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The Prism: recursive FIR signal processing 
for instrumentation applications 

Manus P. Henry, Member, IEEE 

Abstract— This paper provides the mathematical background 
for the Prism (precise, repeat integral signal monitor), a signal 
processing network node used in a variety of sensing and 
instrumentation applications. The key operation is a double 
Fourier-style integration, which can be implemented recursively 
using sliding windows and precisely using Romberg Integration. 
The Prism generates one or two outputs; if two are generated they 
are orthogonal, analogous to an analytic signal, from which 
sinusoid properties such as frequency, phase and amplitude can 
readily be derived. The Prism outputs are finite impulse response 
(FIR) but the calculation is recursive, resulting in a low 
computational cost which is independent of filter length. The 
paper compares the Prism’s computational efficiency with both a 
least squares FIR filter design and an equivalent Prism filter 
implemented as a conventional convolution. The advantages of the 
Prism include design simplicity, low computational cost, and a 
linear phase response, making it a useful network node for a wide 
range of instrumentation and signal processing tasks. 

Keywords— signal processing, FIR filtering, recursive FIR 
filtering, Prism, Romberg Integration. 

I. INTRODUCTION 

This paper provides the mathematical background to the 
Prism (precise, repeat integral signal monitor), which is used as 
a signal processing network node in a variety of applications 
reported in the recent literature. The key mathematical 
operation is a Fourier-style double integration, which can be 
implemented recursively using sliding windows and precisely 
using Romberg Integration. The Prism generates one or two 
outputs; if two are generated they are orthogonal, analogous to 
an analytic signal, from which sinusoid properties such as 
frequency, phase and amplitude can readily be derived. The 
Prism calculation is finite impulse response (FIR); its benefits 
include design simplicity, a linear phase response, and a low 
computational cost which is independent of window length, a 
significant advantage over conventional FIR filters. Prisms can 
be cascaded in serial and/or parallel to create networks for 
carrying out more complex tasks, such as notch, bandpass and 
dynamic notch filtering, or the tracking of one or more 
sinusoidal components within a signal. 

A general overview of Prism Signal Processing (PSP) as a 
potential signal processing networking technology for Internet 
of Things applications is given in [1]. In [2], PSP is applied to 
sensor validation, whereby Prism networks can be instantiated 
and/or extended in real time, in response to changing signal 
properties and/or diagnostic states. PSP has been applied to 
pressure sensor validation [3], condition monitoring of rotating 
machinery [4], [5], and frequency estimation in power systems 

[6]. In [7], [8], PSP is applied to Coriolis mass flow metering, 
whereby rapid measurement updates (at 48 kHz) enable for the 
first time direct mass flow measurement of fuel injection pulses 
as short as 1 ms in a laboratory diesel engine. Prism networks 
have also been used to design and implement ultra-narrowband 
filters [9], [10]. 

The central claim to novelty and utility for the Prism is that 
it operates as a fully recursive FIR filter while having an 
inherently simple design procedure. These properties represent 
an advance over previous work where a partially recursive 
calculation is introduced into FIR filters, at the expense of a 
more complex design procedure. 

Previous authors have reported a number of approaches for 
developing recursive FIR filters, typically entailing specific 
mathematical structures to support efficient calculation. These 
approaches include: adapting IIR filters to approximate FIR 
behaviour [11], [12], for example the switching and resetting of 
multiple IIR filters [13]; the Cascade Integrator Comb (CIC) 
[14], [15], which cascades the moving average filter (arguably 
the only ‘naturally’ recursive FIR filter); the construction of 
piecewise polynomial approximations to the impulse response 
[16] – [19]; complex filtering over finite rings [20] – [22]; 
cyclotomic resonators [23]; exploiting linear phase symmetry 
[24]; impulse response rounding [25]; and combining FIR 
filtering with state-space estimation [26]. In addition, specific 
techniques have been developed for two-dimensional recursive 
FIR filtering in image processing applications [27] – [29]. 

This paper explains the mathematical development behind 
the Prism. The analysis is given in terms of continuous time, 
even though the Prism operates on sampled (i.e. discrete time) 
data. The step from continuous to discrete time is effected 
without further mathematical development via the use of 
Romberg Integration (RI) [30]. Numerical simulations reported 
in this paper demonstrate that results obtained using discrete 
time numerical calculation match the corresponding continuous 
time analytical results with close to double precision accuracy. 
A future paper will explain in detail how RI has been adapted 
to operate on time series data in the Prism. 

Section II provides the mathematical development. Section 
III calculates the impulse response of the Prism outputs and 
constructs the corresponding non-recursive convolutional 
filters. Section IV compares the design and computation costs 
of the Prism with those of a conventional least squared low-
pass FIR filter and with the convolution form of the Prism. 
Section V considers stability and implementation issues, 
particularly for low cost, low precision systems. Sections VI 
and VI provide discussion, conclusions, and future work. 
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II. MATHEMATICAL DEVELOPMENT 

As stated in the introduction, previously reported recursive 
FIR filtering techniques typically have a particular application 
and/or mathematical approach that inform their development. 
This is also the case for the Prism technique: it was developed 
with a view to instrumentation applications where the intention 
is to track essentially sinusoidal sensor signals, applying 
Fourier-style integration techniques. 

