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ABSTRACT 

 

Corticotrophin releasing factor (CRF) acts via two family B G-protein-coupled receptors, 

CRFR1 and CRFR2.  Additional subtypes exist due to alternative splicing. CRFR1is the most 

widely expressed subtype and lacks a 29-residue insert in the first intracellular loop that is 

present in CRFR1. It has been shown previously that co-expression of CRFR1 with receptor 

activity modifying protein 2 (RAMP2) in HEK 293S cells increased the cell-surface expression 

of both proteins suggesting a physical interaction as seen with RAMPs and calcitonin receptor-

like receptor (CLR).This study investigated the ability of CRFR1CRFR1 and CRFR2 to 

promote cell-surface expression of FLAG-tagged RAMP2. Four different cell-lines were 

utilised to investigate the effect of varying cellular context; COS-7, HEK 293T, HEK 293S and 

[CTR]HEK 293 (which lacks endogenous calcitonin receptor). In all cell-lines, CRFR1and 

CRFR1 enhanced RAMP2 cell-surface expression. The magnitude of the effect on RAMP2 

was dependent on the cell-line ([CTR]HEK 293>COS-7>HEK 293T>HEK 293S). RT-PCR 

indicated this variation may relate to differences in endogenous RAMP expression between 

cell types. Furthermore, pre-treatment with CRF resulted in a loss of cell-surface FLAG-

RAMP2 when it was co-expressed with CRFR1 subtypes. CRFR2 co-expression had no effect 

on RAMP2 in any cell-line. Molecular modelling suggests that the potential contact interface 

between the extracellular domains of RAMP2 and CRF receptor subtypes is smaller than that 

of RAMP2 and CRL, the canonical receptor:RAMP pairing, assuming a physical interaction. 

Furthermore, a specific residue difference between CRFR1 subtypes (glutamate) and CRFR2 

(histidine) in this interface region may impair CRFR2RAMP2 interaction by electrostatic 

repulsion.

  

 

Keywords: Receptor activity modifying protein (RAMP), corticotrophin releasing factor 

receptor (CRFR), family B GPCR, splice variants, translocation. 

 

Abbreviations: ACTH, adrenocorticotropic hormone; CGRP, calcitonin gene-related peptide; 

CLR, calcitonin receptor-like receptor; CRF, corticotrophin releasing factor; CRFR, 

corticotrophin releasing factor receptor; ECD, extracellular domain; ELISA, enzyme-linked 
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immunosorbant assay; FACS, fluorescence-activated cell sorting; GPCR, G-protein-coupled 

receptor; HA, haemagglutinin tag; RAMP, receptor activity modifying protein.  

 

 

 

 

 

1. Introduction 

 

Corticotrophin releasing factor (CRF) is produced by the hypothalamus and acts on the anterior 

pituitary to release adrenocorticotropic hormone (ACTH), which in turn releases cortisol from 

the adrenal cortex. CRF also has numerous actions in the central nervous system related to 

stress and anxiety [1]. The hormone acts via two family B G-protein-coupled receptors 

(GPCRs), CRFR1 and CRFR2, and there are splice variants of both receptors. The CRFR1 is 

the best characterised, with high expression in the pituitary, adrenal gland and various brain 

regions. Furthermore, it is a target for anxiolytic drugs [1]. The full length sequence of the 

CRFR1 is that of the -subtype. However, in humans the most widely expressed isoform is the 

-subtype, which lacks exon 6 and consequentially has a 29-residue deletion (residues 146-

174) in intracellular loop 1 compared to CRFR1. CRFR1 shows weaker coupling to Gs 

compared to the CRFR1, typically resulting in >10-fold lower potency for CRF [1, 2]. For 

CRFR2, the -isoform is the major splice variant as the CRFR2lacks a signal peptide at its 

N-terminus, so tends to be retained intracellularly [3].  

