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Abstract 

Background: Morphological changes of the lumbar spine muscles are not well characterised with 

ageing. To further the understanding of age-related degeneration of the lumbar spine musculature, 

normative morphological changes that occur within the paravertebral muscles must first be 

established. 

Methods: A systematic review and meta-regressions were conducted adhering to PRISMA 

guidelines. Searches for published and unpublished data were completed in June 2019. 

Results: Searches returned 4781 articles. 34 articles were included in the quantitative analysis. 

Three-level meta-analyses showed age-related atrophy (r = -0.26; 95% CI: -0.33, -0.17) and fat 

infiltration (r = 0.39; 95% CI: 0.28, 0.50) in the lumbar paravertebral muscles. Degenerative changes 

were muscle-specific and men (r = -0.32; 95% CI: -0.61, 0.01) exhibited significantly greater muscle 

atrophy than women (r = -0.24; 95% CI: -0.47, 0.03). Imaging modality, specifically ultrasound, also 

influenced age-related muscle atrophy. Measurements taken across all lumbar levels revealed the 

greatest fat infiltration with ageing (r = 0.58, 95% CI: 0.35, 0.74). Moderators explained a large 

proportion of between-study variance in true effects for muscle atrophy (72.6%) and fat infiltration 

(79.8%) models. 

Conclusions: Lumbar paravertebral muscles undergo age-related degeneration in healthy adults with 

muscle, lumbar level and sex-specific responses. Future studies should use high-resolution imaging 

modalities to quantify muscle atrophy and fat infiltration. 

Key words: back muscles, lumbosacral region, sarcopenia, muscle degeneration, healthy aging 
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1. Introduction 

Age-related degeneration of skeletal muscle is characterised by intramuscular fat infiltration and a 

loss of muscle tissue (Cruz-Jentoft et al., 2010; Delmonico et al., 2009; Doherty, 2001; McGregor et 

al., 2014). These, together with the concomitant loss of muscle force generation (Doherty, 2001; 

Frontera et al., 2000; Kent-Braun and Ng, 2000), are associated with poor functional outcomes as 

well as increased risk of morbidity and mortality (Arango-Lopera et al., 2013; Baumgartner et al., 

1998; Beaudart et al., 2017; Cruz-Jentoft et al., 2010; Gale et al., 2007; Landi et al., 2013, 2012; 

Roubenoff and Hughes, 2000; Sayer et al., 2005). Sarcopenia encompasses the interrelationships 

between deteriorating muscle morphology, physical function and strength (Cruz-Jentoft and Sayer, 

2019). Adverse outcomes associated with sarcopenia are a major health concern and socioeconomic 

burden, resulting in estimated excess annual healthcare costs of £2.5b in the United Kingdom 

(Pinedo-Villanueva et al., 2019) and $18.5b in the United States (Janssen et al., 2004). Research on 

sarcopenia has predominantly focused on the systemic loss of muscle and its impact on physical 

function (Bahat et al., 2016; Batsis et al., 2013). However, a systemic approach to understanding 

sarcopenia may not be appropriate due to the muscle and location-specific nature of its progression 

(Abe et al., 2014a; Candow and Chilibeck, 2005). Whilst studies have examined degeneration of the 

appendicular muscles (Cawthon et al., 2015; Müller et al., 2014; von Haehling et al., 2010; Woo and 

Leung, 2016) there is a paucity of available research focusing on age-related changes in the trunk 

musculature. This has been acknowledged by other researchers (Crawford et al., 2016c; Kalichman 

et al., 2017) despite the importance of paravertebral muscles in the maintenance of spinal health 

and physical function being increasingly recognised (Crawford et al., 2019; Goubert et al., 2016; 

Hicks et al., 2005a; Kalichman et al., 2017). Although age is known to influence paravertebral muscle 

morphology and attempts have been made to characterise degeneration of the paravertebral 

muscles with the natural ageing process (Burian et al., 2018; Crawford et al., 2016a; Fortin et al., 

2014; Kalichman et al., 2017; Lee et al., 2017; Meakin et al., 2013; Shahidi et al., 2017; Valentin et al., 

2015) the phenomenon is not fully understood. 

The paravertebral muscles (i.e. multifidus, erector spinae, psoas and quadratus lumborum) all 

contribute to the stability of the lumbar spine (Barr et al., 2005; McGill, 2001; Santaguida and McGill, 

1995); although the anatomy and biomechanics of the multifidus demonstrate that it is the most 

suited to this role (MacDonald et al., 2006; Macintosh and Bogduk, 1986; Moseley et al., 2002; Ward 

et al., 2009). The larger more superficial muscles surrounding the lumbar region function primarily as 

torque generators for spinal movement. The psoas acts primarily as a flexor muscle of the hip 

(Bogduk et al., 1992), the erector spinae function primarily as extensor muscles (Potvin et al., 1991) 

and the quadratus lumborum brings about lateral flexion although its role in spinal biomechanics is 

undetermined (Phillips et al., 2008). Senescence of the lumbar paravertebral muscles may have 

greater functional consequences compared to the appendicular muscles (Eguchi et al., 2017; Hicks et 

al., 2005b). However, whereas efforts have been made to reach consensus of a reference standard 

for the measurement of appendicular muscle mass in sarcopenia (Buckinx et al., 2018; Cruz-Jentoft 

et al., 2019), such efforts have yet to translate to measurements of muscle morphology in the 

lumbar spine, resulting in disparate methods amongst studies. 

Relatively few studies have measured the morphology of all the four main lumbar paravertebral 

muscles. Indeed, previous systematic reviews focusing on paravertebral muscle degeneration have 

investigated the morphology of the multifidus and erector spinae without examining the psoas and 

quadratus lumborum (Fortin and Macedo, 2013; Hebert et al., 2009). Given the different functions of 

the lumbar paravertebral muscles and their potential for localised degeneration in diseased and 

healthy populations (Baracos, 2017; Crawford et al., 2016c; Min et al., 2013; Ploumis et al., 2011), 
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normative features are of interest for each individual muscle surrounding the lumbar spine. 

Furthermore, there has been limited investigation into both muscle size and quality of the 

paravertebral muscles. These measurements have been typically performed at a single 

representative slice in the lumbar region (Burian et al., 2018; Ebadi et al., 2018; Frost and Brown, 

2016; Gibbons et al., 1997; Hamaguchi et al., 2016; Hedermann et al., 2018; Hiepe et al., 2015; 

Ikezoe et al., 2012; Kalafateli et al., 2018; Kim et al., 2017; Maltais et al., 2018; Parkkola et al., 1993b; 

Rahmani et al., 2019; Watson et al., 2008; Yoshizumi et al., 2014) resulting in cross-sectional areas 

despite volumetric information being preferable due to its greater association with muscle function 

(Boom et al., 2008). Inconsistent imaging modalities and image analysis techniques across studies, as 

well as different measures representing muscle size and quality, also confound comparisons 

between studies. 

The considerable variation in methodological factors across studies makes comparing findings 

difficult, which has hampered our understanding of changes in lumbar muscle morphology with 

ageing. A necessary step to better understanding this age-related phenomenon is to conduct a 

systematic review and meta-analysis. To the authors’ knowledge, a quantitative analysis of the 

research on this topic has not been performed to date. Therefore, bringing together the evidence 

and accounting for methodological differences will establish a reference for normal age-related 

degenerative features of lumbar paravertebral muscle morphology and provide recommendations 

for future studies. 

2. Materials and methods 

2.1. Protocol and registration 

This systematic review was registered on the Prospero International Prospective Register of 

Systematic Reviews (CRD42018093157) and is reported based on the guidelines of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 

2009). 

