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Abstract—Many phase locked-loop (PLL) or frequency locked-
loop (FLL) use quadrature signals (directly or indirectly) as
the input variables. Generalized integrator (GI) is a popular
quadrature signal generator (QSG) available in the literature.
GI is also widely used in various industrial applications. In
addition to being a QSG, GI also works as kind of band-
pass filter. However, due to structural limitation, the dynamic
tuning range is limited for the standard GI. The limitation
arises from using only one gain in the direct-phase estimation
dynamics while quadrature phase estimation dynamics doesn’t
use direct feedback of the filter estimation error. Some attempts
have already been made to overcome this limitation by adding
direct feedback of the filter estimation error to quadrature phase
dynamics as well. However, we have demonstrated in this paper
that this kind of implementation has some frequency domain
limitations. In this paper, we propose a novel GI type adaptive
filter using coordinate transformation. The resulting structure
maintains the same kind of filtering property of the standard
GI at the transformed coordinates level while at the same time
enhances the dynamic tuning range of standard GI. Details
of the proposed technique, stability analysis and discussion on
gain tuning are provided in this paper. Finally, comparative
experimental results are provided with respect to GI-FLL to show
the dynamic performance improvement. Experimental results
demonstrate the suitability of the proposed technique.

Index Terms—Frequency Estimation, Phase Estimation,
Frequency-Locked Loop, GI-FLL, Adaptive Filter, Generalized
Integrator.

I. INTRODUCTION

PHASE, frequency, symmetrical components etc. are im-
portant parameters of electric grid voltage signal. Many

power and industrial electronics application require the precise
knowledge of these parameters for various, monitoring and
control functions e.g. wide-area monitoring [1]–[3], grid-
connected converters (GCC) [4], [5], active power filter [6],
symmetrical components extraction [7], grid ancillary services
[8] to name a few. This has led to an increasing research effort
on estimating these parameters of grid voltage signal.

Many techniques are currently available in the literature.
They cover an wide array of methods and exploit various
characteristics of the grid voltage signal. Some of the tech-
niques are signal transformation-based techniques (including
various variants of Fourier transforms) [9], [10], least-square
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regression [11], maximum-likelihood techniques [12], [13],
filter with dynamic gains [14], function approximation-based
technique [15], state-space methods [16], filter with fixed gains
[17]–[23], adaptive notch filter [24], derivative estimation-
based technique [25], phase-locked loop (PLL) [26]–[34], self-
tuning filter [6], etc. to name a few.

Many of the above mentioned techniques, use quadrature
signals as the fundamental building block. As the grid pa-
rameters are generally unknown with known nominal values,
generating the quadrature signal is not straight forward. In
this regard quadrature signal generator (QSG) are very useful.
Generalized integrator-based approach [18], [19], [35] is one
of the most popular QSG technique available in the literature.
GI essentially uses the model of well known linear harmonic
oscillator. GI can be used in conjunction with both FLL
and PLL. In this paper, we limit our attention to GI-FLL.
The results presented on the improvement of GI are equally
applicable to GI-PLL.

In GI-FLL, GI part generates the quadrature signals while
FLL part uses the generated signals for unknown frequency
estimation purpose. GI part uses only one fixed gain in the in-
phase dynamics part while no gains are used in the quadrature
phase estimation part. The closed-loop poles of the GI part
are: −0.5ksω ± ω

√
k2s − 4, where ks is the feedback gain

and ω is the grid frequency (cf. Sec. II-A for details). Since
GI generates oscillatory signal, complex conjugate poles are
desirable for the GI. However, the closed-loop poles remain
complex conjugates as long as the filter gain is selected as
ks < 2. In this case, the real part of the closed-loop poles
can not be set further than −ω in the complex plane. It is
well known from the literature [36] that real part of the pole
determines the convergence speed. This limits the dynamic
tuning range of the GI part in term of complex conjugate pole
placement. One potential solution is to use additional gain in
the quadrature phase estimation part. Although this enables
arbitrary complex-conjugate pole placement but comes at the
cost of reduction in filtering property. This can be evident
from the transfer functions given in Sec-II-B. In the standard
GI case, the direct and quadrature phase maintains a perfect
90° phase difference for all frequency range. However, this is
not true for the GI that uses two gains (cf. Sec. II-B for more
details). As such this limits the application of GI with two
gains in practice.

