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Abstract 

An extensive finite element simulation campaign was undertaken to examine the 

complete manufacturing history and high temperature thermal ageing of thick-walled 

girth-welded austenitic steel pipes fabricated from Esshete 1250 austenitic steel. The 

simulations examined the impacts of prior quenching of pipe material, fabrication of 

closely adjacent welds, and axial restraint during welding.  The simulations 

considered both simple isotropic and kinematic hardening behaviour, and a large 

matrix of Lemaitre-Chaboche mixed isotropic-kinematic hardening material 

constitutive models, with a focus on examining the most accurate evolutionary 

hardening behaviour for weld metal.  High temperature (650°C) service exposure was 

modelled using an RCC-MR type creep model, and the sensitivity of the predicted 

relaxation to variability in the model parameters was assessed. The predicted residual 

stresses were validated using measurements made with the deep hole and incremental 

deep hole drilling techniques and the contour method. 

1 Introduction 

Weld residual stresses  can have significant, undesirable effects on the structural 

integrity of high-value, safety critical engineering plant [1].  Estimating the levels and 

spatial distribution of weld residual stress is often not straightforward.  Structural 

integrity assessment procedures such as R6 [2], BS7910 [3] and API 579 [4] include 
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both compendia of weld residual stress distributions for common weld geometries 

and, in the case of R6, advice on other estimation methods.  R6 recognises three 

“levels” of weld residual stress, of decreasing conservatism and increasing 

complexity: “Level 1” consists of a uniform stress equal to the material yield strength 

across the cross-section of interest; “Level 2” stresses are upper bounds for common 

weldment geometries; while “Level 3” stresses are derived from a combination of 

finite element modelling and residual stress measurements on weldment mock-ups. 

The level 2 residual stress profiles in R6 are based upon upper bounds to measured 

residual stresses, developed and updated by review of published data.  These have the 

undesirable feature of tending towards a uniform through-wall distribution of stress 

equal to the material yield strength, as more published data are incorporated.  This 

behaviour is driven by scatter and errors in measurements derived from a large 

number of sources of variable quality (see the discussion in [5]).  

The use of finite element techniques to predict weld residual stresses is relatively 

mature [6, 7], and R6 includes detailed advice on finite element prediction of weld 

residual stresses in austenitic stainless steels, and their validation using measured data 

[8, 9]. The problem of scatter in residual stress measurements can be sidestepped 

using modelling, which allows extensive parametric studies covering a wide range of 

component geometries and weld types, all at much lower cost than manufacturing, 

characterising, and measuring residual stresses in large numbers of representative 

weldments.  Modelling also produces full-field descriptions of residual stresses, in 

contrast to the point, line, or plane-based data obtained from measurements [10, 11].  

Dong and co-workers have performed an extensive series of such studies over a 

number of years [12-16].  These have identified the key geometric and weld process 

variables influencing the form of pipe girth weld residual stress fields.  A combination 

of finite element simulation and analytical shell theory have then been used to 

develop parametric formulations for both the through-wall distribution of weld 

residual stress at the weld centreline, and its axial die-away behaviour [16]. 

The residual stress profiles developed in [13-16] are based wholly upon modelling.  

Measured residual stresses are used only for validation of the modelling approach 

using published data for selected weldment mock-ups (for example the mock-up 

reported in [17, 18] and a selection of the mock-ups reported in [19]).  Bouchard [19] 

has developed an analytical formulation for through-thickness residual stress profiles 
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in conventional austenitic stainless steel pipe butt welds, also intended to be used for 

defect tolerance assessment.  This formulation is based on a combination of mock-up 

residual stress measurements on nine large-scale mock-ups, and finite element 

simulations originally reported by Bradford [20], using data available up to 

approximately 2001 (for example, see [21]).     

Uncertainties in finite element predictions remain a serious concern.  The guidelines 

for finite element prediction of weld residual stresses incorporated into the R6 

procedure [8, 9] impose strict validation requirements on those predictions, driven in 

part by early experience with round-robin weld residual stress prediction activities 

[22-24]. The level of validation required depends on the structural integrity 

significance of weld residual stresses in the weldment being considered, but wholly 

unvalidated finite element predictions may not be used in structural integrity 

assessments made using R6.  

Validation of finite element weld residual stress predictions requires representative, 

closely characterized mock-ups with reliable and repeatable residual stress 

measurements, preferably made using diverse methods with different characteristic 

errors (for example, diffraction-based and strain relief methods).  The NeT 

collaboration has produced several high-quality benchmarks with large bodies of 

residual stress measurements.  These include: 

 NeT TG1: a single finite length gas tungsten arc (GTAW) weld bead made 

with AISI 316L welding wire, laid on an AISI 316L austenitic steel plate [25­

28]. 

 Net TG4: a three-pass GTAW weld made with AISI 316L welding wire, laid 

in a finite length slot in an AISI 316L(N) austenitic steel plate [29-32]. 

 NeT TG5: a beam specimen in SA508 Gr 3 Cl 1 low alloy pressure vessel 

steel with a single autogenous GTAW weld pass along one edge [33, 34]. 

 NeT TG6: a three-pass GTAW weld made with Alloy 82 welding wire, laid in 

a finite length slot in an alloy 600 nickel alloy plate [35]. 

NeT adopt the approach of characterizing their benchmarks to a very high level.  

Multiple residual stress measurements using diverse techniques are accompanied by 

detailed characterization of the welding process and its associated thermal transients, 

and extensive materials property testing.  This approach ensures both that finite 
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element simulations made to predict the weld residual stresses have the minimum 

possible uncertainty in their input data, and that the validation data for the simulation 

end products, residual stresses and distortions, are reliable and representative. 

The work of NeT has confirmed that mixed isotropic-kinematic hardening models 

lead to the most accurate predictions of weld residual stresses in AISI 316L and AISI 

316L(N) austenitic steel welds with limited numbers of weld passes [27, 29, 31]. 

The NeT benchmarks are all small weldments with limited numbers of weld passes, 

so cannot act as fully representative validation examples for multi-pass welds in large 

engineering structures.  These require larger scale mock-ups. Such components tend 

to be rare, because of the costs involved in their manufacture, the difficulties 

encountered in making reliable, diverse and repeatable residual stress measurements 

in large components, and the burden of detailed material property characterization 

required for reliable benchmarking of simulations.  Recent examples are the 

programmes run independently by British Energy (now EDF Energy) in the UK  [36­

40] and by EPRI/NRC in the USA [41, 42], both examining residual stresses in PWR 

primary circuit dissimilar metal welds.  These programmes delivered mixed results: 

while it is possible to obtain predicted residual stresses that agree well with measured 

stresses [39], considerable scatter in predicted stresses can occur [41, 42], and it can 

be extremely difficult in these complex weldments to identify and account for all the 

sources of analysis variation.  Mixed hardening models produced the most accurate 

predictions of residual stress in [40] (although strictly, of the three DMW constituents 

only AISI 316L and Alloy 82/182 were assumed to follow a mixed hardening rule: 

SA508 Gr 3 low alloy steel was assumed to harden kinematically, a decision 

underwritten by work on the NeT TG5 benchmark). 

Plain girth welds in austenitic steels are usually considered to be a more tractable 

problem than dissimilar metal welds, witness the extensive work of Dong and co­

workers [12-16, 22, 43]. However, validation remains a live issue.  The profiles 

developed by Bouchard are supported by residual stress measurements made on nine 

separate weldments [19].  These measurements were limited to techniques available at 

the time, and in some cases diverse measurements were either not feasible, or they 

produced divergent results.  The simulations underlying [19] also, of course, used 

techniques and knowledge available at the time.  The residual stress measurement 

techniques available for thick section welds have improved significantly in recent 
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years. The conventional deep hole drilling technique, which was applied to the 

majority of mock-ups considered by Bouchard, is susceptible to plasticity induced 

errors when the residual stresses approach yield, and the incremental deep hole 

drilling method has been developed to minimize such errors [44].  Similarly, the 

contour method [11] has undergone continuous development, and can now be applied 

to large-scale structures such as dissimilar metal welded nozzles and pipe butt welds. 

