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ABSTRACT The bi-directional linkage between the power grid and electric vehicles (EVs) enables flexible,
 
cheap and fast-responding use of vehicle batteries in the grid. However, the battery aging effects due to
 
the additional operation cycles caused by Vehicle-to-Grid (V2G) service and the concern of the battery
 
degradation are the main reason that keeps the customer from being the named prosumer of the grid. This
 
paper proposes a novel active battery anti-aging V2G scheduling approach. Firstly, to evaluate the battery
 
aging effect in V2G service, the battery degradation phenomenon is quantified by a novel use of rain-flow
 
cycle counting (RCC) algorithm. Then, the V2G scheduling is modeled as a multi-objective optimization
 
problem, in which the minimal battery degradation and grid load fluctuation are designed as the optimization
 
objectives. Finally, a multi-population collaborative mechanism, which is particularly designed for the
 
V2G scheduling problem, is also developed to improve the practicability and performance of the heuristic
 
optimization based V2G scheduling method. The proposed methodologies are verified by numerical analysis,
 
which highlights that the proposed V2G scheduling method can minimize battery charge/discharge cycles
 
by optimizing the time and scale of each V2G participant while providing the same services to the grid as
 
expected.
 

INDEX TERMS Electric vehicle, vehicle to grid, active battery anti-aging and heuristic algorithm. 

I. INTRODUCTION cost significantly. Clement-Nyns et al. [8] proposed an online 
Energy is an essential part of modern life and energy man- plug-in hybrid EV charging coordination approach based on 
agement is an eternal topic in modern society. Electric vehi- the dynamic programming algorithm, in which the optimal 
cles (EVs) and power grid are two important components of charging profile was formulated by minimizing power loss. 
the energy system. Instead of the one-way energy flow from A large number of reports can be found from the literature, 
the grid to EVs, their bi-directional link enables the flexible, but many fundamental problems and critical challenges still 
cheap and fast-responding application of the vehicle batteries exist: (1) The battery degradation phenomenon is rarely con-
in the power grid [1], [2]. Therefore, it leads to the concept sidered in V2G scheme, which may result in economic loss 
of Vehicle-to-Grid (V2G) that effectively integrates EVs into and dispelling the V2G participants’ enthusiasm; (2) The 
the grid as distributed energy resources [3]. essential of V2G scheduling is a large-scale, non-gradient and 
Currently, many studies have investigated the V2G tech- multi-objective optimization problem and the global optimal 

nology for better use of EV penetrations [4]–[6]. Liu et al. [7] solution is hard to find. 
established a V2G behavior scheduling model based on 
Blockchain technology to improve grid operation stability. 

A. ACTIVE BATTERY ANTI-AGING V2G MANAGEMENT The simulation results showed that the proposed scheme can 
Battery degradation is the main reason that keeps the EV cus­reduce the grid power fluctuation level and overall charging 
tomer from being the named prosumer of the grid [9]–[11]. 

The associate editor coordinating the review of this manuscript and To encourage the enthusiasm of V2G participants, it is neces­
approving it for publication was Ahmed F. Zobaa . sary to suppress the battery degradation phenomenon in the 
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V2G scheduling issue [12], [13]. The battery aging mech­
anism and its lifetime prediction have already been well 
studied in recent years [14]. Wang et al. [15] investigated 
deep-learning algorithm-driven battery remaining useful life 
prediction method, the long short-term memory neural net­
work was employed in their work to learn the long-term 
dependencies in the lithium-ion battery degraded capacities. 
The experiment results indicated that the battery capacity 
estimation error can be limited within 2.5%. An electro­
chemical mechanism model was established in David A. 
Howey’s work [16] to quantify grid-connected Lithium-ion 
battery degradation annual cost, which can predict the battery 
capacity fade with an error of 5%. Jafari et al. [17] proposed 
a method to quantify the grid-connected Lithium-ion battery 
degradation phenomenon during V2G services based on the 
General Arrhenius Equation, and the model accuracy was 
validated under different scenarios and climates. However, 
the existing researches mainly emphasize the impact of bat­
tery aging on the V2G services, but few of them study the 
methods to reduce battery degradation actively by scheduling 
V2G behaviors optimally. 
RCC algorithm has been widely used in many fields, such 

as fatigue damage analysis [18], remaining useful life pre­
diction [19] and energy storage systems [20]. In this paper, 
the minimal battery lifetime degradation is designed as one 
of the optimization objectives and quantified by a novel use 
of the RCC algorithm. 