Consider a noise-free sinusoidal signal taking the form: 

s(t)  Asin(2 ft ) , (1) 

where t (or τ) is time in seconds, A is the amplitude, f is the 
frequency in Hertz and  is the phase offset in radians at time t 
= 0. In practice A and/or f may vary with time, but are assumed 
constant in this initial analysis. The basic mathematical 
operation used here is to calculate double integrals of the form: 

hI  (2)[s|c][s|c] 

0 t 2m  [sin | cos](2 hmt) 

 [sin | cos](2 hm ) s( )d 

 
dt 

1 1 t  
m m 

The subscript notation [s | c] indicates the selection of one 
alternative between s (sin) and c (cosine). The superscript h is 
the harmonic number, a positive integer, usually small. m is the 
characteristic frequency, where, in any digital implementation, 
its period must be a whole number of sample durations. 
Usually m is higher than f, the frequency of the input. For 
clarity, unlike in other Fourier-based techniques, m is fixed at 
design time while f is usually unknown, although expected to 
fall within a certain range. For example, in a typical 
instrumentation application, using a fixed sampling rate in the 
range 5 – 50 kHz, a sinusoidal signal with a frequency in the 
range 50 – 180 Hz might be tracked using double integrals with 
values of m around 200 Hz. The length of each integral is 
typically not less than around 30 samples; as will be shown, the 
greater the length in samples, the greater the computational 
advantage over conventional FIR filtering. 

The integral limits are selected so that , the phase of s(t) at 
t = 0, is also the phase of the most recent data value. Hence, 
calculating  gives the phase at the end of the data window, 
rather than (for example) at the mid-point of the double 
integral. Accordingly, the double integral as a whole extends in 
time from -2/m to 0. The harmonic number h indicates how 
many whole cycles of each modulating sinusoid take place 
within each integration period. For example: 

0 t 1 2Iss  m sin(2 mt) sin(2 m ) s( ) d dt (3)  
 
   t  

m m 
1 

 1 
 

2 2 


0 




t 

 
Isc  m sin(4 mt) 

 
cos(4 m ) s( ) d 

 
dt . (4) 

1 1 t  
m m 

Analytically, these integrals are equivalent to the following 
expressions: 

1 2  3r 2 

 Asinc ( r) sin(  2 r) (5) I ss 2 2(r 1) (r  4) 

2 
2 2 2r(r  8)

I sc  Asinc ( r) cos(  2 r) . (6) 
2 2(r  4)(r 16) 

Here r is the frequency ratio of the input sinusoid, defined as: 

r  f / m , (7) 

so that r = 0 when f = 0 Hz and r = 1 when f = m Hz. 
Typically, r < 1 for a sinusoid being tracked (it will be shown 
in future papers that optimal tracking performance is achieved 
when r = 0.5), but values of r exceeding unity often arise in 
Prism filtering applications. sinc(x) is the normalised sinc 
function defined as follows: 

sin( x)
sinc(x)  . (8) 

 x 

The utility of the double integral approach begins to emerge 
from these equations. By passing the signal s(t) through 
different double integrals in parallel, a set of algebraically 
related functions can be calculated, from which the values of r 
(and hence f ), A and  might be deduced. Most usefully, some 
integrals in the family result in sine functions, while others 
produce cosine functions, offering the strategy of computing 
orthogonal pairs of integral values (comparable to the analytic 
function) from which to derive the sinusoid parameters. Both 
sine and cosine terms have a common delay term 2r. This is 
the linear phase delay characteristic of an FIR filter where the 
time delay is 1/m, i.e. half the double integral length. 

Next, we address the issue of evaluating the numerical 
values of the double integrals in a computationally efficient 
(i.e. recursive) manner. This results in a simplification of the 
algebraic form of the equations, and leads to the development 
of the Prism concept. We further assume integration is to be 
applied numerically to a time series of data s(tk) with fixed 
sample rate fs, and where, with each new sample, new integral 
values are to be calculated, based on a window of data 
consisting of the most recent 2fs/m + 1 samples. Accordingly, 
fs is included as an additional parameter of the Prism. 

On initial consideration, the numerical evaluation of this 
family of double integrals should be computationally 
expensive. For example, if equation (3) is evaluated in a 
conventional manner, the number of multiplications of a 
sample by a modulating sine value is given by the square of the 
number of samples in each single integral. For, say 100 sample 
points, this would require 10,000 multiplications, even before 
further calculations were performed to accumulate the single 
and double integral values. Clearly in many applications this 
would constitute an unacceptably large computational burden. 

