
 Coventry University

DOCTOR OF PHILOSOPHY

Computer simulation studies of frustrated spin systems

Kumar, Ravinder

Award date:
2019

Awarding institution:
Coventry University
Universität Leipzig

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of this thesis for personal non-commercial research or study
            • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/computer-simulation-studies-of-frustrated-spin-systems(84590b2d-8f37-40dd-8a31-27e3d1412981).html


Coventry University

Leipzig University

Doctoral thesis

Computer simulation studies of
frustrated spin systems

Author:
Ravinder Kumar

Directors of study:
Dr. Martin Weigel

Prof. Dr. Wolfhard Janke

Supervisor:
Dr. Nikolaos Fytas

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy/Doctor Rerum

Naturalium

in the

Faculty of Physics and Earth Sciences, Leipzig University

and

Faculty of Engineering, Environment and Computing,
Coventry University

May 1, 2019





Some materials have been removed from this thesis due to Third Party Copyright. Pages 
where material has been removed are clearly marked in the electronic version. The 
unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University



iv



Computer simulation studies of
frustrated spin systems

Der Fakultät für Physik und Geowissenschaften

der Universität Leipzig

eingereichte

DISSERTATION

zur Erlangung des akademischen Grades

Doktorgrade doctor rerum naturalium

Dr. rer. nat.

vorgelegt

von M.Sc. Ravinder Kumar

geboren am 01.04.1983 in Solan (Indien)

Leipzig, den May 1, 2019



ii



Statement of Authorship

I Ravinder Kumar, declare that this thesis titled, ‘Computer simulation studies of
frustrated spin systems’ and the work presented in it are my own. I confirm that:

• This work was done while in candidature for a cotutelle research degree at
Coventry University and Leipzig University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Some materials have been 
removed from this thesis due to 
Third Party Copyright. Pages where 
material has been removed are 
clearly marked in the electronic 
version. The unabridged version of 
the thesis can be viewed at the 
Lanchester Library, Coventry 
University

Some 
materia
ls have 
been 
remove
d from 
this 
thesis 
due to 
Third 
Party 
Copyrig
ht. 
Pages 
where 
materia
l has 
been 
remove
d are 
clearly 
marked 
in the 
electro
nic 
version. 
The 
unabrid
ged 
version 
of the 
thesis 
can be 
viewed 
at the 
Lanche
ster 
Library, 
Coventr
y 
Univers
ity

Some materials have been removed from this thesis due to Third Party Copyright. 
Pages where material has been removed are clearly marked in the electronic 
version. The unabridged version of the thesis can be viewed at the Lanchester 
Library, Coventry University





 

 

 

 

 

Certificate of Ethical Approval 

Applicant: 

Ravinder Kumar 

 

Project Title: 

Computer simulation of spin glasses 

 

This is to certify that the above named applicant has completed the Coventry 

University Ethical Approval process and their project has been confirmed and 

approved as Low Risk 

 

 

 

Date of approval: 

    27 August 2015 

 

Project Reference Number: 

P36229 

v



vi



This thesis is dedicated to my wife and children.



Bibliographische Beschreibung:
Kumar, Ravinder
Computer simulation studies of frustrated spin systems
Universität Leipzig, Dissertation
115 S., 225 Lit., 47 Abb.

Referat:
Das Zufallsfeld-Potts-Modell und das Spin-Glass-Modell sind zwei prominente
Beispiele für NP-schwere Probleme in der statistischen Physik. Wegen des Man-
gels an effizienten Berechnungsmethoden wurde das Zufallsfeld-Potts-Modell noch
nicht im Detail untersucht. In der vorgelegten Arbeit entwickeln wir einen Algo-
rithmus zur Untersuchung von Potts-Modellen mit Zufallsfeld unter Verwendung
einer Graph-Cut-Methode. Es garantiert nicht den Grundzustand, aber tiefliegen-
den Zustände können signifikant schneller gefunden werden. Die Übereinstim-
mung mit dem Grundzustand beträgt mehr als 80%. Es gibt einige Behauptungen,
dass unter-frustrierte zweidimensionale Spin-Glas-Systeme eine Spin-Glas-Phase
bei endlicher Temperatur haben könnten. Um dieses Modell zu untersuchen, führen
wir zunächst eine Implementierung des "parallel tempering" und Houdayer-Cluster-
Algorithmus auf GPUs ein. Die Simulationsergebnisse weisen darauf hin, dass das
unterfrustrierte Spin-Glas zur selben Universalklasse gehört wie das stochastische
Spin-Glas und es keine Spin-Glas-Phase bei endlicher Temperatur gibt.

Abstract:
The random-field Potts model and spin-glass models are two prominent examples
of NP-hard problem in statistical physics. If investigated numerically, extensive
computer simulations are required to study these models. Because of the lack of
efficient computational methods, the random-field Potts model has not been studied
broadly yet. Here we develop an algorithm to study the random-field Potts model
using a graph-cut method. It does not guarantee to find a ground state but the
lowest states can be found very efficiently. We also determined the overlap of the
lowest states found by the graph-cut method with the ground states found by a
parallel tempering method. It is found that the lowest states found by the graph cut
method have more than 80% overlap with the ground states. For the larger system
sizes, the graph-cut method is much more efficient then parallel tempering method.
Two-dimensional Edward-Anderson spin-glass model has been examined broadly
in many previous studies. Here we focus on the phase transition of under-frustrated
spin-glasses with Gaussian and bimodal couplings. There are some claims that
under-frustrated two-dimensional spin-glass systems might have a spin-glass phase
at finite temperatures. To study this model, we first introduce an implementation
of parallel tempering and a cluster update on GPUs. The simulation results give
hints that the under-frustrated spin-glass belongs to the same universality class as
stochastic spin-glass and there exists no spin-glass phase at finite temperature.
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Chapter 1

Introduction

Understanding the static and dynamic properties of complex physical systems is a
highly challenging problem of current research in physics, chemistry and biology.
Spin-glasses and structural glasses are prominent examples of complex systems in
condensed matter physics. Computational developments in biophysics increased
the applicability of statistical models normally used in physics to biology. One of
the most prominent examples of complex systems in biology is the protein folding
problem. Concepts in physics describing the behaviour of spin-glasses are similar,
however biological systems show a huge diversity. Still, all these models have a
rugged energy landscape and many joint features, which make a common statistical
treatment promising for current and future scientific developments. In this thesis,
different models of magnetic systems exhibiting disorder are investigated. Why is
one interested in studying such systems? There are not many perfect crystals in
nature, therefore, to explain experiments on real materials requires understanding
the effect of disorders. Moreover, there are phenomena in disordered systems which
are absent in the perfect crystals.

The two main models studied in this thesis are random-field Potts model and
spin-glass model. However, gaining the fundamental understanding of these sys-
tems is an arduous task. Spin-glasses help us understand many very hard real
world problems in everyday life and nature. The atoms in a window glass seem
to be disordered. There are many fundamental questions, like, why is a window
glass solid? The spin-glass model plays a significant role in understanding gaps in
solid state physics. There are many other systems which can be described mathe-
matically by the spin-glass model, e.g. protein folding, optimisation problems etc.
The random-field spin models also play a vital role in understanding the critical-
ity and phase transition in alloys. In the same way as spin-glass, applications of
the random-field model also exist in many other fields like optimisation problems
in computer science or condensed matter. Therefore understanding these systems
would help in understanding many puzzles in the real world.
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Disordered systems are very hard to understand theoretically. Therefore compu-
tational methods are used to study the phase transitions and other physical prop-
erties of such systems. In section 1.1, organisation and research questions raised in
this dissertation are discussed.

1.1 Organisation and research questions

The theory of disordered systems is a topic of research by itself, and there are
many well-established methods which have been accepted widely by researchers.
In Chap. 2, the theoretical background is discussed. Theories which describe spin-
glass and random-field spin models are discussed from the point of view of compu-
tational and statistical physics. In this thesis, topics like criticality, phase transitions
and the ground state of the spin systems etc. are investigated. Therefore, these top-
ics are addressed in detail, and their relation to research questions is established. It
is challenging to tackle these systems mathematically. Therefore, this thesis makes
use of a well established computational method for these studies. In Chap. 2, com-
putational methods are introduced. The simulations are done using Monte-Carlo
methods. Algorithms like Metropolis, parallel tempering and spin-glass specific
cluster algorithm (Houdayer cluster algorithm) are briefly introduced.

The first research question is discussed in Chap. 4. It was mentioned earlier that
it is a very complicated task to tackle disordered systems theoretically. However,
the simulations of such systems are also computational very demanding. The cur-
rent state of computers allows for the simulation of only systems of certain, but
finite lattice sizes. This introduces finite size effects in these studies. Therefore,
there is a need to study larger system sizes. The system size is not the only prob-
lem associated with these simulations. Disordered systems require a large number
of computer cores, and the simulated quantities have to be averaged over many
disorder realisations to get reliable physical results.

The number of computer cores available, and the time required to simulate such
systems grow with the system size. Moreover, the larger the system size, the longer
one needs to simulate for equilibration. Therefore, one requires new computational
approaches to study such systems. One of the new methods is the use of Graph-
ics Processing Units (GPUs) for simulations. In recent years, the use of GPUs for
simulations is continuously increasing. However, implementation of cluster algo-
rithms on GPUs is still a hard task. Hence, these difficulties and a new method to
simulate disordered systems on GPUs are introduced in Chap. 4. This technique is
compared with the known algorithms on GPUs and CPUs. The central question is
the efficiency of the algorithm and the code with an additional question, how does
the cluster-algorithm behave on GPUs?

The second research question is discussed in Chap. 5. In this chapter, the proper-
ties of the random-field Potts model are studied. The random-field Potts model has

2



many applications in the real world. Some notable examples are magnetic grains,
an-isotropic orientational glasses, randomly diluted molecular crystals, structural
transitions in SrTiO3 crystals, and phase transitions in type I anti-ferromagnetic
(such as NdSb, NdAs, CeAs) in a uniform field. Theoretical background of this
model is given in Chap. 3.

Many aspects such as critical behaviour and finite size scaling etc. of the q state
random-field Potts model are not very well understood yet. The main reason that
the ground states of the random-field Potts model are not extensively studied is
the NP-hardness of the problem. There is still a lack of computational methods to
study such problems. Monte Carlo methods require huge computational time. This
makes the study of such systems very challenging. Therefore there is a need for
alternative efficient methods to study such systems. Exact methods based on graph
theory, such as the graph cut method can find the ground state of the random-field
Ising model exactly. Finding the ground state can help in understanding the critical
behaviour and phase transitions of such systems. The current state of the informa-
tion available for the random-field Potts model is not enough at understanding its
thermodynamics and phases. There are very few studies which tried to do some
estimates, but the studies are limited in the system size and number of disorders.
Therefore, there is an interest in understanding these systems in more detail. Hence,
a comparative study using parallel tempering and graph cut method is done to es-
tablish the possibility of finding the ground state of the random-field model with q
states. In Chap. 5, the efficiency and quality of accuracy of the graph cut method
are compared with parallel tempering.

The last research question tackled in this thesis is related to the two-dimensional
spin-glass. Initially, the spin-glass model was aimed to understand some strange
behaviour observed in the experiments of certain magnetic alloys. However, the
theory and applicability of spin-glasses have spread to a wide range of systems
with a rugged energy landscape. A two-dimensional spin-glass is one of the models
used to test the efficiency of quantum annealing machines (sometimes known as
quantum computers).

It is widely accepted that the two-dimensional spin-glass systems with Gaussian
or Bimodal interaction have a phase transition at zero temperature. However, there
are claims from re-normalisation group (RG) theory studies that if one decreases
the frustration of such systems while keeping the number of anti-ferromagnetic
bonds constant, a phase transition at finite temperature is observed. There are no
studies to support this argument via simulations. Hence, the question arises, if
such a phase transition can also be seen from Monte-Carlo simulations of under-
frustrated spin-glasses. Therefore, in Chap. 6 two-dimensional under-frustrated
spin-glass systems with Gaussian and bimodal interactions are examined for the
phase transitions. Moreover, one can raise the question of universality. Do under-
frustrated and over-frustrated spin-glass systems belong to the same universality
class?
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The outcomes of the research are summarised and discussed in Chap. 7.
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Chapter 2

Theoretical background

In the introduction, it is mentioned that the core models investigated in this disser-
tation are spin models with disorder; particularly the random-field Potts model and
the two-dimensional spin glass. The critical behaviour of these models is still not
well understood. Therefore, in this dissertation, the central research topics are re-
lated to the phase transitions and critical behaviour in these systems. Before I start
to discuss some specific models, I need to introduce some concepts of statistical
mechanics and in particular the theory of critical phenomena.

This chapter is organised as follows. In Sec. 2.1, first a short introduction to
statistical mechanics relating to the ferromagnetic Ising model is given. I briefly
discuss essential observables, e.g., specific heat, susceptibility, magnetisation, cor-
relation functions etc. I also discuss the idea of critical scaling for this particular
example. In Sec. 2.2, models with the quenched disorder are introduced. The the-
ory of random-field Ising model (RFIM), random-field Potts model (RFPM) and
spin glasses (SG) in the Sec. 2.2.1, Sec. 2.2.2, Sec. 2.2.3 respectively.

2.1 The Ising model

Wilhelm Lenz initiated the idea of the Ising model in Ref. [1], but the model is
developed and studied in detail by Ernst Ising in 1925 [2]. Since the development of
the model, it is used in many fields of science. This model is exactly solvable in two-
dimensions, but still captures many aspects of the statistical physics in details. This
model is compelling to test algorithms and study ferromagnetic systems because
of its simplicity. In the simplest case spins (si = ±1) are situated on the sites of a
d-dimensional lattice with nearest neighbour interactions. The Hamiltonian of the
Ising model is given by

H = −∑
〈i,j〉

Jijsisj −∑
i

hisi . (2.1)
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In Eq. (2.1) Jij = J is the exchange coupling. The system is anti-ferromagnetic if
the value of J is negative and ferromagnetic if J is positive. Angle brackets 〈i, j〉
indicates that the lattice sum only runs over all the nearest-neighbour pairs imply-
ing nearest-neighbour interactions. In the second term of Eq. (2.1) hi represents an
external magnetic field.

In the absence of the external magnetic field, this model is exactly solvable in
one and two dimensions. Moreover, in the one-dimensional case, it can be solved
even in the presence of the magnetic field. Therefore it is also known as the "fruit
fly" of statistical physics. In dimensions d > 1, one observes a phase transition from
ordered to disordered state at a finite critical temperature Tc.

A quantity called the order parameter is used as a measure of the degree of
order across the boundaries in a phase transition system. It is usually zero in
the disordered phase and one in the ordered phase. This ordering implies that
the spins are either aligned in the same direction or they randomly point in any
of the possible directions. For the Ising model, the temperature-dependent phase
transition can be studied by measuring the magnetisation in the ferromagnetic case.
The magnetization is given by

m =
1
N ∑

i
si (2.2)

Above the critical temperature Tc, one is in the disordered phase and spins fluctuate
randomly. Hence, the average magnetisation is zero. Therefore, it serves as an
order parameter which is zero in the disordered state and one in the ordered state.
Before we discuss the model further, some basic concepts from statistical physics
are introduced in the next section.

2.1.1 Partition function

To discuss the criticality and scaling theory, we need to recall some of the basic
concepts of statistical physics and phase transitions [3, 4, 5, 6]. In this dissertation,
we will focus only on the classical canonical ensemble i.e no quantum effects will
be discussed. The partition function for this ensemble is given as

Z = ∑
s

e−βH = e−βF, (2.3)

where β = 1/(kbT) with kb being Boltzmann constant and T the temperature re-
spectively. If not mentioned otherwise, the values of β and kb are set to be unity
throughout this dissertation. The summation is running over all possible states of
the system. The state space may be continuous or discrete. F is the free energy of
the system given by

F = −β−1 lnZ , (2.4)
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The Hamiltonian holds the information about the short range, medium range or
long range interactions. The canonical partition function is used for studying a
system in thermal equilibrium, which is connected to a heat bath at some temper-
ature T. It plays the role of a normalising constant which is independent of states,
ensuring that the probabilities sum up to one.

2.1.2 Order of phase transition

Order parameters can be found for most systems exhibiting a phase transition. The
phase transitions are normally either of 1st order or the second order. The term
order originates from the number of derivatives of the free energy F before the
discontinuous behaviour is observed. The free energy is a zeroth order quantity
as it is always continuous. The order parameter shows a discontinuous jump at
the critical point if the system exhibits a first order phase transition e.g. the latent
heat. Systems which show a divergence in the second derivatives of the free energy,
e.g. susceptibility, specific heat etc. are the examples of second order phase transi-
tion. In this dissertation, we only concentrate on the second order phase transition.
Therefore if not mentioned a phase transition after this point means a second order
phase transition and the whole theory introduced is based on second-order phase
transition.

2.1.3 Observables

The partition function Z is used to calculate the expectation values of physical
quantities such as the energy, magnetic susceptibility, magnetization and specific
heat. These quantities are called the observables and can be calculated as follows

〈O〉 = 1
Z ∑

s
O(s)e−βH . (2.5)

The sum runs over all states s in the system, Z is the partition function. The
partition function (Z) is used to normalize the equilibrium Boltzmann distribution

Peq(s) =
1
Z e−Hβ . (2.6)

The 〈· · · 〉 in Eq. (2.5) represent a thermal average of the quantities. Now we look
at the definitions of some observables of interest for the Ising model. The internal
energy per site is given by e = E/V with

E = 〈H〉 = − 1
Z

∂Z
∂β

= −∂ lnZ
∂β

, (2.7)
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and V is the volume of the lattice. The specific heat can be derived as

〈H2〉 − 〈H〉2 = − ∂

∂β
〈H〉, (2.8)

Cv = − ∂

∂β
〈H〉 = T2

(
∂E
∂T

)
, (2.9)

The magnetisation m = M/V and the susceptibility χ are defined as

M =
1
β

∂ lnZ
∂h

= V〈m〉, m =
1
V ∑

i
si, (2.10)

where h is the magnetic field and

χ = βV(〈m2〉 − 〈m〉2). (2.11)

The 4th order moment of the magnetisation is another important quantity used
to study the phase transitions. This quantity is termed as the Binder cumulant.

g =
1
2

[
3− 〈m

4〉
〈m2〉2

]
, (2.12)

The Binder cumulant g scales as G̃[L1/ν(T− Tc)] for a lattice of length L . It is clear
from the definition that it is a dimensionless quantity. The different factors ensure
that g → 1 for T → 0 and g → 0 for T → ∞. The asymptotic (for large L) scaling
behaviour of the Binder ratio follows directly from the fact that the pre-factors of
the moments of the magnetization (mk ∼ Lkβ/ν) cancel out in Eq. (2.12).

Another significant quantity which we are interested in is the correlation be-
tween spins si and sj at the lattice sites i and j. The correlation can be measured
by considering correlation functions like the two-point spin-spin correlation G(i, j)
given by

G(r) = G(i, j) = 〈sisj〉 − 〈si〉〈sj〉, (2.13)

where r = ri − rj. At the large distances and away from criticality G(r) decays
exponentially

G(r) ∝ e−|r|/ξ . (2.14)

The correlation length is defined using the decay rate of G(r)

ξ = − lim
|r|→∞

|r|
G(r)

(2.15)

which is directional and depends on the orientation of vector r.
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2.1.4 Phase transitions, criticality & scaling relations

The Ising model is the benchmarking model for the systems exhibiting the continu-
ous (second order) phase transitions from ordered phase at low temperature to the
disordered phase at the high temperatures. The temperature at which the phase
transition occurs is called the critical temperature, Tc. At a continuous phase transi-
tion, the free energy has a singularity that usually manifests itself via a power-law
behaviour of the derived observables at criticality. In case of vanishing external
magnetic field, the two dimensional Ising model has been solved exactly by On-
sager in Ref. [7]. For the same case, there are also methods to calculate the partition
function of the Ising model exactly discussed in Ref. [8, 9]. In Ref. [10, 11], the ex-
act magnetization is calculated in the absence of the magnetic field. The magnetic
susceptibility is known to very high precision, but there exists no exact solution
yet [12, 13]. The correlation length is known in arbitrary lattice directions [14, 15].
Three dimensional Ising model is not solved exactly yet, however, numerical and
analytical studies of various methods provide a consistent and very precise picture.

The correlation length ξ of Eq. (2.14) gives a measure of correlations and order
in a system diverges at the transition. The leading divergence of the correlation
length an be parametrized as:

ξ = ξ ′0|1− T/Tc|−ν + .... (2.16)

with ν a critical exponent related to this divergence. ξ ′0 is the critical amplitude and
it has different values above and below the critical temperature. In Eq. (2.16), the ...
indicates sub-leading term and corrections.

