

Ultra narrowband filtering with Prism
signal processing: Design and
simulation

Henry, M.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Henry, Manus "Ultra narrowband filtering with Prism signal processing: Design and
simulation". IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society.
Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics
Society. Institute of Electrical and Electronics Engineers Inc. 2018, 2748-2753.
https://dx.doi.org/10.1109/IECON.2018.8592770

DOI 10.1109/IECON.2018.8592770
ESSN 2577-1647
ISBN 9781509066841

Publisher: IEEE

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without prior permission
or charge. This item cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder(s). The content must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright
holders.

This document is the author’s post-print version, incorporating any revisions agreed during the
peer-review process. Some differences between the published version and this version may
remain and you are advised to consult the published version if you wish to cite from it.

https://dx.doi.org/10.1109/IECON.2018.8592770

Ultra narrowband filtering with Prism signal
processing: design and simulation

Manus Henrya,b

aDepartment of Engineering Science
University of Oxford

Oxford, OX1 3PJ, UK.
manus.henry@eng.ox.ac.uk

Abstract—Prism signal processing is a new FIR filtering
technique offering a fully recursive calculation and simple filter
design. Its low design and computational cost are particularly
suited to the autonomous signal processing requirements for the
Internet of Things. This paper describes how arbitrarily narrow
bandpass filters may be designed and implemented using a chain
of six Prisms. In one simulation, a design with 40 MHz sampling
rate, 1 MHz central frequency and 0.1 Hz bandwidth results in
an FIR filter of length 771 million samples. This filter can be
evaluated in 0.39 s per sample on a desktop computer: to
achieve this update rate using a conventional non-recursive FIR
calculation would require supercomputer resources.

Keywords— Industrial cyber-physical systems, Recursive FIR
filtering, bandpass filtering.

I. INTRODUCTION

Prism Signal Processing (PSP) [1] is a new FIR technique
particularly suited to the requirements of autonomous
computing [2] and for intelligent, adaptive components in
Cyber-Physical Systems and the Internet of Things (IoT). The
Prism (Fig. 1) is an FIR filter generating one or two outputs.
Its properties are defined by its characteristic frequency m and
harmonic number h [1]. It offers a unique combination of
desirable properties: the calculation is FIR, and hence robust;
the outputs have linear phase delay; the calculation is fully
recursive so that the computational cost per sample is low and
fixed, irrespective of the length of the filter; and its design is
straightforward, given desired values of m and h, requiring
only the evaluation of linearly spaced sine and cosine values.

This design simplicity enables new Prism networks to be
created in real time in response to changes in signal processing

Is
h(t)I h  m sin(2 hmt) s(t) dts    dttIhmtmI hh

sss)()2sin(

Ic
h(t)

I h  m cos(2 hmt) s(t) dtc 

Input s(t)

h  hI  m cos(2 hmt)  I (t) dtcc c

bSchool of Electrical Engineering and Computer Science
South Ural State University

Chelyabinsk, Russia

requirements. Ref [3] outlines a fault detection scheme in
which the detection of an unwanted frequency component in a
signal results in the construction of a new Prism network to
filter out that component. Refs [4] and [5] describe a condition
monitoring scheme for rotating machinery, with two stages.
The first stage monitors rotation startup. Once the steady
rotation speed is established, in the second stage a set of Prism
networks, including filtering elements, are instantiated to
simultaneously track six harmonics of the rotation frequency.

The computational efficiency of PSP is illustrated in [6],
which describes a fuel injection monitoring application where
flow measurements are generated at 48 kHz using modest
computation hardware. The calculation, which includes the
removal of unwanted signal components, enables the tracking
of fuel pulses as short as 1 ms.

