

The Prism: Recursive FIR Signal

Processing for Instrumentation
Applications

Henry, M. P.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Henry, MP 2020, 'The Prism: Recursive FIR Signal Processing for Instrumentation
Applications', IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4,
8718020, pp. 1519-1529.
https://dx.doi.org/10.1109/TIM.2019.2916943

DOI 10.1109/TIM.2019.2916943
ISSN 0018-9456
ESSN 1557-9662

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A
copy can be downloaded for personal non-commercial research or study, without prior permission
or charge. This item cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder(s). The content must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright
holders.

This document is the author’s post-print version, incorporating any revisions agreed during the
peer-review process. Some differences between the published version and this version may
remain and you are advised to consult the published version if you wish to cite from it.

https://dx.doi.org/10.1109/TIM.2019.2916943

The Prism: recursive FIR signal processing
for instrumentation applications

Manus P. Henry, Member, IEEE

Abstract— This paper provides the mathematical background
for the Prism (precise, repeat integral signal monitor), a signal
processing network node used in a variety of sensing and
instrumentation applications. The key operation is a double
Fourier-style integration, which can be implemented recursively
using sliding windows and precisely using Romberg Integration.
The Prism generates one or two outputs; if two are generated they
are orthogonal, analogous to an analytic signal, from which
sinusoid properties such as frequency, phase and amplitude can
readily be derived. The Prism outputs are finite impulse response
(FIR) but the calculation is recursive, resulting in a low
computational cost which is independent of filter length. The
paper compares the Prism’s computational efficiency with both a
least squares FIR filter design and an equivalent Prism filter
implemented as a conventional convolution. The advantages of the
Prism include design simplicity, low computational cost, and a
linear phase response, making it a useful network node for a wide
range of instrumentation and signal processing tasks.

Keywords— signal processing, FIR filtering, recursive FIR
filtering, Prism, Romberg Integration.

I. INTRODUCTION

This paper provides the mathematical background to the
Prism (precise, repeat integral signal monitor), which is used as
a signal processing network node in a variety of applications
reported in the recent literature. The key mathematical
operation is a Fourier-style double integration, which can be
implemented recursively using sliding windows and precisely
using Romberg Integration. The Prism generates one or two
outputs; if two are generated they are orthogonal, analogous to
an analytic signal, from which sinusoid properties such as
frequency, phase and amplitude can readily be derived. The
Prism calculation is finite impulse response (FIR); its benefits
include design simplicity, a linear phase response, and a low
computational cost which is independent of window length, a
significant advantage over conventional FIR filters. Prisms can
be cascaded in serial and/or parallel to create networks for
carrying out more complex tasks, such as notch, bandpass and
dynamic notch filtering, or the tracking of one or more
sinusoidal components within a signal.

A general overview of Prism Signal Processing (PSP) as a
potential signal processing networking technology for Internet
of Things applications is given in [1]. In [2], PSP is applied to
sensor validation, whereby Prism networks can be instantiated
and/or extended in real time, in response to changing signal
properties and/or diagnostic states. PSP has been applied to
pressure sensor validation [3], condition monitoring of rotating
machinery [4], [5], and frequency estimation in power systems

[6]. In [7], [8], PSP is applied to Coriolis mass flow metering,
whereby rapid measurement updates (at 48 kHz) enable for the
first time direct mass flow measurement of fuel injection pulses
as short as 1 ms in a laboratory diesel engine. Prism networks
have also been used to design and implement ultra-narrowband
filters [9], [10].

The central claim to novelty and utility for the Prism is that
it operates as a fully recursive FIR filter while having an
inherently simple design procedure. These properties represent
an advance over previous work where a partially recursive
calculation is introduced into FIR filters, at the expense of a
more complex design procedure.

Previous authors have reported a number of approaches for
developing recursive FIR filters, typically entailing specific
mathematical structures to support efficient calculation. These
approaches include: adapting IIR filters to approximate FIR
behaviour [11], [12], for example the switching and resetting of
multiple IIR filters [13]; the Cascade Integrator Comb (CIC)
[14], [15], which cascades the moving average filter (arguably
the only ‘naturally’ recursive FIR filter); the construction of
piecewise polynomial approximations to the impulse response
[16] – [19]; complex filtering over finite rings [20] – [22];
cyclotomic resonators [23]; exploiting linear phase symmetry
[24]; impulse response rounding [25]; and combining FIR
filtering with state-space estimation [26]. In addition, specific
techniques have been developed for two-dimensional recursive
FIR filtering in image processing applications [27] – [29].

This paper explains the mathematical development behind
the Prism. The analysis is given in terms of continuous time,
even though the Prism operates on sampled (i.e. discrete time)
data. The step from continuous to discrete time is effected
without further mathematical development via the use of
Romberg Integration (RI) [30]. Numerical simulations reported
in this paper demonstrate that results obtained using discrete
time numerical calculation match the corresponding continuous
time analytical results with close to double precision accuracy.
A future paper will explain in detail how RI has been adapted
to operate on time series data in the Prism.

Section II provides the mathematical development. Section
III calculates the impulse response of the Prism outputs and
constructs the corresponding non-recursive convolutional
filters. Section IV compares the design and computation costs
of the Prism with those of a conventional least squared low-
pass FIR filter and with the convolution form of the Prism.
Section V considers stability and implementation issues,
particularly for low cost, low precision systems. Sections VI
and VI provide discussion, conclusions, and future work.

1

II. MATHEMATICAL DEVELOPMENT

As stated in the introduction, previously reported recursive
FIR filtering techniques typically have a particular application
and/or mathematical approach that inform their development.
This is also the case for the Prism technique: it was developed
with a view to instrumentation applications where the intention
is to track essentially sinusoidal sensor signals, applying
Fourier-style integration techniques.

