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ABSTRACT In this paper, we extensively investigate the way in which κ-µ fading channels can be impacted 
by shadowing. Following from this, a family of shadowed κ-µ fading models are introduced and classified 
according to whether the underlying κ-µ fading undergoes single or double shadowing. In total, we discuss 
three types of single shadowed κ-µ model (denoted Type I to Type III) and three types of double shadowed 
κ-µ model (denoted Type I to Type III). The taxonomy of the single shadowed Type I - III models is 
dependent upon whether the fading model assumes that the dominant component, the scattered waves, or both 
experience shadowing. Although the physical definition of the examined models make no predetermination 
of the statistics of the shadowing process, for illustrative purposes, two example cases are provided for 
each type of single shadowed model by assuming that the shadowing is influenced by either a Nakagami-m 
random variable (RV) or an inverse Nakagami-m RV. It is worth noting that these RVs have been shown 
to provide an adequate characterization of shadowing in numerous communication scenarios of practical 
interest. The categorization of the double shadowed Type I - III models is dependent upon whether a) 
the envelope experiences shadowing of the dominant component, which is preceded (or succeeded) by a 
secondary round of (multiplicative) shadowing, or b) the dominant and scattered contributions are fluctuated 
by two independent shadowing processes, or c) the scattered waves of the envelope are subject to shadowing, 
which is also preceded (or succeeded) by a secondary round of multiplicative shadowing. Similar to the single 
shadowed models, we provide two example cases for each type of double shadowed model by assuming that 
the shadowing phenomena are shaped by a Nakagami-m RV, an inverse Nakagami-m RV or their mixture. 
It is worth highlighting that the double shadowed κ-µ models offer remarkable flexibility as they include 
the κ-µ, η-µ, and the various types of single shadowed κ-µ distribution as special cases. This property 
renders them particularly useful for the effective characterization and modeling of the diverse composite 
fading conditions encountered in communication scenarios in many emerging wireless applications. 

INDEX TERMS Channel modeling, generalized fading, mobile to mobile communications, shadowed κ-µ 
fading, shadowing. 

I. INTRODUCTION arise due to the clustering of scattered multipath waves 
The κ-µ fading model [1]–[3] is a generalized fading model in addition to the presence of elective dominant compo-
which was developed to describe envelope fluctuations that nents. It is characterized by two physical fading parameters, 

κ and µ. Here, κ denotes the ratio of the total power of the 
The associate editor coordinating the review of this manuscript and dominant component to the total power of the scattered waves 

approving it for publication was Faisal Tariq . and µ denotes the number of multipath clusters. It contains 
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TABLE 1. Physical interpretation of the single shadowed κ-µ fading models. 

other well-known fading models such as the Rice (κ = K , 
µ = 1), Nakagami-m (κ → 0, µ = m), Rayleigh (κ → 0, 
µ = 1) and One-Sided Gaussian (κ → 0, µ = 0.5) as special 
cases. A κ-µ fading envelope can be affected by shadowing 
in many different ways. For instance, the dominant compo-
nent, the scattered waves, or both can be impacted by this 
propagation phenomenon. It is also entirely possible that in 
addition to the dominant component being shadowed, further 
multiplicative shadowing1 may occur which impacts the scat-
tered signal, and also administers secondary shadowing to the 
already perturbed dominant component. Likewise, in addition 
to the scattered waves being shadowed, further shadowing 
may occur which impacts the dominant signal component, 
and administers secondary shadowing to the fluctuated scat-
tered waves. As well as this, both the dominant component 
and scattered waves can be influenced by individual shadow-
ing processes. Hence, a number of shadowing combinations 
give rise to a family of shadowed κ-µ fading models that can 
be classified depending on whether the underlying κ-µ fading 
undergoes single or double shadowing. 

Traditionally, shadowing has been modeled using the log-
normal distribution [4]. However, due to challenges which 
exist in relation to its tractability, the authors in [5] considered 
the use of gamma distribution. Similarly, the contributions 
in [6] and [7] considered the closely related Nakagami-m 
distribution due to its ability to exhibit semi-heavy tailed 
characteristics [7]. Recently, the authors in [8] and [9] effec-
tively used the inverse Nakagami-m and inverse gamma dis-
tributions, respectively. Similar to the lognormal, gamma and 
Nakagami-m distributions, the inverse gamma and inverse 
Nakagami-m distributions have also shown to exhibit the 
necessary semi heavy-tailed behavior to accurately charac-
terize shadowing. Moreover, they offer much of the analytical 
tractability available from using the gamma and Nakagami-m 
distributions. 

1In this case, the total power of the dominant and scattered signal compo-
nents are shadowed. 

In this work, we discuss three types of single shadowed 
κ-µ fading model (denoted I to III) which assume that the 
multipath fading is manifested by the propagation mecha-
nisms associated with κ-µ fading. In addition, these mod-
els consider that either the dominant component (Type I), 
the scattered waves (Type II), or both (Type III) suffer from 
a single shadowing process. We emphasize that these model 
frameworks are general and make no predetermination on the 
random variable (RV) that is responsible for characterizing 
the shadowing phenomena. For illustrative purposes, we pro-
vide two example cases for each type of single shadowed 
κ-µ fading model where it is assumed that the shadowing 
is influenced by either a Nakagami-m RV or an inverse 
Nakagami-m RV. We also introduce three types of double 
shadowed κ-µ fading model, denoted I to III. The Type I 
model assumes that in addition to the dominant component of 
a κ-µ signal being shadowed, further shadowing also occurs 
which impacts the scattered signal and also administers 
secondary shadowing to the already perturbed dominant com-
ponent. Therefore, this model provides a convenient way to 
not only control the shadowing of the dominant component, 
but also any multiplicative shadowing which may be present 
in practical wireless channels. The Type II model considers 
that the dominant component and scattered waves of a κ-µ 
fading envelope are perturbed by two different shadowing 
processes. Lastly, the Type III model assumes that in addi-
tion to the scattered waves of a κ-µ signal being shadowed, 
the root mean square (rms) power of the dominant compo-
nent and scattered waves also experience a secondary round 
of shadowing. Similar to the single shadowed models, two 
example cases for each of the three types of double shadowed 
model are discussed where it is assumed that the shadowing 
is shaped by a Nakagami-m RV, an inverse Nakagami-m 
RV or their mixture. Tables 1 and 2 summarize the various 
types of single shadowed and double shadowed κ-µ models 
introduced in this paper. 

Due to the generality of the analysis presented here and 
under particular shadowing conditions, a number of the 
existing composite fading models found in the literature 
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TABLE 2. Physical interpretation of the double shadowed κ-µ fading models. 

occur as special cases. For example, multiplicative com-
posite fading models such as the κ-µ/inverse gamma and 
η-µ/inverse gamma fading models [9], which assume that 
a κ-µ or an η-µ RV is responsible for generating the mul-
tipath fading, and an inverse gamma RV for shaping the 
shadowing. Likewise, some line-of-sight (LOS) composite 
models2 such as the κ-µ shadowed [6], [7]3 and shadowed 
Rician [10], [11] fading models are also found through the 
analysis conducted here. The κ-µ shadowed fading model 
presented in [6] and [7] assumes that the multipath fading 
is due to fluctuations brought about by a κ-µ RV, whilst the 
dominant signal component is fluctuated by a Nakagami-m 
RV. Moreover, it includes the κ-µ, η-µ and shadowed Rician 
fading models as special cases. It has shown to provide 
excellent agreement with field measurements obtained for 
body-centric fading channels [7] and land-mobile satel-
lite channels [11]. Other notable composite fading models 
include the Nakagami-m/gamma [12], κ-µ/gamma [13]–[15], 
η-µ/gamma [16], [17], κ-µ/inverse Gaussian [18] and 
η-µ/inverse Gaussian [19], to name but a few. These models 
assume that the mean signal power of a Nakagami-m, κ-µ 
and an η-µ signal vary according to the gamma or the inverse 
Gaussian distributions. 

The main contributions of this paper are now summarized 
as follows: 

• Firstly, we perform a broad investigation of the way 
in which κ-µ fading can be affected by shadowing. 
We introduce a family of shadowed κ-µ models that 
are classified as either single or double shadowed mod-
els. Three types of single shadowed κ-µ fading model 
(Type I - III) and three types of double shadowed κ-µ 
fading model (Type I - III) are discussed. 

2Many of the models presented in the literature for which the dominant 
signal component is subject to shadowing are often referred to as LOS 
composite fading models. 

3It is noted that the κ-µ shadowed fading model presented in [6] and [7] 
is a type of single shadowed κ-µ model. 

• Secondly, a thorough physical interpretation for all three 
types of single and double shadowed κ-µ models is 
provided. 

• Thirdly, we discuss two realistic example cases for each 
type of single and double shadowed κ-µ model by 
assuming that the shadowing is caused by a Nakagami-m 
RV, an inverse Nakagami-m RV or their mixture. Note 
that the model frameworks discussed in this paper are 
general and make no presumption on the RV that is 
responsible for shaping the shadowing characteristics. 
The examples discussed here are for illustrative purposes 
only. 

• Finally, the generality of the double shadowed κ-µ 
fading models are highlighted through reduction to a 
number of well-known special cases. 

The remainder of this paper is organized as follows. 
Section II and III describe and formulate the various types 
of single and double shadowed κ-µ model, respectively. 
Section IV presents some special cases of the double shad-
owed κ-µ models, corresponding numerical results and dis-
cussions. Lastly, Section V presents some useful concluding 
remarks. 

II. SINGLE SHADOWED κ-µ MODELS 
In this section, we investigate a number of different ways 
in which the κ-µ fading envelope can be impacted by a 
single shadowing process. This leads to three types of single 
shadowed fading model, denoted Type I to Type III, with their 
physical interpretation provided in Table 1. 

A. SINGLE SHADOWED κ-µ TYPE I MODEL 

Similar to the κ-µ fading model, the single shadowed 
κ-µ Type I fading model assumes that the received sig-
nal is composed of clusters of multipath waves propagating 
in non-homogeneous environments. Within each multipath 
cluster, the scattered waves have similar delay times and the 
delay spreads of different clusters are relatively large. The 
power of the scattered waves in each cluster is assumed to 
be identical whilst the power of the dominant component 
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is assumed to be arbitrary. Unlike the κ-µ model, the sin-
gle shadowed κ-µ Type I model assumes that the dominant 
component of each cluster can randomly fluctuate because of 
shadowing. Its signal envelope, R, can be expressed in terms 
of the in-phase and quadrature phase components as 

µX 
R2 2
= (Xi + ξpi)2 

+ (Yi + ξqi) (1) 
i=1 

where ξ represents a RV which is responsible for introducing 
the shadowing, µ is a real-valued extension related to the 
number of multipath clusters, Xi and Yi are mutually inde-
pendent Gaussian random processes with mean E [Xi] = � � � �2 2E [Yi] = 0 and variance E Xi = E Yi = σ 2, where 
E[·] denotes the statistical expectation. Also, pi and qi are 
the mean values of the in-phase and quadrature phase compo-
nents of the multipath cluster i. We now consider two example 
cases for the single shadowed Type I model, the details of 
which are discussed next. 
Example 1: In our first example of the single shadowed 

κ-µ Type I model, we assume that the dominant component of 
a κ-µ signal undergoes variations induced by a Nakagami-m 
RV. Thus, in (1) ξ represents a Nakagami-m RV with shape 
parameter4 md and E 

� 
ξ2
� 
= 1. It is worth highlighting that 

this model was introduced as a generalization of the κ-µ 
fading model in [6]5 and [7]. Accordingly, the PDF of R is 
obtained as 

md µ 2µ−1 2(1+κ)µ2md (1 + κ)µ µ r − rfR (r) = e r̂2 

0 (µ) (md + κµ)md r̂2µ 

2� 
µ 2κ (1 + κ) r

� 
× 1F1 md ; µ; (2) 

r̂2 (md + κµ) 

where, κ > 0 is the ratio of the total power of the domi-
nant component (d2) to that of the scattered waves (2µσ 2),p
µ > 0 is related to the number of clusters, r̂ = E[R2] 
represents the rms power of R, the mean signal power is given 
by E[R2] = 2µσ 2 

+ d2, 0(·) represents the gamma func-
tion and 1F1 (·; ·; ·) denotes the confluent hypergeometric 
function [20, eq. 9.210.1]. 

Now letting γ represent the instantaneous signal-to-noise 
ratio (SNR) of a single shadowed κ-µ Type I (example 1) fad-
ing channel, the corresponding PDF, fγ (γ ), can be obtained 
from the envelope PDF given in (2) via a transformation of � �p
variables r = γ r̂2/γ̄ as follows. � �md µ µ−1md (1 + κ)µ µ γ − γ (1+

γ̄
κ)µ 

fγ (γ ) = e 
0 (µ) γ (¯ md + κµ)md γ̄� 

µ 2κ (1 + κ) γ 
� 

× 1F1 md ; µ; (3)
γ̄ (md + κµ) 

4Note that throughout the manuscript we denote md , ms and mt as the 
shadowing parameters which are responsible for fluctuating the dominant, 
scattered or total (i.e. the combined dominant and scattered) components 
respectively. 

