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Machine learning driven non-invasive 

Open Access 

approach of water content estimation in living 
plant leaves using terahertz waves 
Adnan Zahid1 , Hasan T. Abbas1, Aifeng Ren1,2, Ahmed Zoha1, Hadi Heidari1, Syed A. Shah1, 
Muhammad A. Imran1, Akram Alomainy3 and Qammer H. Abbasi1* 

Abstract 
Background: The demand for efective use of water resources has increased because of ongoing global climate 
transformations in the agriculture science sector. Cost-efective and timely distributions of the appropriate amount 
of water are vital not only to maintain a healthy status of plants leaves but to drive the productivity of the crops and 
achieve economic benefts. In this regard, employing a terahertz (THz) technology can be more reliable and progres-
sive technique due to its distinctive features. This paper presents a novel, and non-invasive machine learning (ML) 
driven approach using terahertz waves with a swissto12 material characterization kit (MCK) in the frequency range of 
0.75 to 1.1 THz in real-life digital agriculture interventions, aiming to develop a feasible and viable technique for the 
precise estimation of water content (WC) in plants leaves for 4 days. For this purpose, using measurements obser-
vations data, multi-domain features are extracted from frequency, time, time–frequency domains to incorporate 
three diferent machine learning algorithms such as support vector machine (SVM), K-nearest neighbour (KNN) and 
decision-tree (D-Tree). 

Results: The results demonstrated SVM outperformed other classifers using tenfold and leave-one-observations-
out cross-validation for diferent days classifcation with an overall accuracy of 98.8%, 97.15%, and 96.82% for Cofee, 
pea shoot, and baby spinach leaves respectively. In addition, using SFS technique, cofee leaf showed a signifcant 
improvement of 15%, 11.9%, 6.5% in computational time for SVM, KNN and D-tree. For pea-shoot, 21.28%, 10.01%, and 
8.53% of improvement was noticed in operating time for SVM, KNN and D-Tree classifers, respectively. Lastly, baby 
spinach leaf exhibited a further improvement of 21.28% in SVM, 10.01% in KNN, and 8.53% in D-tree in overall operat-
ing time for classifers. These improvements in classifers produced signifcant advancements in classifcation accuracy, 
indicating a more precise quantifcation of WC in leaves. 

Conclusion: Thus, the proposed method incorporating ML using terahertz waves can be benefcial for precise esti-
mation of WC in leaves and can provide prolifc recommendations and insights for growers to take proactive actions 
in relations to plants health monitoring. 

Keywords: Water content, Plant leaves, Terahertz (THz), Sensing, Agriculture, Classifcation, Machine learning 

Background 
Te growing consciousness of fruits and vegetable qual-
ity in recent years, while utilizing natural resources such 
as water consumption [1], strongly demand viable and 
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feasible techniques to detect early symptoms of plants 
drought stresses [1, 2]. Te recent climate transforma-
tions and growing defciency of water resources have 
posed enormous challenges, particularly in the applied 
plant biology sector [3, 4]. In this regard, much eforts 
have been geared by researchers, horticulturists, and 
plant physiologists at various levels in the plant sci-
ence sector, towards developing feasible strategies for 
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non-invasive techniques [5–9] in monitoring the health 
status, and biological traits of leaves to sustain crops pro-
ductivity. Hence, a precise estimation of water content 
(WC) at a cellular level in plants leaves is of high-impor-
tance to growers, and cultivators to take appropriate and 
efcient measures by facilitating them with appropriate 
amounts of resources inputs, i.e. water and nutrients to 
maintain healthy physiology [3–9].
In recent years, many conventional techniques [6–13]

have been suggested for accurate estimation of WC in 
leaves and studied the morphological structure of leaves 
in detail. Tese methods including magnetic resonance 
imaging (MRI), near-infrared spectroscopy (NIRS), 
hyper-spectral imaging [8–13] have ofered better reli-
ability but have been sufered by some limitations and 
considered as time-consuming, and unsuitable for long-
term studies due to disparaging nature [9–13]. Besides, 
some others non-destructive techniques such as thermal 
imaging [12–16] have been proposed, and yet they too 
are littered with limited resolution and sensitivity issues, 
and transpired as inappropriate for detecting monitoring 
information on water dynamics and diminutive changes 
at the cellular level [13–16]. Consequently, the evolv-
ing applications of terahertz time-domain spectroscopy 
(THz-TDS) technology, which is considered as non-
intrusive, has been deployed in the feld of plant physi-
ology to detect anomalies proactively and investigate the 
structural behaviour and complex traits of leaves under 
the particular environment [16–18]. Tis technique is 
proven to be more efective and reliable compared to 
other approaches. However, it is a costly technique, and 
on-site access is limited [16–18].
Meanwhile, terahertz (THz) technology has been widely