Consider a noise-free sinusoidal signal taking the form:

s(t) Asin(2 ft) , (1)

where t (or τ) is time in seconds, A is the amplitude, f is the
frequency in Hertz and is the phase offset in radians at time t
= 0. In practice A and/or f may vary with time, but are assumed
constant in this initial analysis. The basic mathematical
operation used here is to calculate double integrals of the form:

hI (2)[s|c][s|c]

0 t 2m [sin | cos](2 hmt)

 [sin | cos](2 hm) s()d

dt

1 1 t
m m

The subscript notation [s | c] indicates the selection of one
alternative between s (sin) and c (cosine). The superscript h is
the harmonic number, a positive integer, usually small. m is the
characteristic frequency, where, in any digital implementation,
its period must be a whole number of sample durations.
Usually m is higher than f, the frequency of the input. For
clarity, unlike in other Fourier-based techniques, m is fixed at
design time while f is usually unknown, although expected to
fall within a certain range. For example, in a typical
instrumentation application, using a fixed sampling rate in the
range 5 – 50 kHz, a sinusoidal signal with a frequency in the
range 50 – 180 Hz might be tracked using double integrals with
values of m around 200 Hz. The length of each integral is
typically not less than around 30 samples; as will be shown, the
greater the length in samples, the greater the computational
advantage over conventional FIR filtering.

The integral limits are selected so that , the phase of s(t) at
t = 0, is also the phase of the most recent data value. Hence,
calculating gives the phase at the end of the data window,
rather than (for example) at the mid-point of the double
integral. Accordingly, the double integral as a whole extends in
time from -2/m to 0. The harmonic number h indicates how
many whole cycles of each modulating sinusoid take place
within each integration period. For example:

0 t 1 2Iss m sin(2 mt) sin(2 m) s() d dt (3)

 t

m m
1

 1

2 2

0

t

Isc m sin(4 mt)

cos(4 m) s() d

dt . (4)

1 1 t
m m

Analytically, these integrals are equivalent to the following
expressions:

1 2 3r 2

 Asinc (r) sin(2 r) (5) I ss 2 2(r 1) (r 4)

2
2 2 2r(r 8)

I sc Asinc (r) cos(2 r) . (6)
2 2(r 4)(r 16)

Here r is the frequency ratio of the input sinusoid, defined as:

r f / m , (7)

so that r = 0 when f = 0 Hz and r = 1 when f = m Hz.
Typically, r < 1 for a sinusoid being tracked (it will be shown
in future papers that optimal tracking performance is achieved
when r = 0.5), but values of r exceeding unity often arise in
Prism filtering applications. sinc(x) is the normalised sinc
function defined as follows:

sin(x)
sinc(x) . (8)

 x

The utility of the double integral approach begins to emerge
from these equations. By passing the signal s(t) through
different double integrals in parallel, a set of algebraically
related functions can be calculated, from which the values of r
(and hence f), A and might be deduced. Most usefully, some
integrals in the family result in sine functions, while others
produce cosine functions, offering the strategy of computing
orthogonal pairs of integral values (comparable to the analytic
function) from which to derive the sinusoid parameters. Both
sine and cosine terms have a common delay term 2r. This is
the linear phase delay characteristic of an FIR filter where the
time delay is 1/m, i.e. half the double integral length.

Next, we address the issue of evaluating the numerical
values of the double integrals in a computationally efficient
(i.e. recursive) manner. This results in a simplification of the
algebraic form of the equations, and leads to the development
of the Prism concept. We further assume integration is to be
applied numerically to a time series of data s(tk) with fixed
sample rate fs, and where, with each new sample, new integral
values are to be calculated, based on a window of data
consisting of the most recent 2fs/m + 1 samples. Accordingly,
fs is included as an additional parameter of the Prism.

On initial consideration, the numerical evaluation of this
family of double integrals should be computationally
expensive. For example, if equation (3) is evaluated in a
conventional manner, the number of multiplications of a
sample by a modulating sine value is given by the square of the
number of samples in each single integral. For, say 100 sample
points, this would require 10,000 multiplications, even before
further calculations were performed to accumulate the single
and double integral values. Clearly in many applications this
would constitute an unacceptably large computational burden.

A common technique for reducing the computational load
of calculations over a window of data is to use a recursive
approach. Here the algorithm is arranged so that the calculation
at time step k + 1 is based primarily on results from the
calculation at time step k, typically by removing the
contribution of the oldest value in the previous data window
and including the contribution of the newest value which has
been added to form the current data window. Applying this
technique to an integration (or indeed a double integration)
calculation is potentially straightforward. However, the

2

difficulty arises in (re)calculating the products of the input
signal s(tk) and the characteristic sine or cosine function values.
Equation (2) implies that the initial phase of each modulating
function is zero for each integral. This in turn implies
recalculating the product of signal and modulation function
across the whole integral at each new time step. To apply a
recursive, sliding window approach to equation (2) it would be
necessary for the modulating functions to ‘slide with’ the input
signal, so that all (but the oldest) of the signal/modulation
function products at time step k remain valid at time step k + 1.

This requirement can be expressed mathematically by
introducing an additional variable, q, representing the initial
phase of the modulating functions, which is no longer assumed
to be zero. As both integrals have the same length, it can be
assumed that the phase offset is the same for each. Thus, the

1definition of I given in equation (3) may be generalised to ss

0 t
Iss m sin(2 mt q)

sin(2 m q) s() d

dt (9)

1 1 t
m m

1 2

where, in any practical implementation, q is known and
incremented by 2 mh/fs radians (modulo 2) each time
step.

