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Physiological signals can ofen become contaminated by noise from a variety of origins. In this paper, an algorithm is described 
for the reduction of sporadic noise from a continuous periodic signal. Te design can be used where a sample of a periodic signal 
is required, for example, when an average pulse is needed for pulse wave analysis and characterization. Te algorithm is based on 
cluster analysis for selecting similar repetitions or pulses from a periodic single.Tismethod selects individual pulses without noise, 
returns a clean pulse signal, and terminates when a sufciently clean and representative signal is received. Te algorithm is designed 
to be sufciently compact to be implemented on amicrocontroller embeddedwithin amedical device. It has been validated through 
the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing beneft as the noise contamination 
of the signal increases. Te algorithm design is generalised to be applicable for a wide range of physiological (physical) signals. 

1. Introduction 

Signal quality or signal-to-noise ratio requires consideration 
in almost all signal measurements. Tis is especially true 
in physiological measurements where the signals tend to be 
small and prone to measurement artefacts and the noise 
is ofen difcult to control. In this paper, a novel cluster 
analysis method is described to reduce the infuence of noise 
on photoplethysmography (PPG) signals. PPG is an optical 
measurement technique that can be used to detect blood 
volume changes in the microvascular bed of tissue [1]. Te 
peripheral pulse, as measured by PPG, is ofen used in the 
assessment of health and disease and can provide important 
valuable information about the cardiovascular system [2–5]. 
Our research group is evaluating PPG for the diagnosis of 
peripheral arterial disease in a primary care situation using 
a fully automated diagnostic device [6]. Te clinical utility 
of such a device relies on its ability to identify and eliminate 
noise from PPG signals. 

Noise minimisation starts with removing the source of 
the noise; this can be through electrical isolation or, for 

example, by keeping the subject relaxed and still during mea-
surements to eliminate muscle andmovement artefact. Tere 
is also inherent noise produced through the amplifcation of  
small signals; however modern physiological amplifers and 
analogue-to-digital converters tend to minimise this for all 
but the smallest input signals. When the sources of the noise 
have been reduced as far as possible, various active noise 
reduction techniques can be used. Te most common kind 
of noise minimisation is fltering [7, 8] that can be used to 
reduce any noise frequencies that do not  overlap the signal  
frequencies. More sophisticated methods such as wavelet 
denoising [9] can be employed where fltering is insufcient. 
Physiological signals, in particular ECG and PPG, have been 
the focus of noise reduction using a signal quality index, 
whereby each pulse has attributed a signal quality, which is 
then used to assess the validity of that pulse [10–1 ]. 

Cluster analysis is a method  of arranging features into  
groups such that those with similar characteristics lie within a 
single group. Cluster analysis is common in data analysis and 
there are many algorithms [14]. In this paper, we have applied 
a simple cluster analysis to remove noise from a physiological 
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PPG signal. Tis signal is periodic and the disease diagnosis 
is performed from a representative sample pulse. Terefore, 
characteristics of individual pulses are not needed but rather 
characteristics from a representative single pulse (be this 
a selected good pulse or an average of pulses). In order 
to output a representative pulse, a trace with many pulses 
is recorded and the average pulse from these calculated. 
Tis method performs well when noise contamination is 
low, for example, when recorded in established physiological 
measurement settings and by trained researchers studying 
PPG. However, moving diagnostic devices into real-world 
clinical settings to provide a robust and automated assess-
ment can be challenging. For example, patients may not stay 
still during the recording and the device must be designed 
to return a valid clinical result with any reasonable expected 
clinical setting and level of staf training. When signifcant 
measurement noise is present, this noise can dominate the 
average pulse such that this is no longer a true representation 
of the subject’s PPG pulse. Tis paper describes an algorithm 
using cluster analysis to select a subset of pulses to return a 
representative pulse returned for subsequent diagnosis. 

2. Method 

Te algorithm was developed using Matlab� version 2016b; 
the photoplethysmography and electrocardiogram signals 
were measured using a multichannel PPG and ECG recorder 
as used in a clinical study [15]. Prerecorded signals from 
normal subjects were used as an input to the algorithm. 
A variety of fnger and/or toe pulse signals with noise 
implemented through on-purpose patient movement were 
used to train the algorithm. Te algorithm was developed 
to run in real time such that the  signal  capture could  be  
terminated when sufcient signal has been received. For a 
high-quality signal, this can result in a shorter recording 
time. For signals with a small signal-to-noise ratio, this allows 
the device to collect sufcient data such that a diagnosis is 
possible, up to a time-out limit. 

