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Abstract 

We consider the classical double-well model of stochastic resonance, in which a particle in a 

potential V (x, t) = [−x2/2 + x4/4 − A sin(!t) x] is subject to an additional stochastic forcing that 

causes it to occasionally jump between the two wells at x ≈ ±1. We present direct numerical 

solutions of the Fokker-Planck equation for the probability density function p(x, t), for ! = 10−2 

to 10−6, and A ∈ [0, 0.2]. Previous results that stochastic resonance arises if ! matches the average 

frequency at which the stochastic forcing alone would cause the particle to jump between the wells 

are quantified. The modulation amplitudes A necessary to achieve essentially 100% saturation 

of the resonance tend to zero as ! → 0. From p(x, t) we next construct the information length 
R R 

L(t) = [ (@tp)2/p dx]1/2 dt, measuring changes in information associated with changes in p. L 

shows an equally clear signal of the resonance, which can be interpreted in terms of the underlying 

meaning of L. Finally, we present escape time calculations, where the Fokker-Planck equation is 

solved only for x ≥ 0, and find that resonance shows up less clearly than in either the original p or L. 

Highlights: 

• Direct numerical solutions of the Fokker-Planck equation governing the classical double-well 

model of stochastic resonance are presented. 

• As ! → 0, the amplitudes required to achieve essentially complete synchronization tend to zero 
√ 

as A ∝ 1/| ln(ˇ 2!)|. 

• Stochastic resonance has a very clear signature in information length, a recent diagnostic for 

time-dependent probability density functions. 

Keywords: 

Stochastic resonance, Fokker-Planck equation, Probability density function, Information geometry 

2 



I. INTRODUCTION 

Periodically forced systems are common in many di�erent contexts, and can yield large 

responses through a variety of resonance mechanisms. For example, if a pendulum’s support 

point is oscillated horizontally at the same frequency as its natural frequency, the response 

will be particularly strong. Alternatively, if the support point is oscillated vertically, the 

frequency needs to be twice the natural frequency to achieve a so-called parametrically driven 

resonance. More complicated systems, such as a double-pendulum, have more than one 

natural frequency, allowing for a range of both directly and parametrically driven resonances 

as the driving frequency is varied [1]. 

Next, consider a nonlinear system with more than one equilibrium point, and suppose that 

the presence of stochastic noise can occasionally cause the system to switch between di�erent 

equilibria. This introduces a new timescale, namely the average time between successive 

switching events. However, unlike a pendulum, where every oscillation takes exactly the 

same time, for stochastic switching events it is only the average time that is a well-defned 

quantity, but individual events might follow something like a Poisson distribution, and thus 

have a broad spread about the average value. 

Nevertheless, it turns out that even such systems can exhibit what is now known as 

stochastic resonance. If the driving frequency matches the average switching frequency, 

then even a small driving amplitude can induce a situation where the switching events no 

longer have a broad distribution, but instead virtually every switching event is synchronized 

to the driving, just like a pendulum would be. That is, the noise is playing the rather 

counter-intuitive role of amplifying the driving signal rather than drowning it out. 

The basic mechanism of stochastic resonance was frst proposed in 1981 independently by 

Benzi et al. [2] and Nicolis & Nicolis [3], who suggested that it could explain the relatively 

regular occurrence of ice ages by weak periodic modulations in the Earth’s orbital eccen-

tricity. Since this pioneering work, there has been a vast number of further studies [4–11], 

including applications in physics, chemistry, biology, etc. [12–16], and continuing to this 

day, e.g. [17–22]. Many di�erent diagnostic quantities have been considered, including the 

signal-to-noise ratios (especially useful for experimental realizations, e.g. [4, 5]), residence 

time distributions, and even a variety of information theoretic measures [23–30]. 

We are here also particularly interested in the information in stochastic systems, how 
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it changes in time, and how best to measure this. In particular, suppose we have a single 

stochastic variable x, and we further have its entire probability density function (PDF) 

p(x, t), giving the probability that x has particular values at time t. Now suppose that p is 

changing in time. How should one compare two di�erent PDFs, and measure the ‘distance’ 

between them? 