used in diverse feld applications such as diagnostic appli-
cations of dental and skin-care [4, 19, 20], unseen hazard 
items [5], material characterizations [4, 5], and telecom-
munications [5, 20]. However, researchers from plants
science sector are of the strong view that its potential to
disseminate through plants sector is still to be thoroughly
revealed, considering it as a new source of vital improve-
ments for the agricultural sector [4, 21]. Te aforesaid pre-
vailing challenges in exploring the spectral analysis of WC
in leaves using THz have immensely engaged numerous
scientists and captivated researchers from diverse felds.
Moreover, evidence from multi-disciplinary agri-technol-
ogy studies show that reliable and early detection of WC
in plants leaves at a cellular level can drive agricultural
productivity and optimize the economic benefts [10–12].
For this purpose, machine learning (ML) applications cre-
ate an innovative opportunity to unravel, quantify, and
understand data-intensive processes in agricultural opera-
tional environments [22]. In recent time, the applications
of ML have been immensely used in various scientifc 

felds [22] such as healthcare sector, food security, mete-
orology, medicine, meteorology, economic sciences [22].
Furthermore, researchers are very keen to discover its
possibilities, specifcally in modern digital agriculture
systems to develop intelligent management of plants by
applying the water distribution efectively [22].
Considering the sensory characteristics of plants leaves,

water is essential to the overall growth, transpiration, and
nutritional process of plants leaves [10]. Terefore, timely
delivery of the appropriate amount of resource inputs such
as water and its precise quantifcation can be very benef-
cial to drive and sustain overall crops productivity in an
advanced agricultural system [10]. Tis paper presents a
state-of-the-art method to closely monitoring the water
dynamics in leaves using the scattering parameters of THz
pulse waves through ML. In our study, we demonstrated
that there is a clear relationship between the parameters
of the pulse wave and the plants WC within a frequency
range from 0.75 to 1.1 THz. We have performed in-lab
experiments using three diferent plant leaves, including
cofee, pea-shoot, and spinach for four consecutive days.
Subsequently, the data is pre-processed for feature extrac-
tion and is fed to our proposed ML algorithm for auto-
mated classifcation of WC on diferent days.
Te overarching aim of this study is to estimate and 

predict the future trends of WC in plants’ leaves in an 
automated fashion using THz pulse waves, which is 
indicative of the health status of the plants. For this pur-
pose, we have extracted time and frequency domain-fea-
tures of THz pulse wave and use it to train ML models 
to monitor WC in cofee, pea-shoot and spinach more 
precisely. By performing the leave-one-observation-
out cross-validation, we strongly feel that our proposed 
model has the capability to monitor the WC future trend 
proactively. Hence, it can save crops from stresses by tak-
ing timely action, which will ultimately help to increase 
yield production and optimize economic benefts. Te 
rest of the paper is structured as follows: “Methods” pre-
sents methods and the implemented methodology for 
data collection and pre-processing, along with an initial 
classifcation accuracy of primary data. Tis is followed 
by the description of the feature extraction technique in 
“Results”. Section VI describes the proposed classifcation 
algorithms and optimal parameter selection method. In 
“Conclusion” and VI, the feature section and analysis of 
three classifers results are discussed, respectively. Finally, 
the conclusion is drawn out in section VI. 

Methods 
Experimental setup 
In this setup, a THz Swissto12 Material Characteriza-
tion Kit (MCK) [23] was employed to obtain the scat-
tering parameters of three plant leaves. Te MCK was 



Page 3 of 13 

 
 
 

 

   
   

 
 
 
 

 
 

  
  

 
  

 

 
 

 

 
 

 

 

 
 

  

Zahid et al. Plant Methods  (2019) 15:138 

connected to a Virginia Diodes Analyzer (VNA) extender 
WM-250 (WR1.0) which operated in the frequency range 
of 0.75 THz to 1.1 THz. Te structural integrity and con-
fguration of leaves were also considered by employing 
two Polytetrafuoroethylene (PTFE) caps which were ft-
ted internally to the waveguide and could provide a con-
sistent compression to samples, as shown in Fig. 1. Prior 
to any measurements, the setup was calibrated using the 
two-port short-open-load-thru (SOLT) calibration tech-
nique to confscate any unwanted errors or noicse that 
may have occurred while performing measurements. 

Sample 
Tree various kinds of plants leaves were used for meas-
urements are cofee-arabica, pea-shoot and baby-spinach.
In this study, these fresh leaves were detached from plants,
which were fully grown and nurtured in Rouken Glen
Farm, East Renfrewshire, Glasgow. According to the sta-
tus of these plants, these leaves grew well with no pests or
disease and were kept in the laboratory under the environ-
ment temperature of 18 °C ±0.1 °C, and the humidity was 
between 20% ± 2%. Te thickness and weight of the leaves
were continuously monitored for four consecutive days
using the Vernier calliper and electronic scale, respectively.
Te thickness of leaves appeared to decrease substantially
due to leaf dehydration. Hence, variations in WC of leaves
was the key factor that caused spectral variation in meas-
urements, as shown in Fig. 1. In addition, all leaves’ thick-
ness and weight were measured at three various locations
after every 120 min during the natural evaporation of WC
to analyse the unevenness in the surface of leaves. 

