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Summary

In the West, the current political roadmap aims to move to a low carbon economy

and, in particular, to reduce pollution associated with transportation systems.

This has resulted in increased pressure on manufacturers to reduce their vehicle

fleets harmful emissions. This work focuses on the use of advanced control and

optimisation to reduce vehicle emissions whilst taking into account the desire for

an enjoyable driving experience. The vehicle systems considered are the gear

ratio and the gear shift map.

A new efficient and effective problem formulation has been developed to opti-

mise gear ratio and gear selection, first independently and then in combination.

Traditional as well as two novel objectives have been developed to capture en-

gineering requirements such as reducing emission, maintaining or improving the

vehicle driveability, promoting the durability of transmission components whilst

simultaneously meeting problem specific constraints. The first novel objective

formulation rewards fuel efficient engine operating points and the second objec-

tive rewards the time spent in higher gears to reduce fuel consumption. A Pareto

based multi objective optimisation strategy has been adopted to identify the rel-

ative trade-off between the different objectives.

A new problem specific operator was designed, to reduce CO2 emissions by

shifting, towards the left side to promote rapid gear shifting.

Three nature inspired optimisation algorithms have been developed and crit-

ically evaluated against the Interior-Point Optimization (Fmincon), and the

Multi-Objective Genetic Algorithm (MOGA) from the MATLAB toolbox. Multi-

Objective hybrid Cuckoo Search (MOCS) is used to optimise gear ratio. MOGA

combined with the new problem specific operator and constraint handling opti-

mised gear shift map. Finally MOGA was combined with MOCS operator for

gear shift map optimisation. Optimised gear shift maps were implemented on a

vehicle and tested on a rolling road, following an NEDC cycle. The benefit of

the optimisation procedure being developed was demonstrated and resulted in

reduction of CO2 emissions by 2.5%.
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Chapter 1

Introduction

1.1 Introduction

This chapter introduces an overview of the research and defines its aim and

objectives. It then describes the research methodology, outlines the novelties

and finally, gives a high level description of the chapters and thesis organisation.

1.2 Context and problem statement

Government initiatives, legislation (Siskos et al. 2015) as well as the socio political

(Yao et al. 2015) prompted vehicles original equipment manufacturers (OEM) and

tier one suppliers to make significant investment in research and technology to

reduce vehicle emissions.

In the European market, vehicles are tested for fuel consumption and hence

emissions production according to the United Nations Economic Community for

Europe (UNECE) regulation 101 (Mahlia et al. 2012), (Bielaczyc et al. 2014).

Therefore, whilst the approach developed in this thesis is applicable to any drive

cycle, the implementation and practical verification employs only the New Euro-

pean Drive Cycle (NEDC) (Barlow et al. 2009a), (Tzirakis et al. 2006).
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The most significant CO2 emissions saving at the point of use arises from the

adoption of hybrid technologies (25%). However, significant savings can also be

gained from novel hardware design and software solutions applied to conventional

engine and transmission systems. Improved fuel economy can be achieved by

moving the engine towards its most efficient regions on the Brake Specific Fuel

consumption (BSFC) map in terms of both emission and performance through

optimised gear ratio and gear shift map (B. Mashadi 2012).

Applying a control strategy on gear shift map can achieve an improved per-

formance, especially an Automated Manual Transmission (AMT) (Lucente et al.

2007) and Dual Clutch Transmission (DCT) (Henrique et al. 2006) are both

semi-automatic transmissions, as they have the advantage of manual transmis-

sion, however their clutches and gearbox mechanism are electronically controlled.

Therefore, improving clutch and gear shift software control can results in better

fuel economy. André & Hugot (2003) has investigated the impact of gear shift

strategy on emissions test, which is mainly influenced by the driver, vehicle type

and driving conditions. Ivarsson et al. (2013) designed an optimal gear shift con-

trol to minimise fuel consumption for an AMT, Qin et al. (2004) has proposed a

gear shift indicator to improve fuel economy based on the environment and driver

intention. Fuel economy can be realised through software modification, especially

gear shifting strategies from 0.5% to 2% (Sovran & Blaser 2003).

This PhD research was initially started as part of a Knowledge Transfer Part-

nership (KTP1 ) project, a collaboration research between SAIC Motor UK Tech-

nical Centre (SMTC UK) at Longbridge, and Control Theory and Applications

Centre (CTAC), Coventry University. This research programme was targeted to

be implemented on their new vehicle programme ROEWE 950.

1Knowledge Transfer Partnership (KTP) is European leading programme helping businesses
to improve their competitiveness and productivity through the use of knowledge, technology
and skills that reside within the UK knowledge base. Through KTP, academics can develop
business relevant teaching and research, apply knowledge and expertise to important business
challenges to identify and develop new research themes & student projects.
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1.3 Aim & objectives

The fundamental aim of this project was to reduce CO2 emissions while main-

taining a good dynamic response of the vehicle by optimising gear ratio and gear

shift map. To achieve this aim, the following objectives were addressed:

• Implement and validate proprietary powertrain model, prior to its use to

predict the effect of different gear ratio and gear shift maps design.

• Formulate mathematically, from a multiple objective optimisation perspec-

tive, the gear ratio and gear shift map design problems. Such problem

formulation involves:

1. Formulate the design variables taking into consideration physical bounds

and requirements.

2. Quantify the quality of the solution produced, through the optimisa-

tion of the design variable, by adopting and developing appropriate

criteria or key performance indicators.

3. Identify the constraints and develop approaches to prevent them from

occurring or automatically adjust the design variables to meet the

constraints.

• Investigate the performance of optimisation algorithms and develop a new

optimisation approach to exploit problem specific features.

• Optimise gear ratio (hardware).

• Optimise gear shift map (software).

• Combine gear ratio and gear shift map optimisation.

• Evaluate and analyse the results obtained using the validated simulation

model.
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• Publish or patent the method.

1.4 Research methodologies

Following an initial state of the art survey identifying potential means to save

CO2 it was decided to focus research on software means to achieve CO2 emissions

through gear shift map optimisation. Subsequently, means to achieve further CO2

savings through hardware optimisation in terms of gear ratio were investigated.

To determine optimal or near optimal solutions to a particular problem it is

necessary to be able to evaluate alternative solutions in a safe, cost effective and

controlled environment. This is usually realised using a computer simulation

of the actual system to be optimised. Therefore, a comprehensive proprietary

simulation model of a ROEWE 950 prototype vehicle, equipped with a Dual

Clutch transmission, was tuned and initially validated against rolling road data.

To carry out the optimisation, a number of criteria were developed. These

criteria included CO2, as well as problem specific criteria to evaluate the quality

of the solutions. All criteria considered in the optimisation problem were nor-

malised to obtain values of the same magnitude for each criterion. The review

of normalisation techniques is given in Section 2.3.5, in Chapter 2. In this work,

the normalisation was carried out with respect to the criteria values obtained

from the manufacturer’s current gear shift map and gear ratios. The relative

importance of each criterion was then realised by associating a weighting to each

normalised criterion.

The model validation provided the necessary confidence upon which to evalu-

ate alternative gear shift mappings and gear ratios. The model was realised using

the commercial software environment MATLAB/Simulink, which is the tool of

choice in the automotive control sector, and provided a convenient platform to

evaluate the alternative optimisation strategies developed in this work. Model
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based optimisation minimises the requirement for vehicle testing and calibration.

However, to determine the viability and appropriateness of the solutions devel-

oped, the author liaised with SMTC China for the testing of various optimised

gear shift maps on a rolling road. The latter provided useful qualitative informa-

tion as to the nature of a good gear shift map and demonstrated the effectiveness

of the approach with quantifiable improvement compared to the standard gear

shift map used in the ROEWE 950.

1.5 Contributions and deliverable

The work carried out during this project has led to a number of contributions

and adaptations of existing ideas. These are ranked in terms of significance:

• A problem specific repair mechanism has been developed to enable engi-

neers to determine the smallest possible adjustment to an existing gear

shift map to ensures that it meets minimum requirements. These minimum

requirements can be adjusted post optimisation to favour solutions based

on CO2 saving or performance. This represent a unique application to gear

shift map optimisation.

• Problem specific design variables formulations for both gear shift map and

gear ratio optimisation. These formulations are applicable to any optimi-

sation technique. The proposed variable formulation maps a set of inde-

pendent variables to a set of relative increments. Such formulation for the

gear shift map enforces the following engineering constraints: i) prevent

crossing between downshift and upshift, ii) maintain a minimum hystere-

sis between downshift and upshift to avoid frequent gear changes for small

velocity variations.

• Similarly the gear ratio problem specific design variables formulation are
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defined to facilitate the optimiser to find the optimal design variables from

which the gear ratio can be reconstructed and simulate their effect. Addi-

tionally, this formulation impose the following engineering constraints: i)

keep a minimum spacing between two adjacent gear ratios, ii) define a set

of gear ratio in descending order.

• A gear shift map problem specific local search strategy, named gear early

shifting (GES) operator, was developed and combined with the aforemen-

tioned hybrid GA. It reduces the CO2 emissions by promoting an earlier

upshift gear change.

• A problem specific contribution is the implementation of the rate of change

constraints to restrict the relative values of the gear shift points compared

to their neighbours.

• Developed a hybrid optimisation algorithm combining genetic algorithm

with the Levy flight operator as well operators used in the Bat, Firefly and

Flower pollination algorithms.

• Developed a hybrid Cuckoo search algorithm which includes the Levy flight

operator as well operators used in the Bat, Firefly and Flower pollination

algorithms for gear ratio optimisation to improve the algorithm exploration

and convergence.

• Proposed problem specific objective formulations to offer alternatives or add

additional information to facilitate the selection of the most appropriate

solutions. These new criteria aim to allow engineers to quantify the relative

merit of candidate gear shift maps in terms of:

(i) time spent on each gear ratio during a drive cycle.

(ii) time spent within the most efficient zones within the engine fuel map

(Brake Specific Fuel Consumption (BSFC)).
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(iii) distance between a key reference point within the BSFC map and each

engine operating point.

• Developed a combined Gear ratio and gear shift map optimisation strategy

based on genetic algorithm and Cuckoo search.

• The work has led to one publication presented at the 14-th IFAC Sympo-

sium on Control in Transportation Systems (Fofana et al. 2016).

Fofana, A., Haas, O., Ersanilli, V., Burnham, K., Mahtani, J., Woolley, C.,

and Vithanage, K. (2016) Multi-Objective Genetic Algorithm for Automatic

Transmission Gear Shift Map Optimisation. 14-th IFAC Symposium on

Control in Transportation Systems, May 18-20, 2016, Istanbul Technical

University, Taksim, Istanbul, Turkey.

1.6 Outline of the thesis

Chapter 2 provides a literature review relating to powertrain systems. It presents

an overview of gear ratio and gear shift map design and reviews software tools

used by industry for gear ratio and shift map design. It reviews problem formula-

tion for numerical optimisation techniques, including design variables, objective

function and normalisation, constraints handling, single and multi-objective for-

mulation. It reviews the various Evolutionary Algorithm and swarm intelligence

algorithm applications to industrial project. It concludes with a justification of

the optimisation criteria and algorithms investigated in this thesis.

Chapter 3 gives a description of the ROEWE 950 powertrain model and its

validation against rolling road data. The model is used in subsequent chapters to

implement and evaluate alternative optimisation strategies. Standard methodolo-

gies to design gear ratio and gear shift map are also presented in view to provide

sensible starting point to the optimisation carried out in Chapter 4 and 5.
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Figure 1.1: Outline schematic flow of logical connection between different chapters
of this thesis

Chapter 4 presents the problem formulation, which is one of the major novelty

of the work. It converts the engineering requirements for the gear shift map and

the gear ratio design into a mathematical framework.

Chapter 5 describes Evolutionary Algorithm (EA) and swarm intelligence with

multiple objective functions combined with problem specific operator. Addition-

ally a repair mechanism application is proposed to correct an optimised gear

shift map with a given limited reserve power. Chapter 6 describes preliminary

simulation studies with a description of parameters selection, weighted coeffi-
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cients associated with different objective functions. Chapter 7 demonstrates and

compares EA and swarm intelligence algorithm against various optimisation tech-

niques from MATLAB toolbox. Chapter 8 completes the work by implementing

an initial and optimised gear shift map for a vehicle on the rolling road with the

New European Driving Cycle (NEDC) and demonstrates the effectiveness of the

algorithm and quantifies the benefit in term of CO2 saving.
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Chapter 2

Background and literature

research

2.1 Introduction

The main focus of the thesis is on automating the determination of the most

appropriate set of gear ratios and accompanying gear shift map. This chapter

presents a critical review of the state of the art in both the theoretical/technical

domain and the application domain. The first part focuses on the application

domain, namely the powertrain description with emphasis on the gear shift and

gear ratio design. The second part describes the key performance indicators or

objectives that have been used to evaluate the performance of alternative gear

shift and gear ratio designs. The third part reviews current approaches in numer-

ical optimization, with particular attention given to nature inspired constrained

multi-objective optimization algorithms and associated methods, to formulate the

engineering problem to be solved. The chapter concludes with a justification of

the methods and algorithms adopted in this work.

10
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2.2 Powertrain system

This section describes powertrain system (see Figure 2.1). A powertrain system

is composed of an internal combustion engine and a transmission. A connector

is used to join the crankshaft of the engine to the input shaft. The connector

can either be a torque converter or a frictional clutch. A differential unit and an

ultimate drive gear is used to connect the output shaft of the transmission to the

wheels of the vehicle. A transmission has several speed, torque and gear ratios.

Speed ratio is being calculated following the similar way ratio of input speed

and transmission output speed are calculated, whereas torque ratio is measured

following the ratio of input torque and transmission output torque respectively.

Figure 2.1: Powertrain system

In this thesis, the focus is on Dual Clutch Transmission (DCT), as it is the

main concern to optimise gear ratio and gear shift map. In literature, there

are many simplified models of DCT utilised for different simulation purposes.

Xuexun et al. (2007) has proposed a DCT model based on a Fuzzy Controller

to select the appropriate gear upon the driver intention. Galvagno et al. (2011)

has described a more detailed mathematical model of DCT, including clutch

mechanism synchronisers dynamics, therefore this particular model is suitable to

study a control algorithm.
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2.3 Problem formulation

In most industrial applications, the optimal product is based on a posteriori

knowledge by comparing different design variables. In many cases, this method

is applied because of a lack of knowledge of optimisation formulation procedure.

This section reviews optimisation procedures to describe efficient and analytical

ways of defining and comparing new solutions in order to satisfy an optimal

design. The general mathematical formulation is given as follows (Taboada et al.

2008):


minimise f(x)

Subject to gj(x) ≥ 0, j = 1, ..., J

hk(x) = 0, k = 1, ..., K

(2.1)

where,

f(x) (f1(x), ..., fn(x)) for i = 1, 2, ..., n.

gj(x) j-th inequality constraint evaluate at x.

hk(x) k-th equality constraint evaluate at x.

fi(x) i-th objective function evaluate at x.

x
{
x1, ..., xp

}
is a vector of decision variables.

n number of objectives or criteria to be optimised.

p number of decision variables.

The constraints define the feasible region x, where any point x ∈ Rn presents

a feasible solution. The vector f(x) presents the values of objective functions to

be minimised or maximised. Note that in this thesis, only inequality constraints

are considered.

12
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2.3.1 Design variables

The control variables modified by the optimiser is referred to as design vari-

ables. When the design variables can take any numerical value within their

specified range, the problem is named continuous-variable. When there is only

discrete/integer values, it is defined as discrete/integer-variable. Finally when

the problem includes both discrete and continuous variables, it is then named

as mixed-variables (Statnikov et al. 2009). Discrete variables take a finite set of

values, thereby limiting the search space for the optimisation algorithm. Contin-

uous variables can take all possible values between the lower and upper boundary.

Whilst the solution space is larger for continuous variables problem optimisation,

their solutions are easier to solve than discrete variables optimisation problems.

This is due to issues associated with discrete variables optimisation that offer

inherently disjoint design and solution space as well as in some cases non convex

cost function (Arora et al. 1994).

2.3.2 Objective functions

The main goal of optimising is that there are some merit functions which need

to be minimised or maximised, and can be used as quantitative criteria to assess

the effectiveness of each design variable. One of the main driving objectives in

this thesis is CO2 emissions. However, minimising CO2 emissions can deteriorate

the car dynamics response. The main objective functions used for powertrain

optimisation can be classified as follows:

Fuel consumption and emissions

The primary objective function is the fuel consumption (Mammetti et al. 2013),

where emissions are a by-product of fuel. CO2, carbon monoxide (CO), nitrogen

oxides (NOx), hydrocarbons (HC) emissions Wallington et al. (2008) are mainly

13
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dominated the objective functions to assess the performance of engines usage,

Yin et al. (2013) have used a combined objective function with CO, NOx and HC

to optimise a gear shift map, therefore this method is limited. It only focuses on

emissions, and not the vehicle dynamic response.

Driveability

Reducing fuel consumption or CO2 emissions can also results the car to poor

driving condition, therefore a line must be drawn to limit the reduction of fuel

or emissions. A poor driving condition can be defined as driveability, Ngo, Colin

Navarrete, Hofman, Steinbuch & Serrarens (2013) have defined the driveability by

the car responsiveness, operating smoothness. Therefore, it was expressed that

the driveability was the remainder acceleration capability after a certain gear

shift, which can be represented by the engine reserve power defined as follows:

∆P = (Te,max − Te)ωe (2.2)

where ωe denotes the engine speed, Te,max the maximum torque and Te the engine

torque defined as:

Te = Ftrac
Rw

igη
(2.3)

where ig and Rw are the gear ratio and wheel radius, respectively. The engine

speed ωe, is defined as follows (Liu et al. 2009):

ωe = v
ig60

2π3.6Rw

(2.4)

where v denotes for vehicle speed. To achieve good driveability, ∆P must be

maximised, therefore a minimisation expression can be defined by the inverse

reserve power (IRP):
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IRP = (∆P )−1. (2.5)

2.3.3 Constraint

In any engineering applications, there are always limited resources or certain

physical phenomena which can be considered as constraints. Meaning that each

design variable must satisfies certain constraints imposed by the design limitation.

In the case of gear shift map, an early shifting of gear can result in to a low engine

speed, consequently generates Noise, vibration, and Harshness (NVH) (Le Guen

et al. 2011). Therefore a minimum engine speed can be defined as constraint.

In fact, there is no explicit way to describe the constraints, as it depends on the

user. However the mathematical expression of constraint to be considered for

any optimisation is based on two formulations, which can be either inequality or

equality type. In general, inequality type is mostly used as it is more simpler

than equality type.

2.3.4 Bounds

In practice, the design variables are in most cases constrained by the physical

limit of the system, therefore considering continuous variables, a minimum and

maximum bound must be set on each design variables. In this condition the

research space is restricted.

2.3.5 Single-objective versus Multi-objective

Most engineering designs have either one single objective function or more than

one objective functions. In general, a single objective function, is often repre-

sented by a single scalar, where the optimiser will have only one objective to

focus on. However for multi-objective functions, the task becomes more complex,
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as the aim is to optimise the simultaneously as many defined objective functions

as possible. A decision maker is then defined to select one or more solutions, Chi-

andussi et al. (2012) have classified and surveyed various decision makers. The

following statement better summarises the review in brief:

Weighted sum method

In this method, multiple objective functions are converted into one single objec-

tive using a weighted sum:

F (x) =
n∑
k=1

wkfk(x) (2.6)

where x, F(x), k denotes a set of design variables, single objective function after

conversion and number of objective functions, respectively. wk, k = 1...n, are the

fractional weighting coefficients where the solutions selected will forcibly depend

on them. The weighting coefficients must be positive and satisfy:

k∑
i=1

wi = 1, wi ∈ (0, 1). (2.7)

The method has the advantage of combining all objective functions, i.e Yin

et al. (2013) used a weighted sum to combine power, fuel and emissions in one ob-

jective function in order to optimise a gear shift using GA. However the drawback

is that weighting for each objective function must be known in advance (Vachhani

et al. 2015). Also in order to obtain several solutions, the algorithm must be run

multiple times, which is time consuming (Odu & Charles-Owaba 2013).

e-Constraint

In this method, only one objective function is considered, presumably the most

significant on and considering the other objective functions as constraints bounds.

It is very easy to implement, however it might require high computational cost
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(Mavrotas 2009).

Pareto Optimality

The Pareto optimality concept is frequently used in multi-objective function. The

mathematical definition is defined as follows (Van Veldhuizen & Lamont 1998):

A solution xd ∈ S is said to be Pareto optimal set, if and only if there is no xh

∈ S for which h = f(xh) = (h1, h2,· · · ,hp) dominates d = f(xd) = (d1, d2,· · · ,dp).

Usually, they are also called non-dominated vector set, considered as accept-

able solutions. In literature, various types of Pareto have been proposed. Deb

& Saxena (2005) have defined a method of dealing with large dimensional multi-

objective functions, where he applied principle component analysis procedure to

reduce the number of dimension. The same author has also proposed a Pareto

method based on a fixed reference point, where the aim is to target the reference

point by converging the Pareto optimal set towards it. Haas et al. (1998) have

proposed a modified Pareto ranking that focuses the search on specific regions of

the solution space. The main drawback of Pareto approaches is the computational

effort (Chiandussi et al. 2012).

The objective functions corresponding to the different criteria expressed in

Section 4.4.1, in Chapter 4 can have different magnitude. A normalisation pro-

cess is therefore required prior to weighting the relative importance of each ob-

jective using a set of weights defined as wk = Twkζk, where Twk are the weights

coefficient, and ζk are the normalisation factors. The most relevant normalisation

methods are described in (Halevy et al. 2006) and reproduces as follows:

• The first method is to normalise each objective function by the magnitude

of its objective function at the initial point x0

ζk =
1

fk(x0)
(2.8)
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• The second is to normalise each objective by the minimum of the objective

function

ζk =
1

fk(x(k))
(2.9)

where xk solves minx fk : x ∈ Fr.

• Normalise based on Nadir and Utopia points

One of the best method is to normalise the objectives based on Nadir and

Utopia points. The Nadir and Utopia represent the length of the intervals

where the optimal objective functions vary within the Pareto optimal set.

Nadir and Utopia points are described as follows: The Utopia point fUtopia

is defined as,

fUtopiai =
[
f1(x

(1)) f2(x
(2)) ... fk(x

(k))
]

(2.10)

where x(k∗) is the optimal point solution vector for the single objective

function of the k−th objective function fk, and the Nadir point fNadiri for

each component is defined as,

fNadiri = max
[
f1(x

(1∗)) f2(x
(2∗)) ... fk(x

(k∗))
]

(2.11)

The i−th anchor point fi is presented as,

fi∗ =
[
fi(x

(1∗)) fi(x
(2∗)) ... fi(x

(k∗))
]

(2.12)

where the normalised objective function fi is obtained as,

fi =
fi − fUtopiai

fNadiri − fUtopiai

. (2.13)

The first method was selected for convenience as it is easier to compare so-

lutions with the baseline. Investigation of alternative normalisation methods is
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beyond the scope of this thesis.

2.4 Nature-inspired algorithm

The Most important inventions were designed by observing the nature, i.e, sub-

marines have been designed by observing fish, or radar system by adopting bats

behaviour. These algorithms can be classified by Evolutionary Algorithm and

Swarm intelligence (Binitha & Sathya 2012). This section describes and gives an

insight definition on them, also a more detail survey can be find in (Nanda &

Panda 2014).

2.4.1 Genetic algorithm

Definition

Evolutionary Algorithm (EA) can be defined as a process of training to adapt

to the environment by improving the fitness of the species as they evolve. The

so-called Genetic Algorithm (GA) was the adaptation from Darwin Origin of

species (Bennett 1872), which was later computerised by Holland (1992). It

can be characterised in three main parts: i) it is a population-based, ii) each

individual is assessed based on its fitness function, iii) every individual will be

modified to mimic the natural evolution by changing their genes, which results

in them looking for new solution space. The core of GA can be summarised as

follows:

Selection method

Selection method mimics the natural selection of species, where the fittest indi-

viduals have a better chance to be selected as parents for reproduction. The most

known are the Roulette Wheel Selection and Stochastic Universal Selection (SUS)
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(Baker 1987), meaning that the fittest individuals are not necessarily guaranteed

to be selected, however they have a better probability to be selected (Reeves

2010). Various selection methods can be found in (Goldberg & Deb 1991). Jebari

& Madiafi (2013) have implemented and compared the performance of different

selection methods and concluded that RWS and SUS maintain a good diversity

among the population and prevent a premature convergence to the local optimal.

Real code versus binary code

A solution can be represented ether by binary code or real code. GA was originally

created using binary code as it was to represent the biological gene. The binary

can be used to represent small real values and cannot represent exact real number,

which means a scaling factor must be considered (Wright 1990). A lot of research

has proven that the application of real code outperforms the binary code (Tsutsui

& Ghosh 1998), (Raghuwanshi & Kakde 2007). In this thesis real code has been

preferred to binary because of the difficulty and exact conversion from binary to

real numbers.

Crossover

After selecting individuals to produce new solutions, there are various opera-

tors which can be used to modify information of each individual. These process

is called crossover or recombination, which is a genetic operator that combines

two individuals (parents) to form a new individual (Chromosome). This are

many variants of crossover which can be found Kaya et al. (2011). For real code

crossover implementation, Single-point, Multipoint-point and Uniform crossover

are more suitable due to difficulty of binary conversion to real code, also in Kita

et al. (1999) the rational reason of using real code for crossover has been debated

.
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Mutation

Mutation can be considered as a random process, which aims to find new solutions

in search space by randomly modifying one or several values of the chromosome.

One of the interesting properties of mutation is that preserves diversity among

the population by searching in an unknown search space. A usual method is

the uniform mutation, where a random number is added to each value of the

individual. Deb & Goyal (1996) have discussed the binary coded over real coded

mutation, and has summarised that real coded in mutation was more efficient.

Elitist

One more important task in GA is the application of elitist. As GA is mainly

based on stochastic method, meaning that there is no guarantee of finding a global

solution. Consequently the best individual will proceed to the next generation

without applying any operators.

Local search

In GA, the use of local search is often applied to solutions in order to improve

them. However, the use of local search must be taken carefully as it can lead to

a premature convergence (Pandey et al. 2014).

Constraints handling

The most simple way to handle constraint is to penalise invalid solutions by im-

posing a penalty function, where this penalty might prevent the faulty individual

contribution to the next generation. Coello Coello (1999) proposed a survey on

different constraints handling, where one of the most extreme is the death penalty,

which removes invalid solutions from the population. However, the major prob-

lem of this method, is assuming that at least one solution is valid among the
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population. The next penalty is static penalty, which gradually reduces the fit-

ness values of solutions disobeying the constraints, meaning the penalty is severed

for many constraints violations, and soft for low constraints violations. Another

penalty, increase the penalty function over generation referred to as dynamic

penalty, meaning that the constraints in earlier generations are less penalised

than the constraints in later generation, therefore, the drawback is, if the penalty

factor is badly selected, the solutions could converge to a non-optimal solution

space.

Furthermore, in the same survey, the author has also proposed a method

called Co-evolutionary penalty, where two penalty values are used to distinguish

the number of violated constraints, and the corresponding amount of violations.

They are also two sub-populations, where the first contains the individuals, while

the second implements the set of weighted combinations used to calculate the

fitness function and also contains the penalty factors. The drawback of this

method is the addition of extra-parameters, also the requirement of initialising

them. Additionally, Mani & Patvardhan (2009) has proposed an improved version

of Co-evolutionary, by using a self determining and regulating penalty factor,

however this method still required two sub-populations and it is expensive in

computational time.

Another interesting constraint handling, unlike the previous constraint, is

based on penalty functions. This method proposes to repair invalid solutions

in order to turn them into valid solutions. It means that the encoding design

variable is then modified to suit the constraint. Salcedo-Sanz (2009) proposed

a review of the main repair mechanism used to handle constraint, where he de-

scribed the procedure and applications of different repair mechanisms. One of

the interesting repair mechanisms mentioned, was applied to gene permutation

due to cross-over procedure, where additional operators were used to modify the

crossover operator referred to as partially mapped operator (Goldberg & Lingle
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1985) and tie breaking crossover. Mitchell et al. (2003) proposed a combined re-

pair operator named GeneRepair with crossover and mutation operators, where

it is based on two tasks, one is for fault detection and the second is for cor-

rection. Repair operators increase the valid search space, however they do not

necessarily improve the performance of the algorithm. In this thesis, a problem

specific repair mechanism was proposed to modify solutions obtained by the op-

timisation algorithm to produce new solutions with specific minimum value for

the reserve power (see Section 5.2.2, in Chapter 5). This repair mechanism can

also be applied during the design process to quickly obtain solutions that meet

specific performance based on a set of existing solutions.

The literature on EA is expanding (Zhou et al. 2011), (Khajehzadeh et al.

2011). In Vachhani et al. (2015) an excellent survey on EA handling multi-

objective problem is provided, where various optimisation algorithms are com-

pared more particularly in terms of diversity and convergence. The following

section will describe Swarm Intelligence algorithm.

2.4.2 Swarm Intelligence algorithm

Swarm Intelligence is a promising search area of optimisation, which is mainly

based on understanding and computerising the behaviour of various swarm of

animals and insects, like fish, birds, bees or ants (Karaboga & Akay 2009). Re-

searchers have focused their attention to them, because of their intelligence of

self-organisation to solve problems (Martens et al. 2011). The same rules defined

above in EA, can also be applied to Swarm Intelligence algorithm. The rest of this

section will review some relevant Swarm Intelligence algorithms for the interest

of this thesis.

Cuckoo Search (CS) was originally created by Xin-She Yang, where it is based

on the behaviour of the broad parasitism of certain CS (Yang & Deb 2009).

