mini­
mum value will be between −1 and 0 depending on the true 
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TABLE 2. Confusion matrix for Decision Tree classifier. TABLE 4. Confusion matrix for EL classifier. 

TABLE 3. Confusion matrix for Naive Bayes classifier. 
C. UE USE CLASSIFICATION RESULTS 

distribution. Consequently, an MCC of +1 represents a per­
fect prediction, 0 means no better than random prediction and 
negative MCC values indicate a great disagreement between 
prediction and observation. 

Following the approach described above and illustrated 
in Fig. 1, classification results for different UE use cases using 
each classifier were obtained and are given in Tables 1 to 4. 
As we can see, the DT classifier outperforms all oth­
ers with an accuracy of 100% (MCC: 1.0) and 98.0% 
(MCC: 0.9725) for both mobile and static activities, respec­
tively. The NB classifier performs worst in both mobile 
and static cases, with an accuracy of 71.1% (MCC: 0.684) 
and 59.2% (MCC: 0.6756). The reason for this is that 
the statistical features we adopted in this work are poten­
tially highly correlated, whereas the assumption of the NB 
classifier is that the features are non-correlated. Further­
more, for every classifier the accuracy performance for the 
mobile activity is better than static activity. For example, 
with the EL classifier (Table 4), the overall accuracy is 
89.5% (MCC: 0.8329) in the mobile scenario, compared 
to 87.8% (MCC: 0.7835) for the static scenario. The main 
reason for this is that in the mobile scenario, the statistics 
of small-scale fading are highly correlated with the UE use 
cases [43], i.e., how the UE is handled by the user. How­
ever, in the static scenario, in addition to how the user is 
handing the UE, user breathing and vibration effects cannot 
be neglected at mmWave frequencies. Hence the statistics of 
small-scale fading are more likely to be quasi-stationary or 
non-stationary [57]. 

   
(VuuVvz − VuvVzu)u v zMCC =     (23)      

u( v Vuv)( u '|u '  =u v ' Vu ' v ' ) u( v Vvu)( u '|u '  =u v ' Vv ' u ' ) 
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TABLE 5. User orientation confusion matrix for the Call case. TABLE 6. User orientation confusion matrix for the App case. 

D. USER ORIENTATION CLASSIFICATION RESULTS 

The user orientation estimation results are provided 
in Tables 5 to 7. Again, the DT classifier performs better 
and is more robust than the other classifiers with an accuracy 
of 98.2% (MCC: 0.9725), 97.6% (MCC: 0.9672) and 100% 
(MCC: 1) for the Call, App, and Pocket cases, respectively. 
Furthermore, the classification accuracy for the Call case 
is higher than the App and Pocket scenarios. For example, 
for the multi-class SVM classifier, the overall classification 
accuracy for the Call case is 98.2% (MCC: 0.9793) and only 
92.7% (MCC: 0.8894) and 85.4% (MCC: 0.7807) for App 
and Pocket, respectively. A possible explanation for this is 
due to the fact that in the Call scenario, the user was holding 
the UE very close to the ear position at a higher elevation, 
with the antenna boresight facing away from the body, thus 

more strongly differentiating between the LOS, QLOS and 
NLOS cases than those in the App and Pocket scenarios. 
It is also interesting that the App and Pocket scenarios are 
difficult to recognize under QLOS conditions. For example, 
in the confusion matrix of the EL classifier in Table 6 and 
Table 7, the precision of QLOS is 62.5% (App) and 88.9% 
(Pocket), while the precision of LOS is 72.7% (App) and 
93.8% (Pocket) and the precision of NLOS is 64.3% (App) 
and 93.8% (Pocket), respectively. This indicates for the App 
and Pocket scenarios, the differences between QLOS and 
LOS/NLOS are not always clear as the antenna boresight 
is facing towards the floor in the App case and the UE is 
positioned at a lower elevation in the pocket in the Pocket 
case. 
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TABLE 7. User orientation confusion matrix for the Pocket case. TABLE 8. Computational time for training and validation. 