Procedure for data collection and pre‑processing 
We used Matlab R2019a for preprcoessing of the data as 
well as classifcation in the form of supervised learning. 
Te measurements data for all three fresh plant leaves 

WR 250 1.0 (750 
– 1100) GHz Rectangular 

Waveguide Swissto12 MCK 

Network 
Analyser 

Leaf Sample 

Measurements 
Display 

Circular 
Waveguide 

Fig. 1 Experimental setup of Swissto12 MCK system used for 
measurements of leaves in the frequency range from 0.75 to 1.1 THz 

were obtained in the Radio Frequency Laboratory at the 
University of Glasgow for four consecutive days. For each 
observation, all distinct leaves were placed between the 
two waveguides, and observations were recorded. Both 
the transmission coefcients (S12, S21) and refection 
(S11, S22) were determined from the measurements. Te 
overall experimental setup for measuring the WC of all 
fresh plants’ leaves is shown in Fig.  1. In this work, the 
focus was mainly to consider the transmission response 
as features for all three leaves and is shown in Fig.  2. 
Every day, the duration of measuring the THz trans-
mission response was approximately 9–10  h to observe 
various degree of WC in all three leaves was, and meas-
urements were recorded after every 120 min. Tis pro-
cess was repeated for four consecutive days. Hence, the 
total number of observations collected for cofee, pea-
shoot and baby-spinach for continuous 4 days are listed 
in Table  1. Table  1 shows the diference in the number 
of observations of leaves which indicates that each leaf 
had a variable degradation in WC during the 4  days of 
measurements. On each day, 10 rounds of weight meas-
urements were recorded over the span of 4 days and con-
verted into WC using (1) [17, 21, 24]. 

Wtime −Wdry
WC = × 100% 

Wfresh (1) 

Upon close analysis of Fig.  2, it was depicted that 
cofee, pea-shoot and baby-spinach leaves exhibited 
distinct responses on all 4 days. On day 1, the transmis-
sion response for all leaves was signifcantly low due to 
the presence of high volumetric WC in leaves. Notably, 
pea-shoot revealed a response in the range of − 40  dB 
to − 45 dB refecting a distinct characteristic from other 
leaves. Te diference in transmission response also high-
lighted a physiological process, afecting the variability of 
the water dynamics in these leaves. 

Feature extraction methods 
During the THz experimental campaign of measuring 
the transmission response of leaves, the observations 
spawned by Swissto12 (MCK) were erratic (exhibiting 
unwanted excessive variations), especially at both ends 
of frequency range from 0.75 to 0.80 THz and 1.05 to 
1.1 THz as shown in Fig. 2 [25]. Te efect of this unde-
sired noise could be crucial and may have produced 
false observations about the WC in leaves in rest of the 
frequency region. Inevitably, it would have produced 
counterfeit classifcation results by classifers about the 
quantifcation of WC in leaves. Furthermore, any erro-
neous estimation of WC in leaves would ultimately 
afect their overall biological and physiological process 
of growth. Hence, it was signifcant to discover the sen-
sitive frequency region (SFR) with the minimum efects 
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a 

b 

c 
Fig. 2 Transmission response of cofee, pea-shoot, and spinach 
leaves observed on four diferent days in the frequency range of 0.75 
to 1.1 THz. a Cofee. b Pea-shoot. c Baby spinach 

Table 1 Observations collected for  three leaves for  four 
consecutive days 

Leaves Number 
of observations 

Cofea arabica 127 

Pea shoot 76 

Baby spinach 54 

of any unwanted errors in the overall observation data. 
Terefore, the target response region (TRR) was estab-
lished where observations could be visibly distinguished 
without any overlap for leaves on all diferent days. Te 
TRR for cofee leaf was selected in the range of 0.82 to 
1.05 THz, as shown in Fig. 3. Furthermore, useful obser-
vations would also have a fruitful impact on overall clas-
sifcation outcome. 
Researchers have suggested and applied many features 

extraction techniques to execute the classifcation accu-
racy [26]. In this work, observations recorded were in 
the frequency domain had to be converted into time and 
time–frequency domain to further minutely observe the 
behaviour of WC in various leaves by analysing statisti-
cal features. Hybrid combinations of multi-dimension 
features domain would have a favourable response in 
classifcation accuracy by reducing overall dimensions 
of initial features [26]. Te frequency-domain was con-
verted into the time domain and time–frequency domain 
by applying Inverse Fast Fourier Transform (IFFT) and 

1.01 THz at 
index 150 

0.92 THz at 
index 100 

0.82 THz 
at index 50 

Target Response Region 

w1 w2 w3 w4 w5 

Fig. 3 Identifcation of target response region (TRR) to consider only 
relevant and important features for the feature extraction process 
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Short-Time Fourier Transform (STFT) respectively [26].
Te list of diferent domains is summarised in Table  2. 
Hence, out of 201 features, only 25 signifcant features 
were considered which comprised of 11, 10, and 5 in the 
time-domain, frequency domain, and time–frequency 
domain respectively as indicated in Table  2. Te block 
diagram of the proposed classifcation system for dif-
ferent days based on multi-domain features extraction 
approach is shown in Fig. 4. 