The algorithm is integrated with Levy Flight as a random walk to enhance its
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performance, and it only requires two parents (Pavlyukevich 2007), however its

disadvantage is to select the value of its step (Gopal Dhal et al. 2015). CS is

population based, where CS lays eggs in communal nests of other birds, with the

eggs considered to be the solution of the objective function.

There are hybrid CS, which combine different algorithms, i.e Kanagaraj et al.

(2013) have proposed CS integrated with genetic operator to solve the reliabil-

ity and redundancy allocation problem. It was confirmed based on experimental

tests, that the proposed method was efficient in terms of balance between explo-

ration and exploitation (Kanagaraj et al. 2013), as crossover maintain the parent

cuckoo birds identity and at the same time creating diversity in the search space,

while the mutation of CS is considered as local search by making small changes in

the design variables. Rani et al. (2012) proposed hybrid of modified CS by inte-

grating it with two evolutionary algorithms, Particle Swarm Optimisation (PSO)

and GA, where it was applied as multi-objective optimisation to the location of

amplitude and phase of symmetric linear array element. The results achieved

good improvement in comparison to original CS.

Bat algorithm (BA) was created by Yang (2011a). The main idea of the al-

gorithm is based on the echolocation of micro-bats, where micro-bat used echolo-

cation to detect their prey, and avoid obstacles. Additionally BA can be more

effective as it uses frequency tuning and parameters control to influence explo-

ration and exploitation (Yang 2010). Different variants of the algorithm have

been published. Algorithm proposed by Yang (2011b) was applied to solve Multi-

objective functions in design of structure, and results shows that BA is an efficient

optimiser. Fister et al. (2013) have proposed an hybrid BA integrated with Dif-

ferential Evolution (DE) algorithm, where different experiments were realised on

test functions. It was shown that hybrid BA outstandingly improved the results.

Firefly algorithm is based on the flashing patterns and behaviour of tropical

fireflies (Goel & Panchal 2014). This algorithm is mainly a mutation based. Two
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iterative loops are used to compare each firefly brightness (objective functions),

and the firefly with the strongest brightness is attracted by the firefly with weakest

brightness. Consequently, the fireflies can be subdivided into various groups, and

each group can swarm around a local mode dominated by the firefly with the

strongest brightness. The drawback of firefly algorithm, in the case of multi-

objective problem is that weighted sum method must be applied to reduce them

into one single scalar, as the only concern is the attractiveness of fireflies. Liu

et al. (2012) have demonstrated the effectiveness of Firefly algorithm applied to

path planning problems. Arora & Singh (2013) have proposed a conceptual study,

by comparing Firefly algorithm, Bat algorithm and Cuckoo Search, where it was

concluded that FA was better in terms of finding optimum solution, as well as

performing local search.

Flower Pollination algorithm is a new type of optimisation developed by Yang

(2012), where the main concept of the algorithm is based on the flower pollination

process of flowering plants. In this algorithm, there are no explicit crossovers.

Additionally, it uses the current best solution among the population to make the

next move. Consequently, the algorithm can possibly be trapped in a local mode.

Flower Pollination algorithm has been extended to multi-objective function in

Yang et al. (2013), where it is applied to solve a disc brake design problem.

2.4.3 Deterministic algorithm

The main concept of the algorithm evoked in this thesis is stochastic-based. There

are also deterministic-based algorithms, where they are designed to search for

global best solution (Arora 2011). The basic deterministic algorithms are Steep-

est Descent method, the quasi Newton method, the Newton-Raphson method or

the Levenberg-Marquandt method (Colaço & Dulikravich 2011). These type of

algorithms are mainly used for non-linear minimisation problems. Their func-

tion is based on an iterative process, where after a certain number of iterations,
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the objective function converges to its minimum value. A more general form

describing the iterative process can be defined as follows:

Y k+1 = Y k + ξkEk (2.14)

where Y , ξ, E and k, denote for the vector of design variables, the search step

size, the direction of descent and the number of iterations, respectively. The

following statement summarises some of the deterministic algorithms:

• Steepest Descent (Fletcher & Powell 1963): this method is based on basic

gradient method, where the principle is to focus the search on the opposite

direction of the locally highest variation of the objective function, such that

to locate its minimum value .

• Newton-Raphson (Polyak 2007): this method is similar to gradient method.

It is a powerful technique of solving equations numerically. It was originally

formulated by Newton, and later on the idea was applied into polynomial by

Raphson. It is mainly based on linear approximation, where the extension

broad by Raphson is the usage of the second derivative.

• Quasi Newton (Shanno 1970): This is another Newton based, except there

is no need of second derivative. However, it utilises the Hessian based on

the first derivative. This method is computationally faster, but it had a

slower convergence.

• Levenberg-Marquandt (Lourakis 2005): this method is based on an iterative

process that locates the minimum of the ordinary least square norm. It has

the futures of both Steepest Descent and Gauss-Newton. When the current

solution is far from the true solution, it follows the steepest descent method,

however when it is closed, it behaves as Gauss-Newton method.
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The drawback of deterministic algorithm is that the complexity can increase

with the number of design variables (Talbi 2009). For the purpose of this thesis,

interior-point algorithm (Coleman & Li 1996) from Matlab toolbox Fmincon will

be used as benchmark. Interior point algorithm can be considered as linear or

non nonlinear programming, where optimisation is realised by going through the

middle of the solid space defined by the problem rather than around its surface

(Forsgren et al. 2002). Further variant of Fmincon algorithm are Trust-Region-

Reflective Optimization (Byrd et al. 2000) and Active-Set Optimization (Gill

et al. 1981).

Having reviewed alternative optimisation algorithm, the next two sections

present their application to gear ratio and gear shift map design.

2.4.4 Gear ratio design

The main components of a vehicle transmission are represented by clutch and

gearbox, as they connect kinematically the engine to wheel drive. The gear ratio

design is a complex process, as it is based on vehicle dynamics and must be ro-

bust enough. This design problem has been addressed in a number of text books

e.g. Naunheimer et al. (2010), as well as in scientific journals and conferences

publications. A process to design intermediate gears ratios design based on tra-

ditional geometric and progression methods for a 6 speed AMT was implemented

in Singh et al. (2012). It describes the two methods for intermediate gears ratios

design based on geometric and progression methods. Newman & Dekraker (2016)

used gear ratio progressive method to analyse carbon emissions, driveability and

performance for a given transmission. It was concluded that the variation of

progression method parameters were fairly insensitive to emissions, however the

final drive variation have a bigger impact on emissions.

Gear ratio performance can be analysed by using various road conditions,

maximum vehicle speed, intermediate gear ratio selection, engine speed versus
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vehicle speed characteristic curve, tractive effort and maximum vehicle speed of

each gear ratio (Kasseris & Heywood 2007). In design criteria for gear ratio, the

weight is considered to be one of the most important aspect in terms of cost and

fuel consumption, as well as the bending and wear strength of the gear tooth

(Chen & Usman 2001).

Shamekhi et al. (2014) presented a gear ratio optimisation, where a neural

network was used to obtain a model of the transmission system which was fast to

execute. It was observed that such an approach required a massive set of training

data to obtain an accurate model. The model was subsequently exploited by a ge-

netic algorithm (GA) to optimise the gear ratio parameters. Shariatpanahi et al.

(2004) have combined GA with neural network to optimised gear ratio. Two mod-

els were defined using neural network and used in parallel during optimisation.

The first model was used to calculate the acceleration, maximum vehicle speed,

and gradability, while the second model was applied to calculate fuel consump-

tion and emissions. The reason of using two models based on neural network was

to obtain two simplified accurate models. However the computational time can

be costly by running the two models during optimisation. Casavola et al. (2010)

have proposed gear ratios optimisation, where a fuzzy logic was used to defined a

gear shifting strategy based on engine speed, engine torque, vehicle speed, brake

pedal and throttle position. This simplified model was used to minimise fuel

consumption by optimising gear ratios. Therefore, this model and optimal gear

ratios are only used for benchmark, however they cannot be used for commercial

vehicles as their driveability is poor.

Yokota et al. (1998) proposed a GA optimisation and a nonlinear integer

programming (NIP) problem formulation for gears weigh reduction based on gear

dimension, bending and torsional strength. 44.8% reduction of weigh and 18.5%

reduction in mean radius were achieved. Whilst such results were promising, the

authors required to carry out additional simulation to ensure that the solutions
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were realistic. Golabi et al. (2014) have proposed a gear ratio optimisation for

volume and weight reduction, where the optimisation algorithm was implemented

within the MATLAB function Fmincon. The optimisation methods described are

used to improve the existing results or to meet the design requirements. There

is a lack of benchmark comparison in terms of algorithm. In addition, the gear

ratio bandwidth is missing in most cases. The latter is however a requirement

according to the technical standard of SAIC Motor and BorgWarner Design for

Dual Clutch Transmission (see Section 3.4.5, in Chapter 3).

In literature, several approaches have been applied to optimise vehicle power-

train system. Hu et al. (2010) have applied GA to optimise the shift quality of a

DCT, where a trade-off was made between jerk and friction as objective function.

Ye et al. (2004) have applied GA to minimise fuel consumption and emissions

of a four cylinder engine. The main objective was to find the speed-load point

with the minimum Brake Specific Fuel Consumption (BSFC) when using Vari-

able Valve Timing (VVT) and Variable Compression Ratio (VCR) engine. It was

noticed that the improvement of fuel economy and emissions was occurred at low

speed and mid load region.

Having reviewed the gear ratio design and optimisation methods, it can be ob-

served that the most important design criteria are fuel consumption and emissions

as well as gears weight, with driveability mentioned in only a few publications.

In addition, the optimisation algorithms are often used without modifications

and the problem formulation consider the variables to optimise directly. There

is therefore an opportunity to develop more efficient problem formulation as well

as introduce problem specific features in the optimisation algorithms to improve

the coverage and convergence of the algorithms.
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2.4.5 Gear shift map design

Gear shift map design methodologies are complex. The first shift maps are de-

termined using design based-software. Initially the shift points are obtained from

vehicle dynamic characteristic by determining the intersection between two accel-

eration curves of two adjacent gears (Xi et al. 2009), (Liu et al. 2009) and (Kirtane

n.d.). Most of the methods developed have not focused on ensuring that gear shift

map results in good vehicle’s driveability. Such task is traditionally reserved to

calibration engineers. Ngo, Hofman, Steinbuch & Serrarens (2013) have proposed

alternative gear shift map design, which alleviates the issue of driveability, where

the shift points are obtained from statistical data of various driving cycles, also

showing an acceptable driveability by comparing different acceleration profiles.

Gear shifting strategy is a very important aspect of reducing fuel consumption,

as it can be adapted to driver behaviour as well as the vehicle’s environment.

Santiciolli et al. (2015) described a gear shift strategy optimisation over the drive

cycle FTP-72 (Barlow et al. 2009b), using a multi-objective genetic algorithm

(MOGA), where the trade-off was to maximise performance and fuel economy.

The optimisation results demonstrated a good trade-off between performance and

fuel economy using a gear shift strategy. This method is only based on a known

driving cycle, and use the current driving cycle shift position to shift earlier.

Ha & Jeon (2013) described an adaptive gear shifting strategy based on torque

and traffic condition, where the constraints are limited to the maximum and

minimum engine rotation and engine torque. Dovgan et al. (2012) used throttle,

brake and gear management as decision variables to improve performance and

fuel consumption over a known drive cycle, however the optimum solutions were

exhibiting an uncomfortable jerk, which can compromise the vehicle driveability.

Kim et al. (2007a) proposed an integrated transmission control algorithm to assist

the driver power demand via throttle pedal acceleration. This method was based

30



Background and literature research

on dynamic programming (DP). It was demonstrated that the transmission shift

map produced by the algorithm was drivable. However this method was based

on an online tuning of the transmission shift map. Modifying the transmission

shift map online required additional validation on road testing in order to be fully

accepted by manufacturers.

Work directly relevant to this thesis include GA application to optimise a gear

shift map. it has been used in Yin et al. (2013) to optimise the gear shift map of

an automated manual transmission (AMT), where the objective functions were

performance, fuel and emissions. A weighted sum method was used to combine

the multiple objective functions into one single scalar. The only design variable

was the vehicle speed, assuming a given throttle position, while the constraints

were simply minimum and maximum engine speed, and engine output torque. A

simple GA was then used to optimise the velocity of a given shift schedule. Details

omitted from Yin et al. (2013) work include the design variables formulation and

the type of normalisation procedure adopted. Combining all objective functions

into one single scalar does not necessarily reflect fully the qualitative criteria of

an optimised shift map. Considering a multi-objective genetic algorithm (Konak

et al. 2006) can be more beneficial at observing the trade-of between competing

objective functions.

For gear shift map optimisation, other techniques have been applied and can

be found in the literature. In Le Guen et al. (2011), a gear shift map optimisa-

tion method was proposed based on AVL Cruise in built software Cruise GSP

Optimization. This method gives only an indication to obtain an optimal gear

sequence on a given driving cycle. A combined weighted sum was used to combine

objectives expressing fuel consumption and CO2 emissions into one single scalar.

The main concept of this method was to focus on moving the engine operating

point towards the most efficient area of the engine fuel map. Thereafter, the gear

shift point were then reflected on the gear shift pattern to form various optimum
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zones for each gear ratio. Then, Cruise GSP Optimization was used to adjust

the upshift and downshift points around the optimum zones, which in fact reflects

the optimum gear shifting point. This method gave good optimised gear shift

map. However the problem formulation was not detailed.

Various techniques have been applied to optimise gear shift map. Li & Hu

(2010) have proposed a fuzzy neural network to define an optimum gear shifting

decision maker. Kim et al. (2007b) have proposed an optimum decision maker

for gear shift and throttle position using dynamic programming (DP), where fuel

consumption is considered as a cost function to be minimised. Fu & Bortolin

(2012) have proposed a model predictive controller combined with DP to find

an optimum gear shift sequence, considering fuel consumption as cost function.

These method are mainly designed for real time driving, where an indicator can

advise the driver, when to change gear.

Having reviewed the algorithms used to solve the problems considered in this

work, has highlighted research opportunities in applying other evolutionary algo-

rithms such as cuckoo search and variants of multi objective genetic algorithms.

Most optimisation strategies presented do not exploit problem specific features

nor design variable formulation to improve both solution coverage and speed of

convergence. Finally, whilst normalisation procedures are used, there is little

mention of the details of these normalisation procedures. The main objectives

considered or gear shift map optimisation relate to fuel/CO2 and driveability/re-

serve power. There is therefore an opportunity to investigate alternative objective

formulation to help quantify the differences between alternative solutions with

similar objective values for fuel/CO2 and driveability/reserve power. The next

section reviews the software tools used by industry and academia to support the

design, optimisation and calibration of gear shift map and gear ratio.
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2.4.6 Software tools used for gear ratio and gear shift map

Simulation tools are extensively used in the automotive industry to model, reduce

the cost and speed up the vehicle systems development. Simulation tools are

used as part of the design process, to predict and understand specific vehicle

systems behaviour and performance, as well as for testing, systems improvement

(or optimisation), validation and calibration before the vehicle can be put into

production.

They are many simulations tools in the automotive area. This review focuses

on software tools associated with gear ratio and gear shift map design and opti-

misation. These includes: AVL Cruise, MATLAB/Simulink, dSPACE, CATIA,

AMESim, GT-Suite, ADAMS, ADVISOR, veDYNA, Modellica, ROMAX.

MATLAB/Simulink is the main environment used in the automotive indus-

try from an electrical and software perspective for vehicle simulation, algorithm

development, optimisations and research (Xi et al. 2009).

For example MATLAB/Simulink was used in General Motor to analyse and

determine transmission gear content required to minimise fuel consumption for

various powertrain system developed (Robinette 2014). These tools can be ap-

plied to a variety of vehicle simulation applications. More specifically, AVL has

developed a simulation package (Le Guen et al. 2011) to optimise gear shift pat-

tern.

dSPACE (Lucente et al. 2007) is mostly used for rapid prototyping, designing

and testing of mechatronic systems. AMESim is used to simulate vehicle dynam-

ics for design and optimisation before integration. More specifically it has been

used in Song et al. (2014) to analyse the effect of gear shift characteristics when

developing an electric oil pump for automatic transmission and in Xiang et al.

(2013) to study the shifting schedule for a speed electric vehicle.

CATIA is well known for optimising and analysing gears. Rajan & Usmansha
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(2014) have optimised an automotive transmission gear box for weight reduction

and improve fuel consumption. GT-Suite (Ortiz-Soto et al. 2012) was used to

model combustion and heat transfer of an engine, in order to optimised fuel

consumption over various drive cycles. Lin et al. (2009) have used ROMAX

package to assess gearbox optimisation based on design specification.

Simulations packages have played an integral part in the development of tools

for fuel economy, Argonne National Laboratory had developed various simulation

to study fuel efficiency for electric drive vehicle technologies (Moawad & Rousseau

2014), and gear reduction study to improve energy management strategy (Kim

et al. 2012).

Ford Motor has described a simulation study to design a gear shift map for a

Dual Clutch Transmission (Liu et al. 2009), where Downshift and Upshift point

are initially defined using a vehicle dynamic model. FEV has developed a tool

referred to as ShiftAnalyzer (Kirschstein et al. 2009), for online calibration of

vehicle powertrain. It has been used to optimise and calibrate the shift quality

of the BMW mini Cooper automatic gearbox.

The software tools have a massive advantages, as they can be used to reduce

vehicle development cost, reduce weight, and optimise software applications, re-

sulting in reduced fuel consumption. However software usage had some limitation

as it cannot give accurate and uniform views onto systems based on theories (Broy

2006).

There are various industry standards used for the design and optimisation of

gearbox such as, AGMA standards for gears as well as the ISO6336. ANSI, JIS

and DIN standards are also used for gear teeth.
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2.4.7 Motivation to use Evolutionary Algorithm & Swarm

Intelligence

Considering the analysis above, the use of EA and swarm intelligence is quite

simple to justify the motivation of their applications. Firstly, avoiding the for-

mulation into a specific mathematical framework, as it can be costly and time

consuming and some of the constraints do not need to be reformulated in a pre-

defined mathematical structure. Secondly, reducing CO2 emissions, is the main

objective in this thesis. However, diminishing CO2 emissions can conduct to de-

terioration of different aspects of vehicle good response. Very often, driveability

is the measure delimiting how far the optimisation can produce solutions to re-

duce CO2 emissions. Additionally, different objective functions are considered to

precisely measure qualitatively an obtained gear shift map or gear ratio from the

optimiser.

In order to achieve these goals, the use of EA and swarm intelligence appears

to be a promising alternative to traditional approaches. These algorithms can

consider any objective functions and constraints, regardless of their mathematical

framework.

EA and swarm intelligence have been used in many applications, with multi-

objective functions. GA has been applied across many fields, as per number of

publications (Khajehzadeh et al. 2011). Shariatpanahi et al. (2004) have applied

a GA with neural network to optimise gear ratio, Yin et al. (2013) have used

aggregation weighted sum to combine several objective functions in attempt to

optimise gear shift map. Swarm intelligence have gained enormous attentions,

due to their successful applications, CS has been applied to welded beam design

and disc brake design (Yang & Deb 2013).

In particular, all these methods do not require any gradient evaluation, which

means that the reformulation of objective functions is not necessary any more.
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EA and swarm intelligence have also got a drawback. They cannot guarantee the

actual optimality of the solution for a given problem. Several arguments can be

raised to tackle this issue:

• An algorithm having the ability to find a good gear shift map or gear ratio,

by satisfying all constraints, and considerably better than the initial one, is

a massive gain for the industry and environment.

• EA and swarm intelligence can permit to solve the initial problem, by ob-

taining satisfactory results within a reasonable time.

2.5 Concluding remarks

This chapter has given an overview of traditional analytical gear shift map and

gear ratio design. Amongst these, the methods adopted by SAIC motors will be

used in Chapter 3 to create the initial solutions that will be further refined by

the optimisation approaches described in Chapters 4 and 5.

Both deterministic and stochastic methods are applicable to this constrained

multi-objective optimisation problem. This work will develop methods based on

the most appropriate stochastic algorithms, namely genetic algorithms and cukoo

search, as well as deterministic algorithm, namely the interior-point algorithm.

Common to all the optimisation approaches considered is the need to evaluate

the appropriateness of candidate solutions. The validated model required to

evaluatealternative gear shift map and gear ratio is described in chapter 3.

The criteria traditionally used to differentiate between alternative solutions

have been reviewed. The adopted criteria as well as the additional criteria de-

veloped to help quantify the benefits of alternative solutions are formulated in

Chapter 4. These criteria have been combined using both weighted sum and

Pareto approaches, see Chapter 4.
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Chapter 3

Powertrain modelling

3.1 Introduction

This chapter describes the models and algorithms exploited in subsequent chapter

to optimise gear ratio as well as gear shift map. The chapter starts with a de-

scription of the ROEWE 950 characteristics and the validation of its proprietary

transmission model. It is followed by a technical description of the traditional

methods adopted to design gear shift map and gear ratio based on technical

standard of SAIC Motor and BorgWarner Design for Dual Clutch Transmission.

These methods have been included to provide an understanding of the process

which is to be complemented by the optimisation strategies developed in Chap-

ters 4 and 5.

3.2 Vehicle model

In order to study and validate the optimisation algorithms in this thesis, a DCT

model has been made available by SAIC Transmission team. This section presents

the model description of ROEWE 950, a conventional style saloon car, equipped

with 2 litre turbocharged 4 cylinder engine featuring variable camshaft timing
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(VCT) and a start-stop system. The engine is mated to a 6 speed Dual Clutch

Transmission (DCT 360 variant). Within the Transmission Control Unit (TCU)

resides the so-called shift map. This mapping is designed with respect to the

engines operating range so that the transmission is in the right gear at the right

time e.g. when the driver requires maximal torque, depending on the prevailing

conditions, typically the transmission will select a lower gear moving the engine

further into maximum torque producing range (high RPM combined with a wide

open throttle).

The DCT 360 essentially comprises two transmission units that are indepen-

dent of each other. Each transmission unit is constructed in the same way as

a manual gearbox. Allocated to each transmission unit is a multi-plate clutch.

Both multi-plate clutches are of the wet type (operating in oil) and hydraulically

actuated. They are regulated, opened and closed by the mechatronics system

using hydraulic oil depending on the gear to be selected.

1st, 3rd, 5th and reverse gear are selected via multi-plate clutch 1. 2nd,

4th and 6th gears are selected via multi-plate clutch 2. One transmission unit

is always in gear and the other transmission unit has the next gear selected in

preparation but with the clutch still in the open position. Every gear is allocated

a conventional manual gearbox synchronisation and selector element (Kulkarni

et al. 2007). The following section describes the vehicle model including the DCT

and engine model.

3.2.1 Description of the vehicle

The vehicle model with DCT was implemented using the commercial software

MATLAB/Simulink, which is the standard package of modelling uses in industry.

The vehicle model is divided in four subsystems (see Figure 3.1) which are:

• Vehicle speed: in this optimisation process, the main objective is to re-
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duce CO2 emissions by using the well-known NEDC drive cycle, approved

among and homologue by the United Nations Economic Community for

Europe (ECE) regulation 101 (United Nations 2006). The vehicle model

is designed to consider as input a drive cycle. By default, the NEDC in

implemented, however the model also include different drive cycle such as

WLTP, ARTEMIS Urban, JAPANESE 10-15 Drive cycle. A more detail of

these drive cycle can be found in Barlow et al. (2009a).

• Transmissions output torque calculation: upon the vehicle speed, an esti-

mated engine torque is calculated. This allows to define the driver require-

ment in terms of engine torque.

• Transmission model: considering an estimated engine speed and driver de-

mand, a transmission control unit (TCU) is used to define the corresponding

gear ratio, and calculates the engine speed.

• Engine model: knowing the driver demand (torque and throttle position)

and engine speed, the engine fuel map BSFC is then utilised to estimate

fuel consumption, where the CO2 emission can be derived. Noticed that,

this task is crucial in this thesis, as the optimisation is mainly aimed to

reduce CO2 emissions.

The above vehicle model specification is given in Appendix A. The following

section gives a comparative vehicle model with the reference data obtained from

rolling road.
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Figure 3.1: Representation of vehicle model implementation in Simulink

3.2.2 Model validation

Having described the vehicle model in Simulink, a verification of the model must

be realised in order to validate and accepted it as an abstract representation of the

real system. This is achieved by comparing vehicle model against approved data

made available from rolling road data. Measured data were obtained from rolling

road over the NEDC, then converted into excel spreadsheet, which made easier to

extract the data using MATLAB/Simulink environment for comparison studies.

The original data runs over a 1250s period with sample interval at 1ms and

10ms. For practical use, the simulation and experimental data were re-sampled

at the same rate at 10 ms. Figures 3.2 and 3.2 represent a comparison between

simulation and experimental results on rolling road, where both considered initial

shift map (see Appendix B) and the NEDC.

The vehicle speeds are almost comparatively similar, except the driver data

included a maximum error of magnitude± 2 km/h for set of data. Therefore, both

engine speed show a good compromise in both dynamic and steady state, with

some minor error difference. Regarding the gear shift map, a minor difference can

be noticed on the first set of data at higher speed, which could be due to driver

throttle position and vehicle speed variation.
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Figure 3.2: First set of validation data representing comparison between simula-
tion and experimental results from rolling road over the NEDC. Theor V Speed,
Exp V Speed, Theor Eng Speed, Exp Eng Speed, Theor Gear Sel and Exp Gear
Sel denote for vehicle speed, engine speed and gear selection used in simulation
and rolling road, respectively.
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Figure 3.3: Second set of validation data representing comparison between simu-
lation and experimental results from rolling road over the NEDC. Theor V Speed,
Exp V Speed, Theor Eng Speed, Exp Eng Speed, Theor Gear Sel and Exp Gear
Sel denote for vehicle speed, engine speed and gear selection used in simulation
and rolling road, respectively.
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3.2.3 Fuel consumption and CO2 emissions calculation

This subsection describes fuel consumption (Mashadi & Crolla 2012), and CO2

emissions (US EPA 1999) calculation use in this thesis.

• Fuel consumption

Fuel consumption represents the engineering measure to determine the

amount of fuel required to travel a given distance. It is obtained from

the engine power and engine BSFC map. It is described as follows:

Fuel(g/s) = Pe ×BSFC. (3.1)

where Fuel(g/s) denotes the fuel mass. Pe is the engine power expressed by

the product of engine speed and torque that are also used to define the

BSFC from the engine map.

The total fuel map of an entire cycle is defined by summing the individual

fuel masses:

Fuel(g) =
N∑
i=1

Fuel(g/s)(i). (3.2)

where N denotes the number of sampled data over the driving cycles con-

sidered.

The fuel consumption can be derived a given distance as follows:

FC(l/100km) =
Fuel(g)

dcycle × ρfuel
× 100. (3.3)

where dcycle and ρfuel denotes for a given driving cycle distance, and the den-

sity of the fuel respectively. The factor 100 is used as the fuel consumption

is defined by l/100km.

• CO2 emissions
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The estimation of CO2 emissions from fuel consumption is determined from

the carbon content of fuel and then applied to the amount of fuel burned

redundant. When the fuel is burned, 87% is carbon contents, where the

total mass of carbon is obtained. In order to determine the total CO2

emissions, the carbon emissions is multiplied by the molecule weight ratio

of CO2 (44.01 g/mol) and carbon (12.01 grams).

CO2emissions = Fuel(g)Cc,c(%) ×
CO2(g/mol)

C(grams)

. (3.4)

where Cc,c(%), CO2(g/mol) and C(grams) denote for percentage of carbon con-

tent from fuel, molecular weight of CO2 and molecular weight of carbon

respectively.

3.3 Gear shift schedule design

An automatic transmission gear shift schedule represents the vehicle speed at

which each gear shift shall occur. It is usually described as a function of pedal

position for a given gear ratio change. The aim of this section is to describe

gear shift schedule design based on vehicle dynamic. The shift schedule design is

predominated by two objectives which are the vehicle dynamic performance and

fuel economy. However a good compromise must be applied between performance

and economy to ensure that vehicle driveability is not detrimentally affected.

The approaches to establish these two methods are expressed in the following

subsystems:

3.3.1 Equation of motion

The longitudinal vehicle dynamic equation defining the equilibrium relation, be-

tween drive forces and resistance forces is applied to determine the vehicle ac-
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celeration, speed, traction forces, rolling resistance force, and aerodynamic force.

The characteristics of engine torque map alongside with fuel consumption map

(see Figures 3.4 and 3.5) are required to design the shift schedule. The engine

torque map was modelled using the so-called Magic Torque formulae (Mashadi &

Crolla 2012), where the fuel map was created using MATLAB handle function.
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Figure 3.4: Engine speed-torque-throttle 3D map
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Figure 3.5: Engine speed-BSFC-throttle 3D map

The driving forces developed by engine must overcome the rolling resistance

(Froll), aerodynamic drag (FaeroDy), climbing resistance (FClimb) and acceleration

resistance (Fac) as describes in Xi et al. (2009) and Kirtane (n.d.).

FTF = Froll + FaeroDy + FClimb + Fac (N) . (3.5)

The vehicle acceleration is expressed as:

Acc =
FTF − Froll + FaeroDy + FClimb + Fac

δnMv

. (3.6)

where Acc is the acceleration of the vehicle, Mv is the vehicle mass, δn is the

equivalent mass of rotary mass of vehicle, influenced by the inertia of the engine

flywheel (Je), vehicle wheels (Ji) and transmission ratio (Ji), which is expressed

as follows:

δn = 1 +
JWJii

2
gi

2
FJe

R2
WMv

. (3.7)
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The vehicle traction force is expressed as:

FTF =
TeigiFηT
RW

. (3.8)

where Te is the engine output torque, ig is the gear ratio of transmission, iF is the

final gear ratio, ηT is the transmission efficiency, and RW is the radius of wheel.