Unfortunately, introducing q into the definitions of the integral
family (2) results in analytic expressions (provided for the case
h = 1 below) which are not particularly tractable. Fortunately,
however, the combination or grouping of certain pairs of
integrals yields simple analytic results which are independent
of q. These groups facilitate the use of sliding windows to
significantly reduce the computational effort required to
numerically evaluate the double integrals.

1Given the revised definition of I in equation (9), and the ss

1corresponding definition of I :cc

0 t
1 2Icc m cos(2 mt q)

 cos(2 m q) s() d

dt (10)

1 1 t
m m

1Then the integral group G formed from their sum has as

simple analytic expression which is independent of q.

2
1 1 1 2 r

G I I Asinc (r) sin(2 r) (11) s ss cc 2r 1

1 1Similarly, defining integrals I and I as follows: sc cs

0

1

t

1

1 2Isc m sin(2 mt q)

cos(2 m q) s() d

dt (12)
 t

m m

1 2Ics m
0

cos(2 mt q)

t

sin(2 m q) s() d

dt (13)
 t

m m
1

 1

1then these integrals can be combined into a group G :c

r1 1 1 2Gc Ics I sc Asinc (r) cos(2 r) . (14)
2r 1

So, by accepting the overhead of calculating two double
integral pairs, simple analytic expressions are obtained for the
combined results, where the numerical values may be
calculated recursively using sliding windows. Note also that

1 1the pair G and G nearly form an analytic function – they s c

differ only by a factor r. Similar results are obtained for the
integrals for higher harmonic numbers:

2
h h h 2 r

G I I Asinc (r) sin(2 r) (15) s ss cc 2 2r h

h h h 2 h r
Gc Ics I sc Asinc (r) cos(2 r) (16)

2 2r h

These results have been verified directly using the
MATLAB Computer Algebra toolbox for all h 500, but they
appear to be valid for all h and have been used successfully in
narrowband filtering applications with h as high as 2,000,000
[9], [10]. Note that for each harmonic number the close
analogy between the two integral groups and an analytic

function is preserved: in general the ratio between Gs
h and

Gc
h (excluding the orthogonal sine/cosine functions) is r/h.

These analytic expressions for the integral groups form the
basis of the Prism, a signal processing object that receives a
time series signal as an input, and which generates, via
recursive numerical integration, one or two time series outputs,

h hcorresponding to G and/or G . It has three primary s c

configuration parameters, m, h and fs. Other parameters
determine whether one or both of the outputs are generated,
and how the numerical integration is to be executed, as
outlined below.

Fig. 1 shows the structure of the Prism, which consists of
six single integration blocks, arranged in a cascade of two
layers. Each integration block accepts an input time series and
generates an output time series, formed from the input signal
multiplied by the selected modulation function and then
integrated over the last 1/m seconds. The integration is
implemented efficiently using a recursive sliding window
arrangement where the q term (not shown in the diagram
equations) is common across all integration blocks and
incremented each time step. A factor m is included at each
stage to effect the multiplication by m2 required in equations
(12) and (13). The time series are routed between the
integration blocks, and the second stage integral outputs are

h hcombined to form the Prism output(s) G and/or G .s c

The properties of the Prism outputs, considered as FIR filters,
are discussed in [1]. The gain characteristics facilitate the use
of Prism networks to instantiate low pass, band pass and notch
filters. Examples are provided in [1] – [3], [9] – [10]; more
systematic treatments will be given in future publications.

A numerical discrete time simulation has been developed to
demonstrate the internal operation of the Prism. The resulting
output of each integration block shows good agreement with
the corresponding continuous time analytical expression, thus
demonstrating the correspondence between (continuous time)
theory and (discrete time) numerical operation.

3

Fig 1: Prism structure.

The Prism input is the pure sinusoidal input given in eqn.
(1). Assuming h = 1, the superscript notation may be dropped
and analytic results for each of the integration blocks outputs
can be derived, as follows:

A
I cos(2 r) 1r cos(p) sin(q) sin(p) cos(q)s

2 (r
2
 1)

 sin(2 r)r sin(p) sin(q) cos(p) cos(q) (17)

A
I cos(2 r) 1r cos(p) cos(q) sin(p) sin(q)c 2

2 (r 1)

 sin(2 r)r sin(p) cos(q) cos(p) sin(q) (18)

2Asinc (r) 2 2sin(p 2 r)r 4I ss 2 24(r 1)(r 4)

 sin(p 2q 2 r)r 1(r 2) (19)

 sin(p 2q 2 r)r 1(r 2)
2Asinc (r) 2Icc 2sin(p 2 r)r 4

2 24(r 1)(r 4)

 sin(p 2q 2 r)r 1(r 2) (20)

 sin(p 2q 2 r)r 1(r 2)
2Asinc (r) 2Ics 2 cos(p 2 r)r 4

2 24r(r 1)(r 4)

 r cos(p 2q 2 r)r 1(r 2) (21)

 r cos(p 2q 2 r)r 1(r 2)
2Asinc (r) 2 2 cos(p 2 r)r 4I sc 2 24r(r 1)(r 4)

 r cos(p 2q 2 r)r 1(r 2) (22)

 r cos(p 2q 2 r)r 1(r 2)

While all these functions are individually dependent on the
modulation phase q, nevertheless it can be observed that,
algebraically, all the q terms cancel out when the groups Gs and
Gc are formed as defined by equations (11) and (14). For
example, equations (19) and (20) give analytic expressions for
the terms Iss and Icc respectively. The terms containing q are
equal but of opposite sign, so that when Iss and Icc are summed
to form Gs the dependency on q is eliminated.

For the simulation, values of fs = 48 kHz and m = 100 Hz
are selected. The input signal is a ‘pure’ (to double precision
accuracy) sinusoid with fixed amplitude A = 0.5. In the first
example (Figs. 2 – 4), f = 50 Hz, so that r = 0.5. A second
example (Fig. 5 only) illustrates the change in behaviour for f =
25 Hz, so that in this case r = 0.25.