Evaluation of frequency features extraction 
Since the data obtained from VNA was in the frequency 
domain, it was signifcant to focus mainly on the region 
that gives the maximum and the accurate information 
about the existence of WC in all three leaves. For this 
purpose, as mentioned earlier, TRR was mainly required. 
In this regard, fve windows bins with a width of 20 were 
initiated in the middle region (0.92 THz at index = 100)
and symmetrically expanded to both sides of the fre-
quency region. From Fig. 3, the data under the observa-
tion of the selected area can be seen, and was applied to 
the rest of two leaves as well. In addition, the frequency 
domain features included a cross-power spectral density 
and variance of power spectral density and is given by the 

nEqs. (2) and (3) [27] respectively. From the Eq. (2), Y (a)l 
represents the transmission response of the reference 
signal. In Eq. (3), T (a) implies the transmission response 
of l-th leaf on an nth day. Here, ‘w’ is considered as the 
width of the frequency window as depicted in Fig. 3. 

1 n nVar{Yll(a)} =  E [{Y (a) ˙ .Y (a)}] (2)l l w 

˜ ° 

1 n 
max{Ylm(a)} = max E{(T (a) ˝ .Y (a))} (3)l w 

Table 2 Feature extraction technique for all three leaves 

Fig. 4 The fowchart of the proposed algorithm implementation 
process 

Evaluation of time features extraction 
For statistical features, the transmission response of
time-series of THz pulse was observed from days 1 to 4, 

Time domain (statistical Serial no. Frequency domain Serial no. Time–frequency domain Serial no. 
features) features 
No. of features 11 No. of features 10 No. of features (4) 

Mean 1 CPSD (D = 20) 12 Subband1 22 

Variance 2 CPSD (D = 40) 13 Subband2 23 

(MAD) 3 CPSD (D = 60) 14 Subband3 24 

Skewness 4 CPSD (D = 80) 15 Subband4 25 

Kurtosis 5 CPSD(D = 100) 16 

Standard deviation 6 PSD (D = 20) 17 

MAV 7 PSD (D = 40) 18 

75th (Q3) 8 PSD (D = 60) 19 

25th (Q1) 9 PSD (D = 80) 20 

PCC 10 PSD (D = 100) 21 

IQR 11 
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indicating any possibilities of WC in leaves. Terefore, it
was required to convert frequency domain data into the
time-domain features to observe meaningful THz pulse.
For this purpose, 11 time domain features were employed
and they are mean, median, mean of absolute value (MAV),
standard deviation (STD), mean of absolute deviation
(MAD), skewness and kurtosis, Pearson correlation coef-
fcient (PCC) [28], 25th percentile (Q1), 75th percentile
(Q3), and Interquartile Range (IQR) [29]. In which, mean
and standard deviation were particularly useful to pro-
vide signifcant information about the distribution of data
[25]. Skewness produced meaningful information about 
the irregularities of the examined area and its distribution
around its mean [29, 30]. Moreover, kurtosis presented
a measure of evenness relative to a standard distribution 
[29]. Q3 and Q1 showed how the observation data were
dispersed in the two sides of the median. PCC was used to
measure the linear relationship between the time-domain
waveforms of the sample and the reference signal [29]. IQR
was also used to measure the variability of the dataset and
shows the diference between Q3 and Q1 while measuring
the data distribution set. Tis information was also helpful
in terms of excluding irrelevant data [29]. 

Evaluation of time–frequency features extraction 
Te demand for considering time–frequency tech-
nique such as Short-Time-Fourier-Transform (STFT) 
and Wavelet Transform (WT) was mainly to obtain the 
detailed information of THz pulses in this domain [31]
Te WT technique was more appropriate to analyse 
short-term THz pulse produced because of any diminu-
tive variations occurred at the cellular level, refecting an 
information of WC in leaves. After the de-noising pro-
cess, the wavelet spectrum features were extracted by 
considering the power of various sub-bands at diferent 
levels as defned in Eq.  (4) to extract the time-domain 
features [32, 33]. 

N ̃
1 

E(j, i) = [Pk(j, i)]
2 (4)

N 
k=1 

In the above equation, j denotes the level of wavelet 
decomposition and ith indicates as the sub-band and ‘N’ 
is the number of wavelet coefcients. Pk(j, i) is basically 
the wavelet coefcient vector of ith sub-band in the jth 
level. Hence, E(j, i) denotes the average power value of ith 
sub-band at the jth level. Table 2 summarised the features 
extracted from time, frequency, and time–frequency 
domains. Each feature is assigned one serial number 
from 1 to 25, in which, 1-11, 12-11 and 22-25, were the 
serial numbers of time-domain, frequency-domain, and 
time–frequency domain features, respectively. 

Proposed classifcation algorithm and parameters 
selection 
In this section, the signifcant of optimum parameters 
were determined for three classifers including SVM, 
KNN, and D-Tree. In addition, on the basis of suitable 
parameters selection, classifcation algorithm was devel-
oped, and its performance was evaluated for precise esti-
mation of WC in leaves. 

