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Ultra narrowband filtering with Prism signal 
processing: design and simulation 
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Abstract—Prism signal processing is a new FIR filtering 
technique offering a fully recursive calculation and simple filter 
design. Its low design and computational cost are particularly 
suited to the autonomous signal processing requirements for the 
Internet of Things. This paper describes how arbitrarily narrow 
bandpass filters may be designed and implemented using a chain 
of six Prisms. In one simulation, a design with 40 MHz sampling 
rate, 1 MHz central frequency and 0.1 Hz bandwidth results in 
an FIR filter of length 771 million samples. This filter can be 
evaluated in 0.39 s per sample on a desktop computer: to 
achieve this update rate using a conventional non-recursive FIR 
calculation would require supercomputer resources. 

Keywords— Industrial cyber-physical systems, Recursive FIR 
filtering, bandpass filtering. 

I. INTRODUCTION 

Prism Signal Processing (PSP) [1] is a new FIR technique 
particularly suited to the requirements of autonomous 
computing [2] and for intelligent, adaptive components in 
Cyber-Physical Systems and the Internet of Things (IoT). The 
Prism (Fig. 1) is an FIR filter generating one or two outputs. 
Its properties are defined by its characteristic frequency m and 
harmonic number h [1]. It offers a unique combination of 
desirable properties: the calculation is FIR, and hence robust; 
the outputs have linear phase delay; the calculation is fully 
recursive so that the computational cost per sample is low and 
fixed, irrespective of the length of the filter; and its design is 
straightforward, given desired values of m and h, requiring 
only the evaluation of linearly spaced sine and cosine values. 

This design simplicity enables new Prism networks to be 
created in real time in response to changes in signal processing 

Is
h(t)I h  m sin(2 hmt) s(t) dts    dttIhmtmI hh 

sss )()2sin(  

Ic
h(t)

I h  m cos(2 hmt) s(t) dtc  

Input s(t) 

h  hI  m cos(2 hmt)  I (t) dtcc c 
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requirements. Ref [3] outlines a fault detection scheme in 
which the detection of an unwanted frequency component in a 
signal results in the construction of a new Prism network to 
filter out that component. Refs [4] and [5] describe a condition 
monitoring scheme for rotating machinery, with two stages. 
The first stage monitors rotation startup. Once the steady 
rotation speed is established, in the second stage a set of Prism 
networks, including filtering elements, are instantiated to 
simultaneously track six harmonics of the rotation frequency. 

The computational efficiency of PSP is illustrated in [6], 
which describes a fuel injection monitoring application where 
flow measurements are generated at 48 kHz using modest 
computation hardware. The calculation, which includes the 
removal of unwanted signal components, enables the tracking 
of fuel pulses as short as 1 ms. 

Here we present a new example of how PSP can provide 
flexible functionality in autonomous systems – through the 
design and instantiation of bandpass filters. As discussed in 
[1], conventional filter design is resource intensive, and may 
be a significant impediment to autonomous signal processing 
in the field. We outline a simple design procedure whereby a 
chain of six Prisms can be used to implement a bandpass filter 
with arbitrary central frequency and bandwidth. As will be 
shown, the procedure can be used to design and implement 
even ultra-narrowband filters. The same PSP characteristics 
apply to bandpass filtering:  the design is simple even for long 
filters, while the computational cost is low and independent of 
the filter length. The only constraint on filter design is 
available memory. The new technique makes possible the 
design and instantiation of new bandpass filters in real time on 
autonomous devices with modest computing resources. 

Iss
h(t) 

 

 
Icc

h(t) 

Gs
h(t) 

Fig. 1. Structure of Prism to generate a single output, Gs
h . 
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Fig. 2. Gains of Prism output Gs 
h for h = 1, …, 8. 

Section II outlines the theory of Prism bandpass filter 
design. Section III gives examples of Prism-based bandpass 
filters, including a 770 million tap filter which would require 
supercomputing resources to evaluate using conventional FIR 
filtering but which can be evaluated on a desktop computer. 
Section IV combines a bandpass filter with a Prism-based 
tracker to demonstrate successful tracking of a signal of 
known frequency with a signal-to-noise ratio of -60dB. 

II. BANDPASS FILTER DESIGN 

The bandpass filter design uses a sequence of Prisms 
where each generates only one output, Gs

h (Fig. 1). Given m, 
the characteristic frequency of a Prism, and h its harmonic 
number, the gain of Gs

h at frequency f is given by ([1]) 

2 
2 r

gain ( f ,m,h) sinc (r) ,where r  f / m (1)
2 2r  h 

Fig. 2 shows how the gain of Gs
h varies with frequency 

(relative to m) and h. In brief, the peak negative value occurs 
just below hm Hz and the peak positive value occurs just about 
this value. The first step towards constructing a bandpass filter 
is illustrated in Fig. 3, which shows a pair of Prisms having a 
common value of h but with different values of m, selected so 
that peak negative and positive value of Gs

h align. 

