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Abstract 

In this paper, an interface crack between dissimilar one-dimensional (1D) hexagonal 

quasicrystals with piezoelectric effect under anti-plane shear and in-plane electric 

loadings has been studied. By using integral transform techniques the mixed boundary 

value problem for the interface crack was reduced to the solution of singular integral 

equations, which can be further reduced to solving Riemann-Hilbert problems with an 

exact solution. An analytic full-field solution for phonon and phason stresses, electric 

fields, electric displacement in the cracked bi-materials is given, and of particular 

interest, the analytical expression of the phonon and phason stresses, and electric 

displacements along the interface has been obtained. The crack sliding displacements 

(CSDs) of the interface crack are provided, and it is found that the phonon and phason 

stress distributions inside the dissimilar quasicrystal material are independent on the 

material properties under the anti-plane shear and in-plane electric loadings. The 

results of the stress intensity factors energy release rate indicate that the crack 

propagation can either be enhanced or retarded depending on the magnitude and 

direction of the electric loadings. 

Keywords: Interface crack; One-dimensional (1D) quasicrystal materials; Singular 

integral equations; Riemann-Hilbert problem; Crack sliding displacement.  
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1 Introduction 

Quasicrystals (QCs) were discovered as a new solid structure and material by 

Shechtman et al. [1] in 1984, and there has been a fascination with investigating their 

physical, chemical, structural and mechanical properties. Much interest is being 

motivated by the ever-expanding technological exploitation within, for example, the 

aerospace, automobile and nuclear fuel industries of their most desirable properties. 

QCs possess unique atomic structures with perfect long-range orientational order and 

long-range quasiperiodic translation order, which are different from the conventional 

crystalline materials and non-crystalline materials [2]. To characterize the structural 

properties of QCs, two kinds of displacement fields are needed. One is a phonon 

displacement field, iu , which describes the usual physical or parallel space, and the 

other is a phason displacement field, jw , which describes the complementary or 

perpendicular space. It is noted that the phason displacement field is diffusive due to 

the elementary excitation associated with the phason mode and describes the local 

rearrangements of unit-cells. A one-dimensional (1D) quasicrystal is defined as a 

three-dimensional solid whose atomic structures are periodic in the ( 21 xx  ) - plane 

and quasiperiodic in the normal direction of the plane, thus there only exists a phason 

displacement 3w  along the 3x - axis for describing the quasilattices, and 1D QCs 

show a property of transverse isotropy [3]. 

   Experiments have shown that Qcs are quite brittle and defects such as dislocations 

and cracks in QCs have been observed. When QCs are subjected external loadings in 

service, the propagation of defects may lead to damage and/or failure of these 
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materials. Therefore, Fracture analysis of quasicrystal materials (QCs) is meaningful 

both in theoretical studies and practical applications. Fan [4] systematically presented 

the mathematical theory of quasicrystalline elasticity, and solved many boundary 

value problems in QCs. Dislocation problems in one-dimensional hexagonal 

quasicrystals have been investigated by Li and Fan [5] and Fan et al. [6]. General 

solutions for one-dimensional hexagonal quasicrystals have been derived by Chen et 

al. [7] and Wang [8] for the static and dynamic problems, respectively. Li and Li [9] 

presented three-dimensional general solutions for static problems in thermo-elasticity 

of 1D hexagonal QCs.  Li et al. [10] investigated a Griffith crack in a pentagonal QC 

and obtained analytical solutions for the stress field and stress intensity factors near 

the crack tips. Conservation laws in elasticity of QCs have been established to cognize 

the influence of phason displacements on the mechanical behaviors of QCs, and 

collinear periodic cracks of antiplane sliding mode in 1D hexagonal quasicrystal have 

been investigated [11, 12]. Wang and Pan [13] derived analytical solutions for some 

defect problems in one-dimensional hexagonal and two-dimensional octagonal 

quasicrystals, and exact expressions for all the field variables are found, also observed 

is the shielding or anti-shielding effect on the crack-tip due to the neighboring 

dislocation. Li and Fan [14] applied complex variable method to obtain the exact 

solutions for two semi-infinite collinear cracks in a strip of 1D hexagonal QC. By 

using the Stroh formalism, Guo and Lu [15] investigated the problem of four cracks 

originating from an elliptical hole in 1D hexagonal QC under anti-plane shear 

loadings. The two-dimensional problem of an elliptic hole or a crack in 
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three-dimensional quasicrystals subject to far field loadings was analyzed based on 

complex potential method [16]. Guo et al. [17] investigated the anti-plane fracture 

problem for a finite crack in a 1D hexagonal quasicrystal strip by using Fourier 

transforms and the technique of dual integral equations, and the expressions for stress, 

displacements and field intensity factors of the phonon and phason fields near the 

crack tip were obtained exactly. Potential theory method was used to solve planar 

crack problems in an infinite space of 1D hexagonal QCs, and the mode I problems of 

three common planar cracks (a penny-shaped crack, an external circular crack and a 

half-infinite crack) have been solved in a systematic manner [18]. Path-independent 

integral in fracture mechanics of quasicrystals has been derived to evaluate the 

fracture parameters in QCs with the atomic arrangement quasiperiodic in one-, two- 

or three-direction, and the relation between stress intensity factors and energy release 

rate was discussed [19]. Crack path prediction and crack deflection in 1D 

quasicrystals were investigated theoretically within a quasi-static framework [20].  