A common technique for reducing the computational load 
of calculations over a window of data is to use a recursive 
approach. Here the algorithm is arranged so that the calculation 
at time step k + 1 is based primarily on results from the 
calculation at time step k, typically by removing the 
contribution of the oldest value in the previous data window 
and including the contribution of the newest value which has 
been added to form the current data window. Applying this 
technique to an integration (or indeed a double integration) 
calculation is potentially straightforward. However, the 
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difficulty arises in (re)calculating the products of the input 
signal s(tk) and the characteristic sine or cosine function values. 
Equation (2) implies that the initial phase of each modulating 
function is zero for each integral. This in turn implies 
recalculating the product of signal and modulation function 
across the whole integral at each new time step. To apply a 
recursive, sliding window approach to equation (2) it would be 
necessary for the modulating functions to ‘slide with’ the input 
signal, so that all (but the oldest) of the signal/modulation 
function products at time step k remain valid at time step k + 1. 

This requirement can be expressed mathematically by 
introducing an additional variable, q, representing the initial 
phase of the modulating functions, which is no longer assumed 
to be zero. As both integrals have the same length, it can be 
assumed that the phase offset is the same for each. Thus, the 

1definition of I given in equation (3) may be generalised to ss 

0 t 
Iss  m sin(2 mt  q) 

 
sin(2 m  q)  s( ) d 

 
dt (9) 

1 1 t 
m m 

1 2 



 

 

where, in any practical implementation, q is known and 
incremented by 2  mh/fs radians (modulo 2) each time 
step. 

Unfortunately, introducing q into the definitions of the integral 
family (2) results in analytic expressions (provided for the case 
h = 1 below) which are not particularly tractable. Fortunately, 
however, the combination or grouping of certain pairs of 
integrals yields simple analytic results which are independent 
of q. These groups facilitate the use of sliding windows to 
significantly reduce the computational effort required to 
numerically evaluate the double integrals. 

1Given the revised definition of I in equation (9), and the ss 

1corresponding definition of I :cc 

0 t
1 2Icc  m  cos(2 mt  q) 




 cos(2 m  q) s( ) d 



 
dt (10) 

1 1 t 
m m 

1Then the integral group G formed from their sum has as 

simple analytic expression which is independent of q. 

2 
1 1 1 2 r

G  I  I  Asinc ( r) sin(  2 r) (11) s ss cc 2r 1 

1 1Similarly, defining integrals I and I as follows: sc cs 


0

1 



t 

1 
 

1 2Isc  m sin(2 mt  q) 
 

cos(2 m  q) s( ) d 
 

dt (12) 
 t

m m 

1 2Ics  m 
0 

cos(2 mt  q) 



t 

sin(2 m  q)  s( ) d 
 

dt (13) 
 t 

m m 
1 

 1 
 

1then these integrals can be combined into a group G :c 

r1 1 1 2Gc  Ics  I sc  Asinc ( r) cos(  2 r) . (14) 
2r 1 

So, by accepting the overhead of calculating two double 
integral pairs, simple analytic expressions are obtained for the 
combined results, where the numerical values may be 
calculated recursively using sliding windows. Note also that 

1 1the pair G and G nearly form an analytic function – they s c 

differ only by a factor r. Similar results are obtained for the 
integrals for higher harmonic numbers: 

2 
h h h 2 r

G  I  I  Asinc ( r) sin(  2 r) (15) s ss cc 2 2r  h 

h h h 2 h r
Gc  Ics  I sc  Asinc ( r) cos(  2 r) (16) 

2 2r  h 

These results have been verified directly using the 
MATLAB Computer Algebra toolbox for all h  500, but they 
appear to be valid for all h and have been used successfully in 
narrowband filtering applications with h as high as 2,000,000 
[9], [10]. Note that for each harmonic number the close 
analogy between the two integral groups and an analytic 

function is preserved: in general the ratio between Gs
h and 

Gc
h (excluding the orthogonal sine/cosine functions) is r/h. 

These analytic expressions for the integral groups form the 
basis of the Prism, a signal processing object that receives a 
time series signal as an input, and which generates, via 
recursive numerical integration, one or two time series outputs, 

h hcorresponding to G and/or G . It has three primary s c 

configuration parameters, m, h and fs. Other parameters 
determine whether one or both of the outputs are generated, 
and how the numerical integration is to be executed, as 
outlined below. 

Fig. 1 shows the structure of the Prism, which consists of 
six single integration blocks, arranged in a cascade of two 
layers. Each integration block accepts an input time series and 
generates an output time series, formed from the input signal 
multiplied by the selected modulation function and then 
integrated over the last 1/m seconds. The integration is 
implemented efficiently using a recursive sliding window 
arrangement where the q term (not shown in the diagram 
equations) is common across all integration blocks and 
incremented each time step. A factor m is included at each 
stage to effect the multiplication by m2 required in equations 
(12) and (13). The time series are routed between the 
integration blocks, and the second stage integral outputs are 

h hcombined to form the Prism output(s) G and/or G .s c 

The properties of the Prism outputs, considered as FIR filters, 
are discussed in [1]. The gain characteristics facilitate the use 
of Prism networks to instantiate low pass, band pass and notch 
filters. Examples are provided in [1] – [3], [9] – [10]; more 
systematic treatments will be given in future publications. 

