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Developing a computational method for recognizing preterm delivery is important for timely 

diagnosis and treatment of preterm delivery. The main aim of this study was to evaluate 

electrohysterogram (EHG) signals recorded at different gestational weeks for recognizing the 

preterm delivery using random forest (RF). EHG signals from 300 pregnant women were 

divided into two groups depending on when the signals were recorded: i) preterm and term 

delivery with EHG recorded before the 26th week of gestation (denoted by PE and TE group), 

and ii) preterm and term delivery with EHG recorded during or after the 26th week of 

gestation (denoted by PL and TL group). 31 linear features and nonlinear features were 

derived from each EHG signal, and then compared comprehensively within PE and TE group, 

and PL and TL group. After employing the adaptive synthetic sampling approach and six-fold 

cross-validation, the accuracy (ACC), sensitivity, specificity and area under the curve (AUC) 

were applied to evaluate RF classification. For PL and TL group, RF achieved the ACC of 0.93, 

sensitivity of 0.89, specificity of 0.97, and AUC of 0.80. Similarly, their corresponding values 

* Corresponding authors. 
E-mail addresses: s201715037@emails.bjut.edu.cn (J. Peng), haodongmei@bjut.edu.cn (D. Hao), yanglin@bjut.edu.cn (L. Yang), 

dumengqing@emails.bjut.edu.cn (M. Du), songxiaoxiao@emails.bjut.edu.cn (X. Song), drjhq91@sohu.com (H. Jiang), 
terryzhang1996@163.com (Y. Zhang), dingchang.zheng@coventry.ac.uk (D. Zheng). 
1 Co-first author. 
Abbreviations: EHG, electrohysterogram; RF, random forest; PE, preterm delivery before the 26th week of gestation; PL, preterm delivery 

after the 26th week of gestation; TE, term delivery before the 26th week of gestation; TL, term delivery after the 26th week of gestation; IUPC, 
intrauterine pressure catheter; TOCO, tocodynamometer; K-NN, K-nearest; LDA, linear discriminant analysis; QDA, quadratic discrimi-
nant analysis; SVM, support vector machine; ANN, artificial neural network; DT, decision tree; TPEHG, term-preterm electrohysterogram; 
RMS, root mean square; tz, zero-crossing; PF, peak frequency; MDF, median frequency; MNF, mean frequency; SE, energy values in signal; 
SM, maximum values in signal; SS, singular values in signal; SV, variance values in signal; AR, auto-regressive model; Tr, time reversibility; 
CorrDim, correlation dimension; SampEn, sample entropy; LE, Lyapunov exponent; SD, standard deviation; ADASYN, adaptive synthetic 
sampling approach; ACC, accuracy; AUC, the area under the curve; ROC, the receiver operating characteristic curve. 
                  

                

https://doi.org/10.1016/j.bbe.2019.12.003 
0208-5216/© 2019 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and Biomedical Engineering of 
the Polish Academy of Sciences. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbe.2019.12.003&domain=pdf
https://doi.org/10.1016/j.bbe.2019.12.003
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:<ce:e-address id=
mailto:ce:e-address id=
http://www.sciencedirect.com/science/journal/02085216
www.elsevier.com/locate/bbe
https://doi.org/10.1016/j.bbe.2019.12.003
http://creativecommons.org/licenses/by/4.0/


                 

           

              

             

       

                                                 2 b i o c y b e rn e t i c s an d b i om e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 – 1 1 

were 0.92, 0.88, 0.96 and 0.88 for PE and TE group, indicating that RF could be used to 

recognize preterm delivery effectively with EHG signals recorded before the 26th week of 

gestation. 

© 2019 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Bio-

cybernetics and Biomedical Engineering of the Polish Academy of Sciences. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
 

        

         

       

          

     

     

     

        

      

         

         

      

      

         

         

          

          

           

     

          

        

       

         

         

          

        

        

        

      

        

       

       

       

       

      

       

         

      

        

       

        

       

        

       

       

     

     

       

1. Introduction 

Preterm delivery, defined as birth before 37 completed weeks 

of gestation, is a leading cause of neonatal morbidity and 

mortality, and has long-term adverse consequences for fetal 
health [1]. Accurate diagnosis of preterm delivery is one of the 

most significant problems faced by obstetricians. 
The existing measurement techniques for diagnosing 

preterm delivery include tocodynamometer (TOCO), ultra-
sound and fetal fibronectin. However, they are subjective, or 
suffer from high measurement variability and inaccurate 

diagnosis or prediction of preterm delivery [2]. TOCO is often 

influenced by sensor position, the tightness of binding by the 

examiner and maternal movement. Short cervical length 

measured by transvaginal ultrasonography has been associ-
ated with an increased risk of preterm delivery. But its 