 

Many family B GPCRs can form complexes with receptor activity modifying proteins 

(RAMPs). In mammals, RAMPs form a family of three single-pass membrane proteins 

(RAMP1, RAMP2, RAMP3). They have a range of effects on GPCRs including promotion of 

cell-surface expression plus modulation of ligand binding profile and signal transduction 

pathways [4]. The archetypical RAMP:GPCR interaction is that between a RAMP and the 

calcitonin receptor-like receptor (CLR) where there is direct interaction between the two 

proteins [5, 6]. When assaying intracellular cAMP signalling, a calcitonin gene-related peptide 

(CGRP) receptor is created by a RAMP1:CLR complex whereas an adrenomedullin receptor 

is generated by RAMP2:CLR or RAMP3:CLR complexes [7].  
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It has been shown previously that co-expression of RAMP2 with CRFR1 results in increased 

cell-surface expression of both proteins [8]. However, the ability of RAMP2 to interact with 

the more widely expressed CRF receptor, the CRFR1subtype, was not investigated. The 

purpose of the current study was to determine whether CRFR1 or CRFR2 could interact 

(either directly or indirectly) with RAMP2 and change cell-surface expression, as previously 

reported for CRFR1. In addition, as the magnitude of the effect reported previously with 

RAMP2:CRFR1 complexes was cell-line dependent [8], the influence of cell context on 

RAMP2:CRFR interaction was also investigated. Finally, on the assumption of a direct 

interaction between the CRFR subtypes and RAMP2 (as seen with CLR and RAMPs, [5, 6]), 

molecular modelling was then employed to provide mechanistic insights into differences that 

had been observed experimentally between RAMP2:CRFR1 and RAMP2:CRFR2.  

 

 

 

 

2. Materials and methods 

 

2.1. Constructs 

 

Both the  and  variants of haemagglutinin (HA)-tagged CRFR1 were constructed in the same 

way, with the HA-tag being inserted immediately after the signal peptide, between A23 (the 

end of the predicted signal peptide) and S24, the start of the mature protein. This replicates the 

construct design used previously [6]. These two constructs were custom-synthesised by 

GenScript (New Jersey, U.S.A.). The CRFR2 construct comprised the native signal peptide 

plus receptor sequence and was provided by Dr. Simon Dowell (GSK, Stevenage, UK). HA-

tagged CLR was as previously described and characterised [9]. Briefly, the endogenous signal 

peptide was replaced by the 21-residue CD8A signal peptide, followed by a four-residue linker 

(DYAS), then the HA-tag plus a further linker (SLGGPSLEGSA), with the receptor sequence 

commencing at E23. FLAG-RAMP2 was as described previously [8], with the FLAG-tag 

inserted after the final residue of the signal peptide.   

 

2.2. Cell culture 
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COS-7 cells, HEK 293T cells and HEK 293S cells (a gift from AstraZeneca), were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM)/F12 supplemented with 10 % heat-inactivated 

fetal bovine serum (FBS) plus 1% antibiotic/antimycotic (Sigma) and incubated at 37 °C in 

humidified 95 % air and 5 % CO2. Cells were passaged 1 in 5 every 3 days when confluency 

was at ~80 %. HEK 293 cells lacking the calcitonin receptor ([∆CTR]HEK 293 cells) were a 

gift from Drs. David Hornigold, Jacqueline Naylor and Alessandra Rossi (MedImmune, 

Cambridge, UK). [∆CTR]HEK 293 cells were cultured in Minimal Essential Medium 

supplemented with 10 % heat-inactivated FBS plus 1 % non-essential amino acids and 

incubated at 37 °C in humidified 95 % air and 5 % CO2 and passaged 1 in 5 every 5 days.  

 

2.3. Flow cytometry  

 

Fluorescence-activated cell sorting (FACS) was used to assess cell-surface expression of 

FLAG-RAMP2. HEK 293S, HEK 293T or [∆CTR]HEK 293 cells were transfected using 

Fugene HD (Promega) in accordance with the manufacturer’s instructions using a 1:3 (w:v) 

DNA:Fugene ratio. COS-7 cells were transfected with PEI, using a 1:3 (w:v) ratio of DNA:PEI. 

Co-transfections utilised 0.25 μg DNA per construct per well, a total of 0.5 μg DNA per well. 