E. COMPUTATIONAL COST 

Another significant issue for human activity recognition in 
mmWave networks is the computational cost for training 
and validating the machine learning model. Table 8 shows 
the time taken to train and validate models for the various 
classifiers. The workstation used in this study featured an 
Intel(R) Core(TM) i7-6700 CPU operating at 3.40 GHz with 
16.0 GB of RAM. Table 8 shows that the DT and multi-SVM 
classifiers outperformed the other classifiers when consid­
ering computational time (0.09s and 0.28s, respectively), 
while the EL and NB classifiers were most computationally 
costly (with times of 2.60s and 3.76s respectively). Taking 
the accuracy and computational performance into account, 
the DT classifier is undoubtedly the best choice for mmWave 
UE use case recognition, while the multi-SVM classifier has 

acceptable performance, it is slightly more computationally 
expensive, and the NB classifier always performs worst, both 
in terms of accuracy and computational speed. 

F. FEATURE RANKING AND SELECTION 

1) FULL FEATURE SET 

Despite satisfactory classification accuracy being achieved by 
the supervised learning classifier, it is also useful to check the 
ranking of the adopted small-scale fading features, i.e., which 
of these features contributes most during the classification 
stage. As described in Section. II-C, the dimension of the 
adopted features is N × 67 and for the purpose of brevity, 
this feature set is denoted as Full feature set herein. 

In order to produce the ranking of the Full feature set, 
we utilize the ReliefF algorithm described in [33]. The Reli­
efF algorithm is based on KNN and the main concept behind 
ReliefF is that for the feature f , ReliefF searches for k (here 
k stands for the k nearest neighbors in KNN) near hits from 
one particular class, i.e., the closest inter-class instances, 
and k near misses from each different class, i.e., the closest 
intra-class instances. Afterwards, the differences between the 
intra-class’s and inter-class’s distance are compared, then 
the weight of feature f will be increased if the inter-class’s 
distance is larger than the intra-class’s and vice versa. Finally, 
the rank of various features will be produced based on the cor­
responding weights, with positive and larger values of weight 
receiving the highest rankings. ReliefF is a good choice in 
domains with strong inter-dependencies between features for 
multi-class classification problem [33]. Since the value of k is 
user-defined and affects the ranking results, various k values 
were carefully investigated and then chosen so that the feature 
ranking results reached were stable and thus reliable. 

The first ten feature ranking results of the Full feature 
set for the UE use case and user orientation classification 
are provided in Tables 9 and 10. In Table 9, for the mobile 
scenarios, the Nakagami m parameter and Rice K factor rank 
first and fourth, respectively, indicating that m and K values 
vary for different UE use cases and thus could be used to clas­
sify UE use cases for mobile users at mmWave frequencies. 
It is interesting to note that the LCR values between −2 dB 
and +2 dB are all within top nine ranks, indicating that the 
main differences between the small-scale fading observed for 
the mobile Call, App and Pocket cases occur close to the 
zero threshold level (i.e., mean). Nonetheless, for the static 
scenarios, both the Nakagami m parameter and Rice K factor 
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TABLE 9. Ranking of Full feature set for UE use case classification in the 
mobile and static scenarios. 

TABLE 10. Ranking of Full feature set for user orientation classification 
in the static scenarios. 

are not in the top ten rank, while the Tc(γ = 0), Tc(γ = 0.5) 
and Var take the top three places. In Table 10, it can be seen 
that the Var is ranked within top five features to classify 
the user orientation for all three UE use cases in the static 
scenarios. Moreover, different ranges of the threshold δ for 
LCR and AFD are observed for the various UE use cases, e.g. 
under the App case, δ is between −1 dB to +4 dB for the first 
ten ranked features, while δ is between −13 dB and +4 dB 
for the Pocket case. The reason for this is that the UE was 
positioned at a lower elevation for the Pocket case, thus the 
shadowing resulted in a more significant difference between 
the LOS, QLOS and NLOS scenarios than that under the App 
case. 