One approach is to use the so-called information length L [31–39], where we frst defne 

the PDF’s (time-dependent) correlation time ˝(t) by 

E(t) ≡ 
1 

˝ 2 
= 

Z 

1 

p(x, t) 

� �2
@p(x, t) 

@t 
dx, (1) 

and then 
s 

L(t) ≡ 
Z 

dt 

˝(t) 
= 

Z Z 

1 

p(x, t) 

� �2
@p(x, t) 

@t 
dx dt. (2) 

The interpretation of L(t) is that it measures the number of statistically distinguishable 

states that the PDF evolves through in time. Equivalently, the di�erential element dL = 

dt/˝(t) measures the rate at which new information is being generated during the evolution 

of p. Note also that L depends on the entire history between some initial and fnal times, 

unlike measures such as Kullback-Leibler divergence [40], which only compares the initial 

and fnal PDFs, without any consideration of the intermediate stages. For the periodically 

forced problem we wish to consider here, L is then particularly well suited, since it naturally 

allows us to consider the information change �L = L(t + T )−L(t) over one period T . 

The objective of this paper is to reconsider the original Benzi et al. model [2] of stochastic 

resonance, and focus specifcally on whether L per cycle is a useful measure of stochastic 

resonance, and how it compares with other diagnostics. We start with a direct numerical 

solution of the associated Fokker-Planck equation, unlike most of the earlier work [6–11] 

which provided various asymptotic analyses. The numerically computed PDFs p(x, t) al-

ready provide direct insight into items such as the probability of being in one or the other 

of the double-wells, and how this varies throughout the period. From p(x, t) we then further 

construct the information length L over a cycle, and fnd that it is indeed a useful diagnostic 

for stochastic resonance. 

The remainder of this paper is organized as follows. Section 2 introduces the basic model, 

the associated Fokker-Planck equation, and its numerical solution. Section 3 presents simple 
R 

diagnostic quantities such as 
0 
1 

p(x, t) dx, the probability of being located in x ≥ 0, and 
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shows how this can be used to quantify the saturation of the resonance, and how the critical 

amplitudes A tend to zero as ! → 0. Section 4 converts the PDFs to information length 

per cycle, and shows how this agrees with the previous interpretation of information length, 

and what the signature of stochastic resonance looks like in L. Section 5 considers only the 

half-interval x ≥ 0, and thus explores how particles escape from a single well. We will see 

though that this provides a less clear measure of resonance than the measures in Sections 3 

and 4. We conclude with a discussion of planned extensions to other stochastic resonance 

models. 

II. DOUBLE-WELL MODEL 

Suppose we have a particle in a potential given by 
2 4x x

V (x, t) = − + − A sin(!t) x, (3) 
2 4 

where x and t are suitably nondimensionalized space and time. If A = 0, there are two 

stable equilibrium points located at x = ±1, separated by an unstable point at x = 0. The 

potential barrier between the two wells has height V (0) − V (±1) = 1/4. For 0 < A ≪ 1, 

the stable equilibria move as x ≈ ±1 + (A/2) sin(!t). The depth of the wells also fuctuates 

as −1/4   A sin(!t) to leading order in A. That is, each well will be slightly deeper than 

the other one for half of the cycle. 

Imagine next that the particle is also subject to stochastic noise, suÿciently great that it 

can occasionally cause the particle to overcome the potential barrier, and switch from one 

well to the other. In a frictionally dominated limit, the equation governing the particle’s 

motion can be modelled as 

dx @ 3 = − V + ˘ = x − x + A sin(!t) + ˘, (4) 
dt @x 

where ˘ is a Gaussian-distributed stochastic forcing having the statistical properties 

h˘(t)i = 0, h˘(t1)˘(t2)i = 2D�(t1 − t2). (5) 

That is, ˘ has zero mean, is �-correlated in time, and has strength D. 

For the unperturbed A = 0 system, the Kramers rate [41] at which such noise would 

induce switching between the wells is 
� � 

1 1 
rK = √ exp 

ˇ 2 
− 

4D 
. (6) 
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Note in particular how rK tends to zero very quickly as D tends to zero, in agreement with 

the fact that without noise there would also be no switching at all. This rate rK is merely an 

average rate though, with individual switching events exhibiting substantial variation about 

this average. The question then is whether even a small perturbation A can synchronize 

the switching so that it precisely follows the externally imposed frequency !. As we will 

see below, the answer depends crucially on how the two rates ! and rK compare with one 

another. For the right choices of ! and D though, arbitrarily small A can already make the 

system essentially perfectly synchronized. 