accuracy for prediction of preterm delivery is not satisfied due 

to the high false positive rate. Fetal fibronectin test, which is 

performed like a pap smear, has not been shown to accurately 

predict preterm delivery in women who are at low risk or who 

have no obvious symptoms. Comparatively, electrohystero-
gram (EHG) which reflects the sum of the electrical activities of 
the uterine cells could be recorded noninvasively from the 

abdominal surface. The parameters of EHG signals might 
provide an effective tool for the diagnosis and prediction of 
preterm delivery [3]. Therefore, using EHG signal is a reliable 

method at evaluating uterine activity and it has been used in 

analyzing uterine activity of non-pregnant women as well [4]. 
Many features have been extracted from EHG signals to 

recognize preterm delivery, which can be grouped into three 

classes: linear features, nonlinear features and features 

related to EHG propagation [5]. Time, frequency and time-
frequency features, such as root mean square, median 

frequency, peak frequency and energy distribution have been 

used to characterize EHG signals and distinguish between 

term and preterm delivery [5–7]. Besides, nonlinear features, 
including correlation dimension (CorrDim) [8], sample entropy 

(SampEn) [9], Lyapunov exponent (LE) [10], and multivariate 

multiscale fuzzy entropy [11] have been applied to describe the 

nonlinear interactions between billions of myometrium cells 

[12,13]. In recent years, the propagation velocity, direction of 
the EHG signals, intrinsic mode functions from empirical 
model decomposition (EMD) [14] have been proposed as the 

potential discriminators to predict the progress of pregnancy. 
However, selection of EHG features was somehow arbitrary in 

these published studies. A comprehensive analysis of these 

feature differences between preterm and term delivery would 

therefore be clinically and physiologically useful. 
Machine-learning algorithms have been investigated to 

recognize the preterm delivery using EHG signals [15]. 
      

        

      

       

       

        

          

        

      

         

       

       

      

       

        

       

        

           

        

         

          

         

        

          

      

           

      

        

         

   

         

          

        

         

       

           

        

         

        

       

           

  

          

        

       

Conventional classifiers include the K-nearest neighbors (K-
NN), linear and quadratic discriminant analysis (LDA and QDA, 
respectively), support vector machine (SVM) [6], artificial 
neural network (ANN) classifiers [8,16,17], decision tree (DT) 
[18], penalized logistic regression, rule-based classifier [19] and 

stacked sparse autoencoder (SSAE) [20]. However, the K value 

of the K-NN classifier is set subjectively, LDA and QDA are 

affected by sample distribution, ANN and SSAE have high 

computational complexity [16], and SVM requires additional 
steps to reduce the dimension of the extracted features [21]. 
The published studies have reported that ANN, SSAE, 
Adaboost, DT, SVM, logistic and polynomial classifier have 

achieved better performance in recognizing preterm delivery. 
However, these classifiers were evaluated on different data-
base using different EHG features, and therefore unable to 

determine the most significant features for predicting preterm 

delivery. Random forest (RF) is an ensemble learning method 

for classification. DT is the base learner in RF, which has been 

employed in data mining and feature selection [22]. Classifi-
cation accuracy could be improved by growing an ensemble of 
trees and letting them vote for the most popular class. Ren 

et al. reported that RF with simpler structure achieved the 

same accuracy as ANN for classifying preterm delivery with 

EHG signals [17]. Idowu et al. [19] also indicated that RF 

performed the best and robust learning ability. 
The main aim of this study was to evaluate the EHG signals 

recorded at different gestational weeks for recognizing 

preterm and term delivery using RF. Meanwhile, the impor-
tance of EHG features for predicting preterm delivery would be 

ranked. 

2. Materials and methods 

The overview flowchart of the proposed method in this study 

is shown in Fig. 1. Briefly, EHG signals from 300 pregnant 
women were divided into two groups depending on whether 
the EHG signals were recorded before or after 26th week of 
gestation. Thirty-one linear and nonlinear features were then 

derived from each EHG signal and fed to a RF classifier for 
automatic identification of term and preterm delivery, and the 

importance of features was ranked by DTs. The performance of 
RF for recognizing preterm delivery was then evaluated and 

compared between EHG signals recorded at different gesta-
tional weeks. The details of each step are presented in Fig. 1. 

2.1. EHG database 

EHG signals in our study were from the open access term-
preterm EHG (TPEHG) database developed in 2008 at the 

Faculty of Computer and Information Science, University of 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1 – Flow chart of the proposed method. 
Note: PE: preterm delivery with EHG recorded before the 26th gestation week, TE: term delivery with EHG recorded before the 

26th gestation week, PL: preterm delivery with EHG recorded after the 26th gestation week, TL: term delivery with EHG 

recorded after the 26th gestation week, ADASYN: adaptive synthetic sampling approach, AUC: the area under the curve of 
receiver operating characteristic. 
        