The Prism implementation is designed to demonstrate the
precise agreement between continuous time analytic results and
discrete time numerically calculated values, and so four stages
of RI are used. The modulation functions are calculated to
double precision. Each product term is also calculated in
double precision, and then converted to a 64-bit signed integer,
to eliminate the accumulation of rounding error. Integration
totalizers are 96-bit fixed point. Given that the true values of all
the parameters in equations (17) – (19) are known, it is possible
to compare the numerically calculated output values of each
Prism integration block with the corresponding analytic values,
as they vary with time. Section VIII discusses alternative,
lower-cost Prism implementations. Figs. 2 – 4 illustrate the
resulting behaviour for r = 0.5. In each case the upper plot
shows how Prism integration block outputs vary over time,
while the lower plot shows the corresponding error (i.e. the
difference between the calculated numerical value and the
‘true’ analytical value). The magnitude of the numerical error
is in all cases less than 3e-14. Fig. 2 shows the behaviour of the
first level integrals Is and Ic. Fig. 3 shows Iss, Icc and their sum
Gs. While Iss and Icc have periodic waveforms containing
several frequency components, Gs, is a pure sinusoid with
frequency 50 Hz. Similarly, in Fig. 4, Ics and Isc have periodic
waveforms, while Gc, formed from their difference, is a pure
sinusoid orthogonal to Gs. Finally, Fig. 5 is the equivalent of

4

Fig 2: Time series of Is and Ic outputs (f = 50 Hz, r = 0.5)

Fig 3: Time series of Iss, Icc and Gs outputs (f = 50 Hz, r = 0.5)

Fig. 4 but using f = 25 Hz and hence r = 0.25. Again, while Iss

and Icc contain multiple components, Gs, remains a pure
sinusoid with frequency 25 Hz.

Thus, in the absence of noise in the input signal, the
numerically integrated values of the Prism block outputs match
the corresponding analytic results to high precision when
several stages of Romberg Integration are applied.

Fig 4: Time series of Isc, Ics and Gc outputs (f = 50 Hz, r = 0.5)

Fig 5: Time series of Iss, Icc and Gs outputs (f = 25 Hz, r = 0.25)

III. NON-RECURSIVE PRISM-EQUIVALENT FILTERS

In this section the impulse response of each of the Prism
outputs is determined, from which the coefficients of the
corresponding conventional FIR filters are derived.
Simulations demonstrate the equivalent outputs are obtained
from the Prism and convolution forms of filter. The
computational efficiencies are compared in the next section.

5

Figure 6 shows the impulse responses for Gs and Gc for h =
1, 2 and 3, via numerical simulation. Here the time axis has
been scaled in terms of the characteristic frequency m. As
would be expected for an FIR filter with a data window of
duration 2/m, each impulse response is zero beyond this time
limit. Given the sinusoidal nature of each of the impulse
responses, it is straightforward to deduce the corresponding
analytic expressions. Denoting the impulse responses for Gs

and Gc as Hs and Hc respectively, these are given by:

1
H s t() sin(2hm t),

2h
0 t 1/ m (23)

1
H s t() sin(2hm t),

2h
1/ m t 2 / m (24)

1
H c t() [cos(2hm t) 1],

h2
0 t 1/ m (25)

1
H c t() [cos(2hm t) 1],

2h
1/ m t 2 / m (26)

where the difference between the simulated impulse response
and the values derived from these equations are of the order of
1e-5 or less. Note that Hs is symmetric about t = 1/m while Hc

is anti-symmetric.

Fig 6: Impulse response of Prism outputs Gs and Gc for h = 1, 2, 3

To calculate the coefficients of the corresponding
convolution form of the Prism filters, it is necessary to select
the sampling rate and determine the order of the filter. Defining
n = fs/m, which must be an integer value (as discussed in
section II above), then the Prism equivalent filters are of order
2n. The total number of filter coefficients required is 2n+1, and
their values are given by the following equations:

1
Cs [i] sin(2h i / n), 0 i n (27)

2hn

1
Cs [i n] sin(2h i / n), 0 i n (28)

2hn

1
Cc [i] [cos(2h i / n) 1], 0 i n (29)

2hn

1
Cc [i n] [cos(2h i / n) 1], 0 i n (30)

2hn

where Cs[i] and Cc[i] are the ith coefficients of the equivalent
filters of Gs and Gc respectively. Given the input time series
s(tk) these coefficients are used to perform convolution
calculations as follows:

2n
*Gs (tk) Cs[i] s(tk i) (31)

i 0

2n
*Gc (tk) Cc[i] s(tk i) (32)

i 0

where Gs
*(tk) and Gc

*(tk) are the convolution filter outputs at
time step k.

Fig. 7 shows the results of applying the non-recursive FIR
filters of equations (31) and (32) to the same pure sinusoidal
input used in Figs. 3 and 4. Here fs = 48 kHz and m = 100 Hz,
so the filter order is 960. The upper plots show the convolution
outputs Gs

* and Gc
* while the lower plots show the deviations

from the analytical results for Gs and Gc given in equations
(11) and (14). All plots show good agreement with the analytic
values of the Prism outputs, while manifesting sinusoidally-
varying errors. It has not been investigated why, for this
example, the errors for Gs

* (of order 1e-7) are significantly
larger than those for Gc

* (of order 1e-12): whatever the cause,
neither matches the low errors (1e-14 or less) shown by the
direct Prism calculation in Figs. 4 and 5. Furthermore, as
shown in the next section, the computational cost of using
these non-recursive convolution forms is significantly higher
than for the Prism. Accordingly, other than for the purposes of
directly demonstrating the equivalence of the Prism to a pair of
conventional FIR filters, there appears to be limited utility for
this non-recursive form of filter design.