The DNA/PEI mix was diluted in un-supplemented DMEM/F12 to a total volume of 25 L 

and incubated at room temperature for 10 min before addition to cells cultured in complete 

media. Transfected cell lines were grown for 48 h prior to assaying. Mock-transfections were 

used as control. Transiently transfected cells were removed from the plate using trypsin and 

washed with PBS prior to counting. 5 x 105 cells were washed three times in FACS buffer (PBS 

supplemented with 1 % BSA plus 0.03% sodium azide). Cells were then resuspended in 50 μL 

FACS buffer containing APC-conjugated anti-FLAG monoclonal antibody (BioLegend, 

diluted 1:100 in FACS buffer) and incubated in the dark at room temperature for 1 h. The cells 

received a further three washes in FACS buffer and were re-suspended in 50 μL FACS buffer. 

To account for dead cells, 2.5 μL propidium iodide was added to each sample. Samples were 

analysed using BD Accuri C6 flow cytometer (BD Biosciences) with excitation and emission 

wavelengths of 633 nm and 660 nm, respectively. An increase in APC intensity indicated 

increased plasma membrane expression of FLAG-RAMP. 

 

2.4. Enzyme-linked immunosorbant assay (ELISA) 
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ELISA was used to assess cell-surface expression of HA-CRFR1and HA-CRFR1 HEK 

293S cells were seeded on poly D-lysine-coated 24-well plates at ~1.5 x 105 cells/well, 

transfected with PEI as described previously [8, 9] and incubated for 48 h post-transfection. 

Mock-transfected cells were used as control to determine the background value. ELISA was 

carried out as previously described [8]. The primary antibody (mouse anti-HA, Sigma H9658) 

was diluted 1:3500 in blocking solution and the secondary antibody (horse anti-mouse HRP-

linked IgG, New England Biolabs, 7076S) was diluted 1:3500 in PBS. 

 

2.5. Reverse-transcription-polymerase chain reaction (RT-PCR) 

 

RNA was extracted from COS-7, HEK 293T, HEK 293S or [∆CTR]HEK 293 cells using 

Ambion RNAqueous™-4PCR kit (Life Technologies) as per the manufacturer’s instructions. 

All RNA samples were treated with DNase I to remove any contaminating genomic DNA. 

Reverse transcription was performed using QuantiTect reverse transcription kit (Qiagen) as per 

the manufacturer’s instructions. Minus Reverse Transcriptase negative controls were 

performed simultaneously and the PCR amplification was performed using the following 

conditions: 95 ˚C - 30 sec, 60 ˚C - 30 sec and 68 ˚C – 20 sec for 30 cycles then 68 ˚C – 5 

minutes. Gene-specific primers to all RAMPs and CTR and CLR were used as follows: 

RAMP1, forward (5’-CTGCCAGGAGGCTAACTACG-3’) and reverse (5’-

GACCACGATGAAGGGGTAGA-3’) [10]; RAMP2, forward (5’-

GGGGGACGGTGAAGAACTAT-3’) and reverse (5’- GTTGGCAAAGTGGATCTGGT-3’) 

[10]; RAMP3, forward (5’- AACTTCTCCCGTTGCTGCT-3’) and reverse (5’-

GACGGGTATAACGATCAGCG-3’) [10]; CTR forward (5’-

CCTATCACCCAATAGAGCCCAAG-3’) and reverse (5’-

TGCATTCGGTCATAGCATTTGTA-3’) (PrimerBank ID, 260064026c1); CLR forward (5’- 

ACCAGGCCTTAGTAGCCACA-3’) and reverse (5’- ACAAATTGGGCCATGGATAA-3’) 

[10]; and GAPDH forward (5’-TGCACCACCAACTGCTTAGC-3’) and reverse (5’-

GGCATGGACTGTGGTCATGAG-3’). All products were resolved on a 2 % agarose gel and 

imaged using a G:Box iChemi gel documentation system utilising GeneTools analysis software 

(Syngene) with densitometry performed using GeneTools. Expression of RAMP, CLR and 

CTR was standardised to the expression of the housekeeping gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) as described previously [11]. 