A numerical discrete time simulation has been developed to 
demonstrate the internal operation of the Prism. The resulting 
output of each integration block shows good agreement with 
the corresponding continuous time analytical expression, thus 
demonstrating the correspondence between (continuous time) 
theory and (discrete time) numerical operation. 
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Fig 1: Prism structure. 

The Prism input is the pure sinusoidal input given in eqn. 
(1). Assuming h = 1, the superscript notation may be dropped 
and analytic results for each of the integration blocks outputs 
can be derived, as follows: 

A 
I  cos(2 r)  1r cos( p) sin(q)  sin( p) cos(q)s 

2 (r 
2 
 1) 

 sin(2 r)r sin( p) sin(q)  cos( p) cos(q) (17) 

A 
I   cos(2 r)  1r cos( p) cos(q)  sin( p) sin(q)c 2

2 (r  1) 

 sin(2 r)r sin( p) cos(q)  cos( p) sin(q) (18) 

2Asinc ( r) 2  2sin( p  2 r)r  4I ss 2 24(r 1)(r  4) 

 sin( p  2q  2 r)r 1(r  2) (19) 

 sin( p  2q  2 r)r 1(r  2)  
2Asinc ( r) 2Icc   2sin( p  2 r)r  4

2 24(r 1)(r  4) 

 sin( p  2q  2 r)r 1(r  2) (20) 

 sin( p  2q  2 r)r 1(r  2)  
2Asinc ( r) 2Ics   2 cos( p  2 r)r  4

2 24r(r 1)(r  4) 

 r cos( p  2q  2 r)r 1(r  2) (21) 

 r cos( p  2q  2 r)r 1(r  2)  
2Asinc ( r) 2  2 cos( p  2 r)r  4I sc 2 24r(r 1)(r  4) 

 r cos( p  2q  2 r)r 1(r  2) (22) 

 r cos( p  2q  2 r)r 1(r  2)  

While all these functions are individually dependent on the 
modulation phase q, nevertheless it can be observed that, 
algebraically, all the q terms cancel out when the groups Gs and 
Gc are formed as defined by equations (11) and (14). For 
example, equations (19) and (20) give analytic expressions for 
the terms Iss and Icc respectively. The terms containing q are 
equal but of opposite sign, so that when Iss and Icc are summed 
to form Gs the dependency on q is eliminated. 

For the simulation, values of fs = 48 kHz and m = 100 Hz 
are selected. The input signal is a ‘pure’ (to double precision 
accuracy) sinusoid with fixed amplitude A = 0.5. In the first 
example (Figs. 2 – 4), f = 50 Hz, so that r = 0.5. A second 
example (Fig. 5 only) illustrates the change in behaviour for f = 
25 Hz, so that in this case r = 0.25. 

The Prism implementation is designed to demonstrate the 
precise agreement between continuous time analytic results and 
discrete time numerically calculated values, and so four stages 
of RI are used. The modulation functions are calculated to 
double precision. Each product term is also calculated in 
double precision, and then converted to a 64-bit signed integer, 
to eliminate the accumulation of rounding error. Integration 
totalizers are 96-bit fixed point. Given that the true values of all 
the parameters in equations (17) – (19) are known, it is possible 
to compare the numerically calculated output values of each 
Prism integration block with the corresponding analytic values, 
as they vary with time. Section VIII discusses alternative, 
lower-cost Prism implementations. Figs. 2 – 4 illustrate the 
resulting behaviour for r = 0.5. In each case the upper plot 
shows how Prism integration block outputs vary over time, 
while the lower plot shows the corresponding error (i.e. the 
difference between the calculated numerical value and the 
‘true’ analytical value). The magnitude of the numerical error 
is in all cases less than 3e-14. Fig. 2 shows the behaviour of the 
first level integrals Is and Ic. Fig. 3 shows Iss, Icc and their sum 
Gs. While Iss and Icc have periodic waveforms containing 
several frequency components, Gs, is a pure sinusoid with 
frequency 50 Hz. Similarly, in Fig. 4, Ics and Isc have periodic 
waveforms, while Gc, formed from their difference, is a pure 
sinusoid orthogonal to Gs. Finally, Fig. 5 is the equivalent of 
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Fig 2: Time series of Is and Ic outputs (f = 50 Hz, r = 0.5) 

Fig 3: Time series of Iss, Icc and Gs outputs (f = 50 Hz, r = 0.5) 

Fig. 4 but using f = 25 Hz and hence r = 0.25. Again, while Iss 

and Icc contain multiple components, Gs, remains a pure 
sinusoid with frequency 25 Hz. 

Thus, in the absence of noise in the input signal, the 
numerically integrated values of the Prism block outputs match 
the corresponding analytic results to high precision when 
several stages of Romberg Integration are applied. 