IV. DESIGN AND FILTERING EFFICIENCY

In [1], a set of simulations was used to compare a series of
conventional FIR Equiripple and Prism filters, in terms of the
computational effort required for filter design and operation.
For each filter type, a series of designs was generated by

6

Fig 7: Convolution-form equivalent of Prism outputs Gs
* and Gc

*

increasing the sampling rate fs while retaining the same
passband and other filter characteristics.

Here another conventional FIR filter type is used – the
Least Squares filter –while the sampling rate is fixed at 48 kHz
and the filter bandwidth is reduced successively by an order of
magnitude, resulting in a corresponding rise in the order of
each filter type. Thus for the Prism filters, the value of m is
reduced from 1 kHz down to 100 Hz, 10 Hz and finally 1 Hz.
This results in an equivalent order of the Prism (i.e. its total
length in samples over the two stages of integration, equal to
2fs/m) increasing from 96 to 960, 9,600 and finally 96,000
respectively. Using a high sample rate compared to the value
of m has practical applications, for example when constructing
narrowband Prism filters [9], [10]. The computational
requirement of each Prism is also compared with that of the
non-recursive FIR filter equivalent developed in section V.

For any Prism, given its length in samples (derived from fs
and m) and harmonic number h, the design task consists simply
of calculating linearly spaced sine and cosine values (the
modulating functions of equation (2)) so that exactly h periods
of each function occur over each integration data window. This
calculation is essentially trivial, so that, as asserted in [1], any
computing device capable of evaluating a Prism should also be
capable of designing the Prism, or indeed creating a new Prism
to match changing signal processing requirements. The design
task for the non-recursive equivalent filter, given in equations
(29) – (32) above, is equally trivial.

By contrast, the Least Squares design (i.e. the calculation of
the filter coefficients given parameters such as the start and

stop frequencies, filter order etc) requires dedicated design
software. Here the MATLAB filter design toolbox is used, but
other design tools could equally be employed. To provide a fair
basis for comparison, each Least Squares filter has been
designed with the same order as the corresponding Prism filter,
with a pass frequency equal to the corresponding m and a stop
frequency of 1.5 times the pass frequency. All other Least
Squares filter design parameters use the MATLAB defaults:
the purpose is to find a reasonable basis for comparison rather
than fitness for any particular signal processing task.

Table I shows the design time required for the Least
Squares filters. All results were obtained using a 2.5 GHz i7-
2860 laptop with 16 GB of RAM, running 64 bit Windows 7.
Between the 960 and 9,600 order filter there is almost a 100-
fold increase in design time, while the 96,000 order filter
design could not be completed. Here MATLAB generated an
exception due to the construction of a 96k x 96k matrix,
requiring 17 Gbyte of memory. While it remains possible that
other design software and/or other parameter choices would
result in a successfully completed filter design, this example
illustrates the very significant resources that may be required to
design conventional FIR filters, particularly for high orders.

TABLE I. LEAST SQUARES FIR FILTER DESIGN TIME

Pass frequency
(Hz)

Stop frequency
(Hz)

Filter order
(samples)

Design time
(s)

1,000 1,500 96 8.08e-03

100 150 960 4.96e-02

10 15 9,600 4.52e+00

1 1.5 96,000 N/A

Table II compares the Least Squares, the Prism filter and
the non-recursive Prism equivalent filter in terms of the
number of operations and the average compute time required to
process each sample as the filter order increases. Note that for
the Prism calculation, only the Gc output is generated, and only
a single stage of RI is applied. Similarly, for the non-recursive
Prism-equivalent filter, only the Gc output is calculated.

The calculation times for the Least Squares and the non-
recursive Prism equivalent filters are similar, as they are
performing convolutions with identical filter lengths and differ
only in the filter coefficients used. While the Least Squares
filter of order 96,000 could not be designed (and so its
calculation time per sample is estimated), the Prism equivalent
filter was constructed straightforwardly using equations (31)
and (32). With both non-recursive techniques, the calculation
time per sample increases linearly with filter length.

Even for the smallest order case, the Prism calculation is more
than three times faster than the other filters. While the
computational overhead for the two non-recursive techniques
increases linearly with filter order, the Prism calculation time
remains approximately constant. Hence the Prism of order
96,000 requires about 3,000 times less computation time per
sample than both the corresponding non-recursive equivalent
and (by extrapolation) the Least Squares filter.

7

TABLE II. LEAST SQUARES AND PRISM FILTER CALCULATION TIME

Pass
frequency
or m (Hz)

Filter
order

(samples)

Convolution ops per sample Prism ops per sample Filter time per sample (s)

Multiply Addition Multiply Addition Least
Squares

Non-recursive
Prism equivalent

Prism

1,000 96 97 97 18 33 8.79e-08 8.99e-08 2.57e-08

100 960 961 961 18 33 8.22e-07 8.25e-07 2.65e-08

10 9,600 9,601 9,601 18 33 8.17e-06 8.19e-06 2.66e-08

1 96,000 96,001 96,001 18 33 (8.00e-05) 8.22e-05 2.66e-08

Figs. 8 – 11 demonstrate the similarities of the frequency
responses for the Least Squares and Prism filters. Each graph
shows both the theoretical frequency response and the actual
numerical performance when filtering white noise sampled at
48 kHz. Good agreement is shown between theoretical and
numerical performance in each case. The Least Squares filters
shown have pass frequencies of 1 kHz (Fig. 8) and 10 Hz (Fig.
9). Other than the frequency scaling (indicated by the different
ranges of their respective x-axes), the two filters have similar
characteristics, with a flat passband and a steadily dropping
stopband with regular notches.