 

2.6. cAMP accumulation assays 
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Assays were performed as described previously [9]. Briefly, HEK-293 cells transiently-

transfected with an individual CRFR subtype were washed in PBS, resuspended in PBS 

containing 0.1% BSA plus 0.5 mM IBMX, and seeded at 2000 cells/well in 384-well white 

Optiplates. CRF was added at the concentrations indicated in the range of 1 pM to 1 µM and 

cAMP accumulation was measured after 8 min using a LANCE cAMP detection kit 

(PerkinElmer Life Sciences). Plates were read using a Mithras LB 940 multimode micro-plate 

reader (Berthold Technologies). Values were converted to concentration using a cAMP 

standard curve performed in parallel and standardised to cells stimulated with forskolin (100 

µM) which provided the system maximum. 

 

2.7. CRF-induced RAMP2 internalisation 

FACS was used to determine RAMP2 internalisation induced by agonist stimulation of 

CRFR1 and CRFR1. HEK293S cells were transfected as above. 48 h post-transfection, cells 

were removed from the plate using trypsin and washed with PBS. 5 x 105 cells were incubated 

in PBS supplemented with 0.1 % BSA ± 1 M CRF for 1 h at room temperature, washed with 

ice-cold FACS buffer and placed on ice. Cells were then assayed as described above (Section 

2.4) but kept at 4 C throughout. 

 

 

 

2.8. Molecular modelling 

 

The sequences corresponding to the full length CRFR1 and CRFR2 receptor were obtained 

from UNIPROT [12] and submitted to the SignalP [13] server to determine the position of the 

cleavable signal peptides. A manual sequence alignment was generated between the CRF1R, 

CRF2R, CLR with the signal peptides removed and was used to generate homology models 

using the crystal structures of CLR-RAMP2 (PDB: 4RWF [6]) as templates. MODELLER  [14] 

was used to generate 1000 models of each CRFR1:RAMP2 and CRFR2RAMP2 which were 

subsequently refined and scored using ROSETTA [15]. The best 50 ROSETTA scored 

structures were clustered and the middle structure from the largest cluster for each model was 

visually examined.  
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2.9. Data analysis 

 

GraphPad Prism v7.0 was used for data and statistical analysis (GraphPad Software Inc, San 

Diego, CA). Flow cytometry and ELISA data were normalized to cell-surface expression (of 

RAMP or receptor) for cells co-transfected with calcitonin receptor-like receptor (HA-CLR) 

and FLAG-RAMP2 (100 %) and cells transfected with empty vector (0 %). CLR is the 

archetypical partner GPCR for RAMP2. Student’s t-tests were performed on data where there 

was a comparison between the means of two data sets. A one-way ANOVA was performed 

when three or more means were compared, with post-hoc Dunnett’s test or Tukey’s test as 

appropriate. A result was determined to be statistically significant if the P-value was <0.05.  

 

 

3. Results 

 

3.1. The CRFR1α, CRFRβ and CRFR2β constructs are functional 

 

It was important to establish that the  CRFR1α, CRFR1β and CRFR2β constructs used in this 

study were expressed at the cell surface and were functional with respect to mediating CRF-

induced intracellular signaling. Dose-response curves of CRF-stimulated cAMP production 

were generated for each CRFR subtype (Fig. 1). CRF had the expected potency order of 

CRFR1> CRFR1>CRFR2β [1]. 
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Fig. 1. CRF-induced cAMP production by individual CRFR subtypes. 

The cAMP dose-response curves were constructed for CRFR1α (), CRFR1β (■), CRFR2β 

(▲), or vector-only control () in response to CRF stimulation at the concentrations indicated 

using transiently-transfected HEK 293T cells. The cAMP values were normalised (100%) to 

the maximal cAMP concentration produced by 100 µM forskolin (range; 66.5 nM-69.5 nM per 

2000 cells). Data are the mean ± s.e.m. of 4-6 independent experiments performed in triplicate. 

 

3.2 Co-expression of RAMP2 and CRF receptors in COS-7 cells 

 

CRF receptor (CRFR) subtypes were individually co-expressed with FLAG-tagged RAMP2 

(FLAG-RAMP2) in COS-7 cells. When cell-surface expression of FLAG-RAMP2 was 

determined by flow cytometry, a significant increase was observed in the presence of CRFR1 

(8.0-fold) or CRFR17.5-foldIn marked contrast, CRFR2 co-expression did not increase 

RAMP2 cell-surface expression (Fig. 2). 
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Fig. 2. The effect of co-expression of individual CRFR subtypes on cell-surface expression of 

FLAG-RAMP2 in COS-7 cells. 

