
 
 

 
  

   

   
  

     
  

    
 

 
 

  

      
   

   
  

   

    
  

    
   

   
  

      
   

   

Prism signal processing for 
machine condition monitoring I: 
Design and simulation 
Henry, M. & Sinitsin, V. V. 

Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink: 
Henry, M & Sinitsin, VV 2018, Prism signal processing for machine condition monitoring I: 
Design and simulation. in Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 
2018. Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, Institute of 
Electrical and Electronics Engineers Inc., pp. 452-457, IEEE International Conference on 
Industrial Cyber-Physical Systems, Saint Petersburg, Russian Federation, 15/05/18. 
https://dx.doi.org/10.1109/ICPHYS.2018.8390747 

DOI 10.1109/ICPHYS.2018.8390747 
ISBN 9781538665312 

Publisher: IEEE 

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A 
copy can be downloaded for personal non-commercial research or study, without prior permission 
or charge. This item cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the copyright holder(s). The content must not be changed in any way or 
sold commercially in any format or medium without the formal permission of the copyright 
holders. 

This document is the author’s post-print version, incorporating any revisions agreed during the 
peer-review process. Some differences between the published version and this version may 
remain and you are advised to consult the published version if you wish to cite from it. 

https://dx.doi.org/10.1109/ICPHYS.2018.8390747


 

  

 
 
 

 

 
 

   
  

 
 

 

 

   

 

 
 

 

 

 
 
 

  
 

  

 
  

 

 
  
   

  

 

 

 

  

 

 

 

 
 

 
 

  
 

 

  

  

 
  

 

 

  

 

  
 

 

Prism Signal Processing for Machine Condition 
Monitoring I: Design and Simulation 

Manus Henrya,b 

aDepartment of Engineering Science 
University of Oxford 

Oxford, OX1 3PJ, UK. 
manus.henry@eng.ox.ac.uk 

Abstract—An earlier study described a wireless acceleration 
sensor used to perform condition monitoring of rotating 
machinery, via off-line spectral analysis. In this paper, a new 
technique called Prism signal processing is applied to the same 
problem to provide sample-by-sample analysis of the machine 
rotation. The Prism has low design cost and low computational 
cost, and so is particularly suited to the flexible signal processing 
requirements for the Internet of Things. This paper provides an 
overview of the sensor and its experimental rig as well as the 
Prism-based signal processing scheme used to track the key 
components for diagnostic monitoring. The validity of the signal 
processing scheme is demonstrate via a simulation. 

Keywords— Prism signal processing, diagnostics, 
accelerometer, wireless acceleration sensor, rotating machinery. 

I. INTRODUCTION 

Modern trends in Industry 4.0 such as smart and flexible 
manufacturing systems require enhanced reliability and 
operational predictability of their nodes and components. Fault 
detection and diagnosis methods are under intense 
development for instruments in industrial systems. The 
implementation of these methods improves machine condition 
monitoring and leads to a reduction in maintenance costs and 
the number of unplanned shutdowns. 

Vibration-based monitoring is a widely used approach for 
fault detection and diagnosis in rotating machines. The most 
common methods for fault diagnosis compare, via various 
signal parameters (for example, RMS value, peak amplitude or 
kurtosis), the 'healthy machine state' and the 'current machine 
state'. However, different machine workloads may lead to 
different vibration levels causing such methods to lose 
efficiency [1]. More specialized methods have been developed 
for the fault diagnosis of machines with fluctuation loads, for 
example, the combination of Time Synchronous Averaging 
(TSA) with the complex Morlet wavelet [2], the Hilbert 
transform [3], or the MIR-TSA technique [4]. Unfortunately, 
these methods have a limitation of machine fluctuation speed. 

Methods based on time-frequency resolution are often more 
efficient, for example, Empirical Mode Decomposition (EMD) 
which follows Hilbert Transform (HT) [5] or Hilbert spectrum 
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based on the maximal overlap discrete wavelet packet 
transform (MODWPT) [6]. However, these methods require a 
high level of computational resources. 