A number of thick-walled austenitic steel pipe girth weld mock-ups have been 

manufactured by British Energy (now EDF Energy) for an internal research 

programme, and then utilized by the STYLE Framework 7 project [45].  The mock-

ups were fabricated under carefully controlled conditions, and residual stress 

measurements made using diverse techniques in both the as-welded state, and after 

thermal ageing at high temperature.  An extensive programme of mechanical property 

evaluation was performed in parallel with mock-up manufacture and characterisation, 

on both parent material and the matching manual metal arc (MMA) weld metal [46]. 

These mock-ups offer an opportunity to assess the state of the art in weld residual 

stress prediction in a large-scale, plant relevant geometry. This assessment can cover 

both start-of-life residual stresses and the prediction of creep relaxation in high-

temperature service.  This paper forms the second part of this assessment.  Part 1 [47] 

describes the manufacture, characterisation, and residual stress measurements 

performed on the pipe girth weld mock-ups, reports the detailed mechanical testing 

performed to establish the cyclic hardening behaviour of both parent material and 

manual-metal arc weld metal, and describes the approaches used to fit the parameters 

for the mixed isotropic-kinematic hardening models used to describe material 

behaviour during welding.  Part 2, this paper, describes the finite element simulation 

campaign, which was performed in two stages.  Stage 1 investigated the impact of the 

complex manufacturing history on the predicted residual stress state, while Stage 2 

examined the impact of the material evolutionary hardening behaviour and creep 

deformation behaviour on the residual stress states after completion of manufacture, 

and after long term high temperature exposure.  The phase 2 modelling laid particular 

emphasis on examining the evolutionary hardening behaviour of weld metal.  This is 

less straightforward to characterise and model than parent material.  The source and 

heat treatment state of the weld metal to be tested must be chosen carefully 

(specimens may be extracted from single pass, multi-pass pad, or multi-pass 
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weldment, and may be tested in the as-welded, solution treated, or intermediate 

annealed condition [31, 47]).  It is also necessary to interpret the results of isothermal 

cyclic tests carefully, to ensure that both the start point (molten and strain free), and 

the end point (yield properties measured in multi-pass weld metal) of the modelled 

weld metal are correct. 

2	 Description of mock-ups 

A welded pipe assembly was fabricated from Esshete 1250, an austenitic stainless 

steel with added vanadium and niobium to increase its high-temperature strength.  

The layout of the completed welded pipe assembly, consisting of 4 full-length (200 

mm long) and 2 half-length (100 mm long) pipes, and five welds, is shown in Figure 

1. The outer diameter was 180mm and wall thickness 35mm, giving Rm/t=2.1. After 

completion of welding the assembly was cut into five individual mock-ups, each of 

length 200mm.  Full details of the fabrication process are given in Part 1 of this study 

[47]. 

3	 Weld and materials characterisation 

The extensive programme of residual stress measurement and mechanical property 

testing is described in Part 1 of this study. 

4	 Weld residual stress simulation 

The girth weld mock-ups have a complex manufacturing history, all elements of 

which have the potential to affect the as-welded residual stresses.  The simulation 

campaign was therefore conducted in two phases. 

	 In Phase 1, already partially reported in [48], the entire manufacturing history 

of the pipe assembly was modelled, comprising quenching, machining, 

welding, cutting of the assembly into individual weldments, and machining of 

the bore protrusion. 

	 In phase 2, the modelling was simplified to consider only welding and 

subsequent thermal soak of a single girth weld, neglecting the manufacturing 

history. The mixed hardening models calibrated in Part 1 of this study were 

applied in an extensive sensitivity study to assess the accuracy of the predicted 
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as-welded residual stresses, and the stresses after long term exposure to high 

temperature were predicted using creep deformation models currently used in 

the nuclear industry. 

4.1 Simulation philosophy and mesh design 

The analyses comprised uncoupled heat transfer (thermal) analyses and subsequent 

stress and creep (mechanical) analyses, using ABAQUS 6.11 and later versions [49], 

adopting an axi-symmetric idealisation and small displacement assumptions.  The 

welding heat sources were calibrated using a specialist fitting tool, FEAT-WMT [50]. 

4.1.1 Phase 1: full manufacturing history 

The Phase 1 analysis campaign followed the full manufacturing history of the pipe 

assembly, and was performed in five stages, see Figure 2, using a series of meshes 

optimised for the manufacturing stage(s) considered.  The results were transferred 

from one stage of the analysis to the next using the “Map Solution” keyword in 

ABAQUS. 

Stage 1: Quenching. 

The water quench was modelled by applying a single heat transfer coefficient of 

16742 W.m-2.C-1 with a sink temperature of 100ºC to the entire surface of the blanks, 

which were set at an initial temperature of 1080ºC (Figure 2a). Note that although the 

mesh of each cylinder appears to be in contact with the next, there is no physical 

connection and the thermal transient is applied to all surfaces of each cylinder. At 

temperatures below 100ºC, when boiling has ceased, a heat transfer coefficient of 

0.0005 W.m-2.C-1 was applied to the entire surface to slowly cool the pipe sections to 

20ºC. 

This stage of manufacturing was modelled as sequential heat transfer and mechanical 

analyses, with the nodal temperature history from the heat transfer analysis applied as 

a thermal load in the mechanical analysis. 

Stage 2: machining. 

The solution from the mechanical quenching analysis was mapped onto the new mesh 

shown in Figure 2b, designed to simulate final pipe machining and insertion of the 

weld preparations.  The manufacturing sequence of the welds allowed only Welds 1, 2 
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and 5 to be modelled directly. Welds 3 and 4 are identical to Welds 1 and 2, and were 

judged not to affect the residual stress fields in the other welds.  

The J-grooves for the weld preparation have 15º sidewall angles, and the weld 

procedure allows a root gap of up to 1mm.  Considerable axial shrinkage and 

tourniquet distortion occurs in pipe girth welds, meaning that the effective cross-

section of the weld, and therefore both the amount of weld filler metal used and the 

cross-sectional areas of individual beads, are less than might be inferred from the 

original weld groove geometry.  This effect was accounted for by eliminating the root 

gap, and by reducing the sidewall angle to 13º. 

A mechanical analysis was performed to remove the machined material and allow the 

quench stresses and strains to re-distribute. 

Stage 3: welding. 

The solution from the machining analysis was again mapped onto a new mesh 

designed to model the welding process for Welds 1, 2 and 5, see Figure 2c.  The root, 

hot and fill passes were all modelled as simple trapezoids (see the inserts in Figure 

2c). The root passes were modelled with a protrusion on the inner bore to reflect the 

as-welded configuration.  The bead layouts for the hot and fill passes (passes 2-22) 

were obtained from the pass sequence maps kept as part of the welding records.  The 

weld preparation cross sectional area was apportioned between passes in accordance 

with their relative heat inputs, since the bead cross-sectional area is known to be 

proportional to the energy input per unit length [51].  The capping pass geometries 

were based upon surface profile measurements made on the completed welds, 

simplified to trapezoids.  Welds 1 and 2 have 3 capping passes, making a total of 25 

passes, and Weld 5 has 2 higher heat input capping passes, making a total of 24 

passes. 

Welding was modelled as sequential heat transfer and mechanical analyses, and more 

complete details are given in Sections 4.3 and 4.4. 

Stage 4: root protrusion removal and cutting into individual weldments. 

In this stage of the analysis, the root protrusion was removed, followed by cutting of 

the entire pipe assembly into the final test specimens, each having a girth weld at mid-

length. 
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Stage 5: thermal ageing. 

Thermal ageing was modelled using the same mesh as the welding stage of the 

analysis. The temperature was raised to 650ºC, and creep relaxation was modelled 

using user-defined creep laws for Esshete 1250 via a *VISCO step in ABAQUS. 

4.1.2 Phase 2: Sensitivity to material hardening behaviour 

The Phase 1 results discussed below showed that residual stresses on the weld 

centreline are essentially unaffected by details of the prior manufacturing history.  

The modelling approach was thus greatly simplified for the Phase 2 studies.  A single, 

more refined axi-symmetric mesh was constructed containing Weld 5 alone (the 

central two-capping pass weld), as shown in Figure 3.  This had a longer plain pipe 

section than the final completed pipes, which provides restraint intermediate between 

the original manufactured pipe assembly and the final completed test specimen 

CY7/CY6 after cutting. 

Welding was modelled as sequential heat transfer and mechanical analyses, and 

thermal ageing was modelled on the same mesh, using the same approach as the 

Phase 1 analyses. 