The qualitative properties of second-order phase transition do not depend on
the short range distance features of the Hamiltonian. This fact is used as the ba-
sis of the universality hypothesis in [16]. This implies that all systems with the
same symmetries and same dimensionality should have the same set of critical
exponents. In re-normalisation group theory certain amplitude ratios also show
universal behaviour, but it is not true in general. Close enough to the phase transi-
tion (i.e., |T− Tc|/Tc � 1) because of the singularities power laws can well describe
the behaviour of observables. There could also be other types of singularities, e.g.
exponential divergence which could not be characterised by the power laws. The
critical exponents are used to describe the behaviour around the critical point in
second order phase transitions. The most important critical exponents are α, β and
γ, respectively. Each exponent is associated with a physical quantity.

Cv = Cb + C0|1− T/Tc|−α + ..., (2.17)

m = m0(1− T/Tc)
β + ..., (2.18)

χ = χ0|1− T/Tc|−γ + ..., (2.19)
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It is shown in [17, 18, 19, 20, 21] that the critical exponents relate to each other
via some scaling identities. If the scaling relations hold, only two exponents are
independent and fully describe the critical behaviour of the Ising model. The scaling
relations are as follows

dν = 2− α (Josephson’s law),
2β + γ = 2− α (Rushbrooke’s law),

β(δ− 1) = γ (Griffiths’s law),
ν(2− η) = γ (Fisher’s law). (2.20)

In Eq. (2.20), d is the dimensionality of the system and δ and η are two further
exponents defined exactly at the critical temperature Tc as follows

m ∝ h1/δ

G(r) ∝ r−d+2−η (2.21)

2.1.5 Finite-size scaling

Finite-size scaling is a method of extracting values for critical exponents by ob-
serving how measured quantities vary as the size L of the system changes. This
variation is caused by the finiteness of the a system studied on a lattice. On a finite
lattice, we have finite number of degrees of freedom. Finite size effects cause many
problems in studying physical quantities. For example, choosing a good order pa-
rameter m and |m| are both zero in infinite volume limit, but |m| > 0 on a finite
lattice. In Eq. (2.16), it is shown that the correlation length ξ diverges near the criti-
cal temperature. However, because of the finite size L in the simulation, the system
is effectively ordered when ξ → L. Hence, one observes so-called pseudo-critical
point (

βc(∞)− βC(Ld)
)−ν

∝ L→ βC(Ld) = βc(∞)− c1L−
1
ν (2.22)

Usually, the value of βC(∞) is not known to us and c1 is a constant. One of
the tasks now is to locate the pseudo-critical point. I will demonstrate with the
example of magnetic susceptibility χ how to locate the pseudo-critical point. The
observations from the simulation show that at the pseudo-critical point χ has a
maximum. χ diverges in infinite volume as given in Eq. (2.20). Therefore, at the
pseudo-critical point, the maximum value of χ is

χmax ∝
(

βC(Ld)− βc(∞)
)−γ

∝ L
γ
ν (2.23)

Now for each system with lattice size L, the maximum can be determined and
from the maximum one can use the power law ansatz (there could be other possi-
bilities some of which are discussed in the next chapters).

βmax = βc − cLx (2.24)
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There are three fit parameters in Eq. (2.24), βc is the critical inverse temperature and
x is equal to - 1

ν . One could now determine the value of γ/ν from χmax. Hence using
the finite size scaling, one can determine the critical temperature and universality
class with very high accuracy. Note that other dimensionless quantities, such as the
two-point finite-size correlation length [22, 23] can also be used with similar results.

2.2 Systems with quenched disorder

Almost all materials in nature are inhomogeneous and many different kinds of
impurities could be distributed randomly throughout these materials. These im-
purities introduce disorder in the system and if the disorder of these impurities is
not weak, then the system becomes frustrated. In theory, the disorder can be ei-
ther geometric, annealed or quenched. If a system has a disorder where impurities
are in thermal equilibrium with the host and the partition function is calculated
by summing the configuration of original components and impurities, then it is
called annealed disorder. System where the impurities remain blocked in random
fixed positions and do not contribute to the thermal equilibrium have the quenched
disorder. Geometrical frustration is a phenomenon where atoms tend to stick to
non-trivial positions and form complex structures. In this Section, we first discuss
some prominent examples of systems with quenched disorder. I also discuss some
of the theoretical methods used to study the statistical properties of models with
quenched-disorder.

2.2.1 Random-field Ising model (RFIM)

In Eq. (2.1), I introduced the Hamiltonian of the Ising model. In RFIM, the couplings
are set to a constant Jij = J as for the Ising ferromagnet. For Ising ferromagnet
the external field associated with each spin is zero. For the RFIM, the disorder
is introduced through hi. In the physical world hi can be interpreted as a site
dependent external magnetic-field acting on an Ising ferromagnet. Eq. (2.1) stays
valid for random-field Ising model:

H = −J ∑
〈i,j〉

sisj −∑
i

hisi . (2.25)

RFIM is one of the simplest and an archetypal disordered system. Therefore, there
has been a great theoretical interest in it and different aspects are discussed in
Refs. [24, 25, 26, 27, 28, 29, 30]. There are also many studies connecting the the-
ory to the experiments in condensed matter physics [31, 32, 33, 34, 35, 36]. Some
important systems which can be studied using RFIM are: colloid-polymer mix-
tures [36, 37], colossal magnetoresistance oxides [38, 39], phase-coexistence in the
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presence of quenched disorder [40, 41, 42], diluted antiferromagnets in a field [34],
non-equilibrium phenomena e.g. Barkhausen noise in magnetic hysteresis [43, 44]
and the design of switchable magnetic domains [45], etc.

Figure 2.1: A sketch of a phase diagram for RFIM.

2.2.1.1 Phase transition and critical behaviour

It is discussed by Imry and Ma in Ref. [24], that there exists an ordered ferromag-
netic phase for the random-field Ising model at low temperatures and weak disor-
der for space dimensions larger than two (d > 2) [46, 47, 48, 49, 50]. This conclusion
is used to sketch the phase diagram of the RFIM in many studies [51, 52, 53, 54, 55,
56]. There are also quantitative expressions from mean field theory to support this
argument [56]. However such quantitative arguments to sketch a phase diagram
from the mean-field theory are very poor approximations in general. In Fig. 2.1, a
phase boundary separates the ordered ferromagnetic phase from the paramagnetic
phase. This phase diagram is from re-normalisation group (RG) picture and the sta-
ble fixed point is at zero temperature. Also, the randomness axis has a critical value
hc for the random-field strength. The ordered phase starts to appear at the critical
point and the system stays in the ordered phase below it, above it the paramagnetic
phase is observed.

In Sec. 2.1.4, the theoretical scaling arguments are discussed for the Ising fer-
romagnet. In the same way the scaling ansatz is formed for RFIM. However, in
the presence of the random-field disorder, the hyper-scaling relation is broken. The
hyper-scaling relation refers to the class of critical-point exponent relations and
is discussed in Ref. [46, 47, 48]. The paramagnetic-ferromagnetic phase transition
is ruled by a fixed point at temperature T = 0 [33]. The spatial dimension d in
Eq. (2.20) is replaced by d− θ, in hyper-scaling relations (θ ∼ d/2). There are three
independent exponents in d ≤ 3 and two independent exponents for d ≥ 5. It is
shown in Ref. [57] that for 3 < d < 5, η = β. Unfortunately, establishing the scaling

12



picture in full detail is non-trivial. In 3-dimensions, perturbation theory predicts
that the ferromagnetic phase disappears for any non-zero random-field [26]. Even
if the statement holds at all orders in perturbation theory [28], the ferromagnetic
phase is stable in D = 3 [50]. Therefore, it can be concluded that non-perturbative
phenomena are at play [58, 59]. There are suggestions that spontaneous super-
symmetry breaking distorts the scaling picture. It is discussed in Ref. [60] that the
phase transition is described by more than two critical exponents.

Experimentally, the diluted anti-ferromagnet in an applied magnetic-field is a
well-studied example [34] for RFIM. In neutron scattering, different parametriza-
tions of the scattering line-shape yield contradictory estimates of the thermal criti-
cal exponent, namely ν = 0.87(7) [61] and ν = 1.20(5) [62]. Moreover, the anoma-
lous dimension η = 0.16(6) [61] violates hyper-scaling bounds, if the experimental
claims of a divergent specific heat [35, 63] are to be believed. It is clearly evident
that a reliable parametrization of the line-shape is needed. Unfortunately, RFIM
universality class is not well understood yet.

RFIM is extensively studied using numerical simulations [64, 65, 53]. However,
typical Monte Carlo schemes get trapped into local minima. Therefore some sophis-
ticated simulation methods are used in Ref. [66, 67, 68, 69, 70]. However, the curse
of finite size effects is associated with these simulations. Larger system sizes can
be simulated via mapping of the ground state to the maximum-flow optimization
problem [71, 72, 73, 74, 75, 76, 77, 78]. However, strong violations of universality
are observed in finite-size scaling analysis of the numerical data produced by these
methods [79, 80, 81, 73].

The methods for determining the order of the low temperature phase transi-
tion and its dependence on the form of the field distribution have been discussed
throughout the years [56, 82, 83, 84, 85, 86]. The choice of random-field distribution
might effect the final results. There are many different possibilities to choose the
random-field distribution. The well known examples are Gaussian distribution and
bimodal distribution. It was shown in Ref. [56, 87] that the tri-critical point at the
strong disorder regime is present only in the bimodal distribution. However, it was
shown later in Ref. [88] that this observation was a finite-size artefact and there is
no tri-critical point and no first-order transition. Even after so much effort, there
is no clear picture of the critical behaviour of RFIM. Although, the view that the
phase transition of the RFIM is of second-order is well accepted [76, 68, 66, 67] the
notably small value of the scaling exponent β continues to cast some doubts. There-
fore, there exists a strong debate about the role of disorder on criticality. The data
available from different simulations is not able to answer the question of whether
the critical exponents depend on the particular choice of the distribution for the
random-fields, analogously to the mean-field theory predictions [56]. Hence, the
critical behaviour of RFIM is still under intense investigation [60, 66, 67, 69, 70, 89].

RFIM is a well-studied model, but there are systems where more than two states
can exist. These systems are not well studied. One such generalised model is called
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the random-field Potts model. In the next section, the difficulties related to studying
this model are discussed.

2.2.2 Random-field Potts model (RFPM)

As mentioned in the last section, the RFPM describes the systems with more than
two states. Therefore, the Hamiltonian in Eq. (2.25) has to be modified appropri-
ately. Before RFPM is discussed, I will briefly present an overview of the Potts
model without disorder. The q-state Potts model can be seen as generalisation of
Ising model to q-states. If one sets q = 2, the whole picture of Ising model can be
captured. The Potts model has many physical realizations [90, 91]. Some applica-
tions of Potts model include soap froths, cellular tissues, grain growth, nucleation,
static and dynamic recrystallization, etc. However, the real physical picture requires
disorder to be incorporated in such systems for their accurate description. There-
fore, a more appropriate model in this context is the generalization of the q-state
Potts model with disorder or the q-state random-field Potts model (RFPM). Experi-
mentally, the RFPM can describe magnetic grains, anisotropic orientational glasses,
randomly diluted molecular crystals [92, 93], structural transitions in SrTiO3 crys-
tals [94], and the phase transitions in type I antiferromagnets (such as Ndsb, NdAs,
CeAs) in a uniform field [95]. Similarly to the RFIM, the presence of random-fields
in RFPM (or disorder ∆) poses difficulties, both analytically and computationally,
due to the complex free energy landscape arising from the q-spin states and their
coupling with quenched randomness. The Hamiltonian of RFPM can be written as:

H = −J ∑
〈ij〉

δsi,sj −∑
i

q−1

∑
α=0

hα
i δsi,α, (2.26)

where δx,y is the Kronecker delta function and q is the total number of labels or
the Potts state. Each spin si can take any of the possible q-values in the set si =
{0, 1, ...., q− 1}. hα

i are the quenched random-field variables at site i acting on the
state α. We define hα

i = ∆εα
i , where the parameter ∆ is a measure of the disorder

strength. The variables εα
i are drawn from a chosen distribution e.g. bimodal or

Gaussian. The parameter ∆ is a measure of disorder strength in the system. There
is also an alternative to the Hamiltonian in Eq. (2.26):

H = −J ∑
〈ij〉

δsi,sj − ∆ ∑
i

δsi,hi . (2.27)

The main difference in Eq. (2.26) and Eq. (2.27) is the interaction of the exter-
nal magnetic-field with the spin. The detailed description of the interactions will
be given in chapter 5. The Hamiltonian in Eq. (2.26) has a unique ground state,
whereas the ground state of the alternative Hamiltonian in Eq. (2.27) has degener-
acy.
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2.2.2.1 Phase-transition and critical behaviour
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Figure 2.2: A sketch of a phase diagram for RFPM. q represents the states of RFPM
and d denotes the physical dimensions. The red and blue line show two different
possibilities of phase transition predicted by different studies. The green line is a
hypothetical correct (yet unknown) transition line.

The nature of phases and phase transitions from the ferromagnetic to the disor-
dered phase for RFPM are not well understood. There are two different planes of
phase diagrams which one could try to understand. One is the q-∆ plane, where
one attempts to understand how the number of states and the disorder strength af-
fects the phase. The other plane is the (T, ∆)-plane, where the effect of temperature
and disorder strength can be studied.

The q-state RFPM is not extensively studied in the literature. However, there are
some preliminary studies in Ref. [96, 97, 98, 99, 100]. These have primarily investi-
gated the phase diagram in (T, ∆)-space for different q and d values. The analytical
approaches have generally used mean-field techniques, while the computational
approaches are based on Monte-Carlo methods. The Potts model without disorder
can be used for comparative studies, therefore first I first discuss the Potts model. In
d = 2, the q-state PM has a second-order phase transition for q ≤ 4, and a first-order
transition for q > 4 [101]. In d = 3, on the other hand, there is a first-order transition
for q ≥ 3. A detailed study of the q-state RFPM in d = 3 is performed by Eichhorn
and Binder using MC simulations [98, 99]. They found that the random-fields turn
the first-order transition of the q-state Potts model into a second-order transition if
the disorder is large. They proposed a qualitative scenario in the (q, d)-plane which
exhibited a shift of the tri-critical curves qc(d) to higher values, consistent with the
mean-field predictions of Blankschtein et al. [96].

In the study by Eichhorn and Binder , the values of q < qc(d) yielded a second-
order transition, while q > qc(d) led to a first-order transition. From their study, the
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3-state RFPM (and probably the 4-state RFPM) exhibited a second-order transition
with increasing disorder strength. These observations, however, disagreed with
the corresponding results obtained by Goldschmidt and Xu [102], who performed
a 1/q-expansion of the 3-state RFPM and found that there is a first-order transi-
tion, irrespective of the disorder strength. Another major interest in systems with
quenched disorder is the determination of the ground state (GS). The importance
and techniques related to GS problem are discussed in Chap. 5.

2.2.3 Spin-glass model

It was in the middle of the 20th century that many researchers started paying much
attention to different alloys. Particular attention was given to the mixture of Mn in
Cu. This mixture exhibited unusual properties that raised many questions among
condensed matter physicists [103, 104, 105]. It appeared that the susceptibility
shows a phase transition at a temperature Tc which is roughly proportional to the
concentration of Mn. However, the transition is not between paramagnetic and an
ordered phase. There is a new phase which had many different features compared
to a paramagnetic phase. There is no spontaneous magnetisation. It is also observed
that the susceptibility χ is not inversely proportional to the temperature. Indeed, it
stayed constant and did not follow the Curie law (χ ∝ 1/T).

The s− d interaction which couples conduction electrons to the electrons of un-
filled inner shells is responsible for the unusual low-temperature behaviour [106].
This interaction is discussed in Ref. [107, 108, 109] without involving the possibility
of anti-ferromagnetism. It is shown in Ref. [110] that the s− d interaction can imply
anti-ferromagnetism and spin waves. However, in Ref. [111], it is shown that the
s − d interaction can be described by the Ruderman and Kittel model introduced
in Ref. [112]. The resulting coupling between two Mn ions separated by a distance
r denoted by J(RKKY)

xy is called RKKY interaction. Mathematically, the RKKY inter-
action between two spins ~sx and ~sy at distance r from each other can be written
as

J(RKKY)
xy ∼ cos

(
k · r
|r|3

)
, (2.28)

the wave vector k is of the same order as the Fermi vector. The Eq. (2.28) implies
that the coupling either can be ferromagnetic or anti-ferromagnetic depending on
the distance between the ions.

Many studies [106, 113, 114, 115] contributed to the theory until in 1970 Ander-
son first used the term spin glass. Analogous to the structural glasses, presence of
a low-temperature phase with an unidentified order is observed. Anderson intro-
duces a Hamiltonian exhibiting an explicit dependence on the disorder in Ref. [116].
His main argument is that the exchange interaction of Mn ions play a dominant role
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compared to the electron interactions. The Mn ion interaction is given by RKKY in-
teraction given in Eq. (2.28), whose sign depends on the distance rxy between two
spins ~sx and ~sy on site x. The strength of this interaction weakens with increas-
ing the distance rxy. The distance rxy is random and changes with each alloy and
its disorder. Hence, Anderson proposed the first SG Hamiltonian as a Heisenberg
model

H =
1
2 ∑

x 6=y
Jxy~sx ·~sy , (2.29)

where the Jxy are are random values generated from a distribution that should
reproduce roughly the RKKY interaction. This implies that the random variables
Jxy are used to simulate the experimental couplings J(RKKY)

xy .

Although the model in Eq. (2.29) looks very simple, it is very difficult to treat
it theoretically. Various different theoretical and numerical techniques has been
employed to study this mode in finite dimensions. Numerical computations can
test any proposed working hypothesis with some limitations. These working hy-
potheses are often named as pictures. Prominent examples of such pictures are
the replica-symmetry-breaking (RSB) and the droplet picture. One of the core is-
sues of research in spin glass theory is the incompatibility in these two approaches.
However, it is rather difficult to perform a conclusive numerical test in the three-
dimensional case. We will discuss these pictures in the next sections.

2.2.3.1 Edwards–Anderson (EA) model

One of the most studied models in spin glass is the Edwards–Anderson (EA) model
by Edwards and Anderson in Refs.[117, 118]. It is able to catch many experimental
aspects of physics. This model is a simplistic form of the Heisenberg model de-
scribed by Eq. (2.29). The simpler form is exactly the form represented in Eq. (2.1),
which in the absence of the external magnetic-field can be written as:

H = −∑
〈i,j〉

Jijsisj. (2.30)

The couplings Jij are usually chosen from a Gaussian or from a bimodal distribu-
tion. Each different realisation of the couplings will lead to a different behaviour.
However, in thermodynamic limit the behaviour should be similar. Hence, larger
lattices should give on average better results. In order to get results for a set of
different disorders, one should average the physical quantities. The average result
of a set of couplings should always stay similar. This assumption is called self-
averaging. This assumption is used to define the free energy of the spin glasses.
If FJ and ZJ are the free energy and partition function of a given realisation re-
spectively and the subscript J describes here one specific bond configuration. The
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average free energy over all disorders can be written as:

F
∫
FJ P(J)dJ = −kBT

∫
P(J) lnZJdJ = −kBT lnZJ . (2.31)

The bar in the above equation represents the average over all disorders. Eq. (2.31)
displays the major analytical difficulty of SG model. The main difficulty is to take
the quenched average ln(ZJ). It is easier to take the annealed average ln(ZJ) ,
however the annealed free energy FAnl = lnZJ , gives wrong results at low temper-
atures [119]. Edwards and Anderson proposed that the replica trick can be used

to overcome this problem. The trick is to use the identity ln (x) = lim
n→0

xn − 1
n

to

transform the annoying logarithm in a power law.

F = −kBTlnZJ = −kBT lim
n→0

Zn − 1
n

. (2.32)

Assuming that n is an integer, one can define Zn as the partition function of n
independent replicas of the same realisation. These realisations belong to the same
disorder distribution but differ from one another. Now one can define a new order
parameter with the help of replicas [120].

qab =
〈

s(a)
i s(b)i

〉
(2.33)

where (a) and (b) indicate different replicas. The replica trick helps simplifying
the calculation, however, it comes with some restrictions such as taking the limit
n → 0 with n ∈ N. The EA model is not fully understood analytically. The replica
trick became a very useful tool to study disordered systems. The EA model can be
extended to a model with quantum spins [121, 122], but this is out of the scope of
this thesis.

2.2.3.2 Mean-field picture

The Sherrington-Kirkpatrick (SK) model The EA model is based on nearest
neighbour interactions, therefore, it can not be treated mathematically via mean
field theory. In 1975, Sherrington and Kirkpatrick slightly modified the Hamilto-
nian Eq. (2.30) by imposing infinite (of the order of the size of the lattice) range
interactions with Ising spins in Ref. [123].