Selection of optimal parameters values 
In order to develop an algorithm for three classifers vari-
ous parameters were considered. For accurate classifca-
tion results, it was signifcant to have optimal parameters 
for classifers. Here, three classifers which include SVM, 
KNN and D-Tree were considered for precise estimation 
of WC in three leaves from day 1 to 4. For each classi-
fer, a series of values for tuning the process with optimal 
parameters were determined to achieve the highest 
overall classifcation accuracy and performance of clas-
sifers were also analysed. For SVM, two parameters i.e. 
the optimum parameters of cost (C) and kernel width 
parameter (ϒ) are required to be set when applying the 
SVM classifer with radial basis function (RBF) kernel 
to achieve the optimized SVM algorithm [34]. Te ‘C’ 
parameters helped to decide the actual size of misclas-
sifcation permitted for non-separable training data and 
adjusted the rigidity of the training data [35]. Larger val-
ues might lead to an over-ftting model and vice versa. 
Te kernel width parameter (ϒ) facilitated the shape of 
the class-dividing hyperplane, and increasing or decreas-
ing the value of (ϒ) could infuence the shape of the 
class-dividing hyperplane, and it eventually disturbed the 
classifcation accuracy. For this purpose, a series of values 
were assessed and to establish the most suitable value for 
‘C’ for available data, and fnally “1” was chosen for ‘C’, 
and “0.38” was selected for (ϒ).
Te basic theory behind the KNN was to discover a 

group of ‘k’ samples that appeared to be nearest to the 
unknown samples [34]. From k-samples, the label of 
unknown samples could be determined by evaluating the 
average values for class-attributes [34, 35]. Tus, tuning 
this fundamental parameter of k-sample played a signif-
cant role in achieving the ultimate performance of this 
classifer. For this purpose, a diferent range of values was 
established, and fnally, it was settled in the range from 
1 to 5 to recognize the optimal ‘k-value’ for all training 
sample sets. For D-tree, again the various range of num-
bers for splits in D-test was analysed for the available 
data to identify the optimum parameter. Eventually, it 
was set to 5, and the rest of the settings were retained as 
default values for this classifer. 
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Results 
Classifcation accuracy and features selection 
In this study, the performance of proposed classifers
including SVM, KNN, and D-Tree was assessed on raw
data and on individual domain features. Furthermore, 
all classifers showed distinct performances on indi-
vidual domain features. Henceforward, classifcation 
accuracy for a hybrid combination of all three domains
was also obtained. Towards the end, features selec-
tion was illustrated using the various state-of-the-art
techniques. 

Assessment of classifers on raw data 
Before processing the classifcation accuracy of raw
data, the frequency range of 0.75 to 1.1 THz was con-
sidered for executing classifcations. Also, all observa-
tions were taken as separate features and performance of
the classifers were tested on all features. Te main aim 
here was to evaluate the classifer response by examin-
ing all observations of three leaves at diferent days at
every frequency point. Hence, three classifers, includ-
ing SVM, KNN, and D-tree performances were tested to
estimate the WC in leaves more accurately and precisely.
Te classifers were trained and validated using a k-fold
and feature set was partitioned into 10 “folds” randomly.
Te observations data was partitioned into 70% and 30%
training and testing data, respectively. Table  3 listed 
the average classifcation accuracy results of all three
classifers. 
By close investigations of results in Fig. 5 and Table 3, 

it was depicted that classifcation accuracy for all
leaves found in the range of 70–75%. Tis low accu-
racy refected some redundant or irrelevant features in
the overall 201 features points, which badly afected the
classifcation accuracy. Terefore, the performance of all
three proposed classifers could be improved by reduc-
ing undesired features and selecting more meaningful
and informative features to produce an accurate esti-
mation of WC in all three leaves. Tus, the purpose of
observing the performance of the classifers on raw data
was mainly to explore the TRR, as explained in the pre-
vious section. 

Table 3 Raw data classifcation results for three leaves 

Accuracy (%) Cofee Peashoot Baby spinach 

SVM 80.22 76.26 75.78 

KNN 75.1 72.95 74.98 

DTree 76.24 69.58 76.93 

a 

c 

b 

Fig. 5 Classifcation performance of raw data for cofee, pea shoots 
and spinach leaves considering all features from 0.75 to 1.1 THz. a 
Cofee. b Pea shoot. c Baby spinach 
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  Table 4 Classifcation results for cofee leaf 

Classifcation Time domain Frequency Time–frequency 
accuracy (%) features (11), domain features domain features 

% (10), % (4), % 

SVM 92.6 93.0 91.6 

KNN 90.0 91.8 89.4 

Decision tree 91.2 90.7 91.2 

Table 5 Classifcation results for pea shoot leaf 

Classifcation Time domain Frequency Time–frequency 
accuracy (%) features (11), domain features domain features 

% (10), % (4), % 

SVM 86.6 79.2 80.6 

KNN 79.0 78.8 81.4 

Decision tree 81.2 81.7 82.2 

Table 6 Classifcation results for baby spinach leaf 

Classifcation Time domain Frequency Time–frequency 
accuracy (%) features (11), domain features domain features 

% (10), % (4), % 

SVM 82.6 81.1 84.6 

KNN 81.0 78.8 81.4 

Decision Tree 78.2 79.7 82.2 

Assessment of classifers for individual and hybrid 
combination features 
Once the parameters were set for all classifers, its per-
formance was investigated on diferent domain features 
individually and a hybrid combination of all three domain 
features. So, its performance accuracy was accomplished, 
and Tables  4, 5 and 6 demonstrated the classifcation 
accuracy results for cofee, pea-shoot and baby spinach, 
respectively. Te classifcation accuracy results were 
obtained for 25 extracted features. Tese 25 features 
were comprised of time domain, frequency domain and 
time–frequency domain features. Upon close analysis, 
the classifers performed relatively better for cofee leaf 
compared to pea shoot and baby spinach for set param-
eters, which were selected before the classifer model was 
produced.
Moreover, it also showed that the precise estimation of 

