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Abstract 18 

The emission of CO2 has been increasing day by day by growing world population, which resulted 19 

in the atmospheric and environmental destruction. Conventionally different strategies; including 20 

nuclear power and geothermal energy have been adopted to convert atmospheric CO2 to 21 

hydrocarbon fuels. However, these methods are very complicated due to large amount of 22 

radioactive waste from the reprocessing plant. The present study investigated the effect of various 23 

parameters like temperature (200–500 oC), applied voltage (1.5–3.0 V), and feed gas (CO2/H2O) 24 

composition of 1, 9.2, and 15.6 in hydrocarbon fuel formation in molten carbonate (Li2CO3-25 

Na2CO3-K2CO3; 43.5:31.5:25 mol%) and hydroxide (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 26 

mol%) salts. The GC results reported that CH4 was the predominant hydrocarbon product with a 27 

lower CO2/H2O ratio (9.2) at 275 oC under 3 V in molten hydroxide (LiOH-NaOH). The results 28 
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also showed that by increasing electrolysis temperature from 425 to 500 oC, the number of carbon 29 

atoms in hydrocarbon species rose to 7 (C7H16) with a production rate of 1.5 μmol/h cm2 at 30 

CO2/H2O ratio of 9.2. Moreover, the electrolysis to produce hydrocarbons in molten carbonates 31 

was more feasible at 1.5 V than 2 V due to the prospective carbon formation. While in molten 32 

hydroxide, the CH4 production rate (0.80–20.40 µmol/h cm2) increased by increasing the applied 33 

voltage from 2.0–3.0 V despite the reduced current efficiencies (2.30 to 0.05%). The maximum 34 

current efficiency (99.5%) was achieved for H2 as a by-product in molten hydroxide (LiOH-35 

NaOH; 27:73 mol%) at 275 oC, under 2 V and CO2/H2O ratio of 1. Resultantly, the practice of 36 

molten salts could be a promising and encouraging technology for further fundamental 37 

investigation for hydrocarbon fuel formation due to its fast-electrolytic conversion rate and no 38 

utilization of catalyst. 39 

Keywords: Renewable energy; Molten salt electrolysis; Applied voltage; CO2/H2O; 40 

hydrocarbon fuels; Electrochemical conversion and Carbon dioxide capture. 41 

 42 

1 Introduction 43 

With increasing world population and living standards, the consumption of energy sources (fossil 44 

fuels) internationally and domestically has been increased that resulted in high levels of CO2 in the 45 

atmosphere and leading to environmental and climate destructions. The higher concentration of 46 

CO2 is not only causing the greenhouse effect but also affecting global warming, melting the polar 47 

ice, and increasing atmospheric temperature [1, 2]. Therefore, the strategies should be adopted to 48 

reduce and convert CO2  directly from emission sources or atmosphere into hydrocarbon fuels by 49 

utilizing renewable energy sources including hydroelectric, geothermal, solar, and wind [3, 4]. 50 

Recently, stationary carbon-free energy sources namely nuclear electric power, that accounts 51 
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28.8% of all energy sources in the U.S [4], have been proposed for fuel production but still. 52 

However, this method is still very complicated due to large amount of radioactive waste from the 53 

reprocessing plants [5].  54 

 55 

The above renewable energy sources do not involve CO2 sequestration through their electricity 56 

generation. To tackle CO2 emissions efficiently, biomass could be a predominant source of energy 57 

(biofuel) due to its easy accessibility, high compatibility with the engine, and cost-effectiveness 58 

than the conventional energy production techniques (geothermal, solar, and wind) [6, 7]. 59 

According to accumulated data, over the past 30 years, biomass is considered a promising CO2 60 

energy source due to its high energy production ability and could produce more than 1.04 billion 61 

tons of energy per year till 2030 [8]. No renewable energy is needed (as claimed) to convert the 62 

biomass into the various kinds of biofuels such as biogas and liquid biofuels [9]. However, the 63 

production of biofuels could be a comprehensive approach to minimize the utilization of coal and 64 

petroleum in halfway by 2030 [8]. The energy efficiency of woody biomass conversion (for 65 

instance) to bio-syngas is up to 70–72%. However, the cost of bio-methanol, bio-ammonia and 66 

bio-dimethyl ether (DME) produced from syngas derived with forest residues, is still higher than 67 

the cost of their fossil fuels-derived counterparts [10, 11].  68 

 69 

However, renewable energy resources are often unstable and require an energy storage facility 70 

system such as the case for solar panels and wind turbines. CO2 capture and conversion (CCC) is, 71 

therefore, a suitable technology to store renewable energy in the form of hydrocarbon fuels (CH4, 72 

C2H4, C2H6, C3H8, and C4H10) or C-rich energy carriers [12, 13]. The four carbon-capturing 73 

techniques including chemical absorption, physical adsorption, cryogenic fractionation, and 74 
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membrane separation have been reported in the literature for capturing CO2 from flue gas emitting 75 

to the atmosphere. The chemical absorption method uses amine solvents for CO2 capture from flue 76 

gas and considered as one of the most applied techniques due to cost-effectiveness, resistance to 77 

water and chemicals, and environmental friendly behaviours [14].  78 

 79 

Different types of CO2 conversion methods including aqueous electrolysis, thermochemical cycles, 80 

solid oxide electrolysis, proton exchange membrane, and electrolysis via molten salts are reported 81 

in the literature [15-17]. Besides to all techniques, the electrolysis is considered as an effected 82 

method to dissociate carbon dioxide into hydrocarbon fuels due to its high CO2 conversion rate 83 

and high current efficiency. An electrolytic cell uses electricity to dissociate CO2 and H2O. 84 

Generally, this dissociation performed in one step like a semi-batch reaction. The low to high-85 

temperature, and aqueous solution electrolysis have been investigated in accumulated data which 86 

involved in the dissociation of CO2 via an aqueous carbonate or bicarbonate electrolyte using 87 

copper or some noble metals like platinum as electrode [16, 17]. But aqueous solution electrolysis 88 

cannot be considered as a promising technique due to the use of highly expensive membrane and 89 

noble metals like platinum as a cathode. However, despite to all techniques, the electrolysis of 90 

molten salt is a promising and widely used method in various industrial applications such as co-91 

reduction of CO2 and H2O due to their low cost, high current efficiency, higher solubility of CO2 92 

gas inside the melt, wide potential window, unique characteristics and low melting point in terms 93 

of catalyzing various transformation processes besides their electrolytic features [18]. Different 94 

types of molten carbonates including K2CO3, Na2CO3, Li2CO3 (25.0:31.5:43.5) were used to 95 

catalyze (for instance) CO2 at 900 oC to increase the CO production rate [19, 20].  96 

