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Abstract

The circadian clock orchestrates biological processes so that they occur at specific times of

the day, thereby facilitating adaptation to diurnal and seasonal environmental changes. In

plants, mathematical modelling has been comprehensively integrated with experimental

studies to gain a better mechanistic understanding of the complex genetic regulatory net-

work comprising the clock. However, with an increasing number of circadian genes being

discovered, there is a pressing need for methods facilitating the expansion of computational

models to incorporate these newly-discovered components. Conventionally, plant clock

models have comprised differential equation systems based on Michaelis-Menten kinetics.

However, the difficulties associated with modifying interactions using this approach—and

the concomitant problem of robustly identifying regulation types—has contributed to a com-

plexity bottleneck, with quantitative fits to experimental data rapidly becoming computation-

ally intractable for models possessing more than�50 parameters. Here, we address these

issues by constructing the first plant clock models based on the S-System formalism origi-

nally developed by Savageau for analysing biochemical networks. We show that despite its

relative simplicity, this approach yields clock models with comparable accuracy to the con-

ventional Michaelis-Menten formalism. The S-System formulation also confers several key

advantages in terms of model construction and expansion. In particular, it simplifies the

inclusion of new interactions, whilst also facilitating the modification of regulation types,

thereby making it well-suited to network inference. Furthermore, S-System models mitigate

the issue of parameter identifiability. Finally, by applying linear systems theory to the models

considered, we provide some justification for the increased use of aggregated protein equa-

tions in recent plant clock modelling, replacing the separate cytoplasmic/nuclear protein

compartments that were characteristic of the earlier models. We conclude that as well as

providing a simplified framework for model development, the S-System formalism also pos-

sesses significant potential as a robust modelling method for designing synthetic gene

circuits.
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Author summary

Mathematical models have been widely employed as a complement to experimental work

in elucidating the underlying mechanistic behaviour of the plant circadian clock. In this

study, we investigate the use of a simplified modelling strategy, the S-System framework,

to reduce the computational complexity of such models. We test the efficacy of our

approach by constructing S-System versions of five established plant clock models, which

we fit to synthetic and experimental gene expression data. We demonstrate that the S-Sys-

tem formulation can generate fits to expression data that are very similar to those of its

more complex counterparts, yielding predictions with better accuracy in some cases. Our

work reveals three principal benefits of the S-System formalism in modelling gene regula-

tory networks (GRNs) characterised by entrainable oscillations, typified by the circadian

clock. Firstly, it enables new interactions to be incorporated in a very easy manner. Sec-

ondly, it facilitates the inference of unknown regulation types. Thirdly, it mitigates the

parameter identifiability problem, thereby making it a suitable modelling method for

designing GRN control circuits for synthetic biology applications. Taken together, our

findings identify the S-System framework as a promising alternative approach for compu-

tational modelling of oscillatory GRN networks.

Introduction

Circadian clock networks

Most living organisms possess innate molecular clock machineries that govern their daily

activity [1]. These machineries, known as circadian clocks, are responsible for the generation

of endogenous oscillations in gene expression with a period close to 24 hours. Circadian oscil-

lations enable the anticipation of diurnal environmental changes and the coordination of bio-

logical processes to occur at the optimal time of day. Some important biological functions that

are circadian regulated include the mammalian sleep/wake cycle, fungal spore formation and

plant leaf movement (see e.g. [2–4]). Moreover, interruption of the circadian rhythm can lead

to a number of pathophysiological conditions, including poor metabolism, psychiatric disor-

ders and immune system dysfunction (see e.g. [5–8]). At the molecular level, the underlying

core mechanism of the circadian rhythm is generated via interlocking feedback loops between

regulatory genes. This discovery was first made in the fruitfly and its significance is evident in

the award of the 2017 Nobel Prize in Physiology or Medicine to the pioneers of molecular cir-

cadian systems research [9, 10].

Modelling the plant circadian clock

The discovery of multiple plant circadian genes has revealed the complexity of the underlying

gene regulatory network (GRN), driving the use of mathematical models to help unravel the

mechanisms controlling circadian timekeeping, as evident through the active development of

clock models in the higher plant Arabidopsis thaliana. Since the construction of the first Arabi-
dopsis model in 2005 by Locke et al. [11], which comprised only two key clock genes, the mod-

els have expanded considerably in size and complexity, with frequent updates to incorporate

more interactions as new experimental data became available. From a modeller’s perspective,

updating a model to include new interactions is greatly facilitated if the model structure has

low inherent complexity—i.e. an efficient parametrisation and minimal nonlinear terms, in
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the case of differential equation models. Overly complex models incur a high computational

cost in terms of parameter optimisation [12, 13], thereby limiting their predictive capacity.

They also tend to cloud the core behaviour of the system of interest, particularly the identifica-

tion of possible network motifs. In view of this, many studies have focused their attention on

reducing model complexity, including some notable examples that specifically addressed the

plant clock.

Reducing model complexity in plant clock models

In [14], instead of considering all circadian genes individually, the authors grouped several key

circadian genes together and analysed the behaviour of the resulting reduced set of differential

equations. In [15], the authors reduced the complexity of the model by identifying the kernel
of the GRN—those genes that are solely accountable for generating circadian rhythms with

behaviour similar to that of the wild-type.

In [12], the authors focused on reproducing key circadian characteristics (e.g. entrainment

and photoperiodism) through the use of continuous-time Boolean models. The Boolean

framework, in which genes are assumed to be either ‘OFF’ (0) if expression is below some

threshold or ‘ON’ (1) if expression is above the threshold, yielded the following two key reduc-

tions in complexity: (i) all the parameters governing the time taken for the production of a

transcription factor (TF) and its effect on a downstream gene (e.g. transcription rates, transla-

tion rates, degradation rates etc.) are telescoped into a single delay parameter; (ii) the complex

nonlinear functions governing the expression of each gene are replaced by a constrained set of

Boolean functions (logic gates), meaning that all the architectures consistent with a given cir-

cuit diagram can be systematically explored. In related work, distributed delays were used to

represent TF production pathways in three established clock models. This approach replaces

the set of parameters governing the delays in each pathway with a pair of parameters that con-

trol the mean and variance of the delay distribution (assumed to be a gamma function), lead-

ing to simplified differential equation models with markedly reduced parameterisations [16].

While those aforementioned approaches do dramatically reduce model complexity, they

can come at the expense of either reducing the ability of the model to match quantitative

behaviour (e.g. an inability to simulate amplitude modulation in the case of the Boolean mod-

els) or of favouring fits to specific biological phenotypes.

S-Systems—A simplified framework for modelling the plant circadian

system

The task of developing mathematical models of reduced complexity that still preserve accuracy

presents a significant challenge to modellers. In the context of plant circadian systems biology,

the network of identified clock genes is set to increase in size, given the extensive research in

this area. A model structure is therefore required that facilitates modification and updating as

further progress is made experimentally. The majority of plant clock models developed thus

far have been sets of nonlinear differential equations based on Michaelis-Menten kinetics (see

e.g. [11, 17–19]). However, modifying models based on this formalism to incorporate addi-

tional interactions (or revise existing ones) in the light of new experimental data can signifi-

cantly increase computational complexity. This is predominately due to the inherent structure

of Michaelis-Menten models, for which different regulation types (i.e. transcriptional activa-

tion and inhibition) are modelled with different nonlinear functions. The effect of this func-

tional heterogeneity is further amplified when multiple transcriptional regulators are

combined. Accordingly, if larger systems (e.g. of the order of 100 parameters or more) are to
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become amenable to quantitative modelling, alternative model formulations that mitigate this

issue are required.

Here, we develop a minimal framework for modelling the plant circadian system using

ordinary differential equations (ODEs), focusing mainly on simplifying the nonlinear func-

tions governing gene expression. Our framework assumes a simple, homogenous model struc-

ture based on an extension of the S-System formalism originally developed by Savageau [20] to

model biochemical systems, with specific modifications that enable the interactions between

plant circadian genes and the photic environment to be represented. We note that although

S-Systems have been used to model gene regulatory networks previously (see e.g. [21, 22]), cir-

cadian clocks have not been modelled with this formalism to date.

We investigate the capacity of our framework to quantitatively reproduce circadian dynam-

ics by constructing modified S-System versions of a suite of established plant clock models. By

fitting these S-System formulations to synthetic and experimental expression timeseries, and

validating our fits in each case against hold-out data, we demonstrate that our formalism yields

models with comparable predictive power to their Michaelis-Menten based counterparts. In

addition, by employing a frequency response analysis technique from linear systems theory,

we provide a mechanistic understanding of the progressive simplification of protein produc-

tion pathways adopted by more recent models of the plant clock.

Finally, we highlight the advantages conferred by the S-System framework in modelling

GRNs and synthetic GRN controllers, and also discuss possible further extensions to the

framework to facilitate model construction and increase prediction accuracy.

Materials and methods

S-System modelling

The S-System modelling framework arose from biochemical system theory (see e.g. [20]), with

the initial purpose of describing metabolic pathways. The original S-System model introduced

in [20] can be written in the form

dXi

dt
¼ ai

Ynþm

j¼1

Xgi;j
j � bi

Ynþm

j¼1

Xhi;j
j ; 1 � i � n; ð1Þ

where the dependent variables {X1, . . ., Xn} represent the biochemical species of interest and

the independent variables {Xn+1, . . ., Xn+m} represent forcing terms. For each Xi, αi represents

the production rate constant, and the gi,js are the exponents associated with production pro-

cesses, whilst βi denotes the degradation rate constant, and the hi,js are the exponents associ-

ated with degradation processes.