The air resistance force is expressed as:

FaeroDy =
CDAV

2

21.15
. (3.9)

where CD is air resistance coefficient, A is frontal area of vehicle, and V (km/h)

is the vehicle speed.

The rolling resistance force is expressed as:

Froll = 0.01(1 + V/147)Mvg. (3.10)

where g is the gravitational acceleration.

The vehicle speed is mainly related to the engine and gear ratio, where it is

expressed as:

Vi =
2πRWωe
60igiF

. (3.11)

where Vi and ωe is the vehicle speed at given gear position and engine speed

respectively.

3.3.2 Design principle based acceleration

The vehicle longitudinal acceleration is calculated by Equation (3.6). The engine

torque map is a function of engine speed and throttle position, where the engine

speed was varied from the minimum (1000 RPM) to the maximum (6000 RPM),

and at different throttle angles from 10% to 100%. The relationship between ve-
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hicle acceleration and speed (see Equation (3.11)) can be calculated at different

gear position with different throttle pedal angle. The shift schedule design for

dynamic performance (see Figure 3.6) is to drive at the maximum vehicle accel-

eration. However, the shifting point is selected at the intersection point of two

acceleration curves adjacent gear at the same throttle angle.
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Figure 3.6: Vehicle dynamic performance curves with different gear position and
throttle pedal angle

g(i)→(i+1) = Acc(i) ∩ Acc(i+1). (3.12)

where g(i)→(i+1) is the gear shift at a same throttle position from g(i) to gear

g(i+1) at the intersection of acceleration curves Acc(i) and Acc(i+1). If there is no

intersection between acceleration curves Acc(i) and Acc(i+1), then the maximum

speed of the gear g(i) is considered. The Upshift schedule is obtained by connect-

ing together shift point of the same gear between different throttle positions (see

Figure 3.7).
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Figure 3.7: Upshift gear shift map based on acceleration curves

3.3.3 Design principle based traction force

Shift schedule based traction force is similar to the acceleration curves, how-

ever the Equation (3.8) which is derived from the vehicle longitudinal is used to

establish the shift point (see Figure 3.8).
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Figure 3.8: Upshift gear shift map based on traction force curves
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3.3.4 Design principle based minimum fuel, BSFC

Shift schedule based brake specific fuel consumption (BSFC) map is based on the

minimum fuel consumption (see Figure 3.9), where the shift point is following the

same as the acceleration shift point.
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Figure 3.9: Upshift gear shift map based on BSFC curves

Figure 3.11 is to compare different methods to define an initial gear shift map.

It is noticed that the ideal fuel consumption for a gear shift map is converging

toward the left side of the map which corresponds to the most efficient area of the

BSFC map. It might be ideal for fuel consumption to consider a shift map design

based on BSFC map, however the driveability might be worst. The gear shift map

should be design based on a compromise of fuel consumption and performance.

The next of this study will be to design an algorithm capable to select a shift

map in order to satisfy the vehicle driveability as well as fuel consumption and

vehicle performance.
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Figure 3.10: Upshift gear shift map on BSFC map
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Figure 3.11: Upshift gear shift map, based on acceleration, traction force, BSFC
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3.3.5 Criteria of gear shift map

This section discussed different criteria use to qualify a Dual Clutch Transmission

gear shift-map. Also, simulation results of different design described in Subsection

3.3.2, 3.3.3 and 3.3.4 are compared with a standard gear shift map. In order

to compare different results against each other, every shift were converted as

a traction point (see Figure 3.12), and the following expression describes the

conversion from gear shift point (in km/h) to traction force:

Ftstd = Te(ωe)
igη

Rw

. (3.13)

where ig and Rw are the gear ratio and wheel radius respectively. Te is the engine

torque expressed a function of engine speed ωe (see Subsection 2.4, and Subsection

2.3.2, in Chapter 2).
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Figure 3.12: Traction force curves with shift point between two adjacent gears
compare with standard and minimum BSFC shift map

Figure 3.13 represents the minimum fuel consumption curve for each gear

and the intersection between two adjacent curves (black circle). The red circle

represents the standard shift point, while the green is BSFC traction force shift
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point. It can be noticed that both shift points, traction and BSFC shift point

start almost at the same point for lower throttle position, however at higher

throttle position, traction force are significantly reducing.

0 100 200 300

300

400

500

600

700

B
sf

c 
[g

/k
W

h]

Speed [km/h]

 [10% Thr]

 

 

0 100 200 300

300

400

500

600

700
 [20% Thr]

0 100 200 300
250

300

350

400

450

500

550
 [30% Thr]

0 100 200 300
200

300

400

500

600
 [40% Thr]

0 100 200 300
200

300

400

500

600

700
 [50% Thr]

 

 

0 100 200 300
200

400

600

800
 [60% Thr]

Speed [km/h]

B
sf

c 
[g

/k
W

h]

0 100 200 300
200

400

600

800
 [70% Thr]

0 100 200 300
200

400

600

800
 [80% Thr]

0 100 200 300
200

400

600

800
 [90% Thr]

0 100 200 300
200

400

600

800
 [100% Thr]

1st gear
2nd gear
3rd gear
4th gear
5th gear
6th gear
Sh. p.(New)
Sh. p.(Std)
Sh. p.(tf)

Figure 3.13: BSFC curves with shift point between two adjacent gears compare
with standard and traction BSFC shift map

The Figure 3.12 was also defined in the same manner as Figure 3.13, the

conversion from gear shift point to BSFC values is described as follows:

BSFCt = bsfcFN (Te, ωe) . (3.14)

where BSFCt is an handle function in MATLAB used to model the BSFC map

as a look up table, where it is a function of engine torque and speed. It can be

noticed at lower throttle position, the BSFC shift point for standard gear are very

low, while the value increased at higher throttle position.

Table 3.1 is to compare standard gear shift map to gear shift map design

based on tractive force and BSFC map. It can be remarked that the minimum

BSFC design gear shift does not guaranty a good CO2 emission over the NEDC.
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Table 3.1: Zone on BSFC map and CO2 emission over the NEDC

Shift map CO2 [g/km] Zone1 Zone2 Zone3

Standard 198 0.052896 0.11239 0.013851

Traction 228 1.0929 0.13322 0.01092

Standard 202 0.18389 0.14378 0.011415

3.3.6 Final gear shift map design

Downshift schedule

The Downshift schedule is based on a linear convergence or shift buffer zone (Liu

et al. 2009), (Xi et al. 2009). Lower shift point are defined using the minimum

consumption, meaning from 0% to 30% throttle position. From 30% to 100%, a

linear convergence based on engine RPM is used to define the rest of the gear

shift map. Notice that the range of engine is covered by the throttle position.
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Figure 3.14: Initial shift map study
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3.4 Gear ratio design

This section describes different methods for selecting transmission gear ratio.

For a given vehicle and engine specification, gear ratios are designed to satisfy

performance requirement, gradability, fuel economy and acceleration. At first the

low and high gears are defined based on vehicle, engine characteristics and road

condition, after the intermediate gear are calculated.

3.4.1 Main formulas for gear ratio design

The starting point to calculate gear ratio is based on longitudinal vehicle dynamic

formulas.

The total resistive acting against the vehicle is expressed as follow:

FRRTotal
= Froll + FAir + FClim + FAcc. (3.15)

where:

• Froll: Rolling resistance. The rolling resistance is the resistance force acting

on the rolling wheel

Froll = FrcofmTotalg cos(α). (3.16)

where Frcof , mTotal, g and α denote the rolling resistance coefficient, the

whole vehicle mass, gravitational force and road gradient, respectively.

• FAir: Air resistance. The air resistance is made up of the pressure drag

including induced drag, surface resistance and internal resistance.

FAir =
1

2
ρCwAv

2. (3.17)

where ρ, Cw, A and v denote the air density, drag coefficient, front area and
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vehicle speed.

• FClim: Climbing resistance. The climbing resistance represents the gradient

resistance or downhill force relates to the slope descending force and it is

calculated from the weight acting at the centre of gravity:

FClimb = mTotalg sin(α). (3.18)

• FAcc: Acceleration resistance. The vehicle acceleration:

FAcc = mTotala. (3.19)

The diving resistance also called tractive force developed by the engine power

is described as:

Fdrive = Te
itot
Rw

ηtot. (3.20)

where Te, itot, Rw and ηtot denote the engine torque, total gear ratio, wheel

dynamic radius and transmission efficiency, respectively.

The engine power is expressed as follows:

Pe = Teωe. (3.21)

Alternatively, the engine speed can also be expressed as a function of driving

force and vehicle speed:

Pe =
Fdrivev

ηtot
. (3.22)

The equilibrium relation between drive forces and running resistance is nat-

urally obtained from the driving force and total force resistance, using Newton

second law:
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FAcc = Fdrive − Froll + FAir + FClim + FAcc. (3.23)

The main contribution of the powertrain is to offer ratio between engine speed

and road wheel speed enabling the vehicle to move under difficult condition and

reasonably operate in the fuel efficient ranges of the engine performance map.

The following section describes the maximum ratio required iA,max, the smallest

gear ratio and finally the intermediate ratio.

3.4.2 The largest gear ratio selection

The largest gear ratio (LGR) is the starter gear, which is mainly used for slow

driving and starting up the vehicle. A climbing performance (gradeability) α

greater than 50% is normally required for an unladen passenger car. This is to

ensure that the vehicle can tow a trailer and overcome ramp easily, however the

acceleration and aerodynamic are ignored as the vehicle speed is low. The lower

the weigh of the vehicle, the longer the LGR should be (smaller ratio value). The

higher the weight of the vehicle, the shorter the LGR should be (smaller value).

For low torque engines the LGR must be shorter (higher ratio value). The main

driven equation to determine the largest gear ratio is described as follow:

iAmax =
Rwmvehicle+trailerg

(
Frcofcos(α) + sin(α)

)
Temaxηt

. (3.24)

where mvehicle+trailer represents the vehicle mass with a trailer. This is to ensure

that a trailer can be towed and climb a ramp with ease.

3.4.3 The smallest gear ratio selection

The final or the smallest gear ratio will depend on the maximum engine power

delivered to wheels, and the resistive power based on rolling and air resistance.
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The smallest gear ratio is defined as follows:

iA,min = ωe
Rw

Vmax
(3.25)

where Vmax is the maximum vehicle speed delivered by the maximum engine

power. The theoretical maximum speed is defined at the balance point, which

represents the intersection between the resistive power and the engine maximum

power (see Figure 3.15).

Figure 3.15: Performance power curves, where P Ex1, P Ex2 and P Ex3 are the
excess power of Over-revving (racing car), optimality and Under-revving (pas-
senger car) with their respective maximum vehicle speed Vmax1, Vmax2 and
Vmax3

The maximum engine power is given by Equation (3.21), where Te in this

case is the maximum engine torque at full throttle position and it is modelled as

follows:

Temax = aω5
e + bω4

e + cω3
e + dω2

e + eωe + f. (3.26)

where ωe is the engine speed, and a, b, c, d, e, f are the coefficients of a 5th

order polynomial function. A simple least square fitting was used to find the

coefficients and the values are written in Table 3.2.
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Table 3.2: Engine torque full throttle position coefficients

a b c d e f

3.0986e− 16 −8.2934e− 12 7.9418e− 08 −0.00036171 0.78985 −309.89

Consequently, the maximum engine power can be derived as follows:

Pemax = Temaxωe (3.27)

Substituting (3.27) into (3.26), results in the following equation:

Pemax =
(
aω5

e + bω4
e + cω3

e + dω2
e + eωe + f

)
ωe

π

30
. (3.28)

By differentiating (3.28) and equating to zero, the maximum engine power

with its corresponding engine speed can be defined by solving the following equa-

tion :

dPe
dωe

(
aω5

e + bω4
e + cω3

e + dω2
e + eωe + f

)
ωe

π

30
= 0. (3.29)

After defining the maximum engine power and speed, the maximum vehicle

speed is naturally derived at the balance point of the maximum tractive force

(FrTot) and resistive force. The resistive force is expressed as follows:

FRR =

(
FrMg +

1

2
CwAρAirV

2

)
. (3.30)

Alternatively, the maximum tractive force can be defined as a function of the

maximum engine power as follows:

FrTot =
Pmaxηt
Vmax

. (3.31)

By equating both tractive and resistive forces, the following equation is de-

rived:
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Pmax =

(
FrMg + 1

2
CwAρAirV

2
max

)
Vmax

ηt
. (3.32)

By manipulating the maximum power equation ( 3.32), a third order equation

is defined, where the maximum vehicle speed can be derived:

FrMgVmax +
1

2
CwAρAirV

3
max − Pmaxηt = 0. (3.33)

The smallest gear ratio is influenced by the trade-off between the vehicle fuel

economy and performance. The optimum gear ratio can be either modified for

fuel consumption or for vehicle performance. If the gear ratio iA,min increases, the

engine power curve will move to the left of the optimum engine power, and the

vehicle is over geared (Over-revving), which is good for fuel economy. However

if the gear ratio iA,min decreases, the engine power curve will move to the right

of the optimum engine power, and the vehicle is under geared (Under-revving),

which is good for performance. The following equation expressed over geared and

under geared:

Vmax = ωe
Rw

iA,min × Factgear
. (3.34)

where Factgear is a factor to increase or decrease the optimum gear ratio. When

Factgear is less than 1, the vehicle is over geared, however if Factgear greater than

1 the vehicle is under geared.

3.4.4 The intermediate gear selection

The intermediate gears also called discrete gears ratio are linked kinematically the

vehicle and engine speed. The gear shifting is realised through the intermediate

gears. The intermediate gears should be large enough to allows the next lower

gears to be engaged when the engine torque is reached, without outreaching

the maximum engine speed. The greater the number of gear ratio, the better
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the engine can exploits the efficiency of the fuel map, however the gear change

frequency will increase. There are standard methods (Naunheimer et al. 2010),

(Mashadi & Crolla 2012) to determine initial intermediate gears knowing the high

and low gears that will be discussed in the coming section.

Geometric progression design

The geometric progression method is considered as an ideal case, where the gear

is changed at a uniform speed, which results in an engine working range ωH and

ωL (see Figure 3.21). This method requires the engine to operate within the same

speed range, which is naturally selected for best fuel consumption.

After defining the high and low gears ratio, for example for a 6 speeds gearbox

design, the constant step ratio (Kstep) for a geometric progression method. This

can be defined as follows:

ig1
ig2

=
ig2
ig3

=
ig3
ig4

=
ig4
ig5

=
ig5
ig6

=
ωH
ωL

= Kstep. (3.35)

where ig1, ig2, ig3, ig4, ig5 and ig6 are the gear ratios for a 6 speeds gearbox.

Also, multiplying the equalities results in:

ig1
ig2
× ig2
ig3
× ig3
ig4
× ig4
ig5
× ig5
ig6

=
ig1
ig6

= K5
step. (3.36)

which can be also written as follows:

Kstep = 5

√
ig1
ig6
. (3.37)

In a more general form, for an N-speed gearbox:

Kstep = N−1

√
nL
nH

. (3.38)

Finally each intermediate gear is defined as follows:
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igi = igi+1
×Kstep, i = 1, 2, ..., N − 1. (3.39)

Progression design

It can be noticed that the geometrical method produces smaller speed ranges

(δV ) for lower speed ratio, however it produces larger speed ranges in higher

gear, which leads to define the speed ratio as follows:

δVi+1

δVi
= Kstep. (3.40)

Inversely, the gear ratio step can be expressed throughout tractive force range

as follow:

δFi
δFi+1

= Kstep. (3.41)

As shown in geometric progression method, the ratio step of two adjacent

gears was constant. However in the progressive design, the consecutive ratio step

Cstepi is related to a constant factor kfactor:

Cstepi+1
= Cstepi × kfactor. (3.42)

The multiplication of the ratio Cstepi together will equate the ratio of first to

the last gears, which can be written as follows:

ig1
ig2
× ig2
ig3
× ig3
ig4
× ... =

iL
iH
≡ Cstep1 × Cstep2 × Cstep3 × ...CstepN−1. (3.43)

where iL and iH are the low and high gear ratios. By substituting (3.42) into

(3.43), then simplifying results in:
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KN−1
step = CN−1

step1
× k1+2+...N−2

factor . (3.44)

By solving for Cstep1 results in:

Cstep1 = Kstep × k
1−N

2
factor, N > 2. (3.45)

By knowing the value of lower and higher gear ratios, other value of gear ratios

can be determined by using the following expression:

ig2 =
ig1
Cstep1

, ig3 =
ig2
Cstep2

=
ig1

Cstep1Cstep2
, igi+1

=
igi

Cstepi
=

ig1
Cstep1Cstep2 ...Cstepi

.

(3.46)

The gear ratios can be defined now if the factor kfactor is known. A geometric

progression is provided if the kfactor = 1. Only the progression design is made

with kfactor less than an unity. A reasonable value of kfactor is described as follows:

0.8 < kfactor < 1.0. (3.47)

The two main methodologies have been described, the following section will

discuss the results.

3.4.5 Criteria of gear ratio layout

The criteria described in this section are used to qualify how good are the gear

ratio are designed. The results will compare two different methods with the

standard gear ratio supplied by SMTC. As many parameters are involved in the

gear ratio design, this will focus on one case study just for analysis.
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Gradeability with a trailer

Gradeability is defined as the highest grade a vehicle can ascend maintaining

a particular speed (Akilesh Yamsani 2014). A trailer of 1200 kg was consid-

ered including the vehicle mass, where a road grade of over 50% road grade was

set to define the vehicle gradeability. The vehicle is uniform and at low speed,

consequently this is assumed to be null. The following formula describes the

gradeability:

Gradeability =
FDive − Froll − FAir
Mvehicle+trailer

. (3.48)
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Figure 3.16: Gradeability performance

Acceleration-Traction force

Figure 3.17 demonstrates maximum acceleration with a provided set of gear ratios

starting from 1st to 6th, where the Geometric and Progressive ratios are compared

with the standard gear ratios. It can be noticed that the acceleration from gear

1 to 6 reduces while the vehicle speed is increasing, alternatively the reserve

acceleration will naturally decrease. Similarly, Figure 3.18 represents traction
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force for different gears.
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Figure 3.17: Acceleration curves performance
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Figure 3.18: Traction curves performance

Gear ratio and ratio step change

Figure 3.19 compares standard gear ratio with Geometric and Progressive designs.

It can be noticed that the progressive and standard gear ratios are decreasing

similarly. The ratio step is the division of two adjacent ratios, written as follows:
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Table 3.3: Compare different methods with standard gear ratio

ig1 ig2 ig3 ig4 ig5 ig6

Std 13.91 8.04 5.16 3.84 2.93 2.27

Geom 15.62 10.91 7.63 4.33 3.73 2.61

Pro 15.62 7.88 4.69 3.28 2.69 2.61
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Figure 3.19: Gear ratio, step and mean value

δi

δgear
=

ig
igi+1

. (3.49)

The bandwidth is defined as the division of two adjacent ratio steps and it is

written as follows:

(
δi

δgear

)2

=
ig/igi+1

igi+1
/igi+2

. (3.50)

It would be ideal to have a constant step ratio. However, this cannot be

realised because of finite ratio and the usage of double input shaft of Dual Clutch

Transmission. The mean value of the ratio step change should be between 1.07

and 1.09, whilst the bandwidth should be less than 0.135 for this particular design.
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Table 3.4: Gear ratio design mean value

Geom. design Pro. design Standard design

Mean ratio 1 1.18 1.08

Traction loss
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Figure 3.20: Acceleration curves performance

The objective of spacing the gear ratio is to minimise the loss of traction force

(i.e intersection between the traction force curve of 1st, 2nd gear and maximum

traction force, see Figure 3.20) because of the discontinuous stepping of gears.

Traction loss is constant for Geometric design, however for progressive design the

traction loss decreases as gear ratio increases.

Saw profile diagram

Saw profile diagram presents the transmission stepping in the velocity/engine-

speed diagram, also the range of speed a vehicle can exploits under each gear

ratio (see Figure 3.21). It gives a good overview of appropriate configuration of

transmission gear ratios. It also allows to identify the earlier upshift possible

without stalling the engine and the earlier downshift possible without exceeding

66



Powertrain modelling

the engine red line.
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Figure 3.21: Saw curves performance

Fuel consumption
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Figure 3.22: Fuel consumption at 120 km/h

Figure 3.22 shows fuel consumption represented by lines of static operation

of each gear, and the resulting fuel consumption over the range of vehicle speed.

The fuel consumption is calculated as follows:
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FC =
BSFC × Pe
ρfuel × v

. (3.51)

where ρfuel denotes fuel density. The fuel consumption criteria is based on the

largest gear ratio (6th) at 120 km/h, and it is defined in the following table:

Table 3.5: Fuel consumption

Geom. design Pro. design Standard design

Fuel consumption (l/100km) 7.4 7.4 6.3

This section has described the main criteria of gear ratio. The next step will

be to design an algorithm to optimise gear ratio without degrading the vehicle

performance, fuel consumption, emissions and comfort.

3.5 Concluding remarks

This chapter has described the powertrain model of the ROEWE 950 vehicle

with its validation, and traditional design of gear ratio and gear shift map. This

information is then exploited in Chapters 4 and 5 in order to define the problem

formulation and develop algorithms for gear ratio and gear shift map optimisation.
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Chapter 4

Problem formulation

4.1 Introduction

The optimisation problem formulation is fundamental to the efficient determina-

tion of optimal as well as practically realisable solutions. The problem formu-

lation has been described in terms of some parameters and restrictions, where

the parameters chosen to define the gear shift map and gear ratio are identified

as design variables while restrictions are known as constraint conditions. The

optimisation algorithm can then exploit the problem formulation, in order to ob-

tain an appropriate solution. This chapter will present the problem formulation

for i) the gear ship map optimisation ii) intermediate gear ratio design for the

DCT 6 speed and iii) selection of the gear ratios considering Under-revving excess

power. It adopts a traditional approach to problem formulation and includes for

each problem the formulation of design variable, constraints, objective functions

and boundaries on design variables.
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4.2 Gear shift map problem formulation

This section presents the problem formulation for gear shift map optimisation.

The role of the gear shift map is to move the engine towards its most efficient

regions in terms of both emission and performance. However, the designer of

any gear shift map is always constrained by the region that the engine can be

placed on the BSFC map. Limitations arise in standard automated gearbox from

the availability of only a fixed number of discrete gear ratios that are finite in

number. In this thesis a 6 speed SAIC Dual Clutch Transmissions was used to

develop the optimised shift map. The standard shift map is composed of 5 gear

set including Upshift and Downshift.

4.2.1 Objective formulation

The optimisation algorithm should find the best solution, however the decision

as to which criteria to use and the relative importance between criteria should lie

with the engineer. This section considers a number of objectives formulation that

can help differentiate alternative solutions. The main objectives are expressed and

grouped in terms of emissions (Ngo, Hofman, Steinbuch & Serrarens 2013) (Yin

et al. 2013), driveability (Le Guen et al. 2011) and durability. The objective

formulation presented in this section have either been adopted from published

work or designed to provide additional means to differentiate between similar

solutions. The formulation was adapted for a minimisation problem, where the

lowest values of the objectives represent the best solutions.

Objectives for CO2 reduction

The objective which relates to emission reduction, adopts a standard formulation

given (see Section 3.2.3), in Chapter 3, and is expressed as the sum of CO2 over

the distance travelled over the driving cycle.
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The gear utilisation criterion is novel and relates to the means to achieve a low

CO2. It is based on the assumption that vehicles consume less fuel and produce

less emissions when they operate on a higher gear. This new criterion aims to

quantify the time spent on each gear, hence identify which gear is contributing to

low CO2. Accordingly, this objective function was designed to assist the engineer

to quantify the gear usage during the NEDC and identify which gear ratios lead to

lower CO2 emissions. The gear utilisation criterion JPGU is given by the inverse

percentage of gear utilisation over a driving cycle. It is described by (Llamas

et al. 2010):

JPGU =

 6∑
u=1

Gu%αu

−1 (4.1)

where the weighting factors αu (see Table 4.1) are defined in order to favour the

time spent on specific gears, with

Gu% =
Gu × 100∑Ng=6
u=1 Gu

(4.2)

where Gu% is the percentage of time spent on each gear, and u denotes each gear

ratio.

In this thesis, the aim is to promote the use of higher gears, hence the higher

the gear, the higher the associated weighting factors αu (see Table 4.1).

Table 4.1: Normalised constant αu
u 1 2 3 4 5 6

αu 1 2 3 5 7 9

In addition taking inspiration from Le Guen et al. (2011), a new cost function

was developed to minimise CO2 by moving the engine operating points, expressed

in terms of engine torque, Te, and engine speed, we, towards the left side of the

BSFC map. It is realised by minimising the distance (see Figure 4.1) between
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a reference, or anchor, point O(wref , Tref ) on the BSFC map, and the Upshift

points for the throttle positions, tk, of interest. The distance is calculated based

on Upshift of each gear set: g ∈ [1, 2, 3, 4, 5], and throttle positions tk in 10%

increment. The distance dupshifts is expressed as:

dupshifts =
5∑
g=1

 100∑
k=0

dg,tk

 (4.3)

where dg,tk denotes the distance for each Upshift set, and it is expressed as:

dg,tk = Ug−1,g,tk(we, Te)−O(wref , Tref ) (4.4)

with wref ∈ [780, 2000], Tref ∈ [80, 150], whereO(wref , Tref ) and Ug−1,g,tk(we, Te)

represent the position of the anchor point fixed on the left edge of the BSFC map

and the Upshift between the gears (g − 1) and g, respectively.

Figure 4.1: The distance (dtk) between the reference point O(wref , Tref ), and the
Upshift 1 (Up1) and Upshift 2 (Up2) at 0%, 40% and 100% throttle positions,
respectively. The grey dotted line represents the engine maximum torque. The
engine speed varies from the minimum stable speed, stalling speed, to the max-
imum engine speed. Z1 represents the zone with the most efficient operating
point, Z2 and Z3 are zones with higher fuel consumption
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Objectives for performance

The second set of objectives aims to improve driveability. The standard Inverse

Reserve Power (IRP) formulation was adopted to characterise the vehicle ability

to accelerate (see Section 2.3.2, in Chapter 2):

A new set of criteria aims to simultaneously optimise CO2 emissions and

driveability, inspired from Le Guen et al. (2011), aims to maximise the percentage

of time spent on the most efficient Engine Operating Point (EOP). It is achieved

by dividing the BSFC map into zones defined based on the range of BSFC values.

Three zones were defined based on cross-correlation study (see Section 6.1.1 in

Chapter 6) between zones and the main objective function, CO2 and IRP. The

zone thresholds were tuned in order to relate zone 1 to CO2 emissions as in

this thesis, the main focus is based on minimising CO2 emission. The ranges of

BSFC values, [g/K m], for zone1, zone2 and zone3 are [200, 255[, [255, 265[ and

[265 max(BSFC)], respectively. To express this objective for a minimisation

problem, the inverse of the percentage of time the engine spends in each of the

three zones is calculated as follows:



Jz1 =
(

Zone1100∑3
k=1 ZonekWk

)−1

Jz2 =
(

Zone2100∑3
k=1 ZonekWk

)−1

Jz3 =
(

Zone3100∑3
k=1 ZonekWk

)−1
(4.5)

where k ∈ [1, 2, 3], and Wk represent the individual weighting for each zones.

Based on the zone definition, Jz1 is the most efficient, followed by Jz2 and Jz3 .

The optimisation algorithm will therefore aim to generate solutions corresponding

to the engine operating most of the time in the most efficient regions, resulting

in the smallest possible values for Jz1 .
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Objectives for durability

The last criteria aims to improve gearbox durability by minimising the number

of gear change in order to prolong gearbox longevity, and as a by-product very

short successive up/down-down/up gear changes. It is expressed as sum of the

absolute of the difference between successive gear changes:

JGchange
=

N−1∑
k=1

∣∣∣ ˙dG(k)
∣∣∣ (4.6)

where ˙dG and N denote for successive gear change and maximum number of

samples over the NEDC.

In addition to objectives which should be achieved with varying degrees of

success, some hard constraints have to be obeyed to create the feasibility shift

maps.

4.2.2 Constraint formulation

The constraints are defined as the limit boundaries of unsatisfactory solutions

(Long 2014). Firstly, to limit the vehicle speed, upper limit values are imposed on

the variables. Secondly, to ensure that the optimised variables represent feasible

gear shift map. Such engineering requirements have led the definition of five types

of constraints to complement the objective formulation.

Downshift/Upshift Crossing constraints

Two Downshift or two Upshift are not allowed to cross over. This is implemented

by calculating the distance between two adjacent Downshift (Dg,g−1,tk , Dg+1,g,tk)

or Upshift (Ug−1,g,tk , Ug,g+1,tk) and ensure that the distance is positive. It is

expressed as follows:
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
Ug−1,g,tk − Ug,g+1,tk > 0

Dg,g−1,tk −Dg+1,g,tk > 0

(4.7)

Engine speed constraint

The engine speed should not be less than the minimum stable speed MinEngspeed ,

nor should it be greater than the maximum allowable speed MaxEngspeed :

MinEngspeed ≤ Engspeed ≤MaxEngspeed (4.8)

where Engspeed denotes for current engine speed.

Third, minimum hysteresis is required to prevent too frequent successive

Downshift and Upshift about the same gears set for a small variation in vehi-

cle speed. Such constraints were incorporated in the design variable formulation,

and as a result are never violated (see Section 4.2.3).