2.2. Search methods for identification of studies 

To assess the relationship between healthy ageing and changes in muscle morphology, data was 

sought from eligible studies. Table 1 presents the eligibility criteria for inclusion in this systematic 

review. Although it can be questioned how baseline data from experimental studies may represent 

age-related muscle degeneration, in the current study baseline data were treated as cross-sectional 

observations and deemed eligible provided the inclusion criteria were met. To meet the inclusion 

criteria for exposure, studies had to show ageing as a generally healthy process, stating that 

participants were healthy, physically independent and free from disease likely to affect 

paravertebral muscle morphology (e.g. spondylolisthesis, low back pain, stroke and cancer). This was 

not exhaustive as shown by the MeSH description for “healthy ageing”, and due to the lack of 

consensus on a definition for healthy ageing (Peel et al., 2004). If a study reported disease cases 

within an otherwise healthy sample, data was sought for the healthy participants only. If the health 

status of participants was unclear or ambiguous, confirmation was sought from the author(s). 
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Table 1 Eligibility criteria for including studies in this systematic review 

Inclusion criteria: 

1.	 Study design: observational and baseline data from experimental studies 

2.	 Population: healthy sample including adults older than 40 years of age with an age range of at least ten years. If age is a 
dichotomous variable, older group’s mean age must be greater than 40 years and at least 10 years greater than the 
younger group’s mean age. Longitudinal studies must have a minimum follow-up of 10 years and the sample’s mean age 
must be greater than 40 years at follow-up. 

3.	 Exposure: healthy ageing 
4.	 Comparator: not required. If present, comparison group must meet the inclusion criteria for exposure and have a mean 

age more than ten years younger than the older group’s mean age 

5.	 Expected outcomes: quantitative measures of muscle size (atrophy) or quality (fat infiltration); Imaging modality – 
magnetic resonance imaging (MRI), computerised tomography (CT) or ultrasound; Lumbar level(s) of measurement – L1­
L5/S1; Muscles measured – measurements include psoas, erector spinae, quadratus lumborum and or multifidus 

Exclusion criteria: 

1.	 Study design: case series, case reports, preclinical studies, reviews and meta-analyses 

2.	 Population: sample contains no participants aged over 40 years. If age is a dichotomous variable, older group’s mean age 
equal to or less than 40 years or within ten years of the comparison group’s age. Longitudinal studies’ follow-up period is 
less than ten years or sample’s mean age equal to or less than 40 years at follow-up 

3.	 Exposure: evidence of disease or impairment that is likely to affect lumbar paravertebral muscle morphology 
4.	 Comparator: if reported, comparison group shows evidence of disease or impairment, or has a mean age within ten 

years of the older group’s mean age 
5.	 Outcomes: semi-quantitative and qualitative measures of muscle size or quality; Imaging modality – use of imaging 

modality other than MRI, CT or ultrasound; Lumbar level(s) of measurement – does not include measurements with L1­
L5/S1; Muscles measured – measurements do not include psoas, erector spinae, quadratus lumborum and or multifidus 

2.3. Information sources and data extraction 

A search strategy was developed by one reviewer (AD) for PubMed (Table 2), which was adapted to 

the syntax and appropriate subject headings of the other databases. The databases searched were 

MEDLINE and CINAHL (via EBSCOhost), PubMed, The Cochrane Central Register of Controlled Trials 

(CENTRAL), and EMBASE (via OvidSP). No study design, date or participant demographic restrictions 

were imposed on the search to ensure literature saturation. An English language restriction was 

used due to resource limitations. Final searches were completed June 1st, 2019. After initial searches 

were completed and duplicate records removed (AD), titles and abstracts were screened 

independently and in duplicate (AD, CG) against the eligibility criteria. Unpublished data and grey 

literature were sought to ensure a more comprehensive search strategy and reduce the possibility of 

publication bias (Paez, 2017). Articles not excluded based on title and abstract and deemed relevant 

progressed to full-text review. Full-text eligibility screening was completed independently by two 

reviewers (AD, CG) and reasons for exclusion were provided. Disagreements on eligibility were 

resolved by discussion. Whilst it was planned that unresolved disagreements would be arbitrated 

independently by a third reviewer (JH), this was never exercised due to the reviewers reaching 

consensus in all discussions. Where studies were described in multiple publications, the publication 

with the most comprehensive data was used as the primary reference, excluding the others if the 

same data were presented. Where multiple publications from the same study but different data 

were retrieved, all relevant publications were included. If data could not be obtained from the full-

text or if clarification was required, authors were contacted by one reviewer (AD). If sufficient data 

could not be obtained for a study, the study was excluded. Two reviewers (AD, CG) extracted data 

independently from eligible studies on: study design; sample and comparator information [sample 

size, gender, mean age, age range, mean body mass index (BMI), ethnicity, additional information 
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about the setting, definition of health status]; imaging modality; image analysis outcome measures; 

lumbar level(s) and paravertebral muscle(s) measured; study results including statistical findings and 

overall conclusions. 

Table 2 PubMed search strategy 

#1 Paraspinal muscles MeSH Terms 
#2 Paraspinal musc* Title/Abstract 
#3 Back muscles MeSH Terms 
#4 Back musc* Title/Abstract 
#5 Multifidus Title/Abstract 
#6 Lumbar multifidus Title/Abstract 
#7 Lumbar musc* Title/Abstract 
#8 Trunk musc* Title/Abstract 
#9 Paravertebral musc* Title/Abstract 
#10 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 
#11 Aged MeSH Terms 
#12 Aged Title/Abstract 
#13 Age Title/Abstract 
#14 Aging MeSH Terms 
#15 Aging Title/Abstract 
#16 Ageing Title/Abstract 
#17 Elderly MeSH Terms 
#18 Elderly Title/Abstract 
#19 Older adult* Title/Abstract 
#20 #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 
#21 Atroph* Title/Abstract 
#22 Muscular atrophy MeSH Terms 
#23 Spinal Muscular Atrophy MeSH Terms 
#24 Degenerat* Title/Abstract 
#25 Morpho* Title/Abstract 
#26 Morphology MeSH Terms 
#27 Size Title/Abstract 
#28 Attenuation Title/Abstract 
#29 Infiltration Title/Abstract 
#30 Replacement Title/Abstract 
#31 Sarcopen* Title/Abstract 
#32 Sarcopenia MeSH Terms 
#33 #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 
#34 #10 AND #20 AND #33 
#35 Animals MeSH Major Topic NOT Humans MeSH Major Topic 
#36 #34 NOT #35 

2.4. Assessment of risk of bias in individual studies and study quality 

Risk of bias was assessed independently by two reviewers (AD, CK) at the study level using the 

National Institutes of Health (NIH) Study Quality Assessment Tools. Reviewers used the study rating 

tools to rate the quality of the study as good, fair or poor. The Risk of Bias Assessment Tool for 

Nonrandomised Studies (RoBANS) (Kim et al., 2013; Park et al., 2011) was also used (AD, CK) to 

independently assess risk of bias at the outcome level. ! judgement of “low”, “high” or “unclear” 

was assigned to each question for all included studies. If ratings using the NIH Study Quality 

Assessment tool or judgements using the RoBANS tool differed between reviewers, reviewers 

discussed the study in an effort to reach consensus, otherwise a third reviewer (JH) arbitrated 

disagreements not due to assessor error. 
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2.5. Synthesis of results and statistical methods 

Standardised effect sizes were used in the meta-analysis due to studies using different measurement 

scales. Pearson’s product-moment correlation coefficient (r) was the principal summary measure. 