5While the pioneering work presented in [6] refers to this model as κ-µ 
shadowed, to maintain consistency with the terminology adopted here we 
refer to it as an example of the single shadowed κ-µ Type I model. 

where γ̄ = E[γ ] denotes the corresponding average SNR. R γIts CDF,6 Fγ (γ ) , fγ (t) dt , can be obtained from 0 
[6, eq. 6] as � �

µµ−1mmd (1 + κ)µ 1 µ 

Fγ (γ ) = d γ µ 

0 (µ) (µκ + md )
md γ̄� 

µ (1+κ) γ 
× φ2 µ − md , md ; µ + 1;− , 

γ̄� 
µ (1+κ) md γ 

− (4)
γ̄ (µκ +md ) 

where φ2 (·) is the bivariate confluent hypergeometric 
function [20]. 
Example 2: Our second example of the Type I model 

assumes that the dominant component of a κ-µ signal under-
goes variations influenced by an inverse Nakagami-m RV. 
Thus, in (1) ξ represents an inverse Nakagami-m RV with � 

ξ2
� 

shape parameter md and E = 1. The PDF of R for this 
example case can be obtained via Theorem 1 below. 
Theorem 1: For κ , µ, r, r̂ ∈ R+ and md > 1, the PDF of 

the single shadowed κ-µ Type I fading model for the example 
case when ξ follows an inverse Nakagami-m RV is expressed 
as 

md +i∞X 4 [(md − 1)κ)] 2 r2i+2µ−1 (1 + κ)i+µ 

fR (r) = 
r̂2i+2µi!0 (md ) 0 (i + µ)

i=0 
−r2(1+κ)µ � �

1 p
2 (3i+md )+µ r2× µ e ˆ Kmd −i 2 (md −1)µκ 

(5) 

where Kν (·) denotes the modified Bessel function of the sec-
ond kind [21, eq. 9.6]. 

Proof: See Appendix A. 
The PDF of the instantaneous SNR, γ , of a single shad-

owed κ-µ Type I (example 2) fading channel, is obtained 
from the envelope PDF given in (5) via a transformation of 
variables as follows. 
Corollary 1: For κ , µ, γ , γ̄ ∈ R+ and md > 1, the PDF 

of γ for the single shadowed κ-µ Type I fading model for the 
example case when ξ follows an inverse Nakagami-m RV is 
expressed as 

∞X 2 ((md − 1) κµ) 2
1 (md +i) γ i+µ−1(µ(1 + κ))i+µ 

fγ (γ ) = 
γ̄ i+µi!0 (md ) 0(µ + i)

i=0 � � 
− γ (1+κ)µ p

× e γ̄ Kmd −i 2 (md − 1) µκ . (6) 
Based on Corollary 1, its corresponding CDF, Fγ (γ ) = R γ 

0 fγ (t) dt , can be expressed via Lemma 1 as follows. 
Lemma 1: For κ , µ, γ , γ̄ ∈ R+ and md > 1, the CDF of 

γ for the single shadowed κ-µ Type I fading model for the 
example case when ξ follows an inverse Nakagami-m RV is 

6The outage probability (OP) of a communication system is defined as the 
probability that the instantaneous SNR drops below a given threshold, γth, 
i.e., POP(γth) , P [0 ≤ γ ≤ γth] = Fγ (γth). Therefore, the OP expressions 
for all of the models presented here can readily be obtained by replacing γ 
with γth in their respective CDF expression. 
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expressed as 
∞ 2 ((md − 1) κµ) 

1X 2 (md +i) 
Fγ (γ ) = 

i!0 (md ) 0(µ + i)
i=0 � � p� � γ (1+κ)µ
× Kmd −i 2 (md −1) µκ 0 i+µ, . 

γ̄

(7) 
Proof: See Appendix A. 

B. SINGLE SHADOWED κ-µ TYPE II MODEL 

The single shadowed κ-µ Type II fading model assumes 
that the scattered waves in each cluster can randomly fluc-
tuate because of shadowing. Its signal envelope, R, can be 
formulated in terms of the in-phase and quadrature phase 
components as 

µX 
2R2 

= (ξXi + pi)2 
+ (ξYi + qi) (8) 

i=1 

where ξ , Xi, Yi, pi, qi and µ are as defined previously. We now 
consider two example cases for the single shadowed Type II 
model, the details of which are discussed next. 
Example 1: In our first example of the single shadowed 

κ-µ Type II model, we assume that the scattered components 
of a κ-µ signal undergo variations induced by a Nakagami-m 
RV. Thus, in (8) ξ denotes a Nakagami-m RV with shape 
parameter ms and E 

� 
ξ2
� 
= 1. The PDF of R for this example 

case can be obtained via Theorem 2 below. 
Theorem 2: For κ , µ, ms, r, r̂ ∈ R+, the PDF of the single 

shadowed κ-µ Type II fading model for the example case 
when ξ follows a Nakagami-m RV can be expressed as 

∞X 2
1 (2i+ms+µ) i+µ4 (msµ) r2i+2µ−1κ i (1+κ)

fR (r) = � � 1 
2 (2i−ms+µ) 

i=0 i!0(ms) 0(i+µ) r2 (1+κ)+r̂2κ ⎛ q ⎞� � 
2 msµ r2 (1+κ)+r̂2κ1 

× K2i−ms+µ ⎝ ⎠ . 
rms+µˆ r̂

(9) 
Proof: See Appendix B. 

The PDF of the instantaneous SNR, γ , of a single shadowed 
κ-µ Type II (example 1) fading channel, is obtained from the 
envelope PDF given in (9) via a transformation of variables 
as follows. 
Corollary 2: For κ , µ, ms, γ , γ̄ ∈ R+, the PDF of γ for 

the single shadowed κ-µ Type II fading model for the example 
case when ξ follows a Nakagami-m RV can be expressed as 

∞ 1X 2 (msµ) 2 (2 i+ms+µ) κ i(1 + κ)i+µ 

fγ (γ ) = � � 1 
2 (2 i−ms+µ)

γ (1+κ)i=0 i!0 (ms) 0(µ + i) 
γ̄

+ κ s � �! 
γ i+µ−1 γ (1+κ)

× K2i−ms+µ 2 msµ + κ . 
γ i+µ¯ γ̄

(10)R γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 
Lemma 2 as follows. 

Lemma 2: For κ , µ, ms, γ , γ̄ ∈ R+, the CDF of γ for the 
single shadowed κ-µ Type II fading model for the example 
case when ξ follows a Nakagami-m RV can be expressed as7 

Fγ (γ ) 

γ µ X j(1 + κ)µ ∞
(κµms)

= 
κµ0 (ms) γ̄ µ j!

j=0 ⎡ ⎛ ⎞ 
1+j−µ+ms, j+ms ⎣ (−1)j0 (j+ms) ⎝γ (1+κ) ⎠× G1,1 
|

(κµms)−ms 2,2 κγ̄ 0, −µ � �⎤ 
−j, 1−j−µ; 1+µ; γ (1+κ)

πcsc [π (µ − ms)] 2F1 κγ̄
− ⎦, 

0(1+µ)0 (1+j+µ−ms) (κµms)−µ 

µ − ms ∈/ Z (11) 

where 2F1 (·, ·; ·; ·) denotes the Gauss hypergeometric func-
0 0 � � � ,n 0�tion [20, eq. 9.100] and Gp

m
0 ,q0 z · · · represents the Meijer G 

function [22, eq. 07.34.02.0001.01]. 
Proof: See Appendix B. 

Example 2: Our second example of the Type II model 
assumes that the scattered components of a κ-µ signal 
undergo variations induced by an inverse Nakagami-m RV. 
Thus, in (8) ξ denotes an inverse Nakagami-m RV with shape 
parameter ms and E 

� 
ξ 2
� 
= 1. The PDF of R for this example 

case can be obtained via Theorem 3 below. 
Theorem 3: For κ , µ, r, r̂ ∈ R+ and ms > 1, the PDF of 

the single shadowed κ-µ Type II fading model for the example 
case when ξ follows an inverse Nakagami-m RV is expressed 
as 

µ 2µ−1 ̂ 2ms2(ms − 1)ms (1 + κ)µ µ r r
fR (r) = � �ms+µB (ms, µ) r2 (1 + κ) µ + r̂2 (ms − 1 + κµ) 

ms + µ 1 + ms + µ
× 2F1 , ; µ;

2 2 ! 
24µ 2κ (1 + κ) r2r̂� �2 

(12) 
r2 (1 + κ) µ + r̂2 (ms − 1 + κµ) 

where B(·, ·) represents the Beta function [20, eq. 8.384]. 
Proof: See Appendix C. 

The PDF of the instantaneous SNR, γ , of a single shad-
owed κ-µ Type II (example 2) fading channel, is obtained 
from the envelope PDF given in (12) via a transformation of 
variables as follows. 
Corollary 3: For κ , µ, γ , γ̄ ∈ R+ and ms > 1, the PDF of 

γ for the single shadowed κ-µ Type II fading model for the 
example case when ξ follows an inverse Nakagami-m RV can 

7Several equations throughout the paper will present conditions similar 
to those encountered in (11). These restrictions can easily be dealt with by 
applying an infinitesimally small shift to one of the parameters. For instance, 
in (11) the restriction µ − ms ∈/ Z can be straightforwardly overcome by 
introducing a perturbation term δ whose purpose is to shift ms by a small 
amount so that the condition is satisfied. 
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be expressed as 

(ms − 1)ms (1 + κ)µµµγ µ−1γ̄ms 
fγ (γ ) = 

B (ms, µ) (γ (1 + κ)µ + γ̄ (ms − 1 + κµ))ms+µ � 
ms + µ 1 + ms + µ

× 2F1 , ; µ;
2 2 

4µ 2κ(1 + κ)γ γ̄
� 

2 
. (13) 

(γ (1 + κ)µ + γ̄ (ms − 1 + κµ))R γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 
Lemma 3 as follows. 
Lemma 3: For κ , µ, ms, γ , γ̄ ∈ R+, the CDF of γ for the 

single shadowed κ-µ Type II fading model for the example 
case when ξ follows an inverse Nakagami-m RV can be 
expressed as 

(ms − 1)ms µµ−1(1 + κ)µ γ µ 

Fγ (γ ) = 
B (ms, µ) (−1 + κµ + ms)µ+ms γ̄ µ X 2∞

(ms + µ)2i 
� 

γ κ(1 + κ)µ 
�i 

× 
i=0 

i!(µ + 1)i γ̄ (κµ + ms − 1)2 

× 2F1 (i + µ, 2i + µ + ms; 1 + i + µ;� 
γ (1 + κ)µ

− (14)
γ̄ (−1 + κµ + ms) 

0(x+n0)where (x)n0 , denotes the Pochhammer symbol [20]. 
0(x)

Proof: See Appendix C. 

C. SINGLE SHADOWED κ-µ TYPE III MODEL 

The single shadowed κ-µ Type III fading model assumes 
that the rms power of a κ-µ signal can randomly fluctu-
ate because of shadowing. Its signal envelope, R, can be 
formulated in terms of the in-phase and quadrature phase 
components as 

µX 
R2 2 2
= ξ (Xi + pi)2 

+ (Yi + qi) (15) 
i=1 

where, ξ , Xi, Yi, pi, qi and µ are as defined previously. We now 
consider two example cases for the single shadowed Type III 
model, the details of which are discussed next. 
Example 1: In our first example of the single shadowed 

κ-µ Type III model, we assume that the multipath waves 
(both the dominant component and scattered waves) are sub-
ject to variations induced by a Nakagami-m RV. Thus, in (15) 
ξ represents a Nakagami-m RV with shape parameter mt and 
E 
� 
ξ2
� 
= 1. The PDF of R for this example case is given by 

Theorem 4. 
Theorem 4: For κ , µ, mt , r, r̂ ∈ R+, the PDF of the single 

shadowed κ-µ Type III fading model for the example case 
when ξ follows a Nakagami-m RV can be expressed as 

∞ 1X 4 (mt µ (1 + κ)) 2 (mt +µ+i) (κµ)i rmt +µ+i−1 

fR (r) = 
rmt +µ+ieκµi!0 (mt ) 0 (i + µ) ˆ

i=0 � √ �
2r mt µ (1 + κ)

× K−mt +µ+n (16) 
r̂

where, κ , µ, r̂ are as defined previously. 

Proof: See Appendix D. 
Note that it is also possible to derive this PDF as a special case 
of the statistics of the product of κ-µ and Nakagami-m RVs as 
shown in [23] and [24]. The PDF of the instantaneous SNR, 
γ , of a single shadowed κ-µ Type III (example 1) fading 
channel, is obtained from the envelope PDF given in (16) via 
a transformation of variables as follows. 
Corollary 4: For κ , µ, mt , γ , γ̄ ∈ R+, the PDF of γ for the 

single shadowed κ-µ Type III fading model for the example 
case when ξ follows a Nakagami-m RV can be expressed as 

∞ 1X 2 (mt µ(1 + κ)) 2 (mt +µ+i) (κµ)i 
fγ (γ ) = 

eκµi!0 (mt ) 0(i + µ)
i=0 s !1 

2 (mt +µ+i)−1γ mt µ(1 + κ)γ 
× 1 K−mt +µ+i 2 . 