B. THE HEURISTIC ALGORITHM BASED V2G SCHEDULING 
METHOD 

The inherent features of V2G scheduling optimization, i.e. 
high-dimensional and large scale, cannot be neglected [21], 
[22]. Moreover, in active battery anti-aging V2G scheduling, 
the objective to minimize grid load fluctuations conflicts 
with minimizing battery degradation. The trade-off is actually 
a Pareto-optimal point searching problem. In addition, the 
objective function in V2G scheduling is usually not simply 
linear or quadratic, so the conventional convex optimization 
method is not applicable [23]. Further, introducing the battery 
degradation index turns the optimization objective into a non­
continuous, non-derivable and non-gradient function, and 
the conventional gradient descent algorithms are no longer 
effective [24]. 
The heuristic algorithm is one of the most effective ways 

to deal with the complex optimization problem, and the 
Particle Swarm Optimization (PSO) algorithm is a typical 
heuristic algorithm. At present, the PSO algorithm has been 
widely used in the Hybrid Energy Storage System [25], 
Path Planning [26] and systems identification [27], etc.. The 
PSO algorithm was regarded as one of the most success­
ful approaches to solve the large-scale and multi-objective 
optimization problem. In recent years many researchers have 
developed many different methods to improve the perfor­
mance of PSO algorithm [28]–[30]. Li et al. [31] proposed 
an information-sharing mechanism to improve the PSO algo­
rithm performance in the large-scale optimization problem. 

The proposed methods were validated effectiveness under 
various test environments. The fuzzy logic method was used 
in literature [32] to improve the effectiveness of the PSO 
algorithm in the multi-objective optimization problem. The 
experiment results in a V2G scheduling system indicated that 
the proposed method can improve the system performance 
effectively. However, to the authors’ best knowledge, there is 
no published literature considering both the large-scale and 
multi-objective optimization problems in V2G scheduling 
at present. Thus, to improve the performance of the PSO 
algorithm based V2G behaviors management system, a multi-
population collaborative mechanism (MCM) is developed in 
this paper. 
Keeping in the view of above perspective and issues, 

to suppress the battery aging effect in V2G services and 
improve the performance of the V2G scheduling system, 
a novel active battery anti-aging V2G scheduling method 
is proposed in this paper. The key contributions are as 
follows: (1) The battery degradation phenomenon during 
V2G services is quantified by a novel RCC algorithm; 
(2) A mathematical optimization model is established for the 
active battery anti-aging V2G scheduling problem, in which 
the minimal battery degradation and grid load fluctuation 
are designed as the optimization objectives; (3) A multi-
population collaborative mechanism is developed with the 
ability to solve the large-scale, multi-objective, and non-
gradient optimization problem in active battery anti-aging 
V2G scheduling. 
This article is organized as follows: Section II briefly intro­

duces the architecture of the intelligent V2G scheduling sys­
tem, in which the system working principles and information 
flows are defined. The background materials of the algo­
rithm used in our work are detailed in Section III. The pro­
posed battery degradation quantification method and active 
battery anti-aging V2G scheduling method are described 
in Section IV. Results and comparisons are provided in 
Section V, followed by concluding remarks in Section VI. 

II. THE ACTIVE BATTERY ANTI-AGING V2G SCHEDULING 
SYSTEM 
The framework of the proposed battery anti-aging V2G 
scheduling system is shown in Fig. 1. The system is divided 
into 4 parts: information prediction module, user information 
collection module, V2G behaviors management module, and 
EV smart charger. The optimal V2G behavior control strate­
gies are achieved through the cooperation of four modules. 

A. USER INFORMATION COLLECTION MODULE 

The User information collection module is used to collect 
household electricity load and EV’s charging demand data 
on the basis of Information and Communications Technology 
(ICT) [33]. The real-time V2G charging demand informa­
tion is sent to the information prediction module for future 
use, and at the same time, the charging requirements of the 
EVs that have just been connected to the grid (within recent 
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FIGURE 1. The architecture of the active battery anti-aging V2G 
scheduling system. 

15 minutes) are sent to the rolling V2G behaviors manage­
ment module. 

B. ROLLING PREDICTION MODULE 

A historical V2G information database, as well as a historical 
baseload demand database corresponding the V2G partici­
pants in different districts, are established in this module. 
Meanwhile, future arriving EVs’ charging demand, discharg­
ing capacity [34] and future load demand [35] are forecasted 
based on the established database, provided as an important 
data foundation for V2G scheduling. 