The Prism filter outputs are shown in Figs. 10 and 11, with
m = 1 kHz and 10 Hz respectively. The frequency ranges on
the x-axes correspond to those of Figs. 8 and 9 respectively,
while the gain shown is relative to the absolute maximum gain
value. Notches occur at all multiples of m Hz, including 0 Hz.

The Prism filter Gc outputs have a low pass characteristic
similar to that of the Least Squared filters, other than a more
rapid rate of attenuation in the stopband, and the absence of
steady gain in the ‘passband’ for frequencies below m Hz.

While the theoretical developments in Section II consider
only a pure sinusoidal input, figs. 10 and 11 illustrate how the
Prism filters a signal containing multiple frequency
components, for the special case of pure white noise. As would
be expected for a linear filter, the output consists of the
summation of each input frequency component to which the
corresponding Prism gain and phase delay has been applied.
Further illustrations are provided in [1], where dynamic notch
filtering is applied to ‘split’ a two-tone signal into its respective
components, and in [10], which demonstrates tracking a
sinusoidal signal in white noise with an SNR of -60dB, through
the use of ultra-narrow Prism band pass filtering. In
considering the filtering ‘efficiency’ of the Prism, the Cramér-
Rao Lower Bound (CRLB) [31] is widely used in signal
processing to determine the ‘best’ (i.e. smallest variance)
performance theoretically achievable when extracting a
parameter value from a data set contaminated by white noise.
The Prism-based Recursive Signal Tracker (RST) [7]
calculates frequency, phase and amplitude values for an input
sinusoid, and performs close to the CRLB limit for each of
these parameters. A more complete analysis of the noise
performance of the RST, which requires a full analysis of the
mathematical technique, will be given in a future paper.

V. STABILITY AND IMPLEMENTATION CONSIDERATIONS

In this section we consider numerical stability and
implementation issues, particularly for low cost platforms. As
an FIR filter, the Prism has inherent numerical stability. It is
straightforward to show that for the non-recursive,
convolutional form given in equations (27) - (32), a bounded
input time series (say |s(tk)| < K) will generate a bounded
output series with lower magnitude. As sine and cosine values
have a magnitude no greater than unity, the Prism outputs are
constrained as follows:

2n 2n 1*
| G (t) | | C [i] | | s(t) | K K (33) s k s k i

i0 2hn

2n 2n 1*
Gc (tk) | | C [i] | | s(tk) | K K (34) | c i

i0 hn

When implementing the Prism in its default recursive form,
errors may also accumulate from the use of a sliding window
calculation. An efficient sliding window implementation
requires totalizers to which the latest product value is added
and from which the oldest product value is removed, which is
liable to the accumulation of rounding errors. This issue can be
addressed in a number of ways, for example:

1. A fixed point implementation is immune from
rounding error accumulation. As shown in section IV,
fixed point integration totalizers can nevertheless
generate high precision results if the bit lengths are
sufficiently long.

2. Two sets of totalizers may be used, with only one set
in active use at any time. On a regular basis, the
inactive set is zeroed and its value recalculated from
the current data window, thereby flushing out
rounding errors, before becoming the new active set.

3. The examples given so far in this paper have been
selected to demonstrate high precision, and in
particular the close agreement between continuous
time analytical results and discrete time numerical
values, as a means of explaining the mathematics
underlying the Prism. However, a further claim made
for the Prism (for example in [1]) is that it is suited to
low-cost instrumentation applications, for example in
the Internet of Things. A demonstration of a ‘low
cost’ recursive Prism implementation is shown in Fig.
12. For ease of comparison, the same parameters are
used from earlier examples (e.g. Figs. 3, 4, and 7): fs

8

Fig 10: Prism filtering performance (Gc output only) with m = 1 kHz
Fig 8: Least Squares FIR filtering performance with fpass = 1 kHz

Fig 9: Least Squares FIR filtering performance with fpass = 10 Hz

= 48 kHz, m = 100 Hz, so that the filter order is 960. Here all
calculations are done in floating point (32 bit) precision,
including the integration totalizers. The corresponding errors in
Gs and Gc are of the order ± 1e-6, compared with the ± 1e-14
results obtained using the 4 RI stage, double precision
implementation used to generate Figs. 3 and 4.

The number of floating point operations per sample is a
function of the number of Romberg Integration (RI) stages.
Here a single RI stage is used. To generate both Prism outputs
(i.e. including all 6 Prism integration blocks in Fig. 1) requires
26 multiplications and 50 additions per sample; to generate
only one Prism output (either Gs or Gc, requiring the two first
stage integration blocks of Fig. 1 and only two of the second
stage blocks) requires 18 multiplications and 33 additions. This
computational requirement is fixed, irrespective of filter length,
and contrast favourably with the 961 each of multiplications
and additions required for a convolution calculation of the
same filter order (Table II).

VI. DISCUSSION

In the Prism, the linear phase and numerical stability of
conventional FIR filtering are combined with the low
computational cost conventionally associated with IIR filtering.

Fig 11: Prism filtering performance (Gc output only) with m = 10 Hz

Where two Prism outputs are generated they are
orthogonal, facilitating the tracking of amplitude, phase and
frequency properties, which is particularly useful in in
instrumentation applications. These benefits have been
achieved by adopting an entirely new approach to filter
construction.