 97 
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A study on molten salt proposed that the soluble NaVO3 addition to carbonate molten salt 98 

significantly increased the electrochemical conversion of CO2 to carbon at a high graphitization 99 

degree. The study also revealed that the graphitization degree of carbon products was effectively 100 

enhanced with only 0.43 value of ID/IG [18]. Another, similar study also reported that the carbonate 101 

ions can also be added to the molten chloride salt for enhancing  CO2 reduction at lower melting 102 

points, which showed a significant influence in CO2 conversion when just 1 mol% of K2CO3 was 103 

added to LiCl-KCl molten salt at 500 oC [21]. Bronco and his research group [22] reported the 104 

formation of higher carbon fuel molecules such as C3 and C4 obtained at lower temperatures by 105 

using mixed KCl-LiCl molten salts at 550 oC. They also revealed that the lower temperature 106 

enhances the selectivity of unsaturated products such as C2H4 and C3H6. Besides, the reduction of 107 

CO2 to carbon was also investigated in KCl-NaCl eutectic mixture at 700 oC with or without adding 108 

Li2CO3 under the pressure of CO2 gas. Generally, CO2 reacts with O2- or OH- ions to produce 109 

carbonate ions according to the following reactions (Eqs. 1-4). Then carbonate ions can be electro-110 

reduced in turn to form carbon or CO [23].  111 

                                                           𝐶𝑙− +  𝐻2𝑂 → 𝐻𝐶𝑙 + 𝑂𝐻−                                                (1) 112 

or 113 

                                                            2𝐶𝑙− +  𝐻2𝑂 → 2𝐻𝐶𝑙 + 𝑂2−                                            (2) 114 

                                                           2𝑂𝐻− +  𝐶𝑂2 → 𝐶𝑂3
2− + 𝐻2𝑂                                           (3) 115 

or 116 

                                                           𝐶𝑂2 +  𝑂2− → 𝐶𝑂3
2−                                                           (4) 117 

Despite molten salt types, the variable parameters such as temperature, cell voltage, catalyst, and 118 

CO2/H2O ratio also have a significant effect on the conversion of CO2 to CO and hydrogen. Kaplan 119 

et al. [24] reported that CO was a dominant product at 900 oC or above when CO2 reduced in the 120 
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absence of water. Like temperature, the use of an appropriate applied voltage is very important. 121 

Ijije et al. [25] demonstrated the formation of carbon is favoured at potentials more negative than 122 

-1.9 V vs. CO2-O2 electrode in ternary molten carbonates at 450 oC. Furthermore, they also 123 

reported that applying cell voltages higher than this limit during electrolysis may consequence in 124 

alkali metal deposition (M) and could result in an indirect chemical reduction of carbonate ions. 125 

Moreover, different metals including Ta, Nb, Zr, Al, Ti, and Hf are mostly studied as catalysts to 126 

promote the reduction of CO2 to CO due to their stability at elevated temperatures (>800 oC) and 127 

forming the oxide layer outside metal surface (which is more conductive at higher temperatures 128 

than at lower temperatures), and resultantly promote electrolysis [24].  129 

 130 

However, the effect of the CO2/H2O ratio and different combinations of temperature including 131 

220, 275, 335, 425, and 500 oC are not reported in the literature for molten salt chemistry, 132 

particularly using electrochemistry. To the best of our knowledge, for the first time, this has been 133 

taken into consideration in present research, the effect of CO2 and H2O concentrations on 134 

electrolysis in molten salts (carbonate, and hydroxide). The present study explained the influence 135 

of process variable parameters including temperature (200–500 oC), applied voltage (1.5–3.0 V) 136 

and CO2/H2O ratio (9.2 and 15.6) in the feed gas on the co-electrolysis of CO2 and H2O in two 137 

different mixtures of molten salts including carbonate, (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 138 

mol%) and hydroxide (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol%) salts. Furthermore, the 139 

specific hydrocarbon formation is also discussed in each category of molten salts. 140 



7 

 

2 Material and methods 141 

2.1 Chemicals 142 

Lithium carbonate (Li2CO3; ≥99.0%), sodium carbonate (Na2CO3; ≥99.5%), potassium carbonate 143 

(K2CO3; ≥99.0%), lithium hydroxide (LiOH; ≥98% powder), sodium hydroxide (NaOH; ≥98% 144 

pellets), and potassium hydroxide (KOH; 90% flakes) were purchased from Sigma-Aldrich, USA. 145 

Carbon dioxide (CO2; 99.99%) and argon (Ar; 99.99%) were procured from Air products. Labovac 146 

10 mineral oil was purchased from Jencons.  147 

2.2 CO2 absorption 148 

The CO2 absorption study was carried out through a house built cylindrical retort with a flange 149 

type cover using 316-grade stainless steel (17% Ni, 12% Cr, and 2% Mo; Unicorn Metals) to set 150 

up experimental reactor. The reactor was composed of two types of high-temperature vessels 151 

including CO2 storage and absorption vessels with same volume (3.5 L). The retort was 130 mm 152 

in internal diameter, 7.5, and 800 mm in wall thickness and vertical length respectively. A 2416CG 153 

Eurotherm programmable PID 8 segment controller was employed to control the furnace whose 154 

maximum working temperature was set at 1100 oC with an accuracy of ±1 oC. The furnace 155 

temperature was increased gradually in the interval of 200 oC until achieving the desired 156 

temperature. There was a (80–100 oC) gap between the furnace temperature and the one inside the 157 

resort (molten salt).  158 

 159 

The retort was inserted centrally in the furnace. The gap between the retort wall and the bore of 160 

furnace was covered with an alumina board (ZIRCAR Ceramics) on the top of the furnace to 161 

reduce heat losses. A rubber gasket was used to seal the retort between the lid (flange cover) and 162 

the body over water-cooling jacket. The ceramic tubes were sealed through the lid by two 163 
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individual filter adapters (Fisher Scientific Ltd.). The ceramic tubes served actually for both 164 

holding electrodes and gas product outlets. The cooling water jacket employed to cool the upper 165 

part of the retort to ensure safe handling and to avoid the prospect overheating or melting of silicon 166 

bungs (and adapters). The CO2 (99.99% purity) and Ar (99.99% purity) were supplied by Air 167 

Products Ltd. in the respective cylinders at room temperature, separated from each other by 168 

switching off the valves. Both cylinders were fitted with a 2-stage gas regulator (GIS Leengate). 169 

The outlets of these two gas cylinders were set to 0.12 MPa and connected to rotameters (Roxspur 170 

Measurement and control) with a flowrate of 20 to 200 mL/min and 5 to 100 mL/min at ambient 171 

temperature and pressure (ATP) for CO2 and Ar respectively.  172 

 173 

After leaving flow meters, CO2 and Ar were mixed and transfer to a Dreschel bottle (absorption 174 

vessel) containing 100 mL Millipore grade deionized water, to obtain the desired content of steam 175 