For studies reporting ageing as a continuous variable, correlations (r) were transformed into Fisher’s 

z units (z’) to approximate normally distributed data. Data were excluded from the meta-analysis 

when studies used non-parametric statistical tests. For studies that reported ageing as a 

dichotomous variable, the standardised mean difference (�ohen’s d) was calculated. �ohen’s d 

values were then converted into Fisher’s z units (Borenstein et al., 2009; Polanin and Snilstveit, 

2016). To account for the large variability in spinal-level measurements and different slice 

orientations, evaluations were categorised into high (L1-L2), mid (L2/3-L3/4), low (L4-L5/S1) and all 

(combined measurements across high, mid and low levels) lumbar levels. If a study contributed 

multiple effect sizes, differing only by lumbar level measurements, they were aggregated into 

appropriate categories. For example, if a study measured psoas cross-sectional area at the L1 and L2, 

these two effect sizes were aggregated to provide one effect size at the “high” level. 

The “metaSEM” package (Cheung, 2014a) was used in the RStudio (RStudio Team (2015). RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. Version 

1.1.463) environment to perform three-level meta-analyses. Level 1 referred to participants within 

studies, level 2 (within-study variance) referred to interdependent effects within studies, and level 3 

(between-study variance) referred to the studies themselves. This approach allowed us to fully 

explore the informative differences between outcomes whilst accounting for statistical dependency 

due to studies contributing multiple effect sizes. The three-level meta-analytical model was also 

adopted as the dependency between effect-sizes was unknown (Cheung, 2014a, 2014b). Due to the 

complexity of the data obtained, traditional meta-analytical methods were not appropriate and 

would have likely artificially reduced variance within and between studies (Cheung and Chan, 2008). 

Moderators were included in the models to assess their influence on the effect size estimate and to 

investigate the amount of between-study variance in true effects that could be explained by their 

inclusion. Categorical moderators included: 

1.	 sex: female*, male; 

2.	 muscle: psoas*, erector spinae, multifidus, quadratus lumborum, combined paraspinals 
(erector spinae + multifidus), combined paravertebral muscles (all four muscles); 

3.	 level: all*, high, mid, low; and 

4.	 imaging modality: CT*, MRI, ultrasound. 

Asterisks denote the reference category. Dummy codes were created for categorical moderators for 

entry into the meta-regression models. 

In addition, age (mean and range) and mean BMI were included as continuous. Continuous 

covariates were centred, but not standardised, to increase numerical stability. Additionally, random-

effects meta-analyses, with effects aggregated within studies, were performed using the R-package 

“metaphor” (Viechtbauer, 2010) to estimate the robustness of the three-level meta-analyses. 

Moderator coefficients and summary effects (z’) were transformed back to correlation coefficients 

(r) with their 95% confidence intervals. Before performing any meta-analyses, a Baujat plot was 

visually inspected to identify and remove effects that excessively contributed to heterogeneity and 

the overall result (Baujat et al., 2002). For muscle size, three effect-sizes (Aboufazeli et al., 2018; 

Hedermann et al., 2018), and for fat infiltration, two effect-sizes (Frost and Brown, 2016; Masaki et 
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al., 2015) lay away from the majority and were deemed outliers. Sensitivity analyses were performed 

to explore how the main findings were affected by the removal of studies that: a) did not explicitly 

state that their sample were healthy and with a normal BMI (18.5-24.9) and b) were rated as fair or 

poor quality based on the NIH quality assessment tools. 

2.6. Investigation of heterogeneity and explained variance in true effects 

Heterogeneity within (level 2) and between studies (level 3) was evaluated using the Chi-squared 

test and I2 statistic. The I2 statistic describes the percentage of variability in the point estimates that 

is due to heterogeneity rather than sampling error (Deeks, 2011). Interpretation of heterogeneity 

followed Deeks and colleagues’ (Deeks, 2011) suggestion that 0-40% might not be important, 30­

60% may represent moderate heterogeneity, 50-90% may represent substantial heterogeneity and 

75-90% considerable heterogeneity. The percentage of variance in true effects (R2) explained by the 

inclusion of moderators was calculated (Konstantopoulos and Hedges, 2009). 

2.7. Assessment of risk of bias across studies 

To explore publication bias potential, asymmetry was inspected visually using funnel plots and 

statistically using Egger’s regression intercept test (Egger et al., 1997), for which there were a 

sufficient number of studies. Sutton et al (Sutton et al., 2000) suggest that five studies is usually too 

few to allow the detection of an asymmetric funnel. Duval and Tweedie’s trim and fill test (Duval and 

Tweedie, 2000) was performed if publication bias was indicated, providing a revised summary point 

estimate adjusted for publication bias. 
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3. Results 

3.1. Study selection 

Figure 1 PRISMA flow diagram depicting the selection process for studies 

The flow diagram (Fig. 1) presents the study selection process applied in this meta-analysis. Of the 

35 studies (Aboufazeli et al., 2018; Anderson et al., 2013, 2012; Bailey et al., 2010; Beneck and Kulig, 

2012; Burian et al., 2018- �rawford et al., 2016a- D’Hooge et al., 2012; Danneels et al., 2000; Frost 

and Brown, 2016; Gibbons et al., 1997; Hamaguchi et al., 2016; Hedermann et al., 2018; Hiepe et al., 

2015; Ikezoe et al., 2015, 2012; Johannesdottir et al., 2018; Kim et al., 2017; Lee et al., 2017; 

Lorbergs et al., 2019; Maltais et al., 2018; Marshall et al., 2011; Masaki et al., 2015; Meakin et al., 

2013; Rahmani et al., 2019; Schweitzer et al., 2016; Shadani et al., 2018; Shahtahmassebi et al., 

2017; Sions et al., 2017a; Sollmann et al., 2018; Stokes et al., 2005; Thakar et al., 2016; Valentin et 

al., 2015; Watson et al., 2008; Yoshizumi et al., 2014) included in the qualitative synthesis, 32 
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reported outcomes for muscle size (n = 5523) and 18 studies reported outcomes for muscle quality 

(fat infiltration) (n = 3471). These studies comprised of one randomised controlled trial whilst all 

others adopted observational study designs. Of these, 10 studies originated from North America, 12 

from European countries, 11 from Asian countries and 2 from Australia. For studies where separate 

data by sex were obtained, studies reporting on muscle atrophy with ageing as a continuous variable 

involved 2860 male and 2430 female participants. Studies comparing muscle size between older and 

younger groups involved 50 males and 64 females in the older group and 50 males and 69 females in 

the younger group. For studies reporting on muscle fat infiltration with ageing as a continuous 

variable, 1615 males and 997 female participants were included. Studies comparing muscle fat 

infiltration between older and younger groups involved 171 males and 186 females in the older 

group and 293 males and 209 females in the younger group. Across all studies, age ranged from 18 

to 94 years for women, whilst for men age ranged from 18 to 92 years. Women’s mean BMI was 

lower than men’s and ranged from 20.5 to 28.0, whereas men exhibited a mean range of 22.2 to 

30.4, discounting younger comparison groups. Further details on study design, population 

characteristics, assessment of health, outcome measures and study quality are presented as a 

graphical overview in Table 3 for each included study. For the three-level meta-analytical model on 

age-related muscle atrophy, 29 studies were included giving 144 correlation coefficients. For the 

three-level model on age-related fat infiltration, 16 studies encompassing 92 correlation coefficients 

were included. 

[nb. Table 3 is provided separately to maintain its readability] 

Table 3 Graphical overview of study characteristics 

3.2. Assessment of risk of bias in included studies 

A risk of bias summary is presented in Fig. 2 with the reviewers’ judgements on overall study quality 

and on each domain included in the graphical overview of study characteristics (Table 3). 