Here we present a new example of how PSP can provide
flexible functionality in autonomous systems – through the
design and instantiation of bandpass filters. As discussed in
[1], conventional filter design is resource intensive, and may
be a significant impediment to autonomous signal processing
in the field. We outline a simple design procedure whereby a
chain of six Prisms can be used to implement a bandpass filter
with arbitrary central frequency and bandwidth. As will be
shown, the procedure can be used to design and implement
even ultra-narrowband filters. The same PSP characteristics
apply to bandpass filtering: the design is simple even for long
filters, while the computational cost is low and independent of
the filter length. The only constraint on filter design is
available memory. The new technique makes possible the
design and instantiation of new bandpass filters in real time on
autonomous devices with modest computing resources.

Iss
h(t)




Icc

h(t)

Gs
h(t)

Fig. 1. Structure of Prism to generate a single output, Gs
h .

mailto:manus.henry@eng.ox.ac.uk

Fig. 2. Gains of Prism output Gs
h for h = 1, …, 8.

Section II outlines the theory of Prism bandpass filter
design. Section III gives examples of Prism-based bandpass
filters, including a 770 million tap filter which would require
supercomputing resources to evaluate using conventional FIR
filtering but which can be evaluated on a desktop computer.
Section IV combines a bandpass filter with a Prism-based
tracker to demonstrate successful tracking of a signal of
known frequency with a signal-to-noise ratio of -60dB.

II. BANDPASS FILTER DESIGN

The bandpass filter design uses a sequence of Prisms
where each generates only one output, Gs

h (Fig. 1). Given m,
the characteristic frequency of a Prism, and h its harmonic
number, the gain of Gs

h at frequency f is given by ([1])

2
2 r

gain (f ,m,h) sinc (r) ,where r  f / m (1)
2 2r  h

Fig. 2 shows how the gain of Gs
h varies with frequency

(relative to m) and h. In brief, the peak negative value occurs
just below hm Hz and the peak positive value occurs just about
this value. The first step towards constructing a bandpass filter
is illustrated in Fig. 3, which shows a pair of Prisms having a
common value of h but with different values of m, selected so
that peak negative and positive value of Gs

h align.

Fig. 4 shows the outputs of three such Prism pairs. Three h
values are used: 250, 333, and 500 respectively. Higher h
values result in a narrower high gain region, which in each
case here occurs within ± 0.5 Hz of the centre frequency.

Fig. 3. A pair of Prisms in sequence, forming one stage of a bandpass filter.

Fig. 4. Gs
h functions designed for maxima or minima occurring at 100 Hz.

For each h, two curves are plotted, where the mi values are
selected so that either the maximum or the minimum value of
the corresponding frequency response occurs at 100 Hz.

The main obstacle to be overcome in the creation of
efficient Prism-based bandpass filters is the presence of large
side-lobes. Here a lobe is defined as any region between
notches (i.e. zero values) in the frequency response. The ideal
bandpass filter would comprise simply of a single lobe around
the central frequency. However, each Gs

h function has two
relatively high gain lobes (one positive and one negative)
centred on hm Hz, as well as many other lower gain lobes. The
arrangement in Fig. 4 both illustrates this problem and
suggests a solution. All the curves with a positive peak at 100
Hz have another peak of similar magnitude at a lower
frequency. All the curves with a negative peak at 100 Hz have
another peak of similar magnitude at a higher frequency.
However, a combination of each pair (using the concatenation
of two Prisms shown in Fig. 3) may be used to create more
symmetric bandpass filters, each with a dominant central lobe.

The result of combining each pair of frequency response
curves is shown in Fig. 5, where the y axis has been changed
to show the gain in decibels relative to the peak value
(ignoring the sign of the gain). Each Prism pair filter has a

Fig. 5. Bandpass filter responses, where each bandpass filter is created by
combining the two frequency responses for each value of h in Fig. 4.

Fig. 6. Frequency response of bandpass filter formed from three Prism pairs.

peak at the desired central frequency and has a reasonably
symmetric and declining gain with distance from the peak.