WC presence in cofee leaf from day 1 to day 4 had been 
substantially improved compared to other leaves. Since 
the content of water is vital indicator for explaining the 
plants overall vitality and growth processes, therefore, 
timely detection of any defciency in WC plays a signi-
fcation role in monitoring the health status of leaves 
efectively. After the individual performance of three fea-
tures domain, another attempt was made to assess the 

Table 7 Classifcation results of  hybrid combination 
features for all leaves 

Classifcation accuracy SVM, % KNN, % D‑Tree, % 
of three leaves 

Cofee 94.46 93.76 91.15 

Pea shoot 93.42 91.62 90.64 

Baby spinach 91.13 90.38 89.01 

performance of the classifer for hybrid combinations of 
all three domain features collectively. Table  7 displayed 
the classifcation accuracy of all three classifers for all 
three leaves. In this condition, classifers were trained 
and cross-validated by applying k = tenfolds, and the per-
formance of all three classifers was obtained. Tese clas-
sifers, including SVM with RBF kernel, KNN with k = 5 
and D-Tree, were trained and cross-validated by applying 
k = tenfolds. Te observations data was partitioned into 
70% and 30% training and testing data, respectively. By 
comparing the results of hybrid combinations with indi-
vidual classifcation performance, it was discovered that 
the combination of features produced an improvement 
in classifcation accuracy for all three leaves. Previously, 
individual classifcation only enhanced the cofee leaf, 
whereas the combination of all three domain collectively 
improved the performance for other leaves, including pea 
shoot and baby spinach. 

Optimization and feature selection 
In this work, the aim was to remove any redundant or 
irrelevant features through the feature selection tech-
nique to enhance the classifcation performance by 
lessening the computational cost for deployment. Te 
methods for feature selection contain fltering methods 
which were based on the evaluation of the relevance of 
features, and other wrapper methods were based on a 
strong search of a diferent set of features [36]. We con-
sidered three feature selection algorithms named as 
sequential forward selection (SFS), sequential backward 
selection (SBS) and Relief based selection algorithm 
(Relief-F) to execute the feature selection process [37].
Out of these three algorithms, SFS and SBS were consid-
ered the two most empirical selection algorithms [37].
SFS begins with an empty set and integrates the most 
suitable feature in every step, and exhibiting a high accu-
racy by employing a classifer until the pre-defned fea-
tures are tallied up [37].
On the contrary, SBS operates opposite to the SFS

and begins with full occupied features and disposed of
unmatched features in every step by specifc criterion
function till the pre-defned features are permitted [38].
Intriguingly, Relief-F can propose a more efcient tech-
nique compared to SFS and SBS and comprehend the 
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relations of features to compute the weights of the fea-
tures for accurate ranking and selection irrespective of any
dependency on specifc classifers [39]. Figure 6 depicted
the performance of SFS features selection for cofee, pea-
shoot and baby spinach leaves using three classifers.
From Fig. 6, it was noticed that SVM performed con-

siderably better for all leaves compared to other classifers 
using diferent selection techniques. In addition, Tables 8, 
9, and 10 displayed the classifcation accuracies for cof-
fee, pea shoot and baby spinach leaves, respectively, using 
various features selection techniques with the required 
number of features. By applying a features selection 
algorithm to classifers, they produced an improvement 
of 4%, 3% and 6% for cofee, pea-shoot, and baby spin-
ach leaves using SVM classifers through SFS technique. 
Te performance of KNN for cofee, pea-shoot, and baby 
spinach leaves also presented progress in results by 3%, 
4%, and 5% correspondingly. Tese tables indicated the 
diferent combinations of features including frequency, 
time-domain, and time–frequency domain features for 
classifcation accuracy.
As explained in the previous section, it was aimed at

reducing the computational time using feature selection
techniques. So, in this study, Table 11 presented the over-
all execution time taken by three classifers for generat-
ing results using various feature selection techniques. It 
was established that execution time taken by classifers for
selected features by performing tenfold, cross-validation
showed considerable enhancement compared to extract
features. For example, cofee leaf exhibited an improvement
of 15%, 11.9% and 6.5% in computation time for SVM,
KNN and D-Tree, respectively, using SFS technique. For
pea-shoot, an upgrade of 21.28%, 10.01%, and 8.53% was
noticed in operating time for SVM, KNN and D-Tree clas-
sifers, respectively. Lastly, in baby spinach leaf, considering
SFS technique, SVM showed an upgrade of 21.28% in SVM,
10.01% in KNN, and 8.53% in D-Tree operating times.
Tese outcomes indicated that selecting the most relevant
and vital features not only enhanced the overall operation
time for classifers but also improved the classifcation as
confrmed with Tables 8, 9 and 10. Hence, Table 11 is sig-
nifcant for fnding the performance of classifers with less
computation time for execution of classifcation accuracy.
In this work, the core purpose was not only to achieve less
computation time but also to select relevant features with
maximum information using various feature selection tech-
niques. In addition, it could utilize less time and produce
maximum accuracy for estimation of WC in plants leaves
to maintain a healthy physiological status. 