C. ROLLING V2G BEHAVIOR MANAGEMENT MODULE 

The V2G behaviors management module formulates the V2G 
charge/discharge control strategies for every grid-connected 
EV on the basis of the collected user demand and grid 
load state information. The optimization objectives are to 
minimize grid load fluctuation and battery degradation. The 
control strategies are sent to EV smart charger. 

D. EV SMART CHARGER 

According to the charge/discharge strategies, the EV Smart 
charger controls the charge/discharge power of every grid-
connected EV in real-time by power electronic devices. 

E. SYSTEM OPERATION TIME LOGIC 

The above presented V2G scheduling system operates in 
a rolling way with the controlling interval of 15 minutes. 
In each time of V2G scheduling, the EV charging infor­
mation and baseload is predicted by the prediction module 
through historical data and real-time information, and the 
V2G behaviors of the EVs that have just been connected to 
the grid (within recent 15 minutes) are scheduled. The above-
mentioned prediction-decision V2G scheduling process is 
carried out repeatedly with the system operation. 
The information collection & communication technology 

[33], the grid load [35], [36] & V2G capacity estimation [37], 
[38] approach and the smart charging pile technology [39] has 

been well studied in the existing literature. Therefore, in the 
rest part of this paper, we mainly focus on the V2G behavior 
management method. 

III. ALGORITHM BACKGROUND 
A. PARTICLE SWARM OPTIMIZATION ALGORITHM 

The PSO algorithm is used in this paper to find the optimal 
V2G strategy. In the PSO algorithm, each candidate solution 
is denoted as a ‘‘particle’’ without mass or volume in the 
search-space. The solution set consisting of a large number 
of particles is called a ‘‘Swarm’’. Each particle is labeled by 
three properties: velocity, position, and fitness. The position 
of the particle represents a candidate solution. The velocity 
determines the flying direction and distance of a particle 
in each iteration. The particles move in the search-space 
by updating velocity and gradually approach the optimal 
solution, and the fitness function is used to evaluate particle 
quality [40]. In the conventional PSO optimization process, 
an initial swarm is generated by randomly initializing par­
ticle position and velocity firstly. The position and velocity 
of particle i can be denoted as Xi = [xi1, xi2, · · · xiD] and 
Vi = [vi1, vi2, · · · viD] respectively. The particle velocity and 
position are updated by the following equations [41]: 

Vk+1 
= Vi

k 
+c1rand1(pbesti

k 
−Xi

k )+c2rand2(gbesti
k 
−Xk i i ) 

(1) 

Xk+1 
= Xk + Vk+1 (2)i i i 

where: k represents iteration times, Vk and Xk+1 representi i 
the velocity and position vector of particle i in k − th iteration 
respectively. pbestk is the personal best position vector of i 
particle i in the k − th iteration, gbestk represents the global 
best position vector in the whole swarm, c1 and c2 are learn­
ing factors, rand1 and rand2 are random numbers obeying 
uniform distribution within [0, 1]. 

B. BATTERY DEGRADATION QUANTIZATION METHOD 

The battery degradation mechanism has been well studied 
in previous work. However, the conventional battery degra­
dation quantification method, including the electrochemical 
model [42] and artificial intelligence algorithm [43], can only 
quantify the battery degradation phenomenon on a large time 
scale (several days or weeks) [44]. Nevertheless, the schedul­
ing horizon in V2G management is usually less than one day 
[45], [46], so it is difficult to quantify battery degradation 
in V2G applications. Comparing to the conventional battery 
degradation quantification method, the RCC algorithm can 
quantify the battery aging phenomenon in a short period 
(several minutes or hours) [47], which is more suitable for the 
battery degradation quantification issue in V2G scheduling. 
Therefore, the RCC algorithm is used in this paper to extract 
the charging and discharging cycles and quantify the battery 
degradation phenomenon in V2G service. The application of 
the RCC algorithm has been well studied in our previous 
work: hybrid energy storage system in microgrid [48], renew­
able energy system [49] and energy management system of 
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FIGURE 2. The battery cycle extraction process in the rain-flow cycle 
counting algorithm. (a) The original profile. (b) The extracted adjacent 
points. (c) The reconstructed amplitudes. (d) The extracted battery cycles. 

hybrid electric vehicles [50]. Basically, as shown in Fig.2, 
the cycle counting can be achieved by the following three 
steps as following: Firstly, the data (for the battery the data 
is the DOD that presents the battery charge/discharge cycles) 
is pre-processed by searching for adjacent data points with 
the reverse polarity so that the local maxima and minima 
can be found and stored in a matrix. Secondly, compose full 
cycles by analyzing the turning points and combine these sub-