Over the course of its development, the S-System framework has been used as an alternative

approach for modelling a broad range of biological processes (see [23, 24] and references

therein). These include signal transduction [25], metabolism [26] and enzyme kinetics [27–29].

In [30], the authors compared the validity of S-System and Michaelis-Menten models of

enzyme-catalysed reactions in a rigorous manner, demonstrating that the two models had simi-

lar accuracy over the same concentration ranges. The accuracy of these two formulations has

also been compared when modelling fully developed pathway systems—e.g. the fermentation

pathway in yeast [31], purine metabolism in humans [32] and sphingolipid metabolism in yeast

[33]—where both formulations have demonstrated comparable performance. In [34], the

authors compared different kinetic models for the flowering time GRN in Arabidopsis, finding

that S-System and Michaelis-Menten formulations possessed similar predictive capacity. The

design principles predicted by the S-System approach for gene regulation in [35, 36] and protein

PLOS COMPUTATIONAL BIOLOGY A simplified framework for modelling the plant clock

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007671 March 16, 2020 4 / 34

https://doi.org/10.1371/journal.pcbi.1007671


modification in [37] have subsequently been verified in numerous experiments. The promising

results of these studies prompted us to consider utilising S-Systems to model the plant clock.

Extending the S-System modelling framework to circadian clocks

The generation of circadian rhythms in plants (and other organisms) is primarily governed by

three mechanisms: (i) transcription—the process in which one or more TFs can bind to the spe-

cific promoter region of a gene to regulate the conversion of DNA into RNA; (ii) translation—

the process in which protein is created by ribosomes in the cytoplasm following RNA transcrip-

tion, prior to moving into the nucleus to control transcription; and (iii) protein modification—

processes such as protein stabilisation and/or degradation that mediate the efficacy of a TF [38].

In order to model these mechanisms, as represented in the clock circuits of interest, some

modifications to Eq (1) are required. Firstly, we introduce an extra term that represents the con-

tribution from external light inputs. Secondly, to account for (i) complex TF regulation of gene

expression, and (ii) protein modification, we introduce suitable summation operations to the first

and second terms of Eq (1). With that, the modified S-System model can be written as below:

dXi

dt
¼ ai

Yn
P
i

j¼1

Xn

k¼1

bi;j;kXk

 !gi;j

�
Xn

D
i

j¼1

bi;jXi

Yn

k¼1

Xhi;j;k
k

 !

þ
Xn

L
i

j¼1

gi;jUij; 1 � i � n: ð2Þ

For a given i, Xi is the expression level of the ith clock gene/protein species, and each Uij =

Uij(X1, . . ., Xn, LI(t)) represents the effect on Xi of a process regulated by the external light signal

LI(t). Note that the explicit dependence of Uij on {X1, . . ., Xn} reflects the fact that our target

models include the effect of light-regulated protein complexes on gene/protein expression, in

addition to the effect of direct light regulation. For the clock models considered in this study,

we assume that Uij is a low-order polynomial function of its arguments. Furthermore, given the

limited understanding and experimental evidence regarding the precise effect of light on many

circadian genes and proteins (in terms of dimerisation etc.), no exponent is associated with Uij.

For all models considered here, LI(t) is assumed to be a periodic square wave with mini-

mum and maximum values of 0 and 1 respectively, and t = 0 is taken to correspond to dawn,

meaning that LI(t) is given by

LIðtÞ ¼
1 if 0 � t mod 24 < P;

0 otherwise;

(

ð3Þ

where P is the photoperiod. Accordingly, P = 0 and P = 24 correspond to constant dark (DD)

and constant light (LL), respectively, while setting P = 12 simulates a symmetric light-dark

cycle, i.e. alternating 12 hour periods of light and dark (12L:12D).

We further remark that in Eq (2), nP
i , nD

i and nL
i denote the number of processes involved in

the production, degradation and light regulation of Xi, respectively. As in the original S-System

formulation of Eq (1), αi represents the production rate constant of Xi, and the gi,js are the expo-

nents associated with production. The bi,j,ks are Boolean variables, bi,j,k 2 {0, 1}, which determine

the species contributing to each particular production process. The degradation of Xi is deter-

mined by the rate constants of each contributing process fbi;j : 1 � j � nD
i g together with the

associated exponents fhi;j;k : 1 � j � nD
i ; 1 � k � ng. The βi,js can take both positive and nega-

tive values, with the former representing degradation and the latter representing stabilisation.

Finally, the γi,js determine the strength of the light-regulated processes affecting expression of Xi.

We note that the original S-System formulation can be recovered from Eq (2) by setting nP
i ¼ n,

bi,j,k = δj,k, nD
i ¼ n, βi,j = βi δi,j, hi,j,k = hi,k − δi,k and nL

i ¼ 0, where δi,j, δj,k and δi,k denote the
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Kronecker delta in each case. Moreover, the original S-System model (cf. Eq (1)) is itself a special

case of the Generalised Mass Action (GMA) model [39, 40]. This has the general form

dXi

dt
¼
XTi

k¼1

�gi;k

Ynþm

j¼1

Xfi;j;k
j ; 1 � i � n; ð4Þ

where {X1, . . ., Xn} and {Xn+1, . . ., Xn+m} again denote the dependent and independent variables,

respectively. However, our extended S-System formulation (cf. Eq (2)) cannot, in general, be

expressed in this form.

Having introduced our modified S-System modelling framework (hereafter termed the

extended S-System formalism), we discuss in more detail below how it can be employed to

describe the transcription, translation and protein modification mechanisms that are charac-

teristic of our target clock models.

Extended S-System modelling of transcription. In general, there are two main types of

transcriptional regulation: transcriptional activation, which increases gene transcription, and

transcriptional inhibition, which decreases gene transcription. Conventionally, the mecha-

nisms are modelled using a combination of Michaelis-Menten and Hill-type functions. For a

gene G that is regulated by a single transcriptional regulator P, transcriptional activation is

often modelled with an equation of the form

dG
dt
¼

aPn

Kn þ Pn
� bG; ð5Þ

while for transcriptional inhibition, the model structure is often given by

dG
dt
¼

aKn

Kn þ Pn
� bG: ð6Þ

In both equations, K is the Michaelis-Menten kinetic constant (threshold for activation/inhibi-

tion), a and b respectively parameterise the transcription and degradation rate constants and n
represents the Hill coefficient (degree of binding cooperativity).

In the extended S-System formalism, both transcriptional activation and transcriptional

inhibition, combined with the linear degradation used in Eqs (5) and (6), can be represented

with the single model structure

dXiG

dt
¼ aiG

X
giG ;jP
jP � biG

XiG
; ð7Þ

where XiG
¼ G and XjP

¼ P (iG 6¼ jP). In this formulation, giG;jP > 0 models activation and

giG ;jP < 0 models inhibition. As in the original S-System formulation, aiG
represents the pro-

duction rate constant of XiG
(i.e. the transcription rate), giG ;jP is the exponent associated with

activation/inhibition, whilst biG
denotes the degradation rate constant. It should be noted that

this model of transcriptional regulation holds a key advantage over the standard Hill-type

approach of Eqs (5) and (6) when it comes to network inference, i.e. when one is interested in

identifying the type of regulation at each node of the GRN from the available experimental

data: the regulation type can simply be inferred from the sign of the fitted value of giG ;jP , thereby

avoiding the use of more complex nonlinear terms capable of smoothly interpolating between

activation and inhibition [41].

We further note that when a gene is regulated by multiple TFs, modellers are required to

select whether the TF interactions should be represented using the continuous analog of a

multi-input OR logic gate (in which the terms modelling the effect of each TF on gene
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expression are summed together), the analog of a multi-input AND logic gate (in which the

terms are multiplied together), or a combination thereof [12, 41, 42]. In plant clock modelling,

inhibitors tend to be combined with other regulators using AND gates, whilst activators are

combined using OR gates (e.g. [11, 43–45]). By default, the standard S-System model only

implements the multi-input AND logic gate (we note that other logic gates can of course still

be approximated with this approach, depending on the range of the input variables around the

appropriate nominal operating point). Our extended S-System formulation, however, enables

a broader set of multi-input logic gates to be natively represented, and in particular, the gates

used in the plant clock models of interest.

Extended S-System modelling of translation. A standard approach to modelling transla-

tion in circadian clock models is to explicitly represent the shuttling of the translated protein

between the cytoplasm (where translation occurs) and the nucleus (where the protein can reg-

ulate transcription) [38]. This shuttling mechanism, taken from [11, 43], is often described

using the following pair of differential equations:

dPC

dt
¼ aG � rCPC þ rNPN � bCPC;

dPN

dt
¼ rCPC � rNPN � bNPN :

ð8Þ

In the above, G is the gene, whilst PC and PN denote cytoplasmic and nuclear protein, respec-

tively. a is the translation rate, rN and rC are the shuttling rates, and bC and bN denote the deg-

radation rate constant of each protein form. This model assumes that the translated protein is

not subjected to further activities such as complex formation, protein stabilisation and/or pro-

tein degradation.