H =
1
2 ∑

i<j
Jijsisj. (2.34)

In comparison to the EA model, the sum runs over all pairs of spins in the system
and not only over nearest neighbour pairs. As the mean field theory applies to
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this model, a mean field solution is proposed. However, the SK solution had non-
physical properties such as negative entropy at the low temperatures. Sherrington
and Kirkpatrick argue the limit of number of spins N → 0 and the thermodynamic
limit N → ∞ are commutative and could cause the negative entropy. However, later
it is shown in Ref. [124, 125] that their assumption of replica symmetry breaking is
the cause this problem. They assumed that the overlap given by Eq. (2.33) is same
independent of n replicas chosen for the replica trick,

qab = q(1− δab). (2.35)

In Ref. [124] it is shown that the replica symmetry solution proposed for SK
model in Ref. [123] is stable only at high temperatures. In a study performed in
Ref. [126], it is shown that the replica symmetry trick holds in the paramagnetic
phase only. Under a certain temperature, massless modes in the overlap correlation
functions become unstable. Hence, replica symmetry is unstable in the SG phase.
Therefore the results obtained using this method are not correct at low tempera-
tures. This statement is also true in the presence of an external magnetic-field at
low temperatures and fields with small amplitude. However, for large amplitude
of magnetic-field, there exists a SG phase. The critical line where the RS phase

H
/J

kT/J

RS Stable

RS Unstable

0.0 0.5 1.0

1.0

2.0

3.0

Figure 2.3: Schematic representation of the de Almeida-Thouless (dAT) line (red
curve). In the yellow region under the red line RS solution fails and above the red
line this solution is valid.

becomes unstable is shown as a red curve in Fig. 2.3 and is called the de Almeida-
Thouless (dAT). Even though the reason for this instability is suspected to be replica
symmetry [125, 124], it is not clear how to break the symmetry between replicas to
obtain a physically reasonable solution.
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Some attempts are made in Ref. [127, 128, 129] to understand and solve this
problem. Thouless, Anderson and Palmer proposed an alternative mean field the-
ory to handle this problem in Ref. [130]. However, this approach also failed at
low temperatures [119]. It is shown via numerical simulations in Ref. [131] that
all the methods which are proposed until now are valid only at high-temperature.
Evidently, there is no satisfactory theory to study spin glass models at low temper-
atures.

2.2.3.2.1 The Parisi solution It is clear that the replica symmetry has to be bro-
ken to find the correct solution of SK model. Therefore, a new formulation in the
spin glass theory is introduced and called replica symmetry breaking (RSB). How-
ever, there are many ways to parametrize qab, which is a n × n matrix. The only
way to find a new ansatz for a RSB overlap matrix [125] is trial and error. Allowing
qab to have more than one value, the negative entropy entropy shifted closer to zero
as discussed in Ref. [132]. In that case the both parameters have an independent
symmetry breaking associated with them. This ansatz is known as one step replica
symmetry breaking (1RSB). Finally G. Parisi proposed the RSB ansatz in 1979 which
consists of multiple RSB steps[28].

The Parisi ansatz is an iterative process starting from the RS ansatz qab = q0(1−
δab) for the matrix qab. This iterative process is demonstrated in Fig. 2.4 and details
are discussed in Ref. [133, 134, 135]. Using the Parisi ansatz two step symmetry
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Figure 2.4: The figure shows the first two steps of RSB.

breaking can be described in the following steps:
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• Divide a matrix of size n× n into n/m1 blocks.

• The off-diagonal terms of the diagonal blocks are assigned a new value q1.

• The first step of RSB (1RSB) is complete.

• Iterate the above process in each block.

• Each block is divided in m1/m2 sub-blocks of size m2 ×m2.

The process can be iterated until the full RSB solution is found. In this way an
overlap matrix is constructed which has any two rows (or columns) identical up
to permutations. This property is called replica equivalence. Replica equivalence
holds for both RS and RSB matrices.

In the RS phase qab = 0 ∀a, b, so the probability distribution of the order param-
eter, P(q) is a δ(0). The full RSB ansatz implies that in the SG phase the probability
distribution function of the order parameter is non-trivial. By simply counting the
n(n− 1) non-diagonal values qab, one has

P(q) =
1

n(n− 1) ∑
a 6=b

δ
(

q− qab
)
=

=
n

n(n− 1)
[(n−m1)δ(q− q0) + (m1 −m2)δ(q− q1)+ (2.38)

+(m2 −m3)δ(q− q2) + . . .] .

Once the n→ 0 limit is taken,

P(q) = m1δ(q− q0) + (m2 −m1)δ(q− q1) + (m3 −m2)δ(q− q2) + . . . , (2.39)

the P(q) is positive definite only if 0 < m1 < m2 < . . . < 1. From theory and
simulations one can hypothesize that the qi is an infinite sequence , hence a function
q(x) can be defined such that

q(x) = qi if mi < x < mi+1. (2.40)

In Ref. [133] is is shown that after a k-step RSB, q(x) is a piecewise function that can
take at most k + 1 different values. In the limit k → ∞, q(x) becomes a continuous
function in the interval [0,1] . Hence, using this representation the free energy
becomes a function of q(x). It is also shown by Parisi that

q(x) = qm for x ≤ xm , (2.41)

q(x) = qM for x ≥ xM. (2.42)
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Figure 2.5: Schematic representation of RSB

This implies that the probability distribution function can be written as the sum of
two delta functions connected by a smooth function P̃(q) which is non-zero only in
the interval xm < x < xM

P(q) = xmδ(q− qm) + P̃(q) + xMδ(q− qM) . (2.43)

The Parisi ansatz shows that there is an underlying hierarchical structure in the
organization of the states in the SG phase, which results in an ultra metric overlap
space where qac ≥ min (qab, qbc)[136, 137, 138]. RS can be described as the root of
the tree because at this level all states have the same overlap q0. In the first step
of replica symmetry breaking the replicas part in two groups. Replicas within the
same group share overlap q1, otherwise, it is q0 < q1, and so on for further steps of
RSB. If two belong to the same group the overlap between two replicas α and β can
be identified by returning back to the root of the tree.

There are infinitely many metastable states that do not relate through evident
symmetries. The space of configurations consists of many local minima separated
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by large barriers (free energy barriers) whose height goes to infinity in the infinite-
volume limit [120]. The number of valleys is exponential in the number of spins N
[139, 140, 141]. Therefore, time spent in each minima valley also grows exponen-
tially in the number of spins. Consequently, in the SG phase the dynamics of SG
is extremely slow, and in the thermodynamic limit the ergodicity is broken [142].
This is shown in the study of the first infinite-range model (SK) [131]. This model
is an extension to SK model that has interactions between p spins (also called the
p-spin model). The limit p → ∞ of the p-spin model produces an exactly solvable
model called the random energy model (REM) [143]. In this model, the probability
of a state depends solely on its energy and not on the system configuration.

Because of a lack in rigorousness in the Parisi solution, further numerical studies
were performed, however a rigorous mathematical proof came 20 years later and is
described in Ref. [144, 145, 146].

2.2.3.3 The droplet picture

The motivation behind the droplet picture were numerical domain-wall re-normalization
group studies of low-dimensional SG [147, 148]. In addition to that a schematic
scaling theory of SG proposed by McMillan [149] which also favoured such picture.
Motivated by these studies, the droplet picture of the ordered phase in SG is pro-
posed in Ref. [150, 151, 152, 153, 154] by Fisher and Huse. This theory is based on
the Migdal-Kadanoff approximation [155, 156]. Within a pure state, phase coexis-
tence occurs in form of low lying excitations (droplets) of spins in the sub-dominant
state. The boundaries of these domains for a particular disorder are not fixed. These
boundaries fluctuate or move around with the change in disorder. The unsatisfied
links are exploited and the strongly satisfied links are avoided. The effect is that
the droplets are non-convex, and their boundary scales as Lds , with d− 1 ≤ ds < d,
so they are not space-filling. The fundamental ansatz of droplet theory is inspired
by an earlier argument from Anderson and Pond in the aforementioned Migdal-
Kadanoff approach in Ref. [157]. This ansatz states that the free-energy cost of the
lowest-energy excitations of linear size ` are

F` ∼ γ(T)`θ , (2.44)

where θ(0 < θ < (d − 1)/2) and γ are the stiffness exponent and the stiffness
modulus, respectively. That implies that that infinite energy is required to excite a
finite fraction (` ∼ L) of the total number of spins, so only small excitations (`� L)
are supported.

In the droplet picture the stiffness exponent controls the decay of the correlations
as

C(|i− j|) =
〈
sisj
〉2 − 〈si〉2

〈
sj
〉2 ∼ 1

|i− j|θ , (2.45)
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that entails q2 − q2 → 0, and therefore the overlap distribution is a delta function,
P(q) = δ(q − qEA). Another important feature of the droplet theory is that the
energy barrier for flipping a droplet in a field h scales as Lθ − hLd/2. The value of θ
is bounded θ < (d− 1)/2, therefore in the presence of any magnetic-field SG phase
is unstable. This prediction is in contrast with the RSB theory, which predicts a dAT
line for h > 0. Both the droplet and the RSB scenario describe the spin glass phase
well [158, 159, 160, 161, 162, 163]. There is a quite good agreement in the spin glass
community that the RSB scenario is valid for dimensions greater than the upper
critical dimension du = 6, and that the droplet picture is exact in d = 1. However,
there are no conclusive studies which could describe which of the two theories is
correct or incorrect.

2.3 Summary

In this chapter, I introduced the concepts related to the random-field Potts model
and spin glasses. It is clear from the literature review that the disordered systems
are hard to study theoretically. Therefore, the numerical approaches are used to
support or negate the mathematical arguments. In this thesis, we use computational
techniques to study some aspects of these models.
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Chapter 3

Computational methods

In the last chapter, it is mentioned that spin glass (SG) and random-field Potts
model (RFPM) both have a rugged and complex energy landscape. We discussed
the analytical difficulties in studying such systems and mentioned that numerical
simulations play a crucial role to study equilibrium or non-equilibrium properties
of spin glasses and random-field Potts model. However, these systems are not
easy to simulate either. We do need sophisticated and advanced methods to study
disordered systems.

This chapter is divided into three sections. In section 3.1, an introduction
to Monte-Carlo methods including Metropolis algorithm, statistical errors etc. is
given. In section 3.2 the replica-exchange Monte-Carlo method called parallel tem-
pering (PT) is discussed. In the last section 3.3, we go through computational meth-
ods specifically designed to study the spin glasses.

3.1 Monte-Carlo methods

To study physical quantities in physics, one has to solve high dimensional integrals
with a large number of degrees of freedom or for the case of discrete degrees of
freedom summation over many different states has to be performed. Even if the
dependence of the observable of the micro-state is known, the number of states
increases exponentially with the size of the system. For the Ising model, the number
of possible configurations is equal to 2Ld

with d being the dimension of the system.
Hence, this approach is infeasible. However, trustworthy approximate results can
be derived from alternative approaches.

A set of such alternatives approaches is called Monte Carlo methods. In this
approach, the configuration space is sampled randomly trying to get information
about the system. A simple random sample is a measure of a statistical population
where each member has an equal probability of being chosen. If simple random
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sampling is used, the sample size has to be very large to get good approximations
for the system. However, the size of configuration space is so large that it is very
unlikely that a representative or even relevant part of it is visited. Therefore, one
uses importance sampling techniques, where instead of choosing configurations
randomly, the states are selected employing a weight function that selects states
according to desired distributions. Consequently, the computational effort to solve
the same problem reduces.

The expectation value of an observable 〈O〉 is given by:

〈O〉 = ∑sO(s)e−βH

∑s e−βH . (3.1)

A distribution for the states can be accommodated in Eq. (3.1) in the following way

〈O〉 = ∑s[O(s)e−βH/P(s)]P(s)
∑s[e−βH/P(s)]P(s) . (3.2)

By replacing P(s) with the Boltzmann distribution in Eq. (2.6), we obtain

〈O〉 = 1
M ∑

i
O(si). (3.3)

In Eq. (3.3), the states si are selected from a Boltzmann distribution. In the next
section, I discuss the algorithms that allow for a sampling of states according to the
Boltzmann distribution.

3.1.1 Metropolis algorithm

The Metropolis algorithm is named after Nicholas Metropolis who co-authored the
Ref. [164] in 1953. This algorithm makes use of a Markov chain of successive states
s1 → s2 → . . . to evaluate Eq. (3.1)). A carefully-designed transition probability
P(s → s′) is used to generate the new state. In the Markov process, the state
s occurs with probability Pm(s) at the mth time step, described by the following
equation

Pm+1(s) ∝ Pm(s) + ∑
s′

[
T (s′ → s)Pm(s′)− T (s→ s′)Pm(s)

]
. (3.4)

The sum runs over all states s′. The first term in the sum of Eq. (3.4) describe the
processes entering state s, and the second term describe the processes leaving this
state. The probabilities Pm(s) should reach a stationary distribution described by
the Boltzmann distribution in the limit k → ∞. The transition probabilities T are
designed in such a way that for all states s and s′ the detailed balance condition
given by

T (s′ → s)Peq(s′) = T (s→ s′)Peq(s) (3.5)
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is satisfied. The condition in Eq. (3.5) means that the process has to be reversible.
Furthermore, the ratio of the transition probabilities only depends on the change in
energy ∆H(s, s′) = H(s′)−H(s), i.e.,

T (s→ s′)
T (s′ → s)

= exp[−β(H(s′)−H(s))] = exp[−β∆H(s, s′)] . (3.6)

There are different choices for the transition probabilities T that satisfy Eq. (3.6). In
this thesis the simulations are restricted to the flowing choice:

Metropolis or Metropolis-Hastings algorithm

In this case T (x) = min(1, x) and so

T (s→ s′) =
{

1, if ∆H ≤ 0;
e−β∆H(s,s′), if ∆H ≥ 0 .

(3.7)

3.1.1.1 Equilibration

In order to obtain a correct measure of an observable O, it is crucial to guarantee
that one is actually sampling an equilibrium state. In general, the initial configura-
tion of the simulation can be chosen arbitrarily. The most popular choices are the
polarised configuration or randomly generated configuration. The system requires
many Monte-Carlo steps before an equilibrium state at a given temperature is ob-
tained. The time needed to reach thermal equilibrium is called equilibration time
and is denoted by τeq. This time is usually measured in the units of Monte Carlo
steps.

One has to ensure that all measured observables are measured in thermal equi-
librium. Some observables for spin glasses, such as the energy, equilibrate faster
than others, e.g., magnetisation and thus the equilibration times of all observables
measured need to be examined. While studying the physical quantities in the next
chapters, some methods to check the equilibration are discussed.

3.1.2 Auto-correlation times and error analysis

The Metropolis algorithm is based on a Markov process; the new states are gen-
erated by modifying the previous ones. Hence the newly generated states can be
highly correlated. To ensure that the measurement of an observable O is not ef-
fected by correlated configurations, it is essential to measure the auto-correlation
time τauto that describes the time it takes for two measurements to be decorrelated.
This means that in a Monte Carlo simulation after the system has been thermally
equilibrated, measurements can only be taken every τauto MCS in order to have
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smaller statistical errors. The auto-correlation time can be computed via measuring
the time-dependent auto-correlation function for a given observable O:

CO(t) =
〈O(t0)O(t0 + t)〉 − 〈O(t0)〉〈O(t0 + t)〉

〈O2(t0)〉 − 〈O(t0)〉2
. (3.8)

In general, CO(t) ∼ exp(−t/τauto) and so τauto is given by the value where CO
drops to 1/e. An alternative is the integrated auto-correlation time τint

auto, which is
easier to compute:

τint
auto =

∑∞
t=1
(
〈O(t0)O(t0 + t)〉 − 〈O〉2

)
〈O2〉 − 〈O〉2 (3.9)

Auto-correlation effects influence the determination of the error of statistical esti-
mates. It can be shown [74] that the error ∆O is given by

∆O =

√
〈O2〉 − 〈O〉2
(M− 1)

(1 + 2τauto) . (3.10)

Here M is the number of measurements. The auto-correlation time directly in-
fluences the calculation of the error bars and must be computed and included in
all calculations. So far, we have not discussed how the auto-correlation times de-
pend on the system size and the temperature. Like the equilibration times, the
auto-correlation times increase with increasing system size. In the next section, we
discuss parallel tempering which belongs to the Monte Carlo methods, however we
introduce it in a separate section where we also discuss a new method to tune the
required parameters.

3.2 Parallel Tempering

In the introduction of this chapter, we mentioned that parallel tempering is used
to study complex systems with rugged energy landscapes. Before we discuss the
parallel tempering method, we will discuss the need to use PT. In general, for in-
finitely long simulations, it is enough to use Metropolis algorithm introduced in
[164]. However, as mentioned earlier, spin glasses and random-field Potts model
have a rugged energy landscape with multiple minima and maxima which become
more pronounced with increasing system size. Thus, any reasonable MC sampling
has to overcome energy barriers and cross from one basin to another in the config-
uration space to obtain a representative set of configurations. Metropolis or other
local moves do not allow the system to explore all of the rugged configuration space
efficiently. The efficiency of the algorithm can be increased by supplementing local
configurational Metropolis moves with global swap moves (parallel tempering or
exchange Monte-Carlo move) that update an entire set of configurations.
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In the literature, glassy systems such as spin glass with complex free energy
landscape are studied via parallel tempering (PT) [165, 166, 167, 168, 169]. It is well
known that parallel tempering is relatively efficient at finding the ground states of
disordered systems [170, 171, 172, 173, 174, 175, 176], because parallel tempering is
more efficient than using only the Metropolis algorithm at overcoming free-energy
barriers. RFPM is a comparable system to spin-glass with quenched disorder and
frustration, motivating us to use this algorithm for studying the ground states.

Assume there is a system of NT non interacting replicas i.e. identical copies of
the system to be simulated. The m-th replica is associated with the temperature Tm
( or inverse temperature βm). An ensemble of states of at each replica can be written
as: {R} = {R1, R2, · · · , RNT}, and the partition function can be written as

Z = Tr{R} exp(−
NT

∑
m=1

βmH(Rm)) =
NT

∏
m=1

Z(βm), (3.11)

where Z(βm) is one of the systems. For a given set of inverse temperatures, {β} =
{β1, β2, · · · , βM} , the probability distribution of finding {R} becomes

P({R, β}) =
M

∏
m

Peq(Rm, βm), (3.12)

where
Peq(R, β) = Z−1(β) exp(−βH(R)) (3.13)

In constructing a Markov process for parallel tempering, a transition matrix
T (R, βm|R′, βn) is introduced. This transition matrix gives the probability of ex-
changing the configurations of the n-th and m-th replicas. To keep the system at
equilibrium, detailed balance is imposed on the transition matrix:

P(· · · ; X, βm; · · · ; R′, βn; · · · )T (R, βm|X′, βn)

= P(· · · ; R′, βm · · · ; R, βn; · · · )T (R′, βm|X, βn). (3.14)

Eq. (3.13) implies
T (R, βm|R′, βn)

T (R′, βm|R, βn)
= exp(−Pex), (3.15)

where
Pex = (βn − βm)(H(R)−H(R′)). (3.16)

Therefore the replica-exchange part of the transition probability can be expressed
as

T (R, βm|R′, βn) =

{
1, for Pex < 0

exp(−Pex), for Pex > 0 (3.17)

if one adopts the Metropolis method.

In our program we use the following two moves at every Monte Carlo step:
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1. Each replica is simulated independently using the Metropolis update.

2. Exchange of two configurations Rm and Rm+1, is tried and accepted with the
probability Pex.

The acceptance ratio of the exchange trial decreases exponentially with the differ-
ence βm− βn, therefore it is more efficient to restrict the exchange to the neighbour-
ing replicas Rm and Rm+1. Before we can do the simulation, the set of temperatures
has to be chosen.

The most natural way to choose a temperature set would be to start with a
random set of temperatures. If two systems are simulated at temperatures T1 and
T2 with a temperature difference δT = T2 − T1, then the energy histograms are
obtained by collecting the energies over a set of Monte Carlo steps Nmcs. These
histogram might overlap depending on the difference in the two temperatures. If
δT is too small, the overlap will be very large. This means that the states sampled
at temperature T1 are most likely to appear at temperature T2 again. If the overlap
is large, the exchange rate will be higher as there are many similar states.

In Fig. 3.1 we show a schematic plot of histograms for four different temper-
atures. We observe that for temperatures T0 and T1 the overlap is too large, this
implies that we would be wasting a lot of simulation time without getting much
out of it. In the same way, we observe that for the temperatures T2 and T3, there
is no overlap. In the latter case, we will never have an exchange between replicas.
Hence, it is very crucial to have a good set of temperatures to achieve a high effi-
ciency. However, for T1 and T2 we have an acceptable overlap in the histograms.
Hence, the crucial, but non-trivial part of this algorithm is to find the optimal set of
temperatures.