Fig 4: Time series of Isc, Ics and Gc outputs (f = 50 Hz, r = 0.5) 

Fig 5: Time series of Iss, Icc and Gs outputs (f = 25 Hz, r = 0.25) 

III. NON-RECURSIVE PRISM-EQUIVALENT FILTERS 

In this section the impulse response of each of the Prism 
outputs is determined, from which the coefficients of the 
corresponding conventional FIR filters are derived. 
Simulations demonstrate the equivalent outputs are obtained 
from the Prism and convolution forms of filter. The 
computational efficiencies are compared in the next section. 
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Figure 6 shows the impulse responses for Gs and Gc for h = 
1, 2 and 3, via numerical simulation. Here the time axis has 
been scaled in terms of the characteristic frequency m. As 
would be expected for an FIR filter with a data window of 
duration 2/m, each impulse response is zero beyond this time 
limit. Given the sinusoidal nature of each of the impulse 
responses, it is straightforward to deduce the corresponding 
analytic expressions. Denoting the impulse responses for Gs 

and Gc as Hs and Hc respectively, these are given by: 

1
H s t( )  sin(2hm  t), 

2h 
0  t  1/ m (23) 

1
H s t( )  sin(2hm  t), 

2h 
1/ m  t  2 / m (24) 

1
H c t( )  [cos(2hm  t) 1], 

h2  
0  t 1/ m (25) 

1
H c t( )  [cos(2hm  t) 1], 

2h 
1/ m  t  2 / m (26) 

where the difference between the simulated impulse response 
and the values derived from these equations are of the order of 
1e-5 or less. Note that Hs is symmetric about t = 1/m while Hc 

is anti-symmetric. 

Fig 6: Impulse response of Prism outputs Gs and Gc for h = 1, 2, 3 

To calculate the coefficients of the corresponding 
convolution form of the Prism filters, it is necessary to select 
the sampling rate and determine the order of the filter. Defining 
n = fs/m, which must be an integer value (as discussed in 
section II above), then the Prism equivalent filters are of order 
2n. The total number of filter coefficients required is 2n+1, and 
their values are given by the following equations: 

1
Cs [i]  sin(2h i / n), 0  i  n (27) 

2hn 

1
Cs [i  n]  sin(2h i / n), 0  i  n (28) 

2hn 

1
Cc [i]  [cos(2h i / n) 1], 0  i  n (29) 

2hn 

1
Cc [i  n]  [cos(2h i / n) 1], 0  i  n (30) 

2hn 

where Cs[i] and Cc[i] are the ith coefficients of the equivalent 
filters of Gs and Gc respectively. Given the input time series 
s(tk) these coefficients are used to perform convolution 
calculations as follows: 

2n 
*Gs (tk )  Cs[i] s(tk i ) (31) 

i 0 

2n 
*Gc (tk )  Cc[i] s(tk i ) (32) 

i 0 

where Gs
*(tk) and Gc

*(tk) are the convolution filter outputs at 
time step k. 

Fig. 7 shows the results of applying the non-recursive FIR 
filters of equations (31) and (32) to the same pure sinusoidal 
input used in Figs. 3 and 4. Here fs = 48 kHz and m = 100 Hz, 
so the filter order is 960. The upper plots show the convolution 
outputs Gs

* and Gc
* while the lower plots show the deviations 

from the analytical results for Gs and Gc given in equations 
(11) and (14). All plots show good agreement with the analytic 
values of the Prism outputs, while manifesting sinusoidally-
varying errors. It has not been investigated why, for this 
example, the errors for Gs

* (of order 1e-7) are significantly 
larger than those for Gc

* (of order 1e-12): whatever the cause, 
neither matches the low errors (1e-14 or less) shown by the 
direct Prism calculation in Figs. 4 and 5. Furthermore, as 
shown in the next section, the computational cost of using 
these non-recursive convolution forms is significantly higher 
than for the Prism. Accordingly, other than for the purposes of 
directly demonstrating the equivalence of the Prism to a pair of 
conventional FIR filters, there appears to be limited utility for 
this non-recursive form of filter design. 

IV. DESIGN AND FILTERING EFFICIENCY 

In [1], a set of simulations was used to compare a series of 
conventional FIR Equiripple and Prism filters, in terms of the 
computational effort required for filter design and operation. 
For each filter type, a series of designs was generated by 
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Fig 7: Convolution-form equivalent of Prism outputs Gs
* and Gc

* 

increasing the sampling rate fs while retaining the same 
passband and other filter characteristics. 

Here another conventional FIR filter type is used – the 
Least Squares filter –while the sampling rate is fixed at 48 kHz 
and the filter bandwidth is reduced successively by an order of 
magnitude, resulting in a corresponding rise in the order of 
each filter type. Thus for the Prism filters, the value of m is 
reduced from 1 kHz down to 100 Hz, 10 Hz and finally 1 Hz. 
This results in an equivalent order of the Prism (i.e. its total 
length in samples over the two stages of integration, equal to 
2fs/m) increasing from 96 to 960, 9,600 and finally 96,000 
respectively. Using a high sample rate compared to the value 
of m has practical applications, for example when constructing 
narrowband Prism filters [9], [10]. The computational 
requirement of each Prism is also compared with that of the 
non-recursive FIR filter equivalent developed in section V. 