        

        

       

       

         

         

         

       

         

      

         

         

         

         

           

         

         

         

             

          

  

Ljubljana, Ljubljana [23]. Three channels of EHG signals were 

recorded from the abdominal surface using four electrodes, as 

shown in Fig. 2. Three-channel EHG signals were measured 

between the topmost electrodes (channel 1: E2-E1), the 

leftmost electrodes (channel 2: E2-E3), the lower electrodes 

(channel 3: E4-E3) separately. The recording time was 30 min 

with the sampling frequency of 20 Hz. A previously published 

research has confirmed that the EHG from channel 3 was 

regarded as the most distinguishable signals for classifying 

preterm and term delivery [17]. Therefore, as a pilot study, 
channel 3 was selected for further analysis. 

EHG signals from 300 pregnant women (262 cases of term 

delivery, and 38 cases of preterm delivery) were divided into 

two groups depending on when the signals were recorded: i) 
preterm and term delivery with EHG recorded before the 26th 

week of gestation (denoted by PE and TE group, 19 and 143 

cases respectively), and ii) preterm and term delivery with EHG 

recorded during or after the 26th week of gestation (denoted by 

PL and TL group, 19 and 119 cases respectively).Table1 shows 

the number of EHG recordings in PE and TE group and in PL and 

TL group. Fig. 3 shows four typical examples of EHG segments 

from each group. 
   

        

           

   �       

        

    

         

          

        

          

  

   

       

      

  

    

       

      

2.2. EHG signal preprocessing 

The main frequency component of EHG signal ranges between 

0 and 5 Hz [24]. The EHG signals preprocessed by the band-
pass filter of 0.08 4 Hz were selected from the TPEHG 

database, in which the interferences from fetal and maternal 
electrocardiogram, respiratory movement, motion artifacts 

and 50/60 Hz power noise had been removed [25]. Further-
more, the first and last 5 min of EHG segments were 

abandoned to avoid the transient effects due to filtering 

process [18], and the remaining 20 min EHG signals were used 

for further analysis. 

2.3. EHG features extraction 

Thirty-one features were extracted with time domain, fre-
quency domain, time-frequency domain and nonlinear anal-
ysis as follows. 

2.3.1. Root mean square (RMS) 
RMS is a conventional method for investigating signal 
amplitude changes. Given a time series of 
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Fig. 2 – The placement of the electrodes on the abdomen. 
Channel 1=E2-E1, Channel 2=E2-E3, Channel 3= E4-E3 
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x ið Þ; i ¼ 0; . . . ; N 1, N is the signal length, here N = 600. RMS 

was calculated as: 

rffiffiffiffi 
1

RMS ¼ (1)
N 

2.3.2. Autocorrelation zero-crossing(tRxx) 
Autocorrelation zero-crossing, tRxx; is defined as the first zero-
crossing starting at the peak in the autocorrelation Rxx (t) of the 

signal xðtÞ [26]. Considering the data distribution, tRxx was 

calculated as: 

RxxðtRxxÞ ¼ 0 

N 

Rxx t sgnð ð Þx i þ tÞÞ 
X 

ð Þ ¼ x i ð (2) 
i¼1 

1; x > 0ð Þ ¼sgn x
0; x < 0 

where x ið Þ is the amplitude of EHG signal at sampling point i. 
              

  

  

      

      

–Table 1 The number of EHG recordings in PE and TE, PL and 

Recording time 

<37 weeks (

< 26th week of gestation 

≥ 26th week of gestation 

Preterm Early (
Preterm Late (P
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2.3.3. Peak frequency (PF) 
PF corresponds to the largest amplitude peak of the EHG signal 
power spectrum p which was calculated using the fast discrete 

Fourier transform of each signal. PF was calculated as follows: 

fs N 1f ¼ argaf; maxi¼0 P ið Þ (3)max N 

where f = 20 Hz is the sampling frequency. s 

2.3.4. Median frequency (MDF) 
MDF is defined as the frequency above where the sums of the 

parts above and below the frequency-power spectrum P are 

the same. MDF was calculated follows: 

i i¼N 1 X Xf s ; P ið Þ ¼ PðiÞ (4)f med ¼ i 
N 

i¼0 i 

where i is the i-th line of the power spectrum. 

2.3.5. Mean frequency (MNF) 
MNF is the centroid frequency of the power spectrum and is 

defined as follows: 

I X 
f iPi 

MNF ¼ i¼1 (5)
I X 
Pi 

i¼1 

where pi is the i -th line of the power spectrum; f i is the 

frequency variable; and I is the highest harmonic (I ¼ N 
2Þ. N is 

the signal length, here N = 600. 