4.2 Material properties 

Thermo-physical and physical properties 

The thermo-physical and physical properties of Esshete 1250 are given in Table 1.  

Esshete 1250 weld metal shows elastic anisotropy.  Its effects on residual stress 

development and creep deformation were simply accounted for by reducing Young’s 

Modulus by approximately 20%.  This approach was adopted using insights gained 

from historical simulations made using elastically orthotropic material properties. 

Mechanical properties 

The mechanical properties of Esshete 1250 parent and weld metal are presented in 

Part 1 of this study.  

Every simulation except one used the Lemaitre-Chaboche mixed isotropic-kinematic 

hardening model [52], with the model parameters derived and reported in Part 1 of 

this study. As implemented in ABAQUS [49], the isotropic and non-linear kinematic 

parts of the model are described separately.  The kinematic hardening component 
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describes translation of the yield surface in stress space via the backstress tensor . 

The pressure-independent yield surface f is defined by the function: 

f σ  α  0 
(1) 

where  is the stress tensor, 0 is the radius of the yield surface and is the 

equivalent von Mises stress, defined by: 

f      3 
2 

(S  dev ) : (S  dev ) (2) 

here dev is the deviatoric part of the back stress tensor, and S is the deviatoric stress 

tensor, defined as S=+pI, where p is the equivalent pressure stress, and I is the 

identity tensor. 

The kinematic hardening component is defined as an additive combination of a purely 

kinematic term (the linear Ziegler hardening law) and a relaxation term (the recall 

term), which introduces nonlinearity. When temperature and field variable 

dependencies are omitted, the kinematic hardening law is: 

(3) 

And 

(4) 

where Ci and i are material parameters that must be calibrated from monotonic or 

cyclic test data.  Ci is the initial kinematic hardening modulus, and i determines the 

rate at which the kinematic hardening modulus decreases with increasing plastic 

deformation.   is the stress tensor,  0  , is the equivalent stress defining the size of 

the yield surface, and  pl  is the equivalent plastic strain rate.  As noted above, only 

the deviatoric part of  contributes to the material hardening behaviour.  When Ci and 

i are both zero, the model reduces to pure isotropic hardening. 

The isotropic hardening component of the model defines the evolution of the yield 

surface size, 0, as a function of the equivalent plastic strain, or plastic path length, 

 pl . 
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bpl 

0   |0 Qinf 1 e  (5) 

where  |0 is the yield stress at zero plastic strain, and Qinf and b are material 

parameters.  Qinf is the maximum change in the size of the yield surface, and b defines 

the rate at which the size of the yield surface changes as plastic straining develops.  

The parent material parameter sets available for this study are listed in Table 2.  The 

Phase 1 studies made use of parent models 1 and 4, while the Phase 2 studies made 

use of parent models 2 and 4. 

The weld metal parameter sets available for this study are listed in Table 3.  The 

Phase 1 studies made use of weld metal models 1 and 5, while the phase 2 studies 

employed a much larger range: models 4-9. 

The work of the NeT network has confirmed that mixed isotropic-kinematic 

hardening models lead to the most accurate predictions of weld residual stress in 

small-scale austenitic steel benchmarks such as NeT TG1 and NeT TG4.  Given this 

knowledge, only limited analyses were performed using simpler isotropic and 

kinematic hardening models. 

A single Phase 2 analysis was performed using an isotropic hardening rule.  The 

mechanical properties for this analysis were defined as piecewise-linear stress-strain 

curves, which were fitted to the total stress predicted by monotonic loading of parent 

model 2 and weld model 5 respectively.  Parent model 2 uses two back-stresses fitted 

to monotonic loading, with Qinf matched to 2.5% TSR tests, and Weld model 6 also 

uses two back-stresses, but fitted to first re-loading from compression of 1.5% TSR 

tests on single-pass weld metal, with 0 reduced to simulate as-deposited weld metal, 

and with Qinf increased to saturate at the 0.2% proof stress of multi-pass weld metal.  

Both the isotropic models employed perfectly plastic cut-offs, set at 30% plastic strain 

for parent material and 10% plastic strain for weld metal.  At room temperature these 

correspond to saturation at 487 MPa for parent material and 533 MPa for weld.  These 

may be compared with cyclic saturation limits of ~470 MPa at 2.5% TSR for Parent 

model 2, and 551 MPa at 2.5% TSR for Weld model 6.  The choice of saturation limit 

is important, because it limits the peak stresses that may be predicted in the analysis.  

A single Phase 2 analysis was also performed using a kinematic hardening rule.  The 

mechanical properties for this analysis were defined by setting Qinf to zero for parent 
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model 2 and weld model 6 respectively.  Kinematic hardening models correctly 

incorporate the Bauschinger effect, which is important in cyclic loading processes 

such as welding. The lack of any cyclic isotropic hardening means that kinematic 

models normally predict welding stress distributions with lower amplitudes than 

alternative formulations [22, 37-39, 41, 53], and where validation is available (eg [29, 

38, 54] their use leads to under-prediction of the measured stress amplitudes. 

High temperature behaviour during welding 

It is common practice to approximate high temperature recovery and re-crystallisation 

processes using a simple “annealing” rule.  This procedure was followed here.  The 

ABAQUS *ANNEAL TEMPERATURE functionality was used to eliminate the 

isotropic hardening component above a fixed temperature (either 1100ºC or 1300ºC 

depending on the analysis), by setting the equivalent plastic strain to zero.  This has 

the effect of re-setting the radius of the yield surface to its initial value, see Equation 

(4). The kinematic back-stress was re-set to zero at and above 1000 ºC by zeroing the 

hardening moduli in Equation (3). 

Creep deformation behaviour 

The RCC-MR design code [10] defines a creep law which separates the primary and 

secondary creep regimes: 

C n1 

 

 
C t 1

2 , t  t fp  c (7)
C n1 n2C t   C (t  t ), t  t 1 tp fp fp 

where ??1, ??2, ??, ?? and ??1 are material constants defined in the RCC-MR design 

code and ?? is time (in h). The primary creep strain has a power-law relationship with 

stress and time. The secondary creep strain is in the form of (7) in addition to a 

maximum primary creep strain which is evaluated at the transition time, tfp. The RCC­

MR code states these expressions are valid up to 1% creep strain. The primary creep 

formula applies for temperatures between 425°C and 700°C and the secondary creep 

formula for temperatures between 480°C and 700°C. The constants for the RCC-MR 

model for Esshete 1250 weld metal are shown in Table 4. 

Creep strain rates may be defined for the material models with each of the hardening 

laws by defining ??̇?? as a function of time or strain. Differentiating the RCC-MR 

creep model for the primary regime with respect to time gives: 
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c C2 1 n1  C C t (7)1 2 

Substituting Eq.(7) into Eq. (6) gives the strain hardening formulation

1 C 12 
c n1 C C2 2  (C  ) C 1 2 c (8) 

The creep deformation behaviour was embodied in an ABAQUS user-defined 

subroutine [55]. Although this has the capacity to apply different creep deformation 

behaviour to different materials, it was assumed that the weld metal behaviour applied 

to the entire pipe.  This was judged a reasonable approach, as stress relaxation 

behaviour would be dominated by the very high initial von Mises residual stresses in 

weld metal. 

The coefficients for the RCC-MR law presented in Table 4 and identified as 

“baseline” had been fitted to creep deformation test data over a range of temperatures.  

The resulting parameters are known to under-predict creep deformation rates at 

temperatures approaching 650C, since they are optimised for the lower temperatures 

at which Esshete 1250 operates in the UK’s fleet of advanced gas cooled reactors.  A 

series of sensitivity studies were performed to assess which parameters in the model 

most strongly affected the predicted stress relaxation in the pipe girth weld, and to 

optimise their values.  It was found that only n and n1 had any significant effect on 

the predicted stress relaxation.  The parameter set identified as “optimised” were then 

derived. It can be seen that this was achieved by increasing n1 from 8.9395 to 9.9395. 