Expression was normalised (100%) to that seen when FLAG-RAMP2 was co-expressed with 

CLR, the archetypical GPCR partner for RAMP2. Data are the mean ± s.e.m. of three 

independent experiments performed in triplicate. ***p<0.001, one way ANOVA followed by 

Dunnett’s test. 

 

 

3.3. The effect of cell context on the interaction of CRFR subtypes with RAMP2 

 

It has been reported previously that interaction of CRFR1 with RAMP2 was influenced by 

the cell-line employed, whereby the increase in cell-surface expression of RAMP2 was much 

greater in HEK 293S than CHO-K1 cells [8]. Consequently, the effect of the cell context in 

which the proteins were expressed was also investigated. When HEK 293T cells were 

employed, both of the CRFR1 subtypes increased FLAG-RAMP2 cell-surface expression (Fig. 

3). This was the same effect observed in COS-7 cells (Fig. 2), however the extent of the increase 

in HEK 293T cells, for both CRFR1 (3.4-fold) and CRFR1 4.6-foldwas smaller than that 

observed in COS-7 cells.  As with COS-7 cells, there was no change in the cell-surface 

expression of FLAG-RAMP2 following co-expression with CRFR2in cells (Fig. 
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3). A very similar effect was also observed using HEK 293S cells. There was a significantly 

increased cell-surface expression of FLAG-RAMP2 in the presence of CRFR1 (2.8-fold) or 

CRFR1 (3.4-fold) in HEK 293S cells but such an increase was completely absent in the 

presence of the CRFR2(Fig. 4a).  

 

   

 

Fig. 3. The effect of co-expression of individual CRFR subtypes on cell-surface expression of 

FLAG-RAMP2 in HEK 293T cells. 

Expression was normalised (100%) to that seen when FLAG-RAMP2 was co-expressed with 

CLR, the archetypical GPCR partner for RAMP2. Data are mean ± s.e.m. of three independent 

experiments performed in triplicate. ***p<0.001, one way ANOVA followed by Dunnett’s 

test. 

 

 

Wootten and co-workers [8] reported a reciprocal interaction between RAMP2 and CRFR1in 

HEK 293S cells, whereby the receptor increased RAMP2 delivery to the cell surface and 

likewise, RAMP2 increased cell-surface expression of CRFR1Consequently, the ability of 

RAMP2 to traffic HA-CRFR1 and HA-CRFR1 to the cell surface was investigated in this 

cell line (Fig. 4b). Data presented in Fig. 4b establish that RAMP2 co-expression enhanced the 

delivery of both HA-CRFR1 (38.6%) and HA-CRFR1 (29.2%) to the cell surface. The 
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increase in HA-CRFR1cell-surface expression observed in this study was consistent with the 

effect reported previously [8]. 
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Fig. 4. Cell-surface expression of CRFR1 subtypes and RAMP2 in HEK 293S cells.  

Panel a; The effect of co-expression of individual CRFR subtypes on cell-surface expression 

of FLAG-RAMP2. Panel b; The effect of RAMP2 co-expression on the cell-surface expression 

of HA-CRFR1 and HA-CRFR1. Expression was normalised (100%) to that seen when 

FLAG-RAMP2 was co-expressed with HA-CLR, the archetypical GPCR partner for RAMP2. 

Data are the mean ± s.e.m of n>3 independent experiments performed in triplicate. *p<0.05, 

** p< 0.01, ***p<0.001, one way ANOVA followed by Dunnett’s test (panel a) or Tukey’s 

test (panel b).  

 

 

 

3.4. Co-expression of RAMP2 and CRFR subtypes in [CTR]HEK 293 cells 

 

It is well-established that the calcitonin receptor (CTR) can interact with all three RAMPs [7] 

and that HEK 293 cells usually express the CTR endogenously. It was therefore possible that 

endogenous CTR expression could influence RAMP2 interaction with co-transfected CRFRs 

by providing an alternative partner for RAMP2. This was investigated using a HEK 293 cell 

line completely lacking endogenous CTR ([CTR]HEK 293 cells). RAMP2 delivery to the cell 

surface was markedly increased when co-transfected with CRFR1 (18.4-fold) or CRFR1 

(14.6-fold). This was the largest increase in RAMP2 cell-surface expression observed with any 

cell line employed in this study. In marked contrast, but consistent with all the other cell lines 

tested, there was no increase in RAMP2 expression with CRFR2 (Fig. 5). 