(water vapours) in the gas inlet of the reactor. An alumina crucible (Almath) containing about 100 176 

g molten salts (180 mmol/kg Li-Na-K carbonates, or 180 mmol/kg Li-Na hydroxide) were sat on 177 

the bottom of the absorption vessel. The temperature and pressure of the absorption vessel were 178 

measured by a YCT-727D thermometer (TC Direct; 3 mm diameter and 310-grade stainless steel) 179 

and digital pressure indicator with an accuracy of ±0.01 K and ±0.001 Pa, respectively [26]. The 180 

insulated thermocouple was put in the molten salt for approximately 1–2 min to obtain an accurate 181 

and stable measurement. The following equation (Eq. 5) was used to measure the absorption 182 

amount of CO2. 183 

                                                    𝑛𝐶𝑂2 =
𝑃𝑔𝑉𝑔−𝑃 (𝑉𝑔+𝑉𝑒− 𝑉𝑚)+ 𝑃𝑣𝑉𝑚

𝑅𝑇
                                                (5) 184 

Where nCO2(mmol) represents the absorption amount of CO2 at given time t (min), P(kPa) 185 

represents the CO2 pressure at given time t (min), Pg (kPa) is the initial CO2 pressure in the gas 186 
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storage vessel, Pv(kPa) signify the saturated vapour pressure of eutectic salts, Ve(cm3) and Vg 187 

(cm3) indicate the volume of absorption and storage gas vessel, and Vc (cm3) and Vm (cm3) are 188 

the volume of the crucible and molten salts, respectively [27].  189 

2.3 Electrochemical measurements 190 

For CO2 conversion, different combinations of molten salts including a mixture of molten 191 

carbonates (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 mol%) at 397 ℃, and two mixtures of molten 192 

hydroxides (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol%) at 218 and 170 ℃ were pre-193 

melted respectively [27, 28]. The experiments were performed under CO2 and Ar atmosphere. 194 

Two-electrode mode was conducted to produce fuel gas from CO2 and H2O electrolysis, by 195 

employing Agilent E3633A 20A/10V Auto-Ranging DC Power Supply and a laptop with MS 196 

Excel add-in to collect the instrumentation data. The titanium foil (thickness: 1 mm, purity: 197 

99.99%, Good fellow Cambridge Ltd.), and graphite rod (diameter: 5 mm, purity: 99.99%, Advent 198 

Research Materials) were used as working electrode (cathode material) in molten carbonate and 199 

molten hydroxide to see the selective production of hydrocarbon species.  200 

 201 

Similarly, a stainless-steel rod (304 grades; 6 mm diameter, Unicorn Metals) was used in molten 202 

carbonate and hydroxide as a counter electrode or anode material [29].  The electrolysis is designed 203 

to study the effect of applied voltage, feed gas composition, temperature, and molten salt 204 

composition for the production of fuel gases in general and hydrocarbon species particularly. For 205 

electrolysis, the applied voltage was maintained at 1.5 V for the molten carbonate mixture to avoid 206 

carbon deposition, which is thermodynamically preferred on the cathode at applied cell voltages 207 

above 2 V. For molten hydroxide and chloride, the cell voltage was applied at 2 and 3 V 208 
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respectively. The primary products including hydrogen and carbon monoxide gases were produced 209 

from the reduction of H2O and CO2 at cathode [29, 30]. 210 

2.4 Characterization 211 

2.4.1 Gas chromatography (GC) 212 

Gas chromatography (GC) was used to analyze the gas products generated from electrolysis. In 213 

the present study, PerkinElmer Clarus 580 gas chromatography (GC) instrument was used for 214 

analyzing hydrogen evolution and general light hydrocarbons (<C6). The hydrogen, CO, and CO2 215 

gas evolution was detected in a GC instrument equipped with TCD detector thermostated at 160 216 

℃, and a Haysep N6 packed column (60–80, 7’×1/8’’ sulfinert) with argon as a carrier gas 217 

thermostated at 60 ℃. For hydrocarbon analysis, the GC was equipped with an FID detector and 218 

RT® Alumina Bond/KCl capillary column (30 m × 0.32 mm i.d., 5 µm) with helium as a carrier 219 

gas [31]. A 5 mL gas sample was taken by gas-tight syringe to a tedler 1 L (SKC Ltd.) gas bag, 220 

which then injected into the chromatograph. The gas species in the sample were identified and 221 

quantified by comparison with two different gas standards, including permanent gas standard and 222 

calibration gas standard. The first one is permanent gas standard with composition of H2 10%, CO2 223 

10% and CO 40% for TCD detector. The second standard calibration gas contains ethane (C2H4) 224 

0.2%, propylene (C3H6) 0.2%, 1-butene (C4H8) 0.2%, 1-pentene (C5H10) 0.2%, methane (CH4) 225 

20%, ethane (C2H6) 10%, propane (C3H8) 5%, n-butane (C4H10) 2%, n-pentane (C5H12) 1% for the 226 

FID detector. The remaining composition of both gas standards was balanced with helium gas. 227 

2.4.2 Gas chromatography-mass spectrometry (GC-MS) 228 

The unknown hydrocarbon species were analyzed by using Agilent 7890B gas chromatograph 229 

interfaced with a JEOL AccuTOF GCX mass spectrometer with ionizing energy of 70 eV and a 230 

source temperature of 150 oC. The separation was processed on a fused silica capillary column 231 
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(30m × 0.25 mm i.d. × 25 µm) with helium as a carrier gas. The method of oven temperature-232 

programmed was employed from 40 oC (hold for 18 min) to 350 oC (hold 2 min) at 25 oC/min. The 233 

gas sample compounds were separated by the GC part that eludes at different times using a silica 234 

capillary column. The sample gas has exited the GC, and the compounds were bombarded in the 235 

MS part by high energy electrons that detach an electron from each molecule and result in 236 

positively charged molecular ions (M+) (M + e- → M+ + 2e-). Further, an analyzer works to separate 237 

the molecular ions by mass-to-charge ratio (m/z) and was detected by an ion detector [32].  238 

3 Results and discussion 239 

The effect of process variables including temperature, applied cell voltage and CO2/H2O ratio on 240 

co-electrolysis of CO2 and H2O gases themselves and the production of hydrocarbons were 241 

examined and discussed in the following sections.  242 

3.1 Effect of temperature    243 

The variation of temperature in hydrocarbon formulation as for any chemical reaction in general 244 

affects the rate of reaction and equilibrium position of the molecules produced reversibly during 245 

hydrocarbon production process. In molten carbonates, for instance, the temperature can be 246 

reduced to the lowest point as possible to maintain the salt in a liquid state on one side and for the 247 

sake of hydrocarbon formation preferred thermodynamically on the other side [33]. The 248 

temperature effect was studied in a molten carbonate (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 249 

mol%) and hydroxides (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol%).   250 