In any non-trivial FIR filter, the contribution of each
sample to the filter output must vary as it passes through the
filter’s data window. The conventional means of achieving
this, given some desired filtering performance, is to directly
calculate the weighting associated with each position in the
data window. These positional weights constitute the filter
coefficients, as conventionally understood. This design
calculation is usually sophisticated (e.g. [32]) and may require
significant computational resources. Once the design is
complete, the filter output is calculated by convolution i.e. by
accumulating the sum, over the full data window, of the
products formed from each sample value and the coefficient
corresponding to the weighting of its current position.
However, when a new sample arrives, all the data are shifted
one position along in the data window, so that each sample
must be weighted by a different coefficient associated with its
new position. Accordingly, the convolution must be repeated in
full across the entire data window for each new sample.

9

Fig 12: Prism outputs Gs and Gc using 32-bit floating point implementation

In the Prism, each sample retains a fixed weighting as it
passes through a first stage integral, thereby eliminating the
need to recalculate all products each time step and so
facilitating recursive calculation. This fixed first stage
weighting is determined only by the phase q of the modulation
functions when the sample first enters the Prism. However, the
Prism structure implicitly generates variable weighting at the
second stage, as the weighting of a sample in each second stage
integral is in part a function of its residence time in the first
stage integrals. Furthermore, combinations of the second stage
integrals result, algebraically, in the elimination of the
influence of q, resulting in recursively calculated outputs which
are simple analytic functions of the original input signal.

This new approach to filtering eliminates the need for an
elaborate design calculation to obtain positional weightings
explicitly, while achieving the same end indirectly. As
demonstrated in Section III, it is possible to calculate, for a
given set of Prism parameters fs, m and h, an equivalent set of
positional coefficients, which may be used to generate
essentially identical outputs to the Prism using the
conventional FIR convolution calculation method. As
demonstrated in Section IV, this approach loses the recursive
property, so that the resulting filter is just as costly to operate
as any other conventional FIR filter of the same order, and
therefore has little to recommend it. As Section IV further
demonstrates, for long filters, the Prism calculation can be
achieved with several orders of magnitude less computation
resources than the conventional FIR equivalent.

The price to be paid for the Prism’s low computational cost
is design inflexibility: it is not currently possible to specify

some desired frequency response (say) and design a
corresponding Prism which offers a recursive calculation.
However, given the computational advantage the Prism enjoys
over conventional FIR filters, greater design flexibility can be
introduced by the creation of Prism networks where the
properties of each Prism are selected to create a desired
filtering performance for the whole network. For example, [9],
[10] show how a chain of six Prisms can be used to build a
bandpass filter having a desired central frequency and
bandwidth. Ultra-narrow band filters with orders of several
hundred million can be constructed from a chain of Prisms:
real-time filtering is achieved on a single FPGA, where the
conventional non-recursive FIR calculation would require
supercomputer resources to achieve the same throughput –
assuming such a conventional filter could be successfully
designed. The narrowband technique uses a combination of
high sampling rate and low values of m (as illustrated in
section VI), together with high values of h.

The Prism therefore offers an alternative approach to signal
processing design, based on creating networks of low cost and
relatively simple (and inflexible) processing nodes. As argued
in [1], other network processing approaches have proved
highly successful, most obviously in the case of neural
networks. The Prism’s properties may thus render it a useful
tool for the development of next generation instrumentation,
particularly in the context of the greater flexibility and
autonomy required by the Internet of Things [1].

VII. CONCLUSIONS

This paper has presented the mathematics underlying the
operation of the Prism as a fully recursive FIR filter. It has
demonstrated that the continuous time analytic equations from
which the Prism is derived can be matched to high precision
(e.g. to within ± 3e-14) using discrete time numerical
calculations through the application of Romberg Integration. A
conventional, convolutional, non-recursive FIR filter
equivalent to the Prism has been derived. Simulations have
demonstrated the computational advantage of the recursive
Prism calculation over both its convolutional equivalent and
the widely used Least Squares FIR filter. For filter orders of 96
up to 96,000 the Prism computation was 3 to 3,000 times faster
than the convolutional forms. Prism implementation issues
have been discussed, with a particular focus on low-cost, low
precision (e.g. single floating point) platforms. Using a single
stage of Romberg Integration, 26 multiplications and 50
additions are needed to update both Prism outputs for each new
input value, irrespective of filter length, while 18
multiplications and 33 additions are required to generate a
single Prism output.

Further discussion on the Prism and its applications are
given in [1] – [10]. Future publications will provide more
detailed mathematical developments of specific topics,
including:

 The application of Romberg Integration to time series
data within the Prism

 Prism-based trackers which estimate frequency,
amplitude and/or phase values of an input sinusoid.

10

 The design of low pass, band pass, and notch filters
using Prism networks.

 Dynamic notch filtering: separating two or more
sinusoids simultaneously in the same input signal
using Prisms.

 Instrumentation applications.

REFERENCES

[1] Henry, MP, Leach, F, Davy, M, Bushuev, O, Tombs, MS, Zhou, FB and
Karout, S. “The Prism: Efficient Signal Processing for the Internet of
Things”, IEEE Industrial Electronics Magazine, pp 2–10, December 2017.

[2] Henry, MP. “An Introduction to Prism Signal Processing applied to
Sensor Validation”, Measurement Techniques, pp 1233 – 1237, Mar 2018.

[3] Henry, MP, Bushuev, O, Ibryaeva, O. “Prism Signal Processing for
Sensor Condition Monitoring”, 26th IEEE International Symposium on
Industrial Electronics, Edinburgh, UK, 2017.

[4] Henry, MP, Sinitsin, V. “Prism Signal Processing for Machine Condition
Monitoring I: Design and Simulation”, 1st IEEE International Conference
on Industrial Cyber-Physical Systems (ICPS-2018), May 2018.

[5] Henry, MP, Sinitsin, V. “Prism Signal Processing for Machine Condition
Monitoring II: Experimental Data and Fault Detection”, 1st IEEE
International Conference on Industrial Cyber-Physical Systems (ICPS-
2018), May 2018.