2.3.6. Features extracted from wavelet decomposition 
Features from the wavelet decomposition mainly included the 

maximum, energy, singular and variance values. Each EHG 

recording was decomposed into detail coefficients with symlet 
5 [26] as shown in Fig. 4. The energy SE2; SE3; SE4; SE5, the 

maximum SM2; SM3; SM4; SM5, the singular SS2; SS3; SS4; SS5 

and the variance SV2; SV3; SV4; SV5 of the wavelet coefficients 

were then calculated at the detail level of: 3,4,5,6 (named W2, 
W3, W4 and W5 respectively). 

2.3.7. Features extracted from autoregressive (AR) model 
AR is a time series model that uses observations from previous 

time steps as input to a regression equation to predict the 

value at the next time step. 

p X 
xm ¼ aixm i þ em (6) 

i¼1 
    

 

    

         

         

TL groups from TPEHG database. 

Delivery time 

Preterm) ≥ 37 weeks (term) 

PE, n = 19) 
L, n = 19) 

Term Early (TE, n = 143) 
Term Late (TL, n = 119) 
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Fig. 3 – Examples of EHG segments (1.5 min) from: (a) PE (recorded before the 26th week of gestation, with preterm delivery); (b) 
TE (recorded before the 26th week of gestation, with term delivery); (c) PL (recorded during or after the 26th week of gestation, 

with preterm delivery); (d) TL (recorded during or after the 26th week of gestation, with term delivery). 
              

         

          

        

         

          

      

where p is the order of AR model, here p = 5. a1, a2, a3, a4, a5 and 

residual e were the model features. em is the white noise. 

2.3.7.1. Time reversibility (Tr). Tr was used to describe if the 

probabilistic properties of a time series are changeable with 

respect to time reversal. A stochastic process is defined as 

time-reversible if it is invariant under the reversal of the time 

scale [33]. Tr was calculated as follows: 
       Fig. 4 – Wavelet decomposition of EHG signal. 
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3M X1
TrðtÞ ¼ ð Þ ðxm xm t Þ (7)

M t 
m¼tþ1 

Where x is a time series with M samples, M = 24,000(20 Hz☓60 

s/min☓20 min)and t is the time delay, here t = 1. 

2.3.8. Lyapunov exponent (LE) 
LE characterizes the rate of separation between adjacent 
tracks in the phase space. l is a measure of how fast a 

trajectory converges from a given point into some other 
trajectory: 

1 di
l ¼ lim af; lnaf; (8)

i !1 i d0 

where d0 represents the Euclidean distance between two 

states of the system at some arbitrary time i. 

2.3.9. Sample entropy (SampEn) 
SampEn measures the irregularity of a time series of finite 

length. The more unpredictable the time series is, the higher 
its SampEn. For a given embedding dimension m, tolerance r 
and number of data points M, SampEn ( m, r, M) is the negative 

logarithm of the probability that if two sets of simultaneous 

data points of length m have distance< r then the two sets of 
simultaneous data points of length m +1 also have distance< r. 
We had the EHG time-series of length M = fx1;x2;. . . ; xMg with a 

constant time interval t. The number of vector pairs in 

template vectors of length m and m +1 were counted having d 

[Xm(i), Xm(j)] < r and denoted it by B and A respectively. The 

sample entropy was defined as: 



                                                 6 b i o c y b e rn e t i c s an d b i om e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 – 1 1 
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A
SampEn ¼ logaf; (9)

B 

A = number of template vector pairs having d[Xm+1(i), 
Xm+1(j)] < r of length m +1 

B = number of template vector pairs having d[Xm(i), Xm(j)] < 

r of length m 

m varied from 1 to 2, and r from 0.1SD to 0.25SD (SD is the 

standard deviation of a time series ). In this study, m = 2, 
r = 0.1SD, which has got promising result in other result [26]. 

2.3.10. Correlation dimension (CorrDim) 
CorrDim( Dcorr )is a measure of the dimensionality of the space 

occupied by a set of random points. For a time series of M 

points: { y ið Þ:1≤ i ≤ M }, the formula are as follows: 

logaf;ðC tð ÞÞ 
Dcorr ¼ lim af; (10) 

t ! 0 logaf;ðtÞ 

MC MC X X1
C t lim uðt j ð Þ (11)ð Þ ¼ af; y i yð jÞjÞ2MC i¼1 j¼iþ1 

MC !1 

where u½: is the Heaviside function, t is the limit for the 

distance between two points on the system trajectory, M is 

the number of the trajectory points. y is the EHG time series. 
MC = 23,999(M-1, M = 24,000). 

2.4. Comparison of EHG features between term and 
preterm delivery 

The mean SD of the derived EHG features were calculated 

across all the cases in the PE and TE group, and PL and TL 
        

            

         

    

Fig. 5 – The schematic diagram of RF classifier. 
Note: The maximum number of features in each subset is 29, the 

RF classifiers were developed, respectively, one of which using 27
from PL and TL group. 
      