To overcome the above mentioned filtering and dynamic
gain limitations of GI (with one and two gains), in this paper
we propose another technique. In the proposed technique,
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state-variables of the standard GI are transformed first. This
allows to enhance the dynamic tuning range while at the same
time maintaining the filtering properties of the standard GI in
the transformed coordinates. The resulting solution enhances
the dynamic tuning range of the standard GI by approximately
2.5 times with some additional computational cost. This mod-
ification of the standard GI is the main contribution of this
paper.

The rest of the paper is organized as follows: Sec. II
describes the proposed technique, stability analysis, tuning and
extension to three-phase case. Experimental results are given
in Sec. III while Sec. IV concludes this paper.

II. PROPOSED APPROACH

A. Standard GI-FLL

Single-phase grid voltage signal is modeled as a sine wave
and given by:

ν = A sin(ωt+ φ︸ ︷︷ ︸
θ

) (1)

where A,ω, φ, θ denotes the amplitude, angular frequency,
phase and instantaneous phase respectively. GI-FLL estimates
the parameter of grid voltage signal (1) by generating quadra-
ture signals. For that purpose, let us consider the direct-
phase signal as vd = v and the quadrature-phase signal as
vq = −A cos(θ). Then the following algorithm describes the
process of estimating vd and vq using only the measurement
of vd and given by [37, Chapter 4]:

η̇s=Âsηs + Lses (2a)
ν̂s= Csηs (2b)
˙̂z = −βsω̂ηqses (2c)

˙̂z =
−βsω̂ηqses
η2ds + η2qs

(2d)

where,ˆ represents estimated value, ηs =
[
ηqs ηds

]T
is

the state vector, the matrices are given by,

Âs=

[
0 ω̂
−ω̂ 0

]
,

Cs=
[
0 1

]
,

Ls=
[
0 ksω̂

]T
,

es = ν− ν̂s is the output estimation error, ηds = v̂d, ηqs = v̂q ,
ks, βs are tuning gains„ ω = ωn+z with ωn= 100π being the
nominal frequency. In this work, we assume that the unknown
frequency, ω as an unknown constant. Through experimental
results in Sec. III-B, it is shown that despite this assumption,
the proposed technique is able to track time varying grid
frequency. Graphical representation of GI-FLL is given in
Fig. 1. In eq. (2), quadrature signals are estimated by the GI
part i.e. eq. (2a) and (2b) while the unknown grid frequency
is estimated by the FLL part given by eq. (2c). Eq. (2d) is
the FLL with gain normalization which is very useful in the
context of adding low voltage ride through capability to the

Figure 1. Block diagram of GI-FLL [37].

control scheme of grid-connected inverters. Poles of the GI
part are the eigenvalues of the matrix Âs − LsCs and are
calculated as: −0.5ksω̂ ± ω̂

√
k2s − 4. Since GI part generate

oscillatory signals, complex conjugate poles are generally
preferred. However, for any ks ≥ 2, system poles are no
longer complex conjugate. For any 0 < ks < 2, the real part
of the system poles always have a value greater than −ω̂. As
a result, dynamic tuning range is limited. This motivates us
to further develop standard GI-FLL without sacrificing much
the excellent filtering property. To demonstrate the filtering
property of standard GI-FLL, the transfer functions are given
below:

Ds(s) =
ηds
v

(s) =
ksω̂s

s2 + ksω̂s+ ω̂2
(3a)

Qs(s) =
ηqs
v

(s) =
ksω̂

2

s2 + ksω̂s+ ω̂2
(3b)

Es(s) =
es
v
(s) =

s2 + ω̂2

s2 + ksω̂s+ ω̂2
(3c)

From eq. (3a) it is clear that GI is a band-pass type filter where
the bandwidth is uniquely determined by ks. This frequency
selective property makes GI as an ideal candidate to generate
quadrature signals even in the distorted conditions. Moreover,
the two transfer functions (i.e. eq. (3a) and (3b)) maintain a
perfect 90° phase difference in any frequency range.