For any Prism, given its length in samples (derived from fs 
and m) and harmonic number h, the design task consists simply 
of calculating linearly spaced sine and cosine values (the 
modulating functions of equation (2)) so that exactly h periods 
of each function occur over each integration data window. This 
calculation is essentially trivial, so that, as asserted in [1], any 
computing device capable of evaluating a Prism should also be 
capable of designing the Prism, or indeed creating a new Prism 
to match changing signal processing requirements. The design 
task for the non-recursive equivalent filter, given in equations 
(29) – (32) above, is equally trivial. 

By contrast, the Least Squares design (i.e. the calculation of 
the filter coefficients given parameters such as the start and 

stop frequencies, filter order etc) requires dedicated design 
software. Here the MATLAB filter design toolbox is used, but 
other design tools could equally be employed. To provide a fair 
basis for comparison, each Least Squares filter has been 
designed with the same order as the corresponding Prism filter, 
with a pass frequency equal to the corresponding m and a stop 
frequency of 1.5 times the pass frequency. All other Least 
Squares filter design parameters use the MATLAB defaults: 
the purpose is to find a reasonable basis for comparison rather 
than fitness for any particular signal processing task. 

Table I shows the design time required for the Least 
Squares filters. All results were obtained using a 2.5 GHz i7-
2860 laptop with 16 GB of RAM, running 64 bit Windows 7. 
Between the 960 and 9,600 order filter there is almost a 100-
fold increase in design time, while the 96,000 order filter 
design could not be completed. Here MATLAB generated an 
exception due to the construction of a 96k x 96k matrix, 
requiring 17 Gbyte of memory. While it remains possible that 
other design software and/or other parameter choices would 
result in a successfully completed filter design, this example 
illustrates the very significant resources that may be required to 
design conventional FIR filters, particularly for high orders. 

TABLE I. LEAST SQUARES FIR FILTER DESIGN TIME 

Pass frequency 
(Hz) 

Stop frequency 
(Hz) 

Filter order 
(samples) 

Design time 
(s) 

1,000 1,500 96 8.08e-03 

100 150 960 4.96e-02 

10 15 9,600 4.52e+00 

1 1.5 96,000 N/A 

Table II compares the Least Squares, the Prism filter and 
the non-recursive Prism equivalent filter in terms of the 
number of operations and the average compute time required to 
process each sample as the filter order increases. Note that for 
the Prism calculation, only the Gc output is generated, and only 
a single stage of RI is applied. Similarly, for the non-recursive 
Prism-equivalent filter, only the Gc output is calculated. 

The calculation times for the Least Squares and the non-
recursive Prism equivalent filters are similar, as they are 
performing convolutions with identical filter lengths and differ 
only in the filter coefficients used. While the Least Squares 
filter of order 96,000 could not be designed (and so its 
calculation time per sample is estimated), the Prism equivalent 
filter was constructed straightforwardly using equations (31) 
and (32). With both non-recursive techniques, the calculation 
time per sample increases linearly with filter length. 

Even for the smallest order case, the Prism calculation is more 
than three times faster than the other filters. While the 
computational overhead for the two non-recursive techniques 
increases linearly with filter order, the Prism calculation time 
remains approximately constant. Hence the Prism of order 
96,000 requires about 3,000 times less computation time per 
sample than both the corresponding non-recursive equivalent 
and (by extrapolation) the Least Squares filter. 
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TABLE II. LEAST SQUARES AND PRISM FILTER CALCULATION TIME 

Pass 
frequency 
or m (Hz) 

Filter 
order 

(samples) 

Convolution ops per sample Prism ops per sample Filter time per sample (s) 

Multiply Addition Multiply Addition Least 
Squares 

Non-recursive 
Prism equivalent 

Prism 

1,000 96 97 97 18 33 8.79e-08 8.99e-08 2.57e-08 

100 960 961 961 18 33 8.22e-07 8.25e-07 2.65e-08 

10 9,600 9,601 9,601 18 33 8.17e-06 8.19e-06 2.66e-08 

1 96,000 96,001 96,001 18 33 (8.00e-05) 8.22e-05 2.66e-08 

Figs. 8 – 11 demonstrate the similarities of the frequency 
responses for the Least Squares and Prism filters. Each graph 
shows both the theoretical frequency response and the actual 
numerical performance when filtering white noise sampled at 
48 kHz. Good agreement is shown between theoretical and 
numerical performance in each case. The Least Squares filters 
shown have pass frequencies of 1 kHz (Fig. 8) and 10 Hz (Fig. 
9). Other than the frequency scaling (indicated by the different 
ranges of their respective x-axes), the two filters have similar 
characteristics, with a flat passband and a steadily dropping 
stopband with regular notches. 

The Prism filter outputs are shown in Figs. 10 and 11, with 
m = 1 kHz and 10 Hz respectively. The frequency ranges on 
the x-axes correspond to those of Figs. 8 and 9 respectively, 
while the gain shown is relative to the absolute maximum gain 
value. Notches occur at all multiples of m Hz, including 0 Hz. 

The Prism filter Gc outputs have a low pass characteristic 
similar to that of the Least Squared filters, other than a more 
rapid rate of attenuation in the stopband, and the absence of 
steady gain in the ‘passband’ for frequencies below m Hz. 