A new signal processing object, the Prism [7], matches 
these requirements by having trivial design cost (so that new 
signal processing schemes can be instantiated in real time to 
match changing signal characteristics) and a low computing 
cost per sample. As summarised in [7], networks of Prisms can 
carry out a variety of signal processing tasks such as low pass, 
bandpass and notch filtering, the ‘splitting’ of signals into 
separate frequency components, and the tracking of frequency, 
phase and amplitude information. Previous applications include 
Coriolis mass flow metering [8], where Prism signal processing 
has facilitated a significant increase in the measurement update 
rate to 48 kHz, enabling for the first time direct measurement 
of diesel engine fuel injection; pressure sensor diagnostics [9] 
where ultrasonic pulses composed of multiple decaying 
sinusoids are decomposed to provide diagnostic data; and 
sensor validation more broadly [10], whereby the presence of 
an undesired frequency component in a transducer signal is 
detected, isolated, tracked, and compensated, within one 
second of the fault occurring. 

Strongly associated with Industry 4.0 [11] is the Internet of 
Things (IoT) [12] which proposes a substantial increase in the 
deployment of sensors - for collecting, processing and 
communicating measurement data in real time - in diverse 
working environments. The implementation of the IoT concept 
alongside wireless technologies will support the development 
of sensors with unique functions, which accordingly can 
improve condition monitoring. An example of a wireless 
technology implementation is the Wireless Acceleration Sensor 
(WAS) [13]. WAS contains several MEMS-accelerometers and 
is mounted on the moving element (for example, the rotating 
shaft) of a machine so that accelerometer data (and eventually 
power) may be transferred wirelessly. Thus, WAS is more 
flexible, and potentially more sensitive than traditional 
technologies. Moreover, WAS can measure angular as well as 
linear accelerations of the moving element. 

This paper describes the application of Prism signal 
processing to a WAS application where the WAS is mounted 
on the moving element of a rotating test rig. The signal 
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processing scheme has two stages. The first stage tracks the 
frequency of the variable speed rotation, despite the presence 
of multiple harmonics in the signal. The second stage provides 
a series of bandpass filters and trackers to monitor the 
frequency and amplitude of each frequency component once 
the rotor has established a steady rotation. These sinusoidal 
component parameters may be used to perform diagnostic 
analysis of the rotor operation. 

A key feature of the Prism signal processing scheme is that 
the bandpass filtering can be (re)designed around the rotor’s 
current operating frequency with minimum design effort and 
with no specialized design software. This demonstrates a 
solution to one of the challenges identified in [7] for the IoT – 
low cost, localized redesign of the signal processing scheme in 
response to changing requirements. 

This paper presents the signal processing scheme, and 
demonstrates via a simulation exercise that the component 
parameters can be tracked to reasonable accuracy. A 
companion conference paper provides experimental data for 
faulty and non-faulty conditions to demonstrate the technique’s 
applicability to the real system. Future work will include the 
development of diagnostic reasoning based on the amplitude 
and frequency data obtained via Prism signal processing, as 
well as a real-time implementation of the scheme. 

II. WIRELESS ACCELEROMETER 

The WAS prototype (Fig. 1), developed at SUSU [13], uses 
three one-axis MEMS-accelerometers (ADXL001-70 from 
Analog Devices) as sensing elements. Sampling is performed 
at 41 kHz using an AD7609 8-channel simultaneous sampling 
ADC. The sensing system is controlled by the ARM-based -
power micro-controller STM32L476 (STMicroelectronics), 
which communicates wirelessly via an RF receiver–transmitter. 
The experimental sensor uses lithium batteries for power, but 
in the longer term wireless power transfer is envisaged. 

The PCB sensing board has been evaluated using an 
experimental rig, supplied by SpectraQuest, which is designed 
to simulate a range of typical machine faults, such as load 
imbalance and misalignment. The sensing board was mounted 
on the end of the shaft (figure 2). 