Figure 2 Risk of bias summary: review of authors' judgements on each item from the Risk of Bias Assessment Tool for 
Nonrandomised Studies (RoBANS) presented as percentages across all included studies 
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3.3. Overall summary 

Random-effects meta-analyses were performed where each study contributed one effect size. The 

correlation (with its 95% Wald CI’s) between healthy ageing and change in lumbar paravertebral 

muscle size was estimated at r = -0.25 (-0.33, -0.18, p < 0.001). For change in intramuscular fat 

infiltration with ageing, the overall correlation was r = 0.38 (95% CI: 0.27, 0.49, p < 0.001). These 

correlations were similar to those obtained from the three-level meta-analyses (Table 4). To assess 

the robustness of the three-level models, the null hypothesis: τ2(3) =0 was tested. Likelihood-ratio 

tests for the muscle size model (-2LL (df1) = 54.6, p < 0.001) and muscle quality model (-2LL (df1) = 

56.3, p < 0.001) demonstrated that the three-level models were statistically better than the two-

level models. 

Table 4 Three-level meta-analysis models for age-related muscle atrophy and fat infiltration in the lumbar paravertebral 
muscles 

No. of studies No. of effects Effect size (r) 95% CI p 

Three-level muscle atrophy model 

Intercept 29 144 -0.255 -0.333, -0.169 < 0.001 

Level 2: τ2(2) = 0.004 (SE = 0.002), p = 0.05, I2 = 6.60% (95% LBCI 1.8% 17.5%) Model 
Level 3: τ2(3) = 0.039 (SE = 0.014), p < 0.01, I2 = 73.97% (95% LBCI 56.3% 86.0%) summary 
Q(df143) = 367.44, p < 0.001, -2LL(df141) = -26.29 

Three-level fat infiltration model 

Intercept 16 92 0.394 0.278, 0.499 < 0.001 

Level 2: τ2(2) = 0.006 (SE = 0.002), p < 0.05, I2 = 7.54% (95% LBCI 2.4% 20.0%) Model 
Level 3: τ2(3) = 0.059 (SE = 0.025), p < 0.05, I2 = 79.84% (95% LBCI 61.7% 91.1%) summary 
Q(df91) = 411.96, p < 0.001, -2LL(df89) = -11.06 

CI = Wald confidence intervals; LBCI = likelihood-based confidence intervals; -2LL = -2 log likelihood 

For the random-effects meta-analyses, examination of the I2 statistic suggested a considerable level 

of heterogeneity (muscle size model: I2 = 94%, Q(df29) = 223.5, p < 0.001; muscle quality model: I2 = 

98%, Q(df16) = 464.1, p < 0.001). To explore potential reasons for heterogeneity, a sub-group analysis 

was performed by grouping study sample effect sizes by sex. One study analysing muscle size 

(Yoshizumi et al., 2014) and one analysing muscle quality (Lee et al., 2017) combined sexes in their 

analysis; these studies were removed from further analyses. For the muscle atrophy model, the 

random-effects meta-analysis produced summary effects of r = -0.22 (95% CI: -0.31, -0.13, p < 0.001) 

for females and r = -0.32 (95% CI: -0.40, -0.23, p < 0.001) for males, which were similar to those 

obtained in the three-level meta-regression model (Table 5). For the fat infiltration model, the 

random-effects meta-analysis produced summary effects of r = 0.42 (95% CI: 0.25, 0.57, p < 0.001) 

for females, and r = 0.44 (95% CI: 0.31, 0.55, p < 0.001) for males. However, these correlations were 

considerably less than those obtained from the three-level meta-regression (Table 6). 

Substantial heterogeneity was still apparent in both muscle atrophy (females I2 = 71%, Q(df21) = 48.9, 

p < 0.001; males I2 = 74%, Q(df24) = 65.3, p < 0.001) and fat infiltration (females I2 = 82%, Q(df11) = 

46.9, p < 0.001; males I2 = 82%, Q(df12) = 71.4, p < 0.001) random-effect meta-analyses when sub-

grouped for sex. The three-level models also revealed greater variance between studies (level 3) 
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than within studies (level 2) (Table 4), which was supported by rejection of the null hypothesis: τ2(2) = 

τ2(3) for both muscle size (-2LL (df1) = 15.3, p < 0.001) and muscle quality (-2LL (df1) = 14.0, p < 0.001) 

models. This indicates moderators are more likely to exist between than within studies. Therefore, 

potential moderators (Sex, Muscle, Level, Imaging technique, Mean sample BMI, Mean sample age, 

Sample age range) were examined using meta-regression to further explore reasons for between-

study variance. 

3.4. Three-level meta-regression models 

The potential differentiating role of moderators on the overall relationship between changes in 

muscle morphology and ageing in healthy older adults were evaluated using three-level meta-

regression. After controlling for other potential covariates that may influence the relationship 

between the change in muscle size and ageing, males (r = -0.32) differed significantly (p < 0.01) with 

females (r = -0.24). Muscle as a group was approaching significance (p = 0.06), whilst the erector 

spinae (r = -0.32) and quadratus lumborum (r = -0.33) were significant individual muscle moderators 

(p = 0.01 and p < 0.01, respectively). There was a significant moderation with the average correlation 

obtained in studies using ultrasound (r = 0.08, p < 0.001); this was reflected in imaging modality 

reaching significance as a group (p < 0.01). Moderators with their regression coefficients are 

presented in Table 5. The inclusion of all moderators explained 72.6% of between-study variance in 

true effects (Fig. 3), although the significant moderators alone explained 63.5%. 

Table 5 Three-level meta-regression model estimating the moderating effects of Sex (Female = reference category), Muscle 
(Psoas = reference category), Level (All levels = reference category), Imaging technique (CT = reference category), BMI, 
mean age, and age range on the relationship between change in paravertebral muscle size and ageing 

Moderator β SE 95% CI P 

Intercept* -0.24 0.14 -0.47, 0.03 0.02 
Male** -0.08 0.03 -0.14, -0.02 < 0.01 

Muscle (∆LL (df5) = 10.54, p = 0.06) 
Erector spinae* -0.08 0.03 -0.14, -0.02 0.01 
Multifidus -0.03 0.06 -0.14, 0.08 0.55 
Quadratus lumborum** -0.09 0.03 -0.15, -0.03 < 0.01 
Paraspinals 0.05 0.14 -0.09, 0.19 0.50 
Combined paravertebrals -0.18 0.07 -0.44, 0.10 0.20 

Level (∆LL (df3) = 1.79, p = 0.62) 
High levels 0.00 0.14 -0.27, 0.28 0.98 
Mid levels -0.07 0.13 -0.32, 0.18 0.59 
Low levels -0.05 0.13 -0.30, 0.21 0.70 

Imaging modality** (∆LL (df2) = 9.91, p < 0.01) 
MRI 0.13 0.08 -0.02, 0.28 0.09 
Ultrasound*** 0.32 0.10 0.14, 0.48 < 0.001 
BMI 0.00 0.03 -0.06, 0.07 0.95 
Mean age 0.02 0.03 -0.04, 0.09 0.49 
Age range -0.03 0.03 -0.09, 0.03 0.28 

Level-2 variance 0.002 0.001 -0.001, 0.005 0.23 
Level-3 variance 0.011 0.006 -0.002, 0.023 0.09 
# of studies = 29, k = 144 correlation coefficients, Q(df143) = 367.44; p < 0.001, -2LL(df127) = -64.58, *< 0.05, **< 0.01, ***< 0.001 
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Within studies Between studies (I2) 

26.03% 73.97% Total variance in true effects 

Between study variance 27.45% 72.55% 

Unexplained Explained by model (R2) 

Figure 3 Visual representation of the amount of between-study variance in true effects explained by moderators for the 
relationship between muscle atrophy and ageing 

The overall relationship between intramuscular fat infiltration and ageing was moderated by the 

selection of paravertebral muscle (p < 0.001), after controlling for other potential covariates. Within 

this group, the erector spinae (r = 0.73), quadratus lumborum (r = 0.68) and paraspinals (r = 0.82) 

were significant individual moderators (p < 0.001). Level of lumbar measurement also made a 

significant difference in the estimated correlation between fat infiltration and ageing (p = 0.03). 