Upshift and Downshift shapes

Fourth, the shape of the shift map is also controlled, by observing the percentage

of slope, between two adjacent throttle positions (Ug−1,g,tk+1
, Ug−1,g,tk) of the

same Upshift gear. It is given as follows:

UpSlopek+1
=
Ug−1,g,tk+1

− Ug−1,g,tk
Ug−1,g,tk+1

100%. (4.9)

Gear shift speed

Fifth and last constraint is to avoid a shift map with rapid gear change, Up/Down

or Down/Up. A conservative value of minimum gear change time was carefully

chosen based on the average gear change time of SAIC DCT, which is 400 ms.
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4.2.3 Design variables

Design variables represent the free variables to be optimised. They are mapped

from the gear shift points that represent the gear shift map. The new map-

ping presented in this thesis is applicable to any optimisation techniques. It

has been designed to enforce the following engineering constraints: i) prevent

crossing between Downshift and Upshift ii) maintain a minimum hysteresis be-

tween Downshift and Upshift to avoid frequent gear changes for small velocity

variations.

The variable mapping expresses the Downshift (V D) and Upshift (V U), from

a set of independent variables to a set of relative increments (∆V D).

Figure 4.2: Conversion of a Downshift (∆V Dwg,g−1,tk) and its corresponding
Upshift (∆V Upg−1,g,tk) into design variables

Figure 4.2 illustrates the mapping of the gear shift map onto design variables.

Each variable is expressed in terms of a specific throttle position t% and a set of

consecutive gears (g, g − 1), where the subscripts g and (g − 1) denote for even
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gear and odd gear, respectively.

The shape of the Downshift and the determination of each Downshift point

at M% throttle position, Dg,g−1,tM , is given by successively adding throttle angle

dependent increments ∆V Dg−1,g,tk to the initial Downshift velocity at 0% throttle

angle, V Dg−1,g,tk , such that:

Dg,g−1,tM = V Dg,g−1,t0 +
M∑
k=0

∆V Dg,g−1,tk . (4.10)

The corresponding Upshift point at the same M% throttle position, Ug−1,g,tM , is

derived by adding to the Downshift point, Dg,g−1,tM ,a velocity hysteresis, Vhyst,tM ,

and an additional speed increment, ∆V Dg−1,g,tk , between the Downshift and the

Upshift:

Ug−1,g,tM = Dg,g−1,tM + Vhyst,tM + ∆V Ug−1,g,tM . (4.11)

The inverse mapping to obtain the design variables from the points on the

gear shift map is given by:

∆V Dg,g−1,tM = Dg,g−1,tM −Dg,g−1,tM−1
. (4.12)

and

∆V Ug−1,g,tM = Ug−1,g,tM − Vhyst,tM −Dg,g−1,tM . (4.13)

Without loss of generality, a throttle angle resolution of 10% was selected,

tM ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90], which is identical to that implemented on

the transmission control unit (TCU). Assuming such a resolution (see Figure

4.2), the 110 shift points (5 gear sets with 11 Downshift Dg,g−1,tk and 11 Upshift

Ug−1,g,tk points) are mapped onto 165 free variables comprising 5 gear sets with 1

Downshift point Dg,g−1,tM at 0% throttle position and 10 throttle angle dependent
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Downshift increment ∆V Dg,g−1,tk , 11 throttle angle dependent hysteresis Vhyst,tM

and 11 speed dependent increments ∆V Ug−1,g,tM .

The benefit of such mapping is that it enforces constraints associated with the

relative position of up and down shift (see Section 4.2.3). The drawback is that

it increases in the number of design variables to optimise. To reduce the number

of design variables the hysteresis Vhyst,tM was taken to be a constant determined

based on proprietary requirements (i.e. Vhyst,t0 = Vhyst,t10 = ... = Vhyst,t100). Such

assumption reduces the number of variables by 54. To further reduce the number

of design variables the Upshift and Downshift points at 0% and 100% throttle

angles were fixed. Their computation is based on proprietary method targeting

fuel economy and performance for the 0% and 100% throttle angles respectively.

Such an approach required to meet design requirements resulted in a further

reduction of the number of variables by 20. The number of design variables to

optimise is therefore 91.

To further speed up the algorithm a resolution in terms of velocity increment

∆V Dg,g−1,tk and ∆V Ug−1,g,tk equivalent to 1 km/h was found to be suitable using

a sensitivity analysis.

4.2.4 Variable bounds

The range and resolution of the design variables were carefully tailored to speed

up the algorithm convergence whilst at the same time ensure that the solutions

produced were suitable. To guide the algorithm towards practical solutions, the

initial population was randomly generated based on a proprietary gear shift map

designed using standard techniques. It was found empirically that the best com-

promise between solution space coverage and generation of practically acceptable

solutions was obtained by restricting the change from the original gear shift map

to ± 27%.
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4.3 Gear ratio problem formulation

This section describes gear ratio problem formulation. The 6 speed SAIC DCT

gearbox comprises 6 gear ratios. The first gear should allow the vehicle to start

with a trailer under a road grade of 50% gradability.

The 4 intermediates gear ratio (2nd,3rd, 4th and 5th) are utilised once the

vehicle has started moving. The last gear ratio (6th) in this thesis, is mainly

designed for fuel economy and comfort especially for passenger car.

The next subsections describe the intermediate gear ratio problem formulation

(see Section 4.3.1), the last gear formulation (see Section 4.3.2).

The first gear ratio design is not considered in this thesis as it is mainly

dependant on vehicle gradability, and ability to carry a trailer. It is assumed

that it is taken from the proprietary gear shift map.

4.3.1 Intermediate gear

Formulate objective function

The aim of intermediate gears is to allow the vehicle to move from high to low

gear or the other way. They also allow to navigate through different zones of

BSFC map and access the most efficient area of fuel consumption.

The performance of a set of gear ratio is mainly assessed by spreading the

gear ratio on the engine BFSC map, which should guide the engineers to observe

where each gear ratio is operating on the BSFC map. Three main objective

functions are considered. The first is fuel consumption which is a by-product

of CO2 emissions. The second is IRP which is inversely proportional to CO2

emissions, which helps the engineers to limit how far the optimiser can minimise

CO2 emissions while still conserving a minimum driveability. The third one is

related to the intermediate gear ratio spacing, it is defined as the bandwidth of

gear step ratio. The following statement lists the objectives function:
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• CO2 emission (Equation (3.4), see Section 3.2.3, in Chapter 3)

• Engine reserve power (Equation (2.2), see Section 2.3.2, in Chapter 2)

• Gear step change bandwidth (Equation (3.50), see Section 3.4.5, in Chap-

ter 3)

After describing the objective functions. The next task is to outline any

engineering constraints on objective functions. They are given in the next section.

Formulate constraints

In order to satisfy a minimum performance when designing the intermediate gears,

the following requirement must be taken into account:

• The values of a set of gear ratio starting from the first to the last gear, must

be defined in descending order.

• Contrarily to manual transmission, DCT is designed with two input shafts,

which leads to geometric restriction. Consequently the mean value of the

ratio step should be between 1.07 and 1.09, which represents a limited

deviation of a gear set (see Section 3.4.5, Chapter 3).

• The gear step change bandwidth must be below a fixed constant defined by

the engineer, a more common value should be less than 0.135 (see Equa-

tion (3.50), see Section 3.4.5, Chapter 3).

Design variables

There are four intermediate gear ratios to optimise, starting from G2 to G5, as

G1 and G6 are predefined by gradability and fuel consumption respectively (see

Section 3.4.5, in Chapter 3). The gear ratios G2, G3, G4 and G5 are defined in

terms of the following design variables (ψa, ψb, ψc and ψd). The optimiser will
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aim to find the optimal design variables values from which the gear ratios will be

reconstructed so that their effect can be simulated within the vehicle model.



G2 = G1 − ψa

G3 = G1 − ψa − ψb

G4 = G1 − ψa − ψb − ψc

G5 = G1 − ψa − ψb − ψc − ψd

(4.14)

where, ψa, ψb, ψc and ψd denote the design variables that relate to gear ratio

G2 to G5, G3 to G5 and G4 to G5, respectively. This is achieved adopting the

formulation described in (4.14) and by constraining the design variable to be

strictly positive.

Design variable bounds

The final task of the formulation is to bound each design variable, by setting the

lower and upper bounds of the design variables, such as to keep the solution in

the feasible region Rn (Augusto et al. 2012) and to limit the solution space. A set

of gear ratio is defined in descending order, which mean the gear ratio boundaries

must follow the same pattern, and is given as:

αLυ ≤ ψυ ≤ ψUυ , υ = {a, b, c, d} (4.15)

where, ψLυ and ψUυ represent the lower and upper gear ratio design variables. They

have been defined between ± 20% of the original gear ratio of SAIC 6 speed DCT.
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4.3.2 Last gear ratio

The use of the last gear on a passenger vehicle is generally encouraged during

cruising, when the vehicle is expected to favour fuel economy. As described in

Section 3.4.3, in Chapter 3, the three types of design are Under-revving, Optimal

and Over-revving. In this thesis, a saloon passenger car is considered, which leads

the justification of the adoption of Under-revving design.

Objective functions

Similar competing objectives apply to the gear shift map optimisation and to the

gear ratio optimisation. The optimisation of the last gear ratio is mainly dom-

inated by fuel consumption, and the specific objective considered is the vehicle

fuel consumption at 120 km/h (see Section 3.4.5, in Chapter 3). The CO2 emis-

sion reduction should however not be at the total detriment of vehicle comfort

and driveability. The latter is expressed as the vehicle excess power available for

the last gear (see Section 3.4.5, in Chapter 3).

Constraints

The constraints imposed on the last gear ratio, are designed to ensure that the

Over-revving corresponds to high performance (greater excess power and fuel

consumption), unlikely to Under-revving with better fuel consumption (smaller

excess power).

Design variables

The selection of the last gear ratio, considering Under-revving design, is obtained

by increasing the last gear ratio of the optimal design (see Section 3.4.3, in Chap-

ter 3). However there are two factors to be considered, where one factor (iFact,1) is

for Under-revving, and a second factor iFact,2 for Over-revving. Both factors must
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be monitored, as the excess power of Under-revving is smaller than excess power

of optimal design, contrarily the excess power of Over-revving is greater than

excess power of optimal design. Consequently, there are two design variables,

iFact,1 greater than 1, and iFact,2 smaller than 1.

Design variable bounds

The boundaries on the factors used to decrease or increase the gear ratio are given

as follows:

iLFact,τ ≤ iFact,τ ≤ iUFact,τ , τ = {1, 2} (4.16)

where, τ are the two boundaries for the optimiser. The boundaries chosen for

this thesis are given in the following Table 4.2:

Table 4.2: Under-revving and Over-revving factors bounds

iLFact,τ iUFact,τ
iFact,τ 12 20

4.4 Handling of the objective functions

This section describes the decision maker to handle multi-objective functions for

gear shift map and gear ratio.

4.4.1 Gear shift map with multi-objective functions

In this thesis, the decision maker for gear shift map is based on two principles.

The first is a weighted sum combining all objective functions into one scalar. The

second is based on Pareto optimal solutions (see Section 2.3.5, in Chapter 2). The

two methods are describe as follows:
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Weighted sum for gear shift map

The traditional weighted sum method, which combined multiple objective func-

tions into one single scalar (see Section 2.3.5, in Chapter 2) is expressed as follows:

ObjGSM =
∑ Job1(i)WGSMi

JN1(i)

(4.17)

i ∈ [1, ..., 8]

Job1 ∈
[
JCO2, JIRP , JGj

, JGch
, JDist, Jz1 , Jz2 , Jz3

]
JN1 ∈

[
JCO2(x0), JIRP (x0), JGj

(x0), JGch
(x0), JDist(x0), Jz1(x0), Jz2(x0), Jz3(x0)

]
where WGSMi

denotes the weighting associated with individual objectives Job(i)

function. JCO2, JIRP , JGj
, JGch

, JDist, Jz1 , Jz2 , Jz3 denote the objective functions

for CO2, zone 1, IRP, gear change frequency, time spent on each specific gear,

distance, zone 1, zone 2 and zone 3 respectively. JN1 represents the values for

each objective function corresponding to the current manufacturer gear shit map,

which is used as a reference for subsequent optimisation (see Section 2.3.5, in

Chapter 2). Additionally WGSMi
are positive and must satisfy:

i=8∑
i=1

WGSMi
= 1, WGSMi

∈ (0, 1) (4.18)

Modified Pareto for gear shift map

In this thesis, a modified Pareto based on Haas et al. (1998) is applied. It uses ob-

jective weighting Pareto ranking to differentiate between non dominated solutions

given by:

JParerank1
= 1 +NDominated +

∑
WGSMi

Job1(i)/JN1(i)

Max
(
Job1(i)/JN1(i)

) (4.19)

NDominated represents the number of non-dominated solution.
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4.4.2 Gear ratio with multi-objective functions

The methods described above to handle multi-objective, the same principles is

also applied to gear ratio. It is given as follows:

Weighted sum for gear ratio

ObjGR =
∑ Job2(j)WGRj

JN2(j)

(4.20)

j ∈ [1, 2 and 3]

Job2 ∈ [JCO2, JIRP , JBwd]

JN2 ∈
[
JCO2(x0), JIRP (x0), JBwd(x0)

]
where WGRj

denotes the weighting associated with individual objectives Job2(i).

JBwd denotes the gear ratio step bandwidth. JN2 represents the objective function

with the initial gear ratio design variable. It is used to normalise each objective

function during optimisation process. Also, WGRi
must be positive and satisfying:

i=1∑
i=8

WGRi
= 1, WGRi

∈ (0, 1) (4.21)

Modified Pareto for gear ratio

Similar to Equation (4.19), the same pattern is utilised to define the modified

Pareto for gear ratio. It is given as follows:

JParerank2
= 1 +NDominated +

∑
WGRi

Job2(i)/JN2(i)

Max
(
Job2(i)/JN2(i)

) (4.22)

4.5 Concluding remarks

This chapter has provided the problem formulation for both shift map and gear

ratio optimisations. The problem formulation is the most important stage in

optimisation. An identical approach has been adopted for each problem consid-
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ered: objective and constraints formulation, design variable and bounds formu-

lation. Five objective formulations have been proposed in this thesis to supple-

ment widely accepted formulation. These objectives aim to help users identify

the most suitable solutions, typically by observing the performance of engine op-

erating point on the BSFC map, whilst the specific objectives are expressed using

various formulations. Additionally, the overall solution of the problem considered

involves competing objectives.

The key to success is rooted in the handling of objectives which are presented

in Chapter 2. The new design variable formulation is one of the significant con-

tributions of this thesis. It aims to simplify the design process for a gear shift

map, also, it allows the user to specify a range of throttle positions and minimum

hysteresis in order to guide the optimiser more accurately.

Having formulated the optimisation problem, the next chapter describes var-

ious optimisers used to find suitable solutions for either gear shift map, gear

ratio or simultaneously weighing the best combination of gear shift map and gear

ratio.
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Chapter 5

Evolutionary algorithm & swarm

intelligence for shift map and

gear ratio optimisation

5.1 Introduction

This Chapter presents the main technical contributions of this thesis. It describes

the algorithms developed to optimise the gear shift map as well as the gear ratio.

The chapter starts with the description of the Multi-Objective Genetic Algorithm

(MOGA) modified to accommodate the proposed problem specific operator and

a repair mechanism. The second nature inspired algorithm is then presented,

namely the Multi-Objective Cuckoo Search (MOCS), which is also modified to

accommodate a new local search applied to optimise gear ratio. It presents the

different behaviour of the nature inspired techniques implemented in this thesis

to justify their selection and their specific features. Finally, it describes the

culmination of the work by merging MOGA, MOCS and constrained optimisation,

implemented within the MATLAB interior-point algorithm, for the combined gear

ratio and gear shift map optimisation.
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5.2 Problem specific MOGA

A MOGA was selected to optimise a six speed DCT gear shift map due to its

ability to handle competing and changing objectives (see Section 4.2.1 in Chap-

ter 4). Whilst many objectives have been formulated, the two main objectives are

to lower the CO2 whilst keeping the driveability acceptable. To focus the search

towards lowering CO2, a modified Pareto ranking (Haas et al. 1998) was adopted

(see Section 4.4.1 , in Chapter 4).

The standard MOGA (Konak et al. 2006) was complemented by a new repair

mechanism and a new local search operator, as shown in Figure 5.1 and 5.2. The

aim of these improvements is to exploit problem specific features to find better

solutions faster. The new repair mechanism was developed to handle minimum

reserve power requirements (see Section 5.2.2, in Chapter 4). The new problem

specific operator referred as gear early shifting (GES) operator was developed to

focus the search towards good regions, in terms of CO2 emissions, of the solution

space (see Section 5.2.1). To prevent the algorithm from becoming trapped in

a local minima and producing gear shift with similar characteristics, the GES

operator is only applied every N generations, where N is a user tunable parameter.

To avoid unrealistic gear shift map to be accepted, each solution is first checked

against the constraints defined in Section 4.2.2. Then the vehicle simulator is run

for each candidate solution. If the simulator does not complete the drive cycle

simulation, the solution is rejected (see Figure 5.2) as it violates the gear shifting

logic and/or is not compliant with the vehicle BSFC map.
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Figure 5.1: Multi-Objective Genetic Algorithm with problem specific (GES) op-
erator and repair mechanism to ensure reserve power constraints are met by the
optimised solutions
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1: Create N initial solutions
2: Evaluate objective functions
3: Run vehicle model
4: Reject infeasible solutions
5: Calculate objectives
6: if Reserve power limit reached then
7: Apply Repair mechanism
8: end if
9: Determine modified Pareto cost
10: Calculate fitness
11: for i = 1 to Max generation do
12: Select children for recombination
13: Apply recombination & mutation
14: if mod(N,3) == 1 then
15: Apply GES
16: end if
17: Evaluate objective functions
18: Run vehicle model
19: Reject infeasible solutions
20: Calculate objectives
21: if Reserve power limit reached then
22: Apply Repair mechanism
23: end if
24: Determine modified Pareto cost
25: Calculate fitness
26: Keep the N best solution
27: end for

Figure 5.2: Multi-Objective Genetic Algorithm with GES and repair mechanism
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5.2.1 Local search: gear early shifting (GES) operator

The new GES operator aims to reduce CO2 emissions by producing early gear

shift to reach as quickly as possible the most efficient area of the BSFC map. It is

realised by reducing the velocity difference between Upshift and Downshift, where

the speed increment ∆V Ug,g−1,tM are reduced by a ratio βk ∈ [0.25, 0.50, 0.75]

expressed in percentages to form:



∆V U25g,g−1,tM = β25∆V Ug,g−1,tM

∆V U50g,g−1,tM = β50∆V Ug,g−1,tM

∆V U75g,g−1,tM = β75∆V Ug,g−1,tM

(5.1)

In this thesis the same set of ratios βk < 1 are applied to each gear set

and each throttle angle. Investigating randomly generated ratio is considered as

further work. Similarly is the investigation of the benefits of using ratios βk > 1

to increase the difference between Upshift and Downshift, thereby increasing the

hysteresis between up and down shift, resulting in making quick gear changes less

likely, but at the cost of higher CO2.

Parents used by the GES operator are selected based on the following rules.

First, NCO2 candidate solutions are randomly selected among the NbestCO2 indi-

viduals in term of CO2. Then NIRP candidate solutions are randomly selected

among NbestIRP individuals in term of IRP. Finally NDiff candidate solutions are

selected according to the highest difference in terms of Euclidean distance CO2

and IRP, between successive point on Pareto set. In this work NbestCO2 =NbestIRP

= 10, NCO2 = NIRP = NDiff =1. Figure 5.3 summarises the algorithm with iind

denoting each individual solution, C and P with subscript CO2, IRP and Diff

denoting the children and parents for the three criteria considered respectively.
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1: Randomly select NCO2 amongst NbestCO2 individuals
2: Randomly select NIRP amongst NbestIRP individuals
3: Select NDiff individual
4: for iind = 1 to NCO2 + NIRP + NDiff do
5: Calculate speed difference ∆V Ug,g−1,tM
6: Create 3 new maps per candidate solution to move Upshift towards the

Downshift
7: for k = 1 to 3 do
8: Replace ∆V Ug−1,g,tM in P by βk ∆V Ug,g−1,tM to form C
9: end for
10: end for

Figure 5.3: Local search algorithm: Gear Early Shifting Operator

5.2.2 Solution validation repair mechanism

The main emphasise of MOGA is to reduce CO2. This can lead to solutions

that are on the limit or even inappropriate in terms of reserve power, i.e. ability

to accelerate after a gear change. A method called GeneRepair operator was

proposed by Mitchell et al. (2003), and used to correct invalid tours which may

be generated following crossover and mutation in Travelling Salesman Problem.

Similarly, a repair mechanism has been devised to detect conditions when the

reserve power is insufficient at any time during the drive cycle and automatically

adjust the appropriate Upshift to ensure that the minimum requirements in terms

of reserve power are met, see Figure 5.4.

1: Calculate reserve power at each time instant
2: while Reserve Power < threshold for Upshift gear V Ug,g−1,tk do
3: Move each affected Upshift gear V Ug,g−1,tk to the right to form rV Ug,g−1,tk
4: Run vehicle model
5: Reject infeasible solutions
6: Calculate objectives
7: Calculate reserve power at each time instant
8: Replace initial solutions by repaired ones
9: end while

Figure 5.4: Repair mechanism algorithm
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5.2.3 Conclusions on problem specific MOGA

This section has presented a MOGA combined with problem specific operator to

improve solutions quality and rate of convergence. Additionally, a repair mecha-

nism was developed to insure that solutions produced are practically realisable by

enforcing a minimum reserve power constraints. The relative benefits of the pro-

posed modification are evaluated in Chapter 7. The following section describes

Cuckoo Search algorithm develop to optimise gear ratio.

5.3 Multi-Objective Cuckoo search

This section, describes Cuckoo Search (CS) algorithm (Yang & Deb 2013) modi-

fied for the context of gear ratio optimisation. In addition to the standard Levy

Flight operator, it includes Bat, Firefly and Flower Pollination. Theses oper-

ators are integrated within the Cuckoo Search to generate new optimised gear

ratio. The operator combination aims to improve the performance of the existing

Cuckoo Search by exploiting the benefits of other operators.

There are three objectives that are minimised. The most important is the CO2

followed by IRP and bandwidth. Note that the bandwidth is also formulated

as a constraint together with the gear ratio step change (see Section 3.4.5 in

Chapter 3).
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Figure 5.5: Multi-Objective Cuckoo Search with Levy Flight operator supple-
mented by, Bat, Firefly and Flower Pollination operator for gear ratio optimisa-
tion.

Figure 5.6: Solutions evaluations flowchart in MOCS
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In this research, CS has been developed to solve a Multi-Objective Optimi-

sation Problem (MOOP), and uses a modified Pareto rangking to find a set of

non-dominated solutions based on 4.19. There are four design variables related

to a set of gear ratio to be optimised (see Section 4.3.1 in Chapter 4). The CS

for gear ratio optimisation is illustrated in Figures 5.5 and 5.6 and described in

Figures 5.7, 5.8. The initialisation stage generates xi solutions comprising the

four design variables (ψa, ψb, ψc and ψd) that convert onto 6 gear ratios (see

Section 4.3.1). Additionally, considering a MOOP, a Cuckoo can lays multiple

eggs (objective functions) in a nest. The main goal is to replace the current value

of the objective functions by new solutions in the nest. At each generation, the

following tasks are accomplished: (i) Generate new gear set solutions by applying

either Levy Fly, Bat, Firefly or Flower Pollination operators. (ii) Reconstruct the

gear set, run the vehicle model, evaluate each solutions and calculate the objec-

tives (JCO2, JIRP and JBwd) for each solutions. (iii) Check if any new solutions in

are Pareto optimal, then replace the worse solutions, else choose jn nest randomly

and replace them by in if JBwd is better. (vi) New optimised set of gear ratios

ln are generated by abandoning the worse solutions with the probability of Pa ∈

[0, 1], repeat (ii). (v) Add new solutions created, ln, to the population, where the

modified Pareto cost and fitness of each solutions are calculated. Then classify

the solutions in ascending order, finally keep the n host nest with best gear set for

the next generation. (vi) Repeat until convergence or until a user defined time

limit is reached.

xi =
[
ψai , ψbi , ψci , ψdi

]
(5.2)
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1: Define xi individual with nhost nests (i = [1, .., nhost])
2: Initialise the corresponding cost JCO2(xi), JIRP (xi) and JBwd(xi)
3: for GenR = 1 to Max generation do
4: Get cuckoo in randomly by local operator:
5: Levy flights
6: or Bat motion
7: or Firefly motion
8: or Flower pollenation
9: if V alid intermediates gears then
10: Evaluate solutions
11: Check if Pareto optimal
12: if jn solutions dominate in then
13: Keep solutions of nest jn for the new population
14: else
15: Choose a nest jn randomly among nhost
16: Replace nest in by the new solution set of nest jn if better JBwd
17: end if
18: end if
19: Create new solutions of nest ln by abandoning a fraction of (pa) of worse

nests
20: if V alid intermediates gears then
21: Evaluate solutions ln
22: end if
23: Keep new solutions of nest ln for the new population
24: Determine modified Pareto cost of new population
25: Calculate fitness of the new population
26: Select and keep nhost nests with best solutions
27: end for

Figure 5.7: Multi-Objective Cuckoo with hybrid operators for gear ratio optimi-
sation

1: Evaluate objective functions for N nest solution
2: Reconstruct gear set from Xi and 1st and 6th

3: Run vehicle model
4: Reject infeasible solution
5: Calculate objectives JCO2, JIRP and JBwd

Figure 5.8: Multi-Objective Cuckoo with hybrid operators for gear ratio optimi-
sation
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5.3.1 Local search component

This subsection describes different operators used within the Cuckoo Search:

Levy Flight

The original Cuckoo search relies on the Levy flight operator to generate new

solutions. It is a random walk, where the step size is based on Levy distribution.

It was adopted in this work, as Levy flight is efficient in terms of exploring large-

scale search space. A new solution xt+1
i is defined as follows:

xt+1
i = xti + θ ⊕ Levy(τ) (5.3)

where, α represents the step size scaling factor given as follows:

α = θ0(x
t
i − xtcurbest1) (5.4)

where xti is the current solution, and θ0 is a constant, whilst the expression in

the bracket corresponds to the difference between the current and the best so-

lution in the nest respectively. Generating new solutions from Levy flight is not

straightforward, a simple scheme was defined by Yang (2014) can be described as

follows:

Levy (τ1) =
u

|v|1/τ1
(5.5)

where, u and v are obtained from a normal distribution, and it is given as follows:

u ∼ N(0, σ2
u) v ∼ N(0, σ2

v) (5.6)

with

σu =
Γ(1 + λ)

λΓ((1 + λ)/2)

sin(πλ/2)

2(λ−1)/2 (5.7)
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where Γ is the standard Gamma function.

Bat operator

The Bat operator is used in this search, as it has the particularity to use frequency

tuning by updating a current solution to obtain a new solutions. The main idea is

inspired by echolocation of microbats. A solution is represented by a virtual bat

position and its corresponding velocity. It is given by the following expression:

Qi = Qmin + (Qmax −Qmin)βBA (5.8)

where Qi represents the wavelength. It is defined between a minimum (Qmin

= 0) and maximum (Qmax=2) range of wavelength. The range of wavelength

expressed the travelling range of pulse, which is depending on the frequencies.

Consequently, tuning the frequency can impact on exploration and exploitation.

βBA ∈ [0, 1] is drawn from a uniform distribution.

vt+1
i = vti + (xti − xtcurbest2)Qi (5.9)

xt+1
i = xti + vt+1

i (5.10)

where, xtcurbest2 denotes for current best location (current optimal gear ratio) which

has been found so far among the nhost virtual bats location. The original Bat

algorithm includes a local search, presented by the loudness, in this research

loudness is not considered as only Bat algorithm operator is utilised. Also, it

is assumed that the pulsation rate is fixed. The interesting particularity of Bat

algorithm, it captures the advantage of many algorithm such as the standard of

PSO where the frequency controls the space area of swarming particles motions,

and Harmony Search(HS) by varying the loudness and pulsation rate. It can be
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noticed that the updated solution xi is similar to Arithmetic crossover from GA

(Ladkany 2012).

Firefly

The Firefly algorithm (FA) is based on the flashing pattern of fireflies. The

operator of Firefly is obtained from the original Fireflies Algorithm. A potential

solution of gear ratio is defined as a firefly location. The following assumptions

are made to mimic the behaviour of the algorithm:

• All fireflies are unisex, which mean that any firefly can be attracted by any

other firefly.

• The attractiveness corresponds to the brightness, and it decreases when the

distance increases.

• The objective function is represented by the brightness of a firefly.

The original FA is based on maximisation problem, as the firefly attractiveness

simply proportional to the light intensity, which presents the objective function.

Therefore, in this search the objective function of each firefly were inverted in

order to convert the problem into minimisation problem. The variation of attrac-

tiveness βffly and distance of light intensity rffly are given as follows:

βffly = βffly0e
−γffly .r2ffly (5.11)

where βffly0 is the attractiveness at distance r = 0.

xt+1
i = xti + βffly0e

−γffly .r2ffly,(i,j) .(xti − xtj) + αtµ
t
i (5.12)

where xi is the motion of Firefly i attracted to another, r2ffly,(i,j), is the distance

between any two Fireflies i and j located at xi and xj, it is given by the Euclidean

distance:
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rffly,(i,j) =

√√√√υ=d∑
υ=a

(xi,υ − xj,υ)2 (5.13)

where, xi,υ is the υth component of the gear ratio design variables, which rep-

resents the spatial coordinate xi. Considering gear ratio design variables, the

coordinates between two Fireflies are described as follows:

rffly,(i,j) =
√

(xi,a − xj,a)2 + (xi,b − xj,b)2 + (xi,c − xj,c)2 + (xi,d − xj,d)2 (5.14)

After describing the formulations, the Firefly operator can be summarised as

follows:

1: for i = 1 : nhost do
2: for j = 1 : nhost do
3: if −Ii < −Ij then
4: Move firefly i towards j
5: end if
6: end for
7: end for

Figure 5.9: Firefly operator for gear ratio optimisation

Figure 5.9 illustrates the core component of the algorithm, where two iterative

loops are used to compare each firefly (gear ratio) light intensity (given by the

weighted sum of the objective functions, see Section 4.4.2, in Chapter 4), and

move any firefly towards the firefly with the strongest light. Ii and Ij denote the

light intensity of iterative loop 1 and loop 2 respectively. The advantage of Firefly

is to always look forward to move all Firefly toward the current best solution,

however the drawback of the algorithm might limit the exploration of different

research space. The last component is based on Flower Pollination algorithm

which is described in the following section.
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Flower pollination

The flower pollination operator is obtained from flower natural reproduction. In

nature there are two types of flowers. The first is biotic, where its reproduction is

based on transfer of pollen via pollinator such as insects or animals. The second

is abiotic, which unlike the biotic, does not necessitate any pollinator as wind

and diffusion are the main factor for their pollination. In this search, only the

local component was used to create new potential solution of gear ratio. Before

describing the Flower Pollination operator, the following two rules are assumed:

• Considering local pollination, abiotic and self-pollination from the neigh-

bourhood flower are used.

