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Abstract. Inappropriate trust in highly automated vehicles (HAVs) has been 

identified as one of the causes in several accidents [1]–[3]. These accidents 

have evidenced the need to include a Driver State Monitoring System (DSMS) 

[4] into those HAVs which may require occasional manual driving. DSMS 

make use of several psychophysiological sensors to monitor the drivers’ state, 

and have already been included in current production vehicles to detect drowsi-

ness, fatigue and distractions. [5]. However, DSMS have never been used to 

monitor Trust in Automation (TiA) states within HAVs yet. Based on recent 

findings, this paper proposes a new methodology to integrate TiA state-

classification into DSMSs for future vehicles.  
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1 Introduction 

Highly Automated Driving will change the manner in which we drive, will place new 

demands of their users, and as a consequence, new human factors such as TiA will 

arise. TiA is an attitude that leads to a behaviour - reliance - [6] from which several 

behavioural outcomes can result including correct use, misuse, disuse and overuse of 

automation [7]. In addition, TiA is a multidimensional construct [8], implying that 

TiA may have states. The taxonomy proposed here for DSMS would classify them as 

Appropriate TiA, Over-TiA and Distrust in automation. 

  

The current standardised methodology to evaluate TiA uses self-reporting tools [9], 

[10]. These tools have proven to be valid and feasible but are limited to experimental 

scenarios and post-hoc data analysis, and do not allow active real-time measurement. 

Therefore, a different methodology in accordance with DSMSs capabilities needs to 

be developed. Recent findings in the TiA literature have suggested a promising alter-

native for this problem – using psychophysiology [11], [12]. Using the existing TiA 

scales [9], [10], this research will focus on identifying the aforementioned TiA states 

and their psychophysiological correlates, and investigate the use of DSMS data to 

train a TiA classifier using machine learning algorithms.  
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2 TiA Decision-Making Processes 

It has been proposed that TiA is an attitude involving both affective and cognitive 

decision-making processes [6], [13]–[15]. Following the proposal by Lee and See [6], 

these can be classified as: 

- Analogical: trust judgements based on rules and heuristics, making use of pre-

viously known solutions for similar current problems, other individuals’ experiences, 

societal norms, etc. Analogical decisions are less cognitively demanding than analytic 

judgements, allowing faster decision-making.  

- Analytical: a more accurate judgement based on active evaluations of risks and 

benefits of trusting an automated system. It relies on knowledge about the automated 

system’s characteristics and performance. Analytical decision-making is more cogni-

tively demanding and time-consuming. 

- Affective: This mechanism bases trust judgements on impressions, feelings and 

emotions regarding the trustee. Often users may not trust automation only because 

they feel uneasy, lacking any kind of reasoning. Affective processes are used in high 

time-pressured or when cognitive resources are not available to make a judgement [6].  

The use of each mechanism depends on the cognitive resources available (knowledge 

about the system, similar past experiences, cognitive workload, etc.) and time pres-

sures [6]. E.g. the user may rely on analytic processing when there is sufficient time 

and cognitive resources available but when cognitive resources are limited and time is 

constrained, the user may instead rely on faster, more subconscious analogical and 

affective processes [15]. This model also entails that the TiA attitude generated may 

represent particular psychophysiological patterns. The decision-making to final be-

havioural outcome process from represented diagrammatically in Fig. 1, where a stim-

ulus generates TiA decision-making leading to an attitude. Once the attitude is gener-

ated, it leads to a behaviour as the outcome of TiA, and every time this process takes 

place, a DSMS can learn in the loop from the outcome. 

3 Modelling Trust in Automation 

Previous authors have already proposed mathematical models to classify TiA [16], 

[17]. However these models are grounded on TiA frameworks [18], [19] which have 

been updated [6] and [15]. Recent developments in the Human-Robot interaction 

domain suggest that mathematically modelling TiA in HAVs based on mental work-

load and affective states is achievable [20], [21]. Therefore, it is worth considering 

updating and adapting these newer models to the present state-of-the-art for HAVs.  

The following section proposes a new methodology, building on Fig 1, which could 

be used to classify TiA into three states using machine-learning algorithms: 

 

1- Appropriate trust in automation. An appropriate level of TiA means that the 

user’s trust is calibrated accordingly with the automated system’s reliability [22] – i.e. 

the user is aware of the system limitations and capabilities, and of the current traffic 

situation and uses the automated system appropriately. This is the desired state as it 



leads to a correct and safe use of the HAV. Appropriate TiA means that a user will be 

ready to take manual control when the systems requires by being aware that the sys-

tem’s capabilities are limited in certain situations [6]. Another example is that the user 

will rely upon and activate automated driving when suggested. Under such a scenario, 

it can be assumed that the user will be aware of the situation, engaged in the driving 

task and is confident about the automated system’s capabilities.  This raises the possi-

bility of classifying appropriate TiA as an expected state of relaxation (i.e. positive 

valence and low arousal) with mental engagement. Previous studies have successfully 

classified relaxation states using Support Vector Machine (SVM), Regression Tree 

(RT), K-Nearest Neighbour (KNN) and Bayesian Network (BN) classifiers based on a 

Heart Rate Variability (HRV) decrease, an increase of Heart Rate (HR), Respiration 