Fig. 6 shows the results of combining all 3 filters together,
through a concatenation of six Prisms in series, and where the
resulting gain is the product of the gains of each individual
Prism. The resulting frequency response shows a rapid decline
in gain with distance from the central frequency. The selected
ratio of the three h values results in effective cancellation of
side lobes. No frequency outside the range 100 Hz ± 0.1Hz
has a relative gain in excess of -70 dB.

This filter structure, consisting of three pairs of Prisms,
with the given ratios between the three h values, is the basic
template used for the remainder of the paper. Alternative filter
structures, with different numbers of Prisms (singles or pairs),
or different ratios between h values, could be used to achieve
different bandpass performances, with corresponding trade-
offs in terms of the computational resources required.

This filter structure is now generalized as follows. We
assume the desired filter has central frequency c, and
bandwidth (defined below) b. Simple formulae are used to
provide the corresponding values of m and h for each of the
six Prisms in order to match this performance requirement.
Once the values of m and h are determined, the subsequent
design of each individual Prism is readily achieved.

Fig. 7. Frequency response of bandpass filter formed from three Prism pairs.

Fig. 7 shows the frequency response of the generalized
three pair Prism filter with arbitrary central frequency c and
bandwidth b. Here the bandwidth is defined such that the
relative gain in the region [-b/2, + b/2] remains within the
range -3 … 0 dB. In other words, the region of length b Hz,
centred on c Hz, has a relative gain always in excess of -3dB.
Given this definition of b, other characteristics of the filter are
readily defined, as follows:

• The gain drops to -40 dB at ± 1.55 b Hz

• The gain drops to -80 dB at ± 2.42 b Hz

These are the specific characteristics of this filter template.
Other filter designs, for example using more Prisms, may
result in more rapid drops in gain at the expense of additional
computational load and/or higher memory requirements.

Given desired values of c and b, the corresponding values
of m and h for each Prism are calculated as follows. Firstly,
the three values of h are calculated, in the approximate ratio
6:4:3, (i.e. 500:333:250) while allowing that only integer
values are permitted. The desired values are found using:

h_vals = round (0.0371  c/b  [6, 4, 3]) (2)

where round is the integer rounding function and 0.0371 is
a scaling constant to achieve -3dB gain at ± b Hz. For
example, if c = 1000 Hz and b = 1 Hz, the desired h values are
223, 148 and 111.

For sufficiently large h (say h > 20), it is observed that the
peak positive and negative values of the corresponding
frequency response function Gs

h occur at approximately m 
(h + 0.371) and m  (h – 0.371) respectively. Accordingly, to
make these peak values correspond to the central frequency c,
the two values of m for each value of h are given by:

m1 = c / (h + 0.371)

m2 = c / (h - 0.371) (3)

Using equations (2) and (3), the values of h and m are
calculated for each of the six Prisms in the filter. Continuing
the example of c = 1000 Hz and b = 1 Hz, the corresponding
desired values of m are as follows.

• For h = 223, m1 = 4.4768 Hz, m2 = 4.4917 Hz.

• For h = 148, m1 = 6.7398 Hz, m2 = 6.7737 Hz.

• For h = 111, m1 = 8.9789 Hz, m2 = 9.0392 Hz.

In practice, the values of m are constrained by the
requirement that each Prism integral length must be a whole
number of samples; this may lead to small variations in the
realised values of m with corresponding minor variations in
the actual frequency response of the filter.

Continuing the same example, assuming a sample rate fs of
1 MHz, then the total length of the filter is 1,928,000 samples.
As an approximate rule, the filter length is 1.93 x fs/b. Fig. 8
compares the theoretical response of the filter with its
numerical performance when filtering white noise, based on
the power spectrum obtained using 100 seconds of data. Here
the filter has been implemented using a single threaded C++
function and executed on a desktop PC.

Fig. 8. Theoretical and numerical performance of bandpass filter.

III. BANDPASS DESIGN EXAMPLES

We now present a series of examples that demonstrate the
generality of the design procedure given in the preceding
section. For the first three examples the sample rate fs is
constant at 40 MHz and the central frequency c is 1 MHz, but
the bandwidth is reduced from 10 Hz (Fig. 9) to 1 Hz (Fig. 10)
to 0.1 Hz (Fig. 11). This sequence illustrates the relationship
between the bandwidth b and h, and the resulting filter length.