3.1.1 Molten carbonate 251 

The selectivity and production rates for various hydrocarbon species including (CH4, C2H4, C3H6, 252 

C4H8, C6H14, and C7H16) were investigated in molten carbonates (Li2CO3-Na2CO3-K2CO3; 253 
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43.5:31.5:25 mol%) at two different temperatures (425 and 500 oC) under 1.5 V using a gas feed 254 

composition of 48.4% (CO2) + 3.2% (H2O) + 48.4% (Ar) in two runs. The surface area of titanium 255 

plate cathode was 5.9 cm2 [34]. The selectivity of the hydrocarbon species was calculated by the 256 

proportion of moles of desired hydrocarbon species to the moles of undesired products of H2 and 257 

CO [35]. The FID analysis revealed a slight decrease in H2 production rate could be attributed to 258 

the formation of new hydrocarbon species (C6H14 and particularly C7H16) as presented in Fig. 1. 259 

The presence of C7H16 was detected by GC-mass spectrometry analysis as it cannot be confirmed 260 

through normal GC. The findings presented in Table 1 and Table 2 report the selectivity for 261 

different hydrocarbon species. It is confirmed, the selectivity of CH4, C3H6, and C4H8 was 262 

relatively good at 425 oC and further enhanced from 7–42% in total at 500 oC due to lower rates 263 

of H2 and CO formation in the final products.  264 

 265 

In addition, the formation of higher molecular weight products (such as C6H14 and C7H16) with 266 

small production rates (2.4 and 1.2 μmol/h cm2 respectively) offer a calorific heat value (heating 267 

value or the heat of combustion) by ten times the amount for H2 or CO. The findings also revealed 268 

that the total energy consumption at 425 oC under 1.5 V for low molecular weight hydrocarbon 269 

products (CH4, C3H6, and C4H8) was 114.2 J. While at 500 oC under same conditions for higher 270 

hydrocarbon products (C6H14, and C7H16), the energy consumption was 171 J, which indicates that 271 

the higher hydrocarbons consume more energy than the lower hydrocarbons due to their greater 272 

size and compound complexity. Therefore, based on these findings, it is concluded that the lower 273 

temperature is more feasible for hydrocarbon fuel production than higher temperature because the 274 

higher temperature consumes more energy than lower. Wu et al. [36] reported the CO2 reduction 275 

into carbon species at 600 oC in an electrolysis, containing a mixture of carbonate using iron as a 276 
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cathode electrode showed the current densities of 50, 100, and 200 mA/cm2 for carbon materials 277 

(C, O, and CO).  278 

 279 

Another experiment conducted on binary molten carbonate Li2CO3-Na2CO3 (52–48 mol%) at 600 280 

oC under PCO2=1 bar demonstrated that Li2CO3 in molten salt lowered the melting point of the 281 

mixture which resultantly enhanced the process of carbon deposition, but it requires higher energy 282 

for CO2 reduction [37].  The analysis of the mass spectrum (see Fig. 2) confirmed the identification 283 

of hydrocarbons higher than C5 products as clear fragments lost from the last specified 284 

hydrocarbon during the analysis (44 for C3H8, 56 for C4H8, 84 for C6H12, 98 for C7H14 and 112 for 285 

C8H16). Furthermore, the data suggested that the electrolytic voltage (1.5 to 1.49 V) that is required 286 

to convert CO2 and H2O to CO and hydrogen gas decreased by increasing temperature (425–500 287 

oC). Liu et al. [38] reported that electrolytic voltage decreased from 1.15 to 0.91 V by increasing 288 

temperature from 300 to 1000 oC for CO2 and H2O conversion. They also revealed that 289 

hydrocarbon like CH4 was thermodynamically preferred below 575 oC and lower voltage whereas 290 

the CO was thermodynamically preferred above 800 oC when CO2 was converted separately. The 291 

study also demonstrated that three different reduction peaks at -1.0, -0.5, and 0.0 electrolytic 292 

voltage confirmed the formation of H2, CH4, and CO, respectively at 600 oC in molten carbonate 293 

(Li1.48Na0.52CO3.00) by using Fe (0.3 cm2) and Ni (0.3 cm2) as cathode and anode electrode 294 

respectively [38].  295 

3.1.1.1 Theoretical justification of C7H16 formation 296 

For the conventional formation of C7H16 (for instance) by Fischer-Tropsch process, numerous 297 

moles of CO and H2 are involved to formulate final compound [39, 40], the possible reactions are 298 

presented as follows (Eqs. 6-8): 299 
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 300 

                        7𝐶𝑂 +  15𝐻2  →  𝐶7𝐻16  +  7𝐻2𝑂 (𝑔) ∆𝐺500𝐶  =  154.1 𝐾𝐽/𝑚𝑜𝑙                   (6) 301 

                        14𝐶𝑂 +  8𝐻2  →  𝐶7𝐻16  +  7𝐶𝑂2 (𝑔) ∆𝐺500𝐶  =  81.43 𝐾𝐽/𝑚𝑜𝑙                    (7) 302 

                       7𝐶𝐻4  + 3𝑂2  =  𝐶7𝐻16  +  6𝐻2𝑂 (𝑔) ∆𝐺500𝐶 =  −866.6 𝐾𝐽/𝑚𝑜𝑙                    (8) 303 

 304 

The products of hydrocarbons and their ΔG of formation by Fischer-Tropsch reactions (CO2 or 305 

H2O formation) and by partial oxidation of methane at 500 oC under 1.5 V are presented in Table 306 

3. According to the findings, it is clear that the formulation of C7H16 from the partial oxidation of 307 

methane is more feasible as the formation of CH4 itself at temperatures up to 500 oC. In general, 308 

hydrocarbon formation behaves like carbon deposition in terms of the process variables during 309 