 



 14 

 

 

Fig. 5. The effect of co-expression of individual CRFR subtypes on cell-surface expression of 

FLAG-RAMP2 in [CTR]HEK 293 cells. 

Expression was normalised (100%) to that seen when FLAG-RAMP2 was co-expressed with 

CLR, the archetypical GPCR partner for RAMP2. Data are the mean ± s.e.m of three 

independent experiments performed in triplicate. ***p<0.001, one way ANOVA followed by 

Dunnett’s test.  

 

3.5. Endogenous expression of RAMPs and receptors in the cell lines employed in this study 

 

The mRNA expression levels of all three RAMPs, relative to the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was determined in all the cell lines 

(COS-7, HEK 293T, HEK 293S and [CTR]HEK 293). mRNA expression was also 

determined for two GPCRs (CTR and CLR) that are well-established partner receptors for 

RAMPs (Fig. 6).  In COS-7 cells, the RAMPs and the two GPCRs were either absent or 

detected at only very low levels. In contrast, there was appreciable expression of RAMP1, 

RAMP2 and CLR in both HEK 293T and HEK 293S cells. The low level expression of CTR 

detected in the HEK 293T/S cells was ablated in the [CTR]HEK 293 cells as expected. In 

addition, the [CTR]HEK 293 cells exhibited very low levels of expression of each RAMP 

and CLR (Fig. 6). 
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Fig. 6. Expression of mRNA for RAMPs, CTR and CLR.  

Expression was measured by RT-PCR in the cell lines indicated and standardised to GAPDH. 

Data are mean ± s.e.m (n = 3).  

 

3.6. Internalisation of RAMP2 following agonist challenge of co-transfected CRFR 

It is well-established that agonist stimulation causes internalisation of GPCRs. To investigate 

whether there was likely to be a physical interaction between RAMP2 and the CRFR1 subtypes, 

it was determined whether CRF-stimulation of the CRFR1 or CRFR1 isoforms caused a 

decrease in cell-surface expression of FLAG-tagged RAMP2. As can be seen in Fig 7, 

following CRF challenge (1 M for 1 h), a reduction in RAMP2 on the cell-surface was 

observed with both receptors. 
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Fig 7.  The effect of CRF stimulation of the a) CRFR1 and b) CRFR1 subtypes on cell-

surface expression of FLAG-RAMP2 in HEK293S cells. 

CRF treatment was for 1h. Expression was normalised (100%) to that seen when FLAG-

RAMP2 was co-expressed with CLR. Data are the mean ± s.e.m. of three or four independent 

experiments. *p<0.01, one way ANOVA followed by Dunnett’s test.  

 

 

3.7. Molecular modelling of CRFR:RAMP2 complexes 

 

Computational molecular modelling can provide insights into the molecular mechanisms 

underpinning empirical observations. From data presented above, it is clear that the CRFR1 

variants exhibit interaction with RAMP2 whereas in marked contrast the CRFR2 does not. This 

subtype-specific difference was observed in all the cell lines utilised. In order to investigate 

why the CRFR1 splice variants might be better able to form a heterodimer with RAMP2 
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compared to CRFR2homology models of the ectodomains of CRFR1:RAMP2 and 

CRFR2:RAMP2 were constructed based on the crystal structure of the CLR:RAMP2 

ectodomain complex (3AQF; Kusano et al., 2011) and are directly compared in Fig. 8. 