In Fig. 9, the highest value of h is 22,260 and the total filter
length is 7,716,800 samples. The numerical implementation of
the filter shows a good match with the theoretical frequency
response. In Figs. 10 and 11, as the filter bandwidth is reduced
by an order of magnitude each time, the corresponding values
of h and the total filter length in samples both increase by
approximately tenfold, so that in Fig. 11 the total filter length
is 771,677,600 samples. As the passband frequency shortens,
the frequency discretization of the FFT used to analyze the
numerical results becomes more apparent. Examples in the
next section provide alternative means of verifying that the
filters are performing as expected.

Fig. 12 shows another filter with the same fs but a lower
central frequency, with c = 100 Hz and b = 1 Hz. The resulting
performance is broadly similar to that shown in Fig. 10,
demonstrating independence from the selection of c.

The memory required to implement a Prism-based bandpass
filter is proportional to the filter length. However, the compute
time per sample is constant for a particular processor. The
filters of Figs. 8–12 all require 0.39 s per sample, using a
single thread on an Intel Xeon E5-2630 processor, running at
2.3 GHz, and with 32 Gb RAM. The evaluation of a
conventional, non-recursive, 771 million sample FIR filter in
0.39 s would require a computational load (based on 2 
filter length/computer time per sample) of 3.9 Petaflop/s,
equivalent to the 28th fastest supercomputer [7], which uses
126,468 Xenon E5-2695 chips running at 2.1 GHz. This
illustrates the computational efficiency provided by Prism
signal processing.

Fig. 9. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 10Hz

Fig. 10. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 1Hz

Fig. 11. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 0.1Hz

Fig. 12. Theoretical and numerical gain: fs = 40MHz, c = 100 Hz, b = 1 Hz

IV. TRACKING LOW SNR SIGNALS VIA PRISM FILTERING

Bandpass filters may be used to provide effective pre-
filtering for a Prism-based tracker, for example a Recursive
Signal Tracker (RST) ([6]), which calculates frequency,
amplitude and/or phase estimates of an input sinusoid. Such
bandpass pre-filtering can facilitate the tracking of signal
components which otherwise would not be possible, due to
high levels of noise and/or the presence of other frequency
components. Fig. 13 illustrates the basic scenario – a three
stage bandpass filter passes its output to an RST which then
tracks the sinusoidal parameters of the filter output.

Figs. 14-19 show the tracking performance achieved in the
following simulation. A sinusoid with frequency 100 kHz and
amplitude 1 mV is mixed with high amplitude white noise so
that the signal-to-noise ratio is -60 dB. The resulting noisy
signal is sampled at 20 MHz, filtered and tracked. As the input
signal frequency is already known to high precision, the
bandpass filter is designed using c = 100 kHz and b = 0.1 Hz.

Fig. 14 shows the power spectra of the raw and filter signals
respectively. Given the high level of noise, the signal at 100
kHz is not visible in the power spectrum. However, the
filtered signal has a strong peak at 100 kHz.

Figs. 15 – 18 show the tracked frequency, amplitude, phase
and the recovered signal (constructed using the tracked
amplitude and phase) respectively. In each case, the tracked
parameter and its true value are shown in the upper plot, while
the residual error is shown in the lower plot. In Fig. 15, the
true frequency is constant at 100 kHz; this value is tracked
with a root mean square error of approximately 1e-3 Hz.

Fig. 13. Bandpass filter and tracker

Fig. 14. Filter and track example: (above) power spectrum of unfiltered data,
with 100 kHz component not visible above noise floor; (below) filtered
signal with 100 kHz component visible.

Fig. 15. Filter and track example: frequency tracking performance.

Fig. 16. Filter and track example: amplitude tracking performance.