   Piezoelectricity is an important physical property of quasicrystals, and it has been 

studied from a theoretical viewpoint [21]. Due to the piezoelectric effect, quasicrystal 

materials are expected to be exploited as sensors and actuators in smart structures. 

Using complex variable function method and conformal mapping technique, Yang and 

Li [22] investigated the anti-plane shear problem of two symmetric cracks originating 

from an elliptical hole in 1D hexagonal piezoelectric QC. General solutions of plane 

problem in 1D quasicrystal piezoelectric materials have been obtained based on the 

fundamental equations of piezoelectricity of QCs, and the application in fracture 
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mechanics of QCs was discussed [23]. Fan et al. [24] obtained the fundamental 

solutions of three-dimensional cracks in one-dimensional hexagonal piezoelectric 

quasicrystals. A non-uniformly generally loaded anti-plane crack in a half-space of a 

one-dimensional piezoelectric quasicrystal was studied by using an extension of the 

classical continuous dislocation layer method [25]. By using the integral transform 

technique, the problem of two collinear mode-III cracks in 1D hexagonal piezoelectric 

quasicrystal strip has been reduced to solving a standard singular integral equation, 

and exact closed-form solutions have been obtained for the cracks either parallel or 

perpendicular to the strip boundaries [26, 27]. Li et al. [28] performed the fracture 

analysis of a transversely isotropic piezoelectric quasicrystal cylinder under axial 

shear, and found that the quasicrystal fracture is governed by the phonon or phason 

field, depending on the phonon-phason loading ratio. The problem of a moving crack 

in 1D hexagonal piezoelectric quasicrystals was studied under the action of anti-plane 

shear and in-plane electric field, and the result shows that the coupled elastic fields 

inside piezoelectric QCs depend on the speed of crack propagation [29].  

   In reality, the interface crack between quasicrystal materials or quasicrystal and 

non-quasicrystal materials has important engineering application background, for 

example, smart structures or components made of dissimilar quasicrystal materials, 

and in this case, crack may appear on the interface across which material properties 

change abruptly. Interfacial cracks of antiplane sliding mode between usual elastic 

materials and quasicrystals were investigated by Shi et al. [30] and the role of the 

phason displacement play in crack extension was studied. The extended displacement 
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discontinuity boundary integral-differential equation method has been adopted by 

Zhao et al. [31] and Dang et al. [32] to analyze a three-dimensional interface crack in 

one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material.  

   To the authors’ knowledge, the interface crack problem between dissimilar 1D 

piezoeledtric quasicrystals under anti-plane shear and in-plane electric loadings has 

not been solved. In this paper, by using the integral transforms and the technique of 

singular integral equations, the mixed boundary value problem of the interface crack 

between dissimilar QCs has been reduced to corresponding Riemann-Hilbert 

problems, and exact solutions of the full-fields in the cracked bi-materials were 

obtained. The field intensity factors of the phonon and phason stresses, the crack 

sliding displacement (CSD) and the energy release rate were studied in detail. 

 

2 Problem statement 

We consider an interface crack of length a2  between dissimilar one-dimensional 

(1D) piezoelectric QCs with point group 6mm, which has a quasiperiodic poling axis, 

denoted as z -axis, and an isotropic periodic plane, denoted as xoy -plnae, as shown 

in Fig. 1. For convenience, a set of Cartesian coordinate system ( yx, ) is attached to 

the crack. Assume that a uniform shear stresses, 0T , 0H , and uniform electric 

displacement 0D  are applied on the far-field boundaries. 