Protein shuttling can be represented in the extended S-System formalism as

dXiPC

dt
¼ aiPC

X
giPC ;jG
jG � biPC

XiPC
;

dXiPN

dt
¼ aiPN

X
giPN ;iPC
iPC

� biPN
XiPN

;

ð9Þ

where XjG
¼ G, XiPC

¼ PC and XiPN
¼ PN (with all three indices fjG; iPC ; iPNg distinct). In

Eq (9), aiPC
represents the production rate constant of XiPC

(i.e. the translation rate) and

fbiPC
; biPN
g are the protein degradation rate constants. For fixed values of the latter, the rate of

protein shuttling between cytoplasm and nucleus is determined by the production rate con-

stant aiPN
of XiPN

, together with the exponents giPC ;jG and giPN ;iPC .

Many of the earlier plant clock models (e.g. [11, 43]) used protein shuttling to promote

oscillatory behaviour [38]. However, due to the limited knowledge available regarding time-

dependent expression patterns of cytoplasmic and nuclear proteins in plant clock GRNs, it has

now become common practice to consider the aggregated effect of these two proteins instead,

representing them with a single ODE of the form below:

dP
dt
¼ aG � bP: ð10Þ

In this simple model, P and G represent protein and gene respectively, whilst a is the transla-

tion rate and b is the degradation rate constant. Although this is already in our extended
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S-System form, its most general representation is

dXiP

dt
¼ aiP

X
giP ;jG
jG � biP

XiP
; ð11Þ

where XiP
¼ P, XjG

¼ G (iP 6¼ jG), and aiP
and biP

are the translation and degradation rate con-

stants, respectively. The exponent giP ;jG in Eq (11) can model both linear and nonlinear depen-

dence of protein production on mRNA dependence (e.g. setting giP ;jG ¼ 1 recovers Eq (10)).

The aggregated protein model of Eq (10) has been used in more recent plant clock models

(e.g. see [44, 45]). Moreover, as we show later, linear systems theory (frequency response analy-

sis) can provide some insights into why a single ODE can be sufficient to describe protein

translation in the models of interest.

Extended S-System modelling of protein modification. After translation, proteins may

undergo protein complex formation, protein stabilisation and/or protein degradation,

amongst other processes (i.e. post-translational protein modification). Following [15, 44, 45],

the formation of a protein complex C composed of N proteins {P1, P2, . . . PN} can be modelled

by the equation

dC
dt
¼ aP1P2 . . . PN � bC; ð12Þ

where a and b denote the rates of protein-protein association and complex degradation,

respectively.

On the other hand, if we assume for example, that protein P is translated from gene G, stabi-

lised by PS and degraded by PD, then following [15, 44, 45], these protein-mediated stabilisa-

tion and degradation processes can be modelled by the equation

dP
dt
¼ aG � bPþ cSPPS � cDPPD; ð13Þ

where parameters a, b, cS and cD represent the rates of translation, degradation, stabilisation

and protein-mediated degradation, respectively.

Note that Eq (12) is already in the extended S-System form with the exponents gi,j and hi,j,k
set to unity. Likewise, it can also be clearly seen that Eq (13) can be cast in the form of Eq (2)

through appropriate choices of coefficients and exponents.

Extended S-System formulations of existing plant clock models

Using the framework outlined above, we constructed the extended S-System versions of four

well-established plant clock models of varying complexity—JL2005 [11], JL2006 [43], AP2012

[44] and KF2014 [45], where we have used the initials of the leading author’s first and last

names followed by the year of publication to name the models. Each of these models employed

the conventional Michaelis-Menten based modelling approach. Here, we append the notation

‘S’ to each plant clock model to denote its S-System variant (e.g. JL2005S denotes the extended

S-System formulation of JL2005). In order to assess the degree to which these variants could

reproduce the dynamics of the standard ODE representations, each extended S-System formu-

lation was fitted to a synthetic dataset generated by the original model (training data) [12].

The out-of-sample error was then evaluated by scoring the extended S-System model against a

second, distinct synthetic dataset also generated by the original model (validation data).

In addition, to further probe the predictive capacity of our formalism, we developed an

extended S-System variant, MF2016KS, of a more recent clock model, MF2016K [15], which

was fitted to an experimental training dataset. We also constructed a version of this model,
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MF2016KSorig, using the standard S-System formulation of Eq (1), and fitted it to the same

dataset in order to assess the extent to which the extended formalism improved data-fitting.

Mirroring the method used for synthetic data, the out-of-sample error for each model was

evaluated with an experimental validation dataset.

The original ODE formulations for each model are given as eqs. (S1.1) (JL2005), eqs. (S1.3)

(JL2006), eqs. (S1.5) (AP2012), eqs. (S1.7) (KF2014) and eqs. (S1.9) (MF2016K) of section 1 in

S1 Text.

Fitting to synthetic data

For each model, we first generated timeseries for all circadian genes and proteins under transi-

tion from a 12L:12D light-dark cycle (i.e. alternating intervals of 12 hours of light and 12 hours

of dark) to a constant light regime (LL). The parameters of the corresponding extended S-Sys-

tem formulation were then fitted to this synthetic training set by minimising the weighted

mean squared error (WMSE) between the simulated and generated timeseries, i.e. by finding

ŶS
LL ¼ argmin

Y

WðXLL; X̂LLðYÞÞ; ð14Þ

where

W XLL; X̂LLðYÞ
� �

¼
1

NG

XNG

i¼1

Wi XLL
i ; X̂

LL
i ðYÞ

� �
ð15Þ

and

Wi XLL
i ; X̂

LL
i ðYÞ

� �
¼

1

NT

XNT

j¼1

XLL
i ðtjÞ � X̂LL

i ðtj;YÞ
Ai

 !2

ð16Þ

with

Ai ¼ max
1�j�NT

XLL
i ðtjÞ: ð17Þ

The total WMSE, W, is the sum of the individual WMSEs, Wi, computed for each of the NG

circadian components in the plant clock model, for a given parameter set Θ. As different

genes/proteins have different amplitudes, the weights Ai in the expression for Wi normalise

each timeseries to its maximum value, in order to mitigate bias in the optimisation procedure

when fitting the model parameters. In Eqs (15) and (16),

XLLðtÞ ¼ ðX
LL
1
ðtÞ; . . . ;XLL

NG
ðtÞÞ ð18Þ

represent the timeseries generated from the original plant clock model in the simulated

12L:12D!LL transition, whilst

X̂LLðt;YÞ ¼ ðX̂
LL
1
ðt;YÞ; . . . ; X̂LL

NG
ðt;YÞÞ ð19Þ

are the timeseries generated by the extended S-System variant in the same simulated transition

for parameters Θ and NT is the number of timeseries points used to score each circadian com-

ponent. The minimisation was carried out using the MATLAB function fminsearch, which

implements the Nelder-Mead simplex algorithm [46].

Next, for each model, we compared the dynamics of the original model and its extended

S-System formulation under a different light condition—the transition from a 12L:12D light-

dark cycle to constant dark (DD). To quantitatively assess the performance of the model on
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this validation set, the total WMSE was calculated using Eqs (15) and (16) as

WðXDD; X̂DDðŶ
S
LLÞÞ; ð20Þ

where

XDDðtÞ ¼ ðX
DD
1
ðtÞ; . . . ;XDD

NG
ðtÞÞ ð21Þ

denotes the timeseries generated from the original model in the simulated 12L:12D!DD tran-

sition, and

X̂DDðt;YÞ ¼ ðX̂
DD
1
ðt;YÞ; . . . ; X̂DD

NG
ðt;YÞÞ ð22Þ

is the corresponding timeseries generated by the extended S-System formulation for parame-

ters Θ.

The parameter sets used to generate synthetic data for each model are listed in S2 Table

(JL2005), S5 Table (JL2006), S8 Table (AP2012) and S11 Table (KF2014). We refer to these

parameter sets as the nominal parameter values in each case. The MATLAB files used to gener-

ate synthetic data from each of these clock models can be downloaded at https://github.com/

mathiasfoo/essystemplantcircadian.

Fitting to experimental data

In [15], two models of the plant circadian clock were developed—the full model, labelled

MF2016, and the reduced kernel model, labelled MF2016K. The kernel model describes the

core genetic circuitry that is responsible for generating wild-type behaviour of the plant circa-

dian clock. Both the original (MF2016KSorig) and extended S-System (MF2016KS) formula-

tions of this model were fitted to experimental data recorded in a 12L:12D!LL transition by

finding the parameter set

ŶE
LL ¼ argmin

Y

WðDLL; X̂LLðYÞÞ; ð23Þ

calculated using Eqs (15) and (16), where

DLLðtÞ ¼ ðD
LL
1
ðtÞ; . . . ;DLL

NG
ðtÞÞ ð24Þ

denotes the experimental timeseries and

X̂LLðt;YÞ ¼ ðX̂
LL
1
ðt;YÞ; . . . ; X̂LL

NG
ðt;YÞÞ ð25Þ

represent the timeseries generated by MF2016KS for parameters Θ in a simulated

12L:12D!LL transition. Like in the case of synthetic data, minimisation was carried out using

fminsearch. We note that in fitting MF2016KSorig to experimental data, we made a minor

amendment to the light forcing term in Eq (3), setting the minimum value of LI(t) to 0.001

instead of 0. This was because in the original S-System formulation, production terms involv-

ing the expression LIðtÞ
gi;j become undefined if LI(t) = 0 and gi,j< 0 (see Eq (1) above and eqs.

(S1.11) in S1 Text).