3.2.1 Selection of the optimum set of temperatures

Many studies [177, 178, 179, 180, 181, 182, 183, 184, 185] proposed different ideas
of optimising the chosen temperature set for parallel tempering simulations. Katz-
graber et. al. [177] argue that the optimal temperature set corresponds to a maxi-
mum rate of round trips (tunnelling events) between lowest and highest tempera-
ture in the temperature range. They show that the maximum rate can be obtained
using a recursive readjustment of temperatures. This feedback-optimised update
scheme is a sophisticated and appealing method, but because of its complexity,
other methods have been more often implemented in comparative studies and ap-
plications of PT.

A newer update scheme to improve the efficiency of parallel tempering system-
atically was introduced by Bittner et. al. [178]. With numerical simulations, it was
shown that the average round-trip events of a replica can be significantly increased
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Figure 3.1: Schematic diagram of energy histogram overlap

by adapting the number of Monte Carlo sweeps between replica exchanges to the
canonical auto-correlation time. The temperatures are adjusted to yield a 50% ex-
change rate between adjacent replicas.
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Figure 3.2: Tunnelling as a function of (a) φ for NT = 32 (b)NT at φmax. These plots
are normalised to the maximum value of the tunnelling events in each system size.

These methods have frequently been used in the literature. The first method
is adaptive, and one needs to do simulations and again insert a new temperature
between two temperatures if tunnelling time is not optimal. In the second method,
Monte Carlo sweeps are tuned with auto-correlation time to get the lowest tun-
nelling time. This approach, however, is not very efficient if one wanted to do
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simulations on GPU (see next section). Therefore, we propose a simpler technique
to minimise the tunnelling time in a given temperature range. It is obvious from
these studies that acceptance rates and tunnelling time do play the most important
role to get an optimised set of temperatures. In our work, we have used a greedy
optimisation method to chose an optimal temperature set. This greedy algorithm is
straightforward to implement and will work on GPU as well. The temperature Tm
of the mth replica is chosen by following equations:

Tm = mφTnorm + Tmin,

Tnorm =
Tmax − Tmin

(NT − 1)φ , (3.18)

where Tmax and Tmin are the maximum and minimum temperatures, respectively.
In the following, we choose Tmax = 1.5 and Tmin = 0.2 for the spin glass simulations.
These temperature values are chosen based on the temperature ranges usually stud-
ied in the literature. A set of temperatures and run the simulation by choosing some
initial value of φ. We measure the acceptance rates and the tunnelling time. Once
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Figure 3.3: Tunnelling time equilibration with respect to Monte Carlo steps (a) for
L = 15 and (b) for L = 40.

the measurement is done, we re-run the simulation with a modified value of φ.
The value of φ, which gives the minimum tunnelling time is used for all the sim-
ulations. The number of temperatures in a given range is fixed and the different
values of φ are used to run the simulations. In Fig. 3.2, the tunnelling events (in-
verse tunnelling time) is shown as a function of φ. It is evident from Fig. 3.2 that
for increasing system size L, the peak shifts to higher values of φ.

By fixing the temperature range, it is possible to get a suitable set of tempera-
tures by finding the optimal value of φ. Finite size scaling can be used to estimate
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the values for larger system sizes. Why is this method simpler than other methods?
The answer is straightforward. One does not need to think of setting up different
Monte-Carlo steps at the different temperature. Neither does one need to adapt
the temperature set by hand. The only requirement is to run the simulations for
different φ values for various system sizes.

During the simulation it is important to note that like all the physical quantities,
the observed tunnelling times also change during equilibration. It is seen in Fig. 3.3
that the tunnelling events equilibrate quickly. There is no need for long simulations
in order to find the optimal value of φ. The rapid equilibration of the tunnelling
times makes this method very useful for choosing the temperature set. Another
important aspect of this method is that we can do finite size scaling for different
system sizes to find the optimal value of φ in a given range. In Fig. 3.4(a) a func-
tional fit for the optimal value φ = φmax with respect to system size L is shown. A
similar fit is done for the optimal value NT = NTmax in Fig. 3.4(b). The parameters
of the fit function of the form a + bx are listed in the table 3.1. The linear ansatz
is used because the p-values are very high for the fit. Using any other ansatz gave
extremely small p-values.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40

φ
(T

m
ax

ev
en
ts
)

L

φ(Tmax
events)

Fit : φ(L) = a + bL

(a)

5

10

15

20

25

30

5 10 15 20 25 30 35 40

N
T
(T

m
ax

ev
en
ts
)

L

NT(T
max
events)

Fit : NT(L) = a + bL

(b)

Figure 3.4: Here we show maximum tunnelling events as a function of (a) φ for
NT = 16 (b) NT at φmax.

One can use the fitted function to predict the optimal value of φ or number
of optimal temperatures NT for any system size. We are usually bound to use the
smaller system sizes because of extremely long simulation time. In that short range,
we can predict the optimal parameter with a very high accuracy. We also observe
that peaks are not very sharp, there is a wide range close to optimal values. By
using the fit parameters listed in Table 3.1, we can predict that for a system with
L = 76 the optimal value of NT should be 48. Either we could use this value, or
we could double the run-time of simulation and choose a lower value of NT. This
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method is advantageous if one wants to pick a temperature set for larger system
sizes. Moreover, this approach is beneficial for choosing a temperature set to do
parallel tempering on GPU. We will discuss this in the next section. It should
be noted that one parameter is fixed and the observed linear behaviour is only
for that fixed parameter. We would always choose a finite value and the linear
growth does not mean that the in the thermodynamic limit the optimal values are
infinite. The behaviour might be different if one tries to build a function of multiple
parameters. However, for the ranges where we would be interested (or generally
one can simulate using current available resources), this method works very well.

parameter a b
NT(φmax) 0.406 0.0138

φ(NT = 16) 0.0247 0.6440

Table 3.1: Simulation parameters

3.3 Houdayer cluster algorithm

In the previous section, we discussed the applicability and use of parallel tempering
for disordered systems. This approach is very efficient for improving equilibration
time for a system. However, for spin glasses most numerical studies are still trou-
bled by corrections to finite-size scaling due to the small system sizes currently
available. In need of simulating larger system sizes, one requires algorithms which
help to equilibrate the system even faster. One such algorithm was proposed by
J. Houdayer in Ref. [186]. The Houdayer cluster algorithm (HCA) [186] is an ef-
ficient algorithm to study two-dimensional Ising spin glasses at low temperatures
where equilibration is slow. It is similar to replica Monte Carlo [165], but with the
difference that both replicas are at the same temperature. By allowing large cluster
rearrangements of configurations, the HCA improves equilibration by efficiently
tunnelling through configuration space. In this algorithm, two independent spin
configurations (replicas) are simulated at the same temperature. The site overlap
between replicas at temperatures T1, T2, qi = s1

i s2
i is calculated at every site. It has

two domains with either q = 1 or q = −1. The connected components of these
domains are clusters.

One chooses a random site on the overlap lattice and if qi = −1, the next neigh-
bour is checked if it belongs to the same domain. When there is no more connected
site which belongs to the same domain, the spins belonging to the cluster in both
replicas are flipped, irrespective of their orientation. Cluster updates are rejection
free. Hence this implementation is very efficient. To ensure ergodicity, the cluster
move is combined with standard single-spin Monte Carlo updates. Summarising,
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(a) Replica 1 (b) Replica 2 (c) Spin-overlap

Figure 3.5: Here each colour represent an orientation of spin. One can see that there
are more than one clusters available to pick from the site overlap randomly.

one simulation step using the Houdayer cluster algorithm with Metropolis and par-
allel tempering moves consists of the following steps:

1. Perform one Monte Carlo sweep (N Metropolis updates) in each replica.

2. Perform one Houdayer cluster move.

3. Perform one parallel tempering update for a pair of neighbouring tempera-
tures.

The efficiency of the Houdayer cluster algorithm depends strongly on the perco-
lation threshold of the desired topology to be simulated. Because spins are added
to the cluster with probability 1, if the percolation threshold of the studied lattice is
below 50%, then the cluster might span the entire system and an update will yield
a configuration which is highly correlated with the last configuration. Hence, in the
original paper, Houdayer argues that this method is only applicable in two dimen-
sions. However, Zhu et. al in [187] proposed an improvement to this algorithm.
They used the spin reversal symmetry for a modification of algorithm. If the cluster
size is larger than half the number of spins, they propose to flip the whole configu-
ration in one of the replicas out of the same temperature replicas. This Isoenergetic
cluster algorithm is summarised as follows:

1. Perform one Monte Carlo sweep (N Metropolis updates) in each replica.

2a. If the number of cluster sites with qi = −1 is greater than N/2, then all the
spins in one of the configurations can be flipped (because of spin-reversal sym-
metry), thus reducing the cluster size while leaving the energy unchanged.

2b. Perform one Houdayer cluster move for all temperatures T . J.

3. Perform one parallel tempering update for a pair of neighbouring tempera-
tures.
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3.4 Summary

In this chapter, we presented the different computational techniques which are used
to study disordered systems in this thesis. A new method to set the number and
positions of the temperature for the parallel tempering method was proposed. A
combination of these methods is used to simulate random-field Potts model and
spin glasses. Houdayer cluster algorithm is used in its original form as described
in Ref. [186].
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Chapter 4

Performing spin glass simulations on
GPUs

In the previous chapter, we discussed problems related to the equilibration of a
spin glass (SG) system. Due to the complex energy landscape, disordered systems
are much more difficult to simulate even with the advanced computing methods
discussed in Chap. 3. Houdayer’s cluster algorithm is overcoming the issue to
some extent. One also requires an average over a large number of disorders to
ensure a high degree of accuracy in the results. However, the resources available to
simulate the larger system sizes are not sufficient. Even the available resources are
not very efficient. The growth of computer efficiency has been halted and reached
a plateau 15 years ago. According to Moore’s law the number of transistors in
a dense integrated circuit doubles about every two years. But, Fig. 4.1 the data
shows that the frequency of the central processing units is saturating. Nonetheless,
Moore’s law, predicting exponential growth in the number of transistors in typical
integrated circuits, continues to hold [188]. This growth in transistor units has given
an opportunity to use additional transistors to form multi-core computational units,
instead of speeding up single threads. Consequently, the number of cores available
on cluster machines or supercomputers is proliferating (shown via black data points
in Fig. 4.1), calling for the parallelisation of established computational approaches
and algorithms. Once such parallel algorithm exist, it would be most efficient to
have computers with a large number of cores.

In the last few years GPU-accelerated computing has gained much attention.
The graphics processing units (GPUs) were originally designed to render triangles
in three dimensional graphics and for improving the quality of video games. These
devices are massively parallel. A GPU architecture consists of thousands of more
efficient, smaller arithmetic logic units (ALUs) designed for handling multiple tasks
simultaneously, whereas a CPU consists of a few ALUs optimised for sequential
serial processing. This fact is beneficial for simulating disordered systems which
can be trivially parallelised. The reason behind this parallelisation is that each
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Figure 4.1: Moore’s law is demonstrated here for the GPU transistors (blue data),
CPU frequency (red data) and number of cores (black data). The data is down-
loaded from https://github.com/karlrupp/microprocessor-trend-data.

disorder requires its own Monte Carlo simulation. These independent simulations
can be distributed on on GPU cores for parallel processing.

This chapter is organised as follows. In Sec. 4.1, the algorithm used to simulate
disordered system is presented and the hardware structure of GPUs is discussed.
The results for the two dimensional and three dimensional spin glass are bench-
marked in Sec. 4.2. In Sec. 4.3, the performance of the implementation is discussed
before the chapter is summarized in 4.4.

4.1 Hardware, optimization and implementation

In this work, different kinds of GPUs were used for the simulations. The simu-
lations are done using Nvidia Tesla K20/K40, Nvidia GTX Titan black, NVIDIA
GTX 1050/1060/1080. These different GPUs belong to distinct generations of the
Nvidia architecture. Telsla K20/K40 belongs to Kepler, GTX Titan Black belongs
to Maxwell and the GTX 10 series belongs to the Pascal architecture. The crucial
components of a GPU are the multiprocessors sustaining multiple threads and the
memory of GPU, which play a key role in the efficiency of a GPU program. GPU
memory is organised as follows:

• Registers: each multiprocessor is equipped with several thousand registers,
access to which is local to each processing unit and extremely fast.
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Figure 4.2: Schematic diagram of NIVIDIA GPUs from Ref. [189].

• Shared memory: A single multiprocessor consists of many processors. These
have access to a small amount (Kepler 16K/32K/48K, Maxwell 64K, Pascal
96K) of shared memory, which serves as a means of synchronisation and com-
munication between the threads (processors) in a block (a set of threads exe-
cuted on a multiprocessor). This memory resides on-chip and can be accessed
essentially without significant memory latency.

• Global memory: this large amount of memory is on separate DRAM chips
and can be accessed by each thread on each multiprocessor. Access suffers
from a latency of several hundred clock cycles.

• Constant and texture memory: these memory areas are of the same speed as
global memory, but they are cached such that read access can be very fast.
From the device perspective, they are essentially read-only.

• Host memory: the memory of the host CPU unit cannot be accessed from in-
side GPU calculations. Memory transfers between global and device memory
are important for communication with the outside world.

The CUDA programming language [190] is used for simulations employing the
Metropolis and Houdayer cluster algorithm on GPUs. There are a number of stud-
ies using GPUs for spin glass systems [189, 191, 192, 193, 194]. Most of these studies
are based on domain decomposition, where a lattice is decomposed to smaller units
to parallelise the processes. This method is very efficient, however not necessarily
easy to implement. Therefore, we use a slightly different approach. We make use of
trivial parallelisation of disordered systems. Structure of GPU plays an important
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role in efficiency of a CUDA program. A GPU (NVIDIA) has C cores distributed
on MP multi-processors. There are multiple thread blocks which are resident on a
multiprocessor. Each block can be three dimensional with maximum dimensions
(1024, 1024, 64) on each axis. However, the maximum number of threads in each
block can be 2048 (e.g. Pascal architecture) or 1024 (e.g. Maxwell or Kepler architec-
tures). In our system, the parameters to parallelise are the number of temperatures
(NT) and the number disordered realisations(NR). We also need to simulate the
same disorder twice at the same temperature to study overlap and other functions
of overlap. Therefore we have a third parameter, the number of copies at the same
temperature (NC), which can be used in the parallelisation. This parallelisation
takes place on every block out of total NB blocks. To access spin in a given disorder,
we have to know exactly on which thread a spin is assigned i.e. how does a thread
reads the value of a spin from the memory. To do so, it is needed that one knows
exactly the mathematical index of each thread in each block. Therefore for any bth
block, site index of a thread can be calculated as follows:

Bid = i + jNT + kNT NR, (4.1)

where indices run as 0 ≤ i < NT, 0 ≤ j < NR and 0 ≤ k < NC. Each disorder is
assigned to the running index. The values are set in such a way that the product
NT NCNR equals 2048 for maximum efficiency and usage of the GPU. Depending
on the number of multiprocessors we can repeat this unit with different disorder
realisations on each block. Every bth block consists of NR disorder realizations.
Hence the total number of disorders simulated in parallel is the product of the total
number of blocks NB and disorder realizations per block NR. Now a running index
Lid for a given lattice using Bid can be written as:

Lid = bVB + Bid, (4.2)

where VB = NT NRNC is the volume of the block and 0 ≤ b < NB is the block in-
dex. Every lattice at a given temperature for a given disorder with a different seed
can be initialized on any site given by Lid. In simpler words to establish analogy,
each index Lid can be considered as a single CPU core to run the simulation. At
this point, we are prepared to program the Metropolis algorithm on GPUs for dis-
ordered systems. However, while doing the spin updates, the neighbouring spins
have to be accessed from the memory. Therefore, the spins have to be organised
in the memory in such away that the threads should not access the spins from the
same location of memory. This is achieved via Lid. The total number of spins dis-
tributed over the whole GPU memory are L2VBNB. Any spin at the mth index of a
two dimensional lattice can be written as:

M(Lid, Bb) = mVBNB + Lid. (4.3)

Accessing the coupling requires a little more maths. However, we use the index Lid
for that, as the index of the mth coupling between m and m + 1 in any given lattice
can be written as:
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Figure 4.3: Schematic diagram of a thread block of GPU. Each coordinate is a thread
and can simulate a two dimensional spin system with a given disorder and temper-
ature.

M(Lid) =

{
(2mVB NB+Lid)

NT NC
, for neighbor in x-direction x ≥ 1

((2m+1)VB NB+Lid)
NT NC

, for neighbor in y-direction .
(4.4)

The number of couplings is less than the number of spins as the whole set of tem-
perature shares a disorder twice for two copies with different initialisation. Each
site m has two coupling associated with it, i.e. one to the right neighbouring spin
and one to the neighbouring spin below on a two dimensional lattice.

Fig. 4.3 illustrates how thread blocks are utilised on GPU to maximise efficiency.
This figure shows one block, and we can put at least one such block on each mul-
tiprocessor. Therefore, we have a highly parallelised system over different disorder
realisations. We now can start VB independent Metropolis updates on each thread
of the GPU. Without thinking about the cluster algorithm and parallel tempering,
we can now summarise how to simulate disordered systems on GPUs. The steps
are as follows:

1. Initialise spins as integer variables using Eq. (4.3) on host (CPU) and device
(GPU).

2. Initialise couplings using Eq. (4.4) on host and device. These can be sent
as textures. Texture objects can be passed as arguments just as if they were
pointers.

3. Once everything is prepared, call the Metropolis kernel.
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4. Each thread now has its own L2 spins on it and simulate a single two dimen-
sional system at a given temperature.

5. Lid enables each thread to know which spins belongs to which system.

6. Once the simulation is completed, kernel gives back the data to CPU.

We already discussed the need for the PT and cluster algorithm to accelerate
equilibration. Parallel tempering has NT trials to swap the temperatures which are
far less than the L2 trials required for spin flips. Therefore, in our case the parallel
tempering is done on the CPU. At first it might seem inefficient, however because
of the requirements of the cluster algorithm, the data has to synchronised in every
Monte-Carlo step. We can summarise the PT+Metropolis algorithm as follows:

1. Initialise in the same way as described in the Metropolis update.

2. Call Metropolis kernel in every Monte-Carlo step, calculate change in energy
for all NBNR simulated systems.

3. Return the energies and temperature index corresponding to that to host
(CPU).

4. Do parallel tempering move on the CPU.

5. Send new index of temperatures to each thread.

The parallel tempering implementation for disordered systems on GPUs is straight
forward. However, the Houdayer cluster algorithm is not as easy to implement ef-
ficiently. The main problem associated with it is that two copies of a given disorder
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Figure 4.4: Mapping of two replicas (C1, C2) onto one replica (C12) in overlap space.
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at given temperatures are required for forming the cluster. We want to keep the
count of spins and variables, therefore using the same indices, we would have half
of the threads on a block that were free. This is demonstrated in Fig. 4.4, where we
map spin space (green and red surfaces) on to overlap configurations (blue surface).
We can now only make use of half of the threads on a block that would keep half
of the threads on GPU free. One method to overcome this problem is to fill each
multiprocessor with two blocks to make most use of the hardware.

Filling the multiprocessors with two blocks might solve the hardware problem,
however, cluster sizes are temperature dependent and vary significantly making
cluster algorithm still inefficient. There will be many threads waiting until the
largest cluster has been formed. To fully comprehend this, imagine that in a system
with size L = 16 having 256 spins, on one thread the cluster has 20 spins, but on
another thread a cluster has 120 spins. On the first thread with a smaller lattice
size, the search for spins will end much earlier than for the larger cluster size.
Therefore, before we can send all the information back to CPU, we have to wait
for the thread which forms the largest cluster and thereby take the longest time to
finish. One could consider other methods to work around this, however we have
used the algorithm as it is and the time spent by the cluster kernel is the time spent
in forming the largest cluster.

Nonetheless, the equilibration speed up we gain from the Houdayer cluster al-
gorithm is greater in magnitudes compared to the efficiency loss on a GPU. This
fact motivates us to use the cluster algorithm on GPUs. Here we would like to
mention that the speed up in spin-flip times is still 100 times larger compared to a
single CPU. We will discuss performance in a later part of this section. In Fig. 4.4,
we show a full schematic diagram of the implementation of Metropolis and HCA
on GPU. Parallel tempering is done on a CPU, hence it is not shown in this figure.

Now we summarise the full algorithm including Metropolis, parallel tempering
and Houdayer cluster algorithm in the following steps:

1. Initialise all variables in the same way as described for the Metropolis update.

2. Start the Monte Carlo loop for Monte Carlo steps.

3. Call the Metropolis kernel to update the spins parallelly on each thread given
by a coordinate as seen in Fig. 4.3

4. Copy the required arrays like energies etc. to the host for measurements.

5. Call the cluster algorithm kernel for forming the cluster and updating the
spins according to the Houdayer cluster algorithm.