   According to the quasicrystal elasticity theory, the generalized Hooke’s law 

follows 



7 

 

zzzzzyyxxz

yzyzyy

xzxzxx

zzzzzyyxxzz

yzyzyzy

xzxzxzx

yzyzyzyyz

xzxzxzxxz

xyxy

zzzzzyyxxzz

zzzzzyyxxyy

zzzzzyyxxxx

EwdeeeD

EwdeD

EwdeD

EdwKRRRH

EdwKRH

EdwKRH

EewRC

EewRC

C

EewRCCC

EewRCCC

EewRCCC

3333333131

111515

111515

331211

1523

1523

15344

15344

66

332331313

311131112

311131211

2

2

2

2

2

2

2

















































                  (1) 

where ij  and ijH  are the stresses in the phonon and the phason fields, respectively; 

ij  and ijw  are the phonon and phason strains, respectively;  iD  and iE  are the 

electric displacements and electric field, respectively; ijC  and iK  are elastic 

constants in phonon and phason fields, respectively; iR  is the phonon-phason 

coupling elastic constant, ije  and ijd  are the piezoelectric constants, and jj  the 

dielectric permittivities, and 2)( 121166 CCC  . The subscripts ji,  stand for the 

coordinate x  or y  or z . 

   Under anti-plane mechanical loading and in-plane electric loading with reference 

to the xoy-plane, deformation involved is independent on the spatial variable z. 

Consequently, there are only non-vanishing out-of-plane displacements of phonon and 

phason fields and in-plane electric fields, i.e., 
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   The gradient equations are as follows: 
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where the subscript comma denotes a partial differentiation with respect to the 

coordinate. 

   The constitutive equations under the anti-plane deformation are as follows 
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and the equilibrium equations for the anti-plane deformation problem are 

0

0

0































y

D

x

D

y

H

x

H

yx

yx

zyzx

zyzx


                             (5) 

   By considering the gradient equations and the constitutive equations and 

neglecting body forces and free charge, the governing equations for the anti-plane 

problem of the 1D quasicrystal material with piezoelectric effect can be obtained as 
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where 22222 yx   is the two-dimensional Laplacian operator in the 

variables x and y, 
zu  is the out-of-plane displacement,   is the electric potential, 
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zw  is the displacement of the phason field, 
44C  and 

2K  are the elastic constants 

for the phonon field and phason field, respectively; 15e  and 15d  are the 

piezoelectric constants, 3R  the phonon-phason coupling elastic constant, and 
11  

the dielectric permittivities. 

   For the upper half-space occupied by quasicrystal material-I, the governing 

equations are 
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and for the lower half-space occupied by quasicrystal material-II, the governing 

equations read 
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where the superscripts “I” and “II” denote the properties and quantities in the upper 

and lower half-spaces, respectively. 

   Comparing the basic equations for the 1D hexagonal piezoelectric QC materials 

to those for transversely isotropic magnetoelectroelastic (MEE) materials under 

anti-plane deformation [33-38], one can find the analogy relations as listed in Table 

1. It is clear to see that the governing equations of both the 1D hexagonal 

piezoelectric QCs and magnetoelectroelastic materials are of the same form, which 

can be reduced to Laplacian equations when the determinant of the material 

constants is generally non-zero. In column 3 in Table 1, 
zu  is the out-of-plane 

displacement,   is the electric potential,   is the magnetic potential, 44C  the 
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elastic constant, 15e  the piezoelectric constant, 15h  the piezomagnetic 

constant,
11  the dielectric permittivities, 

11d  the electromagnetic constant, and 

11  is magnetic permeabilities. With the analogy relation mentioned in Table 1, one 

can get the solutions for 1D piezoelectric QCs by using the same method for MEE. 

It is noted that similar analogy relations between 1D hexagonal 

thermo-electro-elastic QCs and magnetoelectrothermoelastic materials have been 

used to analyze a three-dimensional arbitrary shaped interface crack in a 1D 

hexagonal thermo-electro-elastic quasicrystal bi-material [31]. 

   When the bi-materials made of dissimilar 1D hexagonal piezoelectric 

quasicrystals are subjected to constant electromechancial loadings at infinity, the 

regular conditions are:  

0),( Txzy            ( x )               (9-1) 
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    The continuity conditions along the bonded interface between the dissimilar 

quasicrystal materials at the plane 0y  are: 
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   The crack surfaces are assumed free of traction in the phonon and phason fields, 

and the interface crack problem may be solved under the following mixed boundary 

conditions: 
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   For the electrical boundary conditions, the crack surfaces may be assumed to be 

either imperpeable, permeable or partially permeable, similar to the case in the 

classical piezoelectric materials [39]. In this study, we consider both the electrically 

impermeable and permeable cracks, and comparisons of the results will be made. 

   For the electrically impermeable crack case, the boundary conditions on the crack 

faces are: 
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   For the electrically permeable crack case, the boundary conditions along the crack 

face plane are: 

)0,()0,(   xx III           ( x )               (14) 

 

3 Method of solution 

Due to the symmetry property of the problem, it is sufficient to consider a half of the 

bi-materials, i.e., 0x . By applying the technique of integral transform to Eqs. (7, 8), 

the displacements in the phonon and phason fields, and the electric potential in the 

dissimilar one-dimensional hexagonal quasicrystal materials can be expressed as: 

yadxyAyxu III
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where )(),(),(),(),(),(  IIIIIIIII CCBBAA  are unknown functions to 

be solved, IIIIIIIII ddbbaa 000000 ,,,,,  are constants related to the far-field loading 

conditions and are defined in Appendix A. 