The optimization variable in V2G scheduling is the 
charge/discharge power of every grid-connected EV. The par­
ticle dimension is (n + 1) × (Tu + Tw). Where n is the total 
number of EVs already in the grid. 1 represents the future 
available V2G capacity of EVs that will connect to the grid 

 

in later control steps. Tw and Tu are the number of decision 
points in the future and past control step respectively. The 
position of particle I is as follows (3) as shown at the bottom 
of this page, where: Pi,j represents the power state of EVi in 
control step j, Pn+1,j reflects the utilization degree of future 

 

V2G schedulable capacity. In this paper, the historical V2G 
behaviors are also stored in the particle, it is not schedulable 
but influence future V2G scheduling directly. 

⎧⎨ 

To estimate EV’s SoC accurately, the recurrence formula 
is as follows [50]: 

ft × Pit × ηi 
SoCt

i 
+1 = SoCt

i 
+ 

Ci × 100 (4) 

where ft is the control time-step, Ci is the battery capacity 
of EVi. ηi is the battery charge/discharge efficiency. 
The first optimization objective is to provide load-shifting 

service, which can be described as to minimize load fluctua­
tion variance [32]: 

u+w n
⎫⎬  2 

1 
Pload(t)+ PI(t)−P̄AVfitness1=min ⎩u + w 

t=1
⎭ 

i=1
cycles to get full-cycles together with the summing up of the 
amplitudes. Thirdly, extract and count the number of cycles (5) 

 

¯in varying amplitude store them for later use. where: Pload(t) is the system load in the time slot t , PAV is the 
The battery degradation phenomenon can be quantified by average grid load level. 

analyzing the extracted battery number of cycles and DOD Apart from grid stability and economy, the battery degra­
data. The RCC algorithm is used to evaluate the battery aging dation phenomenon resulted by participating in V2G is also 
in V2G scheduling in this paper. considered in this paper: 

n
  

N cycle + Nh−cycle 
i i

IV. PROPOSED METHODOLOGY fitness2 = min (6) 
A. ACTIVE BATTERY ANTI-AGING V2G SCHEDULING 
METHOD 

An active battery anti-aging V2G scheduling method is pro­
posed in this section. Firstly, a mathematical optimization 
model is established for the V2G scheduling issue, in which 
the minimal battery degradation and grid load fluctuation 
are designed as the optimization objectives. Then, combine 
with the PSO algorithm and the RCC algorithm, the system 
operation principles and information flows are detailed. 

i=1 

N cycle and Nh−cycle 
i i are the battery number of cycles and half-

cycles of EVi in V2G scheduling, which can be calculated by 
the RCC algorithm described in Section III.B. 
When formulating V2G strategy, the travel demands of 

V2G participant should be satisfied, the battery charging 
process should be completed before departure [32]: 

SoCend 
≥ SoCset (7)i i 

⎤⎡ 
P1,1 · · · P1,j · · · P1,u P1,u+1 · · · P1,u+w
 
P2,1 · · · P2,j · · · P2,u P2,t+1 · · · P2,u+w
 

. . . . .. . . . . . . . . . . . . .. . . . . 
Pi,1 · · · Pi,j · · · P3,n P3,u+1 · · · Pi,u+w 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

PI = (3) 
. . . . .. . . . . . . . . . . . . .. . . . . 

Pn,1 · · · Pn,j · · · Pn,u Pn,u+1 · · · Pn,u+w  _Pn+1,u+1 Pn+1,u+W 

Historical V 2G power profile Pending scheduling 
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FIGURE 3. The active battery anti-aging V2G scheduling method. 

Battery life is mainly influenced by the number of cycles, 
DOD and charge/discharge rate. The number of cycles has 
been considered in the objective function, the DOD and 
charge/discharge rate are restricted by the following con­
straints in this paper: 

−Pmax 
≤ Pi,t ≤ Pmax (8)i,disch arg i,ch arg e 

SoCmin ≤ SoCi,t ≤ SoCmax (9) 

The flowchart of the proposed active battery anti-aging 
V2G scheduling method is shown in Fig. 3. The system 
operation process can be divided into four steps: 
The status of the grid-connected EVs are collected, includ­

ing the serial number i of each EV, accessing time t i start , 
preset departure time t i when EVi accessesend , the SoCstart 

i 
the grid, and the preset minimal SoCi

set at departure. Then 
the population size Q is determined, and an initial swarm 
satisfying the constraints(7 ∼ 9) is generated. 

