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Abstract— The Internet of Things (IoT) concept, alongside 
wireless technologies, supports the mounting of sensors in 
inaccessible positions and thus provides new opportunities for 
machine condition monitoring. This paper outlines experimental 
results using Prism signal processing to track rotor angular 
acceleration via a Wireless Acceleration Sensor (WAS) mounted 
on a rotating shaft. The instantaneous frequency and amplitude 
of each component of the angular acceleration is tracked, with a 
view to providing diagnostic information. The experimental 
results illustrate how amplitude data can provide indications of 
gear faults, via further Prism signal processing. 

Keywords— Prism signal processing, diagnostics, 
accelerometer, wireless acceleration sensor, rotating machinery. 

I. INTRODUCTION 

Gears are widely used mechanical components with a 
significant impact on machine reliability and efficiency. Gear 
fault detection and diagnosis is thus an important theme in 
machine condition monitoring. Vibration monitoring via 
acceleration measurement is the most widely used approach for 
gear condition monitoring. However, the influence of machine 
workloads on gear vibration levels may complicate the 
application of traditional methods, such as RMS and Kurtosis, 
which compare via various signal parameters the 'healthy 
machine state' with the 'current machine state' [1]. Therefore, 
researchers use special methods, such as Time Synchronous 
Averaging (TSA) [2], wavelet analysis [3], the Hilbert 
transform [4], Empirical Mode Decomposition (EMD) [5] and 
combinations of those methods [6-8]. Unfortunately, these 
methods are limited by sensitivity to the machine’s operating 
speed and/or a requirement for high computational resources. 

Alongside traditional vibration monitoring (accelerometers 
mounted on the housing near the bearings), researchers have 
proposed tracking the instantaneous angle of rotation using 
precision optical encoders [9, 10]. Typically the encoders are 
fixed to the gear shaft, which limits the application of the 
approach. However, wireless technologies and the IoT concept 
offer the possibility of combining traditional measurements 
with angle tracking within a single sensor system, for example 
the Wireless Acceleration Sensor (WAS) [11]. In earlier work, 
WAS systems have been mounted on moving elements (for 
example the gear). Sensor data and power are transferred 
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wirelessly. WAS contains several MEMS-accelerometers with 
different orientations, so that the linear angular acceleration of 
the gear can be measured simultaneously. The WAS prototype 
showed high sensitivity to rolling bearing faults [12]. However, 
the implementation of wireless technologies into the sensor 
limits computational resources and, accordingly, requires low 
computing cost methods to track signal changes in real time. 

The Prism [13] offers low cost and highly flexible signal 
processing. In our companion paper [14] Prism was applied to 
the tracking of a rotor angular acceleration via a WAS, where 
the angular acceleration signal has eight frequency 
components. The instantaneous frequency and amplitude of 
each component was tracked, providing diagnostic information. 

The rotor system used for experimental work operates in a 
series of ‘runs’, consisting of a startup period where the rotor 
begins movement and accelerates to the desired rotation speed 
(usually via an overshoot), followed by a period of more or less 
steady operation at approximately the desired rotational speed. 

The Prism-based signal processing scheme is designed to 
match the requirements of this application. For the startup 
period, only the (variable) operating frequency is needed, in 
order to establish the transition to the steady mode and to 
determine the steady rotation speed. A Prism-based Recursive  

Fig. 1. Typical acceleration data for rotor run at 12 Hz. 
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Fig. 4. Component frequencies from experimental data at 12 Hz Fig. 2. Raw frequency measurement from experimental data at 12 Hz 

Fig. 3. Filtered frequency measurement from experimental data at 12 Hz 

Signal Tracker (RST) is able to track the frequency during the 
startup period, but the measurement is heavily contaminated 
due to the presence of multiple frequency components in the 
acceleration signal. The simple provision of an FIR moving 
average filter with window length set to the observed period of 
rotation significantly reduces the frequency noise, facilitating 
good tracking with simulated data. For steady operation, Prism-
based bandpass filtering is used to isolate each frequency 
component prior to separate RST calculation of frequency and 
amplitude. The key feature here is that the low cost of Prism 
filter design facilitates the creation of new filters around the 
current operating frequency for each run. 