2 (mt +µ+i) γ̄γ̄

R (17) 
γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 

Lemma 4 as follows. 
Lemma 4: For κ , µ, mt , γ , γ̄ ∈ R+, the CDF of γ for the 

single shadowed κ-µ Type III fading model for the example 
case when ξ follows a Nakagami-m RV can be expressed as 

∞1 X (κµ)i 
Fγ (γ ) = 

eκµ0 (mt ) i!0(i + µ)
i=0 � � 

γ (1 + κ)µmt � 1 
× G2,1 � . (18)1,3 γ̄ mt , i + µ, 0 

Proof: See Appendix D. 
Example 2: Our second example of the Type III model 

assumes that the multipath waves are subject to variations 
induced by an inverse Nakagami-m RV. Thus, in (15) ξ 
represents an inverse Nakagami-m RV with shape parameter 
mt and E 

� 
ξ2
� 
= 1. This example of the single shadowed 

κ-µ Type III model was introduced in [9] as the κ-µ/inverse 
gamma fading model in which the mean power of the multi-
path waves were subject to fluctuations induced by an inverse 
gamma RV. Since the inverse Nakagami-m RV used for this 
analysis is assumed to have E 

� 
ξ 2
� 
= 1, the PDF of R for the 

single shadowed κ-µ Type III fading model for this example 
2case can be obtained by substituting r̂ = (mt − 1)r̂2/mt 

in [9], which yields � �mt−κµ 2 2µ−12 (1 + κ)µ µµe (mt − 1)r̂ r
fR (r) = � �mt +µB(mt , µ) r̂2(mt − 1) + r2 (1 + κ) µ 

2� 
µ 2κ (1 + κ) r

� 
× 1F1 mt + µ; µ; 

r̂2(mt − 1) + r2 (1 + κ) µ 

(19) 

where mt > 1. The PDF of the instantaneous SNR, γ , 
of a single shadowed κ-µ Type III (example 2) fading chan-
nel, is obtained from the envelope PDF given in (19) via a 
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transformation of variables as 
(1 + κ)µ µµe−κµ ((mt − 1)γ̄ )mt γ µ−1 

fγ (γ ) = 
B (mt , µ) ( γ̄ (mt − 1) + γ (1 + κ) µ)mt +µ � 

µ 2κ (1+κ) γ 
� 

×1F1 mt + µ; µ; . (20)
γ̄ (mt −1)+γ (1+κ) µ 

Its CDF can be obtained from [9, eq. 5] as X −κµ (µκ)
� �∞ i µ+ie µ (κ +1) γ

Fγ (γ ) = 
i! (µ + i) B (mt , µ + i) (mt − 1)γ̄

i=0 � � 
µ (κ +1) γ 

× 2F1 mt +µ+i, µ+i; µ+i+1;− . 
(mt − 1)γ̄

(21) 

III. DOUBLE SHADOWED κ-µ MODELS 
In this section, we discuss three different ways in which the 
κ-µ fading envelope can be impacted by more than one shad-
owing process. To this end, we propose the double shadowed 
κ-µ Type I to Type III fading models with their physical 
interpretation provided in Table 2. 

A. DOUBLE SHADOWED κ-µ TYPE I MODEL 

The double shadowed κ-µ Type I model characterizes the 
propagation scenario in which the envelope experiences shad-
owing of the dominant component, which is preceded (or suc-
ceeded) by a secondary round of multiplicative shadowing. Its 
signal envelope, R, can be expressed in terms of the in-phase 
and quadrature phase components as 

µX 
2R2 

= A2 (Xi + ξpi)2 
+ (Yi + ξqi) (22) 

i=1 

where ξ , µ, Xi, Yi, pi and qi are as defined previously and 
A represents a RV which introduces an additional degree of 
shadowing. As before, we now provide two example cases of 
the double shadowed κ-µ Type I model. 
Example 1: In our first example of the double shadowed 

κ-µ Type I model, we assume that the shadowing of the 
dominant component is shaped by a Nakagami-m RV, whilst 
the second round of multiplicative shadowing is induced by 
an inverse Nakagami-m RV. Thus, in (22) ξ represents a 
Nakagami-m RV (with shape parameter md and E 

� 
ξ2
� 
= 1) 

whilst A denotes an inverse Nakagami-m RV (with shape 
parameter mt and E 

� 
A2

� 
= 1). The PDF of the double 

shadowed κ-µ Type I fading model for this example case8 

can be obtained via [25, eq. 5] as 
md 2µ−1 ̂ 2mt2(mt − 1)mt md Kµr r

fR (r) = � �mt +µ
(md + µκ)md B (mt , µ) Kr2 + (mt − 1)r̂2 ! 

2 

× 2F1 md , mt +µ;µ; � Kµκr � 
(md +µκ) Kr2 +(mt −1)r̂2

(23) 

8Note that this model was also introduced in [25] (as early results of this 
work) as a new fading model which is capable of characterizing both the 
shadowing of the dominant component and composite shadowing which may 
exist in wireless channels. 

where K = µ (1 + κ). The PDF of the instantaneous SNR, γ , 
of a double shadowed κ-µ Type I (example 1) fading channel, 
is obtained from [25, eq. 6] as 

md Kµγ µ−1γ̄mt(mt − 1)mt mdfγ (γ ) = 
(md +µκ)md B (mt , µ) (Kγ + (mt − 1) ̄γ )mt +µ � � 

K1µκγ 
× 2F1 md , mt + µ; µ; (24)

(Kγ + (mt −1) ̄γ ) 

where K1 = K/(md + µκ). Its CDF is obtained from 
[25, eq. 7 and eq. 8] as � � � �µ ∞ � �imd Xmd Kγ K1µκγ 
Fγ (γ ) = 

md + κµ γ̄ (mt −1) γ̄ (mt − 1)
i=0 

(md )i(i+µ)mt
× 2F1(i+µ, i+µ+mt ; i+µ+1;T )
i!0 (mt )(i+µ) 

(25) 

where T = −Kγ / γ̄ (mt − 1). It is noted that for the case 
when γ̄ (mt − 1) (md + κµ) > κµ2(1 + κ)γ , (25) can be 
expressed in closed form as follows: 

Fγ (γ )� �md 
� �

md Kγ µ
0 (mt +µ) 

= 
md +κµ γ̄ (mt −1) 0 (mt )0 (µ+1)� � 

× F2,1,0 mt +µ, µ; md ; −; K1µκγ Kγ 
1,1,0 1+µ; µ; −; γ̄ (mt −1) 

, − 
γ̄ (mt −1) 

(26) � � 
·, ·; ·; ·;

where F2,1,0 
·, · denotes the Kampé de Fériet 1,1,0 ·; ·; ·; 

function [26]. 
Example 2: Our second example of the double shadowed 

Type I model assumes that the shadowing of the dominant 
component is brought about by an inverse Nakagami-m RV, 
whilst the second round of multiplicative shadowing is influ-
enced by a Nakagami-m RV. Thus, in (22) ξ represents 
an inverse Nakagami-m RV (with shape parameter md and 
E 
� 
ξ2
� 
= 1) whilst A denotes a Nakagami-m RV (with shape 

parameter mt and E 
� 
A2

� 
= 1). The PDF of the double 

shadowed κ-µ Type I fading model for this example case can 
be obtained via Theorem 5. 
Theorem 5: For κ , µ, mt , md, r, r̂ ∈ R+, the PDF of the 

double shadowed κ-µ Type I fading model when ξ represents 
an inverse Nakagami-m RV and A represents a Nakagami-m 
RV is 

md µ+mt 
rµ+mt −18 (κµ(md − 1)) 2 (mt K) 2 

fR (r) = 
rµ+mt0 (md ) 0 (mt ) ˆ

∞ � √ �iX 1 rµ κ(md − 1)mt (1 + κ)
× 

i!0(i + µ) r̂
i=0 � √ �� �p 2 r Kmt

× Kmd −i 2 (md − 1)µκ Kmt −µ−i . 
r̂

(27) 
Proof: See Appendix E. 

The PDF of the instantaneous SNR, γ , of a double shad-
owed κ-µ Type I (example 2) fading channel, is obtained 
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from the envelope PDF given in (27) via a transformation of 
variables as follows. 
Corollary 5: For κ , µ, mt , md, γ , γ̄ ∈ R+, the PDF of 

γ for the double shadowed κ-µ Type I fading model for the 
example case when ξ represents an inverse Nakagami-m RV 
and A represents a Nakagami-m RV is 

md 1 1 
2 (µ+mt ) 2 (µ+mt )−14 (κµ (md − 1)) 2 (mt K) γ

fγ (γ ) = 10 (md ) 0 (mt ) 2 (µ+mt )γ̄s !i
∞X 1 γ κ (md − 1) mt (1 + κ)

× µ
i!0(i + µ) γ̄

i=0 s ! � �p γ Kmt
× Kmd −i 2 (md − 1) µκ Kmt −µ−i 2 . 

γ̄

R (28) 
γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 

Lemma 5 as follows. 
Lemma 5: For κ , µ, mt , md, γ , γ̄ ∈ R+, the CDF of γ for 

the double shadowed κ-µ Type I fading model for the example 
case when ξ represents an inverse Nakagami-m RV and A 
represents a Nakagami-m RV is 

Fγ (γ ) �√md ∞
�i

2 (κµ (md − 1)) 2 X µκ (md − 1) 
= 

0 (md ) 0 (mt ) i!0(i + µ)
i=0 � �� �p �Kγ mt 1 

× Kmd −i 2 (md −1) µκ G2
1
,
,
1
3 

� . 
γ̄ i + µ, mt , 0 

(29) 
Proof: See Appendix E. 

B. DOUBLE SHADOWED κ-µ TYPE II MODEL 

The double shadowed κ-µ Type II model considers a κ-µ 
faded signal in which the dominant component and scattered 
waves experience two different shadowing processes. Its sig-
nal envelope, R, is given by 

µX 
R2 2
= (AXi + Bpi)2 

+ (AYi + Bqi) (30) 
i=1 

where µ, Xi, Yi, pi and qi are as defined previously; A and 
B represent RVs that are responsible for introducing two dif-
ferent shadowing processes. We now consider two example 
cases for the double shadowed κ-µ Type II model, the details 
of which are discussed next. 
Example 1: In our first example of the double shadowed 

Type II model, we assume that the dominant component of a 
κ-µ signal undergoes variations influenced by a Nakagami-m 
RV, whilst the scattered waves of a κ-µ signal are subject 
to variations induced by an inverse Nakagami-m RV. Thus, 
in (30) A denotes an inverse Nakagami-m RV with shape 
parameter ms, and B represents a Nakagami-m RV with shape � � � � 
parameter md . Here, E A2 and E B2 are set equal to 1. 

An analytical expression for the PDF of the double shad-
owed Type II fading model for this example case can be 
obtained via Theorem 6 below. 
Theorem 6: For κ , µ, md, r, r̂ ∈ R+, and ms > 1 the PDF 

of the double shadowed κ-µ Type II model when A denotes 
an inverse Nakagami-m RV and B denotes a Nakagami-m RV 
is 

2 (ms − 1) msmms+µr2µ−10 (µ + ms) (1 + κ)µ 

fR (r) = d 

κms+µ0 (ms) 0 (md ) µms r̂2µ 

∞ 22 i 
� 

µ+ms 
� 

2X 
i (θ1)i 

� 
md (1 + κ)r

�i 
× 2 

0(i+md )i!0(µ+i) r̂2κ
i=0 

× U (2i + µ + ms, 1 + i + µ − md + ms, θ2) (31) 

md 
� 
(ms−1)r̂2+r2(1+κ)µ 

� 
where θ1 = 1

2 (1 + ms + µ), θ2 = ,
r̂2κµ 

and U(·, ·, ·) is the confluent Tricomi hypergeometric func-
tion [21, eq. 13.1.3]. 

Proof: See Appendix F. 
The PDF of the instantaneous SNR, γ , of a double shad-

owed κ-µ Type II (example 1) fading channel, is obtained 
from the envelope PDF given in (31) via a transformation of 
variables as follows. 
Corollary 6: For κ , µ, md, γ , γ̄ ∈ R+ and ms > 1, 

the PDF of γ for the double shadowed κ-µ Type II fading 
model when A denotes an inverse Nakagami-m RV and B 
denotes a Nakagami-m RV is 

(ms − 1)ms mms+µ
γ µ−10 (µ + ms) (1 + κ)µ 

fγ (γ ) = d 

κms+µ0 (ms) 0 (md ) µms γ̄ µ 

∞
� 

µ+ms 
� � �i22 iX 
i (θ1)i 0 (i+md ) md (1+κ)γ2

× 
i!0(µ+i) κγ̄

i=0 � � 
× U 2i+µ+ms, 1+i+µ − md + ms, θ 00 (32)3 

md (γ̄ (ms−1)+γ (1+κ)µ)where θ 00 = .3 κµ γ̄ R γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 
Lemma 6 as follows. 
Lemma 6: For κ , µ, md, γ , γ̄ ∈ R+, and ms > 1, the CDF 

of γ for the double shadowed κ-µ Type II fading model 
when A denotes an inverse Nakagami-m RV and B denotes 
a Nakagami-m RV is given by (33), shown at the bottom of 
the next page, where csc(·) , 1/ sin(·). 