[6] Chen, X, Henry, MP, Duncan, SR. “An Enhanced Algorithm for
Frequency Estimation in Power Systems”, 2018 UKACC 12th
International Conference on Control, Sheffield, Sept 2018.

[7] Leach, F, Karout, S, Zhou, FB, Tombs, MS, Davy, M and Henry, MP.
“Fast Coriolis mass flow metering for monitoring diesel fuel injection”,
Flow Measurement and Instrumentation, 58 (2017), pp 1–5.

[8] Leach F, Davy M, Henry M, Tombs M, Zhou F. “A new method for
measuring fuel flow in an individual injection in real time”, SAE
International Journal of Engines, Volume 11, 2018.

[9] Henry, MP. “Ultra narrowband filtering with Prism signal processing:
design and simulation”, IEEE IECON, Washington DC, Oct 2018.

[10] Owen, J, Henry, MP. “384 TMAC/s FIR filtering on an Artix-7 FPGA
using Prism signal processing”, IEEE IECON, Washington DC, Oct 2018.

[11] R. Lyons and A. Bell, "The swiss army knife of digital networks," in
IEEE Signal Processing Magazine, vol. 21, no. 3, pp. 90-100, May 2004.

[12] T. G. Campbell and Y. Neuvo, "Predictive FIR filters with low
computational complexity," in IEEE Transactions on Circuits and
Systems, vol. 38, no. 9, pp. 1067-1071, Sep 1991.

[13] T. Saramaki and A. T. Fam, "Properties and structures of linear-phase FIR
filters based on switching and resetting of IIR filters," IEEE International
Symposium on Circuits and Systems, New Orleans, LA, 1990, pp. 3271-
3274 vol.4.

[14] E. Hogenauer, "An economical class of digital filters for decimation and
interpolation," in IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 29, no. 2, pp. 155-162, Apr 1981.

[15] M. Mottaghi-Kashtiban, A. Jalali, “FIR filters involving shifts and only
two additions, efficient for short word-length signal
processing”,Microelectronics Journal, Volume 49, 2016, Pages 57-63

[16] S. Chu and S. Burrus, “Efficient recursive realizations of FIR filters, Part
I: The filter structures,” Circuits Syst. Signal Process., vol. 3, no. 1, pp. 3–
20, 1984.

[17] S. Chu and S. Burrus, “Efficient recursive realizations of FIR filters, Part
II: Design and Applications,” Circuits Syst. Signal Process., vol. 3, no. 1,
pp. 21–57, 1984.

[18] R. Lehto, T. Tauren, and O. Vainio, “Recursive FIR filter structures on
FPGA,” Microprocess. Microsyst., vol. 35, no. 7, pp. 595–602, Oct. 2011.

[19] K. Mukumoto and T. Wada, "Realization of Root Raised Cosine Roll-Off
Filters Using a Recursive FIR Filter Structure," in IEEE Transactions on
Communications, vol. 62, no. 7, pp. 2456-2464, July 2014.

[20] H. Murakami, I. Reed and A. Arcese, "Recursive FIR digital filter design
using a z-transform on a finite ring," in IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 31, no. 5, pp. 1155-1164, October
1983.

[21] G. Jullien, R. Krishnan and W. Miller, "Complex digital signal processing
over finite rings," in IEEE Transactions on Circuits and Systems, vol. 34,
no. 4, pp. 365-377, Apr 1987.

[22] H. Murakami, "Multiple FIR filters on a finite ring," in IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 5,
pp. 686-692, May 1988.

[23] H. Kikuchi, H. Watanabe, and T. Yanagisawa , “Linear Phase FIR Digital
Filters with Cyclotomic Resonators”, IEICE Transactions (1976-1990),
Vol.E70, No.1, p.24-32.

[24] K. Berberidis and S. Theodoridis, "New Levinson, Schur, and lattice type
algorithms for linear phase filtering," in IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, no. 11, pp. 1879-1892, Nov 1990.

[25] A. Bartolo, B. D. Clymer, R. C. Burgess and J. P. Turnbull, "An efficient
method of FIR filtering based on impulse response rounding," in IEEE
Transactions on Signal Processing, vol. 46, no. 8, pp. 2243-2248, 1998.

[26] O. Kwon, W. Kwon, K. Lee, “FIR filters and recursive forms for discrete-
time state-space models”, Automatica, Vol. 25, No. 5, 1989, p. 715-728.

[27] J. Han and D. Hatzinakos, "Joint blind deconvolution, fusion and
classification of multi-frame imagery," Canadian Conference on
Electrical and Computer Engineering 2004, pp. 2061-2064, Vol.4.

[28] V. Myasnikov V. Methods for designing Recursive FIR filters. In:
Wojciechowski K., Smolka B., Palus H., Kozera R., Skarbek W., Noakes
L. (eds) Computer Vision and Graphics. Computational Imaging and
Vision, vol 32. Springer, Dordrecht, 2006.

[29] H. L. Kennedy, "Isotropic Estimators of Local Background Statistics for
Target Detection in Imagery," IEEE Geoscience and Remote Sensing
Letters, 2018.

[30] J. Dutka, "Richardson Extrapolation and Romberg Integration", Historia
Mathematica, Vol. 11, pp 3-21, 1984.

[31] D. Rife and R. Boorstyn, "Single tone parameter estimation from
discrete-time observations," IEEE Transactions on Information Theory,
vol. 20, no. 5, pp. 591-598, Sep 1974.

[32] T. Parks and J. McClellan, "Chebyshev Approximation for Nonrecursive
Digital Filters with Linear Phase," in IEEE Transactions on Circuit
Theory, vol. 19, no. 2, pp. 189-194, March 1972.

11

	The Prism cs
	The Prism