1) Two fitness functions are formulated and the fitness 
value of the particles is calculated based on the defined 
fitness functions. The fitness function 1 and 2 are 
used to evaluate swarm’s grid load stabilizing per­
formance and battery degradation suppression perfor­
mance respectively. With the guidance of both fitness 
functions, the generated V2G strategy could stabilize 
grid load fluctuation and reduce V2G participants’ bat­
tery degradation costs at the same time. 

2) The personal and global best solution pbestk and gbestk 
are found through the fitness value, and particle posi­
tion Xi and velocity Vi are updated following equa­
tion (1) and (2). 

FIGURE 4. The proposed multi-population collaborative mechanism. 

3) Step 2 and 3 are performed repeatedly, and the particle 
position is continuously updated before the evolution 
times k reaches maximum iteration times kmax. The 
global optimal solution gbestk max is outputted as the 
optimal V2G control strategy. 

B. THE MULTI-OBJECTIVE AND LARGE-SCALE 
OPTIMIZATION METHOD FOR ACTIVE BATTERY 
ANTI-AGING V2G SCHEDULING 

Particle prematurity and homoplasy are the main obsta­
cles that limiting the performance of the conventional PSO 
algorithm on multi-objective and large-scale optimization 
problems. 
Prematurity appears in large-scale optimization problems 

[51]. PSO algorithm inclines to be stuck in local optimum 
because of prematurity, and the evolution process may stop 
before acquiring the actual global optimal solution. Two 
methods are applicable for expanding the search range: one 
is to expand the population size, but the computation com­
plexity is also increased tremendously; the other is to weaken 
the attraction of the global best solution, which may cause 
convergence difficulty [52]. The homoplasy appears when 
dealing with the multi-objective optimization problem, lim­
iting much of the search-space and depriving the potential of 
the algorithm to find a coordinating optimal solution [53]. 
In the active battery anti-aging V2G scheduling issue, 

to obtain the optimal V2G control strategy, it is necessary 
to explore an effective method to overcome the prematurity 
and homoplasy obstacles. Therefore, in this section, a multi-
population collaborative mechanism is developed and pro­
vided as a possible solution for the dilemma raised above. 
The flowchart of the proposed MCM method is shown in 
Fig. 4, and system operation principles can be described by 
the following 4 steps: 

1) ALGORITHM CONFIGURATION INITIALIZATION 

To satisfy the swarm diversity requirements, the initial pop­
ulation in the proposed MCM method is divided into sev­
eral groups, labeled as sub-population and main-population. 

11190 VOLUME 8, 2020 



S. Li et al.: Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling 

These populations are independent and assigned with dif- equally: 
ferent fitness functions. The main-population represents 

Pmax 
Z < 3 × P̄AVthe coordination between several optimization objectives, 

and the sub-population can enrich the diversity of the N cycle < 7i 

P3 ST : 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

main-population. Meanwhile, to improve the algorithm effi­
ciency in the large-scale optimization problem, reducing the 
demand on population size and computing resources, the 
sub-population and main-population are divided into several 

SoCend 
≥ SoCset 

i i 

−Pmax 
≤ Pi

t 
≤ Pmax 

i,disch arg i,ch arg e 
(12) 

SoCmin ≤ SoCi,t ≤ SoCmax 

Pti = 0 while Ati = 0sub-groups again. Each sub-group has the same objective 
function and constraints, but the initial particles are different. 

3) POPULATION EVOLUTIONDuring the evolution, the particles in different sub-groups 
Particle velocity and position are updated based on the for-evolve in different directions, several evolution centers are 
mula (1) and (2) in this step. The fitness functions in sub-generated in the optimization process and the homoplasy can 
populations and main-population are as follows:be avoided effectively. In this paper, two sub-populations and 

one main-population are set, and every sub-population and 
main-population is further divided into S sub-group with the 

⎧ ⎪⎨ ⎪⎩ 

fitness function(1) = 0.8 × fitness1+0.2 × fitness2 

fitness function(2) = 0.2 × fitness1+0.8 × fitness2 (13) 

fitness function(3) = 0.5 × fitness1+0.5 × fitness2 

Fitness function (1) focuses on peak-shifting performance, 

particle number popsize. 