B. GI-type observer (GIO)

To increase the dynamic tuning range of GI-FLL, an
observer-based framework can be considered similar to the
ideas presented in [20], [38]. In this framework, in addition to
eq. (2b), the error feedback is also injected to eq. (2a). In the
observer framework, the implementation of GIO-FLL is given
below:

η̇o= Âoηo + Loeo (4a)
ν̂o= Coηo (4b)
ż = −βoω̂ηqoeo (4c)

ż =
−βoω̂ηqoeo
η2do + η2qo

(4d)
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Figure 2. Block diagram of GIO-FLL.

where L0 =
[
kqoω̂ kdoω̂

]T
and all the other variables

and matrices retain the same meaning as explained in Sec.
II-A. Block diagram of GIO-FLL is given in Fig. 2. In this
case, the system poles of the GIO are the eigenvalues of
the matrix Âo − LoCo and are calculated as: −0.5kdoω̂ ±
0.5ω̂

√
k2do + 4kqo − 4. If we set kqo = −k2do/4, then the

poles are: −0.5kdoω̂ ± iω̂. This means, for any kdo > 4, the
system poles will always have negative real part with complex
conjugate imaginary part. As such wide range of tuning is
possible as opposed to standard GI. The tuning of the observer
gain can be performed using pole placement. Wide tuning
range comes at the cost of reduction in filtering property. To
demonstrate the filtering property of the GIO-FLL, the transfer
functions are given below:

Do(s) =
ηd0
v

(s) =
kdoω̂s− kqoω̂2

s2 + kdoω̂s+ ω̂2(1− kqo)
(5a)

Qo(s) =
ηqo
v

(s) =
kqoω̂s+ kdoω̂

2

s2 + kdoω̂s+ ω̂2(1− kqo)
(5b)

Eo(s) =
eo
v
(s) =

s2 + ω̂2

s2 + kdoω̂s+ ω̂2(1− kqo)
(5c)

From the transfer functions (5), it is evident that unlike stan-
dard GI, the observer-based implementation doesn’t maintain
the perfect 90° phase difference between the direct-phase
and the quadrature-phase signal i.e. eq. (5a) and (5b) for all
frequency range (cf. Fig. 3). Moreover, as shown in Fig. 4,
FLL input variables don’t have perfect in-phase relationship
for ω < ωr and out of phase relationship for ω > ωr with ωr
being the resonance frequency. This may lead to oscillation in
the estimated frequency. As such, the application in practice
can be limited although a wide range of dynamic tuning is
possible in this type of implementation. The observer uses
the error feedback gain in both direct and quadrature-axes
dynamics. The objective of the observer is to make sure that
the estimation error converges to zero asymptotically, while
the objective of the filter is to minimize the effect of noise
and disturbances. As such, the design philosophy of observer
and filter are not the same. This contributes to the change in
QSG characteristics in the observer-based implementation of
standard GI-FLL.

Figure 3. Bode phase plot of Do(s) and Qo(s) with kdo =
√

2 and kqo =
−0.5.

Figure 4. Bode phase plot of FLL input variables for the GIO-FLL.

C. GI type adaptive filter design

Sec. II-A demonstrated the dynamic tuning limitation of
standard GI-FLL while Sec. II-B showed the filtering limita-
tion of an alternative solution. This Section will discuss the
development of the proposed filter that presents a compromise
between the filter and observer-based implementation. To this
end, let us consider two new state variables given as:

η1 =
1

ω2
n + ω̂2

(
ω

ωn
ηqf + ηdf ) (6a)

η2 =
1

ω2
n + ω2

(−ωηqf +
ω2

ωn
ηdf ) (6b)

where f stands for the filter and the variables retain the
same meaning as described earlier i.e. ηdf = A sin(θ), and
ηqf = −A cos(θ). In the new state variables, GI-type fre-
quency adaptive filter is given by:

˙̂η= Âf η̂ + Lfef (7a)
ν̂f= Cf η̂ (7b)
˙̂z = −βf η̂1ω̂ef (7c)

˙̂z =
−βf η̂1ω̂ef
η̂21 + (η̂2/ω̂)2

(7d)

where η̂ =
[
η̂1 η̂2

]T
is the state vector, the matrices are

given by:
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Âf=

[
0 1
−ω̂2 0

]
,

Cf=
[
ω2
n ωn

]
,

Lf=
[
0 kf

]
,

ef = ν − ν̂f is the output estimation error of the filter, and
kf > 0 is the filter gain. Similar to standard GI, proposed
GI-type filter (GTF) uses only one gain. To demonstrate the
filtering property of the proposed GTF-FLL, let us consider
the transfer function given below:

Df (s) =
η̂2
v
(s) =

kfs

s2 + kf ω̂s+ ω̂2(1 + kf )
(8a)

Qf (s) =
η̂1
v
(s) =

kf
s2 + kf ω̂s+ ω̂2(1 + kf )

(8b)

Ef (s) =
ef
v
(s) =

s2 + ω̂2

s2 + kf ω̂s+ ω̂2(1 + kf )
(8c)

Similar to standard GI, proposed GTF is also a band-pass
filter and the filter bandwidth is uniquely determined by the
filter gain kf . Moreover, the two transfer functions (i.e. eq.
(8a) and (8b)) maintain a perfect 90° phase difference in any
frequency range. This demonstrated the equivalence of the
proposed technique with standard GI. Next, let us consider
the system poles of GTF. The system poles of the GTF
part are the eigenvalues of the matrix Âf − LfCf and are
calculated as: −0.5kf ω̂±0.5ω̂

√
k2f − 4kf − 4. For any value

of 0 < kf ≤ 4.82, the system poles always have negative real
parts with complex-conjugate imaginary parts. By considering
kf = 0.1, the pole locations can be found as −0.05ω̂±1.0476i
while for kf = 4.82, the pole locations are −2.41ω̂±0.1091i.

Moreover, the real part of the system poles always have a
value greater than or equal to −2.41ω̂ inside the selected kf
range as opposed to −ω̂ for the standard GI. As a result, it can
be considered that the proposed GTF enhances the dynamic
tuning range of GI.

From η̂1 and η̂2, η̂qfand η̂df can be obtained using the
following formula:

η̂qf = ωnω̂η̂1 − (ω2
n/ω̂)η̂2 (9a)

η̂df = ω2
nη̂1 + ωnη̂2 (9b)

From the estimated direct and quadrature-phase signals, the
instantaneous phase of the grid voltage signal can be estimated
as:

θ̂ = arctan2(ηdf ,−ηqf ) (10)

FLL Analysis: The proposed GTF is frequency adaptive and
requires the estimated frequency ω̂. FLL is very suitable for
this purpose. Following the ideas of standard FLL as given
in Sec. II-A, the FLL considered in this work is given in eq.
(7c) where βf is the FLL tuning parameter. Bode diagram
phase plot of the FLL input variables is given in Fig. 5. From
Fig. 5, it can be seen that the input variables are in phase
when ω < ωr and out of phase when ω > ωr. As such,

Figure 5. Bode diagram phase plot of the FLL input variables with kf =
√

2.

the input variables are very suitable to detect any change in
the frequency. The behavior of the proposed FLL is similar
to standard FLL where same relationship can be observed
between the FLL input variables.