Fig. 4 shows the outputs of three such Prism pairs. Three h 
values are used: 250, 333, and 500 respectively. Higher h 
values result in a narrower high gain region, which in each 
case here occurs within ± 0.5 Hz of the centre frequency. 

Fig. 3. A pair of Prisms in sequence, forming one stage of a bandpass filter. 

Fig. 4. Gs
h functions designed for maxima or minima occurring at 100 Hz. 

For each h, two curves are plotted, where the mi values are 
selected so that either the maximum or the minimum value of 
the corresponding frequency response occurs at 100 Hz. 

The main obstacle to be overcome in the creation of 
efficient Prism-based bandpass filters is the presence of large 
side-lobes. Here a lobe is defined as any region between 
notches (i.e. zero values) in the frequency response. The ideal 
bandpass filter would comprise simply of a single lobe around 
the central frequency. However, each Gs

h function has two 
relatively high gain lobes (one positive and one negative) 
centred on hm Hz, as well as many other lower gain lobes. The 
arrangement in Fig. 4 both illustrates this problem and 
suggests a solution. All the curves with a positive peak at 100 
Hz have another peak of similar magnitude at a lower 
frequency. All the curves with a negative peak at 100 Hz have 
another peak of similar magnitude at a higher frequency. 
However, a combination of each pair (using the concatenation 
of two Prisms shown in Fig. 3) may be used to create more 
symmetric bandpass filters, each with a dominant central lobe. 

The result of combining each pair of frequency response 
curves is shown in Fig. 5, where the y axis has been changed 
to show the gain in decibels relative to the peak value 
(ignoring the sign of the gain). Each Prism pair filter has a 

Fig. 5. Bandpass filter responses, where each bandpass filter is created by 
combining the two frequency responses for each value of h in Fig. 4. 



 

  

 

 

  
   

 

 
 

 
  

  

 
 

 
 

  

 

 

 
 

  
 

 

 
 

      

      

 
  

  
  

    
 

 
 

  

                

 
 

 
  

   
  

 
  

 

                

   
  

 
  

 

 

 

 

  
 

 
 

  

  
   

 
 

Fig. 6. Frequency response of bandpass filter formed from three Prism pairs. 

peak at the desired central frequency and has a reasonably 
symmetric and declining gain with distance from the peak. 

Fig. 6 shows the results of combining all 3 filters together, 
through a concatenation of six Prisms in series, and where the 
resulting gain is the product of the gains of each individual 
Prism. The resulting frequency response shows a rapid decline 
in gain with distance from the central frequency. The selected 
ratio of the three h values results in effective cancellation of 
side lobes. No frequency outside the range 100 Hz ± 0.1Hz 
has a relative gain in excess of -70 dB. 

This filter structure, consisting of three pairs of Prisms, 
with the given ratios between the three h values, is the basic 
template used for the remainder of the paper. Alternative filter 
structures, with different numbers of Prisms (singles or pairs), 
or different ratios between h values, could be used to achieve 
different bandpass performances, with corresponding trade-
offs in terms of the computational resources required. 

This filter structure is now generalized as follows. We 
assume the desired filter has central frequency c, and 
bandwidth (defined below) b. Simple formulae are used to 
provide the corresponding values of m and h for each of the 
six Prisms in order to match this performance requirement. 
Once the values of m and h are determined, the subsequent 
design of each individual Prism is readily achieved. 

Fig. 7. Frequency response of bandpass filter formed from three Prism pairs. 

Fig. 7 shows the frequency response of the generalized 
three pair Prism filter with arbitrary central frequency c and 
bandwidth b. Here the bandwidth is defined such that the 
relative gain in the region [-b/2, + b/2] remains within the 
range -3 … 0 dB. In other words, the region of length b Hz, 
centred on c Hz, has a relative gain always in excess of -3dB. 
Given this definition of b, other characteristics of the filter are 
readily defined, as follows: 

• The gain drops to -40 dB at ± 1.55 b Hz 

• The gain drops to -80 dB at ± 2.42 b Hz 

These are the specific characteristics of this filter template. 
Other filter designs, for example using more Prisms, may 
result in more rapid drops in gain at the expense of additional 
computational load and/or higher memory requirements. 