4.3 Thermal modelling 

Experience with the NeT benchmarks [25, 27, 30, 32, 56, 57] has shown that the use 

of a specialised weld heat source modelling tool leads to the most reliable and 

accurate thermal analyses of welding processes.  The simulations reported here used 

FEAT-WMT, a dedicated heat source modelling tool [50].  FEAT-WMT imports an 

ABAQUS mesh (2D, axi-symmetric, or 3D), and uses it to construct a 3D steady state 

moving mesh model of the weld concerned.  This approximates steady-state 

conditions far from the start or stop end of a weld bead.  FEAT-WMT then predicts 

the fusion boundary profile and transient temperature history close to the weld, 

offering the ability to compare these against measured profiles and thermocouple data.  

The tool contains a number of weld heat source models, and it is capable of 

superposing multiple heat sources for a single pass, and of dealing with complex torch 
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paths. Once an optimised thermal solution is obtained, FEAT-WMT offers an 

interface to ABAQUS via the DFLUX user subroutine.  This uses volumetric heat 

flux data output as a series of time-slice files.  The optimised heat source can be 

output as a 2D or axi-symmetric approximation, a 3D simultaneous bead deposition 

(aka “block dumped”) approximation, or as a full 3D moving heat source.  

2D, axi-symmetric, and 3D “block-dumped” approximations assume that heat transfer 

in the direction of torch travel is not significant.  This is the case if the weld Peclet 

number, Pe, is in excess of unity, where 

𝑃𝑒 = 𝜌𝐶𝑝𝑣𝐿𝑤 𝑘 

and where ν is the linear torch speed, Lw is a characteristic length, taken to be the 

diameter of the heat source representing the torch in the welding direction, and ρ, Cp 

and k are the density, specific heat and the thermal conductivity respectively of the 

material.  Conventionally [2, 51] the properties of the parent material at 800ºC are 

used to calculate this quantity.  A typical Peclet number for the welds considered here 

is 4.6, for the capping passes, so an axi-symmetric heat source idealization will be 

adequate for the thermal analyses. 

The process of generating an equivalent 2D heat source is fully automated within 

FEAT-WMT, ensuring that the correct heat input is applied to the model, and 

avoiding potential errors involved in writing a bespoke heat source solution for each 

individual FE mesh, and converting between the optimized 3D moving heat source 

and whatever 2D equivalent is used. 

The simulations reported here used a simple Gaussian ellipsoidal heat source, defined 

by:

2 2 2
Q  x   y   z   q  exp          

 (5)
V  r r r  

a  l   v   a   

where 

Q=VI (6) 
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In Equation (5) q is the power per unit volume, Q is total power deposited, (x,y,z) is 

the geometric centre of the distribution (by default at the geometric centroid of the 

weld bead as defined in the FE mesh), and rl, rv, ra are the radii of the distribution in 

the lateral, vertical and axial directions, see Figure 4. 

In Equation (6)  is the welding efficiency, V the arc voltage, and I the welding 

current. 

The quantity Va is not a user-specified parameter in FEAT-WMT, but is chosen 

automatically by the code on a particular mesh so that the total power input to the 

work is Q. It ensures that those parts of the heat source that are not within the 

currently active mesh are not lost.  This is a common source of error in individually 

coded finite element heat source models [30]. 

In addition to the basic source parameters above, FEAT-WMT offers options to offset 

the centre of the source in the weld transverse plane, to change its angle, and to 

impose source weaving on arbitrary paths in the weld transverse plane. 

Fitting a heat source with a number of parameters must follow a carefully defined 

procedure to avoid physically unreasonable solutions.  When both weld thermocouple 

data and fusion boundary profiles are available then the procedures developed and 

validated within NeT may be used [27, 30], namely to first fit the global heat source 

intensity in Equation (6) by matching the temperature rises recorded at thermocouples 

far enough from the heat source that they are insensitive to its shape (effectively 

calibrating ), and then to fit the heat source “shape” (radii, offsets, angle and source 

weaving) to match the fusion boundary profile revealed by weld transverse 

macrographs. 

In many cases, lack of data prevents this ideal approach being followed.  The welds 

being modelled here have no transient thermocouple data available, and the weld 

metallography is limited to completed welds, meaning that individual transverse weld 

bead profiles are known only for the final capping passes, although the total melted 

envelope is known.  The global weld parameters, V, I, and torch speed v are known, 

but  cannot be calibrated directly from measured temperature rises.  

The lack of measured thermocouple data is judged unlikely to lead to significant 

errors in the final predicted residual stresses.  The analytical through-wall residual 

stress profiles developed by Bouchard [19] for austenitic steel pipe girth welds are a 
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function of both weld geometry and heat input.  Thick-walled pipes of the geometry 

considered in this study exhibit little sensitivity to credible variations in heat input, Q, 

when Bouchard’s formulation is applied to estimate the through-wall axial residual 

stress profile. 

The R6 weld modelling guidelines [2, 9] make a series of recommendations for heat 

source fitting procedures in the absence of thermocouple and fusion boundary profile 

data.  These vary with the available data, and they were followed in this analysis.  

The strategy adopted made use of the following knowledge: 

1.	 The relationship between the cross-sectional area of weld filler metal 

introduced per pass and the electrical heat input per unit length VI/v is known 

for MMA welds in austenitic steels, at Abead=15VI/v, see Figure 5. 

2.	 The total fusion boundary envelope of the completed weld is known from 

transverse metallography, which reveals significant axial contraction from the 

nominal weld preparation. 

3.	 The total melted area per bead (filler plus fused parent or previously deposited 

filler) is known to be about twice the area of filler introduced in that pass [51]. 

Inspection of the weld metallography led to the decision to model the weld 

preparation with no root gap and a sidewall angle reduced to 13 from 15. The total 

area within the weld groove was then calculated and compared with the area of 

deposited weld metal inferred from the published correlation of Figure 5 (the data for 

pipe CY7/CY6 and weld 5 are presented in Table 5).  The two calculated areas agreed 

closely, validating the decision to reduce the groove area.  The area occupied by the 

hot and fill passes (2 to 22 in CY7/CY6) was then divided between passes in 

proportion to their heat inputs, and the capping pass areas were calculated from their 

heat inputs, see Table 5. 

Heat source parameter fitting was achieved as follows: 

1.	 The three source radii were set equal to each other (a spherical source) 

2.	 No offsets or angular changes were used, so all sources were centred at the 

bead centroid. 

3.	 The source radii for the MMA passes were set equal to the electrode diameter 

used, to reflect the fact that extent of the arc will increase with electrode size.  
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The source radii for the root and hot passes, made using TIG, were not fixed a 

priori, since it proved impossible to predict credible fusion boundary profiles 

without using them as a fitting parameter. 

4.	 Sinusoidal lateral source weaving was allowed, in accordance with the weld 

procedure. 

5.	 A target efficiency of between 75% and 85% was set, based upon extensive 

experience with modelling MMA processes. 

6.	 The efficiency and source weave amplitude were then adjusted to ensure that 

the entire introduced weld bead melted, and that the total melted cross-

sectional area for the pass was ~2x the introduced filler area.  For passes 1 and 

2, it also proved necessary to adjust the heat source radii to achieve sensible 

melted profiles in the unusually shaped beads (see Figure 3). 

The final source parameters for pipe CY7/CY6, weld 5, are given in Table 5.  The 

accumulated fusion boundary profile predicted using FEAT/WMT for the same weld 

is compared with the weld transverse macrograph in Figure 6.  It can be seen that the 

use of gaussian ellipsoidal heat sources results in realistic individual pass fusion 

boundary profiles, despite the use of trapezoidal weld beads in the FE mesh.  It is also 

evident that the predicted weld envelope appears to be slightly wider than that 

observed in the pipe, especially at the weld root, although the weld cap width is 

correct.  Since the capping passes tend to dominate the final residual stress profile, 

this should not be a concern. 

4.4 Mechanical modelling 

The overall mechanical analysis sequence adopted for both Phase 1 and Phase 2 

studies has been described above.  The major variables examined in the extensive 

matrix of analyses were: 

1.	 The impact of manufacturing history on the final as-welded residual stress 

state 

2.	 The impact of changes to the structural boundary conditions during welding 

3.	 The impact of changes in the mechanical properties of both parent material 

and weld metal. 
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Manufacturing history and boundary conditions were investigated as part of the Phase 

1 study. Mechanical property changes were examined primarily within the Phase 2 

study. 

