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We report a study of time-dependent probability density functions (PDFs) in the low-to-high confinement 
mode (L-H) transition by extending the previous prey-predator-type model [E. Kim and P. H. Diamond, Phys. 
Rev. Lett. 90, 185006 (2003).] to a stochastic model. We highlight the limited utility of mean value and variance 
in understanding the L-H transition by showing strongly non-Gaussian PDFs, with the number of peaks changing 
in time. We also propose a new information geometric method by using information length, dynamical timescale, 
and information phase portrait, and show their utility in forecasting transitions and self-regulation between 
turbulence and zonal flows. In particular, we demonstrate the importance of intermittency (rare events of large 
amplitude) of zonal flows that can play an important role in promoting the L-H transition. 

DOI: 10.1103/PhysRevResearch.2.023077 

I. INTRODUCTION 

An important example of nonequilibrium processes is 
found in magnetically confined fusion plasmas (ionized gas) 
which aim to achieve a controlled generation of energy, mim-
icking nuclear reactions naturally taking place in the Sun and 
stars. The key challenge in fusion has been proper confine-
ment of hot plasmas with a temperature greater than 107 K 
(hotter than the center of the Sun) inside the device, which 
itself is at most at room temperature. This large temperature 
difference across a few-meter wide device is very unstable, 
causing turbulent (anomalous) transport and thus confinement 
degradation, or even the termination of fusion operation. 

The L-H (low-to-high) transition, first discovered in the 
1980s, marked one of the greatest discoveries in fusion re-
search [1], where plasma confinement improved dramatically 
when an input power exceeded a critical value. This con-
stitutes an intriguing example of self-organization [2–11], 
where plasmas organize themselves into an ordered, high-
confinement (H) mode from a low-confinement (L) mode 
triggered by the formation of large-scale shear (mean, zonal) 
flows which reduce turbulent transport [12–16]. While be-
ing reproduced in different devices, the realization of the H 
mode for future burning plasmas (e.g., the $20 billion ITER 
project) remains a critical issue [5,17], with controversial is-
sues including threshold power scaling, the effects of density, 
magnetic geometry and neutrals, triggering mechanisms and 
causality relations, hysteresis, etc. [17]. This has far reach-
ing implications for other self-regulating systems in nature 
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(e.g., astro/geophysical, atmospheric sciences, etc.). Previ-
ously employed statistical methods include moments (mean 
value, variance), spectral or wavelet analysis, bicoherence, 
phase relation, turbulence-flow energy transfer, fluxes, trans-
port coefficients, etc. 

This paper reports a study of time-dependent probability 
density functions (PDFs) [18] in the L-H transition, which are 
invaluable to understand strongly time-dependent fluctuations 
(intermittency) [19], often associated with transitions. The 
latter lead to non-Gaussian, non-stationary PDFs [19,20], with 
limited validity of mean value and/or variance, or stationary 
PDFs. Time-dependent PDFs also enable us to understand the 
correlation/causality and hysteresis from the perspective of 
information theory. In simple terms, instead of the physical 
variables themselves, we consider statistical states of different 
variables and how they change in time and are correlated 
with each other. Here, the changes in “statistical states” are 
quantified by dimensionless numbers from time-dependent 
PDFs that are invariant under (time-independent) change of 
variables, which can be directly compared with each other, 
unlike physical variables having different units. Specifically, 
we quantify how each variable passes through statistically 
different states during the evolution (see below). Our proposed 
method captures the dynamics rather than stationary proper-
ties of the L-H transition, which we believe to be crucial since 
the latter is a dynamical process, evolving over time. 

Information length. We begin by summarizing how to cal-
culate the change in statistical states for a stochastic variable x 
which has a time-dependent PDF p(x, t ). By calculating an in-
finitesimal relative entropy between p(x, t ) and p(x, t + δt ) as  
δt → 0, and then summing the square root of the infinitesimal 
relative entropy along the path, we define the (dimensionless) 
information length L(t ) [19,21–28]: 

� � � �2t dt1 1 1 ∂ p(x, t )L(t ) = , = dx  . (1)
τ (t1) τ (t )2 p(x, t ) ∂t0 

2643-1564/2020/2(2)/023077(6) 023077-1 Published by the American Physical Society 

https://orcid.org/0000-0001-5607-6635
https://orcid.org/0000-0001-8639-0967
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023077&domain=pdf&date_stamp=2020-04-24
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevResearch.2.023077
https://creativecommons.org/licenses/by/4.0/


�
�

� �

�

� � �

�

�

�

�

�

�

�

�

�

�

� � � � � �

� � �

EUN-JIN KIM AND RAINER HOLLERBACH PHYSICAL REVIEW RESEARCH 2, 023077 (2020) 

The unit of τ in Eq. (1) is time, representing a dynamical 
time unit for information change; L(t ) then measures the 
clock time in units of τ (t ), and quantifies the total number 
of statistically different states that x passes through between 
time 0 and t , starting from some initial PDF p(x, 0). In simple 
terms, L(t ) quantifies the cumulative change in p(x, t ), taking 
into account the uncertainty due to a finite width of p(x, t ). 
Unlike more traditional methodologies such as entropy, rela-
tive entropy, Jensen divergence, etc., L(t ) depends on p(x, t ) 
for all t ∈ [0, t] and is thus a path-dependent quantity. This 
path dependence is ideally suited for understanding a long 
memory and hysteresis involved in phase transitions [19] such 
as the L-H transition. It can also be used to quantify attractor 
structures in relaxation processes [21,22,24], providing an 
alternative to a Lyapunov exponent to characterize chaos. A 
strong correlation between two switching species was cap-
tured by the same evolution of L(t ) of these two species [27]. 

For a system with m variables xi (i = 1, 2, . . . ,m), we can 
extend Eq. (1) to  

� t dt1Lxi (t ) = , (2) 
0 τxi (t1) � � �21 1 ∂ p(xi, t ) = dxi ≡ Exi , (3)

[τ (t )]2 p(xi, t ) ∂txi � 
where p(xi, t ) = j=i(dx j ) p(x1, x2, . . . , xm) is a marginal 
PDF of xi. Note that τ and Lxi depend on the path of xi,xi 

and the correlation or causality among different variables can 
be inferred by comparing τ for different xi, as demonstrated xi 

below. 
The remainder of this paper is organized as follows. 

Section II provides our stochastic model. The corre-
sponding Fokker-Planck equation is solved numerically in 
Sec. III. Sections IV and V present results and conclusions, 
respectively. 

II. STOCHASTIC MODEL 

We apply Eqs. (2) and (3) to the stochastic version of 
the previous prey-predator model of the L-H transition [6]. 
Specifically, despite highly nonlinear multiscale interactions 
involved in the L-H transition, the very nature of self-
organization (universality and robustness) [25,29] makes it 
possible to capture qualitative behavior of the L-H transition 
through reduced models and to explore different parameters at 
a low cost [7–11]. In [6], turbulence amplitude , zonal flow v 
and density gradient N are governed by 

∂� 2= N − a1
2 − a2V

2 − a3v �, (4)
∂t 

∂v b1 v = − b3v, (5)
∂t 1 + b2V 2 

∂N = −c1 N − c2N + Q. (6)
∂t 

Here ai, bi, and ci are non-negative constants, V = dN2 (with 
d a positive constant) is the mean flow, and Q is the external 
heating that ultimately drives the entire system. Equations 
(4)–(6) are identical to Eqs. (6)–(8) in [6], v, , and N here 
corresponding to VZF , E , and N in [6]. 

The right side of Eq. (4) represents the linear growth 
of turbulence by the density gradient and turbulence damp-
ing due to turbulence nonlinear interaction, mean flow, and 
zonal flow, respectively. Equation (5) similarly represents 
the zonal flow growth from turbulence, subject to the mean 
flow damping (1 + b2V 2) and linear (collisional) damping. 
Equation (6) represents the damping of the density gradient 
due to turbulence and neoclassical or collisional effect, and 
the density gradient growth due to the external heating Q. 
Equations (4)–(6) support the L-H transition either with or 
without going through limit-cycle oscillation (I phase), de-
pending on precise parameter values and Q. This I phase is 
due to the self-regulation between v and ; for sufficiently 
large Q the dithering phase enters a quiescent H mode where 
v = = 0 [6,7,9,30]. In this model, zonal flows trigger the 
transition to a quiescent H mode by lowering the power 
threshold, while mean flow V locks the plasma in the H mode. 
It is not our intention here to explore all possible cases, but 
to focus on a limited set of calculations to focus attention 
on the effect of stochasticity and new methods. Similarly, 
detailed bifurcation analyses can be done [7,30], but would 
be of limited interest for the time-dependent Q(t ) that we 
consider here. Fluctuating (oscillatory) Q was shown to help 
the L-H transition by lowering the constant part of the power 
threshold [9]. We will show a similar effect of stochasticity in 

and v. 
For a stochastic model, it turns out to be better to work with   

x = ±  . Solving the Fokker-Planck equation (11) below for 
x instead of = x2 allows us to avoid the need to impose 
the “boundary” → 0 and instead to deal with the much 
more natural boundaries x →±∞. This also makes additive 
noise more straightforward than it would be in the original 

formulation. One further simplification to facilitate the 
numerical calculation of PDFs via Eq. (11) is to assume that 
N evolves sufficiently rapidly to approximate Eq. (6) as  

Q
N = . (7) 

c1x2 + c2 

Equations (4), (5), and (7) were also proposed as a reduced L-
H transition model in [30], and the even more drastic approx-
imation N = Q/c2 was used in [11] to investigate the effect 
of intermittency, while mean flow was neglected completely 
in [31] to understand bistability of zonal flows and geodesic 
acoustic modes. Numerical solutions of either the original set 
of three or the reduced set of two ODEs yield qualitatively 
the same results, but for the corresponding Fokker-Planck 
equation the reduction from three to two variables results in 
substantial computational savings, as discussed below. 

By introducing two independent δ-correlated Gaussian 
stochastic noises   and η in Eqs. (4) and (5) respectively [32], 
we formulate stochastic equivalents of Eqs. (4) and (5): 

dx  1 2]x,= f +  ,  f = [N − a1x2 − a2V
2 − a3v (8)

dt 2 
dv b1x2 v = g+ η, g = − b3v, (9)
dt 1 + b2V 2 

with N given by Eq. (7). The noise terms satisfy 

 (t ) (t ) �= 2Dxδ(t − t ), η(t )η(t ) �= 2Dvδ(t − t ), 

 (t )η(t ) �= 0,   �=� η �= 0, (10) 
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where the angular brackets denote averages. Dx and Dv are the 
amplitudes of the stochastic noise   and η, affecting x and v 
respectively. 

III. FOKKER-PLANCK EQUATION 

The Fokker-Planck equation [32] for the joint PDF p = 
p(x, v, t ) corresponding to Eqs. (8)–(10) is  

∂ p ∂ ∂ ∂2 p ∂2 p= −  (g p) − ( f p) + Dx + Dv 2 
. (11)

∂t ∂v ∂x ∂x2 ∂v

In contrast, without the simplification from using Eq. (7), 
the Fokker-Planck equation would describe the joint PDF 
p(x, v, N, t ) depending on three random variables (x, v, N ) 
in addition to time t ; using  Eq. (7) thus reduces the di-
mensionality of the numerical problem from three to two 
“spatial” variables, allowing a far more thorough exploration 
of parameter values, as well as more narrowly peaked PDFs. 

The numerical solution of (11) involves second-order finite 
differencing, with grid spacings as small as 10−3 in both x and 
v. The time stepping is second-order Runge-Kutta, with time 
steps as small as 2 × 10−5. Taking a box size with xmax = 
vmax = 2 is sufficiently large to be a good approximation to �� 
x, v →∞; that is, the total probability p dx dv remains 
conserved within 10−4 or better for all runs presented here. 

In order to facilitate the comparison with the previous 
deterministic model [6], we use the same parameter values 
a1 = 0.2, a2 = a3 = 0.7, b1 = 1.5, b2 = b3 = 1, c1 = 1, c2 = 
0.5, and d = 1 as those in [6]. For the input power we take 
Q(t ) = 0.1 + 0.03t , for  t ∈ [0, 50], so Q ramps up from 0.1 to 
1.6. The initial condition is p(x, v, 0) ∝ exp[−{(|x| − 0.5)2 − 
v 2}/5 × 10−3]. Other initial conditions with small values of x 
and v were also investigated and yield similar results. For the 
noise terms Dx and Dv we explored the range 10−4 and greater. 
Varying Dv turned out to have relatively little impact, so we 
fix Dv = 10−4, and present results for Dx = [1, 4, 16] × 10−4. 
Since the prediction from the deterministic model in [6] has 
been reproduced in various laboratory experiments in terms 
of the time evolution of the mean values, the results from our 
stochastic model are expected to capture experimental results 
qualitatively. 

From the joint PDF p(x, v, t ) we can also obtain � 
the marginal PDFs p(x, t ) = p(x, v, t ) dv and p(v, t ) = � 

p(x, v, t ) dx, and then compute the information length diag-
nostics Ex and Ev [τx(t ) and τv (t )] as in Eq. (3), and Lx(t ) = � �t t 

0 dt1/τx(t1) and Lv (t ) = 0 dt1/τv (t1) as in Eq.  (2). Although 
other statistical quantities including entropy and Fisher infor-
mation were also calculated, they were less informative in 
capturing the L-H transition and thus are not presented below. 

IV. RESULTS 

A. Mean, variance, phase portrait 

Figure 1 shows the average quantities x and v , � 
the standard deviations σx = (x −� x )2 and σv = � 

(v −� v )2 , and the (normalized) cross-correlation 
(x −� x )(v −� v ) /(σxσv ). Note that the average �·� refers 

to the mean value over the first quadrant x, v > 0 only, that is, � �2 2f �≡ 0 0 f p dx dv. Following the abrupt increase in v 

FIG. 1. Panel (a) shows the averages x (solid lines) and v 
(dashed lines) against time. Panel (b) shows the corresponding 
standard deviations σx (solid) and σv (dashed). Panel (c) shows the 
cross-correlation. Panel (d) is the phase portrait in ( x , v ). The dots 
with associated numbers correspond to t = 0, 15, 40. For all panels, 
[black, blue, red] correspond to Dx = [1, 4, 16] × 10−4, respectively. 

at t ≈ 11 for all Dx, the dithering I phase starts where x and 
v oscillate. The dithering phase ends when x and v both 

collapse back towards zero, corresponding to the transition to 
the H mode. 

The self-regulation between x and v can be inferred from 
the phase shift, as the maxima of x precede those of v ; 
note similarly the negative sign of the cross-correlation at 
t ≈ 15, and the following (with alternative sign) fluctuations. 
The large increase in σx and σv at the beginning and end of the 
dithering phase also signifies the importance of fluctuations 
around the transitions. Larger values of Dx help entering the 
H mode at earlier time, and thus at smaller power Q (= 
0.01 + 0.03t). That is, greater stochastic noise helps the L-H 
transition by lowering the power threshold. Also, the upper 
left panel of Fig. 1 reveals that the larger Dx is, the smaller the 
maximum values are of v and x around t ≈ 15. However, 
exactly the opposite tendency is observed in σx and σv in the 
upper right panel of Fig. 2, where the larger maximum values 
of σx and σv occur for a larger Dx. Their overall effect can only 
be understood by investigating PDFs, and will be discussed 
below when discussing Figs. 4 and 5. 

B. Information length diagnostics 

Figure 2 shows the information length diagnostics Ex, 
Ev , Lx, and Lv . Plotted as functions of time, Ex and Ev 

exhibit an intricate series of oscillations in the I phase, with 
similar magnitudes overall but alternating in which is larger 
(see below for detailed discussion). When Ex and Ev cross, 
the timescales of p(x, t ) and p(v, t ) match (reminiscent of 
resonance), implying a strong correlation between the two. 
Furthermore, right before the transition to the I phase we 
have Ex Ev , corresponding to τx τv , which suggests that 
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FIG. 2. From left to right the three columns (a,b,c) are Dx = 
[1, 4, 16] × 10−4. The top row (a1,b1,c1) shows Ex (red) and Ev 

(blue) against time. The middle row (a2,b2,c2) shows information 
phase portrait in the (Ex , Ev ) plane using logarithmic scales. The 
bottom row (a3,b3,c3) shows the corresponding Lx (red) and Lv 

(blue). 

x (turbulence) is leading the dynamics. Also, larger Dx not 
only shortens the extent of the dithering phase, but further 
dampens out these oscillations, resulting in a significantly 
reduced number of crossings. 

By comparing Ex and Ev in Figs. 2 with �x� and �v� in 
Fig. 1, we make the following important observations. First, 
Ev starts increasing at much earlier time (e.g., t ≈ 3.9 for  
Dx = 10−4, t ≈ 3.7 for  Dx = 16 × 10−4) than �v� does (at 
t ≈ 11). The maximum in Ex occurs at earlier times (e.g., 

t ≈ 10.5 for  Dx = 10−4, t ≈ 9.5 for  Dx = 16 × 10−4) than 
�x� (at t ≈ 13.5). These results suggest that Ex and Ev forecast 
the transition to the I phase earlier (better) than mean values. 
Third, the effect of Dx is more pronounced in Ex and Ev 

than in �x� and �v�. For instance, the maximum values of 
Ex are ≈ 4 to 0.6  for  Dx = [1, 16] × 10−4 while that of �x�
is approximately the same, reflecting the sensitivity of our 
diagnostics. Fourth, the transition to H mode can also be 
inferred from the loss of the (fast) oscillation around τx = τv 

as well as the sudden increase in Ex and Ev due to the loss of 
self-regulation. 

As noted above, the oscillations between Ex and Ev during 
dithering manifest the competition between turbulence and 
zonal flows as a result of self-regulation. To visualize this, 
we show the information phase portrait of Ex against Ev in 
the middle row in Fig. 2 where Ex and Ev oscillate around a 
straight line Ex = Ev (τx = τv ). 

Finally, the bottom row of Fig. 2 shows the information   
lengths Lx and Lv . Note that the slopes of Lx and Lv are Ex  
and Ev , respectively. Overall, Lx is slightly larger than Lv , 
due to the general tendency to have Ex > Ev (τx < τv ). The 
shape (slope) of Lx and Lv is seen to change over the time; in 
particular, during dithering, Lx and Lv are almost parallel due 
to self-regulation between x and v. 

C. Joint PDFs 

Figure 3 shows the joint PDFs p(x, v, t ) in the  (x, v) plane. 
The overall position of the peaks is as expected, based on the 
(�x�, �v�) phase portraits in Fig. 1. Seeing the full structure, 
however, reveals striking features, including strongly non-
Gaussian features and multiple peaks. It is also of great 
interest that the final collapse to x, v → 0 does not consist 
of a simple motion of the peak toward the origin. Instead, 
comparing times t = 30, 40, 50, we see how the original 

FIG. 3. Contour plots of the joint PDFs p(x, v, t ), with x on the horizontal axis and v on the vertical axis. From top to bottom the three 
rows (a,b,c) are Dx = [1, 4, 16] × 10−4. In each row, the six panels (1–6) are at times t = 5, 10, 20, 30, 40, 50, respectively. Notice how t = 5 
has different (x, v) ranges than the later times. Contours are on a logarithmic scale, 10−3, 10−2.5, 10−2, etc., to show the overall structure and 
not just the peaks. 
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� 
FIG. 4. The marginal PDFs p(x) = p(x, v) dv at t = 10, 

20, 30, 40 in panels (a,b,c,d), respectively. As in Fig. 1 the curves 
are color-coded with [black, blue, red] corresponding to Dx = 
[1, 4, 16] × 10−4 respectively. 

peak remains largely in the same position, and a secondary 
peak grows and eventually dominates near the origin. Thus, 
although x and v appear to decrease to x �=� v �= 0 
continuously in time, the actual PDFs develop this multimodal 
structure. Similar (albeit opposite) evolution from a unimodal 
to a bimodal PDF was shown in the Ginzburg-Landau phase 
transition [19], where the final bimodal PDF was established 
by the growth of the two new peaks of a bimodal PDF 
and the decay of the peak of the initial unimodal PDF. The 
physics behind such behavior is that a new (stable) attractor 
gets stronger while the old (unstable) one becomes weaker in 
stochastic environment. Also, note that for a PDF with more 
than one peak, mean value (standard deviation) fails to capture 
the mostly likely value (PDF width), calling for caution in the 
physical interpretation of these quantities. 

D. Marginal PDFs 

Figures 4 and 5 finally show the marginal PDFs p(x, t ) 
and p(v, t ). We see the strong deviations from Gaussian 
behavior and a significant asymmetry around the peak even 
more clearly here than in Fig. 3, and again the bimodal nature 
of the L-H transition. Since Figs. 3–5 are shown only for 
x, v � 0, PDFs have multiple peaks in x, v = (−∞, ∞). Of 
particular note is the observation that in Figs. 4 and 5 p(v, t ) 
is more stretched than p(x, t ) at the right tail; that is, rare 
events of large v are more common than rare events of large 
x, even though the stochasticity Dx is directly acting on x. 
This effect of Dx to elevate the right tail of p(v, t ) more than 
that of p(x, t ) suggests that the transitions to I phase and H 
mode are facilitated by rare events of strong zonal flow v. 

V. CONCLUSIONS 

Our work was motivated by the fact that L-H transition 
experiments are very expensive, requiring careful planning. 
In particular, it is desirable that experiments are done in a 
way to be able to measure the most important quantities. To 

� 
FIG. 5. The marginal PDFs p(v) = p(x, v) dx  at t = 10, 

20, 30, 40 in panels (a,b,c,d), respectively, and with color coding as 
in Figs. 1 and 4. 

this end, we have proposed methods based on time-dependent 
PDFs and information diagnostics that are very sensitive to 
the dynamics during the L-H transition in terms of elucidating 
correlation and self-regulation among different players and 
spatial locations, forecasting, etc. While rare, large-amplitude 
events (e.g., blobs) have been thought to be important for 
enhancing transport, our results point out the interesting pos-
sibility that rare, large amplitude events of strong zonal flow 
shearing can also play an important role in helping the L-H 
transition. This provides an interesting paradigm to be tested 
in future works, e.g., by measuring PDFs of zonal flow as well 
as turbulence in the L-H transition in experiments. 

Practically, to apply our method to experimental data, 
time-dependent PDFs can be calculated by sampling the data 
in the time series of different variables (fluctuating density, 
electric field, etc.) by using moving time windows, as was 
done in a Hasagawa-Wakatani turbulence model [26] where 
information length was shown to be a novel methodology 
of assessing the effects of coherent structures and turbulent 
dynamics in plasmas, e.g., quantifying the decorrelation of 
the flux between different spatial positions due to coherent 
structures. Therefore, one promising future work will be to 
utilize our method to predict undesirable plasmas events (e.g., 
edge-localized modes, eruptions) well before other methods 
can, so that the occurrence of such events can be avoided or 
else controlled to some degree. It will also be of great interest 
to apply this methodology to understand the temporal-spatial 
dynamics in other L-H transition turbulence models as well as 
experimental data to quantify correlations at different spatial 
positions [26,28]. 
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