CO2 reduction in molten carbonates. Therefore, process variables affecting carbon product from 310 

the CO2 sole conversion (without H2O) act as a sequential effect on the hydrocarbon formation 311 

after H2O addition. It has been found that temperature has an important influence on the 312 

morphology and particle size of deposited carbon [41]. The particle size of carbon increases with 313 

increasing electrolysis temperature (335–520 ℃) and results in carbon deposition that could be 314 

denser (although not quicker).  315 

 316 

 The existence of C2H4 (even a low intensity peak) as an olefin beside paraffin (alkane) at high 317 

temperatures (as shown in Fig. 1(a)) justified the formation of long chain hydrocarbons like C6H14 318 

or C7H16 through the following reactions (Eqs. 9-12) [40, 42]. Thus, the paraffin like propane was 319 

normally alkylated at high temperatures even in the absence of catalyst according to the below 320 

mentioned equations due to composed free radicals such as isopropyl radicals (Eq. 10). The 321 

reaction of isopropyl radical with an olefin (Eq. 11) and paraffin (Eq. 12) molecule produced 322 

higher alkylated products such as C5H12 or alternately, even long chain hydrocarbon molecules. 323 
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The polymerization of olefins to high molecular weight hydrocarbons occurred if olefin content in 324 

the product has increased.   325 

 326 

                                    𝐶𝐻3 − 𝐶𝐻2 − 𝐶𝐻3  →  𝐶𝐻3
̇ +  𝐶2𝐻5̇                                                        (9) 327 

                            𝐶𝐻3
̇  +   𝐶𝐻3 − 𝐶𝐻2 − 𝐶𝐻3 →  𝐶𝐻3 − 𝐶�̇� − 𝐶𝐻3 +  𝐶𝐻4                               (10) 328 

                          𝐶𝐻3 − 𝐶�̇� − 𝐶𝐻3 +  𝐶𝐻4  →  𝐶𝐻3 − 𝐶𝐻(𝐶𝐻3) − 𝐶𝐻3 − 𝐶𝐻2
̇                           (11) 329 

 𝐶𝐻3 − 𝐶𝐻(𝐶𝐻3) − 𝐶𝐻3 − 𝐶𝐻2
̇ +  𝐶𝐻3 − 𝐶𝐻2 − 𝐶𝐻3  →  𝐶𝐻3 − 𝐶𝐻(𝐶𝐻3) − 𝐶𝐻3 − 𝐶𝐻3 +330 

 𝐶𝐻3 − 𝐶�̇� − 𝐶𝐻3                                                                                                                         (12) 331 

 332 

Indeed, the methyl radical (CH3
●) also formed by the partial oxidation of methane in molten 333 

carbonates as a perfect medium for oxide ion transformation [43]. The methyl radical then 334 

continues to attack other kinds of paraffin like C3H8 and produces long straight-chain hydrocarbons 335 

or even branched hydrocarbons. It is worthwhile to mention that the methyl radical or any other 336 

alkyl radical plays a major role in the formulation of long chain hydrocarbon species from paraffins 337 

during thermal alkylation process, even in the absence of a catalyst at a high temperature of 500 338 

oC. The proportion of CO2 to H2O mole ratio affected the formation of large molecular weight 339 

species of hydrocarbons (C5H12 or above) [44]. Overall, it is noticed that performing electrolysis 340 

at higher temperatures (> 500 oC) could not lead to the formation of hydrocarbons due to lack of 341 

CH4 formation in general.  342 

3.1.2 Molten hydroxide 343 

The gas product specification results were found to be better in molten carbonate at low 344 

temperatures as 425 oC. The electrolytic temperature in the molten hydroxide (LiOH-NaOH; 27:73 345 
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and KOH-NaOH; 50:50 mol%) was increased to investigate the improvement of fuel production 346 

and to avoid a rapid carbonate ion formation that formed through Eq. (3).  347 

  348 

 349 

Fig. 3 illustrates the effect of temperature on the production rates of H2, CO, and CH4 during 350 

electrolysis of LiOH-NaOH molten salt at 2.0 V cell voltage using a gas feed composition of 48.4% 351 

(CO2) + 3.2% (H2O) + 48.4% (Ar). KOH-NaOH salt was used in the case of 220 oC temperature 352 

run because its melting point at 187 oC is lower than that of LiOH-NaOH eutectic mixture. Further, 353 

Fig. 3(b) reported that the H2 production rate was slightly increased from 164.7 to 185.7 μmol/h 354 

cm2 when the electrolysis temperature was increased from 220 to 275 oC respectively at the same 355 

applied voltage and then dropped significantly at a lower level of about 41.6 μmol/h cm2 at 335 oC 356 

(Fig. 3(c)). However, the production rates for CO and CH4 were kept at same levels as 0.00 and 357 

6.12 μmol/h cm2 when the temperature increased from 220 oC to 275 oC in molten KOH-NaOH 358 

(50:50 mol%) and LiOH-NaOH (27:73 mol%) salts respectively. Then inclined gradually to 0.8 359 

μmol/h cm2 for both CO and CH4 at 335 oC in molten hydroxide (LiOH-NaOH 27:73 mol%).  360 

 361 

It has been suggested that by increasing the electrolytic temperature does not significantly improve 362 

hydrocarbon production in molten hydroxides (KOH-NaOH 50:50 mol%, and LiOH-NaOH 27:73 363 

mol%). Nevertheless, alkali metal deposition has been predominant at electrolytic temperatures 364 

higher than 275 oC and at a lower H2O content in the salt. Possibly consuming higher energy and 365 

reducing current efficiencies (15.60 to 0.00%), while H2O reduction was diminished by this stage 366 

as presented in Fig. 3. 367 

 368 
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It also clarified that the values of current efficiencies started as 15.6 and 2.3% for H2 and CH4 369 

respectively at 220 oC (see Fig. 3 (a)) and then slightly decreased as 13.0 and 2.0% respectively at 370 

275 oC (see Fig. 3(b)), and further to a larger extent as 1.60 and 0.13% respectively at 335 oC (see 371 

Fig. 3(c)) because of alkali metal deposition. It is noticed that hydrocarbon fuel such as methane 372 

production rate (6.12 µmol/h cm2) was significantly higher at 220 oC under 2 V in KOH-NaOH 373 

(50-50 mol%) molten hydroxide than other two molten hydroxides. Whereas H2 production rate of 374 

(about 185.70 µmol/h cm2) was maximum at 275 oC in molten hydroxide (LiOH-NaOH; 27–73 375 

mol%) under 2 V. 376 

3.2 Applied cell voltage 377 

The molten salts used in the present study showed high thermal and electrochemical stability when 378 

various cell voltages were applied particularly at adjusted gas feed composition before the event 379 

of alkali metal deposition on cathode. The cell voltage is considered a key variable, it does not 380 

only affects the energy consumption or current efficiency but also improves the product properties 381 

at the same time [41].  382 

3.2.1 Molten carbonate     383 

The effect of applied cell voltage on carbon deposition in molten carbonates has been confirmed 384 

in the literature. Employing higher cell voltages from 4 to 6 V, significantly improved the particle 385 

size of deposited carbon but not always increase deposition rate itself [45]. Even, a rapid carbon 386 

deposition in the molten carbonates was not preferred for the sake of hydrocarbon formation. 387 