2) POPULATION INITIALIZATION 

The particle position and velocity in the sub-population and 
main-population are initialized in this step. The initial posi­
tion influences the optimization efficiency directly, to reduce 
the required computing resources occupation, the particles 
should be distributed in the search-space as evenly as pos­
sible, while the particle validity should also be guaranteed. 
The particles in different populations are given different 
initialization principles to improve algorithm performance 
and efficiency. Firstly, to generate better load-shifting parti­
cles for sub-population 1, in principle 1, constraints on grid 
peak power are tightened, while the constraints on charg­
ing/discharging rate and DOD are loosened. The correspond­
ing initialization principle is as follows: 

so particles in sub-population 1 have a better effect on peak-
shifting. Fitness function (2) focuses on battery life pro­
tection performance, so particles in sub-population 2 have 
a better effect on battery degradation suppression. Fitness 
function (3) is the fitness function of main-population, with 
high requirement on both optimization objectives, the best 
solution for multi-objective optimization can be found in 
main-population. 

4) MULTI-POPULATION INFORMATION SHARING 

After the sub-population and main-population evolved N 
times independently, particles in sub-population and main-
population are exchanged, and the variety of main-population 
is enriched. The sub-group in sub-populations and main­

P1 ST : 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

Pmax < 2 × ¯ population are extracted and denoted as G1.1,G1.2,. . . ,G1.S;
Z PAV 

G2.1,G2.2,. . . ,G2.S; G3.1,G3.2,. . . ,G3.S. As illustratedSoCend 
≥ SoCset 

i i in Fig. 3, the particles in each sub-population are arranged
−1.5 × Pmax 

i ≤ 1.5 × Pmax
≤ Pt (10)i,disch arg i,ch arg e according to their fitness, the color from shallow to dark rep­

0 ≤ SoCi,t ≤ SoCmax resents the fitness from low to high. The inferior particles in 
Pti = 0 while Ati = 0 main-population would be gradually eliminated and replaced 

by those superior particles in sub-population. 
To generate better battery protection particles for sub- After the replacement, particles are generated again for 
population 2, in principle 2, maximum charge/discharge sub-population under the initialization principal in step 2 for 
cycles are limited, as well as the constraints on charge/ keeping the population size. Then turn to step 3, the particle 
discharge rate and DOD are tightened: velocity and position are updated iteratively. 

P2 ST : 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

N cycle V. RESULTS AND DISCUSSIONS< 5i 
A. SIMULATION ENVIRONMENT SETUP AND DATASETSoCend 

≥ SoCset 
i i DESCRIPTION 

−0.8 × Pmax 
≤ Pi

t 
≤ 0.8 × Pmax (11)i,disch arg i,ch arg e The V2G participants’ behavior data were collected by Bei­

1.5 × SoCmin ≤ SoCi,t ≤ SoCmax jing Electric Vehicles Monitoring and Service Center, which 
Pt = 0 while At = 0 is affiliated to National Engineering Laboratory for Electrici i 

Vehicles and serves as a national big data platform for electric 
In principle 3, particles are generated for the main- vehicles in China. The monitoring data of a residential area 
population, the balance between the various optimization with 40 households were downloaded from the established 
objectives is more valued, so all the constraints are treated big data platform and served as the basic simulation data of 
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TABLE 1. An example charging segment of the collected datasets. TABLE 2. The parameters of the simulation environment. 

Parameter of PSO algorithm⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

this paper. As shown in Table 1, the individuals’ travel behav­
ior data, including the vehicle tamp, vehicle grid-connected 
time and SoC, departure time and SoC, battery system param­
eters, etc. are further extracted from the collected data set to 
simulate the users’ V2G behaviors and verify the proposed 
scheduling method. 
The baseload demand curve used in our work is also 

obtained from the aforementioned residential area by Smart 
Meter technology. It is worth noting that unusual dates such 
as the Chinese Spring Festival Holiday, the New Year holiday, 
and the weekends are excluded from the data set in advance. 
The detailed information of the simulation platform is shown 
in Table 2. 
In order to reach the optimal performance of the proposed 

V2G scheduling algorithm, we prepared multiple algorithm 
parameter settings. However, not all results are reported in the 
paper, the comparison is only made with the optimal settings 
of each algorithm. The parameters of the conventional PSO 
algorithm and proposed MCM method are set as follows for 
better performance through multiple experiments: 

