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Abstract: Atomic force microscopy (AFM) plays an important role in nanoscale imaging application.1

AFM works by oscillating a micro-cantilever on the surface of the sample being scanned. In this2

process, estimating the amplitude of the cantilever deflection signal plays an important role in3

characterizing the topography of the surface. Existing approaches on this topic either have slow4

dynamic response e.g. lock-in-amplifier or high computational complexity e.g. Kalman filter. In5

this context, gradient estimator can be considered as a trade-off between fast dynamic response and6

high computational complexity. However, no constructive tuning rule is available in the literature7

for gradient estimator. In this paper, we consider small-signal modeling and tuning of gradient8

estimator. The proposed approach greatly simplifies the tuning procedure. Numerical simulation and9

experimental results are provided to demonstrate the suitability of the proposed tuning procedure.10

Keywords: Amplitude Estimation; Gradient Estimator; Small-Signal Modelling; Atomic Force11

Microscopy; Sensor Signal Processing.12

1. Introduction13

Atomic force microscopy (AFM) plays an important role in nanoscale imaging in material and14

biological sciences [1]. Dynamic mode amplitude modulated AFM (AM-AFM) works by forcing a15

cantilever to oscillate over the surface of the sample being scanned. By estimating the amplitude of16

cantilever deflection signal, AFM controller make sure that raster scanning of the sample is performed.17

An overview of the control-oriented block diagram of AM-AFM can be found in [2, Fig. 1] while details18

on the working principle are given in [3]. Details on the working principle can be consulted from.19

Amplitude estimation part also known as demodulator plays an important role in determining the20

dynamical behavior of AFM i.e. imaging bandwidth. As a result, fast converging amplitude estimation21

technique has attracted lot of attention in the control of AFM research area. One of the basic technique22

is this regard is the well known lock-in amplifier (LIA) [4–9]. By multiplying the cantilever deflection23

signal with sine and cosine signals, LIA estimates the amplitude and phase. However, LIA requires24

high-order low-pass filter (LPF) with high cut-off frequency. As such, the bandwidth is limited by LPFs25

bandwidth. This problem has been solved in [10] using the idea of orthogonal signal generation. It26

still requires LPF, however, the cut-off frequency is lower than the standard LIA. LPFs are also used in27

discrete Fourier transform (DFT)-based LIA proposed in [11]. Some other well known demodulation28

techniques in the context of AFM are RMS to DC conversion [2], Kalman filter [12–15] etc. For further29

investigation on this topic, [16,17] may be consulted as they provide valuable state of the art reviews.30
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Out of various estimation techniques available in the literature, gradient estimator [18–21] can31

be considered as a promising demodulation technique for AFM. By considering the instantaneous32

estimation error as the cost-function, gradient estimator is obtained through the gradient of the33

cost-function. This method works by considering a parametric model of the sine wave. Gradient34

estimator is simple and easy-to-implement. However, to the best of authors knowledge, the tuning35

procedure of gradient estimator is not straightforward. In general, trial and error [18–20] method is36

used. This is time consuming and application specific.37

To overcome the tuning issue of gradient estimator, in this paper, we present small-signal model38

of the gradient estimator inspired by [22–24]. From the model, simple tuning rule is obtained. The39

parameter can be easily tuned by selecting the settling time only. This simplifies significantly the40

tuning of gradient estimator for various practical applications. Through numerical simulation and41

experimental results, we demonstrate the effectiveness of the proposed tuning method. It is to be noted42

here that the proposed tuning method can be considered as complimentary to existing results [18,19].43

The rest of the paper is organized as follows: Sec. 2 provides an overview, modeling, and tuning44

of gradient estimator for amplitude estimation in AM-AFM. Numerical simulation and experimental45

results are given in Sec. 3 and finally, Sec. 4 concludes this paper.46

2. Gradient Estimator: Small-Signal Modeling and Tuning47

A single frequency cantilever deflection signal in the AM-AFM is generally modeled as a sine48

wave and given as:49

y = A(t) sin(ωt + φ(t)) + ν(t) (1)

where carrier frequency is denoted by ω = 2π f , zero-mean measurement noise is denoted by ν(t),50

instantaneous phase is denoted by ψ = ωt + φ(t), and the time-varying amplitude (modulated) and51

phase are denoted by A(t) and φ(t). Model (1) can be extended for multi-frequency AFM as:52

y =
n

∑
i=1

Ai sin(ωit + φi) + ν(t) (2)

where i indicates individual component and the time arguments are avoided for notional simplicity.53

The problem being considered in this paper is to estimate A (or Ai) from the measured cantilever54

deflection signal (1) (or (2)). This will be achieved using gradient approach. For further development,55

model (1) can be written in the linear parametric form as:56

y = ΦTΘ. (3)

where Φ = [sin(ωt) cos (ωt)]T and Θ = [A cos(φ) A sin(φ)]T . From the parameter vector Θ, the57

instantaneous amplitude and phase can be calculated as:58

A =
√

ΘTΘ, (4)

φ = atan2 (Θ2, Θ1) (5)

2.1. Brief Overview of the Gradient Estimator59

To estimate the parameters from the measured signal y, let us consider the following quadratic60

cost-function [21]:61

J(Θ̂) =
eTe
2

(6)
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where e =
(

y − ΦTΘ̂
)

and ˆ represents estimated value. Gradient estimator is generally designed by62

minimizing the cost-function (6). The solution of Θ̂ that minimizes the cost-function (6) is generated63

by [21]:64

˙̂Θ = −Ω∆J(Θ̂) (7)

where Ω = ΩT = ΥI2, Υ > 0 is the gain matrix with Υ being the tuning parameter. From eq. (6),65

gradient of the cost-function can be obtained as [21][25, Appendix B.2]:66

∆J(Θ̂) =
δJ
δe

δe
δΘ̂

= −ΦTe (8)

By substituting eq. (8) into (7), the gradient estimator can be obtained as:67

˙̂Θ1 = Υ sin(ωt)e, (9)
˙̂Θ2 = Υ cos(ωt)e (10)

Convergence speed of the gradient estimator is controlled by the tuning parameter Υ.68

2.2. Small-Signal Modeling69

For the modeling purpose, in this section, we assume that A ≈ Â, φ ≈ φ̂, and ψ ≈ ψ̂. Moreover,70

small-angle approximation formulas will be used i.e. sin(ψ) ≈ ψ and cos(ψ) ≈ 1. The estimated71

amplitude and its dynamics are given by:72

Â =
√

ΘTΘ =
√

Θ̂2
1 + Θ̂2

2, (11)

˙̂A = (Θ̂1
˙̂Θ1 + Θ̂2

˙̂Θ2)/(
√

Θ̂2
1 + Θ̂2

2) (12)

By substituting the value of Θ̂1 = Â cos(φ̂) and Θ̂2 = Â sin(φ̂) in eq. (12), one can obtain:73

˙̂A =
Υ
{

Â cos(φ̂) sin(ωt) + Â sin(φ̂) cos(ωt)
}

e
Â

(13)

By substituting sin(ωt) cos(φ̂) + cos(ωt) sin(φ̂) = sin(ωt + φ̂) = cos(ψ̂) and e = A sin(ψ)− Â sin(ψ̂)74

in eq. (13), the following can be obtained:75
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˙̂A =
ΥÂ sin(ψ̂)

{
A sin(ψ)− Â sin

(
ψ̂
)}

Â
, (14)

=

Υ


2A sin (ψ) sin

(
ψ̂
)︸ ︷︷ ︸

A cos(ψ−ψ̂)−A cos(ψ+ψ̂)

− 2Â sin2 (ψ̂)︸ ︷︷ ︸
2Â
{

cos2 (ψ̂)− 1
}

︸ ︷︷ ︸
Â cos(2ψ̂)−Â


2

, (15)

=

Υ

A cos
(
ψ − ψ̂

)︸ ︷︷ ︸
≈1

−A cos
(
ψ + ψ̂

)
+ Â cos

(
2ψ̂
)︸ ︷︷ ︸

≈0

−Â


2

, (16)

˙̂A ≈ Υ
2
(A − Â) (17)

Similarly, the estimated phase and its dynamics are given by:76

φ̂ = atan2
(
Θ̂2, Θ̂1

)
, (18)

˙̂φ = (Θ̂1
˙̂Θ2 − Θ̂2

˙̂Θ1)/(Θ̂2
1 + Θ̂2

2) (19)

By substituting the value of Θ̂1 = Â cos(φ̂), Θ̂2 = Â sin(φ̂) in eq. (19), one can obtain:77

˙̂φ =
Υ
{

Â cos(φ̂) cos(ωt)− Â sin(φ̂) sin(ωt)
}

e
Â2

(20)

By substituting cos(φ̂) cos(ωt)− sin(φ̂) sin(ωt) = cos(ωt + φ̂) = cos(ψ̂) and e = A sin(ψ)− Â sin(ψ̂)78

in eq. (20), the following can be obtained:79

˙̂φ =
Υ cos(ψ̂)

{
A sin(ψ)− Â sin(ψ̂)

}
Â

, (21)

=

Υ

 2A cos
(
ψ̂
)

sin (ψ)︸ ︷︷ ︸
A sin(ψ+ψ̂)+A sin(ψ−ψ̂)

− 2Â cos
(
ψ̂
)

sin
(
ψ̂
)︸ ︷︷ ︸

Â sin(2ψ̂)


2Â

, (22)

=

Υ


A sin

(
ψ + ψ̂

)︸ ︷︷ ︸
≈Â sin(2ψ̂)

−Â sin(2ψ̂)

︸ ︷︷ ︸
≈0

+ A sin
(
ψ − ψ̂

)︸ ︷︷ ︸
≈Â(ψ−ψ̂)


2Â

, (23)

˙̂φ ≈ Υ
2
(ψ − ψ̂), (24)

˙̂φ ≈ Υ
2
(φ − φ̂) (25)
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Figure 1. Numerical validation of tuning rule (28).

From eq. (17) and (25), transfer function of the estimated amplitude and phase can be found as:80

φ̂

φ
(s) =

Â
A
(s) = G(s) =

Υ
2

s + Υ
2

(26)

where zero initial conditions are assumed. From model (26), it can be seen that the gradient estimator81

has a first-order dynamics, at least locally.82

2.3. Parameter Tuning83

To tune the gradient estimator parameter Υ, let us rewrite the transfer function G(s) as:

G(s) =
1

τs + 1
(27)

where τ = 2/Υ is the time constant. It is well known that for a first-order system, the settling time is84

given by tss = 4τ. Then by using the value of τ, the formula to tune the estimator gain Υ is given by:85

Υ =
8

4τ
=

8
tss

. (28)

To validate the tuning rule (28), let us consider a step change in the modulated amplitude with86

a carrier signal of 20kHz. Four different tuning gains have been considered. They are Υ =87

16000, 8000, 53333, 4000 and correspond to a settling time of 1, 2, 3, and 4 cycles, respectively. Numerical88

simulation results are given in Fig. 1. Results in this figure show that the estimated amplitudes89

converged roughly within the desired settling times. This shows the suitability of the proposed tuning90

method.91

2.4. Extension to Harmonic Deflection Signal92

For the sake of computational simplicity, gradient estimator designed in Sec. 2.1 only by93

considering the fundamental component. However, it can be easily extended to deflection sensor94

signal with arbitrary order harmonics. In this case, by considering the multi-frequency deflection95

signal (2), linear parametric model (3) can be rewritten as:96

y = ΦTΘ (29)

where the information and parameter vector are given as:97



Version May 6, 2020 submitted to Sensors 6 of 14

Φ =
[

sin(ωt) cos(ωt) sin(2ωt) cos(2ωt) . . . sin (nωt) cos(nωt)
]T

, (30)

Θ =
[

A1 cos (φ1) A1 sin (φ1) A2 cos (φ2) A2 sin (φ2) . . . An cos (φn) An sin (φn)
]T

. (31)

Then, the gradient estimator for the signal (29) in vector form is given by:98

˙̂Θ = ΩΦTe (32)

where e = y − ΦTΘ is the estimation error and Ω = ΩT = ΥI2n, Υ > 0 with I2n being the identity99

matrix of dimension 2n × 2n. Alternatively, the gradient estimator (32) can be implemented in parallel100

form as given in [19]. This can help to reduce the computational complexity thanks to parallel101

implementation. Similar parallel approach has also been used in grid-synchronization literature [26].102

3. Results and Discussions103

3.1. Simulation Study104

Karvinen and Moheimani [10] showed that signal (33) can model the response of Bruker DMASP105

micro-cantilever signal.106

y(t) = A(t) cos (ωt) + 0.1 cos (4ωt + φ) + ν(t) (33)

where A(t) = 1 + 0.1sgn(sin(2π fmt)), where sgn(.) is the signum function and fm is the amplitude107

modulation frequency. For the simulation study, we have considered f = 20 kHz, fm = 1 kHz, and108

φ = π/4.109

To tune the gradient estimator (GE) presented in Sec. 2.4 for signal (33), we will consider the tuning110

formula (28). Let us consider a 2-cycle settling time i.e. tss = 10−4sec. Then, the gain of the gradient111

estimator can be found as Υ = 80000. As comparison techniques, high bandwidth demodulation (HBD)112

technique [10] and Kalman filter (KF) have been selected. Third-order Butterworth low-pass filters113

with cut-off frequency of 4kHz haven been considered for HBD technique. Parameters of Kalman114

filter are selected as: R = 1, Q = 0.05, and P = 1000I4, where I2 is the identity matrix of dimension115

4 × 4. All the techniques haven been implemented in Matlab/Simulink with a sampling frequency of116

200kHz. Continuous integrators of gradient estimator’s are discretized using Euler method i.e. ODE1.117

Figure 2 shows the comparative performance of the selected techniques. Numerical simulation118

results show that the gradient technique roughly converged in 2 cycles. This validates the control119

parameter tuning. Simulation results show that GE has the fastest rise and settling time. KF and GE120

has a first-order response while HBD shows a second-order response with overshoot. Simulation121

results shown in Fig. 2 demonstrate the suitability of the GE over KF and HBD in noise-free condition.122

To test the noise robustness of the comparative techniques, band-limited white noise is added to the123

deflection signal. Numerical simulation results with signal-to-noise ratio (SNR) of 34dB and 20dB are124

given in Figs. 3 and 4, respectively. These figures show that KF and GE have similar noise robustness125

while HBD performs slightly better in the steady-state. This is possible due to the presence of two126

third-order LPFs. However, this also slow down the dynamic response for HBD. Moreover, from Fig.127

4, it can be seen that HBD never really converged.128

In the previous two cases, step change in the modulated amplitude is considered. However, in129

practice, gradual change in amplitude may also be observed. To simulate this situation, modulated130

amplitude A(t) is passed through a first-order low-pass filter with cut-off frequency 20 kHz. Numerical131

simulation results with SNR of 34dB and 20dB are given in Figs. 5 and 6, respectively. Comparative132

results show that GE is the most closest to follow the gradually changing modulated amplitude133

followed by KF. HBD has a significant delay compared to GE and KF which is largely attributed to the134
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Figure 2. Comparative numerical simulation results with micro-cantilever signal (33).
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Figure 3. Comparative numerical simulation results with noisy deflection sensor signal (SNR of 34 dB).
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Figure 4. Comparative numerical simulation results with noisy deflection sensor signal (SNR of 20 dB).
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Figure 5. Comparative numerical simulation results with gradual change in the modulated amplitude
and SNR of 34 dB.

presence of LPFs. Simulation results in Fig. 5 show that the GE is not only suitable for step change but135

also for gradual change in the modulated amplitude. This makes the proposed tuning method highly136

suitable for practical implementation in real AFM system.137

3.2. Experimental Study138

dSPACE-based experimental study is considered in this section [27]. The considered experimental139

setup is given in Fig. 7. In this setup, an arbitrary function generator (Tektronix AFG 3252) is140

used to generate the emulated deflection sensor signal. This analog signal is acquired through the141

input/Output board DS 1302-03 available in dSPACE MicroLabBox (DS 1202-05). MicroLabBox also142

hosts the real-time implementation of the comparative techniques. Finally, a digital storage oscilloscope143

(RS Pro IDS-1054B) is used to plot the outputs. For experimental implementation, frequency of the144

deflection sensor signal is considered as 5kHz while the amplitude modulation frequency was 0.5kHz.145

Sampling frequency for the real-time implementation was 50kHz.146

Comparative experimental results are given in Fig. 8. Figure 8 shows that the experimental147

results are similar to the numerical simulation results. All the techniques have similar steady-state148

performance. However, the gradient estimator has the fastest rise and settling time. It is149

computationally simple than Kalman filter and low-pass filtering free unlike HBD. Experimental150

results show the suitability of the gradient estimator as a amplitude demodulation technique for151



Version May 6, 2020 submitted to Sensors 11 of 14

0 0.5 1 1.5 2 2.5 3

Time [msec.]

-1

-0.5

0

0.5

1

1.5

V
o
lt
a
g
e
 [
V

]

Signal Modulated Amplitude HBD KF GE

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Time [msec.]

0.8

0.9

1

1.1

1.2

1.3

V
o
lt
a
g
e
 [
V

]

Signal

Modulated Amplitude

HBD

KF

GE

Figure 6. Comparative numerical simulation results with gradual change in the modulated amplitude
and SNR of 20 dB.

Figure 7. Overview of the experimental setup.
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(a)

(b)

(c)

Figure 8. Comparative experimental results using setup in Fig. 7: (a) Gradient estimator (left - original
view, right - zoomed view), (b) Kalman Filter (left - original view, right - zoomed view), and (c) High
bandwidth demodulation (left - original view, right - zoomed view).

dynamic mode amplitude modulated atomic force microscopy. Experimental results also validate the152

tuning rule developed in this paper in Sec. 2.3.153

4. Conclusion and Future Work154

This paper has proposed small-signal modeling and tuning of gradient estimator for amplitude155

estimation of deflection signal used in dynamic mode amplitude modulated atomic force microscopy.156

Small-signal model can facilitate quick tuning of gradient estimator parameter. The developed157

model and tuning rule had been validated through numerical simulation and experimental results.158

Comparative results validated the performance of the proposed tuning procedure with two other159

advanced techniques. In the current work, an instantaneous cost-function has been considered for the160

gradient estimator design. To enhance the noise robustness property, discount integral cost-function161

will be considered in a future work.162
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