Fig. 6 Classifcation performance of classifers using feature selection 
technique SFS for cofee, pea shoot and baby spinach leaves 
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Table 8 Classifcation performance for cofee leaf by applying tenfold validation using proposed algorithm with selected 
features 

Feature selection methods Classifers Serial num. of features Total no of features Accuracy (%) 

SFS SVM 24 1–19, 21–25 98.5 

KNN 22 1–6, 8–11, 13–21, 23–25 97.2 

D-Tree 24 1–23, 24 96.5 

SBS SVM 24 1–19, 21–25 98.6 

KNN 24 1–21, 23–25 97.6 

D-Tree 24 1–23, 25 96.2 

Relief-F SVM 10 2, 4, 10, 11, 17–21, 25 97.1 

KNN 95.9 

D-Tree 96.8 

Table 9 Classifcation performance for  pea shoot leaf by  applying tenfold validation using proposed algorithm 
with selected features 

Feature selection methods Classifers Serial num. of features No of selected features Accuracy (%) 

SFS SVM 18 1–6, 8–14, 17, 19, 20, 22, 25 97.2 

KNN 13 1–5, 9–11, 18–20, 23, 25 94.4 

D-Tree 7 2, 4, 5, 6, 17, 18, 19 93.1 

SBS SVM 3 13, 19, 22 96.8 

KNN 5 7, 12, 17, 19, 20 94.9 

D-Tree 2 8, 20 92.3 

Relief-F SVM 12 2, 4, 10, 11, 17–21, 23–25 98.6 

KNN 99.1 

D-Tree 95.5 

Table 10 Classifcation performance for  baby spinach by  applying tenfold validation using proposed algorithm 
with selected features 

Feature selection methods Classifers Serial num. of features Total no of features Accuracy (%) 

SFS SVM 24 1–12, 14–25 97.9 

KNN 23 1–14, 17–25 96.4 

D-Tree 5 3, 5, 17, 20, 21 96.1 

SBS SVM 23 1–11, 13, 15–25 96.8 

KNN 24 1–13, 15–25 94.5 

D-Tree 5 7, 8, 9, 11, 15 93.2 

Relief-F SVM 17 2, 4–7, 10, 11, 15–21, 23–25 98.6 

KNN 99.1 

D-Tree 95.5 

Discussion 
In this section, the performance of three proposed clas-
sifers were assessed by employing two commonly qual-
ity metrics such as sensitivity or recall (also known as 
true-positive rate) and specifcity (also called false-pos-
itive rate) [29, 40]. Here, sensitivity values indicated the 
possibility of correct identifcation of labelled class from 

the remaining target classes [29]. In contrast, specifcity 
showed the probability of appropriate classifcation as 
non-target classes from the remaining un-aimed classes 
[40]. Te purpose of utilizing these two widely accepted 
metrices [29, 40] was mainly to detect any misclassifca-
tion that could occur, leading to inaccurate information 
about WC in leaves for four consecutive days. 
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Table 11 Classifcation performance of  all classifers Table 12 Classifcation performance of  all classifers 
by applying tenfold validation using proposed algorithms by  applying leave-one-observation-cross-validation 
with selected features techniques with selected features 

Feature types and feature Computation time (s) Quality metrics Water SVM KNN D‑Tree 
selection methods content (%) 

SVM KNN Decision tree 
Cofee leaf 

Cofee leaf 
Day 1 82.84 

Extracted features 0.7282 0.5309 0.4021 
SENS 1 1 1 

Selected features 
SPEC 1 1 1 

SFS 0.5706 0.4123 0.3371 
Day 2 41.22 

SBS 0.6456 0.4240 0.3202 
SENS 1 0.929 0.976 

Relief-F 0.6252 0.4842 0.3582 
SPEC 0.988 0.965 1 

Baby spinach leaf 
Day 3 12.34 

Extracted features 0.8975 0.4265 0.4053 
SENS 0.963 0.889 1 

Selected features 
SPEC 1 0.912 0.99 

SFS 0.6062 0.4128 0.1071 
Day 4 0.51 

SBS 0.4259 0.3576 0.3247 
SENS 1 1 1 

Relief-F 0.4485 0.3875 0.3490 
SPEC 1 1 1 

Peashoot leaf 
Peashoot 

Extracted features 0.6825 0.4405 0.4196 
Day 1 76.84 

Selected features 
SENS 1 1 1 

SFS 0.4699 0.3404 0.3343 
SPEC 1 1 1 

SBS 0.6504 0.1734 0.3149 
Day 2 49.22 

Relief-F 0.5088 0.3766 0.3759 
SENS 1 0.892 1 

SPEC 0.962 0.982 0.971 

Day 3 18.91Tese two-quality metrices depicted the perfor-
SENS 0.545 0.727 0.636mance of classifers ranging values from 0 to 1 on
SPEC 0.984 0.967 0.984days 1 to 4, indicating the presence of WC in all three