• Biotic pollinators can develop flower constancy, which is similar to a repro-

duction probability that is commensurate to the similarity of two flowers

considered.

After defining the assumptions, a new gear ratio design is obtained using the

Flower Pollination operator which is given as follows:

xt+1
i = xti + εFP (xtj − xtk) (5.15)

where xtj and xtk denote pollen from flower 1 (randomly selected gear ratio among

the current population) and flower 2 of the same species respectively. This allows

to mimic the flower constancy in a restricted neighbourhood. εFP is drawn from

a uniform distribution. FA operator is similar to heuristic crossover (Kaya et al.

2011), it has the advantage of directing the search in a promising direction, also

it has the particularity to relocate the search when the solutions are clustered.

However, it has the drawback of preventing the search space to focus on one

direction.
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5.3.2 Conclusion

This section has presented a hybrid MOCS algorithm. The hybridization supple-

mented Levy Flight operator with operators originally developed for Bat, Firefly

and Flower Pollination. These operators are arithmetic and heuristic crossover

operator, and the combine of these operators can improve the algorithm in term

of exploration and exploitation.

The following section describes how MOGA and MOCS are combined together

to simultaneously optimise gear ratio and shift map.

5.4 Multi-Objective Genetic Algorithm & Cuckoo

Search

The main concept of this hybrid design combining MOGA, cuckoo and con-

strained optimisation is to exploit the relative strengths as well as solutions pre-

viously obtained when considering each problem independently. CS is employed

to obtain a set of optimised gear ratio. GA is used to generate a set of optimised

gear shift map in favour to low CO2 emission whilst keeping a good driveability.

The following section describes the algorithms combination core.

5.4.1 Optimisation framework

The approach adopted in this work is illustrated in Figure 5.10, where three

iterative loops are used to combine the algorithms for gear ratio and gear shift

map optimisation. The first iterative loop vary a set of Starter gear ratio including

the initial starter gear ratio, which has been defined manually with respect to

gradeability (see Section 3.4.5, in Chapter 3). A second iterative loop is then

used to select the last gear ratio pre-defined by interior-point algorithm. CS

algorithm is integrated in the second iterative loop, where a set of intermediate
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gear ratios are optimised. The third iterative loop is used to select a set of gear

ratio, then applied GA to obtain various optimised shift maps.

1: Define the first gear ratio based on the vehicle gradeability
2: Define the initial gear ratio
3: Generate a third first gear by taking the average of the above two gears
4: Define parameters for gear ratio and gear shift map
5: for i = 1 : nStartG do
6: Apply interior-point algorithm to optimise the last gear ratio using 4 dif-

ferent sets of objectives to give 4 possible values for the last gear ratio.
7: for j = 1 : nLastG do
8: Select first and last gear ratio
9: Define the number of generation
10: Apply CS to optimised set of gear ratio
11: for l = 1 : nGearSet do
12: Select a set of optimised gear ratio
13: Update initial shift map based on optimised gear ratio
14: Apply MOGA with repair mechanism and GES
15: Nested structure function
16: Save gear set
17: Save gear ratio
18: Save optimised gear shift maps
19: Save performance results
20: end for
21: end for
22: end for

Figure 5.10: Combined gear ratio & shift map optimisation

5.5 Selection mechanism of operators

This section describes and compares an experimental test to generate offspring

(solutions) based on various operators defined in this chapter.

The key evolutionary operators can be summarised by crossover, mutation

and selection (see Section 2.4, in Chapter 2). The role of crossover is to act

as local search within a subspace, and it mainly contributes to the system con-

vergence. Mutation provides a method for global search, and can be defined as

randomization approach. Selection method gives a powerful driving force to the
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algorithm to evolve toward the desired search space.

It is worth pointing out that mutation can take different forms. The generation

of new offspring created by the operator of Levy Flight (5.3), Bat (5.10), Firefly

(5.12) and Flower pollination (5.15) algorithms are mainly mutation based. These

operator use stochastic moves or randomisation method to generation the next

offspring.

Levy Flight, Bat and Flower pollination algorithms operators use current best

solution among the population to make the next moves. In FA operator, there is

no current best solution, however it uses a ranking and selection methods during

the update of offspring based on two iterative loops. It can subdivide into multiple

subgroups, where each subgroup can potentially swarm around a local mode.

In order to assess each operator abilities of reproducing offspring, an exper-

imental test was set up. The experimental set up consists of generating var-

ious offspring based on different crossover operators (direct, intermediate and

extended line recombination) from GA, and operators (Levy Flight, Bat, Firefly

and Flower pollination) from hybrid MOCS algorithm developed in this thesis.

This case study considered the gear ratio with four design variables denoted by

ψa, ψb, ψc and ψd. Two parents (P1 and P2) are selected from a preliminary test

and replicated 3000 times in order to be used by various operators to generate

offspring.

Figures 5.11 and 5.12 illustrate the spread of offspring produces by crossover

operators from GA and operators from MOCS. In Figure 5.12, it is clear that

Levy flight only focus on the two parents to generate offspring. However GA

crossover, Bat and Flower pollination algorithm operators generate offspring near

both sides of the parents and in between. Bat algorithm operators seem to cover

a bit more search space than the last operators. It can be noticed that Levy

Flight operators is intensively exploitation. However the operators from GA, Bat

and Flower pollination algorithms are exploitation, but they also consider a small
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Figure 5.11: Semi-log plot results representing the spread of offspring based on
two parents P1 and P2. The offspring are generated using GA crossover operators:
direct, intermediate and extended line recombination, also with hybrid MOCS
operators: Levy Flight, Bat, Firefly and Flower pollination

range of exploration.

In Figure 5.11, it can be seen that Firefly algorithm outperforms all operators

in terms of offspring distribution, as it has the largest range of exploitation dis-

tribution. Overall, Firefly algorithm had a promising potential of exploring the

search space, additionally it can also act as exploitation.
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Figure 5.12: Semi-log plot results representing the spread of offspring based on
two parents P1 and P2. The offspring are generated using GA crossover operators:
direct, intermediate and extended line recombination, also with hybrid MOCS
operators: Levy Flight, Bat, Firefly and Flower pollination. This figure illustrates
a zooming view around the two parents.

5.6 Concluding remarks

This chapter has described two types of optimisation algorithms: Interior-Point

Optimization and nature inspired as well as two methods to handle problems

with multiple objective optimisation. A MOGA has been combined with problem

specific operator and repair mechanisms to optimise a six speed DCT gear shift

map. A standard cuckoo search algorithm has been supplemented with operators

inspired from Bat, Firefly and Flower Pollination algorithms to optimise the gear

ratio. Finally an iterative algorithm combining constrained and nature inspired

optimisation has been developed to determine the best combination of gear ratio

and gear shift map.

Having described the operators, algorithms improvements and overall frame-

works proposed in this work, the next chapter focuses on the simulation study to

demonstrate the expected benefits.
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Chapter 6

Simulation settings and

parameters selection

6.1 Introduction

This chapter builds on Chapters 4 and 5. Chapter 4 presented the new formu-

lation proposed to solve both the gear ratio and the gear shift map optimisation

problems. Chapter 5 described the new optimisation framework exploiting the

proposed problem formulations and the problem specific knowledge.

The first section focuses on the objectives formulation and in particular the

parameter selection for the new zone definition within the BSFC map and the

correlation between the zones and the other objectives.

The second section starts by classifying the solutions obtained according to dif-

ferent objectives to relate objective value to engineering requirements and specific

features to differentiate the various solutions. A correlation analysis between CO2

emission and all the other objectives including the alternative zones parametrisa-

tion is performed to identify appropriate zone thresholds. This section concludes

with a proposed method to select objective weightings to express their relative

importance based on a user classification of a sample of solutions.
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6.1.1 Trade-off visualisation and correlation analysis

Figure 6.1 and Figure 6.2 illustrate the correlation between various objective

functions. Figure 6.1 shows the group of solutions selected to be analysed later.

In Figure 6.2, it can be seen that CO2 emission is correlated to z1 and a bit to

Gj% and Dist, however it is inversely correlated to IRP, Gch and z2. There is no

real correlation between CO2 and z3. Figure 6.2 also shows clearly, the evolution

of the group of solution namely Set A, Set B and Set C across various objective

functions. They are in general grouped in the same search area. All red dots

group have the lowest IRP, but the highest CO2 alongside Gj% and z1. All green

dots group are in most cases in the middle area of various objectives, whilst the

magenta dots group are in the lower bottom. Consequently they have the lowest

CO2 emissions and higher IRP alongside Gch and z2.

Both a correlation analysis and visual inspection of the solutions distribu-

tion were used to evaluate the relationship between the eight possible objectives

considered in this work. The subset of the non-dominated solutions was selected

from the solutions obtained using the MOGA described in Section 7.6.5. The two

most important criteria, namely CO2 and IRP were used to select and classify

the solutions into three groups denoted by A, B and C (see Figures 6.1 and 6.2).

Note that the worse solution in terms of CO2 of group C, could potentially be-

long to group B when considering the gear change frequency (Gch), and the time

spent on higher gear (Gj%). Figure 6.1 illustrates the outcome of the correlation

analysis on a small number of sample solutions, compared to the number used

for the correlation study presented in Table 6.1. It can be observed that JCO2

is correlated with Jz1 , JDist and time spent on higher gear (JGj%). By contrast

JCO2 and JIRP are non-correlated and can therefore not be met simultaneously.

JIRP is correlated with JGch, and to some extend with Jz2 and Jz3.
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Figure 6.1: Pareto plot representing competing criteria CO2 emissions versus
Inverse Reserve Power (IRP). Three sets of solutions are defined, where each set
is comprised of four optimised shift maps. The first set is marked from A1 to A4,
the second set is marked from B1 to B4, and finally the third is marked from C1
to C4
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Figure 6.2: Pareto plot representing competing criteria CO2 emissions versus
Inverse Reserve Power (IRP), Distance (Dist), zone 1 (z1), Gear change frequency
(Gch), zone 2 (z2), time spent on higher (Gj) and zone 3 (z3). Three sets of
solutions are defined, where each set is comprised of four optimised shift maps.
The first set is marked red circles, the second set is marked green circles, and
finally the third set is marked magenta circles
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Table 6.1: Cross correlation results between different objective functions indi-
cating high correlation between JCO2 and BSFC map distance Dist objectives
and high non correlation between the group CO2 Dist and the group IRP Gch
confirming the results of Figure 6.2

JCO2 Jdist Jz1 JIRP JGch
Jz2 JGj% Jz3

JCO2 100 62 89 -99 -95 -76 93 -2

Jdist 62 100 60 -58 -48 -30 51 -35

Jz1 89 60 100 -89 -80 -77 81 -12

JIRP -99 -58 -89 100 97 81 -97 -6

JGch
-95 -48 -80 97 100 80 -99 -19

Jz2 -76 -30 -77 81 80 100 -78 -54

JGj%
93 51 81 -97 -99 -78 100 15

Jz3 -2 -35 -12 -6 -19 -54 15 100

Having identified the relative trade off required to be addressed, the next

section aims to develop objectives that could capture these trade-offs.

6.1.2 Parameter selection for the new zone objectives

The objectives relating to the zones were designed to attempt to find the most

desirable trade off solution by rewarding gear shift map that results in a good

percentage of the engine operating points (EOP) in the most efficient region of

the BSFC map, i.e. zones 1 and 2. Zone 3 reflects higher fuel consumption

characterised by operating the engine at low or very high revolution per minute.

Ideally a higher degree of correlation between some of the zones objective and both

IRP and CO2 would be desirable to identify a criteria able to capture both these

conflicting requirements. Alternatively the determination of the fuel consumption

thresholds should help engineers identify the difference between solutions more

clearly.

To address these objectives, three different settings were investigated empir-

ically. Table 6.2 presents three different settings applied to the zones objective

function Jz1, Jz2 and Jz3. Each setting identifies three zones based on three user
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selectable fuel consumption thresholds [g/kW]. To identify the most suitable set

of thresholds the following investigations were performed:

• The reference and an optimised solution were compared in terms of engine

operating point distribution, see Figures 6.3 and 6.3 and associated Table

6.3 and 6.4.

• The objectives representing the different zones formulation were correlated

against the other objectives considered in this thesis, see Figure 6.5 and

associated Tables 6.5-6.7.

The setting on different zones is to guide the optimiser to favour a shift map

with the most desirable EOP (zones 1 and 2). The largest difference between the

EOP visualisation on the BSFC maps (see Figures 6.3 and 6.4) can be observed

for the setting 2. Similarly the highest difference in terms of cost values is for

setting 2 (see Tables 6.3 and 6.4) with setting 2 clearly differentiating solutions,

increasing the number of operating points in the most fuel efficient zone: +3

points for zone 1 and +2 points for zone 2.

Table 6.2: Threshold adopted to differentiate the different zones on the BSFC
map

Setting 1 (g/kW ) Setting 2 (g/kW ) Setting 3 (g/kW )

Zone 1 < 270 < 255 < 252

Zone 2 < 350 < 265 < 268

Zone 3 ≥ 350 ≥ 265 ≥ 268

Figures 6.3 and 6.4 are the EOP of initial shift map and optimised shift map

respectively, with three different settings based on Table 6.2. The setting on

different zones is to guide the optimiser to favour a shift map with the ideal EOP

(zone 1). From Setting 1 to 3, it can be noticed that zones 1 and 2 are gradually

decreasing (similar remark can be made from Table 6.3 and 6.4 on the percentage

of EOP spent on each zones). The most suitable compromise is represented by
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Figure 6.3: EOP of initial gear shift map, where the first is based on setting 1, the
second is based on setting 2 and the third is based on setting 3. The red, magenta
and blue circles represent the EOP of zone 1, zone 2 and zone 3, respectively.

setting 2, as the EOP of zone 1 is in good balance in comparison to settings 1

and 2.

Table 6.3: Percentage of EOP in zone 1, zone 2 and zone 3 for the initial shift
map over the NEDC

Setting 1 Setting 2 Setting 3

Zone 1 EOP (%) 33 10 4

Zone 2 EOP (%) 15 22 29

Zone 3 EOP (%) 52 67 67

To evaluate the effect of the zone thresholds selection on the correlation with

the other objectives a correlation analysis was performed. The cross-correlation

results are based on a set of 26 different shift maps obtained from a Pareto

plot of CO2 versus IRP. Figure 6.5 represents the correlation plot for CO2, IRP

and gear change frequency against the three zones Z1, Z2 and Z3. It can be

observed that solutions are grouped in clusters for all three settings. This can

help categorises the type of solutions produced. The difference between the groups

is more significant in zone 1 for the setting 1 whereas it is more significant in
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Figure 6.4: EOP of optimised gear shift map, where the first is based on setting
1, the second is based on setting 2 and the third is based on setting 3. The
red, magenta and blue circles present the EOP of zone 1, zone 2 and zone 3,
respectively.

Table 6.4: Percentage of EOP in zone 1, zone 2 and zone 3 for an optimised shift
map over the NEDC

Setting 1 Setting 2 Setting 3

Zone 1 EOP (%) 34 13 4

Zone 2 EOP (%) 14 20 30

Zone 3 EOP (%) 52 67 66

zones 2 and 3 for the other two settings. Using setting 2, Zone 2 is proportional

to CO2 and inversely proportional to IRP and Gch. The degree of correlation

corresponding negative-correlation between zone 1 with CO2 and IRP respectively

increases in magnitude between setting 1 and setting 2.

The following section will describe the influence of different setting on objec-

tive functions.

This section plots the cross-correlation between the three different settings

(see Table 6.2) on zones (zone 1, zone 2 and zone 3) against CO2 and IRP. The

cross-correlation results are based on a set of 26 different shift maps obtained
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from a Pareto plot of CO2 versus IRP.

Figure 6.5: Objective functions representing CO2 and IRP versus zone 1, zone 2
and zone 3. Marker with blue ’point’, red ’circle’ and magenta ’plus sign’ present
setting 1, setting 2 and setting 3, respectively.

Figure 6.5 represents the correlation plot of CO2 and IRP versus zones. Ma-

jor remarks are based on settings 1 and 3, when most objective functions are

proportional in setting 1, they are inversely proportional in setting 3. Setting 2

represents the most appropriate compromise, therefore considering setting 2, it

can be noticed that zone 2 is proportional to CO2 and inversely proportional to

IRP and Gch, however zone 2 is partially CO2, IRP and Gch.

Table 6.5 defines the correlation results of the first setting. Zone 1 is 56%

correlated to CO2, while it is 62% inversely correlated to IRP. Zone 2 is slightly

correlated and inversely correlated to CO2 and IRP.

Table 6.6 defines the correlation results of the second setting. Zone 1 is 86%
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Table 6.5: Cross correlation results between different objective functions indicat-
ing high correlation between JCO2 and BSFC map distance Dist objectives and
high non correlation between the group CO2 and Dist and the group IRP and
Gch. This table is based on setting 1.

JCO2 Jdist Jz1 JIRP JGch
Jz2 JGj% Jz3

JCO2 100 90 56 -98 -96 -32 51 -56

Jdist 90 100 54 -89 -89 -35 52 -44

Jz1 56 54 100 -62 -43 -91 -32 -16

JIRP -98 -89 -62 100 94 42 -41 42

JGch
-96 -89 -43 94 100 21 -64 48

Jz2 -32 -35 -91 42 21 100 53 -22

JGj%
51 52 -32 -41 -64 53 100 -51

Jz3 -56 -44 -16 42 48 -22 -51 100

correlated to CO2, while it is 80% inversely correlated to IRP. Zone 2 is slightly

correlated and inversely correlated to CO2 and IRP.

Table 6.7 defines the correlation results of the first setting. In setting 1,

zone 1 is 56% inversely correlated to CO2, while it is 62% correlated to IRP.

Zone 2 is 59% correlated and 65% inversely correlated to CO2 and IRP. The last

statement finalises and concludes the group for each setting based on the outcome

of correlations are presented in Tables 6.5, 6.6 and 6.7.
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Table 6.6: Cross correlation results between different objective functions indicat-
ing high correlation between JCO2 and BSFC map distance Dist objectives and
high non correlation between the group CO2 and Dist and the group IRP and
Gch. This table is based on setting 2.

JCO2 Jdist Jz1 JIRP JGch
Jz2 JGj% Jz3

JCO2 100 90 86 -98 -96 36 51 -59

Jdis 90 100 84 -89 -89 35 52 -56

Jz1 86 84 100 -80 -82 15 62 -44

JIRP -98 -89 -80 100 94 -45 -41 64

JGch
-96 -89 -82 94 100 -22 -64 45

Jz2 36 35 15 -45 -22 100 -52 -95

JGj%
51 52 62 -41 -64 -52 100 30

Jz3 -59 -56 -44 64 45 -95 30 100

Table 6.7: Cross correlation results between different objective functions indicat-
ing high correlation between JCO2 and BSFC map distance Dist objectives and
high non correlation between the group CO2 and Dist and the group IRP and
Gch. This table is based on setting 3.

JCO2 Jdist Jz1 JIRP JGch
Jz2 JGj% Jz3

JCO2 100 90 -56 -98 -96 59 51 -58

JDist 90 100 -56 -89 -89 57 52 -56

Jz1 -56 -56 100 62 55 -90 15 87

JIRP -98 -89 62 100 94 -65 -41 64

JGch
-96 -89 55 94 100 -47 -64 45

Jz2 59 57 -90 -65 -47 100 -29 -100

JGj%
51 52 15 -41 -64 -29 100 30

Jz3 -58 -56 87 64 45 -100 30 100
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6.2 Selection of objective weightings

To minimise the number of objective functions and reduce the solution space, the

objectives that were correlated, according to cross-correlation of Table 6.6, were

grouped together. The first group comprises JCO2 , JDist and Jz1 and focuses on

emission reduction. The second group comprises JIRP , JGch and Jz3 and focuses

on driveability at the expense of emission. The last group 3 is durability and

currently only considers JGj based on the assumption that increasing the gear

box use through fast and frequent gear changes would reduce its life expectancy.

The groups are implemented through the use of a group weighting combined

with individual objective weightings within each group. The cost being nor-

malised against the costs obtained for the current gear shift map, the group

weightings are normalised such that their sum equates unity.

The selection of the individual objective weightings is a complex problem

in itself. The main objective being to reduce CO2 emissions, the weightings

associated with emissions should therefore be comparatively high. To ensure

that the vehicle is enjoyable to drive care should also be taken to ensure that the

ability of the vehicle to accelerate after a gear change is not reduced excessively.

Based on these general requirements and with the support of the correlation study

presented in the previous section, the objectives were ranked empirically in terms

of preference (see Table 6.8). The final weighting used in the optimisation is

then the ratio between each individual objective weighting and the sum of all the

objective weightings.

A MOGA was then used to further refine the determination of the most ap-

propriate objective weighting. Having obtained a set of previously optimised

solutions, six of these solutions were examined and ranked empirically from the

best to the worse. The MATLAB GA toolbox was then configured to optimise

the weight for each group of objective to replicate the proposed ranking. The
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weightings were initially selected from Table 6.8. Due to time constraints, only a

limited amount of simulation could be carried out. It was found that the weight-

ings determined by the GA could only replicate the ranking of 4 out of the 6

solutions selected.

Due to the difficulty in selecting the correct combination of objectives to merge

all the conflicting requirement into a single expression, this work favours the use

of a modified Pareto ranking. It ranks non dominated solutions according to a

weighted sum based on the weightings identified in Table 6.8. Such an approach

enables to overcome erroneous choice of objective weightings whilst concentrating

on the most promising regions within the solution space.

The next stage in the optimisation procedure is to select the actual ideal

solution. Such a choice is challenging as a single car can have many different

gear shift maps. These maps are selected based on the user requirement, sport

or eco driving, as well as the vehicle environment. The next section aims to

identify qualitative features to augment the information given by the objective

weightings or if possible identify the objective values that correspond to the most

appropriate solutions.

In order to minimise the number of objective functions and ease the multi-

objective optimiser to select a solution based on Pareto optimal point, a group of

objective functions were defined based on cross-correlation results. According to

cross-correlation of Table 6.5, the group of objective function is defined as follows:

• Objective group1 represents emissions: JCO2 , Jz1 , Jdis,

• Objective group2 represents driveability: JIRP , JGch
, Jz3

• Objective group3 represents durability: JGj%

Objective group 1 is emissions related, where JCO2 is combined with Jz1 and

Jdis as their correlation values are 90% and 86% respectively. Objective group 2 is
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driveability related, where JIRP is combined with JGch
and Jz3 as their correlation

values are 94% and 64% respectively. The last objective group 3 is durability

related and only considers JGj%
.

A weighted sum method is applied to individual objective function to form

one scalar as group. The group formulation is given as follows:

Group1 =
JCO2

JCO2(x0)
WGSM1 +

JDist
JDist(x0)

WGSM2 +
Jz1

Jz1(x0)
WGSM3 (6.1)

where WGSM1 , WGSM2 and WGSM3 denote the weighted associated with individual

objective JCO2 , Jdis and Jz1 respectively. JCO2(x0), JDist(x0) and Jz1(x0) are

the corresponding objective function with the initial solution, as this allows to

normalise the objective function. The solutions selected by the optimiser will

strongly depend on the weighting factors, and these weights must be positive,

and satisfying:

φ=1∑
L

Wφ = 1, Wφ ∈ (0, 1) (6.2)

whereWφ and L denote the weighting ratio and the maximum number of objective

function, respectively. Consequently, each individual weighting ratio of group 1

is given as follows:

WGr1d =
WGSMd∑d=1
d=3WGSMd

(6.3)

where the subscript d denotes each individual objective function.

Group 2 also pursues the same formulation as group 1. It is defined as follows:

Group2 =
JIRP

JIRP (x0)
WGSM4 +

JGch

JGch
(x0)

WGSM5 +
Jz3

Jz3(x0)
WGSM6 (6.4)
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where WGSM4 , WGSM5 and WGSM6 denote the weighted associated with individual

objective JIRP , JGch
and Jz3 respectively. JIRP (x0), JGch

(x0) and Jz3(x0) are

the corresponding objective function with the initial solution, as this allows to

normalise the objective function. Each individual weighting ratio follows the

same pattern as defined by Equation (6.3).

After defining three different groups as reduced objective functions, a combine

multi-group objective function is proposed as follows:

GroupObjGlobal
= GroupObj1WGlobal1 +GroupObj2WGlobal2 +GroupObj3WGlobal3

(6.5)

where WGlobal1 , WGlobal2 and WGlobal3 denote for individual weighting ratio for

multi-group objective function GroupObj1 , GroupObj2 and GroupObj3 respectively.

Each individual weighting ratio is given as follows:

WGlobale =
Wge∑e=1
e=3Wge

(6.6)

where the subscript e denotes each individual group objective function. The

weighting in percentage is given in Table 6.8.

Table 6.8: Rank of objective function and weighted sum

Rank Objective Weight Coefficient

1 JCO2 WGSM1 500

2 JDist WGSM2 200

3 JZ1 WGSM3 100

4 JIRP WGSM4 70

5 JGch
WGSM5 60

6 JZ3 WGSM6 20

7 JGj%
WGSM7 15

8 JZ2 WGSM8 5
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Table 6.9: Objective functions results of selected solution for optimised weight

Solution JCO2 Jdis Jz1 JIRP JGch
Jz3 JGj%

Jz2 ObjF RankDes

1 0.9780 0.7696 0.8148 1.1490 1.2667 1.0063 0.8287 1.0934 1.0230 1

2 0.9872 0.8071 0.8641 1.0930 1.1333 1.0179 0.8847 1.0194 1.0088 6

3 0.9903 0.9596 0.8932 1.0769 1.1333 1.0051 0.8924 1.0414 1.0132 5

4 0.9951 1.0501 0.8983 1.0331 1.0000 1.0089 0.9785 1.0260 1.0056 4

5 0.9962 0.9104 0.9403 1.0196 1.0000 1.0114 0.9867 0.9950 0.9979 3

6 0.9931 1.0855 0.8969 1.0382 1.0000 1.0205 0.9826 0.9920 1.0071 2
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GA was run 10 times, with a crossover rate of 0.7. The weight of each objective

was selected from Table 6.8 initially, then was randomly changed at each run,

therefore the weighted coefficient was always kept higher as it is the main objective

targeted. GA has managed to find a coefficient of each weight, however only 4

solutions out of 6 were classified. The coefficients of the group weights are given

in Table 6.10:

Table 6.10: Optimised weighting coefficient for Group1, Group2 and Group3

Group1 Group2 Group3

Weight 6400 2300 440

6.3 Solutions classification

To identify features of the solutions found by optimising the gear shift map from

a reference gear shift, use is made of solutions belonging to the Pareto optimal

set illustrated in Figure 6.1. Three groups (denoted by A, B and C) have been

identified based on normalised objective values for both IRP and CO2.

Group A represents solutions that are most suited for sport mode, providing

greater ability to accelerate after a gear change (see Figures 6.6, 6.7, 6.8 and 6.9).

Group B (B1, B2, B3 and B4) represents solutions close to the reference gear

shift map, against which all the costs are normalised, with slightly lower CO2

emissions and similar IRP (see Figures 6.10, 6.11, 6.12 and 6.13).

Group C (C1, C2, C3 and C4) represents solutions that significantly improve

CO2 emissions (see Figures 6.14, 6.15, 6.16 and 6.17).

The features exhibited by these solutions are qualitatively assessed against the

shape of the gear shift maps (see Figures 6.6, 6.10 and 6.14), the engine operating

point (EOP) (see Figures 6.7, 6.11 and 6.15), the gear changes against time (see

Figures 6.8, 6.12 and 6.16), and radar plots of their objective function to visually

assess the relative distribution of the objectives (see Figures 6.9, 6.13 and 6.17).
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Figure 6.2 illustrates the correlation between various objective formulations.

It can be observed that CO2 emission are correlated to z1 and a bit to Gj and

Dist, however it is inversely correlated to IRP, Gch and z2. There is no real

correlation between CO2 and z3. Figure 6.2 also shows clearly, the evolution of

the group of solution namely Set A, Set B and Set C across various objective

functions. They are in general grouped in the same search area. All red dots

group have the lowest IRP, but the highest CO2 alongside Gj and z1. All green

dots group are in most cases in the middle area of various objectives, whilst the

magenta dots group are in the lower bottom. Consequently they have the lowest

CO2 emissions and the higher IRP alongside Gch and z2.