Instead of considering the stochastic Langevin equation (4), we will work with the equiv-

alent Fokker-Planck equation [42] 

� �@ @ � � @2 

p(x, t) = − x − x 3 + A sin(!t) p(x, t) + D p(x, t) (7) 
@t @x @x2 

governing the corresponding probability density function p(x, t). A general analytic solution 

to this equation is unfortunately not available. A useful limiting case is the adiabatic or 

quasi-static approximation, in which p is assumed to evolve so slowly that the @tp term can 

be neglected. The solution then becomes 

� � 

p ∝ exp −V (x, t)/D , (8) 

R 

+1

with the constant of proportionality chosen so that 
−1 

p dx = 1. We will see in the next 

section for which parameter values this adiabatic solution is a valid approximation. 

For more general solutions, we resort to a numerical approach. Eq. (7) is discretized using 

second-order accurate fnite di�erences in both space and time. The interval in x is taken 

as x ∈ [−3, 3], which is suÿciently large that simply imposing p = 0 boundary conditions 

at x = ±3 is an excellent approximation to the original infnite interval. As a useful test, 
R 

the total probability p dx remains constant (=1) to within 10−7 . Grid sizes as small as 

�x = 10−3, and time steps as small as �t = ˇ · 10−3 were chosen, and were varied to check 

the accuracy. 

It is important also to time-step solutions suÿciently long for the fnal, periodic solutions 

to emerge. In doing this, care must be taken that the fnal solution is properly symmetric 

between the two wells. That is, starting from either (8), or indeed a random initial condition, 

it is necessary to integrate for only a few periods to obtain a solution that satisfes p(x, t + 

T ) = p(x, t) reasonably well. However, unless it also satisfes p(x, t + T/2) = p(−x, t), there 
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is still a distinction between the two wells, which the true solution cannot have. And since 

the timescale to switch between the wells is much longer than the timescale to adjust within 

each well, many more periods would be needed to achieve a properly symmetric solution. 

It was found that this process could be speeded up considerably by adopting the following 

procedure: time-step for a few periods, use the fnal values to construct p̃ = [p(x, tf ) + 

p(−x, tf −T/2)]/2, then use p̃ as a new initial condition. That is, every few periods we simply 

construct a new initial condition that consists only of the desired symmetric component of 

the previous results. By repeating this procedure several times, it was found that solutions 

can be obtained that satisfy both p(x, t+T ) = p(x, t) and p(x, t+T/2) = p(−x, t) to within 

10−6, and with total integration times up to 100 times shorter than one single integration 

would have required. Representative samples were checked both ways to ensure that this 

speed-up procedure really does produce the same fnal solutions as a single long integration 

would have. With this speed-up in place, it was then possible to map out the parameter 

space of interest very thoroughly, even for small ! where the periods T = 2ˇ/! become 

rather long. 

III. PROBABILITY DENSITY FUNCTIONS 

Fig. 1 shows snapshots of the PDFs at the times t = 0, T/4, T/2 and 3T/4, mod(T ). 

Only the peaks at x ≈ 1 are shown; from the symmetry condition p(x, t + T/2) = p(−x, t) 

the behaviour for x ≈ −1 is then also known. One immediate point to note is how the peak 

positions oscillate in time, exhibiting exactly the (A/2) sin(!t) variation expected simply by 

considering the wells of the potential V . That is, even if the switching between the wells 

is not necessarily following the adiabatic approximation (8), the behaviour within each well 

is essentially adiabatic. (For ! = O(1) the potential does vary so quickly that the PDFs 

are not adiabatic even within each well; the peak positions then oscillate with an amplitude 
√ 

A/ 4 + !2, e.g. [12].) 

Next, the widths of the PDFs increases with D, as would be expected, since greater noise 

should broaden the distribution. The precise scaling as D1/2 comes from expanding (8) as 

a Gaussian in the vicinity of the peak position. For D = 0.01 the PDFs are indeed very 

close to Gaussian, but for D = 0.1 non-Gaussian behaviour is also clearly present. If D is 

suÿciently large the PDF spreads out into regions where V can no longer be approximated 
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FIG. 2: 
0 p(x, t) dx as a function of time throughout the period T . All three panels are 

for ! = 10−4, (a) D = 0.01, (b) D = 0.0324, (c) D = 0.1, and A = 0.02, 0.04 and 0.08 as 

indicated by the numbers beside individual curves. Note also how (a) has a di�erent 

vertical scale, since deviations from 0.5 never exceed O(10−5). 

as locally parabolic, which would yield exactly Gaussian behaviour. 