The impact of changes to the thermal solution was not investigated.  The only 

significant unknown in the thermal solution is the welding efficiency.  Multi-pass 

girth welds in thick-walled pipes are believed to be relatively insensitive to details of 

the thermal solution (for example, see [37, 38]).  The extensive simulation campaign 

for the NeT TG4 benchmark has also shown little sensitivity to changes in the 

welding efficiency, in a small specimen with only three weld passes where its effects 

might be expected to be more marked [29, 30]. 

4.4.1 Phase 1 analyses 

The full sequence of analyses to simulate the manufacturing history has already been 

described. The effect of starting the analysis after quenching was complete, with 

stress-free pipe sections, was also examined. 

The phase 1 studies employed two material property combinations, the “historical” 

single-back-stress parent model 1 and weld model 1, and the models identified as 

parent model 4 and weld model 5, see Table 2 and Table 3.  Only results obtained 

using the historical models 1 are presented here. 

It is conventional in axi-symmetric modelling of pipe girth welds to allow free axial 

expansion and contraction during welding if the welded assembly is not restrained.  

However, this approach neglects the restraint against axial expansion offered by 

material behind the weld pool of a moving weld torch that has already solidified, 

cooled, and gained strength.  If this is ignored, especially in the early passes of a 

multi-pass weld where the entire ligament beneath the weld pool reaches high 

temperatures and softens, then the total axial contraction is significantly under-

predicted (for example, see [40]).  Bendeich et al [40] have developed a system of 

restraint whereby axial expansion is prevented, but contraction can take place freely, 

and applied this to a large-scale nozzle dissimilar metal weld mock-up.  The 

application of axial restraint leads to accurate predictions of axial contraction, and to 

improvements in the accuracy of the predicted residual stresses.  This axial restraint 

system was thus applied in a sensitivity study.  Although no measurements of weld 
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contraction exist to validate the simulations, the impact of improved axial restraint on 

predicted residual stresses is of considerable interest in its own right. 

4.4.2 Phase 2 analyses. 

The complete matrix of material property combinations examined in the phase 2 

analyses is given in Table 6. 

4.5 Modelling of thermal soak testing 

After completion of welding and root removal, the temperature of the model was 

raised to 650C, followed by steady state creep relaxation for 10,000 hr. 

5 Results and discussion 

5.1 As-welded residual stresses 

The general development of residual stresses in the pipe sections is shown in Figure 7.  

The quenching process develops significant stresses, which are compressive near the 

pipe surfaces, and tensile near mid-thickness (Figure 7a). The welding process 

generates large stresses in the vicinity of the welds.  These have the distribution 

expected for a thick-walled pipe butt weld.  They appear to be unaffected by the prior 

quench stress/strain field, but quench stresses remain visible in those parts of the 

parent pipe that are more than one wall thickness from the welds (Figure 7c). Cutting 

into individual pipe sections and root machining have no visible effect on stresses 

near the welds, but do further relax quench stresses near the pipe ends.  The remaining 

tensile quench stresses visible in Figure 7d are also present in the contour method 

measurements reported in Part 1 of this study [47].  The impact of capping pass layout 

is clearly visible: the region of peak hoop and high axial stresses beneath the outer 

surface always develops under the final pass deposited.  

The weld residual stress fields are presented in more detail in Figure 8, for a 

representative Phase 2 analysis with no prior manufacturing history.  It is evident that 

the stress field remote from the weld shows some differences with the “full history” 

analysis plotted in Figure 7.  

The through-wall distribution of residual stress on the weld centreline is of most 

interest.  It passes through the peak stress regions of all three welds (with the slight 

caveat that the absolute peak stresses in weld 5 are slightly offset, beneath the final 
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pass), samples all the major features of the weld residual stress field  and diverse 

residual stress measurements are available only on this line (see Part 1 ).  The focus of 

this study is on the most representative evolutionary hardening model to use for weld 

metal, so concentrating on the weld centreline is appropriate. 

The contour plots suggest limited effects of history on the final residual stress field 

within the welds themselves, and this may be confirmed by examining line plots.  

Figure 9 plots the final residual stresses predicted for Weld 5 for two Phase 1 analyses 

using the historical weld and parent materials 1: one incorporates the full 

manufacturing history, while the second omits the quenching and machining steps and 

starts with pipe girth welding.  Both analyses show very similar through wall stress 

distributions: 

 Hoop stresses rise from ~380 MPa at the outer surface of the weld cap, peak at 

~580 MPa about 5 mm beneath the outer surface, then fall into compression.  The 

minimum stress is ~-430 MPa, reached at about 11mm from the inner surface, and 

the stress then rises to ~-320 MPa at the inner surface. 

 Axial stresses show a sinusoidal distribution, rising from ~-100 MPa at the outer 

surface of the weld cap, peaking at ~230 MPa about 8 mm beneath the outer 

surface, and then falling into compression.  The minimum stress is ~-290 MPa, 

reached at about 13mm from the inner surface, and the stress then rises to close to 

zero at the inner surface. 

Inclusion or omission of quenching and machining perturbs the final predicted hoop 

stresses at the centre of the weld by less than 20 MPa.  It has even smaller effects on 

the axial stresses.  Other operations in the manufacturing sequence have effects on the 

final stress state that are comparable or even less significant, see [48].  In particular, 

the manufacture of adjacent welds, at a spacing of 200mm (approx. 6t) has negligible 

effects, as does root machining. 

The cap geometry does have visible effects on stresses near to the outer wall.  Figure 

10 plots the final residual stresses predicted for Welds 1, 2 and 5 for a Phase 1 

analysis using the historical weld and parent materials 1, that followed the entire 

manufacturing history.  The capping pass location only affects the tensile stress region 

near the outer surface: if the capping pass is on the weld centreline (welds 1 and 2) 

rather than offset (weld 5), then the peak hoop stresses are displaced deeper by about 
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3mm, without any significant difference in peak stress, while the tensile peak in axial 

stress rises by ~40 MPa (~20%). The residual stress measurements were made both 

on a two-capping pass weld (contour method on CY7/CY6) and a three-capping-pass 

weld (iDHD on CY5/CY9), so these differences need to be considered in 

interpretation of the data. 

The effect of axial restraint is shown in Figure 11.  This plots stresses for Weld 5, 

using the historical parent material and weld metal 1 model parameters.  Imposing 

more realistic axial restraint conditions has visible effects, especially on axial stresses. 

The peak tensile axial stress rises by ~50 MPa (about 22%), and the peak compressive 

axial stress falls by a similar amount.  If the stress distribution was decomposed into 

membrane, through-wall bending and higher order components then the through-wall 

bending stress would be observed to increase, while the membrane stress would 

remain at zero and the higher order components would change little.  The tensile hoop 

stresses near the outer wall do not change, while stresses near the inner wall fall 

slightly, by ~40 MPa (~10%).  This is qualitatively identical behaviour to that 

predicted by Bendeich et al in a dissimilar metal weld [40]. 

Figure 11 also plots the as-welded residual stresses measured on the weld centreline 

using iDHD and the contour method.  The contour method axial stress measurements 

are the average of all the through-wall profiles measured (see Figure 8 of Part 1 [47]).  

These are not presented in order to make detailed numerical comparisons between 

simulation and measurement, since the simulations make use of only one set of 

material model parameters.  Rather, they allow us to compare the changes in predicted 

stress due to more “representative” axial restraint with the scatter in measurements.  It 

is evident that the predicted changes in axial stress are similar in magnitude to the 

differences between iDHD and contour method mean profile, and lower than the 

spread observed in the contour method data (see Figure 8 of Part 1 [47]).  The 

predicted hoop stresses only change near the inner wall, and here they move closer to 

the contour measurements, although too much should not be made of this observation.  

Thus, although it is probable that imposing axial restraint results in a more accurate 

prediction, the changes in predicted stress that it causes, with the chosen set of 

material model parameters, are within the variability of the measured stresses. 

The phase 2 studies took advantage of the demonstrated insensitivity to 

manufacturing history and used a single-weld FE mesh to examine sensitivity to 
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material hardening behaviour.  Neither prior history nor axial restraint were modelled. 

Extensive studies performed on the NeT TG1 single bead-on-plate and NeT TG4 

three-pass slot weld benchmarks have shown that predicted residual stresses in these 

“simple” plate specimens are very sensitive to the assumed material hardening 

behaviour. Is this still true for a multi-pass pipe girth weld?  