Measurements at the high (r = 0.12, p = 0.002), mid (r = 0.24, p = 0.012) and low (r = 0.22, p = 0.009) 

lumbar levels differed significantly with measurements taken across all lumbar levels (r = 0.58). BMI 

was close to having a significant moderating effect on overall relationship (β = 0.10, p = 0.08). Age 

range of the sample was however significant and had an even greater influence on the relationship 

between fat infiltration and ageing (β = 0.16, p < 0.001). Moderators with their regression 

coefficients are presented in Table 6. The inclusion of all moderators explained 79.8% of between-

study variance in true effects (Fig. 4), although the significant moderators alone explained 65.8%. 

Table 6 Three-level meta-regression estimating the moderating effects of Sex (Female = reference category), Muscle (Psoas 
= reference category), Level (All levels = reference category), Imaging technique (CT = reference category), BMI, mean age, 
and age range on the relationship between change in paravertebral muscle fat infiltration and ageing 

Moderator β SE 95% CI P 

Intercept*** 0.58 0.15 0.35, 0.74 < 0.001 
Male -0.05 0.03 -0.11, 0.02 0.18 

Muscle*** (∆LL (df4) = 29.59, p < 0.001) 
Erector spinae*** 0.15 0.03 0.09, 0.20 < 0.001 
Multifidus 0.08 0.08 -0.08, 0.23 0.33 
Quadratus lumborum*** 0.10 0.03 0.05, 0.16 < 0.001 
Paraspinals*** 0.24 0.06 0.13, 0.34 < 0.001 

Level* (∆LL (df3) = 8.85, p = 0.03) 
High levels** -0.46 0.16 -0.67, -0.18 0.002 
Mid levels* -0.34 0.14 -0.56, -0.08 0.012 
Low levels** -0.36 0.14 -0.58, -0.09 0.009 

Imaging modality (∆LL (df2) = 1.40, p = 0.50) 
MRI -0.04 0.10 -0.23, 0.15 0.66 
Ultrasound -0.24 0.20 -0.57, 0.15 0.23 
BMI 0.10 0.06 -0.01, 0.22 0.08 
Mean age -0.05 0.06 -0.16, 0.06 0.36 
Age range*** 0.16 0.04 0.08, 0.25 < 0.001 

Level-2 variance 1e-10 0.001 -0.002, 0.002 0.99 
Level-3 variance 0.012 0.007 -0.001, 0.025 0.08 
# of studies = 16, k = 92 correlation coefficients, Q(df91) = 411.96, p < 0.001, -2LL(df76) = -64.83, *< 0.05, **< 0.01, ***< 0.001 
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Within studies Between studies (I2) 

20.16% 79.84% Total variance in true effects 

Between study variance 20.19% 79.81% 

Unexplained Explained by model (R2) 

Figure 4 Visual representation of the amount of between-study variance in true effects explained by moderators for the 
relationship between fat infiltration and ageing 

3.5. Risk of bias across studies 

For studies assessing muscle size, Egger’s regression intercept test (z = 1.41, p = 0.16) indicated that 

publication bias was not present. For studies assessing muscle quality (fat infiltration), visual 

inspection of the funnel plot (Fig. 5) suggested potential evidence of publication bias, which was 

consistent with the Egger’s regression intercept test (z = -2.03, p = 0.04). Due to the asymmetry 

detected in the funnel plot, Duval and Tweedie’s trim and fill test estimated six studies should be 

added to the right of the mean, which would yield an adjusted point estimate of r = 0.49 (95% CI: 

0.39, 0.58) for the relationship between fat infiltration and ageing. 

Significance contours showing 5% and 1% 

significance levels. 

Eggers regression slope 

Adjusted summary effect 

Summary effect 

Males 

Females 

95% confidence contours 

Imputed studies with male samples 

Imputed studies with female samples 

Figure 5 Contour enhanced funnel plot to illustrate potential publication bias for studies assessing muscle quality (fat infiltration) 

3.6. Sensitivity analyses 

For the relationship between muscle atrophy and ageing, removing studies that did not explicitly 

state that their sample were “healthy” and had a BMI outside of 18.5-24.9 yielded a lower overall 

correlation (r = -0.23, 95% CI: -0.36, -0.10, p < 0.001), no significant moderators and lower between-

study variance (I2 = 67%) when compared to the original three-level meta-analysis. The inclusion of 
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moderators explained 100% of the between-study variance in true effects. Removal of fair and poor-

quality studies yielded a greater overall effect (r = -0.35, 95% CI: -0.47, -0.22, p < 0.001); significant 

moderators included sex (p < 0.02) and mean age of the sample (p < 0.05). Between-study variance 

was also lower in this model (I2 = 65%) compared to the original three-level meta-analysis, and the 

inclusion of moderators resulted in an R2 value of 77%. 

For the relationship between fat infiltration and ageing, removing studies that did not explicitly state 

that their sample were “healthy” or had a �MI outside of 18.5-24.9 yielded a lower overall 

correlation (r = 0.32, 95% CI: 0.21, 0.43, p < 0.001). No moderators were significant in this model, 

although between-study variance was substantially lower (I2 = 17%) compared to the original three-

level meta-analysis. Removal of fair and poor-quality studies slightly lowered the overall correlation 

(r = 0.39, 95% CI: 0.18, 0.56, p < 0.001). Males (p < 0.02), paraspinal muscles (p < 0.01), low lumbar 

levels (p < 0.05), ultrasound (p < 0.02), BMI (p < 0.01) and mean age of the sample (p < 0.01) all 

significantly moderated the relationship between fat infiltration and ageing in the adjusted three-

level meta-regression. Muscle (p < 0.02) was also retained as a significant moderator group. 

Between-study variance was lower in this model (I2 = 72%) compared to the original three-level 

meta-analysis. Both sensitivity analyses resulted in 100% of the between-study variance in true 

effects being explained by the inclusion of moderators. 
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4. Discussion 

This is the first study to present a systematic review and meta-analysis on age-related degeneration 

of the lumbar paravertebral muscles in healthy adults. Given the inconsistent methods and equivocal 

nature of findings on this topic, this work provides up-to-date evidence on normal age-related 

changes in the muscles surrounding the lumbar spine and constitutes an important contribution to 

the literature base to date. The current findings show that the paravertebral muscles undergo 

degenerative morphological changes as part of healthy ageing in older adults, with increases in fat 

infiltration more effectual than reductions in muscle size. This suggests that fat infiltration may be a 

better indicator of age-related decline in the lumbar musculature than muscle atrophy. Indeed, 

given the predominance of type I fibres in the lumbar paravertebral muscles (Kimura, 2002; 

Mannion et al., 1997; Ng et al., 1998; Parkkola et al., 1993a; Sirca and Kostevc, 1985) and that type I 

fibres tend to accumulate fat deposits with age (Choi et al., 2016; Gueugneau et al., 2015) whilst 

fast-twitch fibres typically exhibit greater atrophy with age (Gueugneau et al., 2015; Lexell et al., 

1988; Novotny et al., 2015), it is unsurprising that fat infiltration was the more apparent 

degenerative feature in the lumbar musculature. Although the findings in this review can be 

explained by established mechanisms that contribute to the development and morphological 

expressions of age-related sarcopenia (Bougea et al., 2016; Doherty, 2003; Klitgaard et al., 1990; 

Larsson et al., 1979; Vettor et al., 2009; von Haehling et al., 2010), confidence in the findings is 

diminished somewhat by the substantial variance between studies. However, disparate methods 

and population characteristics amongst studies included in this review were able to explain a large 

proportion of variance and shed light on which factors play a pivotal role in moderating the age-

related changes in lumbar paravertebral muscle morphology. 