Proof: See Appendix F. 
Example 2: Our second example of the double shadowed 

Type II model assumes that the dominant component of a 
κ-µ signal undergoes variations influenced by an inverse 
Nakagami-m RV whilst the scattered waves of a κ-µ signal 
are subject to variations induced by a Nakagami-m RV. Thus, 
in (30) A denotes a Nakagami-m RV (with shape parameter 
ms and E 

� 
A2

� 
= 1), and B represents an inverse Nakagami-

m RV (with shape parameter md and E 
� 
B2

� 
= 1). The PDF 
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R
of the double shadowed Type II model for this example case9 γIts CDF, Fγ (γ ) fγ (t) dt , can be expressed via = 0 
can be obtained via Theorem (7). Lemma 7 as follows. 
Theorem 7: For κ , µ, ms, r, r̂ ∈ R+, and md > 1, the PDF Lemma 7: For κ , µ, ms, γ , γ̄ ∈ R+, and md > 1 the CDF 

of the double shadowed κ-µ Type II model when A denotes a of γ for the double shadowed κ-µ Type II fading model when 
Nakagami-m RV and B represents an inverse Nakagami-m RV A denotes a Nakagami-m RV and B represents an inverse 
is Nakagami-m RV is 

fR(r) Fγ (γ )�

���� 

∞ ∞

r0 (md ) 0 (ms) n=0 
n!0(n + µ)0 (1 + n − md ) 0 (md ) 0 (ms) n!0 (µ + n) 0 (1 + n − md )n=0 

X 
����1, µ,−n + ms, 0 

X �(−1)n (κµms(md − 1))ncsc (πmd ) 2π (−1)n (κµms(md − 1))nπcsc (πmd )= = ���� � � � �2 (κµms(md −1))n+md (κµms(md −1))n+md1 − nmsKr 1, 1 − nγ msK 

γ̄
G3,0 
1,3 × G3,1 

2,4
− − r̂2 1, µ, −n + ms 

2 ���� 
n!0(1+n + md )�� n!0 (1+n+md )�� � �

1 1 − n − md 1 
µ, −n − md + ms, 1 

msK 1 − n − mdγ msKr
G2,1 
1,3 G2,1 

1,3, × , 
r̂2 µ, −n − md + ms, 0γ̄0(n+µ+md ) 0 (n+µ+md ) 

md ∈/ Z (34) 

where K is as defined previously. 
Proof: See Appendix G. 

The PDF of the instantaneous SNR, γ , of a double shad-
owed κ-µ Type II (example 2) fading channel, is obtained 
from the envelope PDF given in (34) via a transformation of 
variables as follows. 
Corollary 7: For κ , µ, ms, γ , γ̄ ∈ R+, and md > 1, 

the PDF of γ for the double shadowed κ-µ Type II fading 
model when A denotes a Nakagami-m RV and B represents 
an inverse Nakagami-m RV is 

md ∈/ Z. (36) 
Proof: See Appendix G. 

C. DOUBLE SHADOWED κ-µ TYPE III MODEL 

The double shadowed κ-µ Type III fading model considers 
a κ-µ faded signal in which the scattered waves in each clus-
ter are subject to fluctuations caused by shadowing. As well 
as this, it assumes that the rms power of the dominant com-
ponent and scattered waves may also be subject to random 
variations induced by shadowing. Its signal envelope, R is 
expressed as Xµ

∞

γ0 (md ) 0 (ms) n!0(n + µ)0 (1 + n − md ) where ξ , A, µ, Xi, Yi, pi, and qi are defined previously. As n=0 

X fγ (γ ) R2 
= A2 (ξXi + pi)2 

+ (ξYi + qi)2 (37)�
(−1)n (κµms(md − 1))nπcsc (πmd ) i=1 

= ���� � � before, we now provide two example cases for the double (κµms(md − 1))n+md1 − nγ msKG3,0 
1,3 − shadowed Type III model. ���� 

1, µ, −n + ms 
γ msKG2,1 

n!0(1 + n + md )�� γ̄
Example 1: In our first example of the double shadowed �

1 1 − n − md 
µ, −n − md + ms, 1 

κ-µ Type III model, we assume that the shadowing of , 
the scattered components is influenced by an inverse 

1,30 (n+µ+md ) γ̄

md ∈/ Z. (35) Nakagami-m RV whilst the secondary round of multiplicative 
shadowing is induced by a Nakagami-m RV. Thus, in (37) 

�� ��A denotes a Nakagami-m RV (with shape parameter mt and 
A2 1) whilst ξ represents an inverse Nakagami-m RV 

9For conciseness, it is worth mentioning here that two further examples 
of the double shadowed model can readily be obtained from (30), which E = 

ξ 2coincidentally lead to PDFs equivalent in form to (23) and (27). These can (with shape parameter ms and E = 1). The PDF of the 
be found by letting B = Aξ , where A and ξ represent either a Nakagami-m 
and an inverse Nakagami-m RV or vice versa. As shown in [8], B2 follows a 
Fisher-Snedecor F distribution [27]. Now, substituting for B in (30) we arrive 
at (22). Then letting A denote an inverse Nakagami-m RV and ξ represent a 
Nakagami-m RV and following the same statistical procedure highlighted in 
Section III.A, the PDF in (23) is deduced. If we let A denote a Nakagami-m 
RV and ξ represent an inverse Nakagami-m RV, we arrive at (27). 

double shadowed Type III model for this example can be 
obtained via Theorem 8 below. 
Theorem 8: For κ , µ, mt , r, r̂ ∈ R+, and ms > 1 the 

PDF of the double shadowed κ-µ Type III fading model 
where A denotes a Nakagami-m RV and ξ denotes an inverse 

"��n� �X∞
κµ0(1 + µ)0 (md ) 0 (ms) γ̄ µ n! κµ md (ms − 1) 

µ−mdµ
πγ µ(1 + κ)µ csc (π (µ − md + ms)) md 1 md (ms − 1) κµ 

Fγ (γ ) = 
n=0� � 

γ (1 + κ)µ 

γ̄ (ms − 1)��� 
0 (n + md )

× 2F1 −n + µ − md , −n + µ − md + ms; 1 + µ;− 
0 (1 + n − µ + md − ms) �ms � 

md (ms −1) γ (1+κ)µ 

γ̄ (ms −1) 
0 (n+µ+ms) 

2F1 −n, −n−ms; 1+µ;− ∈/ Z (33)− , µ−md +ms 
0 (1+n+µ− md +ms) κµ 
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Nakagami-m RV is 

fR (r) 
2µ−12 (ms −1) ms (mt K) µr

= 
0 (mt ) B (ms, µ) r̂2µ (ms − 1+κµ)µ+ms � � 

1∞X 2 (ms + µ) (θ1)i 0 (i+ms +mt ) 
� 
4 r2κµKmt 

�i 
i

× 
i!(µ)ir̂2 i (ms − 1 + κµ)2 i 

i=0 � 
r2Kmt 

� 
× U 2 i + µ + ms, 1 + i + µ − mt , r̂2 (ms − 1 + κµ) 

(38) 

in which K and θ1 are defined previously. 
Proof: See Appendix H. 

The PDF of the instantaneous SNR, γ , of a double shad-
owed κ-µ Type III (example 1) fading channel, is obtained 
from the envelope PDF given in (38) via a transformation of 
variables as follows. 
Corollary 8: For κ , µ, mt , γ , γ̄ ∈ R+ and ms > 1, 

the PDF of γ for the double shadowed κ-µ Type III fading 
model when A denotes a Nakagami-m RV and ξ denotes an 
inverse Nakagami-m RV is 

fγ (γ ) 

(ms − 1)ms (mt K)µ γ µ−1 

= 
0 (mt ) B (ms, µ) γ̄ µ (ms − 1 + κµ)µ+ms � � � � 

∞X 2
1 (ms +µ) 2

1 (µ+ms + 1) 0 (i + ms + mt )
i i

× 2 i −iγ i (ms − 1 + κµ) (4γ κµKmt )i=0 
i!(µ)i ¯� � 

γ Kmt
× U 2 i + µ + ms, 1 + i + µ − mt , . 

γ̄ (ms − 1 + κµ) 

(39)R γThe CDF of this model, Fγ (γ ) = 0 fγ (t) dt , can be 
expressed via Lemma 8 as follows. 
Lemma 8: For κ , µ, mt , γ , γ̄ ∈ R+ and ms > 1, the CDF 

of γ for the double shadowed κ-µ Type III fading model 
when A denotes a Nakagami-m RV and ξ denotes an inverse 
Nakagami-m RV is X(ms − 1)ms ∞ 1
Fγ (γ ) = 

0 (ms) 0 (mt ) (ms − 1 + κµ)ms i!0(µ + i)
i=0 � �i � � 

κµ Kγ mtG2,2 
|
1,1−i−ms× . (40)2,3 i+µ,mt ,0ms −1 + κµ γ̄ (−1+κµ+ms) 

Proof: See Appendix H. 
Example 2: Our second example of the double shadowed 

κ-µ Type III model assumes that the shadowing of the scat-
tered components is influenced by a Nakagami-m RV whilst 
the secondary round of multiplicative shadowing is induced 
by an inverse Nakagami-m RV. Thus, in (37) A denotes 
an inverse Nakagami-m RV (with shape parameter mt and 

E 
� 
A2

� 
= 1) whilst ξ represents a Nakagami-m RV (with 

shape parameter ms and E 
� 
ξ 2
� 
= 1). The PDF of the double 

shadowed Type III model for this example can be obtained 
via Theorem 9 as follows. 
Theorem 9: For κ , µ, ms, r, r̂ ∈ R+, and mt > 1 the 

PDF of the double shadowed κ-µ Type III fading model 
when A denotes an inverse Nakagami-m RV and ξ denotes 
a Nakagami-m RV is 

fR (r) 
∞2π (Kms/(mt − 1))ms r2 ms−1r̂−2 ms X (κµms)i 

= 
0 (mt ) 0 (ms) sin (π (mt + ms)) i!

i=0 � � �−i � �mt +ms
κµr̂2(mt − 1) κµr̂2(mt − 1)

× G − H 
r2K r2K � �i+µ−ms � 

r2Kms
+ J (κµms)−i , mt +ms ∈/ Z 

r̂2(mt − 1) 
(41) 

in which K is defined previously, and G, H and J are given 
at the bottom of the next page where 2F̃2(a, b; c, d, z) = 
2F2(a, b; c, d, z)/(0(c)0(d)) is a particular case of the gen-
eralized hypergeometric function [28, eq. 7.2.3.1]. 

Proof: See Appendix I. 
The PDF of the instantaneous SNR, γ , of a double shad-

owed κ-µ Type III (example 2) fading channel, is obtained 
from the envelope PDF given in (41) via a transformation of 
variables as follows. 
Corollary 9: For κ , µ, ms, γ , γ̄ ∈ R+, and mt > 1 the 

PDF of γ for the double shadowed κ-µ Type III fading model 
when A denotes an inverse Nakagami-m RV and ξ denotes a 
Nakagami-m RV is 

fγ (γ ) � �msKms γ ms−1γ̄−ms ∞π mt −1 X (κµms)i 
= 

0 (mt ) 0 (ms) sin (π (mt + ms)) i!
i=0 � � �−i � �mt +msκµ γ (¯ mt − 1) κµ ̄γ (mt − 1)

× G0 − H0 
γ K γ K � �i+µ−ms � 

γ Kms −i
+ J 0 (κµms) , mt + ms ∈/ Z. 

γ̄ (mt − 1) 
(45) 

in which K is defined previously, and G0 , H0 and J 0 are given 
at the bottom of the next page. R γIts CDF, Fγ (γ ) = 0 fγ (t) dt , can be expressed via 
Lemma 9 as follows. 
Lemma 9: For κ , µ, ms, γ , γ̄ ∈ R+ and mt > 1, the CDF 

of γ for the double shadowed κ-µ Type III fading model 
when A denotes an inverse Nakagami-m RV and ξ denotes 
a Nakagami-m RV is given by (49), shown at the bottom of 
the next page. 