Interation times ∈ {50}


Population size ∈ {60000}


learning factor ∈ {c1 = 0.8, c2 = 0.5}


Penalty factor ∈ {500, 500}


Inertia weight ∈ {0.4}

Parameter of MCM algorithm

Interation times ∈ {50}


Number of sub-groups ∈ {5}


Population size ∈ {20000, 20000, 20000}


Particle exchange times{2}
 

Particle exchange position{10,20}
 

Particle exchange length{1500}
 

Learning factor ∈ {c1 = 0.8, c2 = 0.5}


Penalty factor ∈ {500, 500}


Inertia weight ∈ {0.4}
 

B. THE RESULTS OF V2G SCHEDULING 

The results of the conventional PSO algorithm based V2G 
scheduling [52], [53] are shown in Fig. 6 (a). During grid 
peak hours, the EVs are scheduled to feed energy back to 
the grid, the EVs’ charging load is no longer overlapping the 
baseload and the peak load of the grid is reduced successfully. 
However, the V2G scheduling is inherently characterized as a 
high-dimensional, large-scale optimization problem, it is very 
difficult to get the global optimal solution, which is reflected 
in the following two aspects: Firstly, the conventional PSO 
algorithm can only realize long term load-shifting, but the 
grid load fluctuation is not sufficiently suppressed: the load 
profile keeps fluctuating from 22:00 to 06:00; Secondly, its 
peak-shaving performance is not satisfying, with only 8% 
drop compared to baseload profile, which means that only 
a small part of EVs are scheduled to discharge during peak 
hours. The aforementioned issue is more serious when con­
sidering active battery anti-aging. To further improve the 
load-shifting ability of the V2G scheduling system, a MCM 

The most active V2G period (16:00-24:00 and 00:00-08:00) 
is taken into consideration in this study, the baseload profile 
in this period is shown in Fig. 5. 
In the random charging scenario, it is assumed that EV 

owners would immediately charge their cars with rated power 
upon arriving home until the batteries are fully charged. 
As shown in Fig. 5, most EVs are connected to the grid during 

FIGURE 5. The power system baseload and total load profile when EVs 
random charging. 

19:00-22:00 (zone A), while the baseload also booms in this 
period and peaks at around 21:00, as a result, the grid peak 
load is elevated to 504kw. While after 00:00 (zone B), most of 
the EVs have been fully charged and the minimum grid load 
is only 97.5kw. To ensure the safe, stable and economic grid 
operation, it is necessary to suppress the grid load fluctuation. 

method is proposed in this paper and the result is shown 
in Fig. 6 (b). With the proposed mechanism, the V2G schedul­
ing system can not only realize the long-term load-shifting 
performance but also suppress short-term grid load fluctua­
tion. When compared to random charging, the load peak and 
load Standard Deviation (STD) is reduced by 32% and 60.4% 
respectively. 
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FIGURE 6. Power system load profile (a) under the conventional PSO 
algorithm and (b) MCM method. 

FIGURE 7. The comparison of (b, d) the battery anti-aging V2G scheduling 
method and (a, c) conventional V2G scheduling method. 

To verify the proposed battery anti-aging V2G scheduling 
method, the battery cycles in the conventional V2G schedul­
ing method [32], [54] and the proposed one are compared 
in Fig. 7. Subfigure (a) and (b) are the SoC profiles, sub-
figure (c) and (d) are the corresponding charge/discharge 
cycles statistics by the RCC algorithm. With the proposed 
battery degradation suppression method, the battery number 
of cycles during participating in V2G service are reduced 
significantly: the number of half-cycles drops from 4 to 3, and 
the number of full cycles drops from 4 to 2, which indicates 
that the battery is protected successfully by the proposed anti-
aging algorithm. 

C. COMPARISON OF DIFFERENT ALGORITHMS 
PERFORMANCE 

The performance of different V2G behavior management 
methods is compared in Table 3. The coordination of EV 

FIGURE 8. The convergence speed of the proposed multi-population 
collaborative mechanism. 

charge/discharge behavior can be realized by using con­
ventional PSO algorithm based V2G management method 
[32], [52]–[54], which reduces 22.2% peak load and 30.1% 
grid load STD, but it is not able to further suppress the 
load fluctuation and has poor performance on peak-shaving 
service. The proposed MCM method can further decrease the 
peak load and load STD with 32% and 60.4% respectively, 
and the grid energy quality is significantly improved. Com­
pared to the conventional V2G scheduling method, the num­
ber of full-cycles (NFC) and half-cycle (NHC) in active 
battery anti-aging V2G scheduling method drops 79.4% and 
15.6% respectively, which indicates that the proposed method 
is capable of suppressing battery degradation phenomenon in 
V2G service. 
The convergence speed of the proposed MCM method is 