4.1. Sex differences in muscle atrophy 

The relationship between muscle atrophy and ageing differed significantly between males and 

females but not for fat infiltration. Males exhibited greater lumbar paravertebral muscle atrophy 

with ageing compared to females. Males possess greater muscle mass than females, therefore 

having greater potential for atrophy with age (Janssen et al., 2000). However, this may be overly 

simplistic and not reflect the complex sex-specific mechanisms that drive decrements in muscle 

morphology associated with sarcopenia (Kirchengast and Huber, 2009; Maggio et al., 2013; Payette 

et al., 2003). Lifestyle factors, such as physical activity, may influence the sex-specific loss of muscle 

size. Given that physical activity reduces with ageing equally among men and women (Milanović et 

al., 2013) and physical activity has been shown to attenuate the loss of lower limb muscle volume in 

men but not women (Rivera et al., 2016), it is possible that males also experience greater age-

related muscle atrophy in other muscles such as those located in the posterior trunk. However, 

paravertebral muscle size is relatively independent of physical activity level (Dasarathy and Merli, 

2016; Fortin et al., 2014). A more likely explanation concerns the sex-specific muscle fibre 

phenotypes of the lumbar musculature. Males possess a greater proportion of type II muscle fibres 

in the erector spinae than women (Mannion et al., 2000). Whilst type I fibres are more affected by 

inactivity and denervation-induced atrophy, type II fibres are more susceptible to the effects of 

ageing (Wang and Pessin, 2013). Therefore, a greater proportion of type II fibres may predispose 

men to greater paravertebral muscle atrophy. This is reflected in the current findings where men 

exhibited greater age-related atrophy than women. However, muscle quality does not appear to be 

a sex-specific degenerative feature of the lumbar paravertebral muscles. 
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4.2. Muscle-specific degenerative responses 

Muscle as a group significantly moderated the relationship between fat infiltration and ageing and 

was approaching significance for moderating the relationship between muscle atrophy and ageing. 

These findings indicate that there is a muscle-specific response in the lumbar musculature. 

Therefore, selection of paravertebral muscles may be important when evaluating age-related muscle 

degeneration in the lumbar spine. Atrophy and fat infiltration of the erector spinae and quadratus 

lumborum showed significantly greater effects with ageing compared to the reference muscle 

(psoas). The correlation between ageing and fat infiltration in the paraspinals was also significantly 

greater. Indeed, the paraspinals yielded the greatest estimate of fat infiltration amongst the 

paravertebral muscles, but exhibited the least amount of age-related atrophy, albeit without 

reaching significance. There are perhaps two main reasons to explain these findings. The first 

concerns how the paraspinal muscles’ region of interest (ROI) is defined. Measurements of the 

paraspinals are sometimes preferred due to the difficulty in discerning the erector spinae and 

multifidus muscle boundaries (Lee et al., 2012). The fascial line between the muscles is used to 

distinguish the medial border of the erector spinae (Crawford et al., 2017). However, this non-

muscular tissue, typically included in paraspinal muscle measurements (Gungor et al., 2015; Lee et 

al., 2012; Ropponen et al., 2008; Schlaeger et al., 2019), may overestimate fat infiltration especially 

when fat tissue under the lumbosacral plane has been excluded from the ROI (Berry et al., 2018; 

Crawford et al., 2017). With advancing age, a redistribution of fat and increase in non-contractile 

tissue between muscles is observed (Addison et al., 2014). Therefore, it is likely that the greater 

amount of fat infiltration in the paraspinals is an overestimation and in part caused by the inclusion 

of age-related increases in non-muscle tissue between the multifidus and erector spinae. This 

approach may also explain why atrophy is seemingly attenuated in the paraspinals. Increases in non-

contractile tissue size between the multifidus and erector spinae may mask age-related muscular 

atrophy of the paraspinals. However, fat infiltration has been shown to exceed the loss of lean 

tissue; indicating that intramuscular adipose tissue does not simply replace the space left by muscle 

atrophy (Manini et al., 2007). As the paraspinal muscles (erector spinae and multifidus) are 

composed mainly of slow-twitch fibres (J∅rgensen et al., 1993; Mannion et al., 1997; Rantanen et al., 

1994) that are more vulnerable to fat accretion than atrophy (Choi et al., 2016; Gueugneau et al., 

2015), this may also explain why paraspinal muscle size is relatively spared in comparison to 

compositional changes. 

The second explanation concerns functional decline with ageing and low physical activity status in 

older adults and their effects on muscle morphology. The paraspinal muscles’ function, to provide 

postural support of the lumbar spine and actuate gross trunk movements (Crisco and Panjabi, 1991), 

may decline with ageing (McGill et al., 1999; Singh et al., 2011). Physical activity also significantly 

decreases in older age (Morse et al., 2004), which results in the accumulation of intramuscular fat 

(Goodpaster et al., 2008; Leskinen et al., 2013; Marcus et al., 2010). Therefore, diminished age-

related muscle function coupled with physical inactivity is likely to result in atrophy and fat accretion 

of the paravertebral muscles (Ikezoe et al., 2012; Teichtahl et al., 2015). Indeed, skeletal muscle has 

been shown to undergo adaptive reductive remodelling in response to both physical inactivity 

(Fortney et al., 2011; Paddon-Jones et al., 2006) and ageing (Kalichman et al., 2017; Rogers and 

Evans, 1993; Roubenoff and Hughes, 2000) and given their inter-relationship it is unsurprising that 

the elderly are susceptible to muscle disuse atrophy (Wall et al., 2013). Narici and Maffuli (Narici and 

Maffulli, 2010) have suggested that postural muscles are particularly affected by age-related 

sarcopenia, although this claim warrants further investigation. Deterioration of the paravertebral 

muscles is likely due to reduced axial loading, as a result of physical inactivity in old age 

preferentially affecting the antigravity muscles (Ikezoe et al., 2012). Given that paravertebral 
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muscles are predominantly composed of type I muscle fibres (Kimura, 2002; Mannion et al., 1997; 

Ng et al., 1998; Parkkola et al., 1993a; Sirca and Kostevc, 1985) that are suited to prolonged tonic 

activity (Crawford et al., 2016b; Schiaffino and Reggiani, 2011) and this fibre type is susceptible to 

inactivity atrophy (Wang and Pessin, 2013), less engagement with physical activity is a likely 

mechanism for muscle atrophy in old age. 

Muscles such as the paravertebrals may therefore be more vulnerable to degenerative changes in 

older age. Indeed, the lumbar musculature is more susceptible to progressive fat infiltration with 

ageing than the leg muscles (Dahlqvist et al., 2015). However, lower limb muscles appear to 

experience greater atrophy than the back muscles (Abe et al., 2014b; LeBlanc et al., 1992). This 

suggests that the postural function of the paravertebrals may attenuate the loss of muscle size, 

although degenerative changes are still apparent in muscle composition. The results of the current 

review suggest that the erector spinae and quadratus lumborum, which is frequently overlooked, 

experience the greatest degenerative changes amongst the lumbar musculature with normal ageing. 

These muscles in particular should be evaluated when determining age-related changes in the 

lumbar spine. However, researchers should look to include all of the paravertebral muscles in such 

evaluations and obtain information on each muscle separately, as degenerative changes are muscle-

specific and it is unlikely that any one muscle is representative. 