It is to be noted here that the gain normalization term in
the proposed FLL i.e. denominator of eq. (7d) is not the same
as that of GI-FLL (2d) and GIO-FLL (4d). However, they are
very similar and the difference appears from the definition of
the state variables used in the both FLLs. To demonstrate this,
let us consider the standard FLL given by eq. (2d) or (4d). By
plugging the value of ηds and ηqs in eq. (2d), the following
can be obtained:

˙̂z =
−βω̂ηqse
η2ds + η2qs

=
βω̂ cos(θ̂)e

Â
(11)

Similarly, by plugging the values of η1 and η2 (given in eq.
(6) in the proposed FLL (7d), the dynamics of the proposed
FLL can be obtained as:

˙̂z =
−βf η̂1ω̂ef
η̂21 + (η̂2/ω̂)2

=
−βf

(
1

ω2
n+ω̂

2

{
− ω̂
ωn
Â cos(θ̂) + Â sin(θ̂)

})
ω̂ef

Â2

ω2
n(ω

2
n+ω̂

2)

=
−βfω2

n

{
− ω̂
ωn

cos(θ̂) + sin(θ̂)
}
ω̂ef

Â
(12)

By comparing the standard FLL (11) and the proposed FLL
(12) one can find that the denominator term is the same in
both FLL. However, the numerator term is slightly different
and the difference comes from the fact that the variables used
in standard FLL and the proposed FLL are not the same by
definition.

D. Stability analysis and tuning

To analyze the stability of the proposed filter, let us
reconsider the filter as given in eq. (7a). By substituting
ef = ν − Cf η̂, eq. (7a) can be rewritten as

˙̂η= Acη̂ + Lfν (13)
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Figure 6. Block diagram of the GTF-FLL.

where

Ac = Âf − LfCf =

[
0 1

−(ω̂2 + kfω
2
n) −kfωn

]
.

For essentially bounded and strictly positive estimated fre-
quency ω̂, system matrix Ac is Hurwitz. Moreover, the input
signal ν is sinusoidal. As such, the input signal is also essen-
tially bounded. Then bounded input bounded output (BIBO)
stability of the proposed filter can be easily shown by consid-
ering a quadratic Lypunov function similar to Theorem A2 in
[39]. Once the BIBO stability of the filter is established, then
boundedness of the signal estimation error and exponential
decay of the estimation error can be established by using
Theorem A3 in [39]. Since the results are straightforward to
obtain, they are avoided here for the purpose of brevity. It is
to be noted here that the adaptive filter presented in [39] is
the same as the GI type adaptive observer presented in Sec.
(II-B). As such, the results presented in [39] have the same
frequency domain limitation as described in Sec. (II-B).

GTF-FLL has two parameters to tune, GTF gain kf and
the FLL gain βf . To maintain complex conjugate poles with
negative real parts, kf should be selected inside the range
0 < kf ≤ 4.82. For kf = 3, GTF poles are located in
ωn(−1.5 ± 1.32i). FLL gain βf determines the convergence
speed of the frequency estimation. Larger value of βf results in
faster convergence however at the cost of large overshoot and
vice-versa. As such, βf has to be selected as a trade-off be-
tween fast convergence and acceptable transient performance.
Through extensive simulation, βf = 0.005 has been found
to give good results. This value can be considered as a good
starting point.

To implement the proposed technique, Eq. (7) and (10) are
required. Block diagram of the proposed frequency estimation
approach is given in Fig. 6.

E. Extension to three-phase system

Single-phase GTF-FLL proposed in Section II-C can be
easily applied to three-phase case. In general, the voltage
vector of a three-phase unbalanced system is given by:

vabc =

 va
vb
vc

 =

 Aa sin(ωt+ φa)
Ab sin(ωt+ φb)
Ac sin(ωt+ φc)

 (14)

The voltage vabc can be decomposed into vabc = v+abc+v
−
abc+

v0abc where +,− and 0 represents the positive, negative and
zero sequences respectively and defined as:

v+k = A+sin(ωt+ φ+ − k(1200)) (15a)

v−k = A−sin(ωt+ φ− + k(1200)) (15b)

v0k = A0 sin(ωt+ ϕ0) (15c)

where k = a, b, c or k = 0, 1, 2 depending on the context. The
sequences then can be calculated by the following relationships
[40]:

v+abc = T2vabc + T1v
90°

abc (16a)

v−abc = T2vabc − T1v90
°

abc (16b)

v0abc = (I3 − 2T2)vabc (16c)

where v90
°

abcis the 90° shifted signal, I3 is the identity matrix
of dimension 3× 3 and

T1 =

√
3

6

 0 1 −1
−1 0 1
1 −1 0

 ,
T2 =

1

3

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1


Since GTF generates quadrature signal, it can be used to esti-
mate the 90° shifted signal required in the sequence calculation
given in Eq. (16a)-(16c).