Solutions that are on the Pareto optimal set are all optimal, but they favour

different criteria. Solutions that exhibit high IRP will result in vehicle exhibiting

a higher acceleration.
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Figure 6.6: Set of Optimised shift map obtained from Pareto optimal solution
denoted by A1, A2, A3, and A4, respectively (see Figure 6.1)
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Figure 6.7: Set of Optimised shift map obtained from Pareto optimal solution
denoted by A1, A2, A3, and A4, respectively (see Figure 6.1). The NEDC was
used to calculate the engine operating point (EOP). The EOP of standard shift
map is presented with red mark (+), and optimised shift map presented with
blue mark (o).
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Figure 6.8: Gear change position based on 4 optimised shift maps (A1, A2, A3
and A4 (see Figure 6.1)) compared with initial shift map.
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Figure 6.9: Radar plot of objectives functions (CO2 emissions, IRP, Distances,
Gear change frequency, time spent on higher gear, different zone on BSFC map
defined as Zone 1, Zone 2, Zone 3) based on 4 optimised shift maps (A1, A2, A3
and A4 (see Figure 6.1)) compared with initial shift map.
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Figure 6.10: Set of Optimised shift map obtained from Pareto optimal solution
denoted by B1, B2, B3, and B4, respectively (see Figure 6.1)

Figure6.10, 6.11 and 6.13 illustrate the plot of the second optimal set (B1,

B2, B3 and B4 (see Figure 6.1)) shift maps, engine operating point (EOP) and

radar plot of their objective function, respectively.
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Figure 6.11: Set of Optimised shift map obtained from Pareto optimal solution
denoted by B1, B2, B3, and B4 respectively (see Figure 6.1). The NEDC was
used to calculate the engine operating point (EOP). The EOP of standard shift
map is presented with red marked (+), and optimised shift map presented with
blue marked (o).
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Figure 6.12: Gear change position based on 4 optimised shift maps (B1, B2, B3
and B4 (see Figure 6.1)) compared with initial shift map.
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Figure 6.13: Radar plot of objectives functions (CO2 emissions, IRP, Distances,
Gear change frequency, time spent on higher gear, different zone on BSFC map
defined as Zone 1, Zone 2, Zone 3) based on 4 optimised shift maps (B1, B2, B3
and B4 (see Figure 6.1)) compared with initial shift map.
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Figure 6.14: Set of Optimised shift map obtained from Pareto optimal solution
denoted by C1, C2, C3, and C4 respectively (see Figure 6.1)
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Figure 6.15: Set of Optimised shift map obtained from Pareto optimal solution
denoted by C1, C2, C3, and C4 respectively (see Figure 6.1). The NEDC was
used to calculate the engine operating point (EOP). The EOP of standard shift
map is presented with red mark (+), and optimised shift map presented with
blue mark (o).
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Figure 6.16: Gear change position based on four optimised shift maps (C1, C2,
C3 and C4 (see Figure 6.1)) compared with initial shift map.
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Figure 6.17: Radar plot of objectives functions (CO2 emissions, IRP, Distances,
Gear change frequency, time spent on higher gear, different zone on BSFC map
defined as Zone 1, Zone 2, Zone 3) based on four optimised shift maps (C1, C2,
C3 and C4 (see Figure 6.1)) compared with initial shift map.
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6.4 Concluding remarks

This chapter has identified existing trade-offs in terms of the objectives imple-

mented in this thesis, to evaluate the appropriateness of the optimised solutions

produced. A cross correlation study highlighted the degree of correlation between

the different objectives and to identify the tuning parameters for the new criteria

proposed in this work. The outcome of the correlation study was the division

of the objectives into three groups focusing on emissions, driveability and dura-

bility, respectively. These tuning parameters for the zones 1-3 were selected to

emphasise the difference between solutions that promote an efficient distribution

of the engine operating point on the BSFC map and non optimised solutions. z1

promotes better fuel consumption and is correlated with CO2, Gj% and Dist.

The second group, which is not correlated with the first group includes IRP, Gch

and z2. To characterise the differences between different solutions, three groups

of optimal solutions were selected based on the trade-off between CO2 and IRP.

It was demonstrated that all optimised gear shift maps were shifted to the left in

comparison to the original shift map. This resulted in an early shifting and led

to reduction in CO2. The group with the lowest CO2 emissions have very rapid

successive changes for their gear sets 2 and 3, especially at low throttle position.

This study has enabled identification of features on the BSFC map as well as

gear shift maps to help select solutions which are optimal but also likely to be

acceptable in terms of driveability.
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Chapter 7

Algorithm performances

7.1 Introduction

Chapter 6 identified the type of solutions that can be obtained from focusing on

different objectives as well as features of desirable solutions. Having investigated

the formulation of the objectives in the previous chapters, this chapter focuses on

the algorithms exploiting such objective formulations. It aims to demonstrate,

through simulation studies, the benefits of problem specific features as well as

generic algorithm modifications applicable to other optimisation problems. The

generic algorithms modifications include the new hybrid Multi-Objective Cuckoo

Search (MOCS) which combines Levy Flight function with Firefly, Bat and Flower

Pollination operators. The problem specific developments include the gear shift

map repair mechanism, the new gear early shifting (GES) operator and the overall

optimisation framework for the combined gear shift and gear ratio optimisation.

Each contribution is evaluated independently and then in combination against

two benchmarks algorithms: the Interior-Point Optimisation and MOGA from

MATLAB toolbox. Finally the benefit of the combined MOGA and MOCS to

concurrently optimise gear ratio and gear shift map is compared to independent

gear ration and gear shift map optimisation.
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7.2 Objective handling for algorithm evaluation

The assessment is based on two different multi objective problem formulations.

First a Pareto formulation of the objectives that gives a set of equally optimal non

dominated solutions is considered, where solutions that favour low CO2 emission

can be selected from the Pareto set post optimisation (see Section 4.4.1, in Chap-

ter 4). Second a weighted sum of the objectives is considered where there is only

one optimal solution (see Section 4.4.1, in Chapter 4). Three sets of objectives

are considered in the evaluation. The first set (Set1) contains the three objective

groupings identified in Section 6.2, denoted Group1, Group2 and Group3.

The second set (Set 2) includes the three main objectives, which are JCO2 ,

JIRP and JGj%. The third set (Set 3) includes all the objectives adopted in this

thesis which are JCO2, JDist, Jz1, JIRP , JGch, Jz3, JGj%, Jz2.

The individual weighting for each objective is based on Table 6.8, while the

group weighting is based on the optimised weights determined in Table 6.10 (see

Section 6.2, in Chapter 6).

The Pareto based optimisation algorithms evaluated are:

• the MOGA (Mp1) based on Haas et al. (1998)

• the MOGAOp (Mp2) which is based on Mp1 but modified to include various

operators from the Cuckoo Search Algorithm (see Section 5.3, in Chapter 5)

• the MOGA from the MATLAB toolbox MOGAToolbox (Mp3)

The Non Pareto based optimisation (weighted sum) algorithms include Mp1,

Mp2 as well as:

• Interior-point algorithm (Ms1) from the MATLAB toolbox
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• GA (Ms2) from the MATLAB toolbox

The initial comparison is problem independent and therefore does not include

the repair mechanism and GES. Each set up is summarised in a table giving the

ideal objective function values achieved at the last generation for each setting.

The rate of convergence is illustrated by recording the most suitable objective

function at each generation, where the number of generation of each algorithm is

set to 30 with a population of 60 individuals. The maximum functions evaluated

for interior-point algorithm is set to 2000. Every algorithm used the same initial

condition. Pareto based optimisation algorithms use identical initial population

whilst weighted sum approaches use a valid solutions of average quality.

7.3 Criteria to evaluate the algorithms perfor-

mance

This section describes the criteria used in this chapter to evaluate the benefit of

the problem specific objectives formulation as well as the proposed algorithms.

The objective formulation is evaluated by performing a correlation analysis with

existing objectives and observing from a qualitative perspective (e.g. shape of

the gear shift map, type of solutions produced) and a quantitative perspective

(CO2 emissions, time spent on higher gears and ability of the vehicle to accelerate

after a gear change, expressed as inverse reserve power) the differences between

the optimised solutions. The effectiveness of the algorithms is evaluated using:

• the overall most suitable for each objective function

• the mean value and standard deviation of solutions between generation
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• the functions evaluated

• the speed of convergence

• the diversity of solution based on Pareto front (Schott 1995) is defined as

follows:

Ssprd =

√√√√ 1

n− 1

n∑
i=1

(
d− di

)2
(7.1)

where di=minj(
∣∣∣f i1(~x)− f j1 (~x)

∣∣∣ +
∣∣∣f i2(~x)− f j2 (~x)

∣∣∣), i,j=1,...n, d is the mean

of all di, and n is the number of Pareto optimal set. If Sspread is equal to

zero, it means that all members of the Pareto optimal set are equidistantly

spaced.

7.4 Repair mechanism effectiveness

One of the major contributions of this work is the solution repair mechanism. It

has been designed such that it can be applied to an existing gear shift map or

a new solution generated by the optimisation algorithm. It is a convenient tool

to rescue solutions, with significant CO2 saving potential, that would otherwise

have been rejected.

To illustrate the benefit of the approach, the vehicle powertrain behaviour

is simulated for a previously optimised gear shift with low CO2 emission. The

gear position, the engine operating point and the reserve power are then plotted

against time at which the reserve power is below the user defined limit set at 3.2

kW Ngo, Colin Navarrete, Hofman, Steinbuch & Serrarens (2013). The corre-

sponding reserve power and throttle position are identified by green circles and

triangles on Figures 7.1, 7.2 and 7.3, respectively.
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Plotting the engine operating point on top of the gear shift map, see Figure 7.1,

clearly indicates that the lower limit constraints are only infringed for a small

region in the gear shift map. Applying the repair mechanism according to the

method described in Section 5.2.2, removes the issue associated with the Upshift

to 2nd gear by increasing the velocity at which the Upshift occurs for low throttle

angles. The ability of the repair mechanism to adjust only a few points in the gear

shift map is believed to be very valuable. The same principle could be applied

to other criteria and constraints that should be met. The effect of the repaired

gear shift map on the vehicle performance assessed against the NEDC was then

re-simulated.
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Figure 7.1: Optimised gear shift with reserve power under 3.2 kW
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Figure 7.2: Optimised gear shift results over the NEDC with reserve power under
3.2 kW for one period of urban driving cycle
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Figure 7.3: Optimised gear shift results over the NEDC with reserve power under
3.2 kW for extra-urban driving cycle
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It is clear that, following the application of the gear shift repair mechanism,

all the occurrences of reserve power below the limit have been removed. The

repaired gear shift map illustrated in Figure 7.4 is only modified for the 2nd gear

Upshift. This small modification is able to remove all the occurrences of the

reserve power that were under the limit over the whole NEDC, see Figure 7.5

and 7.6. Table 7.1 illustrates the benefit and consequences of applying the repair

mechanism to the gear shift map (GSM) illustrated in Figure 7.1 to produce the

repaired gear shift map, GSMr, as illustrated in Figure 7.4.

The application of the repair mechanism results in a slight increase in CO2

emissions. This increase is unavoidable and results in the necessity to meet the

minimum requirement in terms of IRP. Note that similar approaches could be used

to design gear shift map for sport mode, the only difference being an increase in

the minimum reserve power.
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Figure 7.4: Optimised gear shift map repaired to enforce minimum reserve power
above 3.2 kW
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Figure 7.5: Simulation with a repaired gear shift map showing that the minimum
reserve power is met at all time over the whole NEDC. This illustration shows
one period of urban driving cycle

Table 7.1: Optimised shift map results. GSM is the optimised shift map with
reserve power under the limit. GSMR is the optimised shift map after applying
repair mechanism

Solution JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2

GSM 0.9773 0.7944 0.8076 1.1541 1.2667 1.0060 0.8267 1.1005

GSMR 0.9800 0.8031 0.8173 1.1425 1.2667 0.9947 0.8285 1.1348
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Figure 7.6: Simulation with a repaired gear shift map showing that the minimum
reserve power is met at all time over the whole NEDC. This illustration shows
one period of extra-urban driving cycle
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7.5 Problem specific operator evaluation

Another notable contribution in this thesis is the problem specific GES operator

(see Section 5.2.1, in Chapter 5) designed to generate gear shift map with reduced

CO2 emissions. Table 7.2 confirms that the application of the GES operator gives

rise to three solutions with improved CO2 emissions, at the cost, however, of worse

IRP.

Figure 7.7: Illustration of GES. The full red, blue and green lines denote the
three solutions produced by the GES

Table 7.2: Optimised shift map results. GSMGESinit
is the optimised shift map

with . GSMGES25%, 50% and 75%
being the optimised shift map after applying the

repair mechanism

Solution JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2

GSMGESinit
0.9964 1.0137 0.9697 1.0198 1.0000 1.0089 0.9907 0.9879

GSMGES25%
0.9927 0.7558 0.9150 1.0421 1.0000 1.0198 0.9769 0.9842

GSMGES50%
0.9938 0.8344 0.9283 1.0349 1.0000 1.0169 0.9813 0.9854

GSMGES75%
0.9949 0.9216 0.9469 1.0273 1.0000 1.0153 0.9860 0.9805

The benefit of applying GES has improved the current solution generated by

the optimiser by up to 0.37%.
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7.6 Algorithm performance evaluation

This section describes the comparison between the algorithms developed in this

thesis and benchmarks from the MATLAB toolbox. Following the evaluation of

the proposed modifications to generic MOGA and MOCS algorithms, the overall

scheme is evaluated in combination with problem specific features developed in

this work, namely the repair mechanism and GES.

The overall outcome of the simulation studies is presented in Table 7.3. Ta-

bles D.1, . . . , D.21 focusing on each feature evaluation are presented in Appendix

D. Each table contains the leading objective value found for each objective con-

sidered. The objectives used within the optimisation algorithms were normalized

against the initial gear shift map provided by the manufacturer. JCO2 is presented

without normalisation in the tables of results to clearly identify the relative merits

of the algorithms investigated.

Table 7.3 identifies the most suitable algorithm, which abbreviations are sum-

marised in Table 7.5, and the settings defined in Section 7.2 and identified using

the colour coding shown in Table 7.4, for both Pareto and weighted sum objective

formulations.

Considering the Pareto case, no repair with GES (green) gives rises to the

leading results in terms of CO2. This is expected as the application of repair

increases the JCO2 . Mp1 and Mp2 are the most suitable algorithms for JCO2 , JDist,

JIRP and JGj% when Pareto ranking is used. Note however that GES may lead

to premature convergence and prevent exploration.

Jz3 reaches a minimum value that is similar, irrespective of each algorithm

used. This means that the objective Jz3 cannot be used to differentiate between

alternative solutions. This behaviour can be explained by the drive cycle used to

evaluate alternative solutions, where the vehicle is not operating at high speed

for significant periods of time.
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The ideal algorithm for the weighted sum (WSum) approach was Mp7 for most

objectives, with the exception of JGch and Jz1, where Mp6 was better. Mp7 offered

the most suitable performance in terms of JObj, the latter being used to deter-

mine the most suitable solution. Compared to the Pareto based optimisation

approach, it can be seen that the selection of the objective weightings is critical

to the achievable performance against individual objectives. In general Pareto

based optimisation approaches are better at enabling individual objectives to be

minimised.

The performance results are provided in more detail in Appendix D. The ideal

algorithms with different settings are defined in the following Table 7.3:
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Table 7.3: Most suitable algorithm for each objective function

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Set 1 (Par) Mp1(2) Mp2(1) Mp4(2) Mp1/Mp2(1) Mp1(1) All(1) Mp1(1) Mp2(1) Mp2/Mp5(2)

Set 2 (Par) Mp2(1) Mp1(2) Mp2/Mp4(3) Mp1/Mp1(2) All Mp1(2) All(1) Mp1(3) Mp3(2) All(4)

Set 3 (Par) Mp1(1) Mp1(1) Mp4(1) Mp1(3) Mp1(3) All(1) Mp4(2) Mp1(3) Mp1/Mp2/Mp5(1)

Set 1 (WSum) Mp7(5) Mp7(3) Mp7(4) Mp7(5) Mp6/Mp6(4) Mp7/Mp7(2) Mp7(6) Mp6/Mp6(4) Mp7(3)

Set 2 (WSum) Mp7(3) Mp7(4) Mp7(6) Mp7(6) Mp6/Mp6(4) Mp7(2) Mp7(4) Mp6/Mp6(4) Mp7(5)

Set 3 (WSum) Mp7(4) Mp7(5) Mp7(5) Mp7(4) Mp6/Mp6(4) Mp7(2) Mp7(5) Mp6/Mp6(4) Mp7(6)

Table 7.4: Colour coding for various setting in algorithms performance assessment

Setting Colour coding

No Repair mechanism, no GES Black

Repair mechanism, no GES Red

No Repair mechanism, GES Green1

Repair mechanism, GES Blue

1Applicable only with Pareto based optimisation algorithms.
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Table 7.5: Abbreviation for algorithms investigated

Mp1 MOGA original with modified Pareto ranking

Mp2 MOGAOp Mp1 with additional operators from Cuckoo Search

Mp3 MOGAToolbox. MOGA from MATLAB optimisation toolbox (gamultiobj)

Mp4 Mp1 with application of GES at each generation

Mp5 Mp2 with application of GES at each generation

Mp6 Interior-point algorithm from MATLAB optimisation toolbox

Mp7 Single GA from MATLAB optimisation toolbox (ga)

7.6.1 Effect of repair mechanism

Pareto based optimisation

The impact of repair mechanism has limited in some condition the optimiser to

reduce further down JCO2 , as it is designed to improve the driveability, however

will increase JCO2 as illustrates in Table D.10, in Appendix D.
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Figure 7.8: Convergence of MOGA and MOGAOp based on Pareto under different
objective combinations denoted set 1, set 2, and set 3

7.6.2 Effect of GES operator

Noticed that the application of GES was only implemented MOGA and MOGAOp.

Additionally, as it was described that GES improve the value of JCO2 , however

care need to be taken by applying GES, as it can result to a premature conver-

gence (Pandey et al. 2014). GES was applied in average at every 3 generations,

also at each generation in order to highlight the impact of GES. Noticed that

GESAg (Mp4), GESAg/Op (Mp5) are referred to as a more aggressive application of

GES, meaning that GES is applied at each generation on MOGA and MOGAOp

respectively.
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Pareto based optimisation

Tables D.14, Table D.15 and Table D.16 demonstrate the results obtained by ap-

plying GES. In general the average of JCO2 has significantly reduce in comparison

to non-application of GES, see Table D.17.
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Figure 7.9: Convergence of MOGA, MOGAAg, MOGAOp and MOGAOp/Ag based
on Pareto under different objective combinations denoted set 1, set 2, and set 3

Figure 7.9 illustrates the impact of applying GES on the rate of convergence.

As expected, it has contributed a higher, faster rate of convergence of fitness

values in compared to Figure 7.10 and Figure 7.8. Additionally the application

at each generation has also accelerated the rate of convergence.
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7.6.3 Effect of objective formulation

The objectives formulation as described in Section 4.2.1, were used as a mean of

measure to assess the performance of each optimised shift map. Three different

sets were defined (see Section 7.2) as separate objective functions for both Pareto

and weighted sum. The first set aims to rely on three group of objectives, namely

emissions, driveability and durability. The set 2 is based on the three main

objectives uncorrelated, CO2 emissions, IRP and Gj% (see Table 6.5, Section

6.1.2, in Chapter 6). Finally, the set 3 was based on all objective functions.

The solutions correspond to the ranked optimisers for CO2 emissions (see

Table 7.3) are defined in Appendix E with their respective objective functions

and shift map. The leading solutions are described in Sections E.2 and E.3, and

their respective shift map are represented with the minimum hysteresis between

Upshift and Downshift. As expected the driveability and gear change frequency

are high. On the other hand, the second solution described in Section E.1, despite

it low CO2 emissions, only has a minimum hysteresis at the low throttle position

for gear set 2, gear set 3 and gear set 4. Therefore it had a better Gj% than the

two last.

The weighted sum solutions are among the highest CO2 emissions. The solu-

tions described in Section E.5, is the most suitable from the three solutions. It

has a better IRP in compared to Pareto solutions. Solutions presented in Sections

E.4 and E.6 are with the minimum in terms of CO2 emissions, therefore they have

improved IRP despite being optimised.

7.6.4 Pareto versus weighted sum approach

The weighted sum method is the simplest technique in optimisation when deal-

ing with more than one objective functions (see Section 4.4.1, in Chapter 4),

therefore it is difficult to reflect the user desire when considering the multiple
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objective function. In this thesis, Pareto outperformed and weighted sum perfor-

mances were compared under 3 settings (see Section 7.2). It can be noticed that

Pareto outperformed the weighted sum in terms of rate of convergence as well as

minimum CO2 emissions (see Figures 7.8, 7.9, 7.10 and 7.11).

7.6.5 MOGA and nature inspired operators

This section describes the performance of algorithms.

Pareto based optimisation

Tables D.1, D.2 and D.3 are the results of Pareto-based optimisation for set 1, set

2 and set 3 respectively. Noticed that JCO2 used in the algorithm was normalized

against the initial gear shift map, it is presented without normalisation in the

tables of results. This was adopted to assess more easily the potential for CO2

saving. The MOGAOp gave rise to the ideal JCO2 for set 1 (see Table D.1) but

the worse for set 2 (see Table D.2) whilst the MOGA gave the leading JIRP for

both set 1 and set 2.

Figure 7.10 represents the rate of convergence of different optimisers, and the

correlation between various objective functions respectively. In Figure 7.10, it

can be noticed that the convergence of the algorithm depends on the objective

formulation, i.e. set is not improving, in terms of the most suitable solution,

for many generations, whilst sets 1 and 3 lead to a more regular convergence.

MOGAOp is only able to outperform the benchmark MOGA for set 2.

The small population size and use of modified Pareto ranking leads to gaps

between solutions on the Pareto set. This initial comparison is not able to demon-

strate that it is beneficial to include Cuckoo Search operators within the GA.

However, due to time constraints only a few experiments could be run, making

the result not statistically significant.
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Figure 7.10: Convergence of MOGA and MOGAOp based on Pareto under differ-
ent objective combinations denoted set 1, set 2, and set 3

Non-Pareto based optimisation

Non-Pareto based optimisation is performed using the interior-point algorithm

and GA from MATLAB toolbox.

Tables D.4, D.5 and D.6 illustrate the final solution obtained from interior-

point algorithm and GA based on set 1, set 2 and set 3. By contrast to the

Pareto based optimisation approach, it can be noticed that JCO2 has not been

significantly reduced with average JCO2 around g/km.

Indeed, whilst Pareto based optimisation approach can find solution that excel

against any particular objectives, non Pareto base optimisation approaches rely

exclusively on the selection of the trade-off between the different objectives.
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7.6.6 Algorithms performance with repair mechanism, and

GES

Pareto based optimisation

Tables D.18, D.19 and D.20 demonstrate the application of repair mechanism and

GES considering set 1, set 2 and set 3 conditions. The application of GES (see

Table D.21) in this case, improves the results of convergence rate.
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Figure 7.11: Convergence of MOGA and MOGAOp based on Pareto under differ-
ent objective combinations denoted set 1, set 2, and set 3

This section has described the performance of MOGA, and MOGAOp under

different settings with the application of repair mechanism and GES. Additionally,

a comparison was made against optimiser benchmark from MATLAB toolbox,

MOGAOp considering Pareto, interior-point algorithm and GA considering Non-

Pareto. It was highlighted that repair mechanism has improved in average JIRP ,
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however increase JCO2. Inversely, GES improves JCO2 , however as a drawback, it

can impact on the convergence rate and prevent exploration.
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7.7 MOCS

This section describes the MOCS algorithm combined with Levy Flight, Bat,

Firefly and Flower Pollination operators. The goal of this section is to verify

the performance of each operator for optimising intermediate gear ratio. The

comparative assessment of each operator is mainly based on the speed of con-

vergence, which measures the quality of difference solutions. An experiment was

realised with a termination condition of 30 generations to assess the performance

of difference operators as follows: (i) the operator were individually run. (ii) the

operators were randomly selected from generation to generation. (iii) the oper-

ators were selected in an ascending order starting from Levy Flight (1), Firefly

(2), Bat (3) and Flower pollination (4). Three objective functions were consid-

ered in this case, namely: CO2 emissions, IRP and gear ratio bandwidth (see

Section 3.4.5, in Chapter 3). The number of available host nest was fixed to

15. Two sets of weights were considered for this study. Table 7.6 describes the

weighted combination for use with the modified Pareto ranking (see Section 4.4.2,

in Chapter 4). The Weighting set 1, favours the bandwidth, and Weighting set 2

favours CO2 emissions.

Table 7.6: Weighting coefficient for gear ratio optimisation. WGR1 , WGR2 and
WGR3 denote the weighting coefficient of CO2, IRP and bandwidth respectively

WGR1 WGR2 WGR3

Weighting set 1 100 15 300

Weighting set 2 300 15 100

7.7.1 Results based on weighting set 1

The weighting selection of set 1 is justified by the fact that CO2 emission is

prioritised.

The results for each benchmark settings, are described in Tables 7.7 and 7.8.
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Table 7.7: Comparative performance of MOCS integrated with Levy Flight, Bat,
Firefly, Flower pollination operators separately

Levy F light F irefly Bat F lower pollination

functions evaluated 1152 648 1063 1070

Ideal solution 0.51 0.497 0.5029 0.496

Mean value of solution 1.25e−7 0 6.77e−8 4.76−5

Std of solutions 2.44e−7 0 1.13e−7 4.58−5

Spread 2.39e−7 0 1.11e−7 4.48−5

Table 7.8: Comparative performance of MOCS integrated with Levy Flight, Bat,
Firefly, Flower pollination operators. The first test is selecting different operators
randomly. The second test is selecting gradually different operators

Random selection Order selection

functions evaluated 1084 1063

Ideal solution 0.499 0.5006

Mean value of solution 5.63−4 7.31−7

Std of solutions 1.034−3 9.54−7

Spread 1.01e−3 9.33e−7

160



Algorithm performances

0.87 0.88 0.89 0.9
1.0155

1.016

1.0165

1.017

1.0175

1.018

Normilised IRP

N
or

m
ili

se
d 

C
O

2

 

 

Gen 10
Gen 20
Gen 30

0.2 0.4 0.6 0.8
1.0155

1.016

1.0165

1.017

1.0175

1.018

Normilised Bwd

N
or

m
ili

se
d 

C
O

2

 

 

Gen 10
Gen 20
Gen 30

0.4 0.6 0.8 1
1.0155

1.016

1.0165

1.017

1.0175

1.018

Normilised all cost

N
or

m
ili

se
d 

C
O

2

 

 

Gen 10
Gen 20
Gen 30

Figure 7.12: Trade-off between CO2 against IRP, bandwidth and overall weighted
combination cost based on random selection of operators: Levy Flight, Firefly,
Bat and Flower pollination. The blue, red and green circles denote the solutions
trade-off after 10, 20 and 30 generations, respectively.
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Figure 7.13: Performance of gear ratio optimisation based on random selection
of operators: Levy Flight, Firefly, Bat and Flower pollination
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Figure 7.12 and Figure 7.13 illustrate the intermediate gear ratio optimisation

performance considering randomly selected operators. Figure 7.12 demonstrates

the evolution of various objective trade-off against CO2 emissions. It can be

noticed that the CO2 value is increasing while the IRP, bandwidth and overall

cost are decreasing. Figure 7.13 presents the trade-off between CO2 against IRP,

bandwidth and overall weighted combination cost, where the Pareto optimal sets

are shown by the blue, red and green circles after 10, 20 and 30 generations

respectively.

Similarly, it can be seen from Table 7.7 and Table 7.8, that only random

selection managed to maintain a better diversity at the last generation. Thus, it

can be concluded that a bigger number of generation is not necessary to optimise

the intermediated gear ratio considering the first weighting combination.

7.7.2 Results based on weighting set 2

The second set of weightings puts more emphasis on the gear ratio bandwidth.

Table 7.9: Comparative performance of MOCS integrated with Levy Flight, Bat,
Firefly, Flower pollination operators separately

Levy F light F irefly Bat F lower pollination

functions evaluated 513 147 444 402

Ideal solution 0.822 0.846 0.822 0.822

d 0.0091 0.0109 0.0101 0.0112

Std 0.029 0.0297 0.032 0.0363

Spread 0.028 0.0285 0.0307 0.0349
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Table 7.10: Comparative performance of MOCS integrated with Levy Flight, Bat,
Firefly, Flower pollination operators. The first test is selecting different operators
randomly. The second test is selecting gradually different operators

Random selection Order selection

functions evaluated 423 344

Ideal solution 0.846 0.823

d 0.0107 0.0108

Std 0.0355 0.0369

Spread 0.034 0.0355
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Figure 7.14: Performance of gear ratio optimisation based on Firefly

Figure 7.14 and Figure 7.15 illustrate the intermediate gear ratio optimisation

performance considering Firefly of operators. In most case the IRP stays constant,

and bandwidth naturally decreasing. However, the overall cost increases from

generation to generation. According to Figure 7.15, the spread based on the last

generation is well distributed in comparison to most cases noticed in Section 7.7.1.
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Figure 7.15: Trade-off with Firefly between CO2 against IRP, bandwidth and
overall weighted combination cost. The blue, red and green circles denote for
solutions trade-off after 10, 20 and 30 generations respectively

7.8 Combined gear ratio & shift map optimisa-

tion

The realisation of combined gear ratio and gear shift map is based on the algo-

rithm described in Figure 5.10 (see Section 5.4.1, in Chapter 5). MOGA, MOCS

and interior-point algorithm were combined to obtain a set of gear ratio and op-

timised gear shift map, as illustrated in Figure 7.16. The set of gear shift and

gear ratio combinations contains 15 nests. Each nest is represented by a set of 6

speed gear ratios (G1,G2,G3,G4,G5 and G6). Each nest is then defined with its

initial shift map, and 40 optimised shift maps.

For this study, 10 generations were considered for MOCS, and 10 generations

for MOGA. Notice that MOCS was setup with random selection of operator at
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each generation, to encourage diversity amongst the population.