        

          

          

  

    

     

          

        

        

         

       

         

        

           

            

             

 

  

         

        

            

            

         

         

           

          

          

       

          

group. Non-parametric t-test (Mann–Whitney U test) was 

performed using SPSS 22 (IBM Corporation, New York, United 

States) to assess the difference of EHG features between PE and 

TE, and between PL and TL. A p-value below 0.05 was 

considered statistically significant. 

2.5. Term and preterm classification 

2.5.1. Adaptive synthetic sampling approach (ADASYN) 
TPEHG dataset is not balanced in term of the sample size 

between term delivery (majority class, 262 cases) and preterm 

deliveries (minority class, 38 cases). Classifiers are often more 

sensitive to the majority class and less sensitive to the 

minority class, leading to biased classification [27]. ADASYN 

was employed in this study to oversample the minority class 

(preterm) to balance the term and preterm samples [28]. 
Therefore, the sample size of PE increased from 19 to 135 cases, 
and PL increased from 19 to 111 cases. In total, there were 278 

cases in PE and TE group, and 230 cases in PL and TL group 

(Fig. 5). 

2.5.2. Random forest 
31 features/case☓278 cases from PE and TE group, and 31 

features/case☓230 cases from PL and TL group were respec-
tively divided into subset 1 to n and entered to the base learner 
DT (tree-1, tree-2, . . ., tree-m) randomly. The value of n was 

determined by the number of features. The number of features 

in each subset was chosen randomly but not exceeding the 

preset maximum. The value of m is the number of base learner 
DT. The depth d determines the maximum layer each tree can 

reach. 
A DT, which is applied to select features, is formed by 

randomly selected subset of features. The feature impor-
tance is ranked based on its influence on the DT prediction 
               

            

number of DT m = 89 and the depth of each tree d = 20. Two 

8 cases from PE and TE group and the other using 230 cases 



                 

    

 

   

    

   

    

   

� �
  

 � �
  

 � �
  

 � �
  

    

�   

�   

�       

    

� �
  

� �
  

� �
  

   

   

   

   

�    

� � �  � � �  � � �  � � �
�  �  �  � �
�  �   

� �  � �  � � �  � � �
  

�
   

       

    

  

   

      

      

                                                  

–

7 b i o c y b e r n e t i c s and b i om e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 – 1 1 

Table 2 EHG features from PE and TE, PL and TL groups (median (25 %, 75 %)). 

Features PE TE PL TL 

Time-related 

RMS[mV]x10 1.25(0.98,2.14)a* 0.79(0.56,1.11) 0.75(0.57,1.22) 0.88(0.67,1.09) 
tRxx[s] 36.92(23.15,56.21) 31.42(21.23,58.76) 17.74(9.90,28.62) 28.69(13.72,48.54) 
Frequency-
related 

PF[Hz] 0.17(0.14,0.19)a* 0.15(0.13,0.18) 0.16(0.13,0.21) 0.17(0.15,0.19) 
MDF[Hz] 0.19(0.17,0.22) 0.19(0.16,0.23) 0.19(0.16,0.24) 0.21(0.18,0.22) 
MNF[Hz] 0.30(0.27,0.41) 0.38(0.30,0.50)a* 0.34(0.28,0.47) 0.35(0.31,0.46) 
Wavelet-decomposition 

5SV2 10 0.40(0.20,0.90)a* 0.30(0.20,0.50) 0.20(0.10,0.40) 0.30(0.20,0.60) 
4SV3 10 0.21(0.11,0.37)a* 0.09(0.04,0.19) 0.08(0.04,0.23) 0.14(0.06,0.28) 
4SV4 10 0.57(0.30,1.05)a* 0.21(0.10,0.45) 0.20(0.10,0.60) 0.35(0.16,0.68) 
4SV5 10 0.67(0.33,1.43)a* 0.24(0.12,0.46) 0.25(0.15,0.59) 0.40(0.21,0.83) 

SE2 35.27(25.12,51.24) 28.70(22.90,38.05) 24.96(19.78,35.17) 31.50(22.00,42.10) 
SE3 102 0.80(0.53,1.04)a* 0.52(0.34,0.76) 0.47(0.33,0.80) 0.66(0.40,0.88) 

Linear features SE4 102 1.28(0.98,1.67)a* 0.81(0.57,1.16) 0.68(0.55,1.33) 0.94(0.69,1.35) 
SE5 102 1.43(1.03, 2.00)a* 0.87(0.59, 1.21) 0.81(0.66, 1.37) 1.06(0.77, 1.47) 
SM2 0.02(0.01,0.03) 0.01(0.01,0.02) 0.02(0.01,0.02) 0.01(0.01,0.02) 

1SM3 10 0.30(0.20,0.50)a* 0.20(0.10,0.30) 0.20(0.20,0.30) 0.20(0.10,0.40) 
5SM4 10 0.40(0.30,0.70)a* 0.20(0.20,0.40) 0.30(0.20,0.50) 0.30(0.20,0.50) 
5SM5 10 0.50(0.30,0.60)a* 0.20(0.20,0.40) 0.30(0.20,0.40) 0.30(0.20,0.50) 