2.1. AlgorithmDevelopment. Te design requirements for the 
algorithm were as follows: 

(i) Compute on a continuous digital data stream, with a 
minimal signal delay (pseudo-real-time). 

(ii) Remove low-frequency noise (DC drif). 
(iii) Remove high-frequency noise. 
(iv) Remove sporadic mixed-frequency noise. 
(v) Terminate when sufcient “good” pulses are record-

ed. 

Te algorithmwas developed to reduce noise from a PPG  
signal. Tis signal has a periodic frequency equal to the heart 
rate of the subject. Te signal structure mainly exists in the 
low-frequency domain, with the desirable frequencies for 
analysis lying between 0.15Hz and 20Hz. 

Te algorithm’s steps are shown in Figure 2.Te algorithm 
can be divided into three sections: initial fltering and slicing 
of the data, pulse clustering, and termination.  
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Figure 1: Tree recorded photoplethysmography (PPG) traces 
measured from the great toe site. Upper: a clean PPG signal; middle: 
a signal dominated by low-frequency noise, usually caused bymove-
ment of the subject’s limb; lower: a PPG trace contaminated with 
high-frequency noise, typical of electrical interference. Typically, 
these noise features can appear intermittently within a recording 
made over a measurement period of 1-2 minutes. 

2.2. Initial Filtering and Slicing Stage. Te incoming PPG 
signal is subject to a digital bandpass flter to remove 
unwanted noise and signal drif.Tis is implemented through 
a low-pass flter and a high-pass flter, designed to minimise 
both the signal distortion and the signal phase delay. A 
minimal delay is imperative for any device where a live trace 
is shown, especially where operator feedback is a possibility 
(e.g., adjustment of the sensor at the measurement site). 
Any substantial delay can render such operator feedback 
confusing and nonintuitive. Te options for digital flters fall 
into two main categories: FIR (Finite Impulse Response) and 
IIR (Infnite Impulse Response) [17]. Although symmetric 
FIR flters have the advantage that they have linear phase and  
are always stable, they have substantial delays when designed 
with low cut-of frequencies. IIR flters generally have a non-
linear phase response and therefore cause a frequency-related 
signal delay; however, they can be faster than an FIR flter.  

Te information in the PPG signal lies in the low-
frequency range (below ∼20Hz); however, the signal is ofen 
contaminated by high-frequency noise (Figure 1). Tis is 
ofen due to measurements in an electrically noisy  environ-
ment or optical pick-up from external lighting sources. 

Te high frequencies are removed by a low-pass flter 
with a cut-of frequency close to 22Hz. Tis is achieved using 
a moving average flter, which is a simple implementation 
of an FIR flter. Tis flter has a linear phase so as not to 
distort the waveforms and a low roll-of rate. With careful 
implementation of the flter taps, this can also be designed 
to minimise multiples of 50Hz noise (Figure  ) [18]. 
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Figure 2: Algorithm’s steps represented as a fow diagram, utilising BPMN Notation [16]. 
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Figure  : Te (a) high-pass and (b) low-pass flters. Te phase response for the high-pass flter is shown as a dashed red line, showing an 
increasing nonlinear efect at very low frequencies.Te phase for the low pass is linear, such that all frequencies are delayed by the same time. 

Te high-pass flter is more complicated to design due 
to the very low (0.15Hz) cut-of frequency. Te primary 
purpose of this flter is to block the dominantDCbackground 
on which the PPG signal is superimposed. For speed of 
processing and response, we have adopted a frst-order digital 
high-pass IIR flter with a cut-of of 0.15Hz, and the transfer 
function is as follows: 

1 − �
−1 

�(�) = where � < 1.  (1)
1 − � ⋅ �−1 

Although this flter is an IIR flter and has a nonlinear 
phase response, this nonlinearity is concentrated at very 
low frequencies below the flter cut-of frequency. Te flter 
responses are shown in Figure   and combined give a 
bandpass with the required attributes. 