Replicating the approach used for synthetic data-fitting, the validation goodness-of-fit was

then calculated using experimental timeseries recorded in a 12L:12D!DD transition as

WðDDD; X̂DDðŶ
E
LLÞÞ; ð26Þ
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where

DDDðtÞ ¼ ðD
DD
1
ðtÞ; . . . ;DDD

NG
ðtÞÞ ð27Þ

denotes the experimental timeseries and

X̂DDðt;YÞ ¼ ðX̂
DD
1
ðt;YÞ; . . . ; X̂DD

NG
ðt;YÞÞ ð28Þ

is the corresponding simulation of MF2016KS or MF2016KSorig for parameters Θ.

The experimental data used for training and validation is presented as DataSet S1 and

Table S1 of the Supporting Information in [15]. Note that not all experimental data was avail-

able in the literature for all circadian genes in all light conditions (for example, there was no

data available for LHY protein under LL and DD conditions—see [15, 45]). To address this

issue, the authors in [15] had used a data processing approach that combined synthetic and

experimental data to produce timeseries for unavailable components. In this work, we use the

same processed data from [15] to implement the parameter optimisation procedure described

above. We also compare the fits to this data obtained with the two S-System models of the ker-

nel structure, MF2016KS and MF2016KSorig, with the fit obtained previously in [15] using

the Michaelis-Menten model formulation, MF2016K. The MATLAB files used for implement-

ing MF2016K, MF2016KS and MF2016KSorig can be downloaded at https://github.com/

mathiasfoo/essystemplantcircadian.

Assessing relative quality of fit using the AIC. In order to quantify the relative quality of

the fits to the experimental training data obtained with MF2016KS, MF2016KSorig and

MF2016K, we employed the widely-used Aikake Information Criterion (AIC), which calcu-

lates the best approximating model to a given dataset with respect to Kullback-Leibler infor-

mation loss [47, 48]. For a given model, the AIC is defined as

AIC ¼ � 2 lnðL̂Þ þ 2K; ð29Þ

where lnðL̂Þ is the maximised log-likelihood and K is the total number of estimated parame-

ters. For the models considered here, since optimal parameter estimates were obtained by min-

imising a weighted least squares cost function, it can be shown that

lnðL̂Þ ¼ �
NGNT

2
lnð2pþ 1Þ � NT

XNG

i¼1

lnðAiÞ �
NGNT

2
ln W DLL; X̂LLðŶ

E
LLÞ

� �� �
; ð30Þ

where the Ais (defined in Eq (17)) are the cost function weights and ŶE
LL (defined in Eq (23)) is

the parameter set that minimises the cost function [49].

Writing AICi for the AIC value of the ith model, we rank the three models of interest by cal-

culating the AIC differences

DiðAICÞ ¼ AICi � min
1�i�3

AICi; ð31Þ

and the corresponding Aikake weights, defined below:

wiðAICÞ ¼
exp � 1

2
DiðAICÞ

� �

P3

i¼1
exp � 1

2
DiðAICÞ

� � : ð32Þ

Weight wi(AIC) can be interpreted as the probability that the ith model is the best (in the sense

of minimising K-L information loss), given the data and set of candidate models. Furthermore,

the strength of evidence in favour of model i over model j is quantified by the ratio wi(AIC)/

wj(AIC) [47–50].
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Finally, since NG, NT and Ai in Eq (30) are fixed across the models, it follows that the AIC

differences and Aikake weights can be computed from the following simplified expression for

the AIC value of a given model

AIC ¼ NGNT lnðWðDLL; X̂LLðŶ
E
LLÞÞÞ þ 2ðKY þ 1Þ: ð33Þ

In the above, KΘ denotes the number of model parameters that are optimised using the

weighted least squares cost function to calculate ŶE
LL.

Variability in optimised parameter values

In order to quantify the parameter variability associated with our optimisation procedure

when fitting extended S-System models to synthetic/experimental data, we performed the fol-

lowing analysis. For each model, following an initial parameter optimisation run, five further

runs were executed in which the initial parameters were sampled from a multivariate normal

distribution with its mean set to the optimal values of the initial run and its covariance matrix

set to the identity matrix. Parameter sampling was carried out using the MATLAB function

mvnrnd. During the search process, if no further improvement was observed in the cost func-

tion (i.e. the WMSE value of the fit), this was taken to indicate the presence of a local minimum

and the optimisation run was terminated. For each model, six parameter sets that could repro-

duce the synthetic/experimental data were thus generated in this manner. To obtain a robust

measure of the variability of a given parameter θ, we then computed its normalised Median

Absolute Deviation (nMAD), using the following equation:

nMADðyÞ ¼
medianðjyi � ~yjÞ

j~yj
: ð34Þ

In the above, θi is the optimal value of θ obtained for the ith run and ~y ¼ medianðyiÞ.

Results

Extended S-System representations of the models

For each of the five plant clock models considered in this study, our extended S-System formu-

lations of the corresponding GRN circuits are presented as eqs. (S1.2) (JL2005S), eqs. (S1.4)

(JL2006S), eqs. (S1.6) (AP2012S), eqs. (S1.8) (KF2014S) and eqs. (S1.10) (MF2016KS) of sec-

tion 1 in S1 Text.

Fits to synthetic data

The parameter values yielding the best fits of each model to the corresponding training dataset

are given in S3 Table (JL2005S), S6 Table (JL2006S), S9 Table (AP2012S) and S12 Table

(KF2014S). Below, we discuss the performance of each optimised model in turn.

JL2005. The simplest plant clock model we consider here is JL2005 (Fig 1A), which only

comprises two circadian genes, LHY/CCA1 and TOC1. In [11], this circuit is described with

seven ODEs, in which one equation is used exclusively to represent the interaction of light

with a light-sensitive protein, and is therefore decoupled from the others. Since this light-sensi-

tive protein is not part of the core plant clock, we omit it from the timeseries and heatmap

plots used to present the fitting results below.

The fits of JL2005S to the training and validation sets are shown in Fig 1B and 1C. In Fig

1B, we plot the timeseries, while in Fig 1C, we plot the corresponding heatmaps. For the heat-

maps, each gene or protein is represented by two rows, where the top and bottom rows
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Fig 1. The JL2005S plant clock model—Fits to synthetic data. A: Regulatory circuit diagram for JL2005 [11]. Genes and proteins are represented

as ovals and rectangles respectively. Grey solid lines represent translation. Blue solid lines with arrow heads (resp. bar heads) represent

transcriptional activation (resp. inhibition). Double headed arrows denote protein shuttling between the cytoplasm and nucleus. The yellow

diamond denotes light-dependent regulation. B: Comparison between expression timeseries in JL2005 (blue solid lines) and its extended S-System

formulation JL2005S (black dashed lines). JL2005S was optimised to training data generated from JL2005 in a simulated 12L:12D! LL transition
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represent the expression dynamics generated by JL2005 and JL2005S respectively. The time-

series and heatmaps demonstrate excellent agreement between the two models, as quantified

by the small WMSE values given in S4 Table. Both models attain peaks and troughs at the

same times with near-identical amplitudes, demonstrating the capacity of the extended S-Sys-

tem formulation to reproduce the dynamics of the original equations with a simpler model

structure. We also note that the model parameters are quite tightly constrained (i.e. have low

variability across optimisation runs), with all parameters having nMAD values less than 0.25

(see S12A Fig and S3 Table).

JL2006. The second plant clock model, JL2006 was constructed by expanding JL2005

from a two-gene to a five-gene circuit [43] (see Fig 2A). Note that in JL2006, there are two spec-
ulative genes labelled X and Y, reflecting the fact that when modifying JL2005 to better fit

experimental data, Locke et al. proposed that there should be a gene (X) that acts as an inter-

mediate genetic component between TOC1 and LHY/CCA1, and another gene (Y) that acts as

an intermediate genetic component between LHY/CCA1 and TOC1. The identity of these two

genes was eventually discovered and they will be discussed when we consider AP2012 below.

JL2006 comprises 16 ODEs. As with JL2005, we omit the light-sensitive protein from the pre-

sentation of the fitting results, as it is not part of the core circadian clock.

Fig 2B and 2C show the fits of JL2006S to synthetic data in the form of heatmaps (the corre-

sponding WMSE values are given in S7 Table). Because the expression amplitude of each gene

and protein differs significantly, we normalised each timeseries by its maximum value when

plotting the heatmaps, yielding a maximum relative amplitude of one (the unnormalised time-

series are shown in S1 and S2 Figs). For the training dataset, excellent agreement was observed

between the two models, with both formulations attaining peaks and troughs at very similar

times with similar amplitudes. Furthermore, JL2006S reproduces the acute light responses of

the Y gene and Y protein that occur at dawn in light-dark cycles. For the validation dataset,

both models also show good agreement, with the exception of Y mRNA and Y protein in DD

conditions, where higher amplitudes are observed for JL2006S.

In terms of parameter variability, it can be seen in S12B Fig and S6 Table that similarly to

JL2005S, the parameters of JL2006S are fairly well constrained, with the majority (56/61

parameters) having nMAD values less than 0.5, and all parameters having nMAD values less

than 0.8.

AP2012. Although the extended S-System approach was very successful in reproducing

the circadian dynamics of JL2005 and JL2006, these two plant clock models are characterised

by simple transcription and translation mechanisms, where post-translational processes such

as protein complex formation, protein stabilisation and protein degradation are not consid-

ered. The capacity of the extended S-System approach to describe these more complicated pro-

tein modification steps was assessed by applying it to the third plant clock model, AP2012

[44].