Proof: See Appendix I. 
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IV. SPECIAL CASES OF THE DOUBLE SHADOWED 
κ-µ FADING MODELS AND NUMERICAL RESULTS 
A. SOME SPECIAL CASES 

The PDFs given in (23), (27), (31), (34), (38) and (41) repre-
sent an extremely versatile set of fading models as they inherit 
the generalities of the various types of single shadowed κ-µ 
fading model. Recall that in the double shadowed κ-µ Type I 
model the md parameter denotes the intensity of shadowing 
that the dominant signal component undergoes, whilst the 
mt parameter represents the degree of fluctuations that both 
the dominant and scattered signal components undergo as a 
result of the secondary shadowing process. Letting mt →∞ 
in (23), we obtain the PDF of the single shadowed κ-µ Type I 
(example 1) model, whilst letting md → ∞, we obtain the 
PDF of the single shadowed κ-µ Type III (example 1) fading 

2model. Allowing, md → ∞ and r̂ = mt r̂2/(mt − 1) yields 
the κ-µ/inverse gamma fading model. Hence, letting mt → 
∞ and md →∞, we obtain the PDF of the κ-µ fading model. 
These results are illustrated in Fig. 1 and are in agreement 
with the corresponding Monte Carlo (MC) simulations. The 
PDF of the η-µ/inverse gamma model can also be obtained 
from the double shadowed κ-µ Type I (example 1) model 
by setting md → µ, κ = (1 − η)/2η, µ = 2µ and 
2r̂ = mt r̂2/(mt − 1). Thus, letting mt → ∞, md → µ, 

κ = (1 − η)/2η and µ = 2µ we obtain the PDF of the 

FIGURE 1. The PDF of the double shadowed κ-µ Type I (example 1) 
model reduced to some of its special cases: κ-µ (blue asterisk markers), 
single shadowed κ-µ Type I (example 1) (blue triangle markers), 
κ-µ/inverse gamma (blue square markers), Rician (red square markers), 
shadowed Rician (red asterisk markers), double shadowed Rician 
Type I (example 1) (red circle markers). Here, r̂ = 0.8, lines represent 
analytical results, and the markers represent simulation results. 

η-µ fading model. Likewise, the PDFs of the double shad-
owed Rician Type I (example 1) [30], shadowed Rician, and 
Rician fading models can be obtained from (23) by first 

(−1)iπ csc (π (µ − ms)) 
� 

κµr̂2(mt − 1) 
� 

G = 2F̃2 1 − i − ms, −i + µ − ms; µ, 1 − i − mt − ms;− , µ−ms ∈/ Z (42)
0 (1 + i − µ + ms) r2K 

0 (µ + mt ) 0 (i + ms) 
� 

κµr̂2(mt − 1) 
� 

H = 2F̃2 1 + mt , µ + mt ; 1 + i + mt + ms, i + µ + mt + ms;− (43)
0 (−mt ) r2K 

0 (−i−µ+ms) sin (π (mt +ms)) 
� 

κ r̂2(mt −1)
� 

J = 2F̃2 −i, 1−i−µ; µ, 1−i−µ−mt ;− , ms −µ /∈ Z; µ+mt ∈/ Z (44)
sin (π (µ+mt )) r2(1+κ) 

(−1)iπ csc (π (µ − ms)) 
� 

κµ γ̄ (mt − 1) 
� 

G0 = 2F̃2 1 − i − ms, −i + µ − ms; µ, 1 − i − mt − ms;− , µ−ms ∈/ Z (46)
0 (1 + i − µ + ms) γ K � � 

0 (µ + mt ) 0 (i + ms) κµ γ̄ (mt − 1)
H0 = 2F̃2 1 + mt , µ + mt ; 1 + i + mt + ms, i + µ + mt + ms;− (47)

0 (−mt ) γ K� � 
0 (−i−µ+ms) sin (π (mt +ms)) κµ ̄γ (mt −1)

J 0 = 2F̃2 −i, 1−i−µ; µ, 1−i−µ−mt ;− , ms −µ /∈ Z; µ+mt ∈/ Z (48)
sin (π (µ+mt )) γ K 

� �msKms ∞ � �π mt −1 γ ms X (κµms)i 0 (ms − i − µ) sin (π (ms + mt )) γ Kms 
�i+µ−ms 

Fγ (γ ) = 
0 (mt ) 0 (ms) sin (π (mt + ms)) γ̄ms i=0 (i + µ) sin (π (µ + mt )) (κµms)i ¯i! γ (mt − 1) � � � �i

κµ γ̄ (1 − mt ) 0 (µ − ms − i) γ K 
× 2F̃2 −i, −i − µ; µ, 1 − i − µ − mt ; + 

Kγ i + ms κµ ̄γ (mt − 1)� � � �ms+mtκµ ̄ 0 (i + ms) 0 (µ + mt ) γ (mt −1)γ (1 − mt ) κµ ̄
× 2F̃2 −i − ms, µ − i − ms; µ, 1 − i − ms −mt ; − 

Kγ 0 (1 − mt ) γ K � �� 
κµ γ̄ (1 − mt )

× 2F̃2 mt , µ + mt ; 1 + i + ms + mt , i + µ + ms + mt ; , mt +ms ∈/ Z; µ−ms ∈/ Z (49)
Kγ 
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TABLE 3. Special cases of the double shadowed κ-µ Type I (example 1), Type I (example 2) and Type II (example 1) fading models. 

setting µ = 1, κ = K (the Rician K -factor), followed by 
appropriate substitutions for md and mt . Fig. 1 shows the 
shape of the PDF for these special cases in red. 

Likewise, the double shadowed κ-µ Type I (example 2) 
model contains the single shadowed κ-µ Type I (example 2) 
and Type III (example 1) models as special cases. Letting 
mt →∞ in (27), we obtain the PDF of the single shadowed 
κ-µ Type I (example 2) model, and letting md → ∞ we 
obtain the PDF of the single shadowed κ-µ Type III (exam-
ple 1) model. Allowing both mt → ∞ and md → ∞, 
the PDF of the κ-µ fading model is deduced. The PDF 
given in (31) (double shadowed Type II (example 1)) also 
represents a flexible fading model as it contains the single 
shadowed κ-µ Type I (example 1), Type II (example 2), 
η-µ/inverse gamma, κ-µ and η-µ fading models as spe-
cial cases. Letting ms → ∞ in (31), we obtain the PDF 
of the single shadowed κ-µ Type I (example 1) model, 
whilst letting md → ∞ we obtain the PDF of the single 
shadowed κ-µ Type II (example 2) model. Allowing both 

ms → ∞ and md → ∞ in (31), the double shadowed 
κ-µ Type II (example 1) fading model coincides with the 
κ-µ fading model. Table 3 summarizes the special cases 
of the double shadowed κ-µ Type I (example 1), Type I 
(example 2) and Type II (example 1) models whilst 
Table 4 summarizes the special cases of the double shad-
owed κ-µ Type II (example 2), Type III (example 1) and 
Type III (example 2) models. 

B. NUMERICAL RESULTS 

Fig. 2 a) and b) show some plots of the PDF of the single 
shadowed κ-µ Type II (example 2), and double shadowed 
Type I (example 1) models for different values of κ , µ, 
ms, md , mt , and r̂ . Note that the values of the parame-
ters are chosen to illustrate the wide range of shapes that 
the new shadowed fading models can exhibit, and thus 
their capability to model accurately the versatile fading 
conditions encountered in numerous communication sce-
narios relating to emerging wireless applications. Fig. 2 a) 
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TABLE 4. Special cases of the double shadowed κ-µ Type II (example 2), Type III (example 1) and Type III (example 2) fading models. 

FIGURE 2. a) PDF of the single shadowed κ-µ Type II (example 2) (blue and green lines) and double shadowed κ-µ Type I (example 1) (red 
and black lines) models. Lines denote analytical results; circle markers denote simulation results. b) PDF of the double shadowed κ-µ 
Type I (example 1) and (example 2) models for different values of md and mt . κ = 3.9, µ = 2.4, and r̂ = 2.5. Solid and dashed lines denote 
Type I (example 1) and Type I (example 2) models, respectively. 

shows the PDF of the single shadowed κ-µ Type II (exam- {md , mt , r̂} = {2.3, 3.8, 1.8}, {25.1, 18.9, 3.0} and {ms, r̂} = 
ple 2) and double shadowed Type I (example 1) fad- {3.8, 1.8}, {18.9, 3.0}. In all cases, the analytical results agree 
ing models for {κ, µ} = {0.5, 2.0}, {4.2, 2.0}, {15.1, 5.0}, with the corresponding MC simulations. 
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FIGURE 3. Outage probability of the double shadowed Type 1 (example 
1) model versus γ̄ for different values of κ , µ, md and ms. Here 
γth = 0 dB. 

Fig. 3 shows the outage probability of the double shadowed 
Type 1 (example 1) model versus γ̄ for different multipath 
and shadowing conditions. As expected, we observe that the 
outage probability increases for lower values of κ , µ, md 
and ms parameters. Moreover, the rate at which the outage 
probability decreases is faster as these parameters grow large. 
Furthermore, Fig. 4 shows the outage probability of the dou-
ble shadowed Type 1 (example 2) model versus γ̄ for different 
values of γth when κ , µ, mt and md are fixed. We observe that 
for a fixed γ̄ , the outage probability increases, as expected, 
as γth increases. In all cases, the analytical results agree with 
the MC simulations. 

V. CONCLUSION 
For the first time, this paper has discussed the various ways in 
which a κ-µ fading envelope can be affected by shadowing. 
A family of shadowed κ-µ fading models were proposed 
and classified based on whether the underlying κ-µ envelope 
undergoes single or double shadowing. Three types of single 
and double shadowed κ-µ model were introduced. These 
model frameworks are general and do not depend on pre-
defined RVs that are responsible for shaping the shadowing 
characteristics. However, for illustrative purposes, two exam-
ple cases for each type of single and double shadowed model 
were discussed where it was assumed that the shadowing is 
shaped by a Nakagami-m RV, an inverse Nakagami-m RV or 
their mixture. Finally, it is worth remarking that the proposed 
double shadowed models are very general and have been 
reduced to a number of well-known special cases. This prop-
erty renders them useful both theoretically and practically as 
they can provide accurate modeling of the versatile composite 
fading conditions encountered in emerging wireless applica-
tions with stringent quality of service requirements. 

APPENDIX A 
PROOF OF THEOREM 1 AND LEMMA 1 
Considering the signal model given in (1) where ξ is assumed 
to be an inverse Nakagami-m RV with shape parameter md 
and E 

� 
ξ2
� 
= 1, its PDF is given by 

2(md − 1)md 
− 
md 

ξ 2 
−1 

fξ (ξ) = . (50)
0 (md ) ξ 2md +1

e 

To determine the envelope distribution of the single shad-
owed κ-µ Type I (example 2) fading model we average the 
conditional PDF, fR|ξ (r |ξ), with the PDF of ξ given in (50) 

FIGURE 4. Outage probability of the double shadowed Type 1 (example 2) model versus γ̄ for 
different γth. Lines denote analytical results and circle markers denote simulation results. 
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i.e. Z∞ 

fR (r) , fR|ξ (r |ξ) fξ (ξ) dξ. (51) 

0 

The signal model for the single shadowed κ-µ Type I 
(example 2) fading model, insinuates that the conditional 
probability, fR|ξ (r |ξ), follows a κ-µ distribution with PDF [1] � � 

rµ −r2−ξ 2d2 ξdr
fR|ξ (r|ξ) = 2σ 2 Iµ−1 (52)

σ 2 (ξd) µ−1 e 
σ 2 

where d2 and σ 2 are as defined in section II.A (also see [1]), 
and Iν (·) is the modified Bessel function of the first kind and 
order ν. 
An analytical expression for the PDF of the single shad-

owed κ-µ Type I (example 2) fading model can be obtained 
by substituting (52) and (50) into (51) as follows: 

(md −1) 2
+ξ 2d2 Z∞ − − r � � 

ξ 2 2σ 22rµ(md − 1)md e ξ dr
fR(r)= Iµ−1 dξ. 

σ 2 (ξd)µ−1 0 (md ) ξ 2md +1 σ 2 

0 

(53) 

Now replacing the modified Bessel function of the first kind 
with [22, 03.02.02.0001.01] in (53), followed by solving 
the integral using [20, eq. 3.471.9], and finally substituting p q
d = 2µσ 2κ; σ = r̂2 

in the resultant expres-2µ(1+κ) 
sion, we obtain the PDF of the single shadowed κ-µ Type I 
(example 2) fading model shown in (5). 

Substituting the SNR PDF (see (6)) of the single shad-
owed κ-µ Type I (example 2) fading model in Fγ (γ ) = R γ 
0 fγ (t) dt , changing the order of integration and summation, 
solving the integral using [21, eq. 6.5.1] and finally perform-
ing some algebraic manipulations, we obtain the CDF of the 
single shadowed κ-µ Type I (example 2) fading model shown 
in (7). This completes the proof. 