Given desired values of c and b, the corresponding values 
of m and h for each Prism are calculated as follows. Firstly, 
the three values of h are calculated, in the approximate ratio 
6:4:3, (i.e. 500:333:250) while allowing that only integer 
values are permitted. The desired values are found using: 

h_vals = round (0.0371  c/b  [6, 4, 3])  (2) 

where round is the integer rounding function and 0.0371 is 
a scaling constant to achieve -3dB gain at ± b Hz. For 
example, if c = 1000 Hz and b = 1 Hz, the desired h values are 
223, 148 and 111. 

For sufficiently large h (say h > 20), it is observed that the 
peak positive and negative values of the corresponding 
frequency response function Gs

h occur at approximately m  
(h + 0.371) and m  (h – 0.371) respectively. Accordingly, to 
make these peak values correspond to the central frequency c, 
the two values of m for each value of h are given by: 

m1 = c / (h + 0.371) 

m2 = c / (h - 0.371)  (3) 

Using equations (2) and (3), the values of h and m are 
calculated for each of the six Prisms in the filter. Continuing 
the example of c = 1000 Hz and b = 1 Hz, the corresponding 
desired values of m are as follows. 

• For h = 223, m1 = 4.4768 Hz, m2 = 4.4917 Hz. 

• For h = 148, m1 = 6.7398 Hz, m2 = 6.7737 Hz. 

• For h = 111, m1 = 8.9789 Hz, m2 = 9.0392 Hz. 

In practice, the values of m are constrained by the 
requirement that each Prism integral length must be a whole 
number of samples; this may lead to small variations in the 
realised values of m with corresponding minor variations in 
the actual frequency response of the filter. 

Continuing the same example, assuming a sample rate fs of 
1 MHz, then the total length of the filter is 1,928,000 samples. 
As an approximate rule, the filter length is 1.93 x fs/b. Fig. 8 
compares the theoretical response of the filter with its 
numerical performance when filtering white noise, based on 
the power spectrum obtained using 100 seconds of data. Here 
the filter has been implemented using a single threaded C++ 
function and executed on a desktop PC. 



 

 

  

 
   

 
   

  
 

 
  

 
  

  
   

 
 

 
 

 

 
 

 
  

  
  

 
    

 
  
 

 
 

  

   

  

 

Fig. 8. Theoretical and numerical performance of bandpass filter. 

III. BANDPASS DESIGN EXAMPLES 

We now present a series of examples that demonstrate the 
generality of the design procedure given in the preceding 
section. For the first three examples the sample rate fs is 
constant at 40 MHz and the central frequency c is 1 MHz, but 
the bandwidth is reduced from 10 Hz (Fig. 9) to 1 Hz (Fig. 10) 
to 0.1 Hz (Fig. 11). This sequence illustrates the relationship 
between the bandwidth b and h, and the resulting filter length. 

In Fig. 9, the highest value of h is 22,260 and the total filter 
length is 7,716,800 samples. The numerical implementation of 
the filter shows a good match with the theoretical frequency 
response. In Figs. 10 and 11, as the filter bandwidth is reduced 
by an order of magnitude each time, the corresponding values 
of h and the total filter length in samples both increase by 
approximately tenfold, so that in Fig. 11 the total filter length 
is 771,677,600 samples. As the passband frequency shortens, 
the frequency discretization of the FFT used to analyze the 
numerical results becomes more apparent. Examples in the 
next section provide alternative means of verifying that the 
filters are performing as expected. 

Fig. 12 shows another filter with the same fs but a lower 
central frequency, with c = 100 Hz and b = 1 Hz. The resulting 
performance is broadly similar to that shown in Fig. 10, 
demonstrating independence from the selection of c. 

The memory required to implement a Prism-based bandpass 
filter is proportional to the filter length. However, the compute 
time per sample is constant for a particular processor. The 
filters of Figs. 8–12 all require 0.39 s per sample, using a 
single thread on an Intel Xeon E5-2630 processor, running at 
2.3 GHz, and with 32 Gb RAM. The evaluation of a 
conventional, non-recursive, 771 million sample FIR filter in 
0.39 s would require a computational load (based on 2  
filter length/computer time per sample) of 3.9 Petaflop/s, 
equivalent to the 28th fastest supercomputer [7], which uses 
126,468 Xenon E5-2695 chips running at 2.1 GHz. This 
illustrates the computational efficiency provided by Prism 
signal processing. 