Three different sets of combination are described in the following sub-sections:

Figure 7.16: Illustration of a set of combination representing, a set of gear ratio,
with its initial and optimised gear shift maps respectively

Noticed that within a combined set, not all 15 nest are found to be valid due

to constraints. In fact, combSet1 has 15 valid nests, combSet2 has 9 nests valid

nests and combSet3 has also 9 valid nests.

Table 7.11: Performance of MOCS integrated with Levy Flight, Bat, Firefly,
Flower pollination operators. A random selection of operators is considered in
this case. combSet1, combSet2 , combSet3 denote the sets of combination 1, 2 and
3 respectively

combSet1 combSet2 combSet3

functions evaluated 180 436 485

Ideal solution 0.7392 0.6994 0.968

d value of solution 0.0101 0.0023 0.0061

Std of solutions 0.0199 0.0046 0.0119

Spread 0.019 0.0044 0.011

Table 7.11 describes the performance of the intermediate gear ratio optimisa-

tion based on the combined gear ratio and gear shift map optimisation. It can

be seen that the number of function evaluation varies significantly between the

first and the last two set of combinations. This can be justified by the complexity

of this particular gear set, as the first and last gear ratios are different, meaning
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that constraints become more stringent, which can result in a higher function

evaluations.

The leading overall objective function is higher compared to the first two.

Table 7.12: Ideal CO2 emissions for combSet1, combSet2 and combSet3 with their
corresponding Jdis, Jz1 , JIRP , JGch

, Jz3 , JGj%, Jz2 and ObjF

JCO2 Jdis Jz1 JIRP JGch
Jz3 JGj% Jz2 ObjF

combSet1 186.18 0.892 0.985 1.47 1.43 1.0 0.934 1.05 0.957

combSet2 186.28 0.9095 0.994 1.49 1.43 1.0 0.69 1.017 0.957

combSet3 186.29 0.814 1.006 1.51 1.43 1.0 0.666 0.983 0.957
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Figure 7.17: Ideal optimised gear shift map in terms of CO2 based on combSet1

Figure 7.17 represents the optimised gear shift maps in terms of CO2 from

combSet1. It only shows, focuses on the most effective area, between 0 to 70%

of throttle position and 0 to 130 km/h. The similarities between these three

optimised shift maps combSet1, combSet2 and combSet3 are their very low emissions,
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Figure 7.18: Gear shift map results based on combSet1 of the most suitable results.
The plots are: optimised gear shift map, reserve power, gear selection and speed
range each gear ratio compared to the original shift map

and as expected the IRP has accordingly increased significantly. The advantage

of this combined method is rapid convergence, with good results obtained after

10 generations. However the drawback of this method is the rapid degradation

of the IRP as it can be seen in Table 7.12, which can consequently affect the

driveability.

Figure 7.18 and Figure 7.19 represent the optimised gear shift map results for

combSet1, with its corresponding reserve power, gear selection and speed range

on each gear ratio in compared to the standard gear shift map (see Section F.1,

in Appendix F for combSet2 and combSet3). As expected, the gear 5th usage has

increased, which benefit the CO2 emissions. Therefore, the reserve power has

massively increased whilst lowering the CO2 emissions.
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Figure 7.19: Gear shift map results based on combSet1 of the most suitable results.
The plot presents the vehicle speed of the NEDC reflected on the shift map.

Table 7.13: Ideal CO2 emissions for combSet1, combSet2 and combSet3 with their
corresponding Jdis, Jz1 , JIRP , JGch

, Jz3 , JGj%, Jz2 and ObjF

JCO2 Jdis Jz1 JIRP JGch
Jz3 JGj% Jz2 ObjF

combSet1 195.9 0.938 1.28 1.08 1.0 1.0 0.296 0.602 0.989

combSet2 193.3 0.901 1.27 1.15 1.13 1.0 0.287 0.61 0.979

combSet3 193.1 0.941 1.27 1.16 1.13 1.0 0.291 0.608 0.978
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Figure 7.20: Selection of optimised gear shift maps at early generation

Figure 7.20 represents three optimised gear shift maps selected at early gen-

eration in order to be compared to the last generation described by Figure 7.17.

Table 7.13 represents their objective functions. In terms of CO2 emissions, the

selected solutions from an early generation are similar to the results obtained in

Section 7.6. However the leading solutions in terms of CO2 obtained in the last

generation have significantly lower CO2 values e.g. 186 g/km. The IRP is by

contrast significantly increased, expressing a degradation of the driveability as

CO2 decreases (see Table 7.12 and 7.13). Note that the minimum driveability

constraints are still met by these solutions, however the overall shape of gear

shift map resulting from the combined gear ratio and gear shift map optimisation

is not regular. A comparison was also made between the average and ideal CO2

emissions in terms of shapes of gear shift map. It was found that in the absence of
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Figure 7.21: Gear shift map results based on combSet1 at the earlier generation.
The plots are: optimised gear shift map, reserve power, gear selection and speed
range for each gear ratio to the original shift map

stricter constraints on the shape of the gear shift, the optimiser tended to produce

irregular gear shift maps that may not be optimal from a practical perspective

(see F, Section F.2). The selection of the shape constraints has been identified as

an area of further work which requires important inputs from engineers as well as

use of a wide variety of driving cycles to ensure that the engine operating points

cover the whole gear shift map.

The operating points of combined gear ratio and gear shift map are not similar

to the original shift map. This can be explained by the modification of gear ratio.

The engine speed vary from 780 RPM to up to 4000 RPM, in compare to the

original gear ratio, which vary from 780 RPM to 2400 RPM. It can be noticed

that having a wide range of engine speeds and different set of gear ratios benefit

the CO2 emission.

Figure 7.21 and Figure 7.22 represent the optimised gear shift map results for

combSet1, with its corresponding reserve power, gear selection and speed range on

each gear ratio in compared to the standard gear shift map (see Section F.2, in
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Figure 7.22: Gear shift map results based on combSet1 at the earlier generation.
The plot presents the vehicle speed of the NEDC reflected on the shift map.

Appendix F for combSet2 and combSet3). Same remarks can be made as observed

in Figure 7.18 and Figure 7.19, except the gear selections are mainly on 4th.

By comparing various objective functions, as seen in Table 7.13 (only opti-

mised gear shift map, see Section 6.1.1, in Chapter 6). It can be noticed that

most objective functions are much higher.

7.9 Concluding remarks

This chapter has reported the simulation results for gear shift map and gear ratio.

It has illustrated the features of the solutions obtained for individual as well as

combined gear shift map and gear ratio optimisation. The chapter started with

a demonstration of the working principle of the new problem specific operator
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and the new repair mechanism. The simulation studies confirmed the ability of

the GES operator to improve, in terms of CO2 existing optimised shift map. The

repair mechanism was shown to be able to correct shift maps which exhibits a

reserve power below a user defined threshold. Considering the usage of weighted

sum to combine a multi-objective function into single objective function. It can be

noticed that the final objective function has the same value (see Table 7.12), which

makes it difficult to select one without observing various objective functions.

A benchmark study was carried out by comparing the MOGA developed in

this thesis against MOGA from MATLAB toolbox considering Pareto ranking

and weighted sum. The same conditions were applied in each case, considering

integration of repair mechanism and problem specific into MOGA. The ideal com-

promised set of solutions was Pareto ranking, as it has demonstrated a better di-

versity among various objective functions. Pareto based optimisation approaches

were also able to find solutions with lower CO2. The evaluation, through simula-

tion, of the new hybrid MOCS to optimised intermediate gear ratio demonstrated

that optimising intermediate gear ratio was beneficial to bandwidth but not nec-

essarily to CO2. The evaluation of the MOGA combined with MOCS to optimise

jointly gear shift map and gear ratio demonstrated that such an approach could

identify solutions that could significantly reduce CO2 emissions compared to op-

timising gear ratio and gear shift map independently.
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Chapter 8

Optimised gear shift map

experimental results

8.1 Introduction

This chapter details the validation of the shift map developed in this thesis, by

testing an optimised gear shift map on a rolling road. This mapping is designed

with respect to the engine operating range so that the transmission is in the

correct gear at all times e.g. when the driver requires maximal torque. Depending

on the prevailing conditions, typically the transmission will select a lower gear

moving the engine further into maximum torque producing range (high RPM

combined with a wide open throttle). Until recently, these shift maps have been

created using a template for the type of engine and vehicle intended and then

calibrated by trial and error until adequate performance is achieved according to

the ride and drive assessment of a test driver.

A new approach to shift map design is proposed in this thesis, such that the

procedure is systematic and automated according to criteria that are selected

in an objective function that guides the final definition of the shift map. In

Chapter 4, the problem formulation has been described detailing the objective
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function (see Section 4.2.1). Many variables may be considered, obviously chief

among them is CO2, but also driveability considerations, such as power on de-

mand (acceleration curves), gear shift frequency and other important parameters.

In particular a MOGA (see Chapter 5 and Chapter 7) was applied to solve this

multi-variable control problem which balances fuel consumption (CO2 emissions)

and driveability. The emissions testing were carried out in SAIC Anting (China)

test facilities. The first task was the execution of a series of vehicle tests on a

rolling road in controlled conditions in order to establish a baseline average CO2

figure for the particular vehicle. The next testing phase incorporated the same

vehicle but this time with the CO2 reducing (optimised) shift maps.

In this chapter, a rolling road test result is described and compared with

the initial shift map. This chapter is composed as follow: Section 8.2 describes

the rolling road parameters, Section 8.4 explains the test results obtained from

the initial shift map and optimised shift map. Additionally variability of the

simulation model using driver speed input with various optimised shift maps are

considered. Finally Section 8.5 concludes this chapter with a discussion.

8.2 Rolling road setting

This section defines the rolling road test procedure, important parameter settings

before testing the shift map and an explanation of the test results.

8.2.1 Coastdown test

A coastdown test is a mandatory requirement of the vehicle homologation regu-

lation in order to simulate the vehicle road load during indoor rolling road fuel

economy and emission testing (Yasin 1978). The level of driving resistance, such

as rolling resistance, vehicle inertia and aerodynamic drag are determined, and

adjustment to the rolling road is made as appropriated. The principal properties
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to maintain during the coastdown test are as follows:

• Tyre rolling resistance:

This coefficient is related to the tyre design, which determines the effort

required to overcome the resistance generated between the road and the

tire.

• Vehicle aerodynamic resistance:

This coefficient is dependant on the vehicle shape. As the vehicle moves,

through the atmosphere, an opposite force is generated by the air being

deflected by the vehicle. Consequently, the greater the vehicle speed, the

higher the resistance.

• Drivetrain and powertrain mechanical resistance:

This coefficient is concerned with the mechanical friction of the drivetrain.

It defines the internal friction that the vehicle has to overcome in order to

move the wheels.

In order to determine the data for coastdown adjustment in laboratory test-

ing, the vehicle assigned for this project, ROEWE 950, was taken to a proving

ground in Guangde (China), where the environmental conditions (good ambient

temperature and humidity) are ideal, and the road is completely flat, straight,

and dry for establishing the coastdown properties. The vehicle is driven at 130

km/h, neutral gear position is selected and allowed to coastdown (decelerate) un-

til the vehicle velocity falls below 5 km/h. The vehicle is instrumented to record

velocity and distance. The test is repeated several times in order to reduce the

effect of measurement error and disturbances.
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8.2.2 Test procedures

The testing of emissions and fuel consumption of ROEWE 950 took place on a

rolling road (dynamometer) laboratory at the SAIC Anting test and development

plant (Shanghai, China). Before the emissions test, vehicles are preconditioned

and soaked for at least 6 hours at a test temperature of 20-30C. Emissions are

then measured while vehicle is driven according to the New European Driving

Cycle (NEDC) speed profile. The entire NEDC consists of four repeated ECE-15

driving cycles of 195s duration each and one extra-urban driving cycle (EUDC)

of 400s duration.

Figure 8.1: The New European Driving cycle (NEDC), based one urban part,
composed of four repeated ECE-15 driving cycles, and one extra-urban driving
cycle

Additionally, a coastdown must be performed before and after a test, to ensure

that the driving resistances of the rolling road are correct. The following data

represents an example of coastdown test for this research during a rolling test for

gear shift map.

In order to validate the rolling road for fuel and emissions assessment, the

coastdown check must be performed against the experimental data obtained from

proving ground of Guangde (China). The vehicle speed versus time profile must
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be adjusted within ± 5 sec, if not, then the driving resistance of the rolling road

must be adjusted and a repeat coastdown test performed in order to validate the

experimental data (a more detailed coastdown test description can be found in

Appendix C).

8.2.3 Explanation of the bag test documentation results

Every test on the rolling road is accompanied by a bag test documentation de-

scribing the useful information regarding the particular vehicle used for fuel and

emissions, test conditions, fuel type, and the respective emissions test results (see

Appendix G). The bag test documentation is composed of four parts as follows:

• Vehicle information & fuel type:

The first part describes the vehicle details, such as weight (1900 Kg), engine

type (gasoline), transmission type (DCT), Driver initial (as it was advised

to always use the same driver for all tests), test authorisation number with

the date and fuel type (92 RON).

• Test conditions:

The test conditions section specifies the atmospheric pressure (101.8 kPa),

the ambient temperature (24.3 ◦C, must be maintained), relative humidity

(39%).

• Data regarding exhaust analyser:

An approved analyser is used to assess the concentration of different emis-

sions (CO, NOx, CO2) in the exhaust gases by inserting a sample probe into

the exhaust tailpipe. These samples represent the level of concentration of

the various emissions.

• Fuel and emissions results:

Once the analyser has logged the level of concentration of emissions in the
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exhaust tailpipe, the results of the emissions are then calculated and printed

out.

These documents record all the information of the test conditions with fuel and

emissions samples obtained from the rolling road. This information will be used

to further assess various optimised shift maps in terms of emissions performance.

8.2.4 Possible sources of error

This sub-section hypothesises possible sources of error, regarding the test phase.

It is described as follows:

• The vehicle used for the emissions test was a prototype vehicle, however

each test was carried out with the latest Engine Control Unit (ECU) and

Transmission Control Unit (TCU) calibration. Additionally, the vehicle was

first tested and agreed as valid for rolling road test by calibration engineers,

moreover the tyres were also checked.

• It was advised to retain the same driver for all rolling road tests for this

research, because of the availability of certified drivers for rolling road test-

ing. However, it was not possible to retain the same driver. While different

driver behaviour can affect the final results, it is encouraging to know that

all drivers follow the same strict training within SMTC regarding emissions

test.

• During the test phases, the vehicle encountered some issues with the start

and battery charging system. It was advised to change the vehicle with

another prototype vehicle with identical ECU and TCU calibration.

• The laboratory test temperature at Anting test and development plant

(Shanghai, China) is maintained at around 25 ◦C, however the ambient

temperature can easily reach 30-35 ◦C.
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• Translation during the test phases. A weekly meeting was held to commu-

nicate with SMTC China calibration engineers to discuss testing and any

related issues with the rolling road and vehicle. English/Chinese translator

was present at the meeting. Additionally, communication with an engineer

who does not speak English was assisted by the translator.

8.3 Most suitable selected simulation results for

rolling road

This section presents the ideal shift map selected for the rolling road. Table 8.1

illustrates the objective functions of selected gear shift map.

Table 8.1: Best CO2 emissions for GSMSet1, GSMSet2 and GSMSet3 with their
corresponding Jdis, Jz1 , JIRP , JGch

, Jz3 , JGj% and Jz2
JCO2 Jdis Jz1 JIRP JGch

Jz3 JGj% Jz2
GSMSet1 193.3 0.82 0.812 1.15 1.27 1.01 0.827 1.09

GSMSet2 190.2 0.86 0.803 1.24 1.4 1.01 0.758 1.09

GSMSet3 190.8 0.673 0.811 1.22 1.4 0.999 0.76 1.12
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Figure 8.2: Best selected optimised gear shift map 1
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Figure 8.3: Best selected optimised gear shift map 2

Figure 8.2, Figure 8.3 and Figure 8.4 represent satisfactory optimised gear

shift map obtained.
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Figure 8.4: Best selected optimised gear shift map 3
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Figure 8.5: Best selected optimised gear shift map 1, gear position

Figure 8.5, Figure 8.6 and Figure 8.7 represent the satisfactory optimised

gear shift map and gear position. The gear change frequency has significantly

increased for Figure 8.6 and Figure 8.7 as they represent the ideal CO2 emissions.
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Figure 8.6: Best selected optimised gear shift map 2, gear position
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Figure 8.7: Best selected optimised gear shift map 3, gear position
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Figure 8.8: Best selected optimised gear shift map 1, reserve power
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Figure 8.9: Ideal selected optimised gear shift map 2, reserve power

Figure 8.8, Figure 8.9 and Figure 8.10 represent the ideal optimised gear

shift map and reserve power. As expected the reserve power of Figure 8.9 and

Figure 8.10 are the highest (see Table 8.1).
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Figure 8.10: Ideal selected optimised gear shift map 3, reserve power

8.4 Test results

This section describes fuel consumption and emissions testing performed for this

research. The first section defines the initial shift map test on the rolling road

to determine the benchmark CO2 emissions. Optimise shift map results are then

presented and compared with the initial shift map results. Finally, the emissions

saving is also reported and concluded.

8.4.1 Benchmark

In this sub-section the test of the initial shift map on the rolling road is de-

scribed before testing of the optimised shift map. It was agreed to first establish

a benchmark CO2 figure on the rolling road, which will be used to compare the

optimised shift map emissions performance. The test conditions for the Bench-

mark are based on the description given in Section 8.2. Additionally a bag test

example documentation can be found in Appendix G. It would have been ideal to

repeat the test at least 10 times to establish the benchmark CO2 figure, however

due to limited resources, it was only possible to perform the benchmark test 3

times. Table 8.2 describes the results from three tests with the initial shift map
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on the rolling road.

Table 8.2: Initial shift map fuel economy (FE) and CO2 emissions on a rolling
road over the NEDC. Three test results are presented in this table generated
under the same conditions

Test 1 Test 2 Test 3

CO2 (g/km) 196.39 201.69 204.88

F.E (L/100km) 8.42 8.44 8.58

Table 8.3: Initial shift map fuel consumption and emissions on a rolling road over
the NEDC. This table shows the average and standard (Std) deviation values for
fuel and emissions

Average value Std

CO2 (g/km) 200.98 4.28

F.E (L/100km) 8.4800 0.0872

Table 8.2 shows an overview of fuel consumption and emissions from rolling

road test based on the initial shift map. Table 8.3 describes the average value

and standard deviation of CO2 emissions and FE. The average CO2 listed in

this table is 200.98 g/km, however the official figure of ROEWE 950 is 197.7

g/km. The differences can be attributed the fact that the research is based on a

prototype vehicle which was still in development phases. The overall objective of

this benchmark was to obtain a CO2 figure in order to compare and quantify the

benefit of optimised shift map.

8.4.2 Optimised gear shift map

Having obtained a benchmark CO2 emission figure, by the method described

above, the focus is turned to the optimised shift map. After developing the

algorithm to optimise the gear shift map (see Chapters 4 and 5), this section

explains the results obtained on the rolling road regarding the optimised shift

map. Before loading each gear shift map for the rolling road test, a subjective

driveability test was performed on the open road.
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Figure 8.11: Driveability test of Optimised shift map before loading on it in ECU
for rolling road test

Every shift map was tested by a calibration engineer before the final test on

the rolling road for FE and CO2 emissions assessment. Figure 8.11 illustrates an

example of an optimised shift map assessment in order to verify its driveability.

The calibration engineer then filed a report on the shift change at various throttle

positions.

Table 8.4: Initial shift map fuel consumption and emissions on a rolling road over
the NEDC. Three various test results are presented in this table under the same
conditions

Test 1 Test 2 Test 3 Test 4

CO2 (g/km) 195.97 198.38 193.42 195.93

F.E (L/100km) 8.2 8.29 8.27 8.42

The percentage change in fuel economy and emissions relative to the optimised

shift map on the rolling road are listed in Table 8.6. The average change in CO2

for the optimised shift map reported in this table is -2.5%. The average change in

FE is -2.2%. Clearly the optimised shift map has significantly improved the CO2

emissions and fuel consumption. The drawback of these tests, is the difficulty of

maintaining consistency between various tests, as the standard deviation is 2.02
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Table 8.5: Initial shift map fuel consumption and emissions on a rolling road over
the NEDC. This table shows the average and standard (Std) deviation values for
fuel and emissions

Average value Std

CO2 (g/km) 195.9250 2.0252

F.E (L/100km) 8.2950 0.0918

Table 8.6: Average change fuel economy and emissions for optimised shift map
in compared to initial shift map on rolling road

Pollutant & fuel Percent change (%)

CO2 -2.5

F.E -2.2

for CO2 emissions, this can be explained by the driver input and the prototype

vehicle. This is why several tests are required to confirm the results, however

considering the average results based on four tests, the method developed in this

thesis shows a significant and promising contribution to reducing CO2 emissions.
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Figure 8.12: Engine operating point of standard shift map and optimised shift
map 1 from rolling road

Figures 8.12 and 8.13 illustrate two optimised shift maps in comparison to the

initial shift map. Notice that the initial shift map engine speed and torque were
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Figure 8.13: Engine operating of standard shift map and optimised shift map 2
from rolling road

not sampled at the same rate, as engine was sampled at 100ms from TCU data

acquisition, and torque was sampled at 10ms from ECU data acquisition. Con-

sequently both signals are re-sampled for comparison study. It can be observed

that both optimised shift maps have an improved spread of operating points than

the initial shift map.

Figures 8.14 and 8.15 demonstrate the engine characteristic of the optimised

shift map in terms of maximum torque, actual torque, reserve torque, engine

speed and reserve power. Notice that the maximum engine power was estimated

using the engine maximum torque data, which has been modelled as a function

of engine speed at full throttle position. The figures are similar, but by taking

a look at reserve torque and maximum power, the result in Figure 8.14 seems

to show more reserve torque than the second in Figure 8.15, at the beginning of

the drive cycle. However, later on during the drive cycle, it tends to converge.

The most significant factor, in terms of fuel consumption can be attributed to

the driver input.

Table 8.7 describes the time spent in each gear with optimised gear shift map
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Figure 8.14: This figure illustrates the first optimised shift map, engine maximum
torque (estimate), actual torque and reserve torque. Engine speed and estimated
reserve power
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Figure 8.15: This figure illustrates the second optimised shift map, engine max-
imum torque (estimate), actual torque and reserve torque. Engine speed and
estimated reserve power

1 (b) and shift map 2 (c), compared to the initial shift map (a). It is obvious

that spending time in higher gears improves fuel economy and CO2 emissions, as

it can be seen that percentage of gear ratio for fifth gear has increased for both

optimised shift maps (+10.87% and +10.8%).
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Table 8.7: This table illustrates time spent on different gear ratio between opti-
mised gear shift map 1 (b), shift map (c) in comparison to initial gear shift map
(a). Additionally with the increase or decrease time spent of each gear ratio for
optimised shift map

Gear 1 Gear 2 Gear 3 Gear 4 Gear 5 Gear 6

a (%) 33.3 11 20.2 14.3 2.3 18.6

b (%) 32.2 (-1.1) 10.9 (-0.1) 20 (-0.2) 4.8 (-9.5) 13.17 (+10.87) 18.8 (+0.2)

c (%) 32 (-1.3) 11 (0) 20 (-0.2) 4.3 (-10) 13.11 (+10.8) 18.9 (+0.3)
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Figure 8.16: Rolling road vehicle speed and gear shift position under initial shift
map

Figures 8.16, 8.17 and 8.18 illustrate the initial shift map, and two optimised

shift maps gear shift position, as mentioned above, the two optimised shift maps

are shifting earlier and maximising the time in fifth gear.
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Figure 8.17: Rolling road vehicle speed and gear shift position under optimised
shift map 1
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Figure 8.18: Rolling road vehicle speed and gear shift position under optimised
shift map 1

8.5 Concluding remarks

This chapter has described the rolling road test of optimised gear shift maps,

which has repeatedly demonstrated CO2 savings, that are predicted in simulation.

Additionally, CO2 emissions were reduced without no perceptible reduction in
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driveability. The following sub-section described the summary of the testing

which has led to reduced CO2 emissions on the rolling road based on the method

developed in this thesis. Additionally, an advise of the testing condition is given

for improvement.

8.5.1 Summary of the testing methodology

• A testing methodology was developed, where the vehicle was assessed at

first and checked if there are any faults, such as fuel, tyre pressure and

general integrity.

• Soak the vehicle for 6 hours (before each test).

• Establish the coastdown check.

• Rolling road test.

• A repeated testing was established to benchmark the CO2 emissions. These

have led to 3 benchmark CO2 with initial shift map.

• Optimised gear shift map are then loaded and test drive assessment is con-

ducted on road.

• After verification by the calibration engineer, the optimised shift map is

then assessed on the rolling.

8.5.2 Improvement

Various rolling road test must be conduct such as to:

• Improve the confidence in the benchmark.

• Improve the confidence in the optimised shift map.

• Test more aggressive CO2 savings shift maps.
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Chapter 9

Discussion, conclusion and

further work

This chapter summarises the main contributions from this research on gear shift

map and gear ratio optimisation before presenting the conclusions arising from

this research and opportunities for further work.

The Conclusion starts with the motivation for the work prior to a description

of the novelties and contributions classified in order of importance. This section

finished with a quote from the industrial collaborators describing the commercial

significance of the work.

The further work section presents opportunities to apply some of the work

and opportunities to further develop the methods and software tools developed

in this work.

9.1 Conclusion

This research project was prompted by the government initiatives, legislation

(Energy Institute 2012) as well as the socio political and customer requirements

(Transport 2005) to reduce the use of fossil fuel and significantly reduce vehicles
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emissions (in particular CO2). The most significant CO2 emissions saving at the

point of use arises from the adoption of hybrid technologies. However, signif-

icant savings can also be achieved via hardware design and software solutions

applied to automated manual transmissions. This work has demonstrated that

the development of multi objective, nature inspired, optimisation frameworks to

optimise both gear shift map and gear ratio could lead to significant CO2 and fuel

consumption savings whilst maintaining vehicle driveability. The culmination of

the work on gear shift map optimisation was the experimental validation of the

work through rolling road tests performed by the vehicle manufacturer showing

a significant 2.5% CO2 saving compared to the standard vehicle gear shift map.

A further CO2 saving of up to 5.8% was predicted using simulation studies by

combining gear ratio and gear shift map optimisation. Note that these significant

savings were obtained for gear shift maps that meet the minimum requirement

for reserve power, but they also resulted in worsening of the overall reserve power

and were characterised by unusual trajectories for the up and down gear shifts.

There are two types of novelties in this thesis: (i) problem specific formulation

and methodologies and (ii) improvements of generic optimisation algorithms. The

following statements describe them:

• The most significant problem specific contribution in this thesis is the repair

mechanism, which can be applied to any gear shift map (see Section 5.2.2,

in Chapter 5). The application of the repair mechanism leads to a slight

increase in CO2 emissions (see Table 7.1, in Chapter 7). This increase is

unavoidable due to meeting the minimum reserve power requirement set

by the designer (see Section 7.4, in Chapter 7). The simulation results

in Table D.10, in Appendix D have demonstrated the effect of the repair

mechanism.

• The second problem specific contribution is the problem formulations for
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both gear ratio and gear shift map multi-objective optimisation. These for-

mulations have enabled the efficient and effective development of the overall

optimisation strategies developed in this thesis. The gear shift map prob-

lem formulation enabled the user to specify the range of throttle position to

consider (see Section 4.2.3, Chapter 4). It was designed to enforce the fol-

lowing engineering constraints: i) prevent crossing between Downshift and

Upshift ii) maintain a minimum hysteresis between Downshift and Upshift

to avoid frequent gear changes for small velocity variations. The number of

design variables to optimise was reduced to 90 by reducing the number of

control points in the gear shift map using a sensitivity analysis and prac-

tical implementation constraints. This resulted in the optimised throttle

angle being separated by 10◦ whilst intermediate throttle angle positions

were reconstructed using linear interpolation.

• The intermediates gear ratios were formulated such that the optimiser can

focus more efficiently on gear ratio spacing and maintain a continuously

decreasing ratio from gear G2 to G5 (see Section 4.3.1, Chapter 4).

• The third problem specific contribution is the problem specific GES opera-

tor (see Section 5.2, in Chapter 5). It has the ability to improve the existing

optimised gear shift map by reducing CO2 emissions by up to 0.37%. GES

decreases the difference between Upshift and Downshift, thereby decreasing

the hysteresis between Up and Downshift (with respect to a minimum hys-

teresis), resulting in making quick gear changes more likely (see Section 7.5,

in Chapter 7). Such rapid changes are however acceptable with the use of

the proposed SAIC Dual Clutch Transmission gearbox. The GES effect

was illustrated in Table 7.3, where the application of GES finished with

the lowest CO2 emissions. Additionally the application at each generations

have also accelerated the rate of convergence as demonstrated by comparing
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Figure 7.9 and Figure 7.8.

• The fourth problem specific contribution is the implementation of the rate

of change constraints to restrict the relative values of the gear shift points

compared to their neighbours (see Section 4.2.2, in Chapter 4). It restricts

the rate slope of each up/down shift trajectory. It has been shown to be

very effective when combined with constrained optimisation such as interior-

point algorithm. Note that constraining the shape of the gear shift map may

make it more practical to implement but does increase the CO2 emissions.

Therefore the solutions obtained using MOGA and MOCS use fairly large

threshold values for possible changes in the rate of change of the up/down

shift trajectories, leading to low CO2 but at the cost of irregular gear shift

maps.