    A simple calculation leads to the components of stresses in the phonon and 

phason fields, and the electric displacements in the upper half-space ( 0y ) as 

follows:  
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   The stresses in the phonon and phason fields and the electric displacement in the 

lower half-space ( 0y ) can be expressed as:  
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zx      (28) 

 



0

15230 )cos()exp()()()(),(  dxyCdBKARHyxH IIIIIIIIIIIIII

zy     (29) 
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 



0

1523 )sin()exp()()()(),(  dxyCdBKARyxH IIIIIIIIIIIIII

zx      (30) 

 



0

1115150 )cos()exp()()()(),(  dxyCBdAeDyxD IIIIIIIIIIIIII

y     (31) 

 



0

111515 )sin()exp()()()(),(  dxyCBdAeyxD IIIIIIIIIIIIII

x       (32) 

 

3.1 Impermeable crack case 

The satisfaction of the continuity conditions in Eqs. (10) leads to the following 

relations: 


















































)(

)(

)(

)(

)(

)(

333231

232221

131211



















I

I

I

II

II

II

C

B

A

C

B

A

,              (33) 

where 






















































III

III

III

IIIIII

IIIIII

IIIIII

de

dKR

eRC

de

dKR

eRC

111515

1523

15344

1

111515

1523

15344

333231

232221

131211







,      (34) 

   Introduce the following three jump functions as 

 

 

  )0,()0,(

)0,()0,(

)0,()0,(













xxx

xwxwxw

xuxuxu

III

II

z

I

z

II

z

I

z

   

                         (35) 

   By using the Fourier inverse transform, the unknown functions ),(IA  ),(IB  

)(IC  can be expressed by the integrals of the jump functions      xxwxu ,,  as 

follows: 


































































a

a

a

I

I

I

dxxx

dxxxw

dxxxu

C

B

A

0

0

0

333231

232221

131211

)cos()(
2

)cos()(
2

)cos()(
2

)(

)(

)(






















,           (36) 

where 
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1

333231

232221

131211

333231

232221

131211

1

1

1






















































,            (37) 

   Following the procedure in [40, 41], one can find that the satisfaction of the mixed 

boundary conditions (11-13) leads to the following integral equations about the 

unknown functions ),(IA  ),(IB  )(IC : 

II

II

II

ddxC

bdxB

adxA

0
0

0
0

0
0

)cos()(

)cos()(

)cos()(

























        ( ax 0 )          (38) 

where the constants III dba 000 ,,  are defined in the Appendix A. 

   The substitution of Eqs. (36) into the Eqs. (38) leads to the following singular 

integral equations: 

CC

a

a

BB

a

a

AA

a

a

txfdt
xt

t

txfdt
xt

tw

txfdt
xt

tu






















)(

)(

)(



                       (39) 

where CBA ttt ,,  are constants to be determined from the far-field regular 

conditions, and CBA fff ,,  are constants defined as 



















































I

I

I

C

B

A

d

b

a

f

f

f

0

0

0

1

333231

232221

131211







                   (40) 

    To solve the singular integral equations (39), following Muskhelishvili [42], we 

introduce the following functions of iyxz   as 
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




















a

a

a

a

a

a

dt
zt

t

i
z

dt
zt

tw

i
zW

dt
zt

tu

i
zU

)(

2

1
)(

)(

2

1
)(

)(

2

1
)(









  

                        (41) 

which are analytic in the whole complex plane with a cut along the segment 

axa   of the real axis. The boundary values of the continuous extension on this 

segment to the left and right are determined by the Sokhotskii-Plemelj formulas [42] 

)()()(

)(1
)()(

xuxUxU

dt
xt

tu

i
xUxU

a

a














  

                   (42-1) 

)()()(

)(1
)()(

xwxWxW

dt
xt

tw

i
xWxW

a

a














  

                   (42-2) 

)()()(

)(1
)()(

xxx

dt
xt

t

i
xx

a

a



















  

                   (42-3) 

where the signs “+” and “-” denote the limiting values of the functions 

)(),(),( zzWzU   at 0y  from the positive and negative y -axis, respectively. 