SS2 0.32(0.22,0.47)a* 0.25(0.20,0.36) 0.24(0.18,0.32) 0.29(0.20,0.38) 
SS3 0.72(0.52,0.94)a* 0.46(0.31,0.68) 0.44(0.33,0.74) 0.58(0.38,0.82) 
SS4 1.16(0.84,1.59)a* 0.72(0.50,1.04) 0.69(0.49,1.20) 0.92(0.62,1.27) 
SS5 1.27(0.89,1.85)a* 0.77(0.53,1.05) 0.78(0.60,1.19) 0.98(0.71,1.41) 
AR-model 
a1 10 0.21(0.20,0.33)a* 0.20(0.18,0.24) 0.20(0.18,0.21) 0.20(0.18,0.22) 
a2 1.50( 4.82, 1.43) 1.34( 2.64, 1.07) 1.34( 1.50, 0.99) 1.29( 1.99, 1.04) 
a3 0.19( 0.06,4.42) 0.06( 0.10,1.52) 0.01( 0.21,0.19) 0.01( 0.17,0.77) 
a4 0.59( 2.40,0.69) 0.55( 0.31,0.65) 0.62(0.42,0.68) 0.53(0.27,0.68) 
a5 0.21( 0.39,0.57) 0.25( 0.33,0.11) 0.29( 0.39, 0.13) 0.27( 0.35, 0.05) 

3e x 10 0.71(0.33,0.91) 0.80(0.48,0.90) 0.80(0.60,0.90) 0.80(0.60,0.90) 
Non-linear features Tr x 10S9 0.53(0.41,0.66) 0.55(0.41,0.62) 0.56(0.40,0.58) 0.54(0.40,0.70) 

LE 0.20(0.17,0.33) 0.28(0.20,0.43) 0.20(0.09,0.34) 0.25(0.16,0.36) 
SampEn 0.09(0.06,0.11) 1.65(1.48,1.79)a* 1.48(1.24,1.60)b* 0.76(0.65,0.88) 
CorrDim 0.26(0.17,0.32)a* 0.16(0.09,0.22) 0.15(0.11,0.17) 0.17(0.10,0.21) 

a* p < 0.05 between PE and TE. 
b* p < 0.05 between PL and TL. 
        

           

 

  

       

       

         

              

       

           

         

           

 

        

        

        

             

       

         

       

results indicated by out-of-bag (OOB) index. With the ranked 

features, all DTs in the forest would vote for the most popular 
class [22]. 

2.5.3. Classification evaluation 
Six-fold cross validation method was applied to evaluate 

the RF performance for classifying preterm and term 

delivery, independently for the PE and TE group and for 

the PL and TL group. The PE and TE group, and the PL and TL 

group were randomly partitioned into six subsets respec-
tively, five of which were employed to train the RF, the other 

was used to test the RF. The cross-validation process was 

repeated six times, with each of the six subsets used once as 

test data. 
The accuracy (ACC), sensitivity, specificity [29] from the six-

fold cross validation were averaged to evaluate the perfor-
mance of RF classification results, independently for the PE 

and TE group, and for the PL and TL group. The area under the 

curve (AUC) from the receiver operating characteristic (ROC) 
curve was also calculated and compared between the PE and 

TE group, and the PL and TL group. 
 

        

  

             

            

          

         

             

           

         

       

    

  

           

         

         

            

3. Results 

3.1. Comparison of EHG features between groups of term 
and preterm delivery 

The 31 EHG features from PE and TE group, PL and TL group are 

summarized in Table 2. PF, SV2; SV3; SV4; SV5; SE3; SE4; SE5; SM3; 
SM4; SM5; SS2; SS3; SS4; SS5 of wavelet decomposition, a1 of AR 

model and CorrDim from PE were significantly larger than those 

of TE (all p < 0.05), while RMS, MNF and SampEn from PE were 

significantly smaller than TE (all p < 0.05). SampEn of PL was 

significantly larger than TL (p < 0.05). No other significant 
difference was found. The features with significant difference 

are shown in Fig. 6. 

3.2. Feature importance 

Table 3 shows the 15 key features which were identified as the 

best features for recognizing preterm delivery both in PE and 

TE group, and PL and TL group. The feature importance 

accounted for less than 0.1 % were a2, SM3, SV3, SV4, SS3 in PE 
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Fig. 6 – EHG features from PE and TE, PL and TL groups with significant difference in median (p < 0.05). 
         