APPENDIX B 
PROOF OF THEOREM 2 AND LEMMA 2 
If ξ is a Nakagami-m RV with shape parameter ms and� 

ξ2
� 

E = 1, its PDF is given by 
ms ξ 2ms−12ms −msξ2fξ (ξ) = e . (54)
0 (ms) 

The signal model presented in (8) insinuates that the condi-
tional probability, fR|ξ (r |ξ), follows a κ-µ distribution with 
PDF [1] � � 

rµ −r2−d2 dr 
2σ 2ξ2fR|ξ (r |ξ) = e Iµ−1 . (55)

σ 2ξ2dµ−1 σ 2ξ2 

An analytical expression for the PDF of the single shadowed 
κ-µ Type II (example 1) fading model can be obtained by 
substituting (55) and (54) into (51) as Z∞ � �ms 2

+d22rµms ξ 2ms−3 
−msξ2− r dr 

2σ 2ξ 2fR (r) = e Iµ−1 dξ. 
σ 2dµ−10 (ms) σ 2ξ 2 

0 

(56) 

Now replacing the modified Bessel function of the first kind 
with its series representation [22, 03.02.02.0001.01] in (56), 
solving the integral using [20, eq. 3.471.9], and finally sub-p q
stituting d = 2µσ 2κ; σ = r̂2 

in the resultant 2µ(1+κ) 
expression, we obtain (9). 

Substituting the SNR PDF (see (10)) of the single shad-
owed κ-µ Type II (example 1) fading model in Fγ (γ ) = R γ 
0 fγ (t) dt , changing the order of integration and summa-
tion, expressing the modified Bessel function of the second 
kind using its power series representation [21, eq. 9.6.2 and 
9.6.10], and again changing the order of integration and 
summation, we obtain (57), shown at the bottom of the next 
page. The inner integral can be solved using [31, eq. 2.2.6.1]. 
Now performing some algebraic manipulations the CDF can 
be expressed as (58), shown at the bottom of the next page. 
Next, let us define S̃1 and S̃2 as follows. 

∞ ∞ jXX 1 (κµms)S̃1 = 
i!0 (i + µ + 1) j!0 (−2i + j + ms − µ + 1)

i=0 j=0 � �i
γ (1 + κ)

× 2F1 [i + µ, 2i − j + µ − ms, 1 + i 
γ̄ κ � 
γ (1 + κ) 

+ µ, − , (59)
γ̄ κ 

and 
∞ ∞XX 1 (κµms)j S̃2 = 

i!0 (i + µ + 1) j!0 (2i + j − ms + µ + 1)
i=0 j=0 !i � 

γ κ (1 + κ) (msµ)2 

× 2F1 − j, i + µ, 1 + i + µ, 
γ̄� 

γ (1 + κ)
− . (60)

γ̄ κ 

Then the corresponding CDF can be rewritten as: 

(msµ) 
ms

2 
+µ

(1 + κ)µ π
Fγ (γ ) = 

0 (ms) γ̄ µsin [(µ − ms) π ]h � √ �−µ+ms �√ �µ−ms i 
× γ µ κ µms S̃1 − µms γ µS̃2 . 

(61) 

Considering S̃1, we rewrite the Gauss hypergeometric func-
tion in terms of its contour integral10 representation i.e, � � 

γ (1 + κ) 
2F1 i + µ, 2i − j + µ − ms, 1 + i + µ, − 

γ̄ κ I 
0 (1+i+µ) 1 0 (t1) 0 (i+µ − t1) 

= 
0 (i+µ) 0 (2i−j+µ−ms) 2πj L 0 (1+i+µ−t1)� �−t1γ (1+κ)
× 0 (2i−j+µ−ms −t1) dt1 (62)

κγ̄

10Note that in some equations, the gamma function in the contour integral 
kernel may render an indeterminate value. However, this does not present a 
problem here as the appropriate choice of contours required to solve these 
integrals must exclude any indeterminate results. The interested reader is 
directed to [32] for a comprehensive discussion on the appropriate contour 
choice. 
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√ 
where j = −1 is the imaginary unit and L is a suitable 
contour in the complex space. Now simplifying S̃1, we obtain 

X j X 
S̃1 =

∞
(κµms)

∞ 1 

j! i!0 (i + µ) 0 (2i − j + µ − ms)j=0 i=0 � �i I
1 γ (1+κ) 1 

× 0 (t1)
0 (1−2i+j−µ + ms) κγ̄ 2πj L 
0 (−t1 + µ + i) 0 (2i − j + µ − ms − t1)

× 
0 (1 + i + µ − t1)� �−t1γ (1 + κ)

× dt1. (63)
κγ̄

Furthermore, using the Residue Theorem, we represent the 
summation over the index i as another contour integral, keep-
ing in mind the following relationship: Res 0 (t) f (t) = 

t→−i
(−1)i 
i! f (−i), to obtain 

∞ � �2I 
S̃1 = 

X (κµms)j 1 0 (t1) 0 (t2) 0 (−t1 −t2 +µ) 

j! 2πj L 0 (−t2 +µ) 0 (1−t1 −t2 +µ) 
j=0 

0 (−j−t1 −2t2 +µ−ms)
× 

0 (−j−2t2 +µ−ms) 0 (1+j+2t2 −µ+ms)� �−t1 
� �−t2γ (1+κ) γ (1+κ)

× − dt1dt2. (64)
κγ̄ κγ̄

Applying transformation of integration variables such that 
t1 → u1 − u2 and t2 → u2, using the sum of residues 
to evaluate the integral on variable u2, followed by using 

[28, eq. 7.3.5.2] and simplifying, we obtain 

∞

S̃1 = 
sin [π (µ − ms)] X (−1)j 0 (j + ms) (κµms)j 

π j! 2πj
j=0 I 

0 (u1) 0 (−j −u1 +µ−ms)
× 

L 0 (1−u1 +µ) 0 (j+u1 +ms)� �−u1γ (1+κ) 
× du1, µ − ms ∈/ Z (65)

κγ̄

where the integral over u1 can be interpreted as a Meijer G 
function resulting in 

∞ j jsin [π (µ − ms)] X (−1) 0 (j + ms) (κµms)S̃1 = 
π j!

j=0 � � � 
γ (1 + κ) 1 + j − µ + ms, j + ms

× G1,1 �� ,2,2 �κγ̄ 0, −µ 
µ − ms ∈/ Z. (66) 

To simplify S̃2, we first change the order of summation by 
summing over the infinite triangle 2i + j = n or j = n − 
2i, then express the Gauss hypergeometric function in terms 
of its power series representation [22, eq. 07.23.02.0001.01], 
again change the order of summation (i + k = j or k = j − i), 
followed by using [28, eq. 7.3.5.2] and finally simplifying, 
we obtain X∞ (κµms)n 

S̃2 = 
n!0 (1 + n − ms + µ) 0 (µ + 1)

n=0 � � 
γ (1 + κ)

×2F1 −n, 1 − n − µ, 1 + µ, . (67)
γ̄ κ 

2i+ms+µ∞ i+µX 2 (msµ) 2 κ i (1 + κ) 1 π
Fγ (γ ) = 

i!0 (ms) 0 (i + µ) γ̄ i+µ 2sin [(2i − ms + µ) π ]
i=0 � ∞ Z s � �!2j−2i+ms−µX γ t i+µ−11 t 
× msµ (1 + κ) + κ dt� � 2i−ms+µj!0 (−2i +j + ms − µ + 1) 0 

(1 + κ) + κ 
2 γ̄

j=0 t 
γ̄ s 

∞ Z � �!2j+2i−ms+µ �X γ t i+µ−11 t 
− msµ (1 + κ) + κ dt ,� 2i−ms+µ 

j=0 
j!0 (2i + j − ms + µ + 1) 0 

� 
2 γ̄t 

γ̄
(1 + κ) + κ 

µ − ms ∈/ Z (57) 

ms+µ � ∞ ∞ � �i2 γ µ XX j(msµ) (1 + κ)µ π 1 (κµms) γ (1 + κ)
Fγ (γ ) = � √ �µ−ms0 (ms) γ̄ µsin [(µ − ms) π ] κ µms i!0 (i + µ + 1) j!0 (ms − µ + 1 − 2i + j) γ κ ¯

i=0 j=0 � � ∞ ∞
γ µ XXγ (1 + κ) 1 

× 2F1 i + µ, 2i − j + µ − ms, 1 + i + µ, − − �√
¯ i!0 (i + µ + 1)γ κ 

�ms−µ 
µms i=0 j=0 !i � �� j 2(κµms) γ κ (1+κ) (msµ) γ (1 + κ)

× 2F1 −j, i + µ, 1 + i + µ, − , µ−ms ∈/ Z (58)
j!0 (2i+j−ms +µ+1) ¯ ¯γ γ κ 
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Now substituting S̃1 and S̃2 back into (61) and performing kind in terms of the Meijer G function [28, eq. 8.4.23.1], 
some algebraic manipulations, we obtain the CDF of the sin- we obtain 

∞X Zmt +µ+igle shadowed κ-µ Type II (example 1) fading model shown (κµ)i γ(mt µ (1 + κ)) 2 mt +µ+i 
−1in (11). This completes the proof. Fγ (γ ) = t 2 

mt +µ+i 
0eκµi!0 (mt ) 0 (i + µ) γ̄ 2 ���� �i=0 � 

(mt µ (1 + κ)) tAPPENDIX C 
× G2,0 

0,2 
−mt +µ+i 

, −−mt +µ+i dt.2 2PROOF OF THEOREM 3 AND LEMMA 3 γ̄

A closed form expression for the PDF of the single shadowed (71) 
κ-µ Type II (example 2) model, is obtained by substitut-

Expressing the Meijer G function in terms of its contour ing (55) and (50) (after replacing md with ms) into (51), 
integral representation i.e, ���� � � 

− (ms−1) 
2
+d2Z∞ − r

ξ 2 2σ 2ξ 2
� � (mt µ (1 + κ)) t

G2,0 
0,2 

−mt +µ+i 
, −−mt +µ+i 

2 2 
2rµ(ms − 1)ms e dr

fR (r)= Iµ−1 dξ. γ̄�σ 2dµ−10 (ms) ξ2ms+3 σ 2ξ 2 �� �I
1 −mt +µ + i −mt + µ + i0 

+ x 0 − + x0= (68) 2πj

× 

2 2 �
1 t+ κ( ( ))m µt 

L 

substituting for d and σ in the resultant expression and per- γ̄

forming some algebraic manipulations, we obtain (12). 

�−x 
The above integral is identical to [33, eq. 2.15.3.2]. Now, dx, (72) 

changing the order of integration, simplifying, and interpret-

X 
Substituting the SNR PDF (see (13)) of the single ing the contour integral as a Meijer G function, we obtain 

shadowed κ-µ Type II (example 2) fading model inR γ Fγ (γ )Fγ (γ ) = 0 fγ (t) dt , expressing the Gauss hypergeo-
∞ mt +µ+i mt +µ+i 

(κµ)i γ(mt µ (1 + κ)) metric function in terms of its power series representation 2 2 
= ���� � [22, eq. 07.23.02.0001.01] i.e, mt +µ+i 

eκµi!0 (mt ) 0 (i + µ) ¯

−mt +µ+i 

γ 2i=0� � �2κ (1+κ) t γ̄ 1 − mt +µ+i 
2

ms +µ+1 4µ 
× G2,1 

1,3 
(mt µ (1+κ)) γ 

γ̄

ms +µ 
2F1 dt., , µ, 

,−
−mt+µ+i 

,− mt +µ+i 
2 2 

22 2 (t (1+κ) µ+γ̄ (ms −1+κµ))� 2�� �k (73)ms+µ+1ms+µ 4µ 2κ (1+κ) t γ̄∞

k=0 
k! (µ)k (t (1+κ) µ+γ̄ (ms −1 +κµ))2k 

, 
X 2 k 2 k (69)= Now performing some algebraic manipulations and using 

[32, eq. 1.60], we obtain the CDF of the single shadowed 
κ-µ Type III (example 1) fading model shown in (18). This changing the order of integration and summation, followed 

by solving the integral using [31, eq. 2.2.6.1] and finally 
performing some algebraic manipulations, we obtain the CDF 
of the single shadowed κ-µ Type II (example 2) fading model 
shown in (14). This completes the proof. 

APPENDIX D 
PROOF OF THEOREM 4 AND LEMMA 4 
We determine the envelope distribution of the single shad-
owed κ-µ Type III (example 1) fading model using (51). 
Here, the conditional probability, fR|ξ (r |ξ) is given by 

completes the proof. 