    The following Riemann-Hilbert problem can be obtained by substituting Eqs. (42) 

into Eqs. (39): 

  )()(
1

)()( xFxUtxf
i

xUxU AAA  


  

          (43-1) 

  )()(
1

)()( xFxWtxf
i

xWxW BBB  


  

          (43-2) 

  )()(
1

)()( xFxtxf
i

xx CCC  


  

          (43-3) 

   The solution of the Riemann-Hilbert problem can be obtained as [42]: 
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dt
zttX

tF

i

zX
zU

a

a

A

  


))((

)(

2

)(
)(

   

                   (44-1) 

dt
zttX

tF

i

zX
zW

a

a

B

  


))((

)(

2

)(
)(

   

                   (44-2) 

dt
zttX

tF

i

zX
z

a

a

C

  


))((

)(

2

)(
)(

   

                   (44-3) 

where )(zX  is the particular solution of the homogeneous, Riemann-Hilbert 

problem which is bounded near the ends ax  , )(tX   is the value of )(zX  on 

the left boundary of the discontinuity, and 

))(()( azazzX                            (45) 

    Considering that the differences of the functions ,, wu  vanish at infinity, 

one should require the equality conditions 0)(,0)(,0)(  WU
 
to hold. 

This leads to the condition 

0)(
)(

1
 

dtttf
tX

AA

a

a

  

                   (46-1) 

0)(
)(

1
 

dtttf
tX

BB

a

a

  

                   (46-2) 

0)(
)(

1
 

dtttf
tX

CC

a

a

  

                   (46-3) 

and by recalling the fact that 22)( taitX   is an even function of t , one can 

obtain from (43, 46) that 

0 CBA ttt

  

                         (47) 

 i

xf
xF

i

xf
xF

i

xf
xF C

A
B

B
A

A  )(;)(;)(

  

             (48) 

    The general solution of the Riemann-Hilbert problems (43) can be obtained as 
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 )(
2

)( zXz
f

zU A                            (49-1) 

 )(
2

)( zXz
f

zW B                            (49-2) 

 )(
2

)( zXz
f

z C                            (49-3) 

where the constants CBA fff ,,  are defined in Eqs. (40). 

   It is noted that the exact nature of the singularity and the correct form of the 

asymptotic distribution of the unknown functions at and near the singular points is 

determined by using the complex function theory and investigating the properties of 

the corresponding Riemann-Hilbert problems. The above method and procedure for 

solving the anti-plane interface crack problem could be extended to solving in-plane 

interface crack problems and even three-dimensional interface crack problems. 

   By substituting Eqs. (49) into Eqs. (42), the displacement jump function )(xu , 

i.e., the crack sliding displacement (CSD) of the interface crack under anti-plane shear 

deformation can be obtained as 

22)( xa
f

xu A 


 ,     ( ax  )                (50) 

   Similar procedure can be applied to get the solutions of )(xw  and )(x  as 

22)( xa
f

xw B 


 ,     ( ax  )                (51) 

22)( xa
f

x C 


  ,     ( ax  )                (52) 

   The crack sliding displacements (CSDs) for the phonon and phason fields and the 

crack electric potential jump can be obtained as: 
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22

0)0,( xaaxu II

z 
 ,     ( ax  )                (53-1) 

22

013012011 )()0,( xadbaxu IIIII

z    ,     ( ax  )      (53-2) 

22

0)0,( xabxw II

z 
 ,     ( ax  )                (54-1) 

22

023022021 )()0,( xadbaxw IIIII

z    ,     ( ax  )      (54-2) 

22

0)0,( xadx II   ,     ( ax  )                (55-1) 

22

033032031 )()0,( xadbax IIIII    ,     ( ax  )      (55-2) 

   It is noted that during the derivation of the Eqs. (53-55), the following identity has 

been used [35]  

)(
2

)cos()cos(
0

txdtx 





 ,                   (56) 

where )( tx   is the Dirac delta function, which takes the value 1 when tx  , and 

otherwise takes the value 0. 

   The analytical solutions of the unknown functions ),(IA  ),(IB  )(IC  are 

derived as  


















































C

B

A

I

I

I

f

f

f
aaJ

C

B

A

333231

232221

131211

1 )(

)(

)(

)(

















,             (57) 

where )(1J  is the Bessel function of the first kind, and the following integral 

identity has been used in the derivation [43]: 

)(
2

)cos( 1
0

22 



 aJ

a
dxxxa

a

 ,                 (58) 

   By substituting Eqs. (57) into Eqs. (21-26) and using some integral identities 

listed in the Appendix A, the full-field solutions can be derived. The phonon and 

phason stresses and electric displacements in the upper part of the cracked 

bi-materials are obtained as 
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






 


2
cos),( 21

21

0




rr

r
TyxI

zy
,  ( 0y )             (59-1) 








 


2
sin),( 21

21

0




rr

r
TyxI

zx
,  ( 0y )              (59-2) 

22
0),(),(

az

z
Tyxiyx I

zx

I

zy


  ,  ( 0y )                (59) 








 


2
cos),( 21

21

0




rr

r
HyxH I

zy
,  ( 0y )             (60-1) 








 


2
sin),( 21

21

0




rr

r
HyxH I

zx
,  ( 0y )              (60-2) 

22
0),(),(

az

z
HyxiHyxH I

zx

I

zy


 ,  ( 0y )                (60) 








 


2
cos),( 21

21

0




rr

r
DyxD I

y
,  ( 0y )             (61-1) 








 


2
sin),( 21

21

0




rr

r
DyxD I

x
,  ( 0y )              (61-2) 

22
0),(),(

az

z
DyxiDyxD I

x

I

y


 ,  ( 0y )                (61) 

where iyxz  , and the polar coordinates 2121 ,,,,, rrr  are defined 

respectively as 

,cos,cos,cos

,)(,)(,

2

1

2

1

1

1

1

22

2

22

1

22








 








 















r

ax

r

ax

r

x

yaxryaxryxr


  ( 0y )      (62) 

   The expression of the phonon and phason stresses and electric displacements in 

the lower half-space is in the same form as those in the upper half-space, while the 

corresponding angles 21,,   are defined as 

,cos,cos,cos
2

1

2

1

1

1

1








 








 









 

r

ax

r

ax

r

x
   ( 0y )      (63) 
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   Near the right crack tip, the asymptotic solution of the singular phonon and 

phason stresses, and electric displacements in the bi-materials can be expressed as 











2
cos

2
),( 1

1

011




r

a
Trzy

,     (   1
)          (64-1) 











2
sin

2
),( 1

1
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


r

a
Trzx
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)          (64-2) 
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
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

2
cos

2
),( 1
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
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a
HrH zy
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)          (65-1) 
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2
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),( 1
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a
HrH zx

,    (   1 )          (65-2) 
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


2
cos
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),( 1

1

011




r

a
DrDy

,     (   1 )          (66-1) 











2
sin

2
),( 1

1

011




r

a
DrDx

,    (   1 )          (66-2) 

   It is observed that the field components of phonon stresses, phason stresses and 

electric displacements are governed by a 11 r  crack-tip singular behavior, as 

exhibited near the crack tip in an isotropic elastic homogeneous medium. The 

distributions of the phonon and phason stresses and electric displacements in the 

dissimilar one-dimensional hexagonal piezoelectric quasicrystals are independent on 

the material properties of the bi-materials under the state of anti-plane deformation 

and in-plane electric loading. 

 

3.2 Permeable crack case 

In the case that a permeable interface crack is located on the interface between 

dissimilar 1D hexagonal piezoelectric quasicrystals, the satisfaction of the boundary 

conditions in Eqs. (10) and (14) lead to the following relation 
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

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
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where the constant matrix  α  is defined as 
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   Following the procedure in the case of an impermeable crack, we introduce the 

following two jump functions as 
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   By using the Fourier inverse transform, the unknown functions )(IA  and 

)(IB  can be expressed by the integrals of the jump functions    xwxu ,  as 

follows: 
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where p

ij  ( 2,1, ji ) are defined in Eq. (68). 

   The satisfaction of the mixed boundary conditions (11, 12) leads to the following 

integral equations about the unknown functions )(IA  and )(IB : 
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   The substitution of Eqs. (70) into the Eqs. (71) leads to the following singular 

integral equations of Cauchy type: 
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   Following the procedure in the section for the impermeable interface crack, the 

solutions of these singular integral equations can be obtained analytically as 
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   The crack sliding displacements (CSDs) for the phonon and phason fields can be 

obtained as: 
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   Again by using the integral identity in Eq. (58), the phonon and phason stresses 

and electric displacements in the upper part of the cracked bi-materials under the 

permeable crack assumption can be obtained as 
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where, the constant 0R  is defined as 
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   It is clear that the phonon and phason stresses obtained for the permeable crack 

are the same as those for the impermeable crack, while the distribution of the electric 

displacement around the permeable crack is different from that for the impermeable 

crack. Also need to mention that the crack sliding displacements (CSDs) for the 

phonon and phason fields are different for the permeable and impermeable cracks, as 

shown in Eqs. (75, 76) for the permeable crack case and in Eqs. (53, 54) for the 

impermeable crack case, respectively. 

 

4 Field intensity factors and energy release rate 

After the full-field solution of the phonon and phason stresses and electric 

displacements have been obtained, the field intensity factors for the phonon and 

phason stresses can be determined as 

aTxaxK zy
ax

III  0)0,()(2lim 


                (81) 

aHxHaxK zy
ax
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

               (82) 

and the electric displacement intensity factor can be defined as 

aDxDaxK y
ax

D  0)0,()(2lim 


              (83-1) 

for the electrically impermeable crack case, and 

aRxDaxK y
ax

D  0)0,()(2lim 


              (83-2) 

for the electrically permeable crack case.  

   It is noted that the intensity factors defined in Eqs. (81, 82) hold for both the 

impermeable and permeable cracks, while the electric displacement intensity factor 

for the electrically impermeable crack is different from that for the electrically 
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permeable crack, as shown in Eqs. (83). 

   The intensity factors for phonon stresses, phason stresses and electric 

displacements in the dissimilar one-dimensional hexagonal piezoelectric quasicrystals 

are decoupled for the impermeable crack. These results are in agreement with those 

for crack problems in a homogeneous piezoelectric medium. For the permeable crack 

case, the electric displacement intensity factor does not depend on the electric loading 

but only on the phonon and phason stresses applied. 

   It is noted that the field intensity factors defined above only demonstrate the 

information of the corresponding field quantities on the crack face plane, and 

therefore the decoupled field intensity factors could not show the coupling effects of 

the phonon, phason and electric fields. The field intensity factors are not used as the 

fracture criterion for the anti-plane crack problem in this work. 

   From the viewpoint of energy balance, the energy release rate for the interface 

crack between dissimilar 1D hexagonal piezoelectric quasicrystals is analyzed s 

follows. Assume that under applied loadings the crack tip advances along the crack 

plane from ax   to  ax  ( a ), then the energy release rate at the crack 

tip ax   per unit length during this process is 
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2

1
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 (84) 

for the electrically impermeable crack. 

   The substitution of Eqs. (50-52) and (59-61) leads to the expression of the energy 

release rate for the interface crack between dissimilar 1D hexagonal piezoelectric 

quasicrystals as 
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where DK  is defined in Eq. (83-1) for the electric displacement intensity factor for 

an electrically impermeable interface crack. 

   When the upper and lower parts of the bi-materials are the same, i.e., 
III

MM  , 

we can have the energy release rate for a crack in a homogeneous 1D hexagonal 

piezoelectric quasicrystal as 
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where 
III

MMM   for the homogeneous material case. 

   It is shown that the energy release rate of the interface crack is dependent on the 

applied loadings, the geometric size of the crack and the material properties, as shown 

in Eqs. (85-87). Therefore, the energy release rate can be used as the fracture criterion 

of the quasicrystal materials. If there is no phason field, the energy release rate 

obtained above can be reduced to that for crack problem in piezoelectric materials. 

   For the electrically permeable crack case, the energy release rate at the crack tip 

ax   per unit length is defined as 
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and the integral calculation leads to the following expression as 
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   It is noted that during the derivation of the energy release rate, the following 

integral identity has been used 
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   For the limiting case when the upper part and the lower part of the bi-materials are 

the same quasicrystal materials, there is the fact that  
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where the superscripts “I” and “II” have been deleted, and the energy release rate for 

an electrically permeable crack in a homogeneous 1D hexagonal quasicrystal material 

can be obtained as 
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   It can be observed that the energy release rate for the electrically permeable 

interface crack between dissimilar one-dimensional quasicrystal materials is 

independent on the electric displacement loading applied, and this is different from 

the result for the electrically impermeable crack case, in which the electric 

displacement has a contribution to the energy release rate. 

 

5 Numerical results and discussions 

In this section, the analytic solution obtained in the previous section are used to 
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evaluate the distribution of the stresses of phonon and phason fields, and electric 

displacements near the interface crack, and of particular interest are the CSDs and 

phonon and phason stresses along the bonded interface between the dissimilar 1D 

hexagonal piezoelectric quasicrystal materials.  

   The material properties of the dissimilar 1D hexagonal piezoelectric quasicrystals 

used in the following numerical calculation are taken as [27, 44]: 
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for the upper part of the bi-materials, and 
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for the lower part of the bi-materials. 

   Without loss of generality, the applied uniform phonon stress at far-field is taken 

as MPa0.50 T . The crack sliding displacements (CSDs) for the interface crack 

between dissimilar 1D quasicrystal piezoelectric materials are plotted in Fig. 2 for 

different electric displacement loadings when the phason stress vanishes, i.e., 00 H . 

It is observed that the CSDs in the upper half-space are different from those in the 

lower half-space due to the dissimilar material properties. The magnitude of CSDs 

increases as the electric displacement change from positive values to negative values.  

When there is no electric displacement loading applied to the dissimilar quasicrystal 

piezoelectric materials, the CSDs for the interface crack under different phason 

stresses at infinity are plotted in Fig. 3. It is shown that the effect of the phason 

stresses in the considered range have little effect on the crack sliding displacements. 
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When the phason stresses change from -1000Pa to +1000Pa, the magnitude of the 

CSD decreases accordingly, as shown in the enlarged picture. It is noted that at the 

time being, it is unclear how to assign and measure the phason loading. If the phason 

loading is assumed free at infinity, then the field intensity factor for phason stresses is 

zero, i.e., 0HK , as shown from Eq. (82), and the phason stresses at the crack tip 

do not show the singular behavior. 

   Fig. 4 displays the distributions of the electric displacements on the crack face 

plane ahead of the right crack-tip. As shown in Eqs. (61, 79), the electric 

displacements are singular near the crack tip, but the distribution of electric 

displacement for an impermeable crack is different from that for a permeable crack. It 

can be readily observed that at the far-field along the interface plane, the normalized 

electric displacement is one, which means that the undisturbed electric displacement 

is equal to the uniform electric displacement applied at infinity. 

   Fig. 5 shows the normalized energy release rate 0GG  of an impermeable 

interface crack between dissimilar 1D hexagonal quasicrystal piezoelectric materials 

under different electric displacement loadings at infinity. The value of 0G  is defined 

as the energy release rate when there is only phonon stress applied at infinity. The 

energy release rate decreases first as the phason stress increases from negative to 

positive values, and after it reaches a minimum, it increases as the phason stress 

increases. For different electric displacement loadings, the energy release rates are 

different. When the phason stress is of a particular value, the minimum of the energy 

release rate can be obtained. This result may be useful for the fracture design of the 
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quasicrystal materials.  

   The normalized energy release rates 0GG  of a permeable interface crack 

between dissimilar 1D hexagonal quasicrystal piezoelectric materials are displayed in 

Fig. 6. Obviously, for this electrically permeable crack, the energy release rate is not 

dependent on the electric displacement loading. Comparing the energy release rates 

for the electrically impermeable and permeable cracks, it shows that the energy 

release rates for the permeable crack are positive, while the ERRs for the 

impermeable crack could be negative depending on the electro-mechanical loadings 

applied. 

 

6 Conclusions 

An interface crack between dissimilar quasicrystal materials with piezoelectric effect 

under anti-plane deformation and in-plane electric loading is investigated using 

integral transform method and singular integral equations technique. The mixed 

boundary value problems of the interface crack were reduced to solving 

Riemann-Hilbert problems with exact solutions. The full-field solutions for the 

phonon and phason stresses, and electric displacements in the dissimilar 1D 

hexagonal quasicrystal materials have been obtained analytically, and the crack 

sliding displacements (CSDs), field intensity factors and energy release rate are 

obtained. The electric displacements near the crack tips are different for the 

electrically impermeable and permeable cracks. When the phason stress is of a 

particular value, the minimum of the energy release rate can be obtained. The 

analytical results obtained for the interface crack problem may be useful for the 
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structure design of the new quasicrystal composite materials. 
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Appendix A 

By considering the regular conditions at infinity, the constants IIIIIIIII ddbbaa 000000 ,,,,,  

in Eqs. (15-20) are defined as: 
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   The following integral identities [43, 45] have been used in the derivation of the 

full-field solutions:  
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where the polar coordinates 2121 ,,,,, rrr  are defined in Eqs. (62, 63). 

   The following identities for the integrals of some generalized functions are used in 

the derivation of the integral equations (40): 
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   The identity in Eq. (93) is actually a special form of the Beta function [46] 
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Captions for Figures and Table 

 

Figure 1. An interface crack between dissimilar 1D hexagonal quasicrystal 

piezoelectric materials. 

Figure 2. CSD for the interface crack under different electric loadings when 00 H . 

Figure 3. CSD for the interface crack under different phason stresses when 00 D .

 

Figure 4. Normalized electric displacement 0)0,( DxDy  ahead of the interface 

crack. 

Figure 5. Normalized energy release rate 0GG  of an impermeable interface crack 

between dissimilar 1D hexagonal quasicrystal piezoelectric materials.  

Figure 6. Normalized energy release rate 0GG  of a permeable interface crack 

between dissimilar 1D hexagonal quasicrystal piezoelectric materials.  

 

 

Table 1. The analogy relations between 1D hexagonal quasicrystal piezoelectric QCs 

and magnetoelectroelastic (MEE) materials.  
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Fig. 1. An interface crack between dissimilar 1D hexagonal quasicrystal 

piezoelectric materials. 
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Fig. 2. CSD for the interface crack under different electric loadings when 00 H .
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Fig. 3. CSD for the interface crack under different phason stresses when 00 D . 
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Fig. 4. Normalized electric displacement 0)0,( DxDy  ahead of the interface crack. 
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Fig. 5. Normalized energy release rate 0GG  of an impermeable interface crack 

between dissimilar 1D hexagonal quasicrystal piezoelectric materials.
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Fig. 6. Normalized energy release rate 0GG  of a permeable interface crack between 

dissimilar 1D hexagonal quasicrystal piezoelectric materials.
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Table 1. The analogy relations between 1D hexagonal quasicrystal piezoelectric QCs 

and magnetoelectroelastic (MEE) materials.  
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