4.3. Lumbar level-dependent fat infiltration 

The relationship between ageing and fat infiltration in older adults was significantly moderated by 

the lumbar level at which paravertebral muscles were measured. Studies evaluating muscles across 

all lumbar levels showed the greatest degenerative changes with ageing. However, the findings in 

this review indicate that age-related atrophy of the lumbar paravertebral muscles in healthy older 

adults is not influenced by the moderating effect of lumbar level. This reveals important 

methodological considerations as the level of measurement may not be significant for assessing age-

related changes in muscle size, but it is of importance for assessing age-related changes in muscle 

quality. Assessing fat infiltration across all lumbar levels provided the greatest effect size estimate, 

whilst measurements taken at the high levels (L1-L2) provided the most conservative estimates of 

muscle quality change (increased fat infiltration) with ageing. Measurements at the mid (L2/3-L3/4) 

and low (L4-L5/S1) lumbar levels yielded similar small to moderate effect sizes. More importantly, 

the current findings infer that measurements at the high, mid or low lumbar levels are not 

representative of the muscle across the whole lumbar region. This finding is supported by the 

recommendations of Crawford et al. (Crawford et al., 2017), who suggest that a multi-slice approach 

across all lumbar levels is superior to determine fat proportion within paravertebral muscle. 

Although more time-consuming, multi-slice approaches show clear benefits compared to more 

expedient single slice measurements, primarily as fat infiltration and size measurements at a single 

slice are not representative of the whole lumbar spine (Urrutia et al., 2018). Furthermore, 

volumetric measures are preferable as they are more meaningful functionally (Boom et al., 2008) 

and potentially minimise errors associated with postural variations during scanning (Meakin et al., 

2013). 

4.4. Influence of imaging modality on muscle atrophy 

Age-related muscle atrophy was significantly influenced by imaging modality, specifically ultrasound. 

Ultrasound studies showed that muscle size increased with age in contrast to studies utilising MRI 
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and CT. This finding contradicts expectations and raises questions about ultrasound as an accurate 

imaging modality to measure paravertebral muscle atrophy in generally healthy older adults. 

Discrepant findings between ultrasound and CT/MRI studies may be due to the evaluation of muscle 

size when defining the ROI. Typically, MRI and CT evaluations do not consider fat infiltration as part 

of the muscle, whereas ultrasound measurements tend to involve the entire muscle including fat. 

Not considering the amount of fat infiltration within the muscle could mask reductions in muscle size 

and lead to spurious results (Elliott et al., 2008). Despite its limitations, the inclusion of fat within the 

ROI may provide a somewhat useful gross measure of muscle degeneration, whilst excluding regions 

of fat may demonstrate a more specific measure of muscle quality and potentially degenerative 

features within the muscle boundaries (Berry et al., 2018). Indeed, skeletal muscle measures derived 

from ultrasound are less able to distinguish intramuscular fat from muscle and accurate definition of 

the lumbar paravertebral muscles’ boundaries is challenging (Hides et al., 1995; Pressler et al., 2006; 

Wallwork et al., 2009). MRI and CT provide high resolution images of soft tissues (Hyun et al., 2016). 

Compared to ultrasound, the superior soft tissue contrast of MRI/CT, particularly MRI (Hu et al., 

2011), is thought to improve the visualisation of fascial boundaries (Upadhyay and Toms, 2015). 

Furthermore, the generally low resolution of ultrasonic images can make discernment of tissue types 

difficult (Hides et al., 1995). This is particularly troublesome when investigating the deep muscles in 

the pelvis and trunk; sound is reflected or absorbed by superficial tissue layers which results in 

deeper muscles lacking sufficient resolution (Pillen, 2010). 

Another limitation associated with ultrasound concerns the operator’s ability to standardise 

pressure applied by the transducer to the scan site (Lukaski, 1987). Muscle thickness, as well as 

subcutaneous adipose tissue, may be affected by excessive pressure (Abe et al., 1994). Therefore, 

avoiding excessive pressure whilst following a strict imaging protocol is paramount to achieving 

more accurate measures of muscle morphology when using ultrasound (Dupont et al., 2001). Finally, 

ultrasound typically has a limited field of view (Sions et al., 2017b), unlike MRI and CT which are 

capable of imaging the entire lumbar musculature whilst retaining sufficient resolution. Increasing 

the field of view to capture more of the lumbar musculature may compromise image quality for 

ultrasound, compounding the limitations stated above. Although imaging modality did not 

significantly influence the relationship between fat infiltration and ageing, ultrasound again 

exhibited marked differences with CT and MRI. Therefore, overestimation of muscle size was most 

likely due to the inclusion of non-contractile tissue (Sions et al., 2017b), whilst the underestimation 

of fat infiltration was likely a consequence of echo intensity diminishing in deeper muscles of the 

trunk (Pillen, 2010). Despite ultrasound being acknowledged as a lower cost and portable alternative 

to assess skeletal muscle morphology in clinical and community settings (Mourtzakis and 

Wischmeyer, 2014; Stringer and Wilson, 2018), the current findings indicate that studies should use 

MRI or CT to evaluate age-related atrophy in the lumbar paravertebral muscles. 

4.5. Influence of BMI, mean age and age range on muscle degeneration 

The continuous covariates did not have a moderating effect on the relationship between ageing and 

muscle atrophy. However, age range of the sample significantly influenced the relationship between 

fat infiltration and ageing, and mean BMI of the sample was approaching significance. It seems 

intuitive that an increase in BMI would increase the amount of fat infiltration in the lumbar 

paravertebral muscles with ageing. Since increases in BMI are largely attributed to increases in 

whole-body adiposity (Gallagher et al., 1996), it is likely that the amount of fat infiltrating the 

paravertebral muscles would also increase. Increasing age range also increased the effect of fat 

infiltration with ageing. Simply put, as age range increases for a population of healthy older adults, 
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greater degenerative changes in the paravertebral muscles can be observed. This is reflected in 

longitudinal observations as small time periods (e.g. 12 months) are likely to highlight only modest 

age-related changes in muscle morphology (Gibbons et al., 1997; Ikezoe et al., 2015), whereas longer 

periods (e.g. 15 years) have the potential to exhibit greater changes (Fortin et al., 2014), specifically 

in fat infiltration. 

4.6. Sensitivity analyses 

The sensitivity analyses showed that older adults, who are explicitly defined as healthy with a normal 

BMI, undergo less muscular degeneration in the lumbar region with normal ageing. Furthermore, all 

moderators were insignificant, suggesting that study level covariates are unable to moderate the 

relationship between ageing and lumbar paravertebral muscle degeneration in this population. 

Although samples included from the eligible studies were generally healthy, free from disease and 

without physical limitations, only 51% of these studies explicitly stated that their sample were 

healthy in the article. Based on information within articles and correspondence from authors, it is 

unlikely that the health status of samples between studies differed greatly. However, the sensitivity 

analyses suggest that older adult participants selected for health (i.e. explicitly defined as healthy 

with a normal BMI), exhibit less degeneration within the lumbar musculature. Similar discrepancies 

are seen in the degeneration of the lumbar paravertebral muscles between healthy and diseased 

populations (Kalichman et al., 2017). Although the samples included in the current review were not 

from diseased populations, the subtle differences in the definition of health status had a clear 

influence on age-related muscle atrophy and fat infiltration. Removal of ‘poor’ and ‘fair’ quality 

studies showed that greater atrophy was apparent with ageing. This suggests that good quality 

studies, most likely through better outcome measurement, are able to detect greater changes in 

paravertebral muscle size. Caution should be taken with this interpretation due to substantial 

between-study heterogeneity, although differences in methodologies and study population 

characteristics can explain most of the variance. 