Fig. 9. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 10Hz 

Fig. 10. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 1Hz 

Fig. 11. Theoretical and numerical gain: fs = 40MHz, c = 1MHz, b = 0.1Hz 



    

     

 
 

 
 
 

 

 

 
 

   
 

 
   

   

 
  

  

 
 

 

 

 

 
 

  

 

  

 
   

Fig. 12. Theoretical and numerical gain: fs = 40MHz, c = 100 Hz, b = 1 Hz 

IV. TRACKING LOW SNR SIGNALS VIA PRISM FILTERING 

Bandpass filters may be used to provide effective pre-
filtering for a Prism-based tracker, for example a Recursive 
Signal Tracker (RST) ([6]), which calculates frequency, 
amplitude and/or phase estimates of an input sinusoid. Such 
bandpass pre-filtering can facilitate the tracking of signal 
components which otherwise would not be possible, due to 
high levels of noise and/or the presence of other frequency 
components. Fig. 13 illustrates the basic scenario – a three 
stage bandpass filter passes its output to an RST which then 
tracks the sinusoidal parameters of the filter output. 

Figs. 14-19 show the tracking performance achieved in the 
following simulation. A sinusoid with frequency 100 kHz and 
amplitude 1 mV is mixed with high amplitude white noise so 
that the signal-to-noise ratio is -60 dB. The resulting noisy 
signal is sampled at 20 MHz, filtered and tracked. As the input 
signal frequency is already known to high precision, the 
bandpass filter is designed using c = 100 kHz and b = 0.1 Hz. 

Fig. 14 shows the power spectra of the raw and filter signals 
respectively. Given the high level of noise, the signal at 100 
kHz is not visible in the power spectrum. However, the 
filtered signal has a strong peak at 100 kHz.  

Figs. 15 – 18 show the tracked frequency, amplitude, phase 
and the recovered signal (constructed using the tracked 
amplitude and phase) respectively. In each case, the tracked 
parameter and its true value are shown in the upper plot, while 
the residual error is shown in the lower plot. In Fig. 15, the 
true frequency is constant at 100 kHz; this value is tracked 
with a root mean square error of approximately 1e-3 Hz. 

Fig. 13. Bandpass filter and tracker 

Fig. 14. Filter and track example: (above) power spectrum of unfiltered data, 
with 100 kHz component not visible above noise floor; (below) filtered 
signal with 100 kHz component visible. 

Fig. 15. Filter and track example: frequency tracking performance. 

Fig. 16. Filter and track example: amplitude tracking performance. 

In Fig. 16, the true amplitude is constant at 1 mV; this value 
is tracked with a root mean square error of 0.066 mV. 



  

  

  

 
  

  
   

   

 
   

   
  

 
  

 
  

   

  

  
   

  

 

 
 

 
 

 

 
  

 
 

 
  

 

  
   

 
 

 
  

 
  

 
  

  

 
 

  
 

 
  

  
 

   
 

 

Fig. 17. Filter and track example: phase tracking performance. 

Fig. 18. Filter and track example: signal tracking performance. 

Fig. 19. Tracking periodic step changes in amplitude. 

In Fig. 17, the true phase varies between +/- π radians; this 
value is tracked with a root mean square error of 0.06 radians. 
In Fig. 18, the recovered signal (calculated from the tracked 
amplitude and phase) is compared with the original. The root 
mean square error is approximately 0.1 mV, resulting in an 

overall change in SNR from -60 dB to + 17.9 dB as a result of 
the filter and track procedure. The amplitude and phase 
parameters of the tracked signal are compensated for the pre-
filtering to enable the reconstruction of the original signal. 

Fig. 19 shows a second filter and track example, 
demonstrating the dynamic response of the system. The 
sample rate is 20 MHz, the central frequency c is 250 kHz, the 
bandwidth b is 0.1 Hz, and the signal to noise ratio is -60 dB. 
The true signal amplitude undergoes a series of step changes 
between 1 mV and 2 mV: this pattern is essentially recovered 
by the filter and track mechanism. 

The filtering and tracking scheme is straightforward to 
design and implement and can deliver useful results even with 
low SNR inputs. The only requirement is knowledge of the 
frequency range (i.e. the values of c and b) to be monitored, 
which may be determined at a local level in real time. These 
techniques offer a powerful toolset for autonomous devices to 
adapt signal processing schemes to match changing local 
conditions and evolving goals. 

V. SUMMARY 

This paper has outlined a scheme for constructing Prism-
based bandpass filters using simple design rules, where the 
only requirement is knowledge of the desired central 
frequency and bandwidth. The resulting filters share the 
computational efficiency of individual Prisms. Combining a 
bandpass filter with a Prism-based tracker facilitates the 
tracking of a signal component even with low SNR. 

A companion paper to this conference describes a bandpass 
filtering demonstrator, which delivers the equivalent DSP 
performance of up to 384 TMAC/s, using an Artix-7 FPGA 
which has a nominal rating of approximately 1 TMAC/s. 

The examples in both papers illustrate the suitability of the 
design scheme to create long filters, which would require 
supercomputing resources if calculated using the conventional 
non-recursive FIR convolution. However, the technique is 
equally well-suited to shorter filter designs. 
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