III. RESULTS AND DISCUSSIONS

A. Comparison with standard generalized integrator

In this Section, numerical simulation study will be provided
to demonstrate the dynamic performance improvement by the
proposed GTF. For this purpose, GTF and GI without FLL’s
are considered. The parameter of GI are selected as ks =√
2 and the GTF as kf =

√
2 and 3. As explained in Sec.

II-A, the tuning gain of standard GI always needs to satisfy
ks < 2 to main complex conjugate poles. For kf = ks =√
2, both techniques have similar closed-loop pole locations.

Comparative simulation results for the case of −0.5p.u.voltage
sag is given in Fig. 7. Fig. 7 shows that when kf = ks =

√
2,

both techniques have similar convergence time, however, the
peak overshoot for GTF is smaller than GI. Moreover, when
kf = 3, GTF has significantly faster convergence time than
that of GI.
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Figure 7. Comparative simulation results of GI and GTF for voltage sag case.

B. Experimental Results

This Section considers dSPACE 1104 board based exper-
imental study. Overview of the experimental setup is given
in Fig. 8. In the proposed experimental setup, dSPACE 1104
board is used to generate the grid voltage signal. dSPACE
1104 board has both digital-to-analog converter (DAC) output
and analog-to-digital converter (ADC) input. So, the signal
generated by the dSPACE 1104 board is first passed through
the DAC block to get the physical analog signal. This analog
signal is considered as the grid voltage signal and the whole
process can be considered as the emulation of the grid voltage
signal. This analog signal is then processed through the DAC
input to feedback to the estimator algorithms implemented in
dSPACE. So, the output of the DAC is physically connected
to the ADC input. As such the proposed experimental study
can be considered as hardware-in-the-loop (HIL) experimental
one. HIL-type experimental study is widely considered in the
grid synchronization literature [25], [41].

As comparison technique, we have selected the standard GI-
FLL as described in Sec. II-A with the parameters as: ks =√
2 and βs = 50. The parameters of GTF-FLL are selected

as given in Sec. II-D. The considered sampling frequency is
10kHz. To test the proposed GTF-FLL, three challenging test
scenarios are considered. They are:

• Test I: Sudden jump of +2Hz in frequency.
• Test II: Sudden jump of −0.25p.u. in amplitude.
• Test III: Sudden jump of +45◦ in phase.

Comparative experimental results are given in figures 9, 10, 11
for Test-I, II, and III respectively. Comparative experimental
results demonstrate that the proposed GTF-FLL has very good
convergence time w.r.t. GI-FLL. Comparative time domain
performances are given in Table I.

From the settling time summary, it can be observed that the
frequency estimation error for GTF-FLL converged 2.85, 4.22,
and 2.13 times faster than GI-FLL in Test-I, II, and III re-
spectively. Similar excellent performances can be observed in
the phase estimation error as well. These clearly demonstrates
the dynamic performance improvement by the proposed GTF-
FLL. Proposed GTF-FLL has higher peak overshoot for the
frequency estimation in Test II and III. However, Test-III is
unlikely to ever happen in actual power grid as this implies
phase reversal. Moreover, in the control of grid-connected
systems, synchronous reference frame (SRF) is widely ac-

Table I
COMPARATIVE TIME DOMAIN PERFORMANCE SUMMARY.