Finally, if we compare the amplitudes of p, for D = 0.01 they are all broadly similar, 

whereas for D = 0.0324 and 0.1 they are not. Especially for D = 0.0324, the PDFs at 

t = T/4 and 3T/4, and even t = 0 and T/2, are signifcantly di�erent, with t = T/4 yielding 
R 

1

a far higher peak than t = 3T/4. From these results it is already clear that 
0 p(x, t) dx, 

that is, the probability of being located in x ≥ 0, can vary considerably throughout the cycle. 

This is quantifed in Fig. 2, which shows this probability as a function of time throughout 

the cycle, for the same solutions as in Fig. 1, as well as A smaller and greater by a factor of 

2. 

As we can see in Fig. 2, for D = 0.01 the deviation from 0.5 barely exceeds 10−5 even 
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1 

p(x, t) dx, as functions of the noise level D.
0 The 

numbers 2 to 6 beside individual curves correspond to ! = 10−2 to 10−6 . (a) A = 0.02, (b) 

A = 0.04. The thick dashed curves show results from (10). The dotted vertical lines are at 

Dres given by (9) for ! = 10−2 to 10−6; note how well these values agree with the maxima 

over D of the corresponding curves. 

for A = 0.08. That is, even a relatively large modulation has almost no e�ect on the 

probability of being located in one well versus the other, even at those times in the cycle 

when a given well ‘should’ be preferred, in the sense that it is deeper than the other one. In 

contrast, for D = 0.0324 and 0.1 even the relatively small modulation A = 0.02 is already 

enough to induce clear deviations from 0.5. For D = 0.0324 and A = 0.08 the probability 

of being located in x ≥ 0 at t = T/4 even exceeds 0.99. That is, the switching process is 

essentially saturated, and perfectly synchronized with the periodic forcing, with virtually 

100% probability of being located in x ≥ 0 at t = T/4, and correspondingly in x ≤ 0 at 

t = 3T/4. 

We thus recognize that the most important diagnostic quantity to understand the reso-
R 

1

nant behaviour is the maximum over the cycle of 
0 p(x, t) dx. Fig. 3 shows this quantity, 

for ! = 10−2 to 10−6, and D ∈ [0.01, 0.1]. The pattern is very clear: if D is too small, this 

maximum remains essentially 0.5, indicating that there is no preference for one well over 

the other at any time in the cycle, and hence no synchronization. For larger D however, the 

values suddenly rise and then slowly decrease again. For smaller ! the rise is more abrupt, 

and occurs at smaller values of D. For the gradual decrease after the maximum value has 

been reached, all frequencies ! converge to the same curve. 
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To understand these results, we start by equating ! = rK . Solving ! = 
√ 

exp(−1/4D)/(ˇ 2) for D yields 

−1 
Dres = √ , (9) 

4 ln(ˇ 2 !) 

where the subscript ‘res’ indicates that this is the resonant value. In particular, we see in 

Fig. 3 that the maxima of the individual ! curves all occur very close to their corresponding 

Dres values. 

Next, the thick dashed lines in Fig. 3 show the equivalent results for the adiabatic ex-

pression (8). That is, we are interested in the quantity 

Z 

1 
Z 

° 

+1 
� � � � 

exp −V (x, T/4)/D dx exp −V (x, T/4)/D dx. (10) 
0 −1 

Analytic expressions for these integrals do not exist, but they can be evaluated numerically 

to yield the curves shown in Fig. 3. An asymptotic formula can also be obtained by noting 

that the PDFs are concentrated within the wells of V , especially for small D, and at t = T/4 

the wells have depths −1/4  A. If we approximate the integrals simply by the peak values 

of the integrands, the asymptotic formula becomes 
� � 

exp (1/4 + A)/D 1 
� � � � = , (11) 

exp (1/4 + A)/D + exp (1/4− A)/D 1 + exp[−2A/D]

which di�ers from the numerically computed value by only a few percent even for D = 0.1, 

with even better agreement as D is decreased. 