• The most significant contribution in terms of algorithm modification appli-

cable to any optimisation problem is the addition to the MOGA used in

this work of operators borrowed from other nature inspired optimisation

algorithms such as Levy flight, Flower pollination, Bat and Firefly algo-

rithms (see Section 5.3, in Chapter 5). This introduction stems from the

observation of the solutions produced by these operators. It was aimed to

help focus the search on different regions of the solution space as well as

exploit known good solutions to generate new individuals around currently

optimal solutions. This hybrid combination has proved successful and was

the best performer for gear shift map optimisation. Various experimental

tests were carried out to demonstrates the proposed MOGA effectiveness.

The outcome of the simulation study was the demonstration that each opti-

misation algorithm can produce a better solutions than the manufacturers

initial map. There is however no win-win situation as gear shift map leading

to the best CO2 savings did exhibit features that may not make them de-
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sirable from a practical implementation perspective, such as irregular gear

shift map shapes.

• The second most significant contribution in terms of algorithm modifica-

tion is the development of a hybrid MOCS for gear ratio optimisation. In

addition to the standard Levy Flight operator, it includes Bat, Firefly and

Flower Pollination. These operators were integrated within the Cuckoo

Search to generate new optimised gear ratios.

• Key to any optimisation problem is the ability to ask the appropriate ques-

tion to the optimiser. These questions are expressed in terms of objectives

to be optimised or minimised in the case of this thesis. Three new objective

formulations were proposed in this thesis to investigate if the conflicting ob-

jectives of achieving low CO2 and thereby fuel consumption as well as good

driveability expressed in terms of reverse power could be achieved simulta-

neously (see Section 4.2.1, in Chapter 4). These objectives focused on the

percentage of time the engine was operating in the specific regions of the

BSFC map. Zones 1 and 2 correspond to the two most efficient zone, whilst

zones 3 reflects higher fuel consumption characterised by operating the en-

gine at low or very high revolution per minute. It was noticed that zone

3 was proportional to IRP as it represents the highest fuel consumption,

therefore zone 3 can reach a minimum level (0.88) during the optimisation

process.

• A new criterion, referred to as gear utilisation criterion, was developed to

identify the gear usage based on the assumption that maximising the time

on higher gear would result in lower fuel consumptions and CO2 emissions.

This criterion gives the designer a quantifiable measure to identify the effect

that have the selection of specific gear ratio on the overall CO2 emission.

The designer main task is to decide the most appropriate importance factor
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for the different criteria developed in order to determine the most suitable

trade-off solution. Guiding the algorithm towards the trade-off is achieved

by allocating weighting coefficient as defined in Equation (4.1) (see Sec-

tion 4.2.1, in Chapter 4). To enable the designer a greater flexibility, gear

weightings were introduced to identify the specific gears to be targeted.

This objective, together with the number of gear changes were found to

be particularly useful to identify patterns of gear selection over the NEDC

drive cycle for different solutions. These patterns relate to different features

in the gear shift map and are strongly correlated to the CO2 emissions.

• Taking inspiration from Le Guen et al. (2011), a new cost function (Dist)

was developed to minimise CO2 by moving the engine operating points,

expressed in terms of engine torque, Te, and engine speed, we, towards

the left side of the BSFC map (see Section 4.2.1, in Chapter 4). It is

realised by minimising the distance between a reference, or anchor point

O(wref , Tref ) on the BSFC map, and the Upshift points for the throttle

positions, tk of interest. The problem specific objective aim is to help users

identify the most suitable solutions, by observing the performance of the

engine operating point on the BSFC map, whilst the specific objectives are

expressed using different formulations. It was found that minimising the

distances between the reference point (O(wref , Tref )), and Upshift points

led to a reduction of CO2 emissions.

• Another objective formulation was designed to maximise the time spent on

the higher gear ratios (Gj%) (see Section 4.2.1, in Chapter 4). It was noticed

that increasing the amount of time spend on high gear ratios, reducing the

time spent on lower gears was beneficial to CO2 emissions.

• The application of the modified Pareto objective formulation based on Haas

et al. (1998) for both gear ratio and gear shift map is a contribution for
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such applications (see Section 5.2, in Chapter 5). It uses objective weighted

Pareto ranking to differentiate between non dominated solutions. It has the

advantage of focusing the search towards low CO2 regions without neglect-

ing the other objectives. It has shown to be able to find solutions with lower

costs than the standard weighted sum approaches. The combination of a

standard MOGA with the modified Pareto objective formulation and the

new repair mechanism together with the new local search operator, namely

GES. The aim of these modifications were to exploit problem specific fea-

tures to find improved solutions rapidly. It was shown that GES improved

significantly the current solution generated by the optimiser. The applica-

tion of GES was limited to one at every three generations as it can lead to

a premature convergence, as demonstrated in Figure 7.9.

• In addition, the overall combination of both MOGA and MOCS to con-

currently optimise gear ratio and gear shift map is novel and has proved

extremely successful compared to independent gear ratio and gear shift

map optimisation. This combination has led to a significant 5.8% savings

in terms of CO2 emissions.

• This method has resulted in solutions which have been selected for testing

first in real life situations to ensure that they offered suitable driveability

and then on rolling road. The rolling road tests confirmed that the signifi-

cant savings found on simulation. On average a saving of 2.5% in terms of

CO2 emissions was achieved.

Considering the research adopted in this thesis, a number of contribution and

innovative developments have been made in the field of optimisation applied to

gear shift map and gear ratio. The fruits of these contributions were developed to

alleviate and support the automotive industry facing strict rules imposed by the

government concerning regulation on emissions. Overall the research has been
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very well received by SAIC motors. The following quote was written by the line

manager Chris Woolley:

” The excellent work conducted during Adama Fofana’s time at SMTC UK

proved both advantageous and invaluable. His development of control algorithms

used for gear shift schedule optimisation, dynamic performance and improved fuel

economy proved very successful, these were presented throughout to the Global

business and have aided future development in this area. In addition to this

the models generated during Adama’s time with us are stored in a model library

designed and developed my Adama, these models are used today to support product

development through simulation.”

9.2 Further work

The mathematical framework defined to express optimised gear shift maps into

design variables may still be improved. An optimisation study should be carried

out further to select an appropriate throttle range over various driving cycles.

The hysteresis of each throttle position was fixed in order to reduce the number

of design variables. However it may be beneficial to investigate throttle specific

hysteresis constraints and refined the selection of the hysteresis values adopted

in this thesis.

The powertrain model used in this thesis was only validated against the New

European Drive Cycle (NEDC). To enable the use of the model to evaluate so-

lutions for other drive cycles, the model should be validated against the World

harmonised Light vehicles Test Procedures (WLTP) as well as the road testing

carried out by the manufacturer to evaluate the vehicle behaviour from a quali-

tative perspective. Having validated the simulation model for a range of driving

conditions, the optimisation should therefore evaluate the performance of the

candidate solutions against the NEDC drive cycle as well as WLTP and the road
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driving cycle used for driveability tests by the manufacturer.

The effect of the repair mechanism has only been evaluated on simulation. It

would be useful to see if such an approach can be used whilst testing the vehicle

on the rolling road to perform educated adjustment of the gear shift map in cases

when the map tested does not meet acceptable driveability. This is an area which

could potentially help reduce calibration costs significantly.

The practical implementation of a gear shift map involves the use of look up

table and interpolation between the points on the look up table. Regular shapes

are therefore better than irregular gear shift map due to the ease of implementa-

tion and the interpolation process. Indeed, care should be taken to prevent sharp

and rapid changes that may lead to significant changes in engine RPM for a small

variation in throttle angle or up/down shift. It has been shown that it is possible

to control the shape of the gear shift map by imposing constraints on the rate of

change of the up and down shift trajectory on the gear shift map. This approach,

should be further studied to identify a set of appropriate gear specific thresholds

to limits the rate of change of the up and down shift trajectories, thereby making

them more regular and easier to implement on production vehicle

Due to a limited amount of time, statistical analysis can be improved regarding

the selection of the best algorithm, by repeating the simulation undergone for each

algorithm under various settings as well as Pareto and weighted sum methods.

An noteworthy characteristic of the Firefly algorithm is its ability to emit light

from a long distance. The brightness for the light emitted represents quality of

the fitness function for the firefly. It is traditionally proportional to a combined

objective function obtained by a weighted sum. Further search could be carried

out where, instead of using a combined weighted sum, a modified Pareto function

is applied to select a firefly with the brightness depending on the Pareto set as

well as the best combination of objectives.

The hybrid MOCS developed for gear ratio optimisation, can have a significant
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contribution to various fields. The algorithm may still be improved by addition of

a performance measure, which can be used to select an operator in order to control

the rate of convergence or accurately focus the search direction. Additionally, a

fuzzy logic controller could be used to vary the parameters of various operators

integrated in the hybrid MOCS.

It may also be worthwhile to investigate a problem formulation to combine

gear shift map and gear ratio, and use either MOGA or MOCS to optimise both

gear shift and gear ratio simultaneously.
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Ivarsson, M., Åslund, J. & Nielsen, L. (2013), ‘Impacts of AMT Gear-Shifting on
Fuel Optimal Look Ahead Control’, SAE International .

Jebari, K. & Madiafi, M. (2013), ‘Selection Methods for Genetic Algorithms.’,
International Journal of Emerging Sciences 3(4).

Kanagaraj, G., Ponnambalam, S. G. & Jawahar, N. (2013), ‘A hybrid cuckoo
search and genetic algorithm for reliability-redundancy allocation problems’,
Computers and Industrial Engineering 66(4), 1115–1124.

Karaboga, D. & Akay, B. (2009), ‘A survey: Algorithms simulating bee swarm
intelligence’, Artificial Intelligence Review 31(1-4), 61–85.

Kasseris, E. P. & Heywood, J. B. (2007), Comparative analysis of automotive
powertrain choices for the next 25 years, Technical report.

Kaya, Y., Uyar, M. & Tek\D{j}n, R. (2011), ‘A Novel Crossover Operator for
Genetic Algorithms: Ring Crossover’, p. 5.

Khajehzadeh, M., Taha, M. R., El-shafie, A., Eslami, M. & Branch, A. (2011), ‘A
Survey on Meta-Heuristic Global Optimization Algorithms 1’, 3(6), 569–578.

Kim, D., Peng, H., Bai, S. & Maguire, J. M. (2007a), ‘Control of integrated power-
train with electronic throttle and automatic transmission’, IEEE Transactions
on Control Systems Technology 15(3), 474–482.

Kim, D., Peng, H., Bai, S. & Maguire, J. M. (2007b), ‘Control of integrated power-
train with electronic throttle and automatic transmission’, IEEE Transactions
on Control Systems Technology 15(3), 474–482.

Kim, N., Rousseau, A. & Rask, E. (2012), ‘Autonomie Model Validation with
Test Data for 2010 Toyota Prius’, SAE International pp. 1–14.

Kirschstein, S., Remelhe, F. & Stolze, B. (2009), ‘Efficient transmission appli-
cation by using modern offline tools’, Proceedings of 8th CTI International
Symposium of Innovative Automotive Transmission, Berlin .

Kirtane, C. (n.d.), ‘Gear Shift Schedule Optimization and Drive Line Modeling
for Automatic Transmission’, pp. 254–260.

208



Discussion, conclusion and further work

Kita, H., Ono, I. & Kobayashi, S. (1999), ‘Multi-parental extension of the uni-
modal normal distribution crossover for real-coded genetic algorithms’, Proceed-
ings of the 1999 Congress on Evolutionary Computation (CEC’99) pp. 1581–
1587.

Konak, A., Coit, D. W. & Smith, A. E. (2006), ‘Multi-objective optimization
using genetic algorithms: A tutorial’, Reliability Engineering & System Safety
91(9), 992–1007.

Kulkarni, M., Shim, T. & Zhang, Y. (2007), ‘Shift dynamics and control of dual-
clutch transmissions’, Mechanism and Machine Theory 42(2), 168–182.

Ladkany, G. S. (2012), ‘A Genetic Algorithm with Weighted Average Normally-
Distributed Arithmetic Crossover and Twinkling’, Applied Mathematics
03(30), 1220–1235.

Le Guen, D., Weck, T., Balihe, A. & Verbeke, B. (2011), ‘Definition of Gearshift
Pattern: Innovative Optimization Procedures Using System Simulation’, SAE
Int. J. Fuels Lubr. 4(1), 412–431.

Li, G. & Hu, J. (2010), ‘Modeling and analysis of shift schedule for automatic
transmission vehicle based on fuzzy neural network’, 2010 8th World Congress
on Intelligent Control and Automation pp. 4839–4844.

Lin, Y.-s., Shea, K., Johnson, A., Coultate, J. & Pears, J. (2009), A method and
software tool for automated gearbox synthesis, in ‘ASME 2009 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference’, American Society of Mechanical Engineers, pp. 111–
121.

Liu, C., Gao, Z. & Zhao, W. (2012), ‘A New Path Planning Method Based on
Firefly Algorithm’, 2012 Fifth International Joint Conference on Computa-
tional Sciences and Optimization pp. 775–778.

Liu, Y., Qin, D., Jiang, H., Liu, C., Zhang, Y. & Lei, Z. (2009), ‘Shift sched-
ule optimization for dual clutch transmissions’, 5th IEEE Vehicle Power and
Propulsion Conference, VPPC ’09 1, 1071–1078.

Llamas, X., Eriksson, L. & Sundstr, C. (2010), ‘Fuel Efficient Speed Profiles for
Finite Time Gear Shift with Multi-Phase Optimization’, Vehicular Systems .

Long, Q. (2014), ‘A constraint handling technique for constrained multi-objective
genetic algorithm’, Swarm and Evolutionary Computation 15, 66–79.

Lourakis, M. I. (2005), ‘A brief description of the levenberg-marquardt algorithm
implemented by levmar’, Foundation of Research and Technology 4, 1–6.

Lucente, G., Montanari, M. & Rossi, C. (2007), ‘Modelling of an automated
manual transmission system’, IFAC Proceedings Volumes (IFAC-PapersOnline)
7(PART 1), 958–963.

Mahlia, T., Tohno, S. & Tezuka, T. (2012), ‘A review on fuel economy test proce-
dure for automobiles: Implementation possibilities in Malaysia and lessons for
other countries’, Renewable and Sustainable Energy Reviews 16(6), 4029–4046.

209



Discussion, conclusion and further work

Mammetti, M., Gallegos, D., Freixas, A. & Muñoz, J. (2013), ‘The influence of
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Appendix A

Vehicle, Engine & Transmissions

specification

Table A.1: Engine: NLE 2.0L

Power : 120KW@6500rpm

Torque(Nm)@ Speed(rpm) : 200

Torque(Nm)/Litre : 100

Engine Breathing : Naturally aspirated

Displacement : 1995

Cylinders : 4

Compression ratio : 12.0 : 1 TBC

where the NLE 2.0L is a gasoline type, naturally aspirated, 4 cylinder engine.

Table A.2: Transmission model: DCT 360
Installation : Transverse

Number of gears : 6 Forward

Number of shafts : 3

Max torque : 350 Nm

Max. input speed : 6800 mm−1

Overall length : 340 mm

Weight (wet) : ≤ 85 kg

Maximum efficiency : ≥ 93 %
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Vehicle, Engine & Transmissions Specification

The DCT (see Table A.2) is designed by Gesellschaft für Industrieforschung

(GIF) and manufactured by SAIC Gear Works (SAIC GW).

Table A.3: Vehicle : ROEWE 950 (BP32)

Kerb weight(kg) : 1802

Gross Weight(kg) : 2237

Trailer Weight(kg) : N/A in China

CdA(m2) : 0.318/0.334

Front area(kg) : 2.378/2.384

Wheel Size Min : R17

Wheel Size Max : R18

Wheel base : 2837

Width : 1857
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Appendix B

Initial calibration shift map
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Figure B.1: This figure represents the initial calibration shift map of SAIC 6 speed
DCT. The Upshift 1-2, Upshift 2-3, Upshift 3-4, Upshift 4-5 and Upshift 5-6 are
represented by solid black, blue, red, magenta and green lines, respectively. The
Downshift 2-1, Downshift 3-2, Downshift 4-3, Downshift 5-4 and Downshift 6-5
are described by dotted black, blue, red, magenta and green lines, respectively.
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Initial calibration shift map

Table B.1: Numerical values (Km/h) of initial calibration Upshift (Up) map of
SAIC 6 speed DCT

Throttle position % Up 1− 2 Up 2− 3 Up 3− 4 Up 4− 5 Up 5− 6

0 14 29 43 56 68

10 14 29 43 56 68

20 14 29 43 56 68

30 14 29 43 56 70

40 18 33 51 69 90

50 22 41 64 86 113

60 27 49 77 104 136

70 32 59 94 126 175

80 38 69 110 148 255

90 44 80 127 171 255

100 49 91 143 193 255

Table B.2: Numerical values (Km/h) of initial calibration Downshift (Dw) map
of SAIC 6 speed DCT

Throttle position % Dw 1− 2 Dw 2− 3 Dw 3− 4 Dw 4− 5 Dw 5− 6

0 5 25 39 49 63

10 5 25 39 49 63

20 5 25 39 49 63

30 5 25 39 49 63

40 5 25 39 52 68

50 5 25 42 57 78

60 5 27 46 67 95

70 5 32 54 80 115

80 5 38 64 95 140

90 20 43 78 115 170

100 35 72 110 150 245

218



Appendix C

Coastdown test data

Figure C.1: Vehicle ROEWE 950 coast down data. These data represents vehicle
speed, time and distance recorded during vehicle deceleration from 130 km/h to
5 km/h
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Coastdown test data

Figure C.2: Actual coastdown test performed on chassis dynamometer of
ROEWE 950 for gear shift map fuel and emissions assessment
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Coastdown test data

Figure C.3: The actual coastdown on the chassis dynamometer must within ± 5
second against the experimental data obtained from the proven ground

Figure C.4: Target coastdown plot test from chassis dynamometer against exper-
imental test from proven ground
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Appendix D

Performance tables of optimisers

D.1 Pareto with no repair and no GES

Table D.1: Most suitable solution upon Pareto optimal set, for each objective
function based on set 1, with no repair and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 193.7 0.92 0.84 0.69 0.56 0.87 0.68 1.07 0.93 0.021 0.0043 0.022

Mp2 191.4 0.86 0.82 0.74 0.70 0.87 0.68 1.07 0.94 0.016 0.0031 0.017

Mp3 193.9 0.84 0.84 0.96 1.0 0.88 0.64 0.99 0.97 0.014 0.0038 0.015

Table D.2: Most suitable solution upon Pareto optimal set, for each objective
function based on set 2, with no repair and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 191.3 0.89 0.82 0.74 0.70 0.87 0.57 1.06 0.98 0.016 0.0035 0.016

Mp2 195.5 0.80 0.85 0.79 0.83 0.88 0.64 0.98 0.98 0.022 0.0043 0.022

Mp3 190.9 0.87 0.83 0.95 1.0 0.87 0.64 0.96 0.98 0.017 0.0051 0.017

Table D.3: Most suitable solution upon Pareto optimal set, for each objective
function based on set 3, with no repair and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 191.2 0.82 0.80 0.93 1.07 0.88 0.61 1.11 0.94 0.029 0.0067 0.029

Mp2 191.4 0.85 0.79 0.90 0.97 0.88 0.68 1.14 0.95 0.025 0.0065 0.026

Mp3 191.0 0.85 0.81 0.94 1.0 0.87 0.64 1.01 0.98 0.024 0.0073 0.025
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Performance tables of optimisers

D.2 Non-Pareto with no repair and no GES

Table D.4: Most suitable solution upon Non-Pareto for each objective function
based on set 1

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9196 0.8888 1.0365 1.0 1.0038 0.9789 1.048 0.977

Mp7 196.48 0.8471 0.8272 0.9833 1.1 0.8843 0.6809 1.96 0.944

Table D.5: Most suitable solution upon Non-Pareto for each objective function
based on set 2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9215 0.8888 1.03 1.0 1.0038 0.9789 1.048 1.0

Mp7 196.1 0.9406 0.858 0.9974 1.23 0.8843 0.6436 1.89 0.9834

Table D.6: Most suitable solution upon Non-Pareto for each objective function
based on set 3

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9215 0.88 1.0365 1.0 1.0038 0.9789 1.048 1.0

Mp7 196.1 0.9429 0.8586 0.9978 1.23 0.8843 0.6433 1.893 0.9833
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Performance tables of optimisers

Table D.7: Most suitable solution upon Pareto optimal set, for each objective
function based on set 1, with repair mechanism and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 192.5 0.88 0.82 0.69 0.57 0.87 0.60 1.09 0.92 0.012 0.0033 0.012

Mp2 193.5 0.86 0.82 0.74 0.70 0.87 0.68 1.07 0.94 0.021 0.0054 0.021

Mp3 194.4 0.85 0.84 0.97 1.00 0.87 0.64 0.94 0.96 0.021 0.0056 0.021

D.3 Pareto with repair mechanism and no GES

Table D.8: Most suitable solution upon Pareto optimal set, for each objective
function based on set 2, with repair mechanism and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 191.4 0.89 0.84 0.75 0.7 0.87 0.52 1.09 0.97 0.022 0.0038 0.022

Mp2 191.8 0.91 0.84 0.89 0.97 0.87 0.60 1.06 0.97 0.015 0.0027 0.015

Mp3 191.9 0.88 0.84 0.95 1.1 0.87 0.57 1.06 0.97 0.019 0.0045 0.019

Table D.9: Most suitable solution upon Pareto optimal set, for each objective
function based on set 3, with repair mechanism and no GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 191.2 0.79 0.82 0.81 0.73 0.99 0.68 1.05 0.93 0.025 0.0044 0.025

Mp2 192.1 0.80 0.82 0.79 0.83 0.87 0.65 1.09 0.94 0.024 0.0079 0.024

Mp3 193.4 0.86 0.83 0.95 1.0 0.87 0.57 1.02 0.97 0.028 0.01 0.029
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Performance tables of optimisers

Table D.10: Performance indicator application repair mechanism

JCO2 g/km JIRP

Average value with no repair mechanism 192.27 0.8502

Average value with repair mechanism 192.5 (-0.23) 0.840 (+0.010)

D.4 Non-Pareto with repair mechanism and no

GES

Table D.11: Best solution upon Non-Pareto for each objective function based on
set 1

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9196 0.8888 1.0365 1.0 1.0038 0.9789 1.0483 0.97

Mp7 197.5 0.8486 0.8866 0.9758 1.1 0.8843 0.7138 1.83 0.95

Table D.12: Most suitable solution upon Non-Pareto for each objective function
based on set 2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9215 0.8888 1.03 1.0 1.0038 0.978 1.048 1.0

Mp7 192.8 0.889 0.8586 1.06 1.36 0.8902 0.5720 1.81 0.975
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Table D.13: Most suitable solution upon Non-Pareto for each objective function
based on set 3

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp6 196.8 0.9215 0.8888 1.036 1.00 1.0038 0.978 1.048 1.00

Mp7 197.57 0.9705 0.8545 0.9361 1.1 0.875 0.6513 2.0332 0.9828

D.5 Pareto with no repair mechanism, with GES

Table D.14: Best solution upon Pareto optimal set, for each objective function
based on set 1

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 193.3 0.56 0.79 0.74 0.7 0.87 0.72 1.03 0.92 0.011 0.0033 0.012

Mp4 191.6 0.58 0.76 0.74 0.7 0.87 0.61 1.04 0.91 0.0036 0.001 0.0037

Mp2 192.6 0.54 0.78 0.69 0.57 0.87 0.65 1.01 0.89 0.0097 0.003 0.0098

Mp5 192.6 0.54 0.80 0.80 0.83 0.88 0.72 0.97 0.89 0.016 0.003 0.016

Table D.15: Most suitable solution upon Pareto optimal set, for each objective
function based on set 2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 192.8 0.58 0.81 0.74 0.7 0.87 0.64 1.06 0.98 0.022 0.004 0.022

Mp4 190.7 0.59 0.78 0.92 0.97 0.88 0.56 1.05 0.97 0.016 0.003 0.016

Mp2 190.6 0.63 0.78 0.81 0.97 0.88 0.60 1.09 0.97 0.012 0.0027 0.012

Mp5 190.7 0.71 0.83 0.89 0.97 0.88 0.57 1.02 0.97 0.015 0.0024 0.015
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Table D.16: Most suitable solution upon Pareto optimal set, for each objective
function based on set 3

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 190.6 0.57 0.79 0.79 0.83 0.88 0.58 0.98 0.89 0.028 0.008 0.029

Mp4 191.8 0.61 0.75 0.82 0.97 0.88 0.54 1.89 0.89 0.019 0.0043 0.019

Mp2 190.7 0.54 0.76 0.89 0.97 0.88 0.58 1.02 0.89 0.023 0.0088 0.023

Mp5 190.6 0.54 0.78 0.87 0.97 0.89 0.58 1.03 0.88 0.025 0.007 0.026

Table D.17: Performance indicator application of GES

JCO2 g/km JIRP

Average value with no GES 192.2703 0.8502

Average value with GES 191.6 (-0.6703) 0.8117 (-0.0385)

D.6 Pareto with repair mechanism and GES

Table D.18: Most suitable solution upon Pareto optimal set, for each objective
function based on set 1, with repair mechanism and GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 191.32 0.52 0.81 0.74 0.7 0.87 0.68 1.06 0.92 0.017 0.0046 0.017

Mp2 193.9 0.47 0.84 0.78 0.83 0.87 0.68 1.06 0.9 0.013 0.0027 0.013
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Table D.19: Most suitable solution upon Pareto optimal set, for each objective
function based on set 2, with repair mechanism and GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 190.9 0.65 0.84 0.85 0.87 0.87 0.58 1.05 0.97 0.01 0.003 0.01

Mp2 192.2 0.83 0.84 0.79 0.83 0.87 0.60 1.06 0.97 0.016 0.0026 0.016

Table D.20: Most suitable solution upon Pareto optimal set, for each objective
function based on set 3, with repair mechanism and GES

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj Ssprd d Std

Mp1 190.9 0.47 0.78 0.78 0.83 0.87 0.58 1.06 0.88 0.024 0.01 0.025

Mp2 190.7 0.49 0.78 0.79 0.83 0.87 0.57 1.06 0.88 0.031 0.0098 0.03

Table D.21: Performance indicator application of GES

JCO2 g/km JIRP

Average value with no GES 192.2703 0.8502

Average value with GES 191.6052 (-0.6651) 0.8117 (-0.0385)
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Appendix E

Leading solution for CO2

emissions for Pareto and

weighting sum

This appendix present the ideal shift map with the minimum CO2 emissions and

their corresponding objective functions.

E.1 Leading Pareto solution for set 1

Table E.1: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp1(2) 191.3 0.922 0.851 1.199 1.4 0.995 0.687 1.106 1.008
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Leading solution for CO2 emissions for Pareto and weighting sum
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Figure E.1: Leading Pareto shift map for minimum CO2 emissions under set 1
condition

E.2 Leading Pareto solution for set 2
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Figure E.2: Leading Pareto shift map for minimum CO2 emissions under set 2
condition
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Leading solution for CO2 emissions for Pareto and weighting sum

Table E.2: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp2(1) 190.6 0.633 0.779 1.198 1.267 0.995 0.72 1.095 0.986

E.3 Leading Pareto solution for set 3
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Figure E.3: Leading Pareto shift map for minimum CO2 emissions under set 3
condition

Table E.3: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp1(1) 190.7 0.575 0.799 1.198 1.267 1.025 0.713 1.044 0.899

E.4 Leading weighting sum solution for set 1
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Leading solution for CO2 emissions for Pareto and weighting sum
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Figure E.4: Leading weighting sum shift map for minimum CO2 emissions under
set 1 condition

Table E.4: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp7(5) 196.5 0.847 0.827 0.983 1.1 0.884 0.681 1.969 0.944

E.5 Leading weighting sum solution for set 2
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Figure E.5: Leading weighting sum shift map for minimum CO2 emissions under
set 2 condition
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Leading solution for CO2 emissions for Pareto and weighting sum

Table E.5: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp7(3) 192.8 0.889 0.859 1.064 1.367 0.89 0.572 1.815 0.976

E.6 Leading weighting sum solution for set 3
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Figure E.6: Leading weighting sum shift map for minimum CO2 emissions under
set 3 condition

Table E.6: Leading algorithm for minimum CO2

JCO2 JDist Jz1 JIRP JGch
Jz3 JGj% Jz2 JObj

Mp7(4) 196.02 0.943 0.859 0.997 1.23 0.884 0.643 1.89 0.983
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Appendix F

Combined gear ratio & shift map

optimisation results

F.1 Best combined gear ratio and gear shift map

solution
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Figure F.1: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet1
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Combined gear ratio & shift map optimisation results
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Figure F.2: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet2
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Figure F.3: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet2
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Combined gear ratio & shift map optimisation results

F.2 Average combined gear ratio and gear shift

map solution

Table F.1: CO2 emissions for combSet1, combSet2, combSet3 and combSet4 with
their corresponding Jdis, Jz1 , JIRP , JGch

, Jz3 , JGj%, Jz2 and ObjF

JCO2 Jdis Jz1 JIRP JGch
Jz3 JGj% Jz2 ObjF

combSet1 195.9 0.937 1.0 1.08 1.0 1.0 0.999 1.00 0.994

combSet2 194.2 0.918 0.78 1.17 1.03 1.0 0.673 1.67 0.986

combSet3 193.3 0.9 0.99 1.15 1.13 1.0 0.938 1.014 0.983

combSet4 193.1 0.94 0.993 1.16 1.13 1.0 0.943 1.011 0.982
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Figure F.4: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet1, combSet2 and combSet3
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Combined gear ratio & shift map optimisation results
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Figure F.5: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet2
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Figure F.6: Gear shift map, engine reserve power, gear selection and operating
speed range for each gear ratio for combSet3
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Appendix G

Rolling road test bag results

Figure G.1: Phase 1

Figure G.2: Phase 2
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