In AP2012, the previously unknown gene Y in JL2006 had been identified as GI. The other

unknown component of JL2006, gene X, had been removed on the basis of new experimental

work indicating that TOC1 protein was a transcriptional inhibitor of LHY/CCA1 [44, 51, 52],

rather than a transcriptional activator as had been initially assumed (this change in TOC1

function was also predicted by Boolean modelling in [12]). Modifying the regulation of LHY/
CCA1 by TOC1 in accordance with these findings resulted in the new model being able to fit a

(left panels). For validation, the behaviour of the models was then evaluated in a simulated 12L:12D!DD transition (right panels). White and

black bars represent intervals of light and dark. C: Heatmap representation of the timeseries shown in B. Each gene/protein is grouped together,

with the JL2005 timeseries plotted in the top row of each group and the JL2005S timeseries plotted in the bottom row.

https://doi.org/10.1371/journal.pcbi.1007671.g001
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Fig 2. The JL2006S plant clock model—Fits to synthetic data. A: Regulatory circuit diagram for JL2006 [43]. The same

symbols were used as in Fig 1. B-C: Comparison between expression timeseries in JL2006 and its extended S-System

formulation JL2006S. JL2006S was optimised to training data generated from JL2006 in a simulated 12L:12D! LL

transition (B). For validation, the behaviour of the models was then evaluated in a simulated 12L:12D!DD transition (C).

Timeseries are presented as heatmaps in which each gene/protein is grouped together, with the top and bottom rows in

each group showing JL2006 and JL2006S expression levels, respectively. To aid visualisation, each timeseries has been

normalised to its maximum value. White and black bars represent intervals of light and dark.

https://doi.org/10.1371/journal.pcbi.1007671.g002
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broader range of experimental data, leading to the removal of gene X from the model (and its

subsequent extensions).

The circuit diagram for AP2012 is shown in Fig 3A. AP2012 is described by 28 ODEs. Heat-

maps comparing the normalised dynamics of the model and its extended S-System formula-

tion are shown in Fig 3B and 3C, with the corresponding unnormalised timeseries given in S3

and S4 Figs. In addition to the light-sensitive protein, we also omit the heatmap and timeseries

of all COP1-related proteins in our plots, as these are not part of the core plant circadian

network.

Like JL2005S and JL2006S, AP2012S displays excellent agreement on the training dataset.

For the validation dataset, despite the simulated genes/proteins in AP2012S having similar

peak and trough phases to their counterparts in AP2012, and a correspondingly small fitting

error (cf. S10 Table), the extended S-System formulation generates an oscillation in DD that

decays faster than the original formulation.

The parameter variability analysis of AP2012S shows that the optimisation process yields

fairly constrained fits for this model also: the vast majority of parameters (96/115) have nMAD

values less than 0.5 and the largest nMAD value is�0.94 (see S12C Fig and S9 Table).

KF2014. The fourth model, KF2014 [45], is the most comprehensive plant clock model

available to date: its circuit diagram is shown in Fig 4A. KF2014 was constructed and validated

against a large number of experiments reported in the literature (approximately 800 timeseries

datasets spanning 59 published papers [45]). This results in the model being able to reproduce

experimental findings across a broad range of different conditions. KF2014 is described by 35

ODEs. Heatmaps comparing the normalised dynamics of KF2014 and KF2014S are shown in

Fig 4B and 4C (for the corresponding unnormalised timeseries, see S5 and S6 Figs). Like

AP2012, the light-sensitive protein and all COP1-related proteins are omitted in our timeseries

and heatmap plots.

For the training data, the heatmaps and timeseries indicate good agreement between the

expression dynamics of the two models. For the validation set, both models show good agree-

ment for the majority of components, with the exception of ELF3/ELF4 complex, LUX mRNA,

LUX protein, GI mRNA, GI cytoplasmic protein and GI nuclear protein (cf. S6 Fig and S13

Table). However, the difference lies mainly in the amplitudes—the timing of peak and trough

expression is similar in both models.

Finally, the variability in optimised parameter values is comparable to that observed for

AP2012S, with a similar proportion of parameters (127/152) having nMAD values less than 0.5

and the maximum nMAD value being�0.94 (see S12D Fig and S12 Table).

Fits to experimental data

MF2016K. Here, we assess the ability of the extended S-System formulation to reproduce

experimental data, where the modelled interaction between circadian genes follows the kernel

version of the ODE system developed in [15]. The kernel model MF2016K shown in Fig 5A is

described by 24 ODEs. Fig 5B and 5C show heatmaps comparing the normalised expression

timeseries of the experimental datasets to the fits obtained previously with MF2016K in [15]

and the fits obtained in this study with the extended/original S-System formulations of the

model (MF2016KS/MF2016KSorig). The unnormalised timeseries for all three models are

plotted in S7 and S8 Figs. The parameter sets yielding the best fits to experimental data are pre-

sented in S14 Table (MF2016KS), S16 Table (MF2016KSorig) and S17 Table (MF2016K),

whilst the corresponding WMSE values are given in Table 1 (all models) and S15 Table

(detailed cost breakdown for MF2016KS).
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Fig 3. The AP2012S plant clock model—Fits to synthetic data. A: Regulatory circuit diagram for AP2012 [44]. The

same symbols were used as in Fig 1, with the addition of green solid lines representing complex formation. B-C:

Comparison between expression timeseries in AP2012 and its extended S-System formulation AP2012S. AP2012S was

optimised to training data generated from AP2012 in a simulated 12L:12D! LL transition (B). For validation, the

behaviour of the models was then evaluated in a simulated 12L:12D!DD transition (C). Timeseries are presented as

heatmaps in which each gene/protein is grouped together, with the top and bottom rows in each group showing

AP2012 and AP2012S expression levels, respectively. To aid visualisation, each timeseries has been normalised to its

maximum value. White and black bars represent intervals of light and dark.

https://doi.org/10.1371/journal.pcbi.1007671.g003
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Fig 4. The KF2014S plant clock model—Fits to synthetic data. A: Regulatory circuit diagram for KF2014 [45]. The

same symbols were used as in Fig 1. B-C: Comparison between expression timeseries in KF2014 and its extended

S-System formulation KF2014S. KF2014S was optimised to training data generated from KF2014 in a simulated

12L:12D! LL transition (B). For validation, the behaviour of the models was then evaluated in a simulated 12L:12D

!DD transition (C). Timeseries are presented as heatmaps in which each gene/protein is grouped together, with the

top and bottom rows in each group denoting KF2014 and KF2014S expression levels, respectively. To aid visualisation,

each timeseries has been normalised to its maximum value. White and black bars represent intervals of light and dark.

https://doi.org/10.1371/journal.pcbi.1007671.g004
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Fig 5. The MF2016KS, MF2016K and MF2016KSorig plant clock models—Fits to experimental data. A: Regulatory

circuit diagram for MF2016K [15]. The same symbols were used as in Fig 1. B-C: Comparison between experimental

expression timeseries and the corresponding simulations generated by the extended S-System formulation MF2016KS,

the Michaelis-Menten formulation MF2016K and the original S-System formulation MF2016KSorig. The models were

optimised to experimental data recorded in a 12L:12D! LL transition (B). For validation, the behaviour of each
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For the training dataset, the heatmaps and timeseries indicate good agreement between

both MF2016KS and the experimental data, with the extended S-System model yielding very

similar expression dynamics to the Michaelis-Menten formulation (see Fig 5B and S7 Fig).

The comparable performance between the models in reproducing the experimental data is

reflected by their near-identical WMSE values, although MF2016KS has fewer parameters

than MF2016K (see Table 1). The standard S-System formulation, MF2016KSorig, did not

reproduce the behaviour of either GI or ZTL protein (see Fig 5B and S7 Fig). Thus, despite

being able to adequately reproduce the dynamics of other genes and proteins, MF2016KSorig

has a larger WMSE value than the other two models.

The AIC values in Table 1 quantify this comparison in model performance, with

MF2016KS, MF2016K and MF2016KSorig yielding Aikake weights of wKS = 0.9981, wK =

0.0019 and wKSorig = 0, respectively. These weights exclude MF2016KSorig as a viable candi-

date for the best model (in the sense of K-L divergence) and imply strongly that the best model

is MF2016KS (the evidence ratio
wKS
wK

indicates that it is 530 times more likely to be so than

MF2016K).

For the validation dataset, although the simulated MF2016KS waveforms (and hence ampli-

tudes and periods) of most circadian components are close to those of the experimental time-

series, peak expression occurs earlier in the model following release from LD into DD (see Fig

5C and S8 Fig). In addition, for ZTL protein, the MF2016KS timeseries has a larger amplitude

than the experimental expression profile. MF2016K yields a better fit to the data in this case

(particularly to ZTL protein), as reflected by its lower WMSE value (i.e. its lower out-of-sample

error). MF2016KSorig has a high out-of-sample error, predominately due to some simulated

PRR9, PRR7 and PRR5 components having much higher amplitudes than their experimental

counterparts in DD (see Fig 5C and S8 Fig).