While the theoretical developments in Section II consider 
only a pure sinusoidal input, figs. 10 and 11 illustrate how the 
Prism filters a signal containing multiple frequency 
components, for the special case of pure white noise. As would 
be expected for a linear filter, the output consists of the 
summation of each input frequency component to which the 
corresponding Prism gain and phase delay has been applied. 
Further illustrations are provided in [1], where dynamic notch 
filtering is applied to ‘split’ a two-tone signal into its respective 
components, and in [10], which demonstrates tracking a 
sinusoidal signal in white noise with an SNR of -60dB, through 
the use of ultra-narrow Prism band pass filtering. In 
considering the filtering ‘efficiency’ of the Prism, the Cramér-
Rao Lower Bound (CRLB) [31] is widely used in signal 
processing to determine the ‘best’ (i.e. smallest variance) 
performance theoretically achievable when extracting a 
parameter value from a data set contaminated by white noise. 
The Prism-based Recursive Signal Tracker (RST) [7] 
calculates frequency, phase and amplitude values for an input 
sinusoid, and performs close to the CRLB limit for each of 
these parameters. A more complete analysis of the noise 
performance of the RST, which requires a full analysis of the 
mathematical technique, will be given in a future paper. 

V. STABILITY AND IMPLEMENTATION CONSIDERATIONS 

In this section we consider numerical stability and 
implementation issues, particularly for low cost platforms. As 
an FIR filter, the Prism has inherent numerical stability. It is 
straightforward to show that for the non-recursive, 
convolutional form given in equations (27) - (32), a bounded 
input time series (say |s(tk)| < K) will generate a bounded 
output series with lower magnitude. As sine and cosine values 
have a magnitude no greater than unity, the Prism outputs are 
constrained as follows: 

2n 2n  1* 
| G (t ) |   | C [i] | | s(t ) | K  K (33) s k s k i

i0 2hn 

2n 2n  1* 
Gc (tk ) |   | C [i] | | s(tk  ) | K  K (34) | c i

i0 hn 

When implementing the Prism in its default recursive form, 
errors may also accumulate from the use of a sliding window 
calculation. An efficient sliding window implementation 
requires totalizers to which the latest product value is added 
and from which the oldest product value is removed, which is 
liable to the accumulation of rounding errors. This issue can be 
addressed in a number of ways, for example: 

1. A fixed point implementation is immune from 
rounding error accumulation. As shown in section IV, 
fixed point integration totalizers can nevertheless 
generate high precision results if the bit lengths are 
sufficiently long. 

2. Two sets of totalizers may be used, with only one set 
in active use at any time. On a regular basis, the 
inactive set is zeroed and its value recalculated from 
the current data window, thereby flushing out 
rounding errors, before becoming the new active set. 

3. The examples given so far in this paper have been 
selected to demonstrate high precision, and in 
particular the close agreement between continuous 
time analytical results and discrete time numerical 
values, as a means of explaining the mathematics 
underlying the Prism. However, a further claim made 
for the Prism (for example in [1]) is that it is suited to 
low-cost instrumentation applications, for example in 
the Internet of Things. A demonstration of a ‘low 
cost’ recursive Prism implementation is shown in Fig. 
12. For ease of comparison, the same parameters are 
used from earlier examples (e.g. Figs. 3, 4, and 7): fs 
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Fig 10: Prism filtering performance (Gc output only) with m = 1 kHz 
Fig 8: Least Squares FIR filtering performance with fpass = 1 kHz 

Fig 9: Least Squares FIR filtering performance with fpass = 10 Hz 

= 48 kHz, m = 100 Hz, so that the filter order is 960. Here all 
calculations are done in floating point (32 bit) precision, 
including the integration totalizers. The corresponding errors in 
Gs and Gc are of the order ± 1e-6, compared with the ± 1e-14 
results obtained using the 4 RI stage, double precision 
implementation used to generate Figs. 3 and 4. 

The number of floating point operations per sample is a 
function of the number of Romberg Integration (RI) stages. 
Here a single RI stage is used. To generate both Prism outputs 
(i.e. including all 6 Prism integration blocks in Fig. 1) requires 
26 multiplications and 50 additions per sample; to generate 
only one Prism output (either Gs or Gc, requiring the two first 
stage integration blocks of Fig. 1 and only two of the second 
stage blocks) requires 18 multiplications and 33 additions. This 
computational requirement is fixed, irrespective of filter length, 
and contrast favourably with the 961 each of multiplications 
and additions required for a convolution calculation of the 
same filter order (Table II). 

VI. DISCUSSION 

In the Prism, the linear phase and numerical stability of 
conventional FIR filtering are combined with the low 
computational cost conventionally associated with IIR filtering. 

Fig 11: Prism filtering performance (Gc output only) with m = 10 Hz 

Where two Prism outputs are generated they are 
orthogonal, facilitating the tracking of amplitude, phase and 
frequency properties, which is particularly useful in in 
instrumentation applications. These benefits have been 
achieved by adopting an entirely new approach to filter 
construction. 