• The overlap configurations are formed by qii(i, j, k) = sii(i, j, k)sii(i, j, k),
where ii is the spin index running from 0 to L2 − 1.
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Figure 4.5: Benchmarking energies for: (a) two dimensional spin glass with bi-
modal couplings; (b) two dimensional spin glass with Gaussian couplings; (c) three
dimensional spin glass with bimodal coupling. The blue data is from different
sources which are discussed in the text.

• After the spins are flipped according to the Houdayer cluster algorithm,
recalculate the energies.

6. Run a loop for NT temperatures to perform one parallel tempering update for
a pair of neighbouring temperatures on the host.

4.2 Verification of the physical results

The implementation described in Sec. 4.1 needs to be tested for producing the phys-
ical results. Therefore, we use average energies as the benchmarking variable to test
program. In Fig. 4.5, the blue data is fromour simulations and the red data is either
from the literature or produced by other methods. For example in Fig. 4.5(a) we
compare our results to those found in Ref. [195] for a bimodal two-dimensional spin
glass of system size (16× 16). The data is similar within errorbars, however, the er-
rorbars are too small to be observed on the plot. In Fig. 4.5(b), we show energies as
a function of temperature for the spin glass with Gaussian couplings. The red data
line is produced by an exact method and the blue data points are the results from
our simulations on GPUs. For this case too we find an excellent agreement between
these results. In Fig. 4.5(c) of the panel, we show results for a three-dimensional
system with bimodal couplings. Here we show a comparison between the results
from population annealing algorithm [196]. Results for all these cases show excel-
lent agreement. Hence, we conclude that for the energy calculations or for finding
the ground states, the program can be used in its current state.
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4.3 Performance

To test the performance of our implementation, we measure the average spin-flip
time given by:

tpsFlip =
tav

NT NRNCNMCSN
, (4.5)

where tav is the wall clock time spent on the kernel during the simulation, N = Ld

is the number of spins with d being the dimension of the system and NMCS is the
number of Monte Carlo steps in the simulation. We measure the time of different
kernels in the code to analyse the performance for each kernel. The measurements
are done on NVIDIA GTX 1080 GPU. In Ref. [194], it was shown that multi-spin
coding gives a vast improvement in performance. However, for the use of the
Houdayer cluster algorithm (HCA) one has to unpack the spins again. It has to be
tested how much damage such unpacking would do to the multi-spin code.

The GPU algorithm is tested for the spin glass with bimodal coupling in 2D and
3D. The 2D model is also tested for the system with Gaussian couplings.

4.3.1 Two-dimensional system with bimodal couplings

In this case the bonds can take ±J values which are randomly picked from a bi-
modal distribution. In Fig. 4.6, the performance of the algorithm is illustrated in
multiple sub-figures. In the upper row, we analyse the performance of the Metropo-
lis algorithm. Fig. 4.6(a) demonstrates the dependence of the spin-flip time on the
system size. The horizontal axis shows the number of Monte Carlo steps. It is evi-
dent from the figure that after approximately 26 MCS the system equilibrates in the
spin-flip times. In Fig. 4.6(c), spin-flip times are plotted as a function of the sys-
tem size. We observe that for smaller system sizes spin-flip times are large. After
a certain system size (L ≈ 30), the spin-flip times settle to a constant value. This
is due to the fact that the larger system sizes have more work to do in the spin
flipping and spend more time on the GPUs. Therefore the data is not synchronised
very often with the host device (CPU). The smaller systems sizes have less spins to
flip and need to synchronise more often with the host device. Fig. 4.6(b) in the top
row shows the performance as a function of filled blocks on the GPU. The η is the
efficiency given by:

η =
tmax
psFlip

tpsFlip
. (4.6)

tmax
psFlip is the maximum spin-flip time. When η is unity, the program is most efficient.

Note that the spin-flip times varies with the number of blocks filled on the GPU.
Using the value of η, we can identify the number of blocks for which the program
is most efficient. Therefore, as a consequence of the GPU design, the number of
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Figure 4.6: In first column, the spin flip time is shown as as function of Monte-Carlo
steps. In the middle column, the inverse of spin flip time for the peak performance
for three different system sizes is demonstrated for a system with bimodal cou-
plings in 2D.

thread blocks is chosen in a way that all multiprocessors are fully filled, the perfor-
mance is maximised. Therefore, we expect the same behaviour from our program.
In Fig. 4.6(b), we observe that the performance is best when the number of filled
blocks is a multiple of the GPU multiprocessors. This is the ideal behaviour as
described by the CUDA developers. In the bottom row of 4.6, we look at the per-
formance of the Houdayer cluster algorithm (HCA). Fig. 4.7(d) has the same axis as
Fig. 4.6(a). We see a more systematic increase in spin-flip times with growth in the
system size. We can understand this as we expect the cluster sizes to get larger for
larger system sizes and the variance in the clusters sizes will be greater. Hence, the
performance will be weaker. In Fig. 4.7(f), we observe the L dependence of the spin
flip times. We see larger error bars, hinting at the vast fluctuations. In Fig. 4.7(e), the
dependence of the performance on the number of filled blocks on GPU is shown. It
is evident that the best performance is unique. There is a single peak and when all
the multiprocessors are filled once. If one compares Figs. 4.6(b) and 4.7(e), it can be
concluded that the best performance is when each multiprocessor is filled once. For
the Metropolis there are multiple peaks with maximum efficiency. However, there
is a unique peak for HCA. This peak as evident in Fig. 4.7(e) is for all system sizes
larger than L = 10 at a single point.
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Figure 4.7: Same as in Fig. 4.6, but for a system with Gaussian couplings in 2D.

4.3.2 Two-dimensional system with Gaussian couplings

In this part, the performance results for the Gaussian couplings are discussed. In
figure 4.7, the performance of the algorithm is illustrated in multiple sub-figures. In
this case, the couplings are generated from a Gaussian distribution with zero mean
and unit variation. As explained above, in the top row, we analyse the performance
of the Metropolis algorithm. There are no anomalies in the left figure. In the top
right figure, spin-flip times are plotted as a function of the system size. We observe
a flattening of the spin flip times with respect to the system size within the error
bars. The middle figure of the top row shows the performance of GPU as a function
of filled blocks on the GPU. The efficiency η behaves as expected from the CUDA.
For HCA in the lower panel, we observe a systematic growth in the spin-flip times.
For the Gaussian case, error bars are smaller in the bottom right figure. This could
be because, for the bimodal case, we have a very high degeneracy, hence many
possibilities of forming different clusters. In the middle of the bottom panel, the
dependence of the performance on the number of blocks is shown. There is a single
peak and when all the multiprocessors are filled once. One also sees that if we fill
2NB multiprocessors, the efficiency is still good but not for all system sizes.
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Figure 4.8: The performance plots for 3D spin glass with bimodal couplings.

4.3.3 Three-dimensional system with bimodal couplings

We also tested the code for a three-dimensional spin glass system with bimodal
couplings. We demonstrate the performance analysis in Fig. 4.8. All the subfigures
represent the same analysis as in Figs. 4.6 and 4.7. The spin-flip times are larger
compared to the two-dimensional case. There are no anomalies in this case. The
spin-flip times become consistent for the larger system (L > 8) sizes. In Fig. 4.8(a),
the behaviour is similar to the two-dimensional system. As a consequence the
value of spin-flip time settles down to a constant around the same number of spins
(83 202) for the both three dimensional and two dimensional cases in Fig. 4.8(c). The
efficiency η also follows the CUDA benchmarked behaviour in Fig. 4.8(b).

The behaviour of η for the cluster algorithm in three dimensions is also similar
to the two dimensional in 4.8(e), however the spin-flip times are saturating to a con-
stant value in Fig. 4.8(f). The reason behind this different behaviour could be that
the Houdayer cluster algorithm in three-dimensions has some drawbacks and does
not work similarly as in two dimensions. The three-dimensional system is listed
here for completeness, it is evident that the method represented in this chapter can
be used to simulate a three dimensional system, however for the cluster algorithm
further investigations are required. In this thesis, the central point of the research
is the two dimensional spin glass. Therefore, no further investigation about the
cluster algorithm is discussed here. It should be noted that the peak performance
for the cluster algorithm is always taken from the second peak where the number
of blocks is twice the number of multiprocessors.
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4.3.4 Parallel tempering on CPU

It is mentioned above that the Metropolis and cluster algorithms are simulated on
GPUs, however the parallel tempering part of the code is done on CPU. Irrespective
of the dimension, for the same number of temperatures the cost in terms of time on
a CPU is the same. Therefore, instead of repeating the same plot three times here,
we discuss only the two dimensional spin glass with bimodal couplings in Fig. 4.9.
Parallel tempering swaps happen only NT − 1 times, whereas the spin flip sweeps
happen L2 times. Swap to sweep ratio for larger system sizes is tiny. Therefore, the
total time is not as much affected by the parallel tempering. We plot the time spent
in parallel tempering in each swap normalized by L2 in Fig. 4.9. It is visible that for
the larger system sizes the time spent in parallel tempering differs by an order of
magnitude from spin flip time. The total time spent in one spin-flip in the program
can be written as:

ttotal
psFlip = tMetropolis

psFlip + tHCA
psFlip + tpt. (4.7)
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Figure 4.9: The cost of parallel tempering calculated per spin.

4.4 Summary

We demonstrated that parallel tempering and the Houdayer cluster algorithm can
be used to simulate disordered systems on massively parallel architectures. Due to
the favourable relation of performance to price and power consumption in GPUs,
they become the natural testing platform for our problem. To be representative of
typical installations accessible to users, we used Nvidia GPUs from the consumer
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series (GTX 1080). The code was also tested on a professional computing card (Tesla
K20m), however the spin flip times were half as fast as on the GTX 1080 which have
almost double the multiprocessors as compared to the Tesla K20m. In comparison
to a single CPU core a speed up of 220 times was gained for the Metropolis kernel
of the algorithm. Systems like spin glass are parallel in nature due to the large
number of disorders required to get an averaged physical result.

We observe that a two-dimensional spin glass with Gaussian couplings has
larger spin flip times compared to the case with bimodal couplings. This is be-
cause the bonds are floats and all the physical variables turns out to be floats. For
the cluster-algorithm speed up is between 50-80 times. This is not as good as the
Metropolis, however this is still an excellent improvement. We also tested the time
spent in swapping of temperature indices and energies in the parallel tempering.
The time spent per spin in the parallel tempering is at least an order of magni-
tude smaller. Therefore, doing the parallel tempering on CPU does not make the
implementation inefficient.

For three dimensional systems the speed up is about 140 times compared to
the serial CPU code. The cluster algorithm in this case is just for the purpose of
demonstration of the implementation. There are some problems associated with
the efficiency of this algorithm for three dimensional spin glass systems [186, 187].
Further studies and tests are required to use this algorithm for three dimensions.
In this thesis three dimensional spin glasses are not investigated, therefore this
implementation can be used as is. We use this method to study the random-field
Potts model and two dimensional spin glasses in the next chapters.
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Chapter 5

Approximate ground states in the
random-field Potts model

The random-field Potts model (RFPM) was introduced in Sec. 2.2.2. In this chap-
ter, we investigate the ground state (GS) of the RFPM using the graph cut (GC)
method. The results of the energy minima produced by this heuristic algorithm
are compared to those found by an appropriately tuned parallel tempering (PT)
method that is configured to find ground states for the considered system sizes
with high probability. Interestingly, it is observed that as a trend, the GC method
found the same states in a fraction of the time. In fact in some cases, the PT method
manages to find better estimates of the energy minima as compared to the GC, but
the caveat is that the running time grows at least exponentially with system size
and is applicable for restricted system sizes. The GC method on the other hand
efficiently computes good quality local energy minima, close to the exact GS. The
run-time typically scales linearly with the system size, which, therefore, allows to
simulate large systems. Consequentially, for a first exploratory study of the RFPM,
the GC method is used in d = 2, 3.

The work presented in this chapter has been published in Ref [197]. This chapter
is an overview of the same work and is organised as follows. In Sec. 5.1, the model
and our methodology for studying the GS problem is described. Specifically, we
describe the parallel PT method. In Secs. 5.2 and 5.3, the detailed numerical results
for the GS study of RFPM are presented, using GC method and are compared to
the GS results of the GC method to the corresponding results from the PT method.
Finally we conclude the chapter in Sec. 5.4

5.1 Model and methodology

In Chap. 2.2.2, two different Hamiltonians for RFPM were introduced. For com-
pleteness, we describe here the variant of the Hamiltonian used in this study. Two
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numerical approaches, the graph-cut approach and parallel tempering are used for
determining ground states of samples.

5.1.1 Random-field Potts model

The Hamiltonian [90] describes the ferromagnetic q-states Potts model

H = −J ∑
〈ij〉

δsi,sj ,

where the si ∈ {0, 1, . . . , q− 1} are the Potts spins, and 〈ij〉 denotes summation over
nearest neighbours only. The present study is done on square and simple cubic
lattices with periodic boundary conditions. As described in Sec. 2.2.2, the coupling
of the spins to random-fields can take a variety of different forms [96, 98, 102]. A
symmetric coupling of continuous fields can be expressed as [96]:

H = −J ∑
〈ij〉

δsi,sj −∑
i

q−1

∑
α=0

hα
i δsi,α, (5.1)

where {hα
i } denotes the quenched random-field at site i and on state α. Hence, in

this model, the random-field at each site has q components, and we take each of
these to follow a normal distribution. To separate the disorder strength from the
random instance we define hα

i = ∆εα
i and εα

i are then drawn from a standard normal
distribution, i.e.,

P(εα
i ) =

1√
2π

exp
(
−εα

i
2/2
)

. (5.2)

For the case q = 2, the Hamiltonian in Eq. (5.1) has two different random-fields
h0

i ≡ h+i and h1
i ≡ h−i for the two spin orientations. On other side the usual

definition of the RFIM has only one random-field acting on a particular spin [198].
For this case the Hamiltonian given by Eq. (5.1) can be written as

H = − J
2 ∑
〈ij〉

[σiσj + 1]− 1
2 ∑

i
[(h+i + h−i )σi + (h+i − h−i )],

where σi = ±1 are Ising spins. Hence, it can be concluded that up to a constant
shift, the two states RFPM of Eq. (5.1) and with the distribution given by Eq. (5.2)
at coupling J and random-field ∆ is equivalent to the random-field Ising model
(RFIM) at coupling J/2 and field strength ∆/

√
2.

In Chap. 2, an alternative model with a discrete distribution of disorder is also
introduced. However, for this study, the model was restricted to Eq. (5.1). It should
be noted that for the continuous form (5.1) a unique ground state is expected, while
the alternative form in Eq. (2.27) might admit (extensive) degeneracies depending
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on the choice of ∆. While the discreteness of the form Eq. (2.27) might have some
advantages for the efficiency of simulation codes, any possible subtleties associated
with degeneracies should be avoided for development of a new algorithm. There-
fore, the Hamiltonian given by Eq. (5.1) is used in this work.

5.1.2 Graph-cut method

In Chap. 1 we discussed the NP hardness of finding the GS for RFPM. It is also
mentioned that PT is not enough to deal with the problem in the thermodynamic
limit. Therefore, an efficient approximation algorithm used in computer science
[199]is adopted to the systems with Potts model like Hamiltonians. The method is
composed for a general energy function of the form

E({si}) = ∑
i,j

Vij(si, sj) + ∑
i

Di(si), (5.3)

where in the original application si refers to the colour label of the pixels of a (pla-
nar) image, but the interaction matrix Vij can be constructed in a way that also more
general graphs and three-dimensional systems can be modelled. The RFPM Hamil-
tonian in Eq. (5.1) is clearly a special case of this general form. Each site i is assigned
a label si ∈ {0, 1, . . . , q− 1}. The function Vij(si, sj) gives the cost of assigning labels
si and sj to the sites i and j, while the function Di measures the penalty (or cost)
of assigning the label si to the site i. The approach taken in Ref. [199] is to put a
constraint on the optimisation problems derived from Eq. (5.3) by reducing the q
colours problem to an effective two-colour problem. This is equivalent to the RFIM,
the ground state for this constraint problem can be determined exactly and in poly-
nomial time using the established min-cut/max-flow algorithms. The idea in the
current study is in the same spirit as the embedding of Ising variables used in com-
bination with minimum-weight perfect matching in dealing with continuous-spin
glasses on planar lattices [200, 201].

In Ref. [199] two such approaches proposed are the α-β-swap and the α-expansion
moves. For the α-β-swap one picks two labels α 6= β ∈ {0, 1, . . . , q− 1} and freezes
all labels apart from α and β. Hence, this constraint makes the problem (5.3) equiv-
alent to a two-label problem on the sites with labels α or β that can be solved by
min-cut/max-flow. This step is repeated for all pairs of labels, resulting in a cycle
of q(q− 1) ≈ q2 steps. For the α-expansion move one picks a label α which is then
frozen. All other pixels are given the alternative of either keeping their current label
or being flipped into the α state, which is again a binary choice, and min-cut/max-
flow can solve the resulting constraint problem. A cycle of the α-expansion takes q
steps. In both algorithms, cycles are repeated until the methods have converged to
a local minimum and the configurations do not change any further.
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L 8 12 16 20 24 32 40

NT 16 16 16 16 16 32 32

φ 1.13 1.13 1.13 1.13 1.13 1.14 1.14

Table 5.1: Optimised values of φ according toEq. (3.18) and the number of temper-
ature replicas NT for different lattices with L2 spins used in the parallel tempering.

While the such algorithms do not guarantee to find ground states, they have
been reported to yield excellent approximations to the ground states and are exten-
sively used in computer vision. An upper bound on the energy of the local minima
can be found for the α- expansion [199], which is given by

E( f̂ ) ≤ 2cE( f ∗), where c =
maxsi 6=sjV(si, sj)

minsi 6=sjV(si, sj)
. (5.4)

For the Potts model, Vij(si, sj) ≡ −Jδsi,sj , yielding c = 1. So the expansion move
provides a local minimum within a factor of two of the global minimum. To check
the effectiveness of their algorithms, the authors of Ref. [199] experimented on a
variety of computer vision problems such as image restoration with multiple labels,
stereo and motion. These problems are solved by computing a minimum cost multi-
way cut on the graph. A comparison of their results with known ground states
revealed 98% accuracy [199]. This method has not been applied to RFPM previously.
In next sections of this chapter, we benchmark the ground states of a set of chosen
disorders via parallel tempering simulations. We compare these ground states to
the lowest states given by graph cut method.

5.1.3 Parallel-tempering

The RFPM has a rugged free energy landscape with many minima and maxima.
The evolving systems get trapped in these meta-stable states, and the system does
not relax to the ground state. Any reasonable Monte Carlo sampling, therefore, has
to overcome energy barriers and cross from one basin to another to reach the global
minimum. Established approaches to achieve this are simulated annealing [202]
and parallel tempering [203, 204]. It has been shown that among the Monte Carlo
methods parallel tempering consistently outperforms simulated annealing as a tool
for ground-state searches in disordered systems [205]. But note that population
annealing [206] might be another interesting contender in this respect [205, 207].
We will hence focus on parallel tempering.

In Chap. 4 PT is introduced. The method for tuning the temperature is also
discussed in the same chapter. The values of γ exponents used here are listed in
table 5.1. As a realisation of Markov chain Monte Carlo that satisfies ergodicity
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Figure 5.1: Schematic diagram showing the variation of E with time t in the PT
runs (in MC steps). The first occurrence of the minimum energy E0 is at onset time
t = t0. The corresponding state is accepted as a ground state if no lower energy is
found up to t ≥ 10t0.

and detailed balance, PT is guaranteed to converge to the equilibrium distribution.
PT performs much better than the local updates alone, however, for systems with
complex and rugged energy landscape such as the RFPM the equilibration times can
be very long. Moreover, they increase steeply with system size and with lowering
Tmin. Therefore, for bench marking the results, the study is constrained to not too
large systems. For the considered system sizes, PT can find ground states for the
overwhelming majority of the samples. To ensure this, we rely on the following
bootstrapping procedure:

1. We run all samples for a given system with side length L and number of states
q for some initial time chosen to ensure equilibration of an average sample
(determined, for example, by measuring the average tunnelling time).

2. For each sample, we determine the onset time t0 = t0({hα
i }), i.e., the time

when the program determines the lowest energy in the run for the first time.