GTF-FLL GI-FLL
+2Hz Frequency Change

Settling time (±0.1Hz.) (in cycles) 0.85 2.4
Settling time (±0.1°) (in cycles) 0.35 1.42

Peak frequency overshoot (|f − f̂ |) 0Hz 0Hz
Peak phase overshoot (|θ − θ̂|) 2.4◦ 3.8◦

−0.25p.u. Amplitude Change
Settling time (±0.1Hz.) (in cycles) 0.45 1.9

Settling time (±0.1°) (in cycles) 0.25 0.85

Peak frequency overshoot (|f − f̂ |) 1.3Hz 1Hz
Peak phase overshoot (|θ − θ̂|) 3.9◦ 7.87◦

+45◦ Phase Change
Settling time (±0.1Hz.) (in cycles) 1.62 3.45

Settling time (±0.1°) (in cycles) 1.7 4.25

Peak frequency overshoot (f − f̂) 14.8Hz 5.2Hz
Peak phase overshoot (|θ − θ̂|) 8.5◦ 9.7◦

cepted. In SRF, only the phase θ is required (cf. various control
block diagrams presented in [42]). As such fast convergence
of the phase estimation is more significant in control of grid-
connected converters (GCC) than that of frequency estimation.
In control theory, separation principles allows for separate
tuning of estimator and controllers. Traditional approach to
GCC control does include the dynamics of PLL/FLL in the
controller parameter tuning and stability analysis. In this re-
gard, if we can ensure that the phase estimation error converges
really fast, then separation principle can be applied to GCC
system as well from the practical viewpoint. This will allow
separate tuning of controller leading to lower complexity in
controller tuning. The proposed GTF-FLL can be considered
as an important development in this context.

Tests I, II, and III do not consider any harmonics. However,
low-order harmonics may not be avoided in some cases. To
test the robustness of the proposed GTF-FLL, slightly distorted
grid voltage signal with low-order harmonics are considered.
In this case, the grid became suddenly polluted with low-order
harmonics. The considered harmonics are: 3rd- 1.9%, 5th -
2.3%, 7th - 1.7%, 9th - 1.3%, and 11th - 1.8%. Moreover, the
grid frequency also changed from 50Hz to 52Hz. Experimental
results for the harmonics robustness test are given in Fig.
12. From the experimental results in Fig. 12, it can be seen
that both techniques have estimation ripples, which is normal
in distorted grid. In this case, rise time can be a suitable
performance metric than convergence time. By considering
90% of the final value as rise time threshold, the frequency
rise time has been found to be ≈ 1 cycle for the proposed
technique while it is ≈ 2 cycles for the standard GI-FLL.
Similar excellent performance by the proposed GTF-FLL can
be seen for the phase estimation error as well. Moreover, the
ripples magnitude in the estimated phase is almost the same
for both techniques.

As explained in Sec. II-E, proposed GTF-FLL can be easily
extended to three-phase case. For this purpose, let us consider
a balanced three-phase system i.e. v+abc = 1∠0°. Suddenly due
to fault, the system became unbalanced where the grid voltages
became v+abc = 0.65∠−30° and v−abc = 0.35∠110°. Moreover,
the frequency changed from 50Hz to 52Hz. Experimental
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Figure 8. Block diagram of the experimental setup [25].

Figure 9. Comparative experimental results for Test I.

Figure 10. Comparative experimental results for Test II.

results in this case are given in Fig. 13. From Fig. 13, it can
be seen that the proposed GTF-FLL successfully tracked the
change in frequency with very fast convergence. Moreover,
all the positive and negative sequence components are also
successfully estimated very quickly as well. This demonstrates
the suitability of the proposed technique for three-phase case.

IV. CONCLUSION

This paper demonstrated the application of a GI-type filter to
estimate the parameters of grid voltage signals. The proposed
technique uses a GI-QSG type dynamical model together with
frequency-locked loop. The proposed filter uses coordinate
transformation which helps to achieve an excellent trade-off
between convergence speed and acceptable maximum peak
estimation error. Comparative analysis have been performed

Figure 11. Comparative experimental results for Test III.

Figure 12. Experimental test results for harmonics polluted grid.
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Figure 13. Experimental results for the three-phase case.

with GI-FLL using different challenging test scenarios. Test
results demonstrated the suitability of the proposed approach.
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