Rate (RR) and Electro-Dermal Activity (EDA) [23], [24]. This method allowed the 

classification of discrete emotions (anxiety, boredom, engagement, frustration and 

anger) with high accuracy (85.81% SVM; 83.5% RT; 75.16% KNN; and 74.03% 

BNT). A similar method to that used in [24], could be also implemented for EEG, 

EDA and eye-tracking signals to classify emotional states. Mental engagement or 

increased mental workload has also been successfully classified using SVM [25], [26] 

and Artificial Neural Networks (ANN) [27]–[29]. These classifiers were based on an 

increase in pre-frontal activity via ERPs from EEG, blood oxygenation increases from 

fNIRS, increased pupil size, fixations, saccades and reductions in blink-ratio. In addi-

tion, identification by Random Forest (RF) has been used for eye-tracking metrics 

[30].  

 

2- Over-trust in automation. This occurs when TiA is not properly calibrat-

ed due to e.g. higher expectations regarding the automated system’s capabilities [6]. 

Over-trust is probably the most undesirable and hazardous state and some of the acci-

dents reported in the introduction are good examples [1], [2]. In this case, the user 

lacks knowledge regarding the actual system reliability and therefore tends to believe 

that the automated system will be able to appropriately contend with situations that it 

cannot. For example, users may not be expecting a request to take-back control and 

may miss or ignore this, as they are not aware of the current situation and the vehi-

cle’s performance. Therefore, over-TiA could be related to low arousal emotional 

states (from bored to sleepy) and a relative lack of cognitive engagement with the 

driving task which could be classified using SVM, RT, KNN and BN [23] based on 

reduced RR, EDA, HR and increased HRV. A lack of situational awareness, compla-

cency, automation bias and even a state of drowsiness can be classified using Extreme 

Learning Machine (ELM) and SVM methods based on reduced pre-frontal activity via 

EEG or fNIRS.  RF may also be used for eye-tracking parameters [30] such as in-

creased blink ratios, reduced pupil size, reduced fixation ratio and saccadic rates [25]. 
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Fig. 1 Model of TiA process.  

 

3- Distrust in Automation represents the state in which a user’s self-

confidence is higher than the expectations of system performance, and can be due to 

previous negative or inferior experiences with other, similar automated systems. Dis-

trust may also be motivated by excessive system performance expectations that do not 

match the system’s real capabilities, resulting in user dissatisfaction. Ultimately, the 

outcome of distrust usually leads to Automated System disuse  [7]. Such as [3], where 

the HAV operator took manual control and turned right when approaching a leading 

vehicle, consequently colliding with an approaching motorbike on the right side. The 

HAV was about to reduce the speed when approaching the leading vehicle, and if the 

operator had not taken control, the crash would not have occurred. High-distrust situa-

tions could be associated with increased alertness or monitoring behaviours and can 

be classified using ELM [25], based on an increase on pre-frontal activity, pupil size, 

fixations, saccades and reduced blinking ratio, and RF for these visual parameters 

[30]. Increased mental workload can be classified using SVM [26] and ANN [27], 

[28], based on an increase on pre-frontal activity, increased HR, increase of tonic 

EDA responses, increased RR, increased pupil size, and reduced eye blinking ratio. 

Finally, affective states with high arousal and negative valence such as fear, distress 

or frustration can be expected and classified using SVM, RT, KNN and BN [23] 

based on increases in HR and RR, reduced HRV and increase in EDA as inputs.  

Further research and conclusions 

Logically, future research should focus on finding correlations between physiological 

data and TiA scales ([9], [10]) to identify basic TiA states (appropriate trust, distrust, 

and over-trust). The first study following up this paper will focus on test whether the 

expected psychophysiological tendencies suggested in section 3 are confirmed. Au-

tomation reliability expectations will be generated on naïve HAVs users in order to 



build up different TiA among them. Using WMG’s 3xD driving simulator, partici-

pants will be driven along scenarios of increasing complexity. We expect that their 

TiA will develop depending on the pre-administered system reliability expectations. 

We hypothesize that psychophysiological patterns associated with participants who 

trust the HAV will be statistically different from those who distrust the system. These 

results may serve as a TiA baseline for further related studies and as a pool of data to 

feed the DSMS. We aim not to find generalizable psychophysiological patterns of 

TiA, but to us individual patterns to train each DSMS for a particular user.   
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