3. We re-run each sample with a run-time of t({hα
i }) = 10× t0({hα

i }).
4. For samples where a new, lower state is found in the extended runs, we repeat

this procedure until the condition t = 10× t0 is met for all samples.
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Figure 5.2: Disorder-averaged onset times t0 for finding the ground states of the
d = 2 RFPM using parallel tempering. The data is plotted on a log-linear scale as
a function of (a) the number of Potts states q for L = 16, and (b) the system size L
for q = 3. The data are averaged over 1536 realisations of quenched random-fields
according to Eq. (5.2) with ∆ = 1. The shaded area shows the range that contains
the onset times for 2/3 of the samples.

This procedure is illustrated in Fig. 5.1. This method finds ground states with
very high reliability. For the system sizes considered, the failure probability was
estimated to be of the order of 1 in 1000. For none or the samples considered here is
a state lower than the reference state determined from the procedure above found
in any of the other runs (PT or GC).

The simulations are performed for system sizes 8 ≤ L ≤ 40 and number of states
2 ≤ q ≤ 10 for 1536 random-field configurations. The resulting average and median
onset times of the ground states are shown in Fig. 5.2. The shaded area indicates
the level of disorder fluctuations. These plots are shown on a linear-log scale. In
Fig. 5.2(a), we observe that t0 increases slightly slower than exponentially with the
number of Potts states q. In Fig. 5.2(b), we observe an exponential increase of t0 for
system sizes L ≥ 16. This is expected behaviour for any process tailored to ensure
the exact ground states for NP-hard problems. As the mean values are larger than
the medians, the distribution is asymmetrical and tail-heavy for all values of q and
L.

5.2 Benchmarks

We first consider the behaviour of the GC method in its own right before turning
to a detailed comparison of this technique to the PT method. The bulk of our
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Figure 5.3: Energy histograms of final states obtained from GC for the q = 3 RFPM
(top row) and the q = 4 RFPM (bottom row) on a 642 lattice. The histograms are
obtained from 10 000 initial configurations {si} for a fixed disorder configuration
{εα

i }.

runs were performed in two dimensions, but some of the timing runs discussed in
Sec. 5.2.3 were repeated for cubic lattices.

5.2.1 Approximate ground states from GC

First, the GC method is tested to find the approximate ground states in RFPM.
The minimum energy states are recorded for several runs with different initial la-
belling {si} of a fixed disorder configuration {εα

i }. Each run might give a different
minimum state close to the ground state which is referred to a meta-stable state.

In Fig. 5.3 histograms of the energies to meta-stable states as found from GC
method are shown. Histograms for q = 3 and q = 4 with varying ∆ are shown in
the top and bottom row respectively. The minimisation runs are performed on a 642

lattice for 10000 runs of different initial conditions. E = H({si}) is the total energy
of the RFPM from the Hamiltonian in Eq. (5.1) (Note that E is negative and we have
plotted −E). For ∆ = 0.5, the same energy state for several runs of different initial
conditions is observed, hence the histogram shows a sharp peak corresponding to
that energy state. With the increase in the disorder strength ∆, the number of energy
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Figure 5.4: Variation of the standard deviation of energy [σE] from runs of the GC
method as a function of disorder amplitude ∆ for the d = 2 RFPM with (a) q = 3,
and (b) q = 4. All data are averaged over 100 disorder realisations {εα

i }, and 1000

initial states {si} for each disorder realisation. Clearly, [σE] grows with lattice size
L, and also with number of states q. The scaled data in the insets demonstrates that
[σE] ∼

√
N = L, i.e., there are no critical fluctuations in this range of ∆-values.

states is increased. Therefore, a distribution with width is observed as we move
from left to right in the top or bottom row. The GC method, therefore, does not
produce the exact ground states of the RFPM. The same behaviour can be observed
in the bottom row of Fig. 5.3 for the q = 4 RFPM. However, it can be clearly seen
that the histograms are wider as compared to q = 3 and more meta-stable states are
observed.

We use the standard deviation in energy, σE =
√
(E− E)2 to quantify the energy

spread in the histogram. The mean of energies obtained for different runs of GC
for a given disorder realisation are denoted as E. In Fig. 5.4, the disorder averaged
standard deviation [σE] in energy is plotted with respect to disorder strength ∆ for
q = 3 and q = 4 RFPM is shown. The system studied is a square lattice (L2) of
linear sizes L = 32, 64 and 128. The energy spread is determined from 1000 inde-
pendent runs for a fixed disorder realisation and then averaged over 100 disorder
realisations. It can be observed from the figure that the energy spread grows with
increasing L. In order to check the L-dependence of [σE], we plot σE/

√
N in inset of

Fig. 5.4, which shows a nice data collapse. Therefore, σE ∼
√

N, as E ∝ N, it yields
the relation: [

σE

E

]
∼ 1√

N
, (5.5)
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Figure 5.5: Plot of [σE] vs. q for the d = 2 RFPM with ∆ = 1.0, and indicated
lattice sizes. The statistics is the same as in Fig. 5.4. The spread in energy of the GC
method states increases with q. The inset shows that [σE] ∼

√
N = L.

which means that the energy fluctuations about the mean energy will vanish in the
thermodynamic limit, N → ∞. The same behaviour is observed for q = 3 (left)
and q = 4 (right). However , it is evident that for q = 4, the energy spread is
larger. Therefore, one interesting aspect is to study the energy spread behaviour
with respect to the number of Potts states q. This is shown in Fig. 5.5, where [σE]
vs. q is plotted. The data sets correspond to ∆ = 1.0. The energy spread shows
an increase with increasing number of Potts states q, that implies that the number
of meta-stable states increases with increasing q. As a consequence GC method
on average find states of higher energy. The inset of this figure again confirms
σE ∼

√
N.

5.2.2 Comparisons with PT

In Sec. 5.1.3 of this chapter, a procedure to find the ground states with a very high
probability is described. This method is used to create a database of samples for
which the ground states are known with very high probability. It is possible to
benchmark the GC method against quasi-exact results and PT runs.

In this section, the robustness of the GC method and PT algorithm are tested
against each other. To make a direct comparison to the PT simulations the length
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Figure 5.6: Disorder-averaged success probability of finding the ground state from
GC and PT runs for 2d RFPM as a function of q (L = 16, left panel) and L (q = 3,
right panel). The GC data correspond to one initial state per disorder sample,
while the run-time in PT is adapted to yield exactly the same success probability
as the corresponding GC run (see main text). All data are averaged over 1536

configurations of the random-fields.

of simulation is tuned to find the ground state with the same average success prob-
ability as the GC method. For a good comparison of the performance of GC and
PT, the latter can be tuned via the number of Monte-Carlo steps to give the same
average success probability for a given disorder sample as GC. This does not re-
quire further computational effort and can be determined from the onset times in
Sec. 5.1.3: one can choose the number of steps t∗ for all runs in such a way that the
fraction n(t0)/Ns of samples with t0 < t∗ exactly equals the success probability P0
observed for GC. Ns = 1536 is the total number samples studied. This is illustrated
by the data points for PT, also shown in Fig. 5.6, that fall on top of the results for
GC.

In Fig. 5.6 , we demonstrate the probability of finding the actual ground state
with respect to q (left panel) and L (right panel). It is observed that the probabilities
decay strongly with increasing q and L. Both plots show an exponential decay
behaviour which is expected from applying a polynomial-time algorithm to an NP-
hard problem. It should be noted that the values of P(E0) are calculated for GC runs
with a single initial condition. It takes only fractions of a second which is much less
than the time taken by PT (see the discussion of run-times below in Sec. 5.2.3. In real
applications of GC, one would normally perform runs for many initial conditions
and pick the state of lowest energy. This approach is a generic method of improving
global optimisation algorithms [201, 208]. The success probability of a sequence of
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Figure 5.7: Accuracy [ε] defined in Eq. (5.7) of GC and PT runs for the d = 2
RFPM with L = 16 as a function of q (left panel, L = 16) and L (right panel,
q = 3), respectively. Both methods are tuned to have the same success probabilities,
as shown in Fig. 5.6. The data are averaged over 1536 disorder realisations with
∆ = 1.0.

m runs with different initial conditions follows an exponential,

Ps({hα
i }) = 1− [1− P0({hα

i })]m. (5.6)

Hence for a certain target success probability Ps, the required number of runs fol-
lows from

m({Jij}) = log[1− Ps]/ log[1− Pn({Jij})].
For the P0 = 0.00187 for q = 3 and L = 40 shown in the right panel of Fig. 5.6, for
example, using m = 2460 runs ensures Ps = 0.99

While the success probabilities of one GC run and the PT simulation with t∗

steps are identical, this does not imply that the both methods find the same states
where they do not find the ground states. Therefore, it is important to quantify the
quality of approximation in these cases. In this work, the relative excess energy of
the minimum energies returned by both algorithms above the ground state is used
as the quality of approximation,

ε =
Emin − E0

E0
. (5.7)

This quantity is called accuracy. In Fig. 5.7 we show this quantity as a function of q
for a fixed L = 16 in the left panel and as a function of L for fixed q = 3 in the right
panel. The accuracy at the same success probability is approximately comparable
as a function of L and for q = 3 in the considered regime. The accuracy from PT
seems to be better compared to the accuracy from GC. Note that [ε] = 0 for GC at
q = 2 as this method finds exact ground states for the RFIM.
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respectively, with the true ground states for the d = 2 RFPM as a function of (a) q for
L = 16, and (b) L for q = 3. The averaging is done over 1536 disorder realisations
with ∆ = 1.0.

5.2.3 Run times and computational complexity

The accuracy of both the models is of the same order for both methods. Therefore,
a crucial question is to know the overlap between the ground states. Are the states
found by GC method or PT close to the ground state or far in the configurational
space? The overlap is defined as:

O =
1
N ∑

i
δsi,s′i

, (5.8)

where si and s′i are the spins at site i in the ground state spin configuration and GC
method or PT lowest state spin configuration. In Fig. 5.8, average overlap between
the ground state and the GC method lowest states is shown as a function of q and
L. In Fig. 5.8 (right), We observe that for a fixed system size, the overlap between
the lowest states from GC method or PT and the ground states decreases with the
system size L. For a relatively small system size (L = 16), the overlap of lowest
energy state of PT and the ground state is always larger than 85% even for the
larger q values. But, for GC method it drops rapidly to 65% for q = 10. For a
fixed value of q = 3 in Fig. 5.8 (left), we see that the overlap is larger than 90%
for PT and GC method, but the fall is steeper for PT. For L < 32, we notice that
the overlap with respect to PT is larger than the GC method for the same L values.
The overlap value saturates for L ≥ 20. Appropriately at L = 32, we observe a
crossover between GC method and PT. Here, we can conclude that the fall in the
overlap of GC method is slower compared to PT. Hence for the larger system sizes
GC method is a better method compared to PT. Now we discuss the time taken
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Figure 5.9: Disorder-averaged run-time [r] of the GC method for the 2d RFPM as
compared to CPU and GPU implementations of the PT method tuned to achieve
the same success probability.

by the GC method to find an approximate ground state of the RFPM. We measure
the CPU time r (in seconds) that the α-expansion variant of GC used here takes to
reach its final state. We ran our codes on an IBM cluster with 2.67 GHz Intel Xeon
processors. The simulations are performed for ∆ = 1.0, and r is averaged over 1000

disorder samples. Fig. 5.10 (top row) shows the run-time [r] for the q-state RFPM
in d = 2. We plot [r] as a function of (a) the total number of spins N = L2 for
q = 10, 50, 100; and (b) q for L = 128, 256. The solid lines are power-law fits with
the specified exponent. Clearly, [r] is linear in N and q for the q-state RFPM. This
is in line with the general discussion of the time complexity of the method given
in Sec. 5.1.2. A similar analysis for the RFPM in three dimensions is summarised
in the bottom row of Fig. 5.10 which shows that also in this case the run-time is
approximately linear with respect to N and q.

We finally consider the scaling of run times of the GC and PT techniques with the
latter scaled to achieve the same success probability in finding ground states as the
former. We compare the timings of the GC method to two different implementations
of PT, one regular CPU code and a highly optimised implementation on graphics
processing units (GPUs) as discussed in 4. The GPU code is slightly faster than
GC for small systems, but for larger system sizes the GC approach becomes more
favourable as PT shows a clearly super-linear increase of run-times there. For the
system sizes probably used in practical studies that are significantly larger than the
sizes than the L ≤ 40 considered with quasi-exact ground states here, we expect a
substantial advantage for GC over PT. The GPU code is about 128 times faster than
the CPU implementation. The corresponding run times for the two-dimensional
RFPM are shown in Fig. 5.9, using an Nvidia GTX1060 GPU. The times for the
GC approach depend linearly on q and N = L2 to a very good approximation as
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already seen above. The CPU variant of PT is always significantly slower that GC
at the same success probability.
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Figure 5.10: Disorder-averaged run-time [r] (in CPU sec.) for determining the final
state by the application of the α-expansion GC method to the RFPM in two dimen-
sions (top row) and three dimensions (bottom row) as a function of the number
of spins N = Ld and the number of states q, respectively. The data are averaged
over 1000 disorder realisations with ∆ = 1.0. The solid lines are power-law fits
with the specified exponents, and demonstrate that the run-time is linear in N and
approximately linear in q.
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to have purely ferromagnetic ground states. The data are averaged over 100 con-
figurations of the random-fields. (b) The breakup length scale Lb, defined as the
system size L where PFM(L, ∆) = 0.5, versus the inverse random-field strength 1/∆
for q = 2, 3, and 4. The solid lines show fits of the functional form Lb ∼ eA/∆ to the
data, where A = 3.6± 0.03.

5.3 Scaling of the breakup length

We finally consider an application of the methods outlined above to exploring the
physical properties of the RFPM in two dimensions. Given the absence of finite-
temperature ordering in the 2d RFIM [209], it seems fairly clear that the RFPM also
does not admit order at T > 0 [96]. Instead, one expects the presence of ferromag-
netic domains that break up at a length scale Lb(∆) similar to what is observed for
the RFIM [209, 210]. At very small disorder, the ground state is purely ferromag-
netic where all spins have the same label, while at large disorder the ground state
breaks into domains of q labels. To determine Lb, we follow Ref. [210] and count the
fraction of samples with a purely ferromagnetic ground state, defining the proba-
bility PFM(L, ∆). This quantity is shown in Fig. 5.11(a) as determined from GC for
q = 3 and a number of different lattice sizes L. The breakup length Lb can then be
defined from the condition PFM(L, ∆) = 0.5 [210]. A plot of Lb vs. 1/∆ is shown for
the cases q = 2, 3, and 4 in Fig. 5.11(b) using a semi-logarithmic scale. We find that
fits of the simple exponential form

Lb ∼ exp(A/∆) (5.9)

to the data work well, and we arrive at A = 3.6± 0.03 as a q-independent constant
that depends only on the disorder distribution. We note that this scaling is not
consistent with that proposed in Ref. [209, 210] for the RFIM, but it is in line with
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what is found in numerical simulations of the RFIM in Ref. [211]. The reason for
this discrepancy might be the presence of only a rather weak curvature in a plot
of the types of Fig. 5.11(b), and one might need to go to rather small ∆ to see the
asymptotic behaviour.

5.4 Summary

In this chapter, a carefully tuned set of parallel tempering simulations is used for
creating a benchmark set of disorders for which the ground states are known with
a very high probability. This allowed measuring the success probabilities of find-
ing ground states for short parallel tempering simulations and for the graph-cut
method. It is observed that as a function of system size L the quality of the states
returned by graph-cut and parallel tempering techniques is quite similar for small
q and different system sizes. But the quality of graph-cut results worsens rather
quickly as q increases. The PT simulations are computationally much more expen-
sive than the corresponding GC runs for small L and different values of q. The
code used for PT simulations is a highly efficient GPU implementation but still fails
to top the GC performance. For larger system sizes there is a crossover and the
graph-cut approach starts to outperform even the GPU implementation of PT and
is likely asymptotically the most efficient approach. The success probability for the
very fast graph-cut method can be additionally increased by using repeated runs
and selecting the minimum-energy state found between them.

The main outcomes of this d = 2 study are as follows:

• The parallel tempering method guarantees ground states in the infinite run-
time limit, but the graph cut method gives approximate ground states in a
very short time ∼ O(N), irrespective of the number of states q.

• The graph cuts provide an excellent approximation to the ground states for
q = 3, 4. The overlap between the ground state and the final states obtained
from the graph cut is very high for smaller q (e.g., & 96% for q = 3) and
decreases as q is increased.

• For a fixed value of q = 3, the overlap between ground states and graph-cut
configuration saturates to a very high value of about 91% for L & 40.

The above conclusions illustrate that the graph cut method is suitable for the
study of a two dimensional ( d = 2) RFPM for lower q-values with large system
sizes. In particular, for q = 3, and 4, the lowest states found by the graph cut method
are very close to the ground states. The q-state RFPM has not received very much
attention due to the unavailability of efficient computational techniques. Although,
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it has great physical significance. This study sets the stage for investigating random-
field Potts model and similar disordered spin models in general, using the methods
based on graph cuts.
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Chapter 6

Spin glass with variable frustration

The basic concepts relevant for studying the phase transition in spin glasses are
introduced in Chap. 2.2.3. However, the discussion there was restricted to stochastic
frustration. In this chapter, we investigate the effect of changing the frustration of
SG samples while keeping the fraction of anti-ferromagnetic bonds constant. The
results are compared to the corresponding systems with stochastic frustration with
a focus on the spin-glass phase transition.

This chapter is organised as follows. In Sec. 6.1, we introduce the concept of
under-frustrated spin glass systems. The numerical method used for generating
such under-frustrated system from a given stochastic system is also described. In
Secs. 6.2-6.3, the physical quantities and concepts like equilibration are discussed. In
Sec. 6.4 and 6.5 the results related to the scaling and phase transition are discussed
for a system with Gaussian interactions and bimodal interactions, respectively. A
summary of the chapter is presented in Sec. 6.6.

6.1 Under and over-frustrated spin glass

In the present chapter, we study the phase transitions and criticality in under-
frustrated spin-glass systems. However, before one can study the criticality, it was
important to have an algorithm to construct under-frustrated spin glasses. The
concept of under-frustrated and over-frustrated spin glasses was described for hi-
erarchical lattices in Ref. [212]. In this work, the same idea was used to generate
under-frustrated systems. We apply Kawasaki-like dynamics to exchange the ran-
dom bonds for changing the frustration at a constant bond probability p. Once
the frustration content was set, and the samples are generated, Monte Carlo sim-
ulations are used to study the under-frustrated 2D Edward-Anderson spin glass
system. This algorithm can be used to generate over-frustrated or under-frustrated
systems as shown in Fig. 6.1. The black boxes and the green boxes represent the
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(a) Under-frustration, f = 0.2 (b) Stochastic-frustration (c) Over-frustration, f = 0.85

Figure 6.1: In above figures, black boxes and green boxes represent frustrated and
non-frustrated plaquettes respectively.

frustrated plaquettes and non-frustrated plaquettes respectively. The product of the
four bonds defines the frustration fplaq of a plaquette i.e the smallest closed loop of
the bonds

fplaq =
k−1

∏
i=0

Jij, (6.1)

where k is the number of total bonds forming the loop, Jij is the bond connecting
the sites i and j of the plaquette and i is the index of the bonds going from 0 to k− 1.
A plaquette is frustrated if fplaq < 0 and not frustrated otherwise. Figs. 6.1(a), 6.1(b)
and 6.1(c) show under-frustrated, stochastic-frustrated and over-frustrated systems
respectively. We define frustration of a system with periodic boundary conditions
as:

f =
1

dLd

dLd

∑
i=0

(
fplaq

)
i , (6.2)

where d defines the dimensions of a system, fplaq = ±1 and i is the running index.

The bond concentration is fixed to a value, p = 0.5. The red edges show a
negative valued and the blue edges show a positive valued bond respectively. The
Gaussian case is similar to the bimodal case. The sign of the product again deter-
mines if a plaquette is frustrated or not.

Algorithm to achieve a certain frustration

Step 0 Generate a random disorder with anti-ferromagnetic bond concentration
p = 0.5 on a two-dimensional lattice.

Step 1 Pick two bonds randomly on the lattice. If bonds have the same sign, pick
another pair else go to the step 2.
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Step 2 Exchange the two bonds. Each bond affects the frustration of two plaquettes.
Check if the frustration was increased or reduced by exchanging the bond. If
under-frustration need to be achieved go to Step 3a and for the over-frustrated
case go to step 3b.

Step 3a For under-frustrated case if after the exchange the frustration of the system
was reduced, accept the move.

Step 3b For the over-frustration case if after the exchange the frustration of the
system was increased, accept the move.

Step 4 The acceptance criteria is set in a way that the bonds will also be exchanged
if the desired frustration was achieved. The algorithm is similar to Kawasaki
algorithm.

Step 5 The simulation was run for a longer period of time even after achieving the
required frustration content so that the system was equilibrated and there are
no correlations.