In any non-trivial FIR filter, the contribution of each 
sample to the filter output must vary as it passes through the 
filter’s data window. The conventional means of achieving 
this, given some desired filtering performance, is to directly 
calculate the weighting associated with each position in the 
data window. These positional weights constitute the filter 
coefficients, as conventionally understood. This design 
calculation is usually sophisticated (e.g. [32]) and may require 
significant computational resources. Once the design is 
complete, the filter output is calculated by convolution i.e. by 
accumulating the sum, over the full data window, of the 
products formed from each sample value and the coefficient 
corresponding to the weighting of its current position. 
However, when a new sample arrives, all the data are shifted 
one position along in the data window, so that each sample 
must be weighted by a different coefficient associated with its 
new position. Accordingly, the convolution must be repeated in 
full across the entire data window for each new sample. 
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Fig 12: Prism outputs Gs and Gc using 32-bit floating point implementation 

In the Prism, each sample retains a fixed weighting as it 
passes through a first stage integral, thereby eliminating the 
need to recalculate all products each time step and so 
facilitating recursive calculation. This fixed first stage 
weighting is determined only by the phase q of the modulation 
functions when the sample first enters the Prism. However, the 
Prism structure implicitly generates variable weighting at the 
second stage, as the weighting of a sample in each second stage 
integral is in part a function of its residence time in the first 
stage integrals. Furthermore, combinations of the second stage 
integrals result, algebraically, in the elimination of the 
influence of q, resulting in recursively calculated outputs which 
are simple analytic functions of the original input signal. 

This new approach to filtering eliminates the need for an 
elaborate design calculation to obtain positional weightings 
explicitly, while achieving the same end indirectly. As 
demonstrated in Section III, it is possible to calculate, for a 
given set of Prism parameters fs, m and h, an equivalent set of 
positional coefficients, which may be used to generate 
essentially identical outputs to the Prism using the 
conventional FIR convolution calculation method. As 
demonstrated in Section IV, this approach loses the recursive 
property, so that the resulting filter is just as costly to operate 
as any other conventional FIR filter of the same order, and 
therefore has little to recommend it. As Section IV further 
demonstrates, for long filters, the Prism calculation can be 
achieved with several orders of magnitude less computation 
resources than the conventional FIR equivalent. 

The price to be paid for the Prism’s low computational cost 
is design inflexibility: it is not currently possible to specify 

some desired frequency response (say) and design a 
corresponding Prism which offers a recursive calculation. 
However, given the computational advantage the Prism enjoys 
over conventional FIR filters, greater design flexibility can be 
introduced by the creation of Prism networks where the 
properties of each Prism are selected to create a desired 
filtering performance for the whole network. For example, [9], 
[10] show how a chain of six Prisms can be used to build a 
bandpass filter having a desired central frequency and 
bandwidth. Ultra-narrow band filters with orders of several 
hundred million can be constructed from a chain of Prisms: 
real-time filtering is achieved on a single FPGA, where the 
conventional non-recursive FIR calculation would require 
supercomputer resources to achieve the same throughput – 
assuming such a conventional filter could be successfully 
designed. The narrowband technique uses a combination of 
high sampling rate and low values of m (as illustrated in 
section VI), together with high values of h. 

The Prism therefore offers an alternative approach to signal 
processing design, based on creating networks of low cost and 
relatively simple (and inflexible) processing nodes. As argued 
in [1], other network processing approaches have proved 
highly successful, most obviously in the case of neural 
networks. The Prism’s properties may thus render it a useful 
tool for the development of next generation instrumentation, 
particularly in the context of the greater flexibility and 
autonomy required by the Internet of Things [1]. 

VII. CONCLUSIONS 

This paper has presented the mathematics underlying the 
operation of the Prism as a fully recursive FIR filter. It has 
demonstrated that the continuous time analytic equations from 
which the Prism is derived can be matched to high precision 
(e.g. to within ± 3e-14) using discrete time numerical 
calculations through the application of Romberg Integration. A 
conventional, convolutional, non-recursive FIR filter 
equivalent to the Prism has been derived. Simulations have 
demonstrated the computational advantage of the recursive 
Prism calculation over both its convolutional equivalent and 
the widely used Least Squares FIR filter. For filter orders of 96 
up to 96,000 the Prism computation was 3 to 3,000 times faster 
than the convolutional forms. Prism implementation issues 
have been discussed, with a particular focus on low-cost, low 
precision (e.g. single floating point) platforms. Using a single 
stage of Romberg Integration, 26 multiplications and 50 
additions are needed to update both Prism outputs for each new 
input value, irrespective of filter length, while 18 
multiplications and 33 additions are required to generate a 
single Prism output. 

Further discussion on the Prism and its applications are 
given in [1] – [10]. Future publications will provide more 
detailed mathematical developments of specific topics, 
including: 

 The application of Romberg Integration to time series 
data within the Prism 

 Prism-based trackers which estimate frequency, 
amplitude and/or phase values of an input sinusoid. 
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 The design of low pass, band pass, and notch filters 
using Prism networks. 

 Dynamic notch filtering: separating two or more 
sinusoids simultaneously in the same input signal 
using Prisms. 

 Instrumentation applications. 
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