II. VARIABLE SPEED EXPERIMENTAL DATA 

In this paper, experimental data is used to confirm the 
utility of the Prism-based scheme for gear fault diagnosis. 
Firstly, its operation is demonstrated with fault-free data at two 
different operating speeds. Secondly, the detection of gear 
faults is investigated, where it is shown that further Prism 
processing of the amplitude data, may form the basis of an 
effective fault detection scheme. Figure 1 (from [14]) shows 
typical data for a rotor experiment with a final steady rotation 

Fig. 5. Component amplitudes from experimental data at 12 Hz 

speed of about 12 Hz. The power spectrum shows the most 
significant signal components, all at multiples of the rotation 
frequency, with the highest amplitude at the fourth harmonic. 

Figs. 2 and 3 show the rotor frequency tracked by the first 
RST, before and after the application of the moving average 
filter. The filtered frequency is much cleaner, showing, after an 
initial transient, linear trends during the startup period and a 
reasonably constant value for the subsequent period of steady 
operation. The corresponding power spectra demonstrate that 
the harmonics have been removed by the moving average filter. 

Figs. 4 and 5 show the results of the second stage signal 
processing, whereby, for each component to be tracked, a 
bandpass filter and RST is designed in real time, based on the 
observed (initial) steady frequency of Fig. 3. The frequency 
and amplitude values are updated once per sample, i.e. at 41 
kHz. Fig. 4 shows that the frequency of each component 
remains reasonably constant during steady operation, while 
Fig. 5 shows that the amplitude behaviour of the components is 
more complex. Some exhibit fairly stationary amplitude, while 
others show random and/or pseudo-periodic behavior. For 
example, the highest amplitude components, corresponding to 
the 4th and 6th harmonics respectively, show a low level of 



 

 

 

 

 

 

 
 
 

 

 

 

   

 
  

  
  

 
  

 
 

 

   

   

 
 

 

   

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

  

  

 
  

 
  

 

 
  

 
 

 
  

 

 
 

 

 

 

 

 

 

 

 

   

Fig. 6. Raw frequency measurement from experimental data at 16 Hz 

oscillation around a mean value; the 5th component shows a 
higher degree of oscillation; the 6th component is relatively flat, 
and the other components have more random variation. 

The time-varying behavior of the amplitude parameters 
suggest a rich set of characteristics that might be used for fault 
detection, as discussed in the next section. However, a more 
basic requirement is to demonstrate that this signal processing 
scheme is able to manage different rotor speeds. Accordingly, 
Figures 6 and 7 show the raw and filtered frequency for 
another experiment in which the final steady frequency is 
around 16 Hz. The same signal processing scheme successfully 
tracks the variable frequency during the startup period, which 
exhibits several linear shifts before settling to a steady 
frequency, which, for the 4th harmonic, is around 64 Hz. 

III. DIAGNOSTIC DATA FOR GEAR FAULTS 

The gear system is a common fault source in rotating 
machinery. Trials have been carried out on the experimental 
rotor system where the normal, fault-free bevel gear has been 
replaced by a unit with either a worn or a broken gear tooth 
(Fig. 8). To detect these faults, the accelerometer disk is 
mounted on the gear housing (Fig. 9). The resulting signals, in 
the absence of faults, have a broadly similar characteristic to 
those of Fig. 1, but with certain differences. 

Fig. 8. Broken tooth on bevel gear 

Fig. 7. Filtered frequency measurement from experimental data at 16 Hz 

Fig. 10 shows the acceleration signal and its power 
spectrum for a typical run with a healthy gear. The signal has a 
significantly higher level of noise, with the noise floor rising 
with frequency. There are additional, aharmonic peaks present 
in the spectrum. Furthermore it is the 6th rather than the 4th 

harmonic that has the highest amplitude. While it would be 
straightforward to track the 6th harmonic instead of the 4th, the 
noise at high frequency poses a bigger challenge, which is met 
by the simple expedient of using a low pass (Prism-based) filter 
in the startup tracking phase in order to reduce the influence of 
both the 6th harmonic and the high frequency noise. Space 
constraints prevent the inclusion of additional plots, but the 
results are broadly similar to Figures 6 and 7. 