Day 4 0.21leaves. Table  12 illustrated the performance of all clas-
SENS 0.919 0.85 0.833sifers using a feature selection method and showed the
SPEC 0.987 0.85 0.933WC presence in all three leaves from day 1 to 4. From

SpinachTable 12, it was also perceived that SVM outperformed
Day1 71.14other classifers for a cofee leaf on diferent days. More-
SENS 0.995 1 1over, the assessment of quality metrics for a cofee leaf
SPEC 1 1 1on days 1 and 4 performed noticeably better, revealing

Day2 34.22the freshness and staleness of leaf. Tese results also 
SENS 1 1 1discovered that the presence of WC on day 1 was high
SPEC 0.976 1 1and low on day 4, which helped the classifer to execute

Day3 10.34the improved performance. Furthermore, it was worth
SENS 0.909 0.545 0.851noting that the classifcation accuracy for all leaves on
SPEC 0.923 0.949 0.897days 2 and 3 was slightly challenging when the presence

Day4 0.10of WC in leaves was found in the range of 20% to 50%
SENS 0.727 0.818 0.636approximately.
SPEC 0.974 0.872 0.949Considering the real-life scenario, the proposed meth-

odology can be substantial by observing the perfor-
mance of the classifers for leave-one-observation-out 
cross-validation method to achieve diferent days classi-
fcations accuracy and for accurate estimation of WC in 
leaves. Tis proposed method evaluated the actual per-
formance of the classifer model by randomly selecting 
each observation from the dataset considered as a vali-
dation set, while the remaining observations were taken 

as the training set. Tis process continued until all obser-
vations from the dataset were nominated for the valida-
tion set for at least one attempt. Table 12 illustrated the 
accuracy of the classifcations of all leaves for each day by 
applying the leave-one-observation-out cross-validation 
technique. 
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Table 13 The confusion accuracy with  leave-one-
observations-out cross-validation method of  all leaves 
for  each day along  with  monitoring the  water content 
values for each day 

Samples Classes Classifers test accuracy Water 
performance (%) content 

SVM KNN D‑Tree 
(%) 

Cofee leaf Day1 100 100 100 82.84 

Day2 95.2 88.1 100 41.22 

Day3 100 92.6 92.3 12.34 

Day4 100 100 100 0.71 

Variance 0.58 1.09 0.92 

Peashoot leaf Day1 100 100 100 76.84 

Day2 100 87.5 87.5 49.22 

Day3 93.6 78.4 74.2 18.91 

Day4 95.0 89.3 91.7 0.21 

Variance 1.55 2.27 3.60 

Baby spinach leaf Day1 100 100 100 71.14 

Day2 100 100 100 34.22 

Day3 92.6 88.6 75.5 10.34 

Day4 94.7 89.7 91.3 0.10 

Variance 1.76 2.90 4.60 

From Table  13, it was perceived that SVM classif-
cation accuracy outperformed other classifers for all
leaves by showing minimum variance. It also displayed
that variability in WC of leaves over the course of four
consecutive days. Furthermore, it was also noticed that
for both days 1 and 4, classifers produced maximum
accuracy refecting a high and low WC on days 1 and
4, respectively. Whereas on days 2 and 3, SVM per-
formance stayed in the range from 92.6 to 100%, KNN
yielded a range of 78.4 to 100%, and D-Tree produced
a range of 74.2 to 100%. Hence, it was concluded that
SVM achieved a better classifcation accuracy range
on days 2 and 3 compared to other classifers. Tus,
the aim of applying leave-one-observation-out cross-
validation technique was to evaluate the consistency
of classifers by assessing all observations of diferent
samples on diferent days as depicted in Table 13. It was 
also strongly aimed to assess the performance of the
proposed ML algorithm with the incorporation of THz
for real-time applications in monitoring any diminutive
variations of WC in plants leaves to help in developing
digital agricultural systems. 

Conclusions 
In this paper, a novel machine learning (ML) driven 
approach was proposed to accurately determine the 
health status of plants leaves terahertz (THz) waves. In 

this process, transmission response of leaves was meas-
ured for four consecutive days, where each of the 201 
frequency points were used as a feature. We performed 
feature selection to discard any irrelevant and spurious 
features that could give false observations about the water 
content (WC) in leaves. In this study, results showed that 
the performance of classifers was drastically improved 
by identifying more relevant and important features that 
could can yield maximum information about WC in 
leaves, to maintain healthy physiological status of leaves. 
Te selection of useful features also reduced the compu-
tation time for the execution of classifcations by all three 
classifers, which was also one of an ultimate objective. 
Moreover, the comprehensive cross-validation meth-
odology demonstrated that, in most cases, support vec-
tor machine SVM yielded highest classifcation accuracy 
compared to other classifers. It was observed that SVM 
achieved relatively more reliable results for predicting the 
accurate WC estimation in three leaves for four consecu-
tive days.
Tis paper demonstrates the potential and establishes a 

notable integration of machine learning (ML) using tera-
hertz (THz) waves to assess the real-time information of 
WC in various plants’ leaves. In an era, where most of 
the farmlands around the globe are water-stressed, the 
outcomes of this study can help in the design and imple-
mentation of smart, sustainable digital agricultural tech-
nologies, which is of high importance to boost the overall 
crops productivity. 
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