APPENDIX E 
PROOF OF THEOREM 5 AND LEMMA 5 
The signal envelope, R, of the double shadowed κ-µ 
Type I (example 2) fading model is given by (22). Here, A fol-
lows a Nakagami-m distribution with shape parameter mt , 
and ξ follows an inverse Nakagami-m distribution with shape 
parameter md . It is noted that the model in (22) may be viewed 
as a product of a Nakagami-m RV and a single shadowed 
κ-µ Type I (example 2) RV. According to standard probability 

2 procedure, this PDF can be obtained as Z 
∞ 

!−µ(1+κ)r √µ+1 2ξ2 r̂2µ(1+κ) p2µ κ (1+κ)rrµe2 � �1fR|ξ (r |ξ)= Iµ−1 r
fR(r) = fT fA(a) da (74).�µ+1µ−1 ξ2r̂2 

ξ2r̂2 2eκµ κ 2 a a0 

(70) where fT (t) is given in (5). Replacing the respective PDFs 
in (74) and changing the order of integration and summation, 

Substituting (70) and (54) (after replacing ms with mt ) yields
into (51), followed by replacing the modified Bessel 
function of the first kind with its series representa- fR(r) 

md +i i+md Ki+µ8 [(md − 1)κ] 2 µ 2 r mttion [22, 03.02.02.0001.01], and solving the resulting integral 2 i+2µ−1 mt 

�
X∞

=using [20, eq. 3.471.9], we obtain (16). r̂2 i+2µi!0 (md ) 0(i + µ)0 (mt )Substituting the SNR PDF (see (17)) of the single shad- i=0 Z 
∞� 2 2Kp

(md −1)µκ 
0 
a2(mt −i−µ)−1eRowed κ-µ Type III (example 1) fading model in Fγ (γ ) 

γ fγ (t) dt , changing the order of integration and summation, 
mt − r−a= 

a2 r̂2× Kmd −i 2 da. 

and expressing the modified Bessel function of the second (75) 
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Solving this integral using [31, eq. 2.3.16.1] and simplifying, 
we obtain (27). 

Following the same procedure used for deriving the CDF of 
the single shadowed κ-µ Type II (example 1) fading model 
(see Appendix B), the SNR CDF for the double shadowed 
κ-µ Type I (example 2) fading model is obtained as shown 
in (29). This completes the proof. 

APPENDIX F 
PROOF OF THEOREM 6 AND LEMMA 6 
We determine the envelope distribution, R, of the double 
shadowed κ-µ Type II (example 1) fading model when 
A and B vary according to the inverse Nakagami-m and 
Nakagami-m distributions, respectively, from the following 
integral Z∞Z∞ 

fR (r) = fR|α,β (r |α, β) fα (α) fβ (β) dαdβ (76) 

0 0 

where Z∞ 

fR|β (r |β) = fR|α,β (r |α, β) fα (α) dα (77) 

0 

and the double shadowed κ-µ Type II (example 1) signal 
model insinuates that fR|α,β (r |α, β) follows a κ-µ distribu-
tion with PDF [1] � �2

−(βd)2rµ −r βdr 
2σ 2α2 

σ 2α2 (βd)µ−1 σ 2α2 

(78) 

fR|α,β (r |α, β) = e Iµ−1 

whilst fα (α) is similar to (50) where ξ and md are replaced 
with α and ms, respectively. Likewise, fβ (β) is similar to (54) 
where ξ is replaced with β, and ms is replaced with md . 
Integrating with respect to α, we obtain an expression similar 
to (12) conditioned on β, 

fR (r) 
2ms+2(ms − 1)msr2µ−1σ 2msmmd 0 (ms + µ) 

= � d �ms+µ
0 (ms) 0 (md ) r2 + 2(ms − 1)σ 2� �� � � �ims+µ ms+µ+1 2 Z∞∞ 4d2rX 2 i 2 i 2i+2md −1× � �2i β

i=0 i!0 (µ + i) r2 + 2(ms − 1)σ 2
0 � �−2i−µ−msd2β2 
−md β

2 
× + 1 e dβ. (79) 

r2 + 2(ms − 1)σ 2 

Now solving the integral in (79) using [21, eq. 13.2.5], fol-
lowed by substituting [22, 07.33.17.0007.01] for the hyper-
geometric U function (Tricomi confluent hypergeometric p q
function), d = 2µσ 2κ and σ = r̂2 

, and finally 2µ(1+κ) 
simplifying the resultant expression we obtain (31). 

Substituting the SNR PDF (see (32)) of the double shad-
owed κ-µ Type II (example 1) fading model in Fγ (γ ) = R γ 
0 fγ (t) dt , changing the order of integration and summation, 
expressing the Tricomi hypergeometric function in terms of 

its power series representation [21, eq. 13.1.2 and 13.1.3], 
we obtain (80), shown at the bottom of the next page. Again, 
changing the order of integration and summation, using 
[31, eq. 2.2.6.1] and performing some algebraic manipula-
tions, we obtain (81), shown at the bottom of the next page. 
Now, let us define S̃3 and S̃4 as follows: 

∞ ∞XX (−1)i 0 (2i + k + µ + ms)S̃3 = 
i!k!0 (i + µ + 1) 0 (1 + i+k +µ+ms −md )i=0 k=0 � �k � �imd (ms − 1) md γ (1 + κ) 

× 
κµ κγ̄� � 

γ (1+κ) µ
× 2F1 −k, i+µ, 1+i+µ, − (82)

γ̄ (ms −1) 

and 

S̃4 
∞ ∞XX (−1)i 0 (i + k + md ) 

= 
i!k!0 (i + µ + 1) 0 (1 − i + k − µ + md − ms)i=0 k=0 � �k � �imd (ms − 1) µγ (1 + κ)

× 
κµ γ̄ (ms − 1)� � 

γ (1+κ) µ
× 2F1 i+µ, i−k +µ−md +ms, 1+i+µ, − 

γ̄ (ms −1) 
(83) 

then the CDF can be rewritten as 

(ms − 1)ms mms+µ
0 (µ + ms) (1 + κ)µ γ µ 

Fγ (γ ) = d 

κms+µ0 (ms) 0 (md ) 0 (µ + ms) µms γ̄ µ � 
−µ+md −ms

× 
π 

− S̃3 + mdsin [π (µ − md + ms)] 

× 

� �µ−md +msκµ 

ms − 1 

� 
S̃4 , µ−md + ms /∈ Z. 

(84) 

To simplify S̃3, we first change the order of summation 
using the index transformation i + k = n or k = n − i, then 
we express the Gauss hypergeometric function in terms of its 
power series representation [22, 07.23.02.0001.01], i.e, � � 

γ (1 + κ) µ 
2F1 i − n, i + µ, 1 + i + µ, − 

γ̄ (ms − 1) 
∞ � �jX (i − n)j (i + µ)j γ (1 + κ) µ 

= − , (85) 
j=0 

j! (1 + i + µ)j γ̄ (ms − 1) 

again changing the order of summation using the index trans-
formation j = k − i and simplifying, we obtain 

∞ ∞XX 0(k −n) 0(n+µ+ms) sin(nπ)
S̃3 =− 

π (k +µ) 0(1+k) 0(1+n+µ−md +ms) 0(µ)
n=0k=0 � �n� �
md (ms −1) γµ (1+κ) k 

× − 
κµ γ̄ (ms −1) 

× 2F1 [−k, n + µ + ms, µ, 1] . (86) 
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Now using [28, eq. 7.3.5.4] and performing the sum over 
index k , followed by some algebraic manipulations, we obtain 

∞X 0 (n + µ + ms) (md (ms − 1))n 

S̃3 = 
n!0 (µ + 1) 0 (1 + n + µ + ms − md ) (κµ)n 

n=0 � � 
γ (1 + κ) µ

× 2F1 −n, −n − ms, 1 + µ, − . (87)
γ̄ (ms − 1) 

To simplify S̃4, we first express the Gauss hypergeo-
metric function in terms of its power series representation 
[22, eq. 07.23.02.0001.01] i.e, � � 

γ (1+κ) µ 
2F1 i+µ, i−k +µ−md +ms, 1+i+µ, − 

γ̄ (ms −1) 
∞ � �jX (i+µ)j (i−k +µ−md +ms)j γ (1+κ) µ 

= − . 
j=0 

j! (1+i+µ)j γ̄ (ms −1) 

(88) 

This is followed by performing the sum over the infinite tri-
angle i+ j = n or j = n− i, simplifying, again performing the 
sum over index n, followed by some algebraic manipulations 
to obtain X k∞

0 (k + md ) (md (ms − 1))
S̃4 = 

k! (µ + 1) 0 (1 + k − µ + md − ms) (κµ)k k=0 � 
× 2F1 − k + µ − md , −k + µ − md + ms, 1 + µ, 

� 
γ (1 + κ) µ

− . (89)
γ̄ (ms − 1) 

Finally, substituting S̃3 and S̃4 back into (84) and simplifying, 
we obtain the CDF of the double shadowed κ-µ Type II 
(example 1) fading model shown in (33). This completes the 
proof. 

APPENDIX G 
PROOF OF THEOREM 7 AND LEMMA 7 
The envelope distribution, R, of the double shadowed 

κ-µ Type II (example 2) fading model when A and B vary 
according to Nakagami-m and inverse Nakagami-m distribu-
tions, respectively, can be obtained through (76). The double 
shadowed κ-µ Type II (example 2) signal model presented 
in (30) insinuates that fR|α,β (r|α, β) follows a κ-µ distribution 
with PDF given in (78). Also, fα(α) is similar to (54) with ξ 
replaced by α, and fβ (β) is similar to (50) with ξ replaced 
by β. Integrating with respect to β, we obtain 

∞md ms 2µ−18Kµ (κµ(md − 1)) 2 ms r X 1
fR(r) = 

0 (md ) 0 (ms) r̂2µ i!0(µ + i)
i=0 � √ �i Z ∞r2K κµ(md − 1) 
−1−3 i−2µ−md +2 ms× 

r̂2 0 
α� � � √ � 

− α2 ms+ r
2K 

2
2 κµ(md − 1)

× e α2 r̂ Ki−md dα. (90)
α 

Fγ (γ ) 
ms+µ ∞ Z � �i(ms − 1)ms m 0 (µ + ms) (1 + κ)µ X 0 (2i + µ + ms) 0 (i + md )

γ md (1 + κ) td tµ−1= 
κms+µ0 (ms) 0 (md ) µms γ̄ µ κγ̄

i=0 
i!0 (i + µ) 0 (µ + ms) 0 � ∞ � �

π (−1)i+1 1 X md ( ̄(2i+µ+ms)k γ (ms −1)+t (1+κ) µ) k 
× 

sin [π (µ−md +ms)] 0 (i+md ) 0 (1+i+µ−md +ms) k! (1+i+µ−md +ms)k κµ γ̄
k=0 �−i−µ+md −ms ∞� 

md (γ̄ (ms −1)+t (1+κ) µ) 1 X (i + md )k
− 

κµ γ̄ 0 (1−i−µ+md −ms) 0 (2i+µ+ms) k! (1 − i − µ + md − ms)kk=0 � �k � md (γ̄ (ms − 1) + t (1 + κ) µ)
× dt, µ−md + ms ∈/ Z (80)

κµ γ̄

ms+µ � ∞ ∞
(ms − 1)ms m 0 (µ + ms) (1 + κ)µ γ µ π XX (−1)i 0 (2i + k + µ + ms)Fγ (γ ) = d 

− 
κms+µ0 (ms) 0 (md ) 0 (µ + ms) µms γ̄ µ sin [π (µ − md + ms)] i!k!0 (1 + i + µ)

i=0 k=0 � �k � �i � �
1 md (ms − 1) γ md (1 + κ) γ (1 + κ) µ 

× 2F1 −k, i + µ, 1 + i + µ, − 
0 (1 + i + k + µ − md + ms) κµ κγ̄ γ̄ (ms − 1) � � ∞ ∞ � �kµ−md +ms 
−µ+md −ms κµ XX (−1)i 0 (i + k + md ) md (ms − 1)

+ md ms − 1 i!k!0 (1 + i + µ) 0 (1 − i + k − µ + md − ms) κµ 
i=0 k=0 � �i � �� 

γµ (1 + κ) γ (1 + κ) µ
× 2F1 i + µ, i − k + µ − md + ms, 1 + i + µ, − , µ−md + ms ∈/ Z 

γ̄ (ms − 1) γ̄ (ms − 1) 
(81) 
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This integral is solved by replacing the Bessel function The second double summation, S2
0 , is reduced by rewriting 

with its power series [22, 03.04.06.0002.01] and changing the Meijer G function in terms of its contour integral repre-
the order of integration and summation. Now using [31, sentation [22, eq. 07.34.07.0001.01] and shifting the order of 
eq. 2.3.16.1] we obtain (91), shown at the bottom of the page. integration and summation as follows 

∞XRepresenting the Bessel function in (91) using the Meijer G � 2 �j
(κµms(md − 1))j 1r̂function [22, 03.04.26.0008.01] and performing some alge- S 0 = 2 j! r2msK 2πj 

∞X braic manipulations we obtain 
j=0�2ms−1csc (πmd ) 2πKmsr I 2x (−1)i0 (i+j+µ+md −ms +x)S1 

0
−(κµ(md −1))md 0 (x) r̂fR(r) = dx.× �x−ms0 (md ) 0 (ms) ms r̂2ms r2msK i!0(i+µ)0 (1−i+j+md )L� �−md � i=0 

r2K 
S 0 (97), md ∈/ Z (92)2× 

r̂2 

The inner sum is solved in closed form as where �j I∞

i!j!0(i + µ) 0 (1 + i + j − md ) j!