This Kawasaki-like approach is a greedy algorithm. Throughout the algorithm
the number of negative and positive bonds was conserved, the change only happens
in the position of the bonds. However, it does not guarantee that there are no local
correlations introduced to the system. Therefore, one would numerically need to
test if local correlations are still present after many cycles of the algorithm. This can
be tested by measuring the average distance between frustrated plaquettes. If the
average distance between frustrated plaquettes stays the same as for the stochastic
case that means that these plaquettes do not create clusters on the lattice. If the
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Figure 6.2: Averaged minimum distance to next frustrated plaquette: (a) minimum
averaged distance for L = 16 and (b) for L = 32.
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average distance is increased or decreased very much, the clusters of the plaquettes
are formed. The two different distances measured here are "Euclidean distance"
and "Manhattan distance". These average distances are denoted as xav.

We see a comparison between the stochastic frustrated system and the under-
frustrated system in Fig. 6.2. The plaquettes are mapped onto the coordinates of
a lattice and then the distance was calculated between the coordinates. The data
represents Manhattan and Euclidean distances for both cases. Fig. 6.2(a) and 6.2(b)
show the data for systems with L = 16 and L = 32, respectively. It can be ob-
served that for both systems sizes the data from under-frustrated and stochastic
frustrated systems coincides with-in the error bars for both Manhattan and Eu-
clidean distances. Therefore, we can conclude that the average distance between
the plaquettes is same as in case of the stochastic system. Hence, there are no trivial
correlations.

6.2 Observables

We are interested to understand the criticality and phase transitions in under-
frustrated spin glasses. The quantities used to study critical behaviour are well
studied for the stochastic spin glasses. Mainly, one was interested in the Binder
cumulant, the spin glass susceptibility and the correlation length. To calculate these
quantities, one has to calculate the overlap parameter q and its higher modes like
q2 and q4. The overlap variable was given by:

q = ∑
i

sα
i sβ

i , (6.3)

where the spins sα
i and sβ

i belong to two independent replicas which are simulated
simultaneously at the same temperature and have the same disorder realisation
{Jij}. The Binder cumulant g for the spin glass was a function of the higher order
of overlap parameter

g =
1
2

[
3− 〈q

4〉
〈q2〉2

]
. (6.4)

where the square and the angular brackets indicate the quenched average over dis-
order and thermal average over disorder, respectively. The wave-vector dependent
spin glass susceptibility was defined as:

χSG(k) =
1
N ∑

i,j
[〈sisj〉2]eik.(Ri−Rj). (6.5)

For k = 0, one gets the spin-glass susceptibility:

χSG(0) =
1
N ∑

i,j
[〈sisj〉2], (6.6)
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Figure 6.3: Equilibration of the physical quantities in logarithmic bins. The total
number of MCS are MCS = 2n. In the top figure, one can see that the average
energy equilibrates much faster than q and χ in the middle and bottom figures
respectively.

and the second moment correlation length was defined as:

ξL =
1

2 sin(kmin/2)

[
χSG(0)

χSG(kmin)
− 1
] 1

2

, (6.7)

where k = (kmin, 0), kmin ≡ 2π/L, and χSG(k) was the Fourier transform of χSG(x).
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6.3 Simulation parameters and equilibration

In this section, the results of Monte-Carlo simulations are discussed. MC simula-
tions are performed on the square-lattice for bimodal and Gaussian couplings with
periodic boundary conditions. The simulations are done for stochastic and under-
frustrated spin glasses with several values of the lattice size L, with 8 ≤ L ≤ 76.
Length of the system is restricted L ≤ 55 for the spin glass with Gaussian coupling.
We employ the Metropolis algorithm, parallel tempering and Houdayer cluster al-
gorithm on GPUs as discussed in Chap. 4. For each lattice size we collect data in
the range Tmin ≤ T ≤ Tmax. The value of Tmin and Tmax are set as 0.17 and 1.4
respectively. The logarithmic binning was done with base 2 [187]. Every nth bin
has (2n − 2n−1) values averaged in it. The last bin contains the data for half of the
simulation. The average was calculated over 104 disorder samples for all cases. The
length of the simulation was set to be 224 Monte Carlo steps. Every Monte Carlo
step consists of NT − 1 parallel tempering trials (swaps) and L2 spin flip trials called
sweeps. The logarithmic binning was used to ensure the equilibration in the test
runs.

In Fig. 6.3 equilibration times for different systems are shown. The lowest tem-
perature takes the longest time to equilibrate. Hence, the plots show the equilibra-
tion for the lowest temperatures. Fig. 6.3(a) shows the equilibration of the energy
as a function of the number of bins. The MCS in each bin are exactly 2n, where n
was the bin number here. In Figs. 6.3(b), 6.3(c) and 6.3(d) the equilibration curve
for overlap parameter q, the fourth order of overlap parameter q4 and the spin-glass
susceptibility χ are shown.

6.4 Under-frustrated spin glass with Gaussian interac-
tions

The standard two-dimensional spin glass with Gaussian couplings does not show a
stable spin-glass phase at finite temperatures [213]. At any finite temperature, the
paramagnetic phase and only at T = 0 the spin-glass phase may exist. In Chap. 2,
the θ exponent was introduced in relation to the droplet picture. It was described
that the free energy cost of the lowest excitations of linear size L has Lθ dependency.
As there was no order at finite temperature, the value of θ was negative [214]. It was
argued in multiple studies [215] that the same exponent θ describes the energy of
a somewhat different types of excitations induced by changing periodic boundary
conditions to anti-periodic boundary conditions. This excitation can be calculated
via domain walls of the droplets. The zero temperature algorithms such as graph-
cut can determine the ground state of two-dimensional spin glasses exactly. By
employing the periodic and anti-periodic boundary conditions, one can calculate
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the defect energy of such system. Hence, it was possible to evaluate θ from zero
temperature studies. However, for the systems at small but finite temperature the
evaluation of θ was quite difficult [213]. The extensive Monte-Carlo simulations
were required to study behaviour at the small temperatures. The correlation length
diverges algebraically as the temperature approaches zero. The critical exponent ν
of the correlation length depends inversely (ν = 1/θ) on the droplet exponent θ.
Many studies were confirming that the value of ν ∼ 3.56 [216].

While the behaviour for the standard spin glass system with stochastic frustra-
tion is quite well understood, the under-frustrated system has not been studied on
the square lattice yet. In [212], it was argued that there is a spin glass phase tran-
sition at the finite temperature for two dimensional systems. If this is true, then
the value of θ should be positive from defect energy calculation. The value of θ is
inversely proportional to the exponent ν. Any change in this value would change
the scaling behaviour of physical quantities which scale with the exponent ν. The
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Figure 6.4: The averaged energies and the Binder cumulant as a function of tem-
perature are shown in top and bottom rows respectively. The left column shows
the data for stochastic frustrated systems and the right column shows the data for
under-frustrated systems.
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next section contains a comparative discussion of stochastic and under-frustrated
systems.

6.4.1 Benchmarking the physical quantities

Few aspects of the stochastic frustrated spin glass were quite well understood. In
this section, the results of stochastic frustrated system were compared to the under-
frustrated system. In Fig. 6.4, we see the averaged energies and Binder cumulant
as a function of temperature. The values of the averaged energies are lower for the
under-frustrated case when compared with stochastic case. The Binder cumulant
by definition is not large than one. However, there are some differences in Fig. 6.4(c)
and 6.4(d).
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Figure 6.5: In Fig. 6.5(a) and 6.5(b), the spin glass susceptibility is shows for stochas-
tic and underfrustrated systems, respectively. In the lower row, the data for the
correlation length is plotted in Figs. 6.5(c) and 6.5(d)

Similarly, we show spin-glass susceptibility and correlation length for stochastic
and under-frustrated systems in Fig. 6.5. In the left column results from [195] and
from new runs for stochastic frustrated system are shown and in the right column
under-frustrated are shown.
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6.4.2 Phase transition and scaling

One primary aim of this chapter is to investigate if under-frustrated systems might
show a phase transition at finite temperatures. If a spin glass phase exists, the aver-
age absolute defect energy should increase. There were no such studies performed
for the under-frustrated systems. However, a mobile bond model has been studied
in [217] and it is shown that there is no spin glass phase for this model. The model
discussed here is related to the mobile bond disorder, but with more control over
the frustration of the system.

6.4.2.1 Defect energy

In Fig. 6.6 defect energies for different frustrations were shown as a function of
system size L. The frustration is varied between 0.0625 and 0.75. It is visible from
the plot that the frustration plays no role in the qualitative behaviour and the defect
energies decrease with the increasing system size. The data for stochastic frustrated
system (black data points) and a system with frustration f = 0.5 (blue data points)
fall on top of each other. The decrease in the defect energies with increasing system
size have the negative slope i.e. θ < 0. Hence, no spin-glass phase ordering is taking
place. The results here support arguments of Ref. [217] and were in contradiction
with Ref. [212]. However, a more detailed scaling analysis is required to confirm
this result.
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Figure 6.6: The defect energy from zero temperature study for spin glass with
Gaussian interactions.

6.4.2.2 Finite size scaling (FSS) analysis

We discuss the universality of under-frustrated spin glass with Gaussian interac-
tions in two-dimensions following the same methodology as in Ref. [218]. We com-
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Figure 6.7: The Binder cumulant g vs correlation length ξ/L. The data is for 2d
spin glass with Gaussian interactions. The circles represent the stochastic frustrated
systems, and the squares represent under-frustrated systems.

pare the simulations results of the stochastic and under-frustrated systems. If both
models have the same universal behaviour, then they must have the same scaling
exponents.

Universality To study universality, first the scaling of correlation length and Binder
cumulant is discussed here. The correlation length ξ diverges as it approaches the
transition temperature Tc as

ξ ∼ (T − TC)
−ν. (6.8)

The Binder cumulant g allows us to locate the critical point. In finite size scaling,
we can write it as a function of the correlation length,

g ∼ g̃(L/ξ) = g̃(L(T − Tc)
ν). (6.9)

Therefore, both ξ/L and g are L independent at critical point. The plots of ξ/L vs.
g are qualitatively independent of the system size, hence show universal behaviour.
In Fig. 6.7, the data for under-frustrated and stochastic frustrated systems is shown.
The data for both systems (stochastic and under-frustrated) shows an excellent col-
lapse. The circles represent the under-frustrated systems and the square stochastic
frustrated systems. The data represented via squares is for the stochastic systems
and the data represented via circles is for the under-frustrated case. There were
some deviations for the small system sizes, but the collapse gets better as the sys-
tem size increases. It is obvious from the figure that both cases fall on top of each
other. Hence, they belong to the same universality class. This speaks in favour of
no phase transition in 2d spin glass with Gaussian interactions and supports the
outcome from defect energies in the last section.
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Figure 6.8: Scaling of the Binder cumulant. The fit is forced in the lower temperature
regime closer to the critical point. Figs. 6.8(a) and 6.8(b) show the data for stochasitc
and under-frustrated systems respectively.

As discussed earlier, the value of ν is well established for the system with frus-
tration. Using the scaling ansatz for the Binder cumulant, the value of ν is evaluated
for both under-frustrated and stochastic frustrated spin glass systems. There is no
value of ν which allows a perfect fit for the whole range of the temperatures. This
is due to the fact that the scaling relation 6.9 is only valid close to the critical point.
Therefore, one has to choose the fitting range carefully. In our case we considered
the range where value of the Binder cumulant is larger than 0.5 restricting ourselves
to the lower values of the temperature. We use the method described in Ref. [219] to
perform an automatic finite-size scaling analysis for a given set of simulated data.
A scaling ansatz to optimize an initial set of scaling parameters that enforce the
data to collapse is given by,

y(T, L) ∼ f [(T − Tc)La]Lb. (6.10)

In Eq. (6.10), y(T, L) s interpreted as the observables from the simulations. The
exponents a and b are interpreted as 1/ν and 2− η respectively. Choosing a range
as described above and using this ansatz, we get the following values for ν and
Tc. According to Eq. (6.10), data curves of y(T, L) for different values of T and
L collapse on each other if y(T, L)L1/ν is plotted against the scaled variable u =
(T − Tc)L1/ν and if the free parameters a and b of the scaling assumption were
chosen properly. The quantity u is the first term of polynomial expansion of the
scaling function f [u] up to lowest order in u. In the critical regime where u << 1
this assumption holds. In Fig. 6.8, it is evident that the collapse at the left corners
of both plots shows a better collapse compared to the right corner. In Fig. 6.8(a)
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Quantity Value Error p-value
Stochastic, ν 3.26 0.34 0.71
Stochastic, Tc 0.004 0.005 0.67

Under-frustrated, ν 3.52 0.21 0.76
Under-frustrated, Tc 0.005 0.006 0.82

Table 6.1: Values of parameters from the collapse of the data for the Binder cumu-
lant.

and Fig. 6.8(b) the fits for under-frustrated and stochastic frustrated systems were
shown, respectively. We expect better collapse for the larger system sizes due to
finite-size effects for smaller system sizes, however also the small system sizes do
not deviate very much. We list the parameters determined via collapse method in
Table 6.1. The collapse seem to be reasonably good as the p-value is always larger
than 0.5. For both systems the phase transition happens at zero temperature as the
value of Tc is zero within errorbars. The system with reduced frustration does not
show a finite size phase transition as claimed in Ref. [212].

Similar to the Binder cumulant, the correlation length can be used to evaluate
the value of ν. The ansatz described in Eq. (6.10) is used again for the data collapse.
The range of the fit is once again limited to the smaller temperature values, where
the value of ξ/L is large. In Fig. 6.9(a), the data for the under-frustrated system is
shown. The data for the stochastic frustrated system is shown in Fig. 6.9(a). The
values of ν evaluated from both systems match to the known value of the ν in the
literature (Table 6.2). It is evident from the parameters that the finite temperature
phase transition does not exists for the under-frustrated case.

Quantity Value Error p-value
Stochastic, ν 3.41 0.18 0.61
Stochastic, Tc 0.0009 0.0034 0.81

Under-frustrated, ν 3.48 0.13 0.69
Under-frustrated, Tc 0.001 0.002 0.92

Table 6.2: Collapse parameters for the correlation length.

The spin glass susceptibility χ is another important quantity of interest. The
spin glass system with Gaussian interactions has a unique ground state. The sus-
ceptibility has the following finite size behaviour at low temperatures

χ ∼ L2−ηχ̃(L/ξ). (6.11)

The value of χ̃(L/ξ) approaches a constant value as T → 0. Closer to the critical
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Figure 6.9: Scaling of the correlation length. The fit is forced in the lower temper-
ature regime closer to the critical point. Figs. 6.8(a) and 6.8(b) show the data for
stochastic and under-frustrated systems respectively.
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Figure 6.10: Scaling of the spin glass susceptibility. The fit is forced in the lower
temperature regime closer to the critical point. Figs. 6.8(a) and 6.8(b) show the data
for stochastic and under-frustrated systems respectively.

region but at finite temperatures, where the correlation length is small compared to
the system size, there should be no system size dependence of the susceptibility χ.

In Figs. 6.10(a) and 6.10(b) for both under-frustrated and stochastic frustrated
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cases, the fit form is the same as expected from Eq. (6.11). If the range of collapse is
restricted to the smaller temperatures, the fit within error bars give the same value
for ν as Binder cumulant or the correlation length. The only difference is the y-axis
where the value of Lη−2χ is used. The fit values were shown in Table 6.3

Quantity Value Error p-value
Stochastic, ν 3.42 0.19 0.59
Stochastic, Tc 0.002 0.003 0.58

Under-frustrated, ν 3.55 0.12 0.56
Under-frustrated, Tc 0.0007 0.004 0.61

Table 6.3: Collapse parameters for the spin glass susceptibility.

It is clear from the FSS that there is no hint of any phase transition for under-
frustrated spin glass with Gaussian interactions. The value of ν matches the stan-
dard value from the stochastic frustrated case, and both systems belong to the same
universality class. The quality of the fits is always good at the lower temperatures
as the p value is always larger than 0.5. In the next section, we discuss behaviour of
the under-frustrated spin glass with bimodal interactions.

6.5 Under-frustrated spin glass with bimodal couplings

There are studies such as Ref. [213] showing that the stochastic frustrated two-
dimensional spin glass with bimodal couplings does not show a stable spin-glass
phase at finite temperatures. As in the case of spin glass with Gaussian interactions,
at any finite temperature, such systems were in the paramagnetic phase and only
at T = 0 the spin-glass phase may exist. In the literature, there is an ongoing
debate if the spin glass with both Gaussian and bimodal interactions belong to the
same universality class [220, 216]. While there is evidence for this scenario e.g.
Ref. [221], a very recent study in Ref. [222] show that different kinds of discrete
models do not belong to the same universality class. Therefore, the question of
universality is a very hot topic of research for the spin glass models with discrete
interactions. For the Gaussian case, the droplet theory is used to describe the low-
temperature behaviour, but the use of this theory is not straightforward in discrete
models. Because of the gap between the ground state and first excited state, there
is a freezing regime in where the studied quantities freeze and do not show the
expected behaviour as T → 0. This behaviour is a consequence that the system
does not escape from the ultra-deep minima of the hierarchically disordered energy
landscape. Therefore, one needs to understand the freezing regime and its relations
to the FSS.
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The defect energies analysis of the Gaussian case showed that there is no spin
glass phase at a finite temperature. The same analogy is used here for the bimodal
case. Under-frustrated spin glass systems with bimodal interactions have not been
studied on Euclidean lattices using Monte-Carlo simulations yet. In [212], it is
argued that there is a spin glass phase transition at the finite temperature for two
dimensional systems. If this is true, then the value of θ should be positive from
defect energy calculations, and we should get a different scaling behaviour from
the correlation length. In the next sections, we discuss the universality and scaling
for the under-frustrated two-dimensional spin glass with bimodal interactions.

6.5.1 Benchmarking the physical quantities

To test the correctness of our code, the results for the stochastic frustrated system
were compared to the data of Ref. [195]. These results were shown in the left col-
umn of Fig. 6.11 and Fig. 6.12. The correctness of the code is established here. The
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Figure 6.11: Same as Fig. 6.4 but for two dimensional spin-glass with bimodal
interactions. The data from own simulations is shows as points and the literature
data is plotted as lines.
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Figure 6.12: Same as Fig. 6.5 but for two dimensional spin-glass with bimodal
interactions.

data from our own runs and Ref. [195] coincided within errorbars. In the right col-
umn of Fig. 6.11 and 6.12, the data for the under-frustrated system is shown. There
were clear differences which can be seen between both models. In Figs. 6.11(a)
and 6.11(b) the average energies for stochastic and under-frustrated systems were
shown respectively. The energies for under-frustrated system were lower compared
to the stochastic simulations. By lowering the frustration, the system moves in the
direction of the ferromagnetic system. The zero frustration model corresponds to
a ferromagnet and the energy is lower. This effect can be seen in all the quanti-
ties like spin glass susceptibility, Binder cumulant and correlation length shown in
Fig. 6.11 and 6.12. The figures in the left column and right column can be clearly
distinguished. The average energies decreases and the correlation length increases
by lowering the frustration.

These differences were studied in detail in the next sections of this chapter when
the FSS is discussed.
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6.5.2 Phase transition and scaling

In this section, we investigate the spin-glass model with bimodal interactions with a
focus on a possible phase transition. As for the Gaussian case, first of all, the defect
energy of the bimodal spin glass is studied. In Ref. [217] Hartmann concluded
that for the mobile bond model there seem to be no spin glass phase, however the
study was not performed at finite temperatures. Using the same analogy, the defect
energy is used as a parameter for zero temperature studies to establish if spin-glass
phase exists for the under-frustrated spin glass model with bimodal interaction.

6.5.2.1 Defect energy
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Figure 6.13: The defect energy from zero temperature study for spin-glass with
bimodal interactions.

In Fig. 6.13, defect energies for different frustrations were shown as a function
of system size L. The frustration is varied between 0.0625 and 0.875. The standard
case of stochastic frustration is marked as unrestricted. We see that in the plot there
are quantitative differences between different frustrations, however qualitatively all
seem to settle down to a different constant value for the larger system sizes. The
slope with increasing system size is zero. However, picture is not very clear for
the smaller frustrations. Hence, for bimodal case, just from looking at the slope of
the defect energies, it is not possible to predict the absence or presence of a spin
glass phase. In contrast to the Gaussian system, the bimodal case has a very high
degeneracy in the ground states and a large discrete spectrum (many metastable
energy states). The large energy spectrum causes the freezing. Therefore, in the
next section, the freezing regime and its properties were investigated. The relation
to the scaling ansatz and the phase transition is established.
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6.5.2.2 The freezing temperature

The freezing regime occurs for temperatures close to zero in any finite spin glass
system with discrete interactions. Indeed, it is argued that there exist two different
behaviours, which depend on how large the system size L is compared to a temper-
ature dependent crossover length Lc [220, 216]. There were two ways to understand
the freezing regime.