We can then summarize Fig. 3 as follows: First, if D ≪ Dres, then ! ≫ rK . The imposed 

modulation is then too rapid, the system cannot e�ectively respond, and the probability 

of being in either well remains essentially 0.5 throughout the entire cycle. That is, there 

is no synchronization between the stochastic switching and the modulation, and hence no 

resonance. In contrast, if D ≫ Dres, then ! ≪ rK . The imposed modulation is then 

so slow that the adiabatic limit (8) does indeed apply, even to a process as slow as the 

switching between the wells. And as the results from (10) or (11) show, the adiabatic 

formula (8) exhibits synchronization, and in particular stronger synchronization for smaller 

D, explaining why D should be as small as possible, but not much less than Dres, which 

would switch the resonance o�. 

An immediate consequence of these results is also that a resonant peak occurs only if a 

scan is done over the noise level D, as here. If instead D is held fxed and a scan is done 
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FIG. 4: (a) The maximum over the cycle of 
0 p(x, t) dx as a function of the modulation 

amplitude A. The numbers 2 and 6 indicate the range ! = 10−2 to 10−6 . For each !, 

D = Dres. (b) The critical values of A required for the maxima in (a) to equal 0.9 for the 

lower curve, and 0.99 for the upper curve, corresponding to 90% and 99% probabilities of 

being in the ‘correct’ well. The asterisks correspond to A = 2.3 D, with D = Dres again 

given by (9). 

over !, then the ‘resonance’ becomes a simple on-o� phenomenon: if ! ≫ rK there is no 

synchronization, whereas if ! ≪ rK there is synchronization, at whatever level (10) yields 

for the given D (and A), but no variation with !, since (10) does not involve !. 

Fig. 4 quantifes how the resonance saturates as the modulation amplitude A is increased. 

That is, for a given !, suppose we frst fx D at its resonant value Dres, and then gradually 
R 

1

increase A. How does the maximum value of 
0 p(x, t) dx over the cycle increase, and how 

large would A therefore have to be to have, say, 90% or 99% probability of being in the 

‘correct’ well at the appropriate time in the cycle? Fig. 4a shows the overall variation with 

A, whereas Fig. 4b picks out the particular A values where the probability equals 0.9 and 

0.99. As we can see in Fig. 4b, the amplitudes required to achieve even 99% probability 

decrease as ! decreases. Also shown is the asymptotic formula A = 2.3 D, which is seen to 

be an excellent ft. This result is readily understood from (11); 1/(1 + exp(−2A/D)) = 0.99 

yields A = 2.3 D. For suÿciently small !, and corresponding Dres, the stochastic resonance 

phenomenon therefore becomes increasingly eÿcient, and essentially 100% synchronization 

can be achieved even at very small modulation amplitudes, tending to zero as O(D). 
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IV. INFORMATION LENGTH 

Having established what the basic resonance phenomenon looks like in terms of the PDFs 

directly, we turn next to the diagnostic quantities E and L from Eqs. (1) and (2). Fig. 5 

shows E for the previous solutions from Figs. 1 and 2. Recalling that the position of the 

peaks varies as (A/2) sin(!t), we see that E is consistently greatest when the peaks are 

moving fastest. The greatest values of E are for the intermediate case D = 0.0324, in 

agreement with Fig. 2b for example. On the other hand, unlike Figs. 2a and 2c, which had 

very di�erent magnitudes, here the values in Figs. 5a and 5c are quite similar. It is clear 

therefore that Fig. 5 is measuring something di�erent from Fig. 2. In particular, whereas 

Fig. 2 only encapsulates the probability to be in one well or the other, Fig. 5 also includes 

the information about how the PDFs move back and forth within a given well. 

Fig. 6 shows the information length L per cycle associated with the results from Fig. 