The parameter variability analysis of MF2016KS mirrors the general trend observed in

the fits of the larger models to synthetic data. The overwhelming majority of parameters

model in a simulated 12L:12D!DD transition was then evaluated against experimental data recorded in the same

conditions (C). Timeseries are presented as heatmaps in which each gene/protein is grouped together, with the first

row in each group showing experimental expression levels and the second, third and fourth rows showing simulated

expression levels from models MF2016KS, MF2016K and MF2016KSorig, respectively. To aid visualisation, each

timeseries has been normalised to its maximum value. White and black bars represent intervals of light and dark. In

order to highlight the differences in predictive capacity between the three models, (B) shows the unnormalised

expression timeseries for GI and ZTL proteins, while (C) shows the unnormalised expression timeseries for PRR9 and

PRR5 proteins.

https://doi.org/10.1371/journal.pcbi.1007671.g005

Table 1. Ranking model fits to experimental data. Here, NG and NT are the number of gene/protein timeseries and the number of timepoints per timeseries used for fit-

ting, respectively. WðDLL; X̂LLðŶ
E
LLÞÞ is the weighted mean squared error (WMSE) of the best fit to the training data and WðDDD; X̂DDðŶ

E
LLÞÞ is the corresponding WMSE

value of the fit to the validation data. Δi(AIC) and wi(AIC) denote the AIC differences and Aikake weights for each model, respectively, calculated using Eqs (31)–(33).

Model

MF2016KS MF2016KSOrig MF2016K

NG 24

NT 194

KΘ 72 78 77

WðDLL; X̂LLðŶ
E
LLÞÞ

0.03647 0.04461 0.03649

WðDDD; X̂DDðŶ
E
LLÞÞ

0.13557 1.70248 0.05629

Δi(AIC) 0 950.03 12.55

wi(AIC) 0.99812 0 0.00188

https://doi.org/10.1371/journal.pcbi.1007671.t001
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(63/72) have nMAD values less than 0.5 and the largest nMAD value is�0.93 (see S12E Fig

and S14 Table).

The aggregated protein model—Linear systems analysis

As noted earlier, the later plant clock models (e.g. AP2012 and KF2014) used a single equation

to represent the production of TF, except in cases where experimental data was available that

distinguished between cytoplasmic and nuclear forms (e.g. ELF3 and GI in [53] and PRR5,

TOC1 and GI in [54]). This was in contrast to the paired equations used to represent protein

shuttling between cytoplasm and nucleus that were employed in the earlier models (e.g. JL2005

and JL2006).

To understand why the practice of aggregating protein forms did not appear to adversely

affect the predictive capacity of the later models, we used sine-sweeping—a frequency response

analysis method from linear systems theory [55]—to approximate the transfer functions

describing the production of TF in the models that explicitly describe transport between cyto-

plasmic and nuclear compartments. Sine-sweeping is widely used in the field of system identi-

fication to obtain simplified empirical transfer functions. The method is applicable when the

system of interest displays linear dominant behaviour (i.e. when the response to a sinusoidal

input signal is itself sinusoidal, with the same input frequency and some phase shift). For a lin-

ear dominant system, sine-sweeping provides a means of obtaining an approximate, simplified

linear model in the event that the linearisation of the full nonlinear model is not straightfor-

ward. When we applied the method to the plant clock models incorporating protein shuttling,

JL2005 and JL2006, we observed linear dominant behaviour in each case, thereby validating

the approach. Here, we present the results obtained for JL2006 (similar results were obtained

for JL2005).

In applying sine-sweeping to the protein shuttling mechanism, the system input is the

mRNA expression timeseries and the system output is the resulting nuclear protein expression

timeseries (see Fig 6A). We then drive the system with sinusoidal input signals with frequen-

cies in the range 0.01 rad/h to 2 rad/h. From systems theory, it follows that if the system is lin-

ear (or linear dominant), the output obtained for a sinusoid of given frequency will also be

sinusoidal with the same frequency, but with a scaled amplitude and phase shift. By calculating

the amplitude scaling and phase shifts over the frequencies of interest, we obtain a Bode plot.

This in turn allows us to approximate the transfer function of the system, which enables the

system’s response to any input signal (i.e. any mRNA expression timeseries) to be estimated

(see section 2 in S1 Text and S9 Fig). The order N of the transfer function is of particular

importance in our case, as it specifies the minimum number of linear differential equations

required to represent the system. N can be approximated from the Bode plot by exploiting the

fact that for an Nth order transfer function, the slope of the magnitude plot at the corner fre-

quency is (−20 × N) dB/decade and the phase shift at this frequency is (−45 × N)˚ (the corner

frequency is defined as the frequency at which the magnitude plot has decreased by 3dB from

its plateau level—for more details, see [56]).

The protein shuttling equations in JL2006 have the general form given in Eq (8) but with

nonlinear rather than linear degradation terms (cf. eqs. (S1.3) in S1 Text). The Laplace trans-

forms of the linearised protein shuttling equations in JL2006 yield second-order transfer

functions, as detailed in section 3 of S1 Text. For each gene, we would therefore expect the

Bode plot obtained with sine-sweeping to have a slope of -40 dB/decade at the corner fre-

quency and a corresponding phase shift of -90˚. However, as can be seen in Fig 6B–6F, for all

the circadian genes, the phase shift at the corner frequency is instead close to -45˚ and the

corresponding slope in the magnitude plot is close to -20 dB/decade (with the exception of
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Fig 6. Frequency response analysis of protein shuttling in JL2006. A: For each circadian gene, a sinusoidal mRNA

signal with varying frequencies is provided as the input to the system and the nuclear protein is observed as the

resulting output. B-F: Bode plots obtained from sine-sweeping the five different circadian genes of the model. In each

magnitude plot, the black dashed line represents the magnitude that is 3dB lower than that at ω = 0. For each phase

plot, the black dashed line represents a phase shift of -45˚. For each gene, if the protein shuttling mechanism can be

approximated by a first-order transfer function, then the intersections of the blue solid lines and the black dashed lines

in both the magnitude and phase plots should occur at the same frequency. B: LHY/CCA1 mRNA 7! LHY/CCA1

nuclear protein. C: TOC1 mRNA 7! TOC1 nuclear protein. D: X mRNA 7! X nuclear protein. E: Y mRNA 7! Y

nuclear protein. F: PRR7/PRR9 mRNA 7! PRR7/PRR9 nuclear protein.

https://doi.org/10.1371/journal.pcbi.1007671.g006
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LHY/CCA1, for which the slope is approximately -10 dB/decade). Thus, the protein shuttling

mechanism in each case appears to be quite well approximated with a first-order transfer

function.

To understand the reason for this observed difference, we further analysed the protein

equations used for JL2006. A second order system can be approximated by a first-order system

if the two poles (i.e. the roots of the denominator of the transfer function) are far apart—in

other words, if the system has one fast pole and one slow pole. Using gene Y as a case study, we

found that the two poles are indeed far apart (see eq. (S3.5) in S1 Text and S10 Fig), with one

pole having a value approximately 30 times greater than the other. As shown in S11 Fig, this

scenario results in the second-order transfer function quite closely resembling a first-order

transfer function, which implies that a single, aggregated protein equation is sufficient to rep-

resent the protein translation pathway (see eqs. (S3.6) and (S3.7) in S1 Text).

Discussion

Extended S-System formulations can reproduce the dynamics of existing

plant clock models and experimental data

In this study, we have investigated the use of a simplified modelling framework based on

S-Systems to describe the behaviour of the plant circadian clock. We tested the efficacy of this

new approach by constructing the extended S-System formulations of five different existing

plant clock models. Four of these models—the extended S-System versions of JL2005 [11],

JL2006 [43], AP2012 [44] and KF2014 [45]—were optimised to synthetic training data gener-

ated from the original models, whilst the extended S-System version of the fifth model—

MF2016K [15]—was optimised to experimental training data. To assess predictive capacity,

the goodness-of-fit obtained for each model on a validation dataset (i.e. one distinct from the

training data) was then computed.

For the two simplest models considered, JL2005 and JL2006, very close agreement was

observed between the extended S-System formulations and the original models for both the

training and validation datasets (Figs 1 and 2, S1 and S2 Figs), with near-identical simulated

and target expression timeseries in some of the model components. For AP2012 and KF2014,

which incorporate a greater number of genetic components and more complex regulation

mechanisms, excellent fits were again observed for the training data (Figs 3B and 4B, S3 and

S5 Figs). On validation data, whilst AP2012S gives a close match to AP2012 during the light-

dark cycle, the extended S-System formulation generates a much more pronounced damping

(with phase shifts in some components) following release into constant dark (Fig 3C and S4

Fig). Similarly to AP2012S, KF2014S generates timeseries that closely match KF2014 in the LD

portion of the validation dataset, with a more pronounced deviation between the models

observed following DD release (Fig 4C and S6 Fig).

Interestingly, despite AP2012S’s poorer fit to validation data, a comparable predictive per-

formance to AP2012 is observed when qualitatively modelling short- and long-period mutant

phenotypes. This can be seen in Table 2, which compares the predicted period phenotypes

generated by the two model formulations against the corresponding experimentally-observed

phenotype for a range of knockout/knockdown and overexpression mutants in different light

conditions. Indeed, the table shows that both AP2012 and its extended S-System formulation

correctly simulate 10/16 phenotypes (albeit not all the same ones), despite the latter not having

been fitted to any mutant data.

In terms of experimental data-fitting, the results obtained for MF2016KS mirrored those of

the more complex models on synthetic data. The extended S-System model generates expres-

sion timeseries that give good matches to the training data (Fig 5B and S7 Fig). Moreover, the
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extended S-System formalism yielded a superior model in this case, compared to both the orig-

inal Michaelis-Menten formulation and a model based on the standard S-System framework,

as quantified by an AIC analysis (Table 1). Similarly to AP2012S and KF2014S, however, a

greater discrepancy between MF2016KS and data is observed during the LD to DD transition,

predominately characterised by a phase shift (Fig 5C and S8 Fig). The Michaelis-Menten

model gives a better fit in this case, albeit with a larger number of parameters.