Fig. 1. PCB accelerometer card (from [13]) 

Fig. 2. PCB sensing board mounted on shaft of experimental rig (from [13]) 

In [13], a summary is provided of the basic signal 
processing used to extract the angular acceleration of the shaft 
from the three sensor signals. Fig. 3 shows a power spectrum 
analysis of the angular acceleration signal for an experiment in 
which the rotor starts at rest and accelerates to a steady rotation 
of around 12 Hz. This shows a series of peaks up to the twelfth 
harmonic of the rotation frequency, with highest amplitudes at 
the fourth and sixth harmonic. When the rotor is oscillating 
steadily, the harmonics are retained but the power spectrum 
noise floor is relatively flat. The distortions below 80 Hz in 
Figure 3 is due to the variation in rotational speed as the rotor 
initiates motion and accelerates to a steady rotation. 

The relative amplitudes of the harmonics could potentially 
form a set of diagnostic parameters to be used for detecting 
faults. However, such analysis would preferably be 
implemented in real-time on a sample-by-sample basis, and 
would be further capable of tracking the operation of the rotor 
through transitions, including starting and stopping, where fault 
conditions might have particular characteristics. 

In this paper we describe a Prism signal processing scheme 
to track the variable speed of the rotor, and then to further 
extract the harmonic characteristics of the angular acceleration 
signal for further diagnostic analysis. A simulation 
demonstrates the operation of the scheme. In our companion 
conference paper, we give examples of experimental results 
where fault modes have been induced in the rotor system in 
order to demonstrate the performance of the proposed signal 
processing scheme on real data. 

III. PRISM SIGNAL PROCESSING 

The Prism is a signal processing object which takes an 
input time series and generates one or two output time series. 
Mathematical details of Prism implementation are discussed in 
[7-10]. The Prism behaves like a pair of FIR filters operating 
over a window of input data of duration 2/m, where m is the 
characteristic frequency of the Prism. However, the Prism has 
two significant advantages over conventional FIR filters. 
Firstly, the Prism has a recursive calculation, so that the 
computation per sample is low, and independent of the Prism 
window length. This is well suited to the restricted 



 

 

  
 
 
 

 
 

 
  

 

 

  

  

  

 
  

  

 

  
  

  

  

 

 
 

 

    

 
 
 

  

   
 

 

 

 

 

 

  

computational budgets of IoT devices. Secondly, filter design 
is simple, as the ‘coefficients’ are just linearly spaced sine and 
cosine values. Accordingly, any device capable of running a 
Prism should be capable of designing or redesigning it as signal 
properties or operational requirements change over time. 

Networks of Prisms can be used to perform a range of 
filtering tasks, including low pass, bandpass and (static) notch 
filtering. In addition, Prism-based trackers can be used to 
generate sample-by-sample estimates of frequency, amplitude 
and/or phase of a sinusoid. These trackers share the Prism 
characteristics of low computational cost and simple design. 
For example, Prism-based pre-filtering and tracking of 
transducer data has been implemented to achieved a 
significantly increased measurement update rate (up to 48 kHz) 
for Coriolis mass flow measurement [8]. 

Here, we demonstrate the flexibility of Prism signal 
processing, using the accelerator data from the experimental 
rotor system. The key goal is as follows: to track the frequency 
and amplitude of up to eight signal components, allowing for 
variable rotor speed between say 10 Hz and 18 Hz. The 
amplitude data may be used to perform diagnostics to detect a 
variety of fault conditions. However, the focus here is on the 
basic Prism signal processing scheme to generate the amplitude 
data. It is assumed that the test equipment will operate over a 
series of ‘runs’ as exemplified by Fig. 3. The sampling (and 
measurement) update rate to be managed is 41 kHz. 