Assuming a direct CRFR:RAMP2 interaction and that the complexes have a similar 

GPCR:RAMP interface to that seen in CLR:RAMP2, then residues Q26, D27, E31 and S35 of 

CRFR1 pack against RAMP2 (Fig. 8). Interestingly, this constitutes a smaller interface than 

seen with CLR where I41, M42, N45, Y46, Y49 and I52 all contribute to the association [6, 

16]. With reference to Fig. 8, the two negatively-charged residues D27 and E31 of CRFR1 are 

positioned close to a histidine (H124) of RAMP2. However, in CRFR2, the residue 

corresponding to E31 is replaced by a histidine (H52), which will undergo electrostatic 

repulsion away from H124 of RAMP2. Consequently, in CRFR2, H52 moves away from the 

RAMP2 interface as does E48, the equivalent of D27 in CRFR1. There are also differences in 

loop 2 of the ECDs of the receptors, at the tip of the sheet formed by the 1 and 2 strands of 

these domains. In CRFR1receptors, this is close to RAMP2, allowing I51 of CRFR1 to pack 

against the RAMP. In contrast, the equivalent loop region of CRFR2 is bent away from 

RAMP2 so that I74 (the equivalent of I51 in CRFR1) fails to make contact with the RAMP 

(Fig. 8). 
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Fig. 8. Molecular models of a) CRFR1:RAMP2 and CRFR2:RAMP and b) CLR:RAMP2 

Molecular models of CRFR1RAMP2 and CRFR2RAMP2 are shown superimposed, with 

CRFR1 (yellow), CRFR2 (green) and RAMP2 (blue). Individual key residues in the 

heterodimer interface, which are referred to in the text, are indicated for each CRFR subtype. 

CLR:RAMP2 is from PDB 3N7S [6] 

 

 

 

 

4. Discussion 

 

RAMPs have been shown to interact with a wide range of family B GPCRs and thereby affect 

fundamental characteristics of these receptors. These RAMP-mediated effects include 

alteration of cell-surface expression and changes to the receptor’s ligand binding profile and 

intracellular signaling [4]. The best-characterized of these RAMP-mediated effects are with the 

receptors CLR and CTR [7]. The widespread occurrence of RAMP:GPCR interactions was 

evident following characterisation of a RAMP2+/- knockdown mouse strain, which revealed a 

broad spectrum of physiological changes, consistent with RAMP2 modulating an extensive 

and diverse range of receptors [17].  

 

CRF stimulation of ACTH release from the pituitary gland is of pivotal importance to the 

physiological role of this hormone [3]. It is noteworthy therefore, that the RAMP2+/- mouse 

line exhibited a decrease (~20%) in CRF-stimulated release of ACTH into the blood compared 

to wild-type mice [8], thereby establishing the importance of RAMP2:CRFR interaction in 

vivo. Furthermore, the results with the RAMP2+/- mouse line probably under-represent the 

importance of RAMP2 to CRF function, as the mice are only heterozygote for RAMP2 and not 

a complete RAMP2 knockout strain (RAMP2-/- is lethal in embryo). The current study 

investigated the ability of RAMP2 to interact with human CRFR subtypes by measuring 

changes in FLAG-tagged RAMP2 cell-surface expression induced by co-expression of the 

individual CRF receptor subtypes CRFR1CRFR1 and CRFR2 Both of the CRFR1 

isoforms were shown to  enhance delivery of RAMP2 to the cell surface. Our data for CRFR1 

are in agreement with the findings of Wootten et al. [8] and furthermore, establish that RAMP2 

interaction extends to the predominant CRFR1 isoform. Thus, RAMP modulation of either 

CRFR1 subtype should be considered in cells where these receptors can be shown to be co-
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expressed with RAMP2. As the effects of RAMPs on GPCRs can be affected by the cell line, 

four different cell-lines were utilised to investigate the effect of varying cellular context viz. 

COS-7, HEK 293T, HEK 293S, plus [CTR]HEK 293 (a HEK 293 cell-line lacking 

endogenous calcitonin receptor). In each case, the magnitude of the enhancement of RAMP2 

cell-surface expression was similar for both CRFR1 isoforms, although the fold-increase varied 

between cell lines ([CTR]HEK 293>COS-7>HEK 293T>HEK 293S). In addition, interaction 

of RAMP2 with either CRFR1or CRFR1 resulted in an increase in the delivery of both the 

RAMP and the receptor to the cell surface. CRFR1and CRFR1 share identical sequences, 

except for a 29-residue deletion in ICL1 of CRFR1. It seems unlikely that ICL1 is in direct 

contact with the RAMP [5]. 