In Fig. 16, the true amplitude is constant at 1 mV; this value
is tracked with a root mean square error of 0.066 mV.

Fig. 17. Filter and track example: phase tracking performance.

Fig. 18. Filter and track example: signal tracking performance.

Fig. 19. Tracking periodic step changes in amplitude.

In Fig. 17, the true phase varies between +/- π radians; this
value is tracked with a root mean square error of 0.06 radians.
In Fig. 18, the recovered signal (calculated from the tracked
amplitude and phase) is compared with the original. The root
mean square error is approximately 0.1 mV, resulting in an

overall change in SNR from -60 dB to + 17.9 dB as a result of
the filter and track procedure. The amplitude and phase
parameters of the tracked signal are compensated for the pre-
filtering to enable the reconstruction of the original signal.

Fig. 19 shows a second filter and track example,
demonstrating the dynamic response of the system. The
sample rate is 20 MHz, the central frequency c is 250 kHz, the
bandwidth b is 0.1 Hz, and the signal to noise ratio is -60 dB.
The true signal amplitude undergoes a series of step changes
between 1 mV and 2 mV: this pattern is essentially recovered
by the filter and track mechanism.

The filtering and tracking scheme is straightforward to
design and implement and can deliver useful results even with
low SNR inputs. The only requirement is knowledge of the
frequency range (i.e. the values of c and b) to be monitored,
which may be determined at a local level in real time. These
techniques offer a powerful toolset for autonomous devices to
adapt signal processing schemes to match changing local
conditions and evolving goals.

V. SUMMARY

This paper has outlined a scheme for constructing Prism-
based bandpass filters using simple design rules, where the
only requirement is knowledge of the desired central
frequency and bandwidth. The resulting filters share the
computational efficiency of individual Prisms. Combining a
bandpass filter with a Prism-based tracker facilitates the
tracking of a signal component even with low SNR.

A companion paper to this conference describes a bandpass
filtering demonstrator, which delivers the equivalent DSP
performance of up to 384 TMAC/s, using an Artix-7 FPGA
which has a nominal rating of approximately 1 TMAC/s.

The examples in both papers illustrate the suitability of the
design scheme to create long filters, which would require
supercomputing resources if calculated using the conventional
non-recursive FIR convolution. However, the technique is
equally well-suited to shorter filter designs.

VI. REFERENCES

[1] MP Henry, F Leach, M Davy, O Bushuev, MS Tombs, FB Zhou, and S
Karout, “The Prism: Efficient Signal Processing for the Internet of
Things”, IEEE Industrial Electronics Magazine, pp 2–10, December
2017. DOI: 10.1109/MIE.2017.2760108.

[2] JO Kephart and DM Chess, “The vision of autonomic computing”, IEEE
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[3] MP Henry, “An Introduction to Prism Signal Processing applied to
Sensor Validation”, Measurement Techniques, pp 1233 – 1237, Mar
2018. DOI: 10.1007/s11018-018-1345-1

[4] MP Henry, V Sinitsin, “Prism Signal Processing for Machine Condition
Monitoring I: Design and Simulation”, 1st IEEE International
Conference on Industrial Cyber-Physical Systems (ICPS-2018). May
2018.

[5] MP Henry, V Sinitsin, “Prism Signal Processing for Machine Condition
Monitoring II: Experimental Data and Fault Detection”, 1st IEEE
International Conference on Industrial Cyber-Physical Systems (ICPS-
2018). May 2018.

[6] F. Leach, S. Karout, F.B. Zhou, M.S. Tombs, M. Davy, and M.P. Henry,
“Fast Coriolis mass flow metering for monitoring diesel fuel injection”,
Flow Measurement and Instrumentation, 58 (2017), pp 1–5.

[7] Top500 List. https://www.top500.org/list/2017/11/?page=1 accessed
April 11, 2018

https://www.top500.org/list/2017/11/?page=1

	Ultra narrowband filtering cs
	Ultra_narrowband_filtering_with_Prism_signal