Given the potential to track the frequency and amplitude of 
the eight signal components in real time, it is possible to look 
for useful diagnostic indicators. Here we considered three 
conditions: a normal, fault-free gear; a gear with a chipped 
tooth; and a gear with a broken tooth (Fig. 8). 

Figs. 11 – 15 show the time series obtained for the 
amplitudes of the 1st, 2nd, 4th, 5th, and 6th frequency components 
respectively for each of the different diagnostic conditions. 
These demonstrate a variety of behaviours, which in some 
cases vary with the diagnostic condition. Several (but not all) 
of the amplitude time series show strong oscillatory behaviour, 

Fig. 9. PCB sensing board mounted on gear housing to detect gear faults 



 

 

 

 

 
 
 

 

 

   
 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
 

 
 

 

 

 

 

 
 

  
 

Fig. 10. Typical acceleration data for rotor run at 12 Hz, with sensor mounted Fig. 13. Time series of 4th harmonic amplitude for different gear faults;
on gear housing and with no gear fault. steady rotor speed 12 Hz. 

Fig. 11. Time series of 1st harmonic amplitude for different gear faults; steady Fig. 14. Time series of 5th harmonic amplitude for different gear faults; steady 
rotor speed 12 Hz. rotor speed 12 Hz. 

Fig. 12. Time series of 2nd harmonic amplitude for different gear faults; steady Fig. 15. Time series of 6th harmonic amplitude for different gear faults; steady 
rotor speed 12 Hz. rotor speed 12 Hz. 



 
 

 

 
 

 

 
 

 
 
 

  

  

 
 

 
 
 

 

 
 

 

    

 
  

 
 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

 
 

 

 
 

  

 
  

 
 
 

 

 

 

 

 

 

 

 
 

whereby the mean value (i.e. DC offset), the frequency and/or 
the amplitude of oscillation are different in each case for the 
healthy gear, the worn tooth and the chipped tooth. 

For example, for the 1st and 5th harmonics (Figs. 11 & 14), 
the mean value of the amplitude shifts with the diagnostic 
condition. For the 1st harmonic, the average amplitude is higher 
for the chipped gear tooth than for an intact gear, and higher 
again for the broken tooth. In Fig. 14, any sinusoidal variation 
is obscured by random variation; the average amplitude is 
lower for the chipped gear tooth case than for the healthy gear, 
but the broken gear tooth case still generates the highest 
average 5th component amplitude. 

6thFigs. 12 and 15 show the 2nd and  harmonics 
respectively. These display relatively little variation in 
properties with tooth damage. It is perhaps surprising that the 
6th harmonic, which is the dominant component in the signal, 
shows little change with either a chipped or a broken tooth. 

4thFig. 13, showing the harmonic, exhibits the most 
interesting behaviour. Here, while the mean amplitude appears 
to be relatively constant for the different diagnostic conditions, 
the amplitude of the signal modulation increases significantly 
from the normal to the chipped to the broken cases. 

A variety of techniques could be applied to develop a 
systematic diagnostic analysis of the rotor machine, based upon 
the amplitude information provided by the Prism signal 
processing scheme. Such work would require a large 
experimental program and an analysis that is beyond the scope 
of the current paper. However, the next section will 
demonstrate how a further stage of Prism signal processing 
may be used to characterize the oscillatory behavior of the 4th 

harmonic shown in Figure 13. 

IV. HIGHER LEVEL PRISM SIGNAL PROCESSING 

As the parameter values (frequency, amplitude and/or 
phase) generated from a Prism-based tracker are updated once 
per sample, these outputs can be treated as additional time 
series which may in turn be subject to further analysis. For 
example, in [15], a Prism-based fault detection scheme is 
described for a resonant sensor. In this case, the frequency 
output of a RST tracker is fed into a second RST to detect any 
resonances indicative of any additional, undesired frequency 
component in the original signal. Should this fault be detected, 
then additional Prism signal processing stages are instantiated 
to track and remove the undesired signal component.  