A simple means of achieving this goal is to use suitably 
designed bandpass filtering and tracking to isolate each signal 
component. However, the key criterion for determining the 
bandpass filter design is the steady rotation speed, which is 
arbitrary within given limits, and unknown. Accordingly, the 
signal processing developed here consists of two stages: 

 A first stage which tracks the rotational frequency 
(only) during the startup period. This stage must be 

able to operate over the full range of rotor frequencies. 

 A second stage to track all component amplitudes and 
frequencies once the steady rotor operation has 
commenced. The key here is that the signal processing 
is re-designed each run based around the steady 
rotational speed as determined by the first stage. 

Here the signal processing scheme is outlined, and simulation 
results demonstrate its ability to track multiple components. In 
the companion paper, the system is applied to experimental 
data for a variety of rotational speeds and fault conditions. 

IV. SIMULATION OF ACCELEROMETER DATA 

Table I lists the typical structure of experimental 
angular acceleration signals, as illustrated in Figure 3. Here f 
is the instantaneous operating frequency. The 4th harmonic has 
the largest amplitude, followed by the 6th harmonic.   

TABLE I. SIMULATED ANGULAR ACCELERATION SIGNAL 
COMPONENTS 

Index 
Sinusoidal properties 

Frequency (Hz) Amplitude (rad/s2) 

1 f 2 

2 2f 3 

3 3f 4 

4 4f 100 

5 5f 2 

6 6f 40 

7 8f 2 

8 12f 2 

Fig. 3. Typical angular acceleration from rotor experiment 



Fig. 4. Simulated angular acceleration data 

Note that this signal structure is typical for steady operation, 
but the true signal structure is unknown during startup, when 
the frequencies and amplitudes move from zero to their steady 
operating values. For simplicity, it is assumed for simulation 
purposes that the amplitude and frequency ratios remain the 
same. A white noise component with standard deviation 2 
rad/s2 is included in the simulated signal. 

For example, Figure 4 shows a simulated startup signal, 
which has linear changes in amplitude and frequency occuring 
in two parts. Firstly there is an initial linear rise from zero 
(from t = 12s to t = 14s), which overshoots the steady state 
frequency and amplitude. This is followed by a linear 
reduction in frequency and amplitude (from t = 14s to t = 15s) 
to reach the steady state values (t > 15s). This two part 
initalisation is a simplified version of actual experimental 
results, as shown in the companion paper. 

V. STAGE 1: FREQUENCY TRACKING 

The first stage of the signal processing is required to 
track the frequency of the rotor through the intialisation 
period, in order to establish the steady state frequency. 
Reference [9] outlines the operation of the Prism-based 
Recursive Signal Tracker (RST), which tracks the frequency, 
amplitude and phase of an input sinusoid on a sample-by-
sample basis. However, its working assumption is that the 
input signal consists of a single sinusoidal component plus 
white noise. When additional signal components are present, 
appropriate further steps are required to ensure successful 
tracking. Figure 5 shows the raw frequency results obtained 
from simply applying the RST to the signal data. The results 
track the trend of the simulated data – a linear rise past the 
steady frequency, a drop back, and then, for t > 15s, a ‘steady’ 
frequency value, corresponding to that of the largest harmonic, 
at 48 Hz. However, the frequency measurement is clearly very 

 

 
   

 
 

 

 
 

  
  

 

    

   
 

 
 

 

   
 
 

 

  
   

 

 

   Fig. 5. RST tracking of 4th harmonic rotor frequency from simulation data  Fig. 6. RST tracking of 4th harmonic rotor frequency (detail) 



 

   

  
 

 
 

  
   

 

 
  
 

 
 

   
 

 
 

 
  

 

 

 

 

 

 
 

 

 

 

   

 
 

  
 

   

 
  

 
  

 
   

  

 
 
 
 
 
 
 
 
 
 
 
 

   