Therefore, the cell voltage used for this salt was kept as low as 1.5 V to avoid carbon and alkaline 388 

metal deposition that could otherwise commence at 2 V. It was found that the cell voltage of 1.5 389 

V in the molten carbonates is more sufficient to carry out electrolysis [46] for CO2 and H2O 390 
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individually to produce CO and H2, before the feasible formation of CH4 or hydrocarbons in 391 

general.  392 

 393 

To show the effect of 2 V cell voltage, Fig. 4 illustrates a significant difference between the 394 

average currents at 1.5 and 2 V.  While both runs were performed at 500 oC with the same gas feed 395 

composition, the hydrocarbon formation at 2 V was rare. However, some of the hydrocarbon 396 

species (such as CH4, C2H4, and C5H10) found in the FID results of the previous experiments (425 397 

or 500 oC runs at 1.5 V) were still slightly appeared in the FID result of 2 V run at 500 oC atleast 398 

with quite low contents and production rates (see Fig. 5). It is worthwhile to say that hydrocarbons 399 

CO and H2 could be formed on cathode at high temperatures under a cell voltage of 1.5 V, although 400 

carbon deposition was not quick enough on cathode [41] to feasibly generate the above 401 

hydrocarbon species.  402 

3.2.2 Molten hydroxide 403 

The situation was quite different for the molten hydroxide because the applied cell voltage was 404 

increased from 2 to 3 V. By raising the applied cell voltage in LiOH-NaOH salt electrolysis from 405 

2 to 3 V, the production rates of CH4 increased dramatically by 200% as observed in Fig. 6 and 406 

Fig. 7 for 3 V cell applied voltage. This rise in CH4 production rates as well as the generation of 407 

CO in the second run of 3 V counted as further evidence for CO2 reduction in molten hydroxides 408 

as the production rate of H2 decreases by half of the value obtained in the 2 V run. The mitigation 409 

of H2 rate suggests a rapid formation of CO and CH4 from CO2 reduction with a possible electro-410 

deposition of alkali metal at high cell voltage, which consequently affected the current efficiencies 411 

of the products.  412 

 413 
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The predominant formation of CH4 rather than other kind of hydrocarbons (C3H6, C4H10, C5H12, 414 

and C6H14) was because of the lack of partial oxidation in molten hydroxide in contrast with molten 415 

carbonates mediums. Ji et al. [47] revealed that the electrolytic reduction of C4
+ from carbonates 416 

leads to the formation of H+ in molten hydroxide. By comparing the potassium, lithium, and 417 

sodium atoms, the lithium atom has a shorter radius and strong binding among all, which indicated 418 

that the lithium hydroxides have greater deposition voltage. Due to this admirable advantage, the 419 

lithium hydroxide gives relatively stable H+ with minimum energy losses and reactions. As 420 

previously stated, that peroxide ions (O2
2-) are largely responsible for the partial oxidation in 421 

molten salts [48]. The formation of this type of reactive oxides, unfortunately, was quite absent in 422 

the molten hydroxide due to the acidic nature of the salt, even in the presence of minor amounts 423 

of H2O. 424 

3.3 CO2/H2O ratio  425 

The CO2/H2O ratio is one of the most important variables in the electrolysis. It has been considered 426 

due to the prospective effect of CO2 and H2O reduction before the complete formation of 427 

hydrocarbons. Generally, the more H2O content in the feed gas (or less CO2/H2O ratio), the more 428 

is H2 content in the cathodic gas product with a subsequent reduction in the output of hydrocarbon 429 

species [49]. However, it is necessary to keep CO2 concentration in the gas feed composition of 430 

48.4% (CO2) + 3.2% (H2O) + 48.4% (Ar) at moderate levels in some of the molten salts including 431 

molten carbonates and hydroxides even for the sake of H2 production.   432 

3.3.1 Molten carbonate  433 

In this experiment, two runs were performed with two different gas feed compositions as 434 

CO2/H2O=9.2 and CO2/H2O=15.6 at 425 oC. Furthermore, two more runs were performed with 435 

same the gas feed composition at 500 oC under 1.5 V for both cases. The findings of CO2/H2O=9.2 436 
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run at 425 oC showed that the H2 production rate (95.05 µmol/h cm2) was more than twenty times 437 

the rate obtained at CO2/H2O=15.6 (4.40 µmol/h cm2), these results are presented in Fig. 8. Indeed, 438 

H2O vapour content in the gas feed was not enlarged in the second run but the CO2 content itself 439 

was reduced instead by diluting the feed gas with Ar. However, hydrocarbon fuel formation rather 440 

than CH4, in general, was rare in the second run obviously because of the high rate of H2O 441 

reduction to H2 and lower feasibility of hydrocarbon formation. However, CH4 was the 442 

predominant hydrocarbon fuel, though in this case. 443 

 444 

In the case of the 500 oC run, it was noticed that an increase in H2O content in the gas feed does 445 

not lead to higher H2 production rates as for 425 oC (from fast or rapid H2O reduction). H2 446 

production rates were not increased at higher levels possibly because of lower H2O solubility, and 447 

reduction of HCO3
- ions that were produced from H2O conversion to H2 (see Fig. 9). The presence 448 

of CO2 at an adequate content in the feed gas was important with H2O vapour to produce H2 in 449 

addition to CO and hydrocarbons at 1.5 V. Moreover, it was recorded that the solubility of CO2 450 

increased in the molten carbonates by increasing the temperature through which H2O solubility 451 

was decreased in turn.  452 

 453 

The partial oxidation of methane, therefore, can occur even at CO2/H2O ratio of 9.2. The CH4 was 454 

confirmed from the first peek at approximately 2 min retention time during FID analysis from GC 455 

Fig. 10(a-c). For C2H4, the peak was confirmed at around 3 min for the same analysis from gas 456 

samples of the standard mixture. The peak with m/z value of 28 in the mass spectrum (see Fig. 11) 457 

could be proved for CO or C2H4. However, peak with m/z value of 14 is shown as a tiny peak in 458 

the loss of fragrant CH2 from C2H4 molecules and another small peak of 32 m/z is for the O2. Peaks 459 
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with m/z values of 18, 40 and 44 subsequently stand for H2O, Ar and CO2 molecules respectively. 460 

White and Twardoch, [50] suggested that in the case of carbonate molten salts, changing water 461 

composition in the feed gas mixture of CO2-H2O at a relatively low CO2 concentration (<25% 462 

volume of feed gas) plays a major role in  H2 gas evolution. They also studied that H2 evolution 463 

peaks were found more clearly by high current density on cyclic volumetric performed at the 464 

lowest value of CO2 partial pressure of 7.4 mm Hg. However, there was no evidence actually about 465 

the effect of water composition at higher CO2 concentrations (>75% volume of feed gas). 466 