As shown in Fig. 16, a multi-stage signal processing 
scheme can be used to extract the sinusoidal parameters of the 

time varying amplitude of the 4th harmonic (from Fig. 13). This 
assumes that the steady phase of the rotor’s operation has 
commenced and that the rotation frequency is known to a 
reasonable approximation. The acceleration signal s(t) is first 
passed through a bandpass filter, centred on the expected 
frequency of the 4th harmonic. The resulting filtered signal 
sfilt(t) is then passed into a first RST to generate sample-by-
sample estimates of the 4th harmonic frequency (labelled f4(t)) 
and amplitude (labelled A4(t)). This amplitude signal A4(t) is as 
shown in Fig. 13, for the different diagnostic conditions tested 
experimentally. 

The subsequent signal processing stages in Fig. 16 are used 
to extract the frequency (labelled fA4(t)) and amplitude of 
oscillation (labelled AA4(t)) of A4(t). This is achieved using a 
low pass Prism-based filtering stage where the characteristic 
frequency has been set at 2 Hz, thus removing high frequency 
jitter, followed by a further RST tracker stage. 

Figs. 17 and 18 show the resulting time series of AA4(t) and 
fA4(t) for the same experimental data as shown in Fig. 13. The 
modulation frequency (Fig. 17) varies between 0.45 Hz and 
0.65 Hz. For the normal, fault free case, the modulation 
frequency moves between these two limits. By contrast, the 
frequencies observed for the chipped and broken gear tooth 
case are more steady, with values of approximately 0.525 Hz 
and 0.625 Hz respectively. 

Fig. 18 shows the amplitudes of the modulation for the 
fourth harmonic for the different cases of gear tooth fault. None 
of the data suggests further oscillation, although there is some 
degree of random drift. Nevertheless, the distinction between 
the three cases is very clear: the fault free case has an average 
amplitude of approximately 2.5 rad/s2; the chipped gear tooth 
case has an average amplitude of approximately 10 rad/s2; and 
the broken gear tooth case has an average amplitude of 
approximately 22.5 rad/s2. The variation in each signal is low 
compared to the differences between the results from each 
experiment, suggesting that this parameter could be a useful 
indicator of the diagnostic state of the gear system. 

As stated above, the current aim of the project is to 
demonstrate the viability and utility of Prism signal processing 
techniques for detecting faults in rotating machinery. Future 
work will include identifying a comprehensive set of diagnostic 
parameters for a wider set of fault conditions, and developing 
the corresponding diagnostic reasoning. A further goal is a 
real-time implementation of Prism signal processing on the 
accelerometer card (Fig 9). 

Fig. 16. Signal Processing Scheme to track fourth harmonic 
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Fig. 17. Modulation frequency of 4th Harmonic data with gear faults, and with 
12 Hz steady operating frequency 

V. DISCUSSION 

The IoT requires fast and flexible signal processing techniques. 
A key to flexibility is rapid and low-cost filter design that can 
be carried out in real time in order to adapt to current signal 
properties. This paper has provided a simple worked example 
of how Prism signal processing can provide the required 
flexibility and low-cost real-time design. 

The two-stage signal processing design - startup tracking 
followed by the monitoring of all signal components during the 
steady phase – is only possible because the second stage 
components (bandpass filters and RST trackers) can be 
designed and instantiated in real time to match the steady 
operating frequency at the start of the second stage.  

The accelerometer card is a wireless sensor capable of 
deployment in a variety of positions. It generates a rich data 
set, of potential value for control and monitoring of machine 
operation as well as for diagnostic purposes. For example, the 
active tracking of the rotational frequency during the startup 
phase could be utilized by the rotor control system to improve 
machine control and prevent overshoot. There are many 
possibilities for further diagnostic analysis of the rotor system 
based on the amplitude time series generated for each of the 
signal components. 
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