In the first argument, one considers the states corresponding to the two lowest
energy values for a given system size L. The energy gap can be defined as

∆ = E1 − E0 = 4. (6.12)

The degeneracies of these energies were given by N0(L) and N1(L), respectively.
It is shown in [216] that ln N1/N0 ≈ 4 ln L. Close to zero temperature only the
states with the lowest energy contribute to the thermodynamics. This occurs when
N0(L)� N1(L)e−∆/T, i.e., for

T � ∆
ln(N1(L)/N0(L))

∼ 1
ln L

. (6.13)

In the freezing regime, the observed behaviour is independent of T as the system
is frozen in the ground state. However, when N0(L) � N1(L)e−∆/T, the presence
of the gap has a negligible effect, and the system is expected to have the same
behaviour as models with continuous distributions. The crossover from the freezing
regime to the other regime occurs at a L-dependent freezing temperature Tf (L)
which according to Eq. (6.13) scales as 1/ ln L. The natural definition of Tf (L) would
be by requiring N0(L) = N1(L)e−∆/Tf , but the implementation of this definition
is difficult. In practice, Tf (L) can be estimated by identifying the value of the
temperature T at which the temperature independent behaviour of the physical
quantities sets in.

The freezing regime is a finite size effect, therefore multiple definitions for the
freezing temperature may exit. In renormalisation group theory, these two regimes
can be interpreted due to two different fixed points. One belongs to the infinite
volume behaviour like for the case of Gaussian couplings, and another belongs
to the low-temperature behaviour T < Tf (L). In some studies [223, 224, 225],
the droplet theory has been used to suggest that the power law behaviour of the
freezing temperature

Tf (L) ∼ T−1/θs , Tf (L) ∼ L−θs . (6.14)

The value of θs has been predicted as 0.5 in Ref. [223] and simulated as 0.37 in
Ref. [225, 216]. Due to the limited range of accessible system sizes, there were no
conclusive studies which could discriminate between logarithmic and power law
behaviour for Tf . Therefore, we consider also both approaches for the analysis for
the comparative studies.
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Figure 6.14: Freezing temperature Tf (L) as estimated from the inflection point of
the correlation length.

In Fig. 6.14(a) an extrapolation to L→ ∞ of the freezing temperature Tf is shown
assuming the logarithmic form of Eq. (6.13) i.e. the x-axis shows 1/ ln(L) and
the y-axis shows the value of temperature at the inflection point of the correlation
length ξ. The inflection point shifts approaches zero in thermodynamic limit. The
same is true also for the freezing regime. The data is fitted using a linear ansatz
Tf (L) = Tf (0) + b/ ln(L). The different values of the fit variables were listed in
table 6.4.

The results of fit show that the value for under-frustrated case is much lower
compared to the value of stochastic frustrated system. It is clear that either the
system sizes were too small to predict something for the under-frustrated system
or the logarithmic scaling of Tf is not observed. If we force our data to fit to zero
for L → ∞ as shown in Fig. 6.14(b). The fit parameters were listed in the Table 6.5.
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System Tf (0) ±δTf (0) b ±δb p-value
Stochastic −0.03307 0.007705 1.41593 0.02342 0.9927

Stochastic F. −0.0364055 0.003411 1.41624 0.03421 0.8534
Under-frustrated −0.199939 0.01221 2.22191 0.03906 0.5629

Table 6.4: Fit variables for the freezing temperature using the logarithmic ansatz.

System Tf (0) ±δTf (0) b ±δb p-value
Stochastic 0 0 1.27577 0.02644 5.10481e− 06

Stochastic F. 0 0 1.27359 0.02582 1.03844e− 05
Under-frustrated 0 0 1.66749 0.03001 2.94973e− 06

Table 6.5: Fit variables for the freezing temperature using the logarithmic ansatz.

We can see that this fit has extremely small p-values. Hence, the quality of fit is
very bad. However, the fit quality in Fig. 6.14(a) is much better than in Fig. 6.14(b).

In Fig. 6.14(c) extrapolation to L → ∞ of the freezing temperature Tf is shown
using the power law ansatz. The x-axis shows L and the y-axis shows the value
of temperature at the inflection point of the correlation length ξ. The data is fitted
using a power-law ansatz Tf (L) = aLθs . The different values of the fit variables
were listed in the Table 6.6.

System θs ±δθs a ±δa p-value
Stochastic −0.350601 0.01295 1.27151 0.04165 0.92323

Stochastic Fernandez et. al. −0.350495 0.003411 1.25863 0.04989 0.893461
Under-frustrated −0.438957 0.01531 2.03146 0.09774 0.72041

Table 6.6: Fit variables for the freezing temperature using the power ansatz Tf (L) =
aLθs from the temperatures at inflection point.

In Fig. 6.6 extrapolation to L → ∞ of the freezing temperature Tf is shown
using the power law ansatz. The x-axis shows L and the y-axis shows the value
of temperature at a point where the value of correlation length ξ/L = 0.5. For the
under-frustrated case the temperatures were taken from the point where the value
of ξ/L = 0.8. These values should be chosen at the middle temperature before the
values get saturated at very low temperatures or at very high temperatures. This
regime shifts with the frustrations towards lower temperatures. The values of ξ/L
were larger for the under-frustrated system. The data is fitted using a power-law
ansatz Tf (L) = aLθs . The different values of the fit variables at inflection point and
at a point where ξ/L = 0.5 were listed in table 6.6 and 6.7, respectively. In both

88



cases for L→ ∞, Tf approaches zero. However, the p-values imply that the quality
of the fit in Fig. 6.14(c) is much better than the quality of the fit in Fig. 6.14(d).

System θs ±δθs a ±δa p-value
Stochastic −0.3501269 0.01295 1.18139 0.02481 −2.69315e− 05

Stochastic Fernandez et. al. −0.340495 0.0118 1.01092 0.04989 0.00294872
Under-frustrated −0.206769 0.01378 0.971973 0.04106 0.000205

Table 6.7: Fit variables for the freezing temperature using the power ansatz Tf (L) =
aLθs from the temperatures at a point where the value of ξ/L is 0.5 for the stochastic
system and 0.8 for the under-frustrated system

The values of θs for the stochastic case were consistent with [216] but, the value
of θs for the under-frustrated case is different. However, all values were higher than
the value of θ = −1/ν = 0.28.

6.5.2.3 Finite size scaling (FSS) analysis

The presence of freezing for T < Tf (L) in the spin glass with discrete interactions
makes the study of the T = 0 critical behaviour quite difficult. The only way to
study the glassy critical behaviour in Ising glass models with a discrete distribution
is to approach T = 0 while keeping T � Tf (L) for each system size. This makes the
standard FSS analysis impossible. Indeed, in the FSS limit a RG invariant quantity
R should scale as

R = fR(TL1/ν). (6.15)

Under the assumption 6.13 the condition T � Tf (L) implies that this scaling
behaviour can be only observed for

TL1/ν � Tf (L)L1/ν ∼ L1/ν

ln L
. (6.16)

For L → ∞, the ratio L1/ν/ ln L diverges. Therefore, the range of values of TL1/ν

which were accessible smaller and smaller as L increases [220, 216]. This implies
that the standard FSS limit, T → 0, L → ∞ at fixed TL1/ν does not exist. However,
as we shall now discuss, one can still study FSS if one uses the ratio ξ/L as basic
FSS variable, i.e., if one considers the scaling form using the RG invariant quantity

R = gR(ξ/L). (6.17)

Usually, expressions (6.15) and (6.17) were equivalent. This is not the case here:
only the FSS scaling form (6.17) holds in the presence of freezing.
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If one assumes that the power law ansatz is the correct one, then the FSS is
not governed by 6.17. In that case, again FSS is restricted to only one of the two
domains, i.e. in the region where TLν . Tc(L)L1/ν holds has no FSS. This region
shrinks as L(1/ν−θs) with increasing system size and approaches Gaussian behaviour
in the thermodynamic limit (L→ ∞). Therefore, FSS will only hold at intermediate
temperatures in bimodal case.

Universality For the spin glass with Gaussian interactions, it is established in
previous section that under-frustrated and stochastic frustrated systems belong to
the same universality class. Here, the same analysis is performed for the bimodal
case as for the system with Gaussian interactions. In Fig. 6.15, the data for under-
frustrated and stochastic frustrated systems for bimodal system is shown. The data
shows an excellent collapse. The data represented via squares is for the stochastic
systems and the data represented via circles is for the under-frustrated case. It
is obvious from the figure that both cases fall on top of each other. Hence, they
belong to the same universality class. This is a hint in favour of no phase transition
in 2d spin glass with bimodal interactions. Note that no statement could be made
for the bimodal case from the defect energies. We next consider the scaling plots
for the observables. Theoretically, the ansatz given by Eq. (6.10) can be used for
the scaling plots, However, in contrast to the Gaussian case, the bimodal case has
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Figure 6.15: The Binder cumulant g vs correlation length ξ/L. The data is for 2d
spin glass with bimodal interactions. The circles represent the under-frustrated
systems, and the squares represent stochastic frustrated systems.
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Figure 6.16: Scaling of the Binder cumulant for spin glass with bimodal interactions.
The collapse is only valid at intermediate temperatures and for larger system sizes.
Figs. 6.16(a) and 6.16(b) show the data for stochastic and under-frustrated systems
respectively.

Quantity Value Error p-value
Stochastic, ν 3.62 0.27 ∼ 10−7

Stochastic, Tc 0.062 0.009 ∼ 10−7

Under-frustrated, ν 3.49 0.21 ∼ 10−6

Under-frustrated, Tc 0.078 0.005 ∼ 10−6

Table 6.8: Fit values from the Binder cumulant.

freezing at the lower temperatures. As a consequence the fit regime keep on moving
with the system size and it is difficult to decide about the fitting range. The fits
were done using the same method as for the Gaussian case. In Fig. 6.16, it is
evident that the data at very low temperatures (freezing regime) and very high
temperatures does not collapse. In Fig. 6.16(a) and Fig. 6.16(b) the collapse for
under-frustrated and stochastic frustrated systems were shown, respectively. As
expected it looks better for larger system sizes and for smaller systems there are
large deviations compared to the Gaussian case. The collapse parameters are listed
in the Table 6.8. It is evident from the p-values that the fits were of very bad
quality. The values of the exponents match with the literature values within the
errorbars. However, the errorbars can not be trusted because of the poor quality of
the fits. The correlation length for the bimodal case shows again the same behaviour
as the Binder cumulant. In Fig. 6.17(a), the data for the under-frustrated system
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Figure 6.17: Scaling of the correlation length for the bimodal case. Figs. 6.17(a) and
6.17(b) show the data for stochastic and under-frustrated systems respectively.

Quantity Value Error p-value
Stochastic, ν 3.361 0.12 ∼ 10−8

Stochastic, Tc 0.0213 0.0291 ∼ 10−8

Under-frustrated, ν 3.53 0.31 ∼ 10−5

Under-frustrated, Tc 0.027 0.009 ∼ 10−5

Table 6.9: Fit values from the correlation length.

is shown. The data for the stochastic frustrated system is shown in Fig. 6.17(b).
It is evident from these plots that the scaling behaviour for the under-frustrated
case and stochastic frustrated case have same qualitative behaviour. Quantitatively,
there were differences e.g. the collapse for the under-frustrated case looks better
for longer temperature range when compared to the stochastic case. The collapse
parameters are listed in Table 6.9. The p-values were again extremely small, hence
as in the case of Binder cumulant the fits were of very bad quality. However, the
values were again comparable to the literature values for the stochastic frustrated
system.

The spin glass susceptibility χ is another important quantity of interest. Unlike
the spin glass system with Gaussian interactions, the bimodal system does not have
a unique ground state. Similar to the Gaussian case, the susceptibility scales as
Eq. (6.11). Eq. (6.11) is used to collapse the data for different system sizes for the
both stochastic and under-frustrated cases. The collapse were shown in Figs. 6.10(a)
and 6.10(b). In both under-frustrated and stochastic frustrated cases, the fit form is

92



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4

UF
χ
/L

2
−
η

(T−Tc)L
1/ν

8
11
15
21
29
40
55
76

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4

SF

χ
/L

2
−
η

(T−Tc)L
1/ν

8
16
24
32
48
64

(b)

Figure 6.18: Scaling of the spin-glass susceptibility. Figs. 6.18(a) and 6.18(b) show
the data for stochastic and under-frustrated systems respectively.

Quantity Value Error p-value
Stochastic, ν 3.125 0.42 ∼ 10−9

Stochastic, Tc 0.0341 0.004 ∼ 10−8

Stochastic, η 0.1791 0.0326 ∼ 10−9

Under-frustrated, ν 3.23 0.28 ∼ 10−7

Under-frustrated, Tc 0.0154 0.02 ∼ 10−7

Under-frustrated, η 0.1013 0.0241 ∼ 10−9

Table 6.10: Fit values from the spin glass susceptibility.

same. However, the value of η for two models differ. For the stochastic frustrated
case a good fit can be seen for η = 0.18, but for the under-frustrated system value
of η = 0.10 gives the better fit. Therefore, the spin-glass susceptibility predicts a
different universality class for the under-frustrated systems with a different η value.
The fit parameters shown in the Table 6.10.

6.6 Summary

The FSS study for the under-frustrated spin glass systems with Gaussian or bimodal
interactions does not indicate the existence of phase transition at finite tempera-
ture. The Gaussian under-frustrated system behaves exactly like stochastic system
and the value of ν for both systems is the same. The bimodal under-frustrated
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system also have same value of ν as for the stochastic system, however in this case
the value of η differs for both systems. From this study it can be confirmed that
under-frustrated and stochastic frustrated systems do not fall in the same univer-
sality class. The results were compatible with the outcome of a recent study [222],
which confirms that the different discrete models does not lie in a single universal-
ity class. In the mentioned study the continuous distribution of different types have
same values of ν and η = 0 for all studied distributions. In our case we have same
continuous distribution, but different frustration contents. As in the above men-
tioned work, for spin-glass model with Gaussian interactions we also find that the
value of η is zero and both under-frustrated and stochastic frustrated systems have
same value of ν within the errorbars. For the systems with bimodal interactions,
values of η differ from one another giving hints towards non-universality. However,
a detailed study of the type shown in Ref. [222] has to be performed to confirm the
non-universality for under-frustrated bimodal systems.
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Chapter 7

Conclusions

In Chap. 1 the research questions were described. A thorough research has been
done on those questions, and the outcomes are represented in different chapters of
this thesis.

After introducing the theoretical concepts of statistical physics, in particular,
related to the disordered systems in Chap. 2, the computational methods were in-
troduced in Chap. 3. The algorithms such as Metropolis, parallel tempering and
Houdayer cluster algorithm were presented. A new method for tuning the num-
bers and positions of the temperatures in parallel tempering is introduced. It is
argued that power-law ansatz can be used to tune the parameters such as number
and positions of temperatures. First, by fixing the number of temperatures and
using different values of the power-law exponent, it is demonstrated that there is
a sharp value of this tuning exponent. This value grows linearly with the system
size L. Similarly, one could fix the exponent and could vary the number of temper-
atures. In the second method, we found that the larger system sizes do not have a
very sharp peak. This implies that there are many close to optimal values for the
number of temperatures for a given value of φ exponent. This method within the
constraints of fixing one variable can be used to predict the values of the exponent
for larger system sizes. However, it should be noted that in the thermodynamic
limit these fits would grow to infinity. This is due to the fact that in the power-law
ansatz, either the number of temperatures (NT) is fixed and finite-size scaling is
performed for φ or the value of φ is fixed and the finite-size scaling is performed
for NT.

In Chap. 1, we mentioned the need for huge resources for simulating disordered
systems. It is not always easy to get a sufficiently large number of CPUs for these
simulations. However, GPUs give a fairly good chance to speed up some of these
processes. In Chap. 4, a new algorithm to study disordered systems on GPUs was
introduced. Using the parallel structure of GPUs, we could speed up the simulation
by two orders of magnitude as compared to a CPU code. There already exists quite
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optimized methods to simulate such systems on GPUs, but it is the first imple-
mentation of the Houdayer cluster algorithm using CUDA programming. For the
Metropolis algorithm, we have speed-ups comparable with other optimized meth-
ods. An advantage of our method is its straightforward implementation by using
the natural parallelization of disordered systems and simulating one disorder on
each thread of the GPU. The Houdayer cluster algorithm part is not as efficient as
the Metropolis algorithm. Especially the efficiency does not behave as benchmarked
by the CUDA developers. Nevertheless, we also gained a decent speed-up for that
case if one fills the number of blocks carefully.

In Chap. 5, the method of tuning the parallel tempering simulation introduced
in Chap. 3 is used to carefully tune a set of temperatures to create a benchmark
set of disorders. The ground states of this set are known with a very high prob-
ability by very long parallel tempering simulations on GPUs. The success prob-
abilities of finding ground states for short parallel tempering simulations and for
the graph-cut method were calculated using the known ground state. It is noticed
that the graph-cut and parallel tempering techniques return the similar states for
small q and different system sizes. But with increasing q, the quality of graph-cut
results worsens rather quickly. The parallel tempering simulations are computa-
tionally much more expensive than the corresponding graph-cut runs for small L
and different values of q. The code used for parallel tempering simulations is a
highly efficient GPU implementation introduced in Chap. 4 but still fails to top the
graph-cut performance. We observe a crossover for larger system sizes. The graph-
cut method starts outperforming the parallel tempering after a certain system size.
Hence, the conclusion is that asymptotically the graph-cut method is the most effi-
cient approach. The success probability for the very efficient graph-cut method can
be further increased by using repeated runs. After doing multiple graph-cut runs,
and the minimum-energy state found among then can be selected. Both methods
have their pros and cons. The parallel tempering guarantees ground state in the in-
finite run-time limit, however, infinite long simulations are not feasible. On another
side, the graph cut method gives the approximate ground state in a fraction of time
∼ O(N), irrespective of the number of states q. The above arguments conclude that
the graph cut method is suitable for the study of the two-dimensional random-field
Potts model. In particular, for q ≤ 4, the returned configurations are either exact
(q = 2) or very close to the exact ground states. This model has received very little
attention due to the unavailability of efficient computational methods. This method
opens new possibilities for studying random-field Potts.

The FSS study for the under-frustrated spin glass systems with Gaussian or
bimodal interactions does not show the existence of phase transition at finite tem-
perature. The Gaussian under-frustrated system behaves exactly like the stochastic
system, and the value of ν for both systems is the same. The bimodal under-
frustrated system also has the same value of ν as for the stochastic system, however,
in this case, the value of η differs for both systems. A conclusive statement about
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non-universality of η cannot be made as the quality of collapse plots is not very
good. But there are hints that under-frustrated and stochastic frustrated systems
with bimodal distribution might not fall in the same universality class. These re-
sults seem compatible with the outcome of a recent study performed in Ref. [222],
which confirms that the different discrete models do not lie in a single universality
class. However, a more detailed study of the type shown in Ref. [222] has to be
performed to confirm the non-universality for under-frustrated bimodal systems.
This study shows that there is no clear evidence for a phase transition at a non-zero
temperature for a two-dimensional spin glass model. The result is consistent for
both models with bimodal and Gaussian interactions.
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Shchur. Gpu accelerated population annealing algorithm. Computer Physics
Communications, 220:341–350, 2017.

[197] Manoj Kumar, Ravinder Kumar, Martin Weigel, Varsha Banerjee, Wolfhard
Janke, and Sanjay Puri. Approximate ground states of the random-field potts
model from graph cuts. Physical Review E, 97(5):053307, 2018.

[198] A Peter Young. Spin glasses and random fields, volume 12. World Scientific,
1998.

[199] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11):1222–1239, 2001.

[200] Martin Weigel and Michel JP Gingras. Ground states and defect energies
of the two-dimensional x y spin glass from a quasiexact algorithm. Physical
review letters, 96(9):097206, 2006.

[201] Martin Weigel. Genetic embedded matching approach to ground states in
continuous-spin systems. Physical Review E, 76(6):066706, 2007.

[202] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[203] CJ Geyer et al. Computing science and statistics: Proceedings of the 23rd
symposium on the interface. American Statistical Association, New York, 156,
1991.

[204] Koji Hukushima and Koji Nemoto. Exchange monte carlo method and ap-
plication to spin glass simulations. Journal of the Physical Society of Japan,
65(6):1604–1608, 1996.

[205] Wenlong Wang, Jonathan Machta, and Helmut G Katzgraber. Comparing
monte carlo methods for finding ground states of ising spin glasses: Popula-
tion annealing, simulated annealing, and parallel tempering. Physical Review
E, 92(1):013303, 2015.

[206] Jonathan Machta. Population annealing with weighted averages: A
monte carlo method for rough free-energy landscapes. Physical Review E,
82(2):026704, 2010.
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