The extended S-System framework facilitates model development, network

inference and synthetic circuit design

The results of our fits to synthetic and experimental data demonstrate that the extended S-Sys-

tem formulation is capable of yielding models with comparable predictive capacity to a set of

canonical plant clock models. Furthermore, this approach confers several advantages for GRN

modelling compared to the conventional Michaelis-Menten based framework that is predomi-

nately used in computational circadian biology.

The first such advantage relates to model development and expansion. The extended S-Sys-

tem formulation enables new interactions to be added easily, as depending on whether such an

interaction affects the production, degradation or light regulation of the target component, it

can simply be incorporated into the corresponding term of Eq (2) through an appropriate

choice of coefficients, exponents and upper product/summation bounds. Conversely, interac-

tions can also be removed in a straightforward manner.

The second advantage relates to network inference, which is the concomitant of the first

advantage. In the extended S-System formalism, the type of regulation implemented by a given

Table 2. Comparisons between simulated and experimental free-running period shifts δτ in different constant light conditions and genetic backgrounds for plant

models AP2012 and AP2012S. For all light-mutant combinations considered, δτ was calculated as the difference between the mutant and wild-type periods: δτ = δτmut −
δτwt. Hence, δτ< 0 corresponds to a short-period mutant (denoted by a − sign) and δτ> 0 corresponds to a long-period mutant (denoted by a + sign). The study provid-

ing the experimental values used to calculate δτ is reported in the rightmost column in each case. In the above, Δ denotes knockout/knockdown, ‘OX’ denotes overexpres-

sion, ‘arr.’ denotes an arrhythmic oscillation, LL denotes constant light and DD denotes constant dark. Knockout/knockdown mutant behaviour was simulated by

reducing the transcription rate of the target TF by 80%, with the exception of the ZTL mutant for which the protein production rate constant was decreased by 80% instead

(there is no term for ZTL mRNA production in AP2012—see eqs. (S1.5) in S1 Text). Overexpression mutant behaviour was simulated by increasing the translation rate of

the target TF two-fold. Simulated periods were calculated by using the MATLAB function findpeaks to obtain all the differences between two successive maxima in the

circadian rhythm, and then averaging across all circadian gene components.

Mutant Light condition sgn(δτ): exp. sgn(δτ): simulated Citation

(AP2012S) (AP2012)

Δlhy/cca1 LL - + - [57]

Δtoc1 LL - - - [58]

Δprr7 LL + - + [59]

Δprr9 LL + + - [59]

Δprr9prr7 LL + + + [59]

Δztl LL + + + [60]

Δgi LL - - - [61]

Δelf4 LL arr. arr. arr. [62]

Δelf3 LL arr. arr. arr. [63]

Δlux LL arr. arr. arr. [64]

ELF4-OX LL + - - [65]

ELF3-OX LL + - - [65]

Δgi DD arr. - - [66]

Δelf4 DD arr. arr. + [67]

Δztl DD + + + [68]

ELF3-OX DD + - - [65]

https://doi.org/10.1371/journal.pcbi.1007671.t002
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network component is simply determined by the sign of the corresponding exponent gi,j in the

first term of Eq (2), with gi,j< 0 indicating an inhibitor and gi,j> 0 indicating an activator. The

regulation type can therefore be inferred together with all the other parameters specifying Eq

(2) during data-fitting, without having to modify the production term. Indeed, for all the data-

fitting presented here, no constraints were imposed on the gi,js for the initial optimisations to

training data. For synthetic data-fitting, the inferred patterns of activation and inhibition were

checked against the corresponding model, whilst for optimisation to experimental data, the

activation/inhibition pattern was checked against the experimental literature. In each case,

almost all signs were correctly inferred. In the event that one or more signs were incorrectly

identified, these were reversed and a further optimisation run was performed.

To put these two advantages into perspective, in order to add a new interaction to one of

the plant clock models using the Michaelis-Menten model structure, we would need to specify

a priori whether this was a positive or negative interaction, given the different functions used

to represent activation and inhibition (cf. Eqs (5) and (6)) and then estimate the two new

parameters associated with this interaction. If the interaction type was unknown, two separate

optimisations would be required. On the other hand, using the extended S-System formula-

tion, we would only require an estimate of the exponent associated with the new interaction

(cf. Eq (2)) and if the interaction type were unknown, a single optimisation would be sufficient

to infer it. In this vein, recent experimental work appears to imply a switch in LHY 7! PRR9
regulation from activation to inhibition [69]. Revising this interaction could be done in a

model based on the extended S-System formalism in a very straightforward manner, by revers-

ing the sign of the exponent associated with the interaction and then reoptimising parameters.

In addition, the interaction type (activation or inhibition) that was predicted to give the best fit

to data could be established by simply leaving the sign of the exponent unconstrained during

the parameter optimisation process.

A third key advantage relates to the design of synthetic feedback control circuits for mitigat-

ing perturbations to GRNs (e.g. changes to steady-state expression levels associated with infec-

tion). Indeed, our previous work [70] has shown that using Michaelis-Menten based models to

obtain accurate simulations of closed-loop control strategies requires consistent estimates of

the Michaelis constants for all components affected by the control signal(s) (here, by consistent

we mean multiple optimisation runs started from different initial conditions locate similar

parameter values that reproduce the data). This is because variability in these estimates can

lead to a simulated saturated response in the relevant components (i.e. if P� K in Eqs (5) and

(6)). This in turn can result in an inaccurate prediction of controller behaviour, as shown in

Figure 3 of [70]. However, the propensity of Hill functions to generate a saturated response

means that, in practice, optimisations to data can lead to large variations in the inferred values

of the corresponding Michaelis constants—in other words, models utilising such functions

can suffer from poor parameter identifiability.

Finally, although our previous analysis concurred with [71] that accurately estimating expo-

nents in power-law based models can be challenging (see Figures 4 and 7 of [70]), it also

showed that these estimates are more consistent than those obtained for the corresponding

parameters in Michaelis-Menten based models. This suggests that the S-System formalism can

mitigate the parameter identifiability issue, identifying the approach as a viable complemen-

tary modelling framework for designing robust synthetic controllers.

Future directions

In addition to demonstrating the significant potential of extended S-Systems for plant clock

modelling, our work also provides potential insight into the shift from representing protein
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pathways with two equations for separate cytoplasmic and nuclear compartments (e.g.

JL2005, JL2006), to a single, aggregated equation (e.g. AP2012, KF2014, MF2016) in the

established suite of Arabidopsis models. Specifically, our sine sweeping results show that in

the models employing two pathway equations, the resulting second-order transfer function

relating mRNA to active protein can be well-approximated with a first-order transfer func-

tion, owing to the two poles being far apart (i.e. due to time-scale separation), as shown in

Fig 6 and S11 Fig. A single pathway equation would therefore have yielded the same results

in each case, implying that in the construction of these models, the data-fitting procedure

did not exploit the greater flexibility conferred by the second-order transfer function and/or

the increased flexibility was not required to obtain good fits. This apparent redundancy,

together with a desire for reduced parametrisations, may partly have driven the subsequent

models to jettison separate compartments. It would therefore be of interest to extend our

extended S-System framework to integrate distributed delay-based models of protein path-

ways [19, 72, 73], as these yield tunable transfer functions of arbitrary order, whilst main-

taining a compact parametrisation [16]. In addition, although our modification to the

original S-System framework extends the range of transcriptional regulation mechanisms

that can be modelled beyond the multi-input AND gate of the original formulation (cf.
Eqs (1) and (2)), it still does not cover the full range of biologically realistic logic gates. This

limitation could be addressed by modifying the first term of Eq (2) to encode an S-System

implementation of the nested canalysing Boolean functions associated with nP
i inputs [74].

It would be instructive to investigate whether such extensions to the S-System framework

resulted in models yielding more accurate fits to data (e.g. the fits of MF2016KS to experi-

mental DD release recordings), but with reduced complexity compared to Michaelis-Men-

ten based models.

Finally, we note that although we have focused here on plant circadian clock models, the

approach presented is potentially applicable to all GRNs characterised by entrainable, periodic

oscillations.

Supporting information

S1 Text. Supporting Text.

(PDF)

S1 Fig. Plant clock model JL2006S—Optimal fits to synthetic training data. Blue solid lines

show timeseries generated by JL2006 from its nominal parameter values for a simulated transi-

tion between a 12L:12D light-dark cycle and constant light (LL). Black dashed lines show time-

series obtained by optimising the parameters of JL2006S to this data in the same simulated

light environment (see Fig 2B for the corresponding heatmaps). White and black bars at the

top of the figure indicate light and dark intervals, respectively.

(EPS)

S2 Fig. Plant clock model JL2006S—Fits to synthetic validation data. Blue solid lines show

timeseries generated by JL2006 from its nominal parameter values for a simulated transition

between a 12L:12D light-dark cycle and constant dark (DD). Black dashed lines show time-

series generated by JL2006S in the same simulated light environment using the parameters

optimised to the training data (see Fig 2C for the corresponding heatmaps). White and black

bars at the top of the figure indicate light and dark intervals, respectively.