shown in Fig. 8, where the red curve represents the fitness 
value of the main-population, the blue one and the orange 
one represent that of sub-population 1 and sub-population 
2 respectively. There are two fitness functions in each sub­
population, the solid line denotes the particle peak-shaving 
performance, and dashed dot line denotes the particle battery 
degradation suppression performance. The load fluctuation 
suppressing is the mainly considered optimization objective 
in Sub-population 1, the battery degradation mitigating is 
that of in Sub-population 2, and two objectives are treated 
equally in main-population. Each population has independent 
fitness functions (see Eq. 10 to 12), so the dropping speed 
of different fitness functions are also different. The fitness 1 
drops faster than fitness 2 in sub-population 1, as the fit­
ting function of sub-population 1 mainly focuses on evalu­
ating the peak-shifting performance of candidate solutions. 
Similarly, for the same reason, fitness 2 drops faster than 
fitness 1 in sub-population 2, which verifies the effectiveness 
of proposed population evolution principles. The fitness func­
tion of the main-population drops slowly, and the evolution 
process stops at 5th, 15th, and 25th iteration because of 
poor swarm diversity. But by exchanging particles between 
main-population and sub-population, the evolution process 
is accelerated significantly. The fitness function of the main-
population drops from 0.7 to 0.25 after two exchanges at 10th 
and 20th iteration, which indicates that the proposed MCM 
method can boost population evolution and improves the V2G 
scheduling efficiency effectively. 
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TABLE 3. The result of different V2G management method. 

TABLE 4. The calculation time of different algorithm-based V2G 
scheduling method. 

To verify the effectiveness of the proposed V2G scheduling 
method, we compare the complexity of different algorithms 
in the paper. The program is implemented on a high-
performance workstation equipped with 2×E5-2690v4 pro­
cessor, and the MATLAB Parallel Computing Toolbox is 
employed to improve the efficiency of MCM algorithm: dif­
ferent sub-populations and sub-groups are assigned to dif­
ferent threads of the processor and thus the evolution of the 
population can be performed in parallel. The calculation time 
of different V2G scheduling methods in real scenarios is 
compared in Table 4. 
The conventional PSO algorithm is not able to utilize 

the modern multi-core CPU resources effectively, the aver­
age CPU usage is only 13%, and with the proposed MCM 
method, the CPU computation resources can be used more 
reasonable (86% on average). As a result, the calculation time 
of the conventional PSO algorithm within 50 iterations is as 
long as 476s on average, and this number is reduced to 135s 
with the MCM method, which validates the effectiveness of 
the proposed scheduling method. The maximum calculation 
time of MCM method in the whole scheduling period can 
be limited within 426s, which indicates that the V2G man­
agement system can schedule the charging behaviors of grid-
connected EVs in time (15 minutes, 900s). 

VI. CONCLUSION AND FUTURE WORK 
A battery anti-aging V2G behavior management method 
is presented in this paper. By using the RCC algorithm 
based battery degradation quantification method, the minimal 
battery aging effect was designed as one of the optimiza­
tion objectives in the mathematical model. Compared to the 
conventional V2G management method, the battery num­
ber of full-cycles and half-cycle are reduced by 79.4% and 
15.6% respectively, which indicates that the battery degrada­
tion phenomenon during the V2G application is suppressed 
effectively. The designed multi-population collaborative 

mechanism can utilize the computational resources reason­
ably to solve the high-dimensional and multi-objective opti­
mization problem in V2G scheduling. The simulation results 
revealed that the particle exchange process can boost pop­
ulation evolution and improve the algorithm performance 
effectively, the peak load and load STD were further reduced 
by 32% and 60.4% respectively, which validated that the grid 
energy quality can also be improved by the proposed battery 
active anti-aging V2G scheduling method. 
This paper mainly focuses on suppressing the battery 

degradation problem in V2G scheduling. It is assumed that 
the baseload profile and battery state can be predicted and 
estimated accurately. But the prediction or estimation errors 
cannot be avoided in real scenarios and may influence the 
operation of the V2G management system. For instance, the 
prediction error of baseload and EV charging information 
may influence the V2G scheduling results and have a neg­
ative impact on system peak-shaving performance. Likewise, 
the battery state estimation error may also influence the V2G 
scheduling, especially when quantifying the battery degrada­
tion phenomenon. Future work can be conducted on studying 
the influence of the prediction error and how to suppress these 
influences in V2G scheduling. 
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