          

        

           

         

  

    

          

            

        

             

            

           

         

         

         

      

      

     

and TE group, and a2, a3, SE5, SM5, SV4, SV5 in PL and TL group. It 
was noticed that SampEn, MDF, MNF, SE4, SM2 and SM4 played 

important roles on the classification of preterm and term 

delivery in both PE and TE, PL and TL groups. In particular, 
SampEn accounted for nearly 70 % of the importance for 
recognizing preterm delivery. 

3.3. Evaluation of RF classifier 

ROC curves for classifying preterm delivery in PE and TE group, 
and PL and TL group are shown in Fig. 7. There was no 

significant difference between the two AUCs from the ROC 

curves (p = 0.70). As shown in Table 4, RF achieved the ACC of 
0.92, sensitivity of 0.88, specificity of 0.96 and AUC of 0.88 for PE 

and TE group, and ACC of 0.93, sensitivity of 0.89, specificity of 
0.97, and AUC of 0.80 for PL and TL group. 

Table 4 summarizes the performance of RF model in this 

study in terms of ACC, sensitivity, specificity and AUC, in 

comparison with the previously published papers using 

TPEHG database [8,9,11,16–19,21,28]. All the studies achieved 

over 80 % ACC and sensitivity. 
       

          

        

    

    

    

   

   

   

   

   

   

   

   

   

   

   

   

–Table 3 Feature importance for recognizing preterm 
delivery, separately for PE and TE, and PL and TL groups. 

Features PE and TE group PL and TL group 

SampEn 66.67 % 69.53 % 

MDF 9.34 % 1.32 % 

MNF 3.67 % 7.53 % 

a2 <0.1 % <0.1 % 

a3 3.67 % <0.1 % 

SE4 1.13 % 0.43 % 

SE5 3.67 % <0.1 % 

SM2 2.26 % 4.73 % 

SM3 <0.1 % 6.17 % 

SM4 3.67 % 4.35 % 

SM5 2.26 % <0.1 % 

SV3 <0.1 % 5.00 % 

SV4 <0.1 % <0.1 % 

SV5 3.26 % <0.1 % 

SS3 <0.1 % 0.44 % 
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4. Discussion 

In this study, RF classifiers were developed using EHG signals 

recorded before and after the 26th gestational week to 

recognize the preterm delivery. Among the extracted EHG 

features, SampEn, MDF, MNF, SE4, SM2 and SM4 were more 

important for classification of preterm and term delivery 

whether early or later recorded. With RF classifier, the 

classification results in PE and TE group (ACC of 0.92, SE of 
0.88, SP of 0.96, AUC of 0.88) were similar to the results in PL 

and TL group (ACC of 0.93, SE of 0.89, SP of 0.97, AUC of 0.80). 
Compared with other studies using TPEHG database, the 

current study extracted EHG features including 27 linear and 4 

nonlinear features more comprehensively. RF classifier which 

did not require computational complexity, performed a 

promising result without additional step of pre-selected 

features in a wider band pass filter of 0.08 4 Hz. The feature 

importance was ranked by RF based on classification accuracy. 
After the importance of different features was ranked by DT, 
SampEn was found to be the most important feature for 
recognizing preterm delivery. The previous studies concluded 

that nonlinear methods such as sample entropy [9,20], 
approximate entropy [8,20] and Shannon entropy [17] can 
             Fig. 7 – ROC curve for classification of PE and TE, PL and TL. 
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Table 4 Evaluation of RF classifier and summary of research work on prediction of preterm delivery using the same TPEHG 
database. 

Author Classifier Data Accuracy Sensitivity Specificity AUC Chosen signals Feature (number) 

Current 
study 

Naeem 

et al. [8] 

RF 

Trainable 

cascade-
forward 

network 

PE and TE 

PL and TL 

Preterm 

and term 

0.92 

0.93 

0.85 

0.88 

0.89 

0.96 

0.97 

0.88 

0.80 

0.08 4 Hz, the 

remaining 20 min 

length of signal 
0.3 3 Hz, the 

whole 30 min 

length of signal 

RMS, PF, SampEn, 
CorrDim, etc (31) 

RMS, ZC, PF, 
approximate 

entropy,etc (11) 

Smrdel 
et al. [9] 

Adaptive 

autoregressive 

PE and TE 

PL and TL 

0.97 

1.00 

1.00 

1.00 

0.95 

1.00 

0.34 1 Hz, 
0.3 4 Hz, the 

whole 30 min 

length of 
signal 

SampEn, MDF (2) 

Ahmed 

et al. [11] 
MMFE and 

MMSE 

algorithms 

PE and TE 0.95 0.92 0.98 0.99 0.3 3 Hz, the 

remaining 27 min 

length of signal 

SampEn (1) 

Fergus 

et al. [16] 
Advanced 

artificial neural 
network 

Preterm 

and term 

0.88 0.91 0.84 0.94 0.34 1 Hz, the 

whole 30 min 

length of signal 

RMS, PF, MDF, 
maximum fractal 
length, etc (10) 