2) REDUCED FEATURE SET 

As seen in Tables 9 and 10, it can be concluded that the 
Nakagami m parameter and Rice K factor are crucial features 
when classifying UE use cases for the mobile scenarios. Also 
that Var, Tc(γ = 0.5), Tc(γ = 0), as well as LCR and AFD 
with δ between −2 and +2 dB play important roles when 
classifying UE use cases and user orientations for the static 
scenarios. Therefore, aiming to reduce the complexity and 
computation resources required for the classification system, 

Var, the Rice K factor, the Nakagami m parameter, Tc(γ = 
0.5), Tc(γ = 0), and LCR and AFD with δ between −2 and 
+2 dB are selected from the Full feature set to form a new 
feature set, denoted the Reduced feature set. Consequently, 
the dimension of the adopted features is reduced to N × 15. 
As shown in Section V-C to V-E, the DT classifier provided 
the best accuracy and computation performance, thus it is 
chosen to investigate the performance of the Reduced feature 
set. 

The confusion matrix of the Reduced feature set for the 
DT classifier is provided in Table 11. Compared to the Full 
feature set performance for the DT classifier in Tables 2, 5, 6 
and 7, as expected, the classification accuracy of the Reduced 
feature is decreased, e.g. for mobile scenarios, the UE 
use classification accuracy dropped slightly from 100% 
(MCC: 1.0) for the Full feature set to 94.7% (MCC: 0.9245). 
Significantly, it can be observed the feature reduction has a 
larger impact on the user orientation classification perfor­
mance of the App and Pocket cases compared to the other 
cases, e.g. the classification accuracy declined significantly 
from 92.7% (MCC: 0.8894) to 83.8% (MCC: 0.7361) for the 
App case. 

3) CONSTRAINED FEATURE SET 

Though the Full and Reduced feature sets have provided 
favorable classification accuracy, it is noted that the Rice 
K factor and Nakagami m parameter need to be estimated 
using MLE. The process of obtaining maximum likelihood 
estimates is usually computationally expensive, thus it may 
not be favorable for UE usage identification in real time 
communications. Therefore, Var, Tc(γ = 0), and LCR(δ = 
0) were further selected to form a Constrained feature set. 
As a result, the dimension of the Constrained feature set is 
limited to N × 3. 
The confusion matrix of the Constrained feature set for 

DT classifier is shown in Table 12. Intuitively, it is inter­
esting to observe that compared to the Reduced feature set 
performance in Table 11, the feature reduction in the Con­
strained feature set has a greater impact on the UE use case 
classification performance in the mobile case than the static 
case. For example, the UE use case classification accuracy 
for the mobile case deteriorates from 94.7% (MCC: 0.9245) 
to 86.8% (MCC: 0.8546) while the classification accuracy 
decreases from 89.8% (MCC: 0.8509) to 87.8 (MCC: 0.8282) 
in the static case. This further verifies the significance of the 
Rice K factor, the Nakagami m parameter as well as the LCR 
and AFD values around the zero threshold level during the 
UE use case classification process in the mobile case, which 
corresponds to the ranking result in Table 9. Moreover, it can 
be seen that for the Constrained feature set, the classifica­
tion performance deteriorates under the App and Pocket use 
cases, e.g. compared to the Reduced feature set performance 
in Table 11, the classification accuracy under the Pocket use 
case declined substantially from 82.9% (MCC: 0.743) to 
70.7% (MCC: 0.5689). This is in contrast to the Call scenario 
where the classification accuracy is maintained at 92.9% 
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TABLE 11. Confusion matrix of Reduced feature set for DT classifier. TABLE 12. Confusion matrix for Constrained feature set for DT classifier. 

(MCC here is between 0.8925 and 0.8974). Since the Rice 
K factor and Nakagami m parameter are not within the top 
ten ranks in Table 10, it can be inferred that in addition to the 
zero threshold level, the LCR and AFD must be considered 
over wider ranges in order to achieve a higher UE orientation 
classification accuracy for the App and Pocket use cases. 