X 
0j=

2

i=0 j=0 

∞ ∞XX 2xms(md −1)κµr̂(−1)i (κµms(md − 1))i+j 1 0 (x) r̂
S 0 2S 0 1 = �x = �j r2msK2πjr2msK L ���� 0 (j+x +µ+md −ms) 0 (ms −x)� �i+j2 � �2r̂ dxmsKr ×

G2,0 
0,2 0, 2i + j + µ − ms (93) 0 (1+j+md ) 0 (j+µ+md ) 0 (−j−x −md +ms)× 

r2msK r̂2 
(98)

and 
and the contour integral is interpreted as a Meijer G func-∞ ∞

i!j!0(i + µ) 0 (1 − i + j + md ) 

X 
0 0i j= =

X (−1)i (κµms(md − 1))j 
S 0 2 X 

tion [22, eq. 07.34.07.0001.01] as shown below 

∞

= � �jj r̂2(κµms(md − 1))���� 0, i+j+µ+md −ms 

� �j � �
S2 
0 
=r̂2 2msKr

G2,0 
0,2 j!0 (1 + j + md ) 0 (j + µ + md ) r2msK× . 

r2msK r̂2 j=0 ���� � �2(94) 

The first double summation, S1
0 , can be reduced by using 

1 − msmsKr
× G2,1 

1,3 . 
r̂2 0, j + µ+md − ms, 1+j+md − ms 

(99)the index transformation j = n − i and the identity [32, 
eq. 1.60] as follows 

X Now, performing some algebraic manipulations we obtain �n 
∞

�∞

n=0 
0 (1 + n − md ) r2msK S2 

0
= 

nX 
X 2(κµms(md − 1))n r̂

S 0 1 = (κµms(md − 1))j 

j!0 (1 + j + md ) 0 (j + µ + md )j=0
(−1)i ���� � �2× 1 − ms − j 

−j, µ+md −ms, 1+md −ms 
msKr

i!(n − i)!0(i + µ) × G2
1
,
,
1
3 . (100) 

r̂2i=0 ����� �2r msK 
× G2,0 

0,2 0, i + n + µ − ms . (95) Substituting S1 
0 and S2 

0 obtained in (96) and (100) into (92)
r̂2 

and simplifying, we obtain the double shadowed κ-µ
Note that the sum on the index i can be expressed in the Type II (example 2) PDF shown in (34).
form of [28, eq. 5.3.8.5]. Following this and performing some Substituting the SNR PDF (see (35)) of the double shad-
algebraic manipulations, we obtain owed κ-µ Type II (example 2) fading model in Fγ (γ ) = R γ� 

r
=S1 

0 
�−ms X∞

r̂2 n!0(n + µ)0 (1 + n − md ) 

fγ (t) dt , changing the order of integration and summation, 2 (−1)n (κµms(md − 1))nmsK 0 
expressing the Meijer G functions in terms of their contour 
integral representations, changing the order of integration n=0 ���� � 

r
× G3,0 

1,3 

�2 1 − n and finally, reinterpreting the contour integrals as Meijer G msK 
. (96) functions, we obtain the CDF of the double shadowed r̂2 1, µ, −n + ms 

√�ms−j−µ 
2

�� �2µ−1 ̂ −2µr r2Ki(−1)im4πKµm ms s r j+i(κµ(md − 1)) 2 r KmssfR(r) K−2 i−j−µ+ms = 
XX 

∞ ∞XX 
� ∞ ∞

sin (πmd ) 0 (md ) 0 (ms) i!j!0(i + µ) 0 (1 + i + j − md ) r̂2 ms r̂
i=0 j=0 � i−j−µ−md +ms 

2 
√� � �� i(−1)im 2Kj+md(κµ(md − 1)) 2 r Kmsrs K−i−j−µ−md +ms ∈/ Z (91)− 

i=0 j=0 

120532 
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κ-µ Type II (example 2) fading model shown in (36). This 
completes the proof. 

APPENDIX H 
PROOF OF THEOREM 8 AND LEMMA 8 
The double shadowed κ-µ Type III (example 1) model can 
be viewed as a product of a Nakagami-m RV and a single 
shadowed κ-µ Type II (example 1) RV. Accordingly, its PDF 
can be obtained by first replacing (12) with the hypergeomet-
ric function expressed in terms of its power series expression 
[21, eq. 15.1.1], then substituting the resultant expression 
and (54) (after replacing ξ and ms with α and mt ) in (74), 
changing the order of integration and summation, and finally 
followed by some algebraic manipulations as � � mt 2 ms ∞ ms+µ4 (ms − 1)ms m r̂ X 

i (θ1)ifR(r) = t 2 

Kms 0 (mt ) B (ms, µ) r2 ms+1 i!(µ)ii=0 � �i Z ∞24κ r̂
−1+2 i+2 ms+2 mt× 

r2(1 + κ) 0 
α� �−2 i−µ−ms

α2r̂2 (ms − 1 + κµ) 
−mt α2 

× 1 + e dα. 
r2(1 + κ)µ 

(101) 

Solving this integral using [21, eq. 13.2.5] followed by some 
algebraic manipulations yields (38). 

Substituting the SNR PDF (see (39)) of the double 
shadowed κ-µ Type III (example 1) fading model inR γFγ (γ ) = 0 fγ (t) dt , changing the order of integration 
and summation, expressing the Tricomi confluent hyperge-
ometric function in terms of its Meijer G representation 
[22, eq. 07.33.26.0004.01], using [28, eq. 1.16.2.1], and 
simplifying, we obtain the CDF of the double shadowed 
κ-µ Type III (example 1) fading model shown in (40). This 
completes the proof. 

APPENDIX I 
PROOF OF THEOREM 9 AND LEMMA 9 
The double shadowed κ-µ Type III (example 2) model can be 
viewed as a single shadowed κ-µ Type III (example 2) model 
in which the variation of the scattered waves is influenced 
by a Nakagami-m RV. The PDF of the envelope R can be 
obtained via Z 

∞ 

fR(r) = fR|α(r|α)fα(α) dα (102) 
0 

where fα(α) is similar to (54) such that ξ is replaced by α. 
fR|α(r|α) can be obtained from (19) by first replacing κ = 
d2/(2µσ 2) and r̂ = 2µσ 2 

+ d2, then multiplying σ by α and p q 
r̂2finally using d = 2µσ 2κ; σ = 2µ(1+κ) as follows: 

2mt α2mt2(mt − 1)mt r̂
fR|α(r|α) = 

((1 + κ)µ)mt B (mt , µ) r1+2mt � �−µ−mt
α2r̂2(mt − 1) � κµ � 

× 1 + exp − 
r2(1 + κ)µ α2 

!� �−1
κµ α2r̂2(mt − 1)

× 1F1 µ+mt ; µ; 1 + . 
α2 r2(1+κ)µ 

(103) 

Now substituting (103) into (102) we obtain 

fR(r) 
ms −1−2mt4((1 + κ)µ)−mt (mt − 1)mtms r

= 
B (mt , µ) 0 (ms) r̂−2mt Z 

∞ α−1+2mt +2ms 
� �−µ−mt

α2r̂2(mt − 1)
× � � 1 + 

0 exp α2ms + κµ r2(1 + κ)µ 
α2 !� �−1

κµ α2r̂2(mt − 1)
× 1F1 µ + mt ; µ; 1 + dα. 

α2 r2(1 + κ)µ 

(104) 

It is possible to rewrite the hypergeometric function in 
terms of its Mellin-Barnes contour integral representation 
using [28, eq. 7.2.3.12], whilst the exponential function 
can be written as a product of two contour integrals using 
[28, eq. 8.4.3.1 and eq. 8.4.3.2] and [28, eq. 8.2.1.1]. Now 
performing some algebraic manipulations we obtain � �3 Z ∞ I4K−mt (mt − 1)mt r̂2 mt 1
fR(r) = 0 (t1)

0 (mt ) 0 (ms) r1+2 mt 2πj 0 L 

0 (−t2) 0 (−t3) 0 (t3 + µ + mt ) (κµ)t2+t3 

× t1−ms0 (t3 + µ) (−1)t3 ms � �−t3−µ−mt
α2r̂2(mt − 1)2θ3−1× α 1+ dt1dt2dt3dα 

r2K 
(105) 

where θ3 = mt + ms − t1 − t2 − t3, K, j and L are as defined 
previously. Now changing the order of integration, the inner 
integral can be solved using [31, eq. 2.2.5.24], which results 
in the triple contour integral, � �32 ms−12(msK)msr 1
fR(r) = 

0 (mt ) 0 (ms) (mt − 1)ms r̂2 ms 2πj I � �−t1r2Kms
× 2(t1, t2, t3) r̂2(mt − 1) � �−t2� �−t3 

L 

r2K −r2K 
× dt1dt2dt3 

κµr̂2(mt − 1) κµr̂2(mt − 1) 
(106) 

where 
0 (t1) 0 (−t2) 0 (−t3) 0 (θ3) 0 (θ4)

2(t1, t2, t3) = (107)
0 (t3 + µ) 

and θ4 = t1 + t2 + 2 t3 + µ − ms. It is possible to obtain 
a multi-fold series representation from the above contour 
integral using the sum of residues theorem. The residues for 
the variable t1 are taken around the poles of 0(t1) and 0(θ4); 
the residues for t2 are taken from 0(−t2) and 0(θ3); and the 
residues for t3 are taken from 0(−t3). This results in 

2ms−12 (Kms/(mt − 1))ms r
fR(r) = (S1 + S2 + S3) (108)

0 (mt ) 0 (ms) r̂2ms 
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∞
� � � � � �i � �j+k 0 X (−1)i+j0 −i+j+2 k 0+µ−ms 0 i−j−k 0+mt +ms r2Kms κµr̂2(mt −1)

S1 = , µ−ms ∈/ Z (109)
i!j!k 0!0(k 0+µ) r̂2(mt −1) r2K 

i,j,k 0=0 

∞
� � � � � �j+mt+msX (−1)i+j0 j+k 0+µ+mt 0 −i−j+k 0−mt −ms κ r̂2(mt −1)

S2 = (κµms)i , mt +ms ∈/ Z (110)
i!j!k 0!0(k 0+µ) r2(1+κ)

i,j,k 0=0 

∞
� � � �� �i+2 k 0+µ−ms � �k 0 X (−1)i+j0 i+k 0+µ+mt 0 −i−j−2 k 0−µ+ms r2Kms κµr̂2(mt −1)

S3 = , ms −µ /∈ Z (111)
i!j!k 0!0(k 0+µ)(κµms)−j r̂2(mt −1) r2K 

i,j,k 0=0 

where S1, S2 and S3 are given at the top of the page. The 
first triple summation S1 can be reduced by summing over 
the infinite triangle j = n − k and using [31, eq. 4.2.5.55] as X∞ π csc (π (µ − ms)) 0 (i − n + mt + ms)S1 = 

i!n!0(n + µ)0 (1 + i − n − µ + ms)i,n=0 

0 (i + ms) 
� 

κµr̂2(mt − 1) 
�n 

× 
0 (i − n + ms) r2K � 

r2Kms 
�i 

× , µ−ms ∈/ Z. (112) 
r̂2(mt − 1) 

The triple summation S2 can be simplified by summing it 
over index k 0. This results in a Gauss hypergeometric function 
whose argument is one. Using [28, eq. 7.3.5.2], we obtain 

∞X (−1)i+j0 (−i − j − mt − ms) 0 (i + ms)S2 = 
i!j!0 (i + j + µ + mt + ms)i,j=0 � �j+mt +ms

0 (j + µ + mt ) κµr̂2(mt − 1)
× 

0 (−j − mt ) r2K 

× (κµms)i , mt +ms ∈/ Z. (113) 

To reduce S3, it is required to first perform the variable 
transformation j = n − k 0 followed by i = j − k 0, then 
performing some algebraic manipulations the inner sum on 
the index k 0 is solved using [33, eq. 4.2.5.25 ] as follows: � �� j+µ−1 �nn nX 1 X k 0 k 0+µ−1 

= 
(j−k 0)!k 0!(n−k 0)!0(k 0+µ) n!0(j + µ)

k 0=0 k 0=0 

0(j + n + µ) 
= .

j!n!0(j + µ)0(n + µ) 
(114) 

Now performing some algebraic manipulations, we obtain 
∞X (−1)j+n0(j + n + µ)0 (j + µ + mt )S3 = 

j!n!0(j + µ)0(n + µ)
j,n=0 � �j+µ−msr2Kms
× 0 (ms − µ − j − n) (κµms)n . 

r̂2(mt − 1) 
(115) 

Summing (112) over index n, (113) over index j, (115) over 
the infinite triangle j = i − n, the double shadowed κ-µ 
Type III (example 2) PDF simplifies to (41). 

Substituting the SNR PDF (see (45)) of the double shad-
owed κ-µ Type III (example 1) fading model in Fγ (γ ) = R γ 
0 fγ (t) dt , changing the order of integration and summation, 
solving the integrals using [28, eq. 1.16.1.1], and finally 
performing some algebraic manipulations, we obtain the CDF 
of the double shadowed κ-µ Type III (example 2) fading 
model shown in (49). This completes the proof. 
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