Ren 

et al. [17] 
Adaboost Preterm 

and term 

0.99 0.3 3 Hz, the 

whole 30 min 

length of signal 

RMS, SampEn, 
Shannon entropy 

ratios (5) 

Fergus 

et al. [18] 

Linear 
discriminant 
classifier 
Polynomial 
classifier 
Logistic 

classifier 
Decision tree 

Preterm 

and term 

0.93 

0.93 

0.93 

0.93 

0.97 

0.97 

0.97 

0.97 

0.90 

0.90 

0.90 

0.90 

0.97 

0.95 

0.94 

0.93 

0.34 1 Hz, the 

whole 30 min 

length of signal 

RMS, PF, MDF, 
SampEn (4) 

Idowu 

et al. [19] 
RF, penalized 

logistic 

regression and 

rule-based 

classifier 

Preterm 

and term 

0.91 0.97 0.85 0.94 0.34 1 Hz, the 

whole 30 min 

length of signal 

RMS, PF, MDF, 
SampEn(4) 

Acharya 

et al. [21] 
SVM Preterm 

and term 

0.96 0.95 0.97 0.96 0.3 3 Hz, the 

remaining 24 min 

length of signal 

intrinsic mode 

functions (8) 

Jager 
et al. [28] 

QDA PE and TE 

Preterm 

and term 

1.00 

0.96 

1.00 

0.94 

1.00 

0.98 

1.00 

0.99 

0.08 5 Hz, the 

whole 30 min 

length of signal 

*PA, MDF, SampEn 

(11) 

*PA, peak amplitude of the normalized power spectrum. 11 features (PA, MDF, SampEn) selected from 5 bands, respectively. 
      

        

       

      

       

        

         

  

      

         

          

provide better discrimination between pregnancy and labor 
contractions compared to linear methods [34]. It is probably 

because entropy reflects the complex and nonlinear dynamic 

interactions between myometrium cells [8,23]. SampEn was 

considered to be particularly suitable for revealing EHG 

changes in relation to pregnancy progression and labor [33]. 
RF classifier could obtain the promising results as the previous 

studies illustrated [17,19]. 
The performance of recognizing preterm delivery was 

influenced by the cut-off frequency of filter and the extracted 

features. Jager et al. [28] got the highest classification ACC of 
         �  

         

        

        

      

          

        

        

       

       

       

100 % with features from the frequency band of 0.08 5 Hz 

when using the entire records of TPEHG database. Most of 
studies used the specific features [9,11,30] or selected features 

[8,16–18,21] for prediction of preterm delivery, while RF utilized 

the extracted features without additional feature selection 

algorithm. Similar to the other studies in Table 4, the current 
study extracted features from the entire records because there 

were no annotated contraction intervals or even no contrac-
tion during early recordings. Recently, various features and 

classifiers have been proposed to recognize uterine contrac-
tion (UC) with Icelandic 16-electrode database [20,31–33]. As 
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UC detection is necessary for monitoring labor progress, some 

studies extracted features from EHG bursts [20,32,33] and 

achieved reliable results of UC detection by machine learning 

and deep learning algorithms [35–37]. A multi-channel system 

for recognizing uterine activity with EHG signal has also been 

developed in clinical research [38]. They also provided 

important ways for recognition of preterm delivery with UC. 
ADASYN technique was applied to solve the problem of 

unbalanced data in our study, though synthetic minority 

oversampling technique (SMOTE) algorithm has been 

employed in the previous studies [16–18,23]. Compared with 

ADASYN technique, the synthetic samples generated by 

SMOTE algorithm may increase the likelihood of data over-
lapping which will not provide more useful information 

[12,27]. ADASYN achieved better results for classification of 
preterm delivery in current study. 

The present work has the following limitations. The 

synthetic data generated by ADASYN is less convincing than 

the clinically collected EHG data. More clinical EHG signals are 

essential, in particular from preterm delivery. A comprehen-
sive study has been conducted on various EHG features, 
however, sixteen of which were from wavelet decomposition 

coefficients. Therefore, AAR model [9], EMD technique [17], 
multivariate multiscale entropy features [8] and combination 

of multi-channel EHG signals [5,11,39] could be investigated to 

improve the prediction of preterm delivery [39]. Nevertheless, 
as a pilot study, the positive results from using channel 3 was 

the first step for evaluating the effectiveness of a RF model. 
Furthermore, comparison of different classifiers for recogniz-
ing preterm delivery could be considered in future study. 

5. Conclusion 

In current study, sample entropy played the most important 
role on recognizing preterm delivery among the 31 extracted 

features. RF classifier was a promising method without 
additional steps of selecting features. EHG signals recorded 

before the 26th week of gestation achieved the similar results 

to those after the 26th week. This study is of great helpful in the 

early prediction of preterm delivery and early clinical 
intervention. 
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