3. We see that L exhibits a beautiful signal of the resonance phenomenon, just as clear 

as the probabilities themselves. To interpret these results, we start with the thick dashed 

lines, which are simply 4A/1.4D1/2 . To understand the signifcance of this formula, we frst 

recall that the peaks move according to (A/2) sin(!t). The total distance each peak moves 

throughout a cycle is therefore 2A. Next, the two PDF peaks at x ≈ ±1 each have standard 
p

deviation ˙ ≈ D/2, with the approximation becoming better for smaller D, where the 

peaks are increasingly close to Gaussian (Fig. 1). The width of each peak is therefore 

2˙ = 1.4D1/2 . (As we can also see in Fig. 1, the width actually varies slightly throughout 

the period, but to obtain a lowest order estimate of what L should be, just the average 
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FIG. 6: L over one cycle, as functions of the noise level D. The numbers 2 to 6 beside 

individual curves correspond to ! = 10−2 to 10−6 . (a) A = 0.02, (b) A = 0.04. The thick 

dashed curves are L = 4A/1.4D1/2 . As in Fig. 3, the dotted vertical lines are at Dres given 

by (9) for ! = 10−2 to 10−6; note how well these values again agree with the maxima of the 

corresponding curves. 

width is suÿcient.) So, if each peak moves a total distance 2A, and has width 1.4D1/2, then 

the number of statistically distinguishable states it moves through is just 2A/1.4D1/2 . The 

fnal factor of 2 is simply due to the fact that there are two peaks, each undergoing the 

same motion. We see therefore that in this small D regime before the resonance sets in, L 

is measuring precisely the motion of the peaks, and there is no other source of information 

length. 

The sudden increase in L as the resonance sets in is then measuring the additional in-

formation, and associated number of statistically distinguishable states, that comes from 

the synchronization behaviour, as the probability of being in one well or the other at the 

appropriate times in the cycle becomes signifcantly di�erent from 0.5. Finally, for D suÿ-

ciently large that L is decreasing again, it decreases more rapidly than the previous D−1/2 

scaling. The reason for this is that in addition to the previous D−1/2 factor (which we recall 

comes from the broadening of the peaks, and thus continues to apply), the contribution from 

the synchronization also decreases again, since according to Fig. 3 the synchronization itself 

decreases once the solutions are frmly on the adiabatic curve (10). 

Fig. 7 shows the information length associated with the saturation results in Fig. 4a. 

Unlike the probabilities, which are necessarily bounded to remain below 100%, L can and 
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values in Fig. 4b, indicating the transition in L as a function of A once the resonance is 

essentially fully saturated. 

does continue to increase even after the probabilities have saturated. We see though that 

the slope of the L versus A curves decreases signifcantly, right around the point where 

the probabilities reach 99%. This again illustrates the intuitive interpretation of L as a 

measure of the information changes in the PDF. Before the probabilities have saturated, L 

is increasing both due to the increasing (A/2) sin(!t) motion of the peaks, and due to the 

increasing degree of synchronization, whereas after the synchronization is complete it is only 

the peaks’ motion that can continue to increase, and hence cause L to increase. 

V. ESCAPE TIMES 

Another tool that has been used in the past [6, 43–48] to study stochastic resonance is 

to investigate the escape of particles from a single well. That is, suppose we solve the same 

Fokker-Planck equation (7) as before, but now only on the interval x ∈ [0, 3]. The boundary 

condition at x = 0 is p = 0, meaning that any particles that reach x = 0 are simply lost 
R 

to the system. And indeed, the ‘total probability’ integral, p(x, t) dx, no longer remains 

constant in this formulation, but instead decreases in time, corresponding to the continual 

loss of particles at x = 0. The question then is, can we analyze and interpret this loss of 
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particles in a similar way to the previous results, and in particular can we see the signature 

of resonance here as well? 

Starting from some suitable peak within the x ≈ 1 well, integrating for just a few periods 

yields a solution that is again periodic in time, but now also decreases by a constant factor 

each period. That is, the solutions are of the form p(x, t+T ) = c p(x, t), where c < 1 is some 

factor that depends on the parameters D, ! and A, but is the same for each subsequent 

period once this behaviour has emerged. Also, because there is now only one well, the 

previous symmetrization procedure does not need to be applied, and this behaviour still 

arises after just a few periods. 

Note also that this initialization procedure is deliberately chosen to erase all knowledge 

of the precise initial condition that was originally used. In contrast, it can also be very 

interesting to study escape times for specifc initial conditions at particular times in the 

cycle, e.g. [49–53], but such results are less directly comparable to the results in Sections 3 

and 4, where the initial conditions also do not matter. 