4.7. Limitations 

Although this review was comprehensive and systematically rigorous, there were limitations that 

should be acknowledged. Firstly, data were collated from observational studies and baseline 

evaluations from experimental studies. Despite being the best available source, observational 

studies are considered to produce lower quality evidence than experimental studies and include a 

greater potential risk of bias. Furthermore, all data were collated from cross-sectional observations, 

making it difficult to ascertain the exact nature of age-related changes in muscle morphology. There 

is a need for more longitudinal studies directly investigating normative changes in lumbar 

paravertebral muscle morphology over longer time periods (>10 years). Ill-defined and inconsistent 

definitions of health status also limited the ability to compare studies. Although 18 studies (51%) 

explicitly stated that their sample were healthy, many of these studies provided insufficient detail on 

what constituted as ‘healthy’. Furthermore, whilst some studies considered matched controls 

representative of healthy individuals, caution should be taken with this approach as undetermined 

phenotypes are likely hidden in the demographics (Määttä et al., 2015). Insufficient selection of 

participants based on their health status and lack of reporting clarity were substantial limitations. A 

standardised definition should be adopted to allow comparison between healthy populations as well 

as with diseased populations. Such advances would provide a reference to facilitate understanding 
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of spinal disease progression and pain-related expressions of muscle degeneration. Despite large 

sample sizes present in some studies, it is likely that many of the included data were not sufficiently 

powered to detect meaningful changes to muscle morphology with ageing; only six studies (17%) 

provided sample size justifications. It should be recognised that the English language restriction may 

have also limited the number of articles that were returned, although it was unlikely to result in 

systematic bias (Morrison et al., 2012). Data regarding physical activity were scarce from the studies 

included in this review. Although exercise is known to affect muscle morphology (Belavý et al., 2017; 

Ikenaga et al., 2017; Janssen et al., 2016; Konopka et al., 2018; Manini et al., 2007; Stec et al., 2017), 

changes in paravertebral muscle morphology are relatively independent of physical activity 

(Dahlqvist et al., 2015; Dasarathy and Merli, 2016; Fortin et al., 2014). Future studies should consider 

physical activity level when evaluating age-related degeneration of the lumbar musculature. 

4.8. Practical applications 

Measurement of muscle morphology is performed as part of sarcopenia diagnostic criteria (Chen et 

al., 2014; Cruz-Jentoft et al., 2019; Fielding et al., 2011; Studenski et al., 2014). Whilst appendicular 

skeletal muscle mass is typically measured (Correa-de-Araujo, 2017; Tosato et al., 2017), lumbar (L3) 

muscle cross-sectional area derived from CT or MRI offers a promising alternative (Golse et al., 2017; 

Gu et al., 2018; Schweitzer et al., 2015; Shen et al., 2004). However, the current results indicate that 

measurements derived from a single slice are not representative of the entire lumbar musculature. 

Volumetric measures across the lumbar are recommended; however, time costs involved in such an 

approach may not be suited to clinical settings. The choice of muscles should also be considered 

when investigating changes in lumbar muscle morphology. Whilst analysing each muscle in the 

lumbar spine would provide the most comprehensive assessment, the erector spinae and quadratus 

lumborum should be included in measurements as they show significant atrophy and fat infiltration 

with ageing. Based on the results of this review, MRI and CT are recommended over the use of 

ultrasound to measure changes in muscle quality and size with ageing. Indeed, MRI and CT are 

considered gold standard modalities for non-invasive assessment of muscle size (Cesari et al., 2012; 

Olsen et al., 2005). However, their use is limited in primary care settings by their availability, costs, 

radiation dosage (CT), inapplicability to persons with implanted medical devices (MRI), and 

requirement for highly specialised operators (Beaudart et al., 2016; Correa-de-Araujo, 2017). Despite 

these barriers, the use of high resolution imaging modalities to assess muscle degeneration is 

expected to become more commonplace in clinical practice (Cruz-Jentoft et al., 2019). Perhaps the 

greatest advantage of high-resolution imaging modalities is their ability to provide accurate 

estimates of muscle quality (McGregor et al., 2014). However, this review found numerous measures 

used in the literature, which makes transference into clinical practice difficult due to a lack of 

consensus. The importance of muscle quality as a key determinant of muscle function is being 

increasingly recognised and changes in muscle quality may precede those in muscle size with ageing 

(Anderson et al., 2016; Correa-de-Araujo et al., 2017; McGregor et al., 2014; Shahidi et al., 2017). 

Therefore, specific measures of fat infiltration to estimate changes in paravertebral muscle quality 

may be particularly useful in clinical settings. The findings of this study suggest that any fat 

infiltration measures derived from high resolution imaging modalities are suitable, although further 

research is needed to determine the optimal approach for future research and clinical applications. 

Applying the results from the regression analyses in this review to clinical practice could add to the 

current clinical perspective. As a measure of magnitude for age-related degeneration in the lumbar 

paravertebral muscles, correlation coefficients obtained from clinical assessment data can be 
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compared to the current findings, which may enable identification of abnormal degenerative 

changes with ageing. However, caution should be exercised due to the wide confidence intervals. 

5. Conclusion 

This systematic review, for the first time, draws together the extant literature relating to age-related 

changes in the lumbar musculature. The findings are based on older adults free of diseases or 

impairments that likely affect paravertebral muscle morphology. This is a necessary first step in 

furthering our understanding of normative expressions of ageing muscle as well as providing 

recommendations to establish continuity amongst protocols in future studies. The findings in this 

review indicate that the paravertebral muscles undergo degenerative changes (atrophy and fat 

infiltration) with normal ageing. Future studies investigating muscle morphology in the lumbar spine 

should consider the sex and age range of their sample, look to use MRI/CT to image the 

paravertebral muscles and analyse all the individual muscles across the entire lumbar region. 

However, these methodological decisions should not be uniform, rather based on the morphological 

outcome of interest. In summary, this review will provide a reference for normal age-related 

changes observed in lumbar paravertebral muscle morphology, which may enable identification of 

pathological deviations. Furthermore, the practical applications of this meta-analysis will provide 

guidance to future studies investigating age-related degeneration in the lumbar musculature. 
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Figure and Table Legend 

Table 3 Eligibility criteria for including studies in this systematic review 

Table 4 PubMed search strategy 

Table 5 Graphical overview of study characteristics (*not provided in text – supplied separately) 

Table 4 Three-level meta-analysis models for age-related muscle atrophy and fat infiltration in the 

lumbar paravertebral muscles 

Table 5 Three-level meta-regression model estimating the moderating effects of Sex (Female = 

reference category), Muscle (Psoas = reference category), Level (All levels = reference category), 

Imaging technique (CT = reference category), BMI, mean age, and age range on the relationship 

between change in paravertebral muscle size and ageing 

Table 6 Three-level meta-regression estimating the moderating effects of Sex (Female = reference 

category), Muscle (Psoas = reference category), Level (All levels = reference category), Imaging 

technique (CT = reference category), BMI, mean age, and age range on the relationship between 

change in paravertebral muscle fat infiltration and ageing 

Fig. 1 PRISMA flow diagram depicting the selection process for studies 

Fig. 2 Risk of bias summary: review of authors' judgements on each item from the Risk of Bias 

Assessment Tool for Nonrandomised Studies (RoBANS) presented as percentages across all included 

studies 

Fig. 3 Visual representation of the amount of between-study variance in true effects explained by 

moderators for the relationship between muscle atrophy and ageing 

Fig. 4 Visual representation of the amount of between-study variance in true effects explained by 

moderators for the relationship between fat infiltration and ageing 

Fig. 5 Contour enhanced funnel plot to illustrate potential publication bias for studies assessing 

muscle quality (fat infiltration) 
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Graphical overview comparing participant characteristics,Visual Summary evidence quality, risk of bias and findings of the included studies. 
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