The effect of fundamental hardening model is shown in Figure 12 and Figure 13, for 

hoop and axial stress respectively, on the weld centreline, for the following material 

assumptions 

	 The isotropic hardening analysis, plotted in red, that makes use of piece-wise 

linear fits to the total stress predicted for monotonic loading of Parent model 2 and 

Weld model 6 respectively. 

	 A kinematic hardening analysis, plotted in yellow, using the same Chaboche 

model fits (Parent 2 and Weld 6), but with Qinf set to zero to suppress cyclic 

hardening. 

	 Four mixed hardening analyses all using Parent model 21, but using four different 

weld metal models.  

o	 Two, Weld models 5 and 7, made no adjustment to the value of Qinf 

measured from tests, so the models did not harden to the yield strength of 

multi-pass weld at low temperatures.  The two models differ in their 

handling of initial yield strength, with that of Model 7 being reduced to 

account for the work hardening already present in the single pass weld 

metal used for testing and parameter fitting.  Results for these two models 

are plotted in blue. 

o	 Two, Weld models 4 and 6, had Qinf increased to ensure that the models 

cyclically hardened to the yield strength of multi-pass weld metal at all 

temperatures.  Again, the two models differ in their handling of initial 

yield strength, with that of Model 6 being reduced to account for the work 

1 Simulations performed on the NeT TG4 benchmark indicate that fitting the kinematic behaviour of 

parent material to the monotonic response is to be preferred for AISI 316L(N), and at the centreline of 

the Esshete girth welds analysed here changing between monotonic and cycle 2 fits (Parent models 2 

and 4) has virtually no effect on the predicted stresses. 
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hardening already present in the single pass weld metal used for testing.  

Results for these two models are plotted in green. 

Also plotted on Figure 12 and Figure 13 are the measured stresses at start of life.  

Changing the hardening models does not change the general form of the through-

wall stress distributions:  the hoop stresses are tensile near the outer wall and 

compressive near the inner wall, while the axial stresses show a sinusoidal 

distribution with tension beneath the outer surface and compression beneath the 

inner surface.  The amplitude does change markedly, however: 

	 The lowest amplitude is predicted by the kinematic hardening analysis, 

with hoop stresses varying between +300 MPa and -50 MPa, and axial 

stresses between +120 MPa and -140 MPa 

	 The two mixed hardening analyses that make no adjustment to the cyclic 

saturation limit of Esshete weld metal predict higher stresses, with hoop 

stresses ranging from +450 MPa to -200 MPa, and axial stresses from 

+200 MPa to -240 MPa. 

	 If the cyclic saturation limit of the weld metal model is increased to 

achieve the yield strength of multi-pass weld metal, then the stress 

amplitudes rise further, with hoop stresses varying from +600 MPa to -430 

MPa, and axial stresses from +250 MPa to -310 MPa 

	 As expected, the highest stress amplitudes are predicted by the isotropic 

hardening analysis, with hoop stresses varying from +600 MPa to -520 

MPa, and axial stresses from +305 MPa to -445 MPa 

The low stress amplitudes predicted using kinematic hardening are no surprise, given 

the significant cyclic hardening exhibited by Esshete 1250, and are consistent with 

previous modelling studies [22, 53, 54] .  The assumed weld metal hardening limit has 

very visible effects on the stresses predicted using mixed hardening models, with 

larger stress amplitudes predicted if the hardening limit is adjusted to match the 

measured weld metal yield strength.  And, as expected, assuming isotropic hardening 

leads to the highest stress amplitudes.  It is noteworthy, however, that, especially in 

the hoop direction, the difference between isotropic hardening and mixed hardening 

with adjusted hardening limit is less than observed in simple one and three pass 

benchmarks such as NeT TG1 and TG4 [27, 29].  This suggests that the weld metal 
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model has saturated over much of the cross-section, as the saturation limits of the 

isotropic weld model and mixed hardening models 4 and 6 are intentionally similar.  

If the isotropic model had been based upon uniaxial tensile data with no cut-off at an 

appropriate saturation stress, its use would have led to much more significant over-

prediction of stress amplitudes. 

Comparison with the measurements suggests that the mixed hardening model analyses 

with increased weld metal saturation limits are the most accurate, as they sit near the 

bounds of the measured axial stresses (see Figure 8 of Part 1 [47]) and provide the 

best overall match with the measured hoop stresses, albeit with an apparent over-

prediction of nearly 200 MPa for the peak tensile hoop stresses beneath the capping 

passes. It is possible that the peak hoop stresses are slightly under-measured.  The 

iDHD method can under-measure due to plasticity effects.  The contour method can 

produce similar effects due both to plasticity during the cutting process, and over-

smoothing of the residual stress field during data analysis.  It is also clearly possible 

that the apparent over-prediction is real.  

Reductions made to the initial yield strength of the weld material model to account for 

the presence of work-hardening in the single-pass weld metal used for testing only 

affect stresses in the last deposited pass, at fractional distances through the wall of 

>0.85, see Figure 12.  

A possible contributing factor to apparent over-prediction of stress is the cyclic 

hardening rate, controlled by the parameter b.  Table 7 of Part 1 of this study shows 

that Esshete weld metal cyclically hardens much faster near room temperature than in 

the range 400C-600C. The mechanics of the mixed hardening model mean that 

equivalent plastic strain accumulated at high temperatures will have a much stronger 

effect on prior hardening when the material cools to room temperature.  This may be 

physically incorrect, so two sensitivity studies addressed this issue by reducing the 

hardening rate parameter at 200C and below.  The first, using weld model 8, reduced 

b from ~25 to 10, and the second, using weld model 9, further reduced it to 5.  Figure 

14 and Figure 15 show the effect of reducing the weld metal model cyclic hardening 

rate, plotting the two additional simulations using weld models 8 and 9.  Reducing the 

hardening rate reduces the amplitude of both the hoop and axial residual stress 

distributions.  It appears to have broadly similar effects near both inner and outer 
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surfaces, so hardening rate alone does not appear able to account for the over-

prediction of peak tensile hoop stresses. 

Figure 16 plots the effect of weld model parameter sets on through-wall distributions 

of the equivalent plastic strain and the yield surface radius 𝜎𝑜 . With the exception of 

the last deposited pass at x/t>0.85, where the strain is less than 2.5%, the general level 

of equivalent plastic strain is relatively uniform across the thickness, and very similar 

for all the weld models, albeit slightly higher for weld models with lower cyclic 

saturation limit, Qinf or lower hardening rate, b, especially near the weld root.  The 

short wavelength variations caused by deposition of successive weld beads are clearly 

visible. The weld models with high hardening rates are fully cyclically saturated over 

the entire thickness, except for the final pass.  The two models with reduced 

hardening rates (models 8 and 9) are not fully saturated, so predict lower yield surface 

radii than the equivalent high hardening rate models (models 4 and 6), albeit with 

oscillations in 𝜎𝑜  that match the variation in equivalent plastic strain.  Despite not 

having saturated, the predicted yield surface diameter remains relatively uniform over 

most of the thickness, a reflection of the distribution of plastic strain. 

The yield surface diameter is not the only parameter affecting the position of the yield 

surface – the back-stress 𝜶 is also important.  Figure 17 plots the effect of weld model 

parameter sets on through-wall distributions of both the hoop stress, and 𝛼33  the hoop 

component of the back stress.  There is no difference in 𝛼33  at the location of peak 

tensile stress, indicating that the amount of isotropic hardening is controlling the peak 

stress, while the differences in 𝛼33  at the peak compressive stress location are small, 

again suggesting that isotropic hardening is controlling the peak stress. 

Some insight into the actual hardening distribution from top to bottom of the weld 

may be obtained by plotting the measured hardness variation.  This is plotted on 

Figure 18, as lines with diamond markers.  The hardness within the capping passes is 

low, rising rapidly at depths where the material moves from a single cooling cycle to 

1.5 thermo-mechanical cycles.  It then rises steadily with increasing depth.  This 

contrasts with the cyclic hardening limits plotted in Figure 16, which exhibit similar 

behaviour within or just below the capping passes, but then show no further rise with 

increasing depth, in line with the predicted equivalent plastic strains.  

http:x/t>0.85
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One possible reason for this discrepancy is the effect of axi-symmetric boundary 

conditions on the through-wall plastic strain distribution.  Imposing more realistic 

axial restraint increases the overall axial contraction during welding, and this is 

associated with an increase in equivalent plastic strain at the weld root.  Figure 18 also 

plots, as open circles, the equivalent plastic strains for the phase 1 analyses, with and 

without axial restraint, already plotted in Figure 11.  This shows a significant increase 

in plastic strain in the first 8mm from the weld root, and little or no effect elsewhere. 