G. PERFORMANCE COMPARISON WITH PREVIOUS WORK 

A performance comparison between this work and previous 
RSS/RSSI-based user activities/usage recognition work is 
provided in Table 13. Due to the much shorter wavelengths 
which exist in mmWave bands and the more profound effect 
that the human body has on signal propagation at these fre­
quencies, a higher resolution of user activities/usage can be 

14940 VOLUME 8, 2020 



L. Zhang et al.: An RSS-Based Classification of User Equipment Usage 

TABLE 13. Performance comparisons of RSS/RSSI-based user activities/usages recognition works. 

achieved. This can be seen from Table 13, as compared to 
previous work which considered traditional Wi-Fi or LTE 
bands along with multiple APs, in this study only a single 
centralized mmWave AP was used, yet a much higher classi­
fication accuracy was obtained, e.g., the classification of UE 
use usages can be achieved with an accuracy between 98.2% 
and 100%, while the user orientations can also be estimated 
with high accuracy (between 97.6% and 100%). 

VI. CONCLUSION AND FUTURE WORK 
In this work, we have presented a novel supervised and unsu­
pervised learning approach to automatically recognize user 
states and UE use cases based on the extraction of RSS statis­
tical features for mmWave indoor scenarios. Extensive mea­
surements were performed using a custom 60 GHz wireless 
measurement system for realistic indoor scenarios involving 
a UE and a ceiling mounted wireless AP. It was established 
that, for the considered activities, a sliding window length 
of 1s without overlap was the best choice for time series 
segmentation at 60 GHz. A range of supervised machine 
learning algorithms were applied and the results showed that 
the DT classifier outperformed all other classifiers with an 
accuracy of 100% and 98.0% for mobile and static scenarios, 
respectively. For a static user, their orientation could also be 
correctly estimated using the DT classifier with an accuracy 
of 98.2%, 97.6% and 100% for the Call, App and Pocket use 
cases, respectively. Also, the computational time required for 
the DT classifier to reach a decision was much lower than 
the others considered. Furthermore, the small-scale fading 
features used in this study were ranked during the training 
stage and it was found that, when it is desired to classify 
UE use cases under mobile conditions, the Nakagami m 
parameter, Rice K factor, and LCR around the zero threshold 
level contributed the most useful information. In the static 
scenarios, variance, channel coherence time and LCR/AFD 
were found to provide the greatest influence. Additionally, 
it was demonstrated that the orientation of a static user can 
be recognized by exploring the differences of the variance, 
channel coherence time and LCR/AFD. Finally, consider­
ing the requirements of a real time wireless communication 
system, we compared the system classification performance 

for the Full, Reduced, and Constrained feature sets. It was 
determined that feature reduction had a pronounced impact 
on the user orientation classification performance for the App 
and Pocket use cases, with the accuracy decreasing from 
92.7% to 75.7% and 85.4% to 70.7% for the App and Pocket 
use cases, respectively. In contrast, the feature reduction was 
observed to have a lesser effect when classifying the UE use 
cases in both mobile and static scenarios. 

Although the results obtained here show much promise 
for using the RSS as a UE usage mode classifier, many 
open research challenges remain which should be explored 
in the future work. One drawback of supervised learning is, 
the model has to learn from the labeled training data and, 
compared to an unsupervised learning approach, the labeling 
process usually requires extra labor or computational costs. 
Therefore, it is recommended that completely unsupervised 
learning approaches, such as self-organizing map (SOM), 
should be investigated. As observed in this study, the inter­
change between user states and UE usage scenarios can lead 
to inaccurate labeling of the data. Therefore using a vari­
able window size or type based on different user activities 
as introduced in [36], could be advantageous for practical 
deployment of the techniques proposed in this paper. It is 
worth highlighting that the use of a variable window size 
or type could also be extended to inform feature selection, 
e.g., as highlighted in [36], a larger size of window is often 
required when a smaller number of feature sets are selected, 
and vice versa. In addition, since the primary objective of the 
work undertaken in this study was to understand the potential 
of using the RSS to classify UE usage in the presence of 
the operator, future work should also take into account other 
factors which can affect the RSS such as pedestrian activity 
in the vicinity of the target UE. 
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