Fig. 8 shows this reduction by a constant factor each period, starting from such initialized 
R 

solutions (rescaled so that they start out with p dx = 1 again). The top row shows 
R 

1

G(t) = 
0 p(x, t) dx, that is, a measure of the number of particles left. The bottom row 

− dshows W (t) = 
dt G(t), corresponding to the rate at which particles are lost. For all choices 

of D and A, the pattern is as asserted above, with both G and W decreasing by the same 

factor c in each successive period. We see furthermore that increasing either D or A yields 

a smaller c; that is, the particles are lost more quickly. This is hardly surprising; greater 

noise or greater periodic modulation should indeed both promote faster loss of particles. 

The other interesting feature to note in Fig. 8 is that the losses W (t) occur in bursts, 

strongly concentrated in the times between t = T/2 and T , mod(T ), with far less lost in the 

other half of the cycle. This is again as expected; depending on whether the well is shallower 

or deeper, particles are more or less likely to be lost. To quantify this e�ect, it is convenient 

to split the overall reduction factor into two separate factors as c = R1 R2, with R1,2 defned 

by 
G(T/2) G(T )

R1 ≡ , R2 ≡ , (12) 
G(0) G(T/2)

with all times mod(T ). The bursting behaviour then means that R2 < R1, and ideally we 

would like R1 to remain as close to 1 as possible, while simultaneously having R2 ≪ 1. This 

would be the closest equivalent to the previous synchronization in Fig. 3, since it would 
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FIG. 8: The top row shows G(t) = 
0 
1 

p(x, t) dx, and the bottom row the corresponding 

W (t) = − d G(t). All three solutions are for ! = 10−4, (a) D = 0.023, (b) D = 0.025, (c) 
dt 

D = 0.027, and A = 0.02, 0.04 and 0.08 as indicated by the numbers beside individual 

curves. 

mean that almost nothing is lost during the favourable part of the cycle, but then almost 

everything is lost during the unfavourable part. 

Fig. 9 shows how the reduction factors R1 and R2 vary with D, ! and A. We see again 

the previous result that increasing D increases the losses, that is, yields smaller R1 and R2. 

Increasing A decreases R2, but increases R1. That is, it increases the contrast between the 

favourable versus unfavourable parts of the cycle, which is indeed exactly what increasing 

A corresponds to. Finally, regarding the variation with !, we note that the transition point 

where R1,2 still close to 1 gives way to R1,2 ≪ 1 is broadly consistent with the previous Dres 

relationship (9) between ! and D. However, unlike Figs. 3 or 6, where there were defnite 

maxima in the curves that allowed an unambiguous defnition of the ‘resonance’ point, here 

there is no clear identifcation of what would be the ‘best’ noise level. We conclude therefore 

that escape time calculations such as these are consistent with the basic stochastic resonance 

phenomenon, but that the calculations of Sections 3 and 4 allow a more precise defnition. 
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VI. CONCLUSION 

We investigated the phenomenon of stochastic resonance by direct numerical solutions 

of the governing Fokker-Planck equation, and found that it can be precisely quantifed by 

considering the probability to be in one well or the other at the appropriate parts of the cycle. 

We showed that if the noise level D is taken as the resonant value Dres for a given frequency 

!, then in the limit ! → 0, the modulation amplitude A can also become arbitrarily small 

while still achieving essentially 100% synchronization of the switching with the modulation. 

We furthermore showed that information length L is a useful diagnostic tool for this problem, 

with a very clear signature of the resonance emerging. 

In contrast, comparisons of di�erent PDFs that do not involve their entire evolution 

histories, such as Kullback-Leibler divergence [40], would probably not be useful for problems 

such as this, where the PDFs evolve periodically in time. That is, if a diagnostic tool that 

simply compares two PDFs at two di�erent times is applied to times t and t + T , where 

the PDFs are the same, the results cannot say anything about the actual evolution over the 

period T . See also [38], who suggest that information length is more useful than Kullback-

Leibler divergence even in systems that are not periodic in time. 
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Finally, future extensions of this work include stochastic resonance in two (or more) 

coupled variables [54–59], periodic modulations in the noise levels rather than the potential 

V [60–65], and molecular motors, where the potential V is periodic in space as well as time 

[66–68]. 
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