Te fltered signal is then sliced into individual pulses.  
Tis could be done with the PPG traces, fnding the troughs 
between the pulses; however, this can be problematic either 
with a weak signal or when there is substantial noise. A 
more reliable method is using the R-wave gating from an 
ECG signal. In this study, the R-waves from the ECG signal 
have been extracted using the method developed by Pan and 
Tompkins [19] and the troughs between the pulses found 
from the subsequent minima following each R-wave. Each 
resulting pulse then has a constant background removed and 
is normalised in amplitude and duration. As the clustering 
method is processor-intensive, there is a “sanity check” on the 
pulse to check that it is pulse-like in form. Tis is designed 
to be computationally fast and is used to discard obvious 
nonpulses. Tis check averages the amplitude of the samples 
in the frst 5%, middle 90%, and last 5% of the pulse. Te 
average of the  middle section must be 1.5x larger than the  
biggest of the average of the frst and the average of the last 
sections.Tis ensures that the pulse amplitude starts low, goes 

up, and then returns low, giving confdence that a periodic 
pulse-like feature is present for subsequent analysis. 

2.3. Pulse Clustering. Te algorithm saves the pulse into an 
array. Tis pulse is then compared to all previous pulses by 
comparing the amplitude of each sample within the pulse. 
In order to compare the pulses, distance metrics were tested, 
including calculating the Pearson correlation coefcient, the 
Kendall rank correlation coefcient, the Spearman rank cor-
relation coefcient, and the root mean square error (RMSE). 
Each of these distance metrics is optimised diferently; by 
using a subset of data and visual comparisons of the clusters, 
RMSE produced the most appropriate clustering. RMSE 
also has the advantage of being computationally simple and 
therefore fast. 

Each pulse forms a new cluster and is the centre of that 
cluster. In addition, each pulse is placed into any other cluster, 
where the RMSE between this pulse and the pulse at the 
centre of that cluster is below a threshold value. In this way, N 
pulses create N clusters, each populated with pulses with an 
RMSE from the centre pulse less than a preset threshold. 

2.4. Termination. Afer each pulse has been clustered, the 
number of pulses in each cluster is calculated. If any cluster 
has sufcient pulses for the algorithm requirements, then the 
loop is terminated, and an averaged (normalised) pulse is 
returned. As the pulses are normalised in time, the median  
pulse is calculated by fnding the median of each point on 
the pulse. If there is no cluster with sufcient pulses, then the 
algorithm accepts more data, or if a predefned time-limit has 
been reached, then the algorithm terminates with a time-out 
error. Tis protects the algorithm from running continuously 
with no output. 

http:calculated.If
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Figure 4: (a) PPG trace with artifcial “movement” noise added. (b) and (c) show full pulse set and clustered pulses. (d) shows full trace with 
cluster pulses highlighted. 

2. . Algorithm Validation. To validate the algorithm, a clean 
PPG signal was analysed using the fltering described above, 
however with the clustering turned of. Tis returned an 
averaged representative pulse shape. Te signal was then 
digitally contaminated with noise, and the analysis was 
repeated with andwithout clustering.Te output of these two 
methods of analysis was compared to the representative pulse  
from the clean signal. 

3. Results and Discussion 

Figure 4(a) shows an extract from a PPG trace with artifcial 
noise added to approximately  0% of the signal. Te noise 
has been designed to replicate movement noise as seen 
in the middle trace in Figure 1. Figure 4(b) shows all of 
the pulses (without clustering), and Figure 4(c) shows just 
those pulses within the largest cluster. Te duration of the  
input PPG signal is 150 seconds; however, the algorithm 
with clustering self-terminates when any cluster contains 20 
pulses. Figure 4(d) shows the full trace of the PPG with the 
20 pulses contributing to the largest cluster highlighted in 
yellow. Note that there are no pulses selected from the end  
of the trace as the algorithm is analysing the trace as if in real 
time and therefore terminates when there are sufcient (in 
this case 20) pulses. 

It is clear from Figure 4 that the clustering successfully  
selects pulses of a similar shape and these visually appear to 
be a physiologically representative set. Figure 5 shows the 
median of all the pulses and the median from the cluster 
pulses together with the median of all the pulses from the 
original clean data. It can be seen in Figure 5 that the cluster  
set produces a median pulse much closer to the clean data 
median pulse than the median from all pulses. 

Clean data 
Noisy, all pulses 
Noisy, clustering 

Figure 5: Median peaks from the clean data pulses, all pulses afer 
noise is added, and the median from using clustering on the noisy 
data. 

In order to validate the algorithm, we have quantifed 
the diference between the clean, cluster, and noncluster 
median pulses using the same RMSE comparison. We have 
simulated movement noise, constant electrical noise (similar 
to the lower trace in Figure 1), a combination of movement 
and electrical noise, no noise, and white noise with no PPG 
signal, all shown in Figure 6. Te right-hand panels show 
a comