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Abstract: GPS is taken as the most prevalent positioning system in practice. However, in urban areas,
as the GPS satellite signal could be blocked by buildings, the GPS positioning is not accurate due to
multi-path errors. Estimating the negative impact of urban environments on GPS accuracy, that is
the GPS environment friendliness (GEF) in this paper, will help to predict the GPS errors in different
road segments. It enhances user experiences of location-based services and helps to determine where
to deploy auxiliary assistant positioning devices. In this paper, we propose a method of processing
and analysing massive historical bus GPS trajectory data to estimate the urban road GEF integrated
with the contextual information of roads. First, our approach takes full advantage of the particular
feature that bus routes are fixed to improve the performance of map matching. In order to estimate
the GEF of all roads fairly and reasonably, the method estimates the GPS positioning error of each
bus on the roads that are not covered by its route, by taking POIinformation, tag information of roads,
and building layout information into account. Finally, we utilize a weighted estimation strategy to
calculate the GEF of each road based on the GPS positioning performance of all buses. Based on
one month of GPS trajectory data of 4835 buses within the second ring road in Chengdu, China,
we estimate the GEF of 8831 different road segments and verify the rationality of the results by
satellite maps, street views, and field tests.

Keywords: location-based service; GPS positioning error; map matching; matrix completion

1. Introduction

GPS is widely used in many location-based services (LBS), such as traffic, tourism, and social
interaction. However, the error of GPS positioning has negative impacts on LBS users and even
leads to decision-making mistakes. For example, the British police once broke into the home of an
innocent person due to a GPS error [1]. Although some methods can improve the accuracy of GPS
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positioning (e.g., increasing the number of satellites and the vector tracking based on Kalman filtering),
they are not effective enough to reduce multipath errors [2–4].

Concretely, the multipath effect refers to the phenomenon in urban canyons (e.g., urban areas with
tall buildings, overpasses, or street trees); GPS signals cannot reach the receiver through the line of
sight (LoS), but are reflected via the building surface or the ground. Recent works [5–8] confirmed by
reassuring experiments that the multipath effect, especially in a built-up urban area, has a major impact
on the precision of GPS positioning. Besides, according to the indication generated in the statement of
the National Marine Electronics Association (NMEA), the locating information included in the GPS
raw data can be used to measure satellite constellations’ geometry errors and receivers’ instrumental
errors to some extent. However, the work in [5] indicated that when the primary signal is reflected,
the additional distance travelled by the signal due to the reflection can inflate the pseudorange estimate,
which cannot be reliably distinguished by GPS receivers. It is not enough to measure the multipath
error or GPS positioning error definitely based only on such information [7,9].

To measure the impact that the urban environment has on GPS positioning accuracy, we define
GPS environment friendliness (GEF) as the metric: the more negative the effect of the building layout
environment on GPS accuracy in a certain area, the poorer the GEF is in this area. The estimation
of GEF information in different areas is a fundamental work: First, it helps to improve the user
experience of location-based services while the GPS accuracy is limited. For example, if a driver using
a ride-sharing app (e.g., Uber) finds that a passenger is located in a poor-GEF area, instead of relying
solely on the GPS location information, the driver may choose to communicate the location details with
the passenger in advance through a phone call, which reduces the risk of detouring caused by GPS
positioning errors. Second, estimating GEF is also helpful for improving the accuracy of GPS in urban
areas. There are many methods to improve the accuracy of GPS by combining GPS samples with other
complementary information, such as Wi-Fi fingerprints [10], street-view media [11], and 3D-maps [12].
However, the implementation of those solutions often introduces extra costs, such as deploying Wi-Fi
access points or updating Wi-Fi fingerprints. GEF can remind people which locations have the most
urgent need to deploy an assisted positioning solution (i.e., the locations with the worst GEF) to
minimize the overall cost while achieving satisfactory positioning accuracy.

Researchers have conducted several interesting studies on GPS accuracy in different urban
areas. For example, Schipperijn [13] selected four routes and recorded 68,000 GPS points to test the
dynamic accuracy of the GPS positioning. Drawil [7] proposed a scheme to address localization
accuracy estimation utilizing the GPS dataset collected by a vehicle and the knowledge about the
surrounding environment. However, most of these have been small-scale and road-by-road field
studies. They usually selected some representative streets or locations to evaluate their environmental
influence on positioning accuracy. These effort-consuming approaches were only able to estimate the
GEF in a limited number of locations. It was difficult to provide a comprehensive city-scale evaluation.

To this end, this paper proposes an approach to estimate the city-scale GEF based on the historical
GPS trajectory data of buses. The basic idea is first to divide the urban road network into short and
equal-length road segments so that GEF at different locations within the same segment can be treated
as the same. Then, we estimate the error of each GPS localization record by using historical bus GPS
data and the bus routes’ information. Finally, we statistically analyse the positioning error of the buses
on different road segments and calculate their GEF level.

Although the above basic idea is easy to be understand, our proposed approach is not
straightforward, since we encounter the following challenges. The routes of all buses in total have
a high coverage for roads in a city, while the trajectory data of a single bus can only cover a small
part of the road network. It is impossible to assess the GEF of all roads by simply using the GPS data
of a single bus. Furthermore, there is a significant variance in the quality of GPS receivers among
different buses, which means that the GPS positioning accuracy of different buses on the same road
may differ from each other. This may lead to an incorrect conclusion if we estimate the GEF of a road
only depending on the buses whose routes cover the road. The GPS samples of different buses cannot
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be simply aggregated to solve the problem. Therefore, when integrating the GPS data of different
buses, we need to develop more sophisticated mechanisms to eliminate the influence brought by the
variance of GPS receivers’ quality, so as to compare the GEF on different road segments. The main
contributions of the paper are:

• We estimate the GEF of roads at the city scale using the historical GPS trajectories of buses,
without the need for extra specialized efforts in GPS data collection. Compared to other methods,
this makes our method more scalable, less costly, and more accessible to be transferred to other
cities, by only using already existing bus trajectory data. Besides, buses are supposed to run on
fixed routes many times a month, which is the prior knowledge for map matching. This helps
improve the accuracy and efficiency in the map matching process and reduce the misestimation
brought by accidental factors (e.g., the position of satellites, weather).

• We propose a novel three-phase framework for estimating the GEF of urban roads. First, the bus
routes’ data and the historical bus GPS data are mapped to the road network based on the map
matching algorithm. We calculate the errors of each bus on road segments through which it
passes. Secondly, we propose a matrix completion-based method, which makes full use of the
correlation between the GPS errors of buses on different road segments and uses the third-party
data of urban environment information as regularization to infer the GPS errors of buses on all
road segments. Finally, we integrate the errors of buses on all road segments to estimate the GEF.

• We conduct an evaluation and verify our estimated GEF by comparing it with the ground truth
collected through field study and the street views on some road segments. The results confirm
the effectiveness of our proposed evaluation approach.

2. Related Work

2.1. GPS Error and Calibration

GPS data have attracted much attention among data mining researchers. Most of the works
comprehensively leveraged multiple machine learning techniques, combining GPS data with
multi-source heterogeneous data, e.g., POIdata, crowd movement data, etc., to analyse and discover
knowledge of a city and further resolve problems in constructing a smart city [14–23].

However, most works referring to GPS data suffer critical misguidance by GPS positioning
error. There are three main components of GPS error [24–27] including Satellite clock error,
signal transmission error (e.g., ionospheric delay, tropospheric delay, multipath effect), and the GPS
terminal device’s error. Recent works [7,8] confirmed from reassuring experiments that the multipath
effect, especially in built-up urban areas, has a major impact on the precision of GPS positioning.
Although many methods can improve the accuracy of GPS positioning, they are not effective enough
to reduce multipath errors [2–4]. Wu et al. [28] proposed a novel error reduction system for trajectories.
However, this approach is designed for sequential localization trajectories and thus cannot figure out
the true position of any single GPS positioning record. Wu et al. [29] proposed a model to locate a
single GPS position accurately, which was the first work to locate one GPS position as a road. However,
the training data of this model relied on the desirable results of map matching, which also encounters
problems in urban canyons and tunnels. The possible variance of the quality of GPS receivers was not
taken into account.

To obtain a reliable position in urban areas, there are also some existing positioning techniques
incorporating GPS data with extra information, such as Wi-Fi fingerprints [10], street view
videos/images [11], and 3D maps [12]. In order to maximize the benefits and minimize the total
cost, decision-makers should select where to deploy expensive devices cautiously to collect such
complementary information. The introduction of GEF provides economic guidance of where to map
out those devices.



Sensors 2020, 20, 1580 4 of 20

2.2. Measuring GPS Positioning Performance

Researchers have thoroughly studied GPS positioning errors and their causes. GPS receivers
cannot reliably distinguish between reflected and direct signals [5]. Besides, there is an indication
of the satellite geometry effect on the accuracy, which is called the dilution of precision (DOP) in
the GPS measurement data according to the National Marine Electronics Association’s (NMEA)
statements [30]. However, the work in [9] indicated that the DOP of the site varies throughout the day.
The work in [7] also indicated that although the DOP as a feature shows some power to figure out
the positioning performance of a given measurement, it cannot be relied on to perform measurement
accuracy classification.

In order to measure the precision of GPS records, data in various scenarios are collected. The work
in [31] proposed an urban road friendliness evaluation approach to evaluate GPS positioning accuracy
only based on the vehicle trajectory data. The work in [7] proposed a scheme to address localization
accuracy estimation by using a vehicle equipped with a standard GPS receiver to collect 6520 real-life
GPS measurements. Knowledge about the surrounding environment was also utilized to optimize
the classification performance. Modsching [32] gathered positioning data with several facilities at
4000 points in a mid-sized city. The work in [8] selected a few typical zones in the city and then
collected GPS data in those places. The work in [13] collected information only from a closely spaced
body building apparatus in an outdoor fitness areas. Those existing works were effort-consuming,
and some required excess GPS terminal devices, which is not desirable with a limited budget. As a
result, they could not estimate the GPS positioning performance at the city scale.

3. Basic Concepts

Definition 1. Road network. The road network is a graph RN = (Nodes, Edges) comprised of a set of roads
connected to each other in a graph format. Edges = {edgei} is the set of the edges with each edge associated
with a road. Nodes = {nodei} is the set of the nodes with each node associated with an intersection represented
by (idi, longitudei, latitudei). Edge set Edges is a subset of the cross product N× N, where N is the number of
nodes. Each element edge(nodei, nodej) in Edges is a street connecting nodei to nodej. In this work, the road is
depicted as a line without any width. The road network data of Chengdu was downloaded from OpenStreetMap
(Please check the official site of OpenStreetMap for more details: http://www.openstreetmap.org/).

Definition 2. Road segment. A road segment roadi of the road edgej is a continuous part of edgej. A road
could be divided into several road segments. In this paper, we set the length of a road segment equal to 50 m.
The road whose length was less than 50 m was treated as a single road segment.

Definition 3. Bus route. The bus route BRi is a subgraph of the road network graph RN. In this paper,
there were 184 different bus lines in Chengdu that covered n = 8831 road segments in road network RN.
There was always more than one bus running on the same route. For example, the red lines in Figure 1 denote a
part of the bus line route.

Figure 1. GPS trajectory data of two buses on the same roads.

Definition 4. Bus trajectory. The trajectory Gi = {gi,t}(i = 1, . . . , m) of busi is a sequence of GPS
points gi,t. We used m to denote the number of buses. m equalled 4835 in our work. The GPS point gi,t =

http://www.openstreetmap.org/
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(timei,t, latitudei,t, longitudei,t) consists of a time-stamp timei,t, a latitude record latitudei,t, and a longitude
record longitudei,t. For example, the black points in Figure 1 denote the GPS trajectory data of buses.

Definition 5. POI information of the road segment. The POI information of the road segment is depicted
by several different POI categories from the online map. For roadi, we constructed a POI feature vector
ci = (cnt1, . . . , cntnum), where num denotes the number of different POI categories and cntj(j = 1, . . . , num)

denotes the number of nearby (within 200 m) POI, which belong to category poij. Concretely in this
paper, there were num = 17 different POI categories according to the Gaode Online Map (Please check
the official site of Gaode Map for more details: http://ditu.amap.com/.): catering services, traffic infrastructures,
government agency, vehicle sales, corporations, scenic spots, sports services, science education services, shopping
services, accommodation services, vehicles services, serviced apartment, finance insurance services, life services,
vehicle maintenance, and medical care services.

Definition 6. Tags of the road segment. According to the OpenStreetMap, road segments could be categorized
by tags: PrimaryLink, LivingStreet, service, residential, SecondaryLink, primary, MotorwayLink, unclassified,
motorway, trunk, TrunkLink, tertiary, secondary (Please check the wiki of OpenStreetMap for more details of the
tags: http://wiki.openstreetmap.org/wiki/Highway_link/). Each road segment is labelled with only one tag.

Definition 7. Layout information of the road segment. The layout information of the road segment
is depicted by several different floors. For roadi, we constructed a layout feature vector hi =

(height1, . . . , heightnum), where num denotes the number of different floors and heightj(j = 1, . . . , num)

denotes the number of nearby (within 200 m) buildings with j floors. Concretely in this paper, there were
num = 60 different floors within the second-ring road in Chengdu, China

Definition 8. GPS positioning bias. The GPS positioning bias refers to the linear distance between the GPS
positioning record and the real position of the bus. It ranges from a few meters in open sky environments to over
80m in urban canyons [7]. The positioning bias of a bus on the road could be divided into two orthonormal parts.
One is vertical to the road, while the other is parallel with the road. The vertical component is much greater than
the parallel component, which can be ignored [7,32]. In this paper, such bias is measured as the vertical distance
between the GPS positioning point and the real road where the bus is running.

Definition 9. GPS positioning error. The real horizontal position of the bus along the roads can be figured
out based on map-matching algorithms. However, the width of the actual road cannot be ignored with regard
to the GPS positioning bias. It is difficult to tell on which lane the bus is running. As a result, we utilized
the standard deviation (std) of the GPS positioning biases to measure the buses’ GPS positioning errors on
roads, instead of the mean values of the biases. In this way, the GPS positioning error is defined as the standard
deviation (std) of the GPS positioning biases. Such error is affected by satellite ephemeris error, receiver clock
error, multipath error, spherical error, receiver measurement noise, and so on. Multipath error is the major
component when locating in urban areas. The concepts above are shown in Figure 2.

Definition 10. GPS environment friendliness (GEF). Multipath error is caused by the delay of the signal
arrival due to its reflection off building surfaces in the area. GPS environment friendliness defines the degree
to which the multipath phenomenon affects the GPS performance. The GEF depends on the surrounding
environment. It is independent of time, weather, the quality of GPS positioning terminal device, and the number
of visible GPS satellites. We assumed that different locations within the same road segment shared a similar
environment and the same GEF.

For a specific road segment, the GEF is considered poor if the std is high, while lower std indicates
that the GEF is better. To understand the GEF introduced in this paper intuitively, we show the
GPS trajectory data of one bus on different roads in Figure 3. Yellow lines denote the road network,
and black points denote the GPS records of the bus. The GPS points in the green circle are densely

http://ditu.amap.com/.
http://wiki.openstreetmap.org/wiki/Highway_link/
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distributed, which means that their variance is small. It is indicated that the std of the GPS positioning
error of the bus on this road is small and the GEF here is good. On the contrary, the GEF of the road
marked by the red circle is poor.

Figure 2. Meta information of the data.

Figure 3. GPS trajectory data of one bus on different roads.

4. Methodology

4.1. Overview of the Framework

We developed an urban road GPS environment friendliness estimation approach based on the
historical bus GPS trajectory data. The whole framework of the GEF evaluation was composed of the
following main components:

1. We utilized the hidden Markov model (HMM)-based map matching algorithm [33–36] to map
the bus trajectories’ data to the roads. The accuracy and efficiency of the map matching process
were improved significantly based on the pre-knowledge of bus routes. After the map matching,
we constructed a matrix, where the element of the matrix represented the positioning error
standard deviation of each bus on each road segment. Note that the route of one bus only covered
a small portion of the roads in the city. There were few buses running on any given road. Thus,
the matrix to be completed was very sparse.
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2. We estimated the positioning errors of each bus on each road segment based on the matrix
completion algorithm, taking the nearby environment information into consideration. Due to
the variance of the quality of the GPS receivers, an incorrect conclusion would be drawn if we
estimated the GEF of a road only depending on the buses whose routes covered the road. Ideally,
the GEF of a road is supposed to be estimated according to the GPS errors of all buses. Therefore,
we needed to complete the matrix that was constructed in the first phase.

3. The GEF of each road segment was estimated based on the completion result. The buses whose
GPS terminal device had a higher quality would have more weight on the evaluation of the GEF.

The details will be presented in the following subsections.

4.2. Map Matching-based GPS Error Matrix Construction

The observed GPS positions needed to be aligned with the road network on the digital map to
conduct further analysis. This process is called map matching, which is a fundamental pre-processing
step for trajectory-based research and applications [28,29,37,38]. We applied the HMM-based map
matching algorithm as an algorithm prototype [33], which is based on two rules:

• As mentioned in Definition 8 and [7,32], the probability that a GPS point is matched to a road
segment is related to the vertical distance between them. The shorter the distance is, the greater
the probability is.

• Since the bus is continuously running on the road, the road segment corresponding to the current
GPS sampling point should be close to the road segment corresponding to the previous point.

Based on the two above rules, the algorithm could calculate the emission probabilities and the
transition probabilities and then use a dynamic planning strategy (Viterbi algorithm) to find the best
matched path.

However, if we applied the above algorithm prototype to our bus trajectory dataset directly,
the amount of calculation would be relatively large. It is difficult for the map matching algorithm
to achieve good performance when applied directly to trajectories with large errors [28]. In fact,
compared to the trajectory data of other vehicles (such as taxi data), bus trajectory data have their
own characteristics. Fixed bus routes data can provide important supplementary information for map
matching, which can reduce the number of candidate roads and improve the computational efficiency
and matching accuracy. Concretely, a bus usually ran on its specific route. Therefore, the real position
of each GPS point was believed to be located on the nearest road segment that was covered by the route
of this bus, and the GPS positioning error of the record could be calculated. Besides, there were several
buses running on the same fixed line, and each of them went through the routes many times under
different weather conditions and in time periods. As a result, the error produced by map matching
and accidental factors (e.g., the position of satellites, weather) was reduced to some extent.

Concretely, we divided roads in the road network into short equal-length road segments. On the
one hand, we assumed that the GEF at different locations within the same road segment was the
same. On the other hand, the GEF of a segment could be estimated only if there were enough GPS
record points.

As the bus route data provided by the public transport company were also designated by GPS
points, we then needed to match bus route data to the road network. After that, the bus routes were
designated by road segments, to which bus trajectory data would be mapped (i.e., the red lines in
Figure 4). Figure 4 shows the map matching result of bus route data of Line 1022. The yellow lines
denote roads in Chengdu. The black points denote the GPS point of line 1022 route data. The red lines
denote the map matching results of the black points.

Some GPS record points could not be mapped to the bus routes within the threshold distance.
The main reason for the failure of map matching was that the bus did not travel exactly on the
given route. Bus route data provided by the bus company may not be entirely accurate because
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of a temporary road diversion for construction or the delayed update of bus route data after route
adjustment. The bus may not travel on a given route because of repair or refuelling. What is more,
the bus may be temporarily scheduled to travel on another route. If there were more than five
consecutive points far away (more than 50 m) from the given route, the bus was believed to be veering
off its route. Those points would be mapped to other nearby segments on the road network until the
bus returned back to its given routes.

Figure 4. Map matching result of Bus Line 1022 route data.

4.3. GPS Error Estimation with Additional Environment Information Integration

After mapping each GPS record to the corresponding road segment, we calculated the positioning
biases of each bus on every passing road segment. The standard deviation of biases was utilized to
measure the error. Matrix Var was then constructed, where the entry vij denotes the error of busi on
roadj. However, there existed no bus that could pass all roads, making this matrix very sparse.

The routes of all buses in total had a high coverage for roads in the city, while the bus trajectory
data of a single bus was quite sparse in the city. For example, within the second-ring of Chengdu (the
city we focused on in this study), a single bus’ coverage was only about 2.5%. The GEF of roads in the
city had to be estimated based on the GPS records of many buses instead of a single bus.

However, there was a significant variance in the quality of GPS receivers among different buses,
which meant that the GPS positioning performance of different buses on the same road segment may
differ from each other. Therefore, the GPS samples of different buses could not be merely aggregated
to solve the low-coverage problem of a single bus. Therefore, a high GPS error may be caused by
GPS receivers with low quality, even on the road segment with good GEF. To reduce such negative
influence and estimate the GEF of road segments fairly, we needed to estimate the error of each bus on
each road segment. In order for the influence brought by the variance of GPS receivers’ quality to be
eliminated, we could compare the GEF on different road segments more fairly.

To complete a matrix, compressive sensing is widely applied [39]. Given a sparse matrix for
which most of its items are missing, compressive-based matrix completion will estimate those missing
items according to the specific cost function and optimization algorithm. In addition to the common
cost function, we tried to incorporate prior knowledge in our completion framework, i.e., the nearby
building layout information of roads. With the above prior knowledge, it was possible for us to
estimate missing items in the matrix more precisely.

4.3.1. Basic Objective Function of Matrix Completion

After the map matching process, we constructed a matrix Var recording the standard deviation of
GPS positioning biases, which measured the errors on road segments:

Var =

v11 · · · v1n
...

. . .
...

vm1 · · · vmn

 =


−→v1
...
−→vm


m×n
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vij denotes the bias std of busi on road segments roadj. Row vector −→vi , (i = 1, · · · , m) denotes the
errors of busi on each road segment. Column vectors denote errors of each bus on the given road
segment. If the number of GPS records of busi on roadj was less than 20, the vij would be set as a
missing value. Note that the matrix Var was to be completed and could be very sparse. The basic
objective function of matrix completion was set as [39]:

F(Sign, Var, L, R) = ||Sign · LRT −Var||2F + λ(||L||2F + ||R||2F) (1)

The size of binary identification matrix Sign was the same as matrix Var. sij equalled 1 if vij was
known. Otherwise, sij equalled 0. sij = 1{(i,j)|vij is known.}. The result of matrix completion was LRT .
The size of matrix L was m× a, and the size of matrix R was n× a. a was a hyper-parameter of matrix
completion. The penalty term ||Sign · LRT −Var||2F measured the similarity between the completion
result and original matrix. ||L||2F + ||R||2F was the regularization term. λ was the hyper-parameter
denoting the importance of the penalty term.

4.3.2. Measure the Relative Advantage of GPS Receivers’ Qualities

To measures the relative advantage of GPS positioning terminals’ qualities between each of
two buses, an m × m matrix Qua was constructed. To test the equality of variations, we used the
F-test [40], initially developed by A.Fisher. The hypothesis was that the means of a given set of
normally distributed populations, all having the same standard deviation, were equal. Under the
Gaussian assumption, any scaled pair of variations of our sample could form a pivot variable following
an F distribution if the null hypothesis was true. Then, we could perform hypothesis tests on any pair
of variations at the level of 5%.

Qua =

 k11 · · · k1m
...

. . .
...

km1 · · · kmm


m×m

where kij measures the relative advantage of busi over busj.

kij =


1 if the quality of busi is better than busj,

−1 if the quality of busi is worse than busj,

0 if the relative advantage cannot be determined, or i = j.

Concretely, busi and busj only compared with each other on roadr, which has the most GPS points
of them. It was assumed that GPS errors followed a Gaussian distribution. Thus, we performed an
F-test between the GPS error sequences of busi and busj on roadr, while the confidence coefficient was
95%. As a result, the quality of busi was considered as better than the quality of busj, if vir < vjr.

However, if there was not any road that had been travelled by both busi and busj, we would try
to find another intermediate busq. The quality of busi was considered as better than the quality of busj,
if kiq = 1 and kqr = 1, while both of the confidence coefficients should be higher than 97.5%; or the
relative advantage between busi and busj was considered not able to be determined. In order to make
the matrix completion result meet the relative advantage between different buses, we constructed an
m×m matrix Tran based on matrix Qua.

Tran =


Σm

j=1k1j −k12 · · · −k1m

−k21 Σm
j=1k2j · · · −k2m

...
...

. . .
...

−km1 −km1 · · · Σm
j=1kmj


m×m
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Consider the transformation of matrix Var:

Tran · Var =


Σm

j=1k1j · · · k1n
...

. . .
...

km1 · · · Σm
j=1kmj



−→v1
...
−→vm



=


Σm

j=1k1j
−→v1 − k12

−→v2 − · · · − k1m
−→vm

...
−km1

−→v1 − km2
−→v2 − · · · −+Σm

j=1kmj
−→vm


m×n

To get better insight into this transformation, consider Row1 of Tran · Var.

Row1(Tran · Var)

= Σm
j=1k1j

−→v1 − k12
−→v2 − · · · − k1m

−→vm

= Σm
j=2k1j

−→v1 − k12
−→v2 − · · · − k1m

−→vm

= Σm
j=2k1j · (−→v1 −−→vj )

= Σm
j=2k1j · (v11 − vj1, v12 − vj2, · · · , v1m − vjm)

= ( Σm
j=2k1j(v11 − vj1), · · · , Σm

j=2k1j(v1m − vjm) )1×m

Recall the construction of kij; ideally, the value of kij(vil − vjl), l = 1, . . . , m should be a negative
value for all (i, j) pairs. Thus, every input of Tran · Var should be a negative value in the ideal case,
while a positive value is an inappropriate input.

Due to the lack of a zero lower bound of the Tran · Var F-norm, the cost function would not
converge if we added this matrix into the cost function directly. Consider a monotone matrix operation
Eθ(·), θ > 0: θ is a predetermined positive number controlling the absolute values of eθys to avoid
overflow while processing the algorithm. Here, θ = max(yij)

−1, (i = 1, 2, · · · , m; j = 1, 2, · · · , n).

Eθ(Y) =

eθy11 · · · eθy1n

...
. . .

...
eθym1 · · · eθymn


where Y is an arbitrary m× n matrix:

Y =

y11 · · · y1n
...

. . .
...

ym1 · · · ymn


The preferred properties of matrix operation Eθ(·):

1. The elements in Eθ(Tran · Var): inherit the relative magnitudes of the elements in Tran · Var,
small values for the ideal case, large values for an inappropriate case.

2. It guarantees a lower bound of ||Eθ(Tran · LRT)||2F, so that the objective function below has a
lower bound. Thus, it is possible to converge when we solve the system iteratively.

As a result, we added the penalty below to the objective function:

λ2(||Eθ(Tran · LRT)||2F)
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4.3.3. Measure the POI Information of Road Segments

The GEF of road segments with tall buildings would be more likely to be poor due to the urban
canyon phenomenon; while it may good if there is an open square near a road segment. We believed
that the POI information of road segments was able to characterize the nearby building layout
environment. For example, there may be more POI of catering services and shopping services on the
road segments with tall buildings. We assumed that the GEF of two roads was similar to each other,
when the Euclidean distance between two POI vectors annotating two roads was small. According to
Gaode Map, the road was depicted by 17 different POI categories. For roadi, we constructed a POI
feature vector −→ci :

−→ci =
(

cnt1 · · · cnt17

)
where cntq(q = 1, . . . , 17) is the number of nearby (within 200 m) POI, which belong to categoryq.
Then, compute the Euclidean distance between each POI vector of roads segments:

Dist =

d11 · · · d1n
...

. . .
...

dm1 · · · dmn


where dij denotes the Euclidean distance between the POI vector of ci and cj. Thus, we can construct
matrix Poi to describe the similarity of the POI distribution between each of two roads.

Poi =

p11 · · · p1n
...

. . .
...

pn1 · · · pnn


where:

pij =

0 EuclideanDistance(ri, rj) > ε,
1/dij

Σk1/dik
EuclideanDistance(ri, rj) < ε.

k denotes the number of road segments, which had a similar POI distribution as roadi. In the
Experiment Section, ε was set to 250, tuned by 3-fold cross-validation. According to our assumption,
the objective function should be penalized if there was a big difference between GPS errors of buses on
roads, whose POI distributions were similar to each other. As a result, we added the penalty below to
the objective function:

λ3 · Σn
i=1

n
Σ

j=1,j 6=i

1
dij
||LRT pij||2F

4.3.4. Measure the Tag Information of Road Segments

According to the OpenStreetMap, road segments could be categorized by tags (e.g., PrimaryLink,
LivingStreet). Similar to the POI distribution, it was also assumed that the GEF of roads would be
similar, if they had the same tag. As a result, we constructed the matrix Tag = (tij)n×n.

Tag =

t11 · · · t1n
...

. . .
...

tn1 · · · tnn
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tij =


−1 i = j,

1/(k− 1) if roadi and roadj have the same tag,

0 otherwise.

k denotes the number of road segments that have the same tag as roadi and roadj. According to our
assumption, the objective function should be penalized if there was a big difference between the GPS
errors of buses on roads, which belonged to the same tag category. The new regularization term was
designed as:

λ4 · ||LRTTag||2F

4.3.5. Measure the Layout Information around Road Segments

The GEF of road segments with tall buildings around would be more likely to be poor due to
the urban canyon phenomenon, while it may be good if there was an open square near the road.
It was assumed that the layout information around road segments was able to characterize the
nearby environment. The GEF of two roads should be similar to each other if the nearby building
environments were similar as well. We assumed that the GEF of two roads was similar to each other,
when the Euclidean distance between two layout vectors annotating two roads was small. For example,
there may be more urban canyons or other terrain that lead to poor GEF on the road segments with
tall buildings.

The number of floor levels in Chengdu ranged from 1 to 60. Therefore, the layout of each road
segment was depicted as a 60-dimensional vector, which meant the number of buildings (within
200 m) of each corresponding height. For roadi, we constructed a layout feature vector

−→
hi to depict its

nearby building layout:
−→
hi =

(
height1 · · · height60

)
where heightq(q = 1, . . . , 60) is the number of nearby (within 200 m) buildings that belongs to q
f loors. Then, we computed the Euclidean distance between each height vector of road segments:
Dist = (dij)m×n. dij denotes the Euclidean distance between the layout vector of hi and hj. Thus,
we could construct matrix Layout = (lij)n×n to describe the similarity of the layout between each of
two segments.

lij =

0 EuclideanDistance(hi, hj) > ε,
1/dij

Σk1/dik
EuclideanDistance(hi, hj) < ε.

k denotes the number of road segments that have a similar layout as roadi. According to our assumption,
the objective function should be penalized if there was a big difference between the GPS errors of
buses on roads, whose layouts were similar to each other. As a result, we added the penalty to the
objective function, and the final objective function of matrix completion was:

F(Sign, Var, L, R, Tran, Poi, Tag) = ||Sign · LRT −Var||2F + λ1(||L||2F + ||R||2F) + λ2(||Eθ(Tran · LRT)||2F)

+λ3Σn
i=1

n
Σ

j=1,j 6=i

1
dij
||LRT pij||2F + λ4||LRTTag||2F + λ5Σn

i=1

n
Σ

j=1,j 6=i

1
dij
||LRT lij||2F

(2)

4.3.6. Optimization of the Objective Function

The general objective function of matrix completion can be solved iteratively, where each iteration
consists of two steps [39]. First, for a given fixed L, update R element-wisely in the gradient descent
direction of the objective function. Second, fixing the updated R, update L element-wisely in the
same manner.
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However, it was intractable to adopt the gradient descent method because of the term
λ2(||Eθ(Tran · LRT)||2F) in our objective function. The computational complexity in a single iteration to
update terms was O(m2n2), and m× n was the size of the input matrix. If we took 50 m as the length
of the road segment, then the complexity was about O(48352 × 88312), which was intolerably high.

Here, we took advantage of the simulated annealing algorithm to get a more effective solution.
An empirically well-adopted initialization [39,41] of L and R is given by non-negative matrix
factorization (NMF) [42]. The detail pseudocode of algorithm is shown in Algorithm 1.

Algorithm 1: Matrix completion.
Input: VAR, Sign, Tran, Poi, Tag, Layout;

λ1, λ2, λ3, λ4, λ5;
InitTemp, MinTemp, delta, MaxIter.

Output: LRT is the completed matrix

M← input the missing values in VAR with 0
(L, R)← NMF(M)

NowTemp = InitTemp
NrowL = Number o f rows o f L NcolnL = Number o f columns o f L
NrowR = Number o f rows o f R NcolnR = Number o f columns o f R

while NowTemp > MinTemp do
InitCost = ComputeCost(VAR, Sign, Tran, Poi, Tag, Layout; λ1, λ2, λ3, λ4, λ5;L, R)

for i in 1 to MaxIter do
lrs = sampling 150 numbers < NrowL lcs = sampling 150 numbers < NcolnL
lrs = sampling 150 numbers < NrowR lrs = sampling 150 numbers < NcolnR for j
in 1 to 150 do

tempL = L∗

tempR = R∗

tempL[lrs[j], lcs[j]] = tempL[lrs[j], lcs[j]] + 15 ∗ random U(0, 1)
tempL[lrs[j], lcs[j]] = tempL[lrs[j], lcs[j]] + 15 ∗ random U(0, 1)
Cost = ComputeCost(VAR, Sign, Tran, Poi, Tag, Layout; λ1, λ2, λ3,

λ4,λ5; tempL, tempR)
end
if cost < MinCost then

MinCost = cost
L = L∗

R = R∗
end
if cost < InitCost then

L∗ = tempL
R∗ = tempR

else

P = e
−(Cost−InitCost)

NowTemp if random U(0,1)< P then
L∗ = tempL
R∗ = tempR
InitCost = Cost

end
end

end
Nowtemp = NowTemp× delta

end
Return L, R, LRT
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4.4. Weighted Estimation of GEF

After completing the GPS positioning error matrix, we obtained the approximate GPS positioning
error for each bus on each road segment. Our goal was to rank the road segments based on GPS
environment friendliness. However, considering the different quality of GPS terminal devices on
different buses, we needed to give buses different weights when estimating the GEF of road segments.
The intuition was that the bus with a high-quality GPS terminal device could better distinguish between
road segments. The quality of the GPS receivers of most buses was acceptable. The GPS receiver
would be considered as unconvincing if its positioning performance was significantly different from
other buses on the same road segment. We used distinctioni and consistencyi to measure the weight of
busi. distinctioni represents the capacity of busi to distinguish between road segments. consistencyi
represents the degree of busi’s consistency with other buses on the same road segment.

distinctioni = std(vi,:)

consistencyi =
1

mean([
vij−mean(v:,j)

std(v:,j)
]j=1,2,··· ,n)

weighti = distinctioni · consistencyi

Given the weights of buses, we could calculate the average error of roadj as follows:

GEFj =
Σm

i=1(weighti · vij)

Σm
k=1weightk

After that, we ranked road segments based on average errors. The smaller the average error was,
the better the GEF was.

5. Experiment

In this section, we estimate the GEF of roads covered by bus routes within the second-ring road in
Chengdu, China. The estimation results were compared with the baseline methods. We also selected
several road segments to collect real-life GPS measurements as the ground-truth to verify the rationality
of the results by a case study.

5.1. Dataset Description

The data we used were from a real-world dataset collected in Chengdu, China. The GPS
points were recorded by the buses running on their fixed routes for 30 days (2015.11.01–2015.11.30),
which meant that the GPS readings were recorded under different conditions (e.g., different weather
conditions and satellite positions). For each bus, it generated 2 to 4 records per minute, and thus,
the total number of GPS point records was about 62,783,000, which was far more than the existing
field-test works. The basic statistics about the data are shown in Table 1.

The urban road network was obtained from OpenStreetMap (Please check the official site of
OpenStreetMap for more details: http://www.openstreetmap.org/). The urban road network was
divided into short and equal-length road segments, so that the GEF at different locations within the
same segment could be treated as the same.

As mentioned above, there was a significant variance in the quality of GPS receivers among
different buses. This was because buses were managed by different public transportation operating
companies, and the time of GPS installation and update varied from each other, which lead to the
diversity in GPS receivers’ brands and models. Taking the city of Chengdu as an example, there were
more than 80 different types of GPS receivers in 4835 buses. For different GPS receivers, the quality
varied obviously. To understand the difference intuitively, we show the GPS trajectory data of two
buses on the same roads in Figure 1. Yellow lines denote the road network. Black points denote the

http://www.openstreetmap.org/


Sensors 2020, 20, 1580 15 of 20

GPS records of the buses. Red lines denote the route where the buses are running. Obviously, the GPS
positioning accuracy of the first bus was worse than the second bus.

Table 1. Dataset description.

Bus Line Number 184
Bus Number 4835
Duration 30 days
GPS Point Record Number 62,783,000
Sampling Rate of GPS Receiver 2–4 points/min
Number of Types of GPS Receivers >80
Length of Road Segment 50 m
Road Segment Number 8831
Average of Buses Running on Each Segment 121
Average of Segments Covered by Each Bus Line 171
Number of GPS Points a Bus Recorded on a Segment >20

5.2. Result of Map-Matching

About 80.90% (50,789,815) of the GPS points were mapped to their given bus routes under the
distance threshold. About 81.09% of such remaining (19.10%) points were mapped to nearby road
segments under the distance threshold. As a result, 96.39% (60,517,304) of all points were mapped
successfully. Other points were abandoned as accidental outliers.

5.3. Evaluation of the Matrix Completion Result

We employed k-fold cross-validation to evaluate the precision of the completed results of our
completion algorithm. Concretely, k was set as 3 in this experiment. We used estimate error to measure
the accuracy of matrix completion.

In detail, all non-zero positions of matrix Var were equally divided into k parts (P1, P2, . . . , PK).
For each part Pi, we covered it and preserved the remaining k− 1 parts. We applied our completion
algorithm to matrix Var and obtained the completed matrix LRT . We calculated the estimate-error [43]

according to LRT as follows: ξi =
∑r,t:vr,t∈Pi |vr,t−LRT

r,t|
∑r,t:vr,t∈Pi

|vr,t | . Enumerate the covered part from P1 to Pk,

and calculate the final estimate-error as: ξ = ∑k
i=1 ξi

k . Repeat the above operations t times, and
calculate the average estimate error as the evaluation result of the completion algorithm. The rank
comparing result is shown in Table 2, and we can see that our method outperformed the following
baseline methods:

Table 2. The estimate error of our method and baseline methods. NMF, negative matrix factorization.

Methods Matrix Completion Error

NAKNN 0.37242
Baseline Approaches CBKNN 0.32951

NMF 0.31883

Basic Method 1 0.29371
Our Approach Integrating Layout Information 0.29348

Integrating Layout and Tag and POI 0.29311
Integrating All Penalty Terms 2 0.29220

Naive KNN: For each empty entry in one row (column), we searched the k nearest rows (columns)
whose corresponding entry was not null according to the Euclidean distance. Then, KNN used these
non-empty entries to do the estimation.
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Correlation-based KNN: This was similar to naive KNN. The only difference was that it used
the correlation to measure the similarity instead of the Euclidean distance.

Non-negative matrix factorization (NMF) [42]: The matrix was factorized into two matrices,
with the property that all matrices had no negative elements. Matrix multiplication of the factorized
matrices was the completion result.

Our proposed algorithm consistently outperformed the baseline methods, which showed the
superiority of our approach over other methods. The layout information, as well as the POI
information represented the arrangement of the buildings at both sides along the road, and the
tag information indicated the width of the road. They measured the signal occlusion effect to some
extent. When integrating this prior information as additional penalty terms into the algorithm,
the matrix completion performance was improved. Besides, it was also necessary to consider the
variance between receivers’ qualities when estimating the error.

5.4. Case Study

It is extremely hard to evaluate the GPS positioning accuracy with ground-truth measurements
in the whole city due to the cost. Case studies are common practices in related works [7,13,28].
We collected the ground-truth through a field study on six road segments and conducted the case
studies to make an overall convincing comparison between our approach and the baseline methods.
During all tests, all receiver outputs were obtained by an Android smartphone (HUAWEI GRA-CL00).
A receiver moved along each road to generate GPS trajectories. About 200 GPS measurements were
collected on each road segment.

The results of the field tests are summarized in Table 3. The baseline methods directly took the
average value of GPS measurements’ standard deviations of the buses that ran on the given road as
the estimated GEF score. The GPS records and the street views of road segments are shown in Figure 5.
The black line represents the real walking route marked manually on the map. Red points are the GPS
positioning sequence records.

Table 3. Field tests results. GEF, GPS environment friendliness.

Road Baseline Our Approach std of GPS Biases in Field Tests (m)
Rank GEF Rank GEF

1 87 Satisfied 10 Satisfied 1.960
2 5307 Poor 1851 Satisfied 3.283
3 5312 Poor 2325 Satisfied 3.378
4 5177 Poor 326 Satisfied 1.492
5 759 Satisfied 6012 Poor 9.165
6 5085 Poor 5043 Poor 5.035

Our approach produced poorer GEF estimation for the 5th segment and satisfied estimation for
the 2nd–4th segments. Both our approach and the baseline method produced similar estimation for
the 1st segment (satisfied GEF) and 6th segment (poor GEF). According to the result of field tests,
the GPS errors on Roads 1–4 were low, which meant that the GEF was good. The street views of
Roads 1–4 also showed that the nearby buildings and trees were not so high, and the viewing range
was wide, while the GPS errors on Roads 5–6 were high, which meant that the GEF here was poor.
The street views of Roads 5–6 showed that there were many dense tall buildings on both sides of
the roads. For Road Segments 1 and 6, both our approach and the baseline method gave the correct
estimation. However, the baseline method degraded the GEF of Road Segments 2–4 and overrated the
GEF of Road Segment 5. Field tests showed that our method estimated the GEF of these road segments
correctly and outperformed the baseline method.
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(a) Road 1 (b) Road 2 (c) Road 3

(d) Road 4 (e) Road 5 (f) Road 6

Figure 5. Field testing results and street views of road segments.

6. Limitation and Future Work

There were still a few limitations of this work.

1. Although the bus routes could cover most of the primary roads in the city, there were still plenty
of bypasses whose GEF could not be estimated. However, our approach could be easily applied
to trajectory data of taxis to tackle those bypasses, which is the future work. Besides, using the
results of GEF assessment as the training data, environmental attributes could be extracted from
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urban street view pictures. Those attributes could be employed to estimate the GEF of cities
without bus trajectory data.

2. There were only a few road segments where we conducted case studies due to the cost. Real-life
GPS measurements on more road segments are expected to be collected, which is the future work.

3. We intend to apply our approach to location-based services and improve the user experience.
Specifically, a model assessing the confidence level of real-time bus location and predicted arriving
time could be modified from the GEF evaluation method.

7. Conclusions

We proposed a method for assessing the GPS environment friendliness of urban road segments
based on processing and analysing massive historical bus GPS trajectory data. This method first
took advantage of the unique feature that bus routes are fixed to construct the mapping from GPS
data to road segments. Secondly, the missing data were completed based on the inherent correlation
among GPS errors and the environment information. Finally, we put forward a weighted evaluation
strategy to estimate the GEF, taking full consideration of the influence of the different GPS devices’
qualities. We exploited 4835 buses’ one-month trajectory data within the second-ring road of Chengdu
to evaluate the GEF of 8831 different road segments, and the rationality of results was verified by
satellite maps, street views, and field tests.
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