(EPS)

S3 Fig. Plant clock model AP2012S—Optimal fits to synthetic training data. Blue solid

lines show timeseries generated by AP2012 from its nominal parameter values for a simulated
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transition between a 12L:12D light-dark cycle and constant light (LL). Black dashed lines show

timeseries obtained by optimising the parameters of AP2012S to this data in the same simu-

lated light environment (see Fig 3B for the corresponding heatmaps). White and black bars at

the top of the figure indicate light and dark intervals, respectively.

(EPS)

S4 Fig. Plant clock model AP2012S—Fits to synthetic validation data. Blue solid lines show

timeseries generated by AP2012 from its nominal parameter values for a simulated transition

between a 12L:12D light-dark cycle and constant dark (DD). Black dashed lines show time-

series generated by AP2012S in the same simulated light environment using the parameters

optimised to the training data (see Fig 3C for the corresponding heatmaps). White and black

bars at the top of the figure indicate light and dark intervals, respectively.

(EPS)

S5 Fig. Plant clock model KF2014S—Optimal fits to synthetic training data. Blue solid lines

show timeseries generated by KF2014 from its nominal parameter values for a simulated tran-

sition between a 12L:12D light-dark cycle and constant light (LL). Black dashed lines show

timeseries obtained by optimising the parameters of KF2014S to this data in the same simu-

lated light environment (see Fig 4B for the corresponding heatmaps). White and black bars at

the top of the figure indicate light and dark intervals, respectively.

(EPS)

S6 Fig. Plant clock model KF2014S—Fits to synthetic validation data. Blue solid lines show

timeseries generated by KF2014 from its nominal parameter values for a simulated transition

between a 12L:12D light-dark cycle and constant dark (DD). Black dashed lines show time-

series generated by KF2014S in the same simulated light environment using the parameters

optimised to the training data (see Fig 4C for the corresponding heatmaps). White and black

bars at the top of the figure indicate light and dark intervals, respectively.

(EPS)

S7 Fig. Plant clock models MF2016KS, MF2016KSorig and MF2016K—Optimal fits to

experimental training data. Blue solid lines show timeseries recorded experimentally during

a transition between a 12L:12D light-dark cycle and constant light (LL). Black (MF2016KS)

and green (MF2016KSorig) dashed lines show timeseries obtained by optimising the parame-

ters of the S-System models to this data in the same simulated light environment. Red dashed

lines show optimal fits of MF2016K to the same data, obtained previously in [15] (see Fig 5B

for the corresponding heatmaps). White and black bars at the top of the figure indicate light

and dark intervals, respectively.

(EPS)

S8 Fig. Plant clock models MF2016KS, MF2016KSorig and MF2016K—Fits to experimen-

tal validation data. Blue solid lines show timeseries recorded experimentally during a transi-

tion between a 12L:12D light-dark cycle and constant dark (DD). Black (MF2016KS) and

green (MF2016KSorig) dashed lines show timeseries generated by the S-System models in the

same simulated light environment using the parameters optimised to the training data. Red

dashed lines show the corresponding fits of MF2016K to the same data (see Fig 5C for the cor-

responding heatmaps). White and black bars at the top of the figure indicate light and dark

intervals, respectively.

(EPS)

S9 Fig. Correlation method. The output of the sine sweeping test y(t) is correlated with sin ωt
and cos ωt prior to averaging to obtain the corresponding magnitude and phase values required
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to construct a Bode plot.

(EPS)

S10 Fig. Linear approximations to nonlinear Y protein degradation in JL2006. Blue lines

show how the degradation rates of cytoplasmic Y protein (top panel) and nuclear Y protein

(bottom panel) depend on the corresponding expression levels, cðcÞY and cðnÞY , respectively.

In each case, degradation rate is plotted for expression levels ranging between 0 and the

maximum level observed in the synthetic training and validation datasets (see S1 and S2

Figs). In these ranges, the nonlinear functions are well-approximated by linear fits (red

lines), the gradients of which are taken as the values of γcy and γnu used to derive eq. (S3.5)

in S1 Text.

(EPS)

S11 Fig. Bode plot relating input Y mRNA to output Y nuclear protein in JL2006. Blue

lines represent the second-order system given by eq. (S3.5) in S1 Text. Red lines represent the

first-order system given by eq. (S3.7) that approximates eq. (S3.5).

(EPS)

S12 Fig. Variation in optimised parameter values for the extended S-System models. A-D:

Fits of JL2005S, JL2006S, AP2012S and KF2014S to synthetic data. E: Fits of MF2016KS to

experimental data. Boxplots show parameter distributions obtained from six independent

optimisation runs. In each boxplot, the horizontal line denotes the median value, the edges of

the box are the 25th and 75th percentiles, the whiskers denote the most extreme datapoints not

considered to be outliers, and outliers are plotted as red crosses. Model parameter indices are

defined in S3 Table (JL2005S), S6 Table (JL2006S), S9 Table (AP2012S), S12 Table (KF2014S)

and S14 Table (MF2016KS). In B-E, the thick black horizontal lines separate parameters

whose values are plotted with respect to the left and right y-axes.

(EPS)

S1 Table. Variables used in the equations for plant clock models JL2005 [11], JL2006 [43],

AP2012 [44], KF2014 [45] and MF2016K [15].

(EPS)

S2 Table. Nominal parameter values for JL2005, which were used to generate synthetic

data. The parameters were taken from Figure 5 of [11].

(EPS)

S3 Table. Optimal parameter values ŶS
LL for the extended S-System formulation JL2005S

of JL2005, obtained by fitting the model to the synthetic training data. For each parameter,

the number in brackets is the normalised median absolute deviation (nMAD). This is calcu-

lated using the value shown, together with those obtained from five additional, independent

optimisation runs. The rightmost column shows the parameter indexing, counting left to right

across rows, that is used in S12 Fig.

(EPS)

S4 Table. The component-wise (Wi) and total (W) weighted mean squared error (WMSE)

values obtained when fitting JL2005S to the synthetic training and validation datasets.

(EPS)

S5 Table. Nominal parameter values for JL2006, which were used to generate synthetic

data. The parameter values were taken from inline Supplementary Table 1 of [43].

(EPS)
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S6 Table. Optimal parameter values ŶS
LL for the extended S-System formulation JL2006S

of JL2006, obtained by fitting the model to the synthetic training data. For each parameter,

the number in brackets is the normalised median absolute deviation (nMAD). This is calcu-

lated using the value shown, together with those obtained from five additional, independent

optimisation runs. The rightmost column shows the parameter indexing, counting left to right

across rows, that is used in S12 Fig.

(EPS)

S7 Table. The component-wise (Wi) and total (W) weighted mean squared error

(WMSE) values obtained when fitting JL2006S to the synthetic training and validation

datasets.

(EPS)

S8 Table. Nominal parameter values for AP2012, used to generate synthetic data. The

parameter values were taken from Supplemental Table 1 of [44].

(EPS)

S9 Table. Optimal parameter values ŶS
LL for the extended S-System formulation AP2012S

of AP2012, obtained by fitting the model to the synthetic training data. For each parameter,

the number in brackets is the normalised median absolute deviation (nMAD). This is calcu-

lated using the value shown together with those obtained from five additional, independent

optimisation runs. The rightmost column shows the parameter indexing, counting left to right

across rows, that is used in S12 Fig.

(EPS)

S10 Table. The component-wise (Wi) and total (W) weighted mean squared error (WMSE)

values obtained when fitting AP2012S to the synthetic training and validation datasets.

(EPS)

S11 Table. Nominal parameter values for KF2014, which were used to generate synthetic

data. The parameter values were taken from Table 3 (Parameter Set 2)† and Table 4 in Sup-

porting Information Text S1 of [45] (†We note that in the original paper, Table 3 incorrectly

lists parameter a3 as a1—this has been fixed in our version of the table).

(EPS)

S12 Table. Optimal parameter values ŶS
LL for the extended S-System formulation KF2014S

of KF2014, obtained by fitting the model to the synthetic training data. For each parameter,

the number in brackets is the normalised median absolute deviation (nMAD). This is calcu-

lated using the value shown, together with those obtained from five additional, independent

optimisation runs. The rightmost column shows the parameter indexing, counting left to right

across rows, that is used in S12 Fig.

(EPS)

S13 Table. The component-wise (Wi) and total (W) weighted mean squared error (WMSE)

values obtained when fitting KF2014 to the synthetic training and validation datasets.

(EPS)

S14 Table. Optimal parameter values ŶE
LL for the extended S-System formulation

MF2016KS of MF2016K, obtained by fitting to the experimental training data. For each

parameter, the number in brackets is the normalised median absolute deviation (nMAD). This

is calculated using the value shown, together with the values obtained from five additional,

independent optimisation runs. The rightmost column shows the parameter indexing,
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counting left to right across rows, that is used in S12 Fig.

(EPS)

S15 Table. The component-wise (Wi) and total (W) weighted mean squared error (WMSE)

values obtained when fitting MF2016KS to the experimental training and validation data-

sets.

(EPS)

S16 Table. Optimal parameter values ŶE
LL for the original S-System formulation

MF2016KSorig of MF2016K, obtained by fitting to the experimental training data.

(EPS)

S17 Table. Optimal parameter values for MF2016K, which were obtained previously in

[15] by fitting to the experimental training data used in this study with the same optimisa-

tion method. The values are reproduced from Tables S2 and S4 in the Supporting Information

of [15].

(EPS)
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