 

The largest enhancement of RAMP2 cell-surface expression was observed in [CTR]HEK 293 

cells which lack endogenous CTR (Fig. 5). This increase in RAMP2 delivery to the cell surface 

was notably higher in [CTR]HEK 293 cells than that observed in HEK 293S cells (6.6-fold 

greater and 4.2-fold greater for CRFR1 and CRFR1 respectively). Whilst the CTR can 

complex with RAMP2 (and so could act as a sink for RAMP2 in competition with the CRFR1 

isoforms), this interaction has been reported to be weak [18]. Therefore it is not clear if the 

absence of CTR alone is sufficient to explain the increase in RAMP2 cell-surface abundance 

generated by CRFR1 isoforms in [CTR]HEK 293 cells compared to HEK 293S cells. There 

may be other RAMP-interacting proteins differentially expressed by the cells, to dilute the 

RAMP pool. However, based on mRNA data presented in Fig. 6, there was a negative 

correlation between endogenous expression levels of RAMP2 in HEK-based cell lines and the 

extent to which FLAG-RAMP2 trafficking was affected by either CRFR1 or CRFR. This 

suggests that endogenous, untagged RAMPs may interact with the CRFR1, in effect competing 

with the transfected FLAG-RAMPs, thus diluting the cell-surface expression of FLAG-

RAMPs. This reasoning indicates that receptor:RAMP stoichiometry is an important 

consideration but it is very rare for RAMP and receptor expression to be quantified in a single 

cell type [19]; we are unaware of any study where this has been done for every potential 

RAMP-interacting GPCR. Indications are that individual RAMPs and GPCRs are expressed at 

broadly similar levels [20], as seen in this study (Fig 6) but more work is needed to understand 

their interactions at a cellular level. 
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Throughout this work, the assumption has been that there is a physical association between 

RAMP2 and the CRF receptors. We cannot rule out an indirect effect of the RAMP on the 

receptor. However, robust physical interactions are seen with CLR and RAMPs [5, 6] and the 

simplest interpretation of the ability of prolonged CRF treatment to reduce cell surface RAMP2 

expression (Fig 7) is that there is internalisation of a CRFR1-RAMP2 heterodimer. 

Furthermore, the effects of RAMP modulation on CRFR1 pharmacology [8] (also seen with 

the RAMP2 interaction with the glucagon receptor [21]), suggest that a physical interaction 

between the receptor and the RAMP is the most plausible mechanism. This may also provide 

a further explanation of cell line variability, if there are different degrees of 

compartmentalisation between RAMPs and GPCRs. 

 

In marked contrast to the CRFR1 isoforms, there was no evidence that RAMP2 cell-surface 

expression was affected by CRFR2 in any of the cell lines employed, Thus if CRFR:RAMP 

heterodimerisation is the basis for this effect, it would seem that the CRFR2 does not form 

dimers with RAMP2. The CRFR2 shares ~70% amino acid sequence identity with CRFR1, 

with most of the divergence in sequence occurring in the ECD. Insights from computational 

molecular modelling suggested a feasible mechanism, arising from differences in the ECDs, to 

explain the subtype-specific interaction observed between CRFRs and RAMP2. These 

modelling studies indicated that there are charge differences between the residues of CRFR1 

and CRFR2 that pack against a histidine (H124) of RAMP2, located in the GPCR:RAMP 

interface. Whilst CRFR1 isoforms form a favourable interaction via E31, electrostatic repulsion 

of the corresponding CRFR2 residue (H52) would result in failure of CRFR2 to complex 

with RAMP2. In addition, the smaller and more polar contact interface between 

CRFR1:RAMP2 compared to CLR:RAMP2 might explain why formation of CLR:RAMP2 

complexes is more robust than CRFR1:RAMP2 complexes. We cannot exclude that differences 

in the transmembrane domains of the receptors may also be important. 

 

In conclusion, the study demonstrates that both CRFR1 and CRFR1 can interact with 

RAMP2 but the magnitude of the effect was cell line-dependent. In contrast, the 

CRFR2subtype did not complex with RAMP2 in any cell line examined. Molecular 

modelling studies suggested that this difference between CRFR1 and CRFR2 may be due to 

subtype-specific differences in individual residues in the ECDs which contributed to the CRFR 

contact interface in a RAMP2:CRFR complex. 
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