Fig. 7. Filtered RST rotor 4th harmonic frequency 

noisy, due to interference from the other components. The 
frequency power spectrum indicates the noise structure, with 
peaks at multiples of the steady rotation frequency, 12 Hz. Fig. 
6 shows the true frequency over the initiation period (12s – 
16s), along with the measured frequency and its error. While 
the RST measurement successfully follows the trend of the 
true frequency, the error signal shows large oscillations, 
corresponding to the peaks in the power spectrum of Fig. 5. 
This structure suggests a simple form of noise-reducing 
filtering – using an FIR moving average filter with a window 
length corresponding to the period of the first harmonic. Note 
that it is straightforward to create a variable length moving 
average filter which adapts its length to match the period of 
the (average) observed frequency or its sub-multiple. Figs. 7 
and 8 show the results of applying the moving average 
filtering to the raw frequency data. Fig. 7 shows the complete 
time series and power spectrum, while Fig. 8 shows the 
filtered measurement and its error over the initiation period. 
The filtering results in a significant reduction in frequency 
error. This signal processing scheme serves to track the rotor 
operaton during the startup phase, including the identification 
of the steady operating frequency, which is used to design the 

Fig. 9. Prism-based bandpass filter design centred on 48 Hz 

Fig. 8. Filtered RST rotor 4th harmonic frequency (detail) 

second stage signal processing scheme.  

VI. STAGE 2: TRACKING ALL COMPONENTS 

In the second stage of rotor operation, the amplitudes and 
frequencies of all the signal components are tracked. The 
simplest way of achieving this is to use narrow bandpass 
filters around the frequency of each component, followed by 
an RST tracking block to extract amplitude and frequency 
information. As discussed in [7], Prism-based bandpass 
filtering has two key advantages. Firstly, the design cost is 
low, so that it is perfectly feasible to design bandpass filters in 
real time based around the current operating frequency of the 
rotor. Secondly, the computational cost of applying the filter is 
also low, which again makes it well suited to real-time and 
IoT applications. Figure 9 shows the frequency response of a 
bandpass filter consisting of a chain of four pairs of Prisms (as 
described in [7]) with harmonic numbers h of 2, 3, 4, and 5 
respectively. Centred on 48 Hz, the 4th harmonic frequency in 
this simulation, it provides a pass band of around ± 1Hz, while 
adjacent higher and lower harmonic frequencies are 
significantly attenuated. 

Fig. 10. Frequency tracking  - all components. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

   

 
 

  
 

  
 

 
  

 
   

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 
  

 
  

 

 
  

 
 

 
  

 
 

 
    

 

  
 

 
  

  
 

   

 
   

 

   
   

  
     

 

  
 

 

Fig. 11. Frequency tracking error - all components. 

Bandpass filtering followed by RST tracking is applied to each 
frequency component, where the central frequency of the 
bandpass filter along with the characteristic frequency m of the 
RST are selected appropriately. Figs. 10 and 11 show the 
frequency and amplitude values tracked for each of the signal 
components for this simulation during a period of steady 
operation, while Figs. 12 and 13 show the corresponding 
errors. Note that all measurement values are generated once 
per sample at 41 kHz. The frequency errors fall mostly within 
± 0.1 Hz, while the amplitude errors all mostly within ± 0.1 
rad/s2. This tracking performance is considered satisfactory for 
this experimental work. Similar results are obtained for 
different steady rotational frequencies in the range 8 Hz to 20 
Hz, matching the operating range of the equipment. The 
companion paper reports on the results obtained when 
applying this signal processing scheme to experimental data, 
in particular for the purposes of fault detection. 

VII. DISCUSSION 

The IoT requires fast and flexible signal processing 
techniques. A key to flexibility is rapid and low-cost filter 
design that can be carried out in real time in order to adapt to 
current signal properties. This paper has provided a simple 
worked example of how Prism signal processing can provide 

Fig. 12. Amplitude tracking  - all components. 

Fig. 13. Amplitude tracking  errors - all components. 

the required flexibility and low-cost real-time design. 
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