 467 

By comparing Fig. 12(a) for the mass spectrum of gas molecule (C7H10 or more) eluting at 1.72 468 

min retention time with Fig. 12(b) for the spectrum of C8H18 standard elution at approximately 2.9 469 

min in a different analysis at the same temperature-programmed (method), it can be seen that the 470 

gas follows the same behaviour as the standard and can be identified as C7H16. There is no 471 

prominent peak of an even number to show the spectrum of the total ion resulting from the 472 

hydrocarbon molecule except 100 (for C7H16) as the peak was clarified for C8H18 as 114 in Fig. 473 

12(b), thus holding a lower intensity than its fragments  (72 for C5H12, 58 for C4H10, and 44 for 474 

C3H8). The adjacent fragments from C8H18 (99 for C7H15) and C7H16 (85 for C6H13) were not shown 475 

in both figures because of the loss of peak 29 (CH3CH2) already from both molecules.  476 

 477 

The formation of higher hydrocarbon species (over C6H14) justified due to dense carbon deposition 478 

or high CO adsorption at cathode because of the high partial pressure of CO2, particularly in the 479 

case of  CO2/H2O=15.6 as confirmed in the investigations of dry CO2 reduction [45]. Also, the 480 

reduction of CO2 to CO or C can occur at less reductive potentials than the case for lower partial 481 

pressures of CO2 in the feed gas [51]. Chery et al. [52] stated that the cathodic peaks were increased 482 
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with CO2 partial pressure in both cases (of high and low CO2 concentrations) as the current density 483 

increases with increasing CO2 partial pressure. In other words, the rise in PCO2 increases the amount 484 

of dissolved CO2 in the melt and consequently the amount of CO formed by CO2 reduction.  485 

3.3.2 Molten hydroxide 486 

Despite the high reactivity of CO2 with molten hydroxide, this gas (CO2) itself could be reduced 487 

directly during electrolysis to produce CO or hydrocarbon fuels. The presence of large amount of 488 

H2O in the feed gas composition can be a solution to avoid carbonate ion formation by driving  489 

Eq. (13) in the opposite direction. However, the introduction of a higher content of H2O in the gas 490 

feed due to CO2/H2O ratio of 1, was unfortunately led to higher H2 content than hydrocarbons or 491 

CO in the cathodic gas product. Therefore, the employment of moderate H2O compositions in the 492 

feed gas such as a CO2/H2O of 5.6 in the electrolysis of LiOH-NaOH (27–73% Mol) at 2 V and 493 

275 oC, led to the production of cathodic gas product with less H2 (0.91 µmol/h cm2) and higher 494 

CH4 (6.30 µmol/h cm2) as shown in 495 

 496 
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Fig. 13.  497 

 498 

Although carbonate ions formed in both cases, following points were observed about the gas 499 

product: (1) The CO was produced exclusively in the second run as it was absent in the first run. 500 

This confirms the effect of CO2 content on electrolysis in the molten hydroxide despite a rapid 501 

reaction of CO2 with the salt, (2) The H2 production rate was reduced by 16% compared to the first 502 

run and (3) The CH4 production rate was increased more than six times to the rate obtained during 503 

the first run. It was also observed that retaining water vapor in the feed gas composition by the 504 

above CO2/H2O ratio of 5.6 was important to achieve reasonable amounts of H2, CO, and 505 

hydrocarbons during electrolysis. Therefore, performing electrolysis at moderate CO2/H2O ratios 506 

between 5 and 6 could contribute to achieve reasonable production rates of CH4, at least with lower 507 

H2 and CO production rates. Liu et al. [53] reported that the co-electrolysis of CO2/H2O in molten 508 

salts can be used to produce hydrocarbon fuels by Fischer-Tropsch reactions to convert electrical 509 

energy to chemical energy. Liu et al. [38] demonstrated that the co-electrolysis of CO2/H2O ratio 510 

of about 1.96–7.97 in lithium hydroxide at 600 ℃ and current efficiency of 92% significantly lead 511 

to one-pot formation of syngas.  512 

4 Conclusions  513 

In summary, the formation of hydrocarbon fuels including; CH4, C2H4, C4H8, and C7H16 were 514 

achieved through a rationally designed molten salt electrolysis system. In the present examination, 515 

the electrolysis was carried out at different temperatures (220–500 ℃), applied cell voltages (1.5, 516 

2, and 3 V) and CO2/H2O ratios (15.6, 9.2, and 5.6) in molten carbonate (Li2CO3-Na2CO3-K2CO3; 517 

43.5:31.5:25 mol%) and hydroxides (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol%) to 518 

investigate the improvements in fuel production by using cost-effective Ti cathode and Ni anode. 519 



24 

 

MS analysis confirmed the formation of various new hydrocarbon species (CH4, C2H4, C4H8, 520 

C6H14, and C7H16) with molecules higher than C5 in molten carbonate by electrolysis at a higher 521 

temperature of 500 oC and electric voltage of 1.5 V due to the persistent reduction of H2O to H2. 522 

Besides, this behavior regarding H2 production rates was found even in the molten hydroxide when 523 

the electrolytic temperature was increased from 220 to 275 oC with unchanged flow rates of CO 524 

and CH4. The production rates as 41.6, 0.8, and 0.8 µmol/h cm2 and current efficiencies as 1.6, 525 

0.13, and 0.03% for H2, CO and CH4 respectively, declined though to very low values at a higher 526 

electrolysis temperature of 335 oC in molten hydroxide. Moreover, by applied cell voltage effects, 527 

it was confirmed that electrolysis and hydrocarbon formation in molten carbonates were more 528 

feasible at 1.5 V than the case of 2 V due to prospective carbon formation. Even with the molten 529 

hydroxide, CH4 production rates (6.12–20.40 µmol/h cm2) were increased dramatically when the 530 

applied voltage was improved from 2 to 3 V despite the reduced current efficiencies. The GC 531 

results for the effect of CO2/H2O ratio of inlet gas reported that CH4 was the predominant 532 

hydrocarbon product with a high production rate of H2 formation at lower CO2/H2O ratios (9.2) at 533 

500 oC in molten carbonates under 1.5 V. However, despite the low production rates, some 534 

hydrocarbon products with higher molecular weights (C6H14, and C7H16) were also generated when 535 

electrolysis was carried out at higher ratios of CO2/H2O (15.6) in the feed gas at 500 ℃. Overall, 536 

the CH4 gas was the predominant hydrocarbon fuel produced during the whole electrolysis in pure 537 

molten salts under mixed CO2 and steam in general, and particularly at 275 oC. However, it is 538 

recommended for future work to analyze anodic gas product beside the cathodic one (by GC) to 539 

know the accurate amounts of the entire products from electrolysis in addition to the un-reacted 540 