The likely effect on the yield surface diameter 𝜎𝑜 is also plotted on Figure 18 for the 

four weld models.  The yield strength at the root rises with improved axial restraint, 

but not by enough to match the through-wall slope in yield strength implied by the 

hardness measurements. 

There clearly remain residual errors in the finite element predictions of as-welded 

residual stresses.  They are probably due to a combination of slightly unrealistic 

structural boundary conditions associated with the axi-symmetric approximation, and 

inadequacies in the fitted Chaboche models.  The latter may be due to the thermo-

mechanical nature of the welding loads, but it should also be remembered that the 

developing microstructure of a multi-pass weld will differ from the single pass welds 

tested to develop the Chaboche model parameters. 

5.2 Stresses after high temperature ageing 

Measured and predicted stresses on a thorough wall line at the weld centreline are 

compared in Figure 19, hoop stress, and Figure 20, axial stress.  The measured 

stresses are close to being biaxial with hoop stresses in the range ~140 MPa to ~-140 

MPa and axial stresses in the range ~110 MPa to ~-100 MPa.  The predicted hoop 

stresses agree closely with measurements if the optimised RCC-MR model parameters 

are used but are approximately 2x the measured stresses if the baseline parameters are 

used. Axial stresses show a broadly similar pattern, although the differences between 

the two sets of model parameters are less marked.  The significance of under-

predicting stress relaxation due to creep depends upon the degradation of failure 

mechanism being assessed.  If fracture from a pre-existing defect is the concern, then 

it is conservative, or safe, to under-predict the amount of stress relaxation.  

Conversely, if the development of creep damage is the concern, as in reheat cracking, 
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then under-predicting stress relaxation is non-conservative, because it under-predicts 

the accumulated creep strain. 

6	 Conclusions 

A detailed FE simulation has been performed, covering the entire manufacturing 

sequence of a welded assembly containing five pipe girth welds made in Esshete 

1250, an austenitic stainless steel, extending to subsequent high temperature thermal 

ageing. The following conclusions have been drawn: 

1.	 The quenching process after initial solution treatment of the pipe blanks produces 

significant residual stresses: however, weld-induced plasticity eliminates the 

quench stress field close to the welds. In pipe sections farther from the weld-

affected area, the quenching stresses remain significant even after weld 

completion. 

2.	 Residual stresses in completed girth welds in this geometry are affected very little 

by making subsequent welds at a separation of 200mm (5.7t), and both cutting of 

the entire weld assembly into test specimens each containing a mid-length girth 

weld, and removal of the root pass protrusion, each have little effect on the 

residual stress redistribution. 

3.	 Imposing restraint on the axi-symmetric models to prevent axial expansion during 

welding leads to an increase in the amplitude of the through-wall distribution of 

axial stress, which agrees better with measured stresses. 

4.	 As-welded residual stresses on the weld centreline may be predicted with good 

accuracy using mixed isotropic-kinematic hardening models. 

5.	 Assuming pure kinematic hardening leads to predictions of as-welded residual 

stresses that show lower amplitudes than the measured stresses. 

6.	 Assuming isotropic hardening leads to predictions of as-welded residual stresses 

that show higher amplitudes than the measured stresses, although the level of 

conservatism is mitigated by a) setting the model hardening limits close to the 

cyclic saturation limit of the materials, and b) the observation that levels of 

equivalent plastic strain in much of the multi-pass weld are high enough to lead to 

cyclic saturation of the weld mixed hardening models as well. 

7.	 The most accurate predictions of stresses on the weld centreline are achieved if 

the weld metal model parameters are derived from tests on single pass weld metal, 
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with the initial yield strength reduced to account for work hardening already 

present in the tested material, and the cyclic hardening limit at low temperatures 

increased to ensure that the model hardens to the measured yield strength of multi-

pass weld metal. 

8. Stress relaxation due to thermal ageing at 650C may be predicted with good 

accuracy using an RCC-MR type creep law, although the amount of relaxation is 

under-predicted if the model parameters used are those fitted to test data over a 

range of temperatures and optimised for the lower temperature range within which 

Esshete 1250 is normally operated.  
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9 Tables 

Table 1: Thermo-physical and physical properties of Esshete 1250 

Temp. 
Specific 

Heat a 

Cond-

uctivity 

Thermal 

Expansionb 

10-6 

Parent 

Young's 

Modulus 

Weld 

Young's 

Modulus d 

Poisson's 

Ratio 

OC 
kJ 
okg C 

W 
om C 

mm 
omm C GPa GPa 

20 0.490 12.69 15.44 204.5 157.8 0.294 

100 0.508 13.93 16.01 196.7 151.5 0.294 

200 0.532 15.48 16.67 188.1 144.4 0.294 

300 0.555 17.03 17.29 180.2 137.8 0.294 

400 0.580 18.58 17.87 172.5 131.4 0.294 

500 0.603 20.13 18.41 164.6 124.8 0.294 

600 0.627 21.68 18.91 156.0 117.7 0.294 

700 0.650 23.23 19.37 146.1 109.8 0.294 

800 0.650 24.78 19.78 134.6 100.6 0.294 

900 0.650 26.33 20.16 120.8 89.9 0.294 

1000 0.650 27.88 20.49 104.4 77.4 0.294 

1100 0.650 29.43 20.78 84.8 62.6 0.294 

1200 0.650 30.98 21.03 61.5 45.3 0.294 

1300 0.650 32.53 21.24 34.1 25.0 0.294 

1400 c 0.650 34.08 21.41 2.0 1.6 0.294 

a) Specific heat capacity values are instantaneous data 

b) Thermal expansion values represent the mean linear coefficient of expansion from 20C to temperature 

c)	 Solidus temperature = 1375C; Liquidus temperature = 1400°C 

Density = 7960 kg/m3 at 20C 
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Table 2: Lemaitre-Chaboche parameter fits to Esshete 1250 parent material behaviour 

Model ID Description 

Parent model 1 Historical model, with kinematic parameters fitted to monotonic and first quarter cycle of 
1.5% TSR cyclic test data, using a single back-stress, and with Qinf increased to match the 
cyclic hardening behaviour of 2.5% TSR cyclic tests 

Parent model 2 Kinematic parameters fitted to monotonic loading with two back-stresses, with Qinf increased 
to match the cyclic hardening behaviour of 2.5% TSR cyclic tests 

Parent model 3 Kinematic parameters fitted to monotonic loading with two back-stresses, with Qinf fitted to 
match the cyclic hardening behaviour of 1.5% TSR cyclic tests 

Parent model 4 Kinematic parameters fitted to first re-loading from compression in cyclic tests, with two 
back-stresses, with Qinf increased to match the cyclic hardening behaviour of 2.5% TSR cyclic 
tests 

Parent model 5 Kinematic parameters fitted to first re-loading from compression in cyclic tests, with two 

back-stresses, with Qinf fitted to match the cyclic hardening behaviour of 1.5% TSR cyclic tests 

Table 3: Lemaitre-Chaboche parameter fits to Esshete 1250 weld metal behaviour 

Model ID Description 

Weld model 1 Historical model, fitted to single-pass MMA weld metal data using a single back-stress, and 
with Qinf increased to saturate at the 0.2% proof stress of multi-pass weld metal 

Weld model 2 Kinematic parameters fitted to monotonic loading with two back-stresses, with Qinf increased 
to saturate at the 0.2% proof stress of multi-pass weld metal 

Weld model 3 Kinematic parameters fitted to monotonic loading with two back-stresses, with no increase to 
Qinf 

Weld model 4 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with Qinf increased to saturate at the 0.2% proof stress of multi-pass weld metal 

Weld model 5 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with no increase to Qinf 

Weld model 6 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with 0 reduced to simulate as-deposited weld metal, and with Qinf increased further to still 
saturate at the 0.2% proof stress of multi-pass weld metal 

Weld model 7 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with 0 reduced to simulate as-deposited weld metal, and with Qinf increased to saturate at 
the test levels (ie not MP yield strength) 

Weld model 8 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with 0 reduced to simulate as-deposited weld metal, with Qinf increased further to saturate 
at the 0.2% proof stress of multi-pass weld metal, and with reduced b at RT and 200OC 

Weld model 9 Kinematic parameters fitted to first re-loading from compression, with two back-stresses, 
with 0 reduced to simulate as-deposited weld metal, with Qinf increased further to saturate 
at the 0.2% proof stress of multi-pass weld metal, and with b halved again at RT and 200OC 
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Table 4: Creep deformation coefficients for Esshete 1250 using the RCC-MR type creep deformation model 

Model C1 C2 n C n1 

Baseline 4.3783×10-8exp(-24301/T) 0.4696 7.0969 3.0578×10-8exp(-41075/T) 8.9395 

Optimised 4.3783×10-8exp(-24301/T) 0.4696 7.0969 3.0578×10-8exp(-41075/T) 9.9395 
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Table 5: Modelled weld process parameters for Weld 5 in pipe CY7/CY6 

Pass process wire/elec 
dia Layer V I v VI/v Efficiency correlation 

bead area 
ABAQUS 

bead area ratio Melted 
area 

Source 
radius (all) 

Horizontal 
weave 

amplitude 

(mm) (V) (A) (mm/s) kJ/mm) (mm) (mm) 
1 TIG 2.4 root 9.7 86 0.85 0.98 85% 14.72 15.3 104% 142% 2.4 4.5 
2 TIG 2.4 1 10.6 102 1.25 0.86 95% 12.97 13.5 104% 249% 1.8 4.5 
3 MMA 3.2 2 25.7 121 2.24 1.39 75% 20.82 21.56 104% 205% 3.2 4.5 
4 MMA 3.2 2 26.9 120 2.32 1.39 80% 20.87 21.56 103% 197% 3.2 4.5 
5 MMA 3.2 3 26.2 118 2.07 1.49 82% 22.40 23.27 104% 200% 3.2 4.5 
6 MMA 3.2 3 27.1 119 2.16 1.49 85% 22.40 23.27 104% 204% 3.2 4.5 
7 MMA 4 4 26 159 2.37 1.74 78% 26.16 27.23 104% 197% 4 4.5 
8 MMA 4 4 26.3 162 2.44 1.75 80% 26.19 27.23 104% 201% 4 4.5 
9 MMA 4 5 26.8 160 2.46 1.74 75% 26.15 27.72 106% 197% 4 4.5 

10 MMA 4 5 26.2 159 2.39 1.74 80% 26.15 27.72 106% 198% 4 4.5 
11 MMA 4 6 26.8 161 2.47 1.75 75% 26.20 27.41 105% 202% 4 4.5 
12 MMA 4 6 26.4 161 2.44 1.74 78% 26.13 27.41 105% 197% 4 4.5 
13 MMA 4 7 26.1 161 2.41 1.74 75% 26.15 27.1 104% 205% 4 4.5 
14 MMA 4 7 25.9 161 2.39 1.74 80% 26.17 27.1 104% 201% 4 5 
15 MMA 5 8 26.3 200 2.90 1.81 79% 27.21 30.16 111% 197% 5 5 
16 MMA 5 8 26.9 198 2.94 1.81 83% 27.17 30.16 111% 197% 5 5 
17 MMA 5 9 26.4 199 2.90 1.81 78% 27.17 30.42 112% 199% 5 5 
18 MMA 5 9 26.1 200 2.88 1.81 85% 27.19 30.42 112% 200% 5 5.5 
19 MMA 5 10 26.7 198 2.92 1.81 76% 27.16 29.5 109% 197% 5 5.5 
20 MMA 5 10 25.9 199 2.85 1.81 82% 27.13 29.5 109% 202% 5 5.5 
21 MMA 5 11 26.9 199 2.96 1.81 74% 27.13 31.42 116% 203% 5 5.5 
22 MMA 5 11 25.5 199 2.80 1.81 79% 27.18 31.42 116% 198% 5 5.5 
23 MMA 5 cap 25.9 200 2.10 2.47 64% 37.00 38.29 103% 199% 5 6.5 
24 MMA 5 cap 25.8 201 2.17 2.39 74% 35.85 38.29 107% 196% 5 6.5 

average 79% average 199% 
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Table 6: Matrix of phase 2 material property sensitivity studies 

Case Parent model Weld model 

mech 1 model 4 model 5 

mech 2 model 4 model 6 

mech 4 model 2 model 6 

kine model 2 model 6 

mech 5 model 2 model 4 

mech 6 model 2 model 5 

mech 7 model 2 model 7 

mech 8 model 4 model 4 

mech 9 model 4 model 7 

iso 2 model 2 model 6 

mech 10 Model 2 Model 8 

mech 11 Model 2 Model 9 
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10 Figures
 

CY10/CY8 

1st LH weld made 

Two capping beads 

Thermal ageing to 
10 khr at 650°C 

DHD RS 
measurements 

CY8/CY7 

2nd LH weld made 

Two capping beads 

Thermal ageing at 
650°C 

CY7/CY6 (5) 

Last weld made 

Two Capping beads 

Not aged 

Contour method RS 
measurements 

CY6/CY5 (2) 

2nd RH weld made 

3 low heat input 
capping beads 

Thermal ageing to 
10 khr at 650°C 

CY5/CY9 (1) 

1st RH weld made 

3 low heat input 
capping beads 

Not aged 

iDHD RS 
measurements 

Figure 1: Showing the pipe assembly after completion of the root pass of the last girth weld (CY7/CY6) 
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Figure 2: Showing the mesh designs and modelling sequence adopted for the Phase 1 simulations that included the entire manufacturing history (after [48]) 
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Figure 3: Showing the refined axi-symmetric mesh of pipe CY7/CY6 used for Phase 2 analyses 
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Figure 4: Definition of simple ellipsoidal heat source 
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Figure 5: Electrical heat input vs weld filler metal correlation for AISI Type 316 and Esshete 1250 stainless steel MMA weld metal (after[19]) 
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Figure 6: Transverse fusion boundary profile from FE simulation using FEAT/WMT superposed on transverse macrograph of weld CY7/CY6 (note: simulation results flipped about vertical axis to 

match bead lay-up in macrograph). 
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d) After Cutting 

Figure 7: Showing residual stress development during girth-welded pipe manufacture: after quenching (a), after machining (b), after welding (c), and after cutting and root removal (d) 



43
 

(a) Axial Stress 

(b) Hoop stress 

Figure 8: Typical as-welded residual stress distribution for two-capping pass weld prior to root machining, with no prior manufacturing history 
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Figure 9: Showing the effect of manufacturing history on predicted stresses at the weld centreline for two-capping pass weld CY7/CY6 (weld 5) 
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Figure 10: Showing the effect of weld position and capping pass layout on predicted stresses at the weld centreline, full manufacturing history 
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Figure 11: Showing the effect of axial restraint on predicted stresses at the weld centreline, full manufacturing history, compared with iDHD and contour method measurements. 
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Figure 12: Showing the impact of basic hardening model and weld mixed hardening model initial and saturated conditions on hoop stresses on the weld centreline 
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Figure 13: Showing the impact of basic hardening model and weld mixed hardening model initial and saturated conditions on axial stresses on the weld centreline 
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Figure 14 Showing the effect of weld metal starting yield strength and cyclic hardening behaviour on weld centreline hoop stresses 
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Figure 15 Showing the effect of weld metal starting yield strength and cyclic hardening behaviour on weld centreline axial stresses 
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Figure 16:  Through-wall distributions of equivalent plastic strain, PEEQ, and yield surface radius 0, on weld centreline, for mixed hardening analyses with different weld model parameters 
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Figure 17: Showing the effect of weld metal starting yield strength and cyclic hardening behaviour on weld centreline hoop stresses, and back stress Alpha 33 
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Figure 18: Showing the through wall variation of Vickers Hardness, equivalent plastic strain for two different axial restraint conditions, and inferred yield surface radius0  on the weld centreline 
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Figure 19: Comparing predicted and measured hoop stresses on the weld centreline after high temperature ageing 
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Figure 20: Comparing predicted and measured axial stresses on the weld centreline after high temperature ageing 
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