CO2.  Further, a study of process variables including temperature, applied voltage and CO2/H2O 541 
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ratio in the inlet gas should be performed for molten chlorides beside the molten carbonates and 542 

hydroxides for better results. 543 
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Fig. 1. FID detector analysis of cathodic gas sample taken during the electrolysis of molten 690 

carbonates at 1.5 V and 500 ℃ with different CO2/H2O ratios; (a) 15.6 and (b) 9.2. 691 
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 694 

 695 

Fig. 2. The mass spectrum of compounds eluting at 18 min retention time in MS-GC analysis 696 

during electrolysis of molten carbonates under 1.5 V at 500 ℃ with gas feed composition of 697 

CO2/H2O=15.6. 698 
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701 

 702 

Fig. 3. The cathodic gas products during the electrolysis in molten hydroxide; (a) KOH-NaOH 703 

(50–50 mol%) at 220 ℃ (b) LiOH-NaOH (27–73 mol%) at 275 ℃, and (c) LiOH-NaOH (27–73 704 

mol%) at 335℃ under 2 V.  705 
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 706 

  707 

Fig. 4. The current-time plots of electrolysis in molten carbonates at 500 ℃ under two different 708 

cell voltages. 709 
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 711 

  712 

Fig. 5. The FID detector analysis of cathodic gas samples during electrolysis in molten carbonates 713 

at 2 V and 500 °C by GC. 714 
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716 

 717 

Fig. 6. The cathodic gas products during electrolysis in LiOH-NaOH molten hydroxide at 275 ℃ 718 

under different applied cell voltages; (a) 2 V and (b) 3 V.  719 
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  720 

Fig. 7. Current-time plots of electrolysis in LiOH-NaOH (27–73 mol%) molten salt at two different 721 

applied voltages. 722 
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 725 

Fig. 8. The GC analysis of cathodic gas products during electrolysis in molten carbonates at 1.5 V 726 

and at 425 ℃ with different gas feed compositions of CO2/H2O; (a) 15.6, and (b) 9.2.   727 
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 728 

 729 

Fig. 9. The GC analysis of cathodic gas products during electrolysis in molten carbonates at 1.5 V 730 

and at 500 ℃ temperature with different gas feed compositions of CO2/H2O; (a) 15.6, and (b) 9.2. 731 
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 733 

Fig. 10. The FID detector analysis of the cathodic gas samples during electrolysis in molten 734 

carbonates at 1.5 V and 500 ℃ with different CO2/H2O ratios; (a) 9.2, (b) 15.6 and (c) 9.00.  735 
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 736 

 737 

Fig. 11. Mass spectrum of gases between 1–1.04 min retention time in a permanent gas product 738 

eluting before the hydrocarbon gas. 739 
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 741 

 742 

Fig. 12. Mass spectrum of gases eluting at; (a) 1.72 min (before), and (b) 2.9 min retention time 743 

(after) subtracting the permanent gases eluting with hydrocarbon product. 744 
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 746 

 747 
Fig. 13. The GC analysis of cathodic gas products during electrolysis in the molten hydroxides 748 

(LiOH-NaOH (27–73 mol%) at 2 V and 275 ℃ with different gas feed composition of CO2/H2O; 749 

(a) 1 and (b) 5.6. 750 
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List of Tables 

Table 1. Specifications of the cathodic gas products during electrolysis of molten carbonates at 1.5 V and 425 ℃ by using GC and mass 

spectrometric analysis. 

Product Gas product 

composition (vol %) 

Production rate 

(µmol/h cm2) 

Selectivity  

(%) 

Current 

efficiency (%) 

Heating value 

(J) 

Energy consumption 

(J) 

H2 0.22 4.40 – 11.90 11.40 

114.20 

CH4 0.06 1.10 6.80 12.50 10.40 

C2H4 0.04 0.80 5.00 13.20 12.00 

C3H6 0.03 0.50 3.10 12.70 11.00 

C4H8 0.03 0.50 3.10 17.00 14.50 

CO 0.58 11.70 – 31.80 35.30 

CO2 52.70 – – – – 

H2O 2.40 – – – – 

Ar 44.00 – – – – 
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 Table 2. Specifications of the cathodic gas products during electrolysis of molten carbonates at 1.5 V and 500 ℃ using GC and mass 

spectrometric analysis. 

  

Product Gas product 

composition  

(Vol %) 

Uncertainty of 

gas consumption 

Production 

rate  

(µmol/h cm2) 

Selectivity  

(%) 

Current 

efficiency 

(%) 

Heating 

value 

(J) 

Energy 

consumption  

(J) 

H2 0.210 ±0.04 4.00 – 5.10 7.30 

171.00 

CH4 0.02 ±0.016 0.40 7.00 2.00 2.60 

C6H14 0.12 ±0.01 2.40 42.10 58.00 75.00 

C7H16 0.06 ±0.003 1.20 21.00 32.40 43.30 

CO 0.10 ± 0.01 1.70 – 2.20 3.70 

CO2 40.30 – – – – – 

H2O 3.10 – – – – – 

Ar 56.10 – – – – – 
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Table 3. List of ∆rG and ∆rH for the generation of hydrocarbon products from the Fischer-Tropsch reaction (CO2 or H2O formation) 

and partial oxidation of methane at 500 ℃. 

Product 

Fischer-Tropsch reaction CH4 partial oxidation 

∆G (KJ/mol) ∆H (KJ/mol) ∆G (KJ/mol) ∆H (KJ/mol) 

CO2 

formed 

H2O 

formed 

CO2 

formed 

H2O  

formed 

CH4 -40.29 -29.90 -258.59 -221.37 – – 

C2H6 -9.68 11.10 -446.82 -372.37 -134.10 -175.70 

C2H4 30.28 51.06 -303.79 -229.35 -299.20 -278.80 

C3H8 14.43 45.59 -525.5 -413.87 -274.70 -241.90 

C3H6 38.15 69.31 -386.19 -274.53 -456.00 -348.70 

C4H10 28.53 70.08 -684.90 -536.01 -425.30 -388.80 

C4H8 55.74 97.29 -710.86 -561.97 -603.10 -660.90 

C5H12 54.87 97.31 -1037.57 -609.94 -563.70 -729.00 

C5H10 80.07 132.00 -907.92 -721.82 -743.50 -845.40 

C6H14 72.68 135.00 -1058.63 -835.30 -886.20 -1030.00 

C6H12 102.18 152.06 -1104.99 -696.53 -710.60 -737.50 

C7H16 81.43 154.14 -1219.94 -959.38 -866.60 -886.40 

C7H14 124.29 197.00 -1302.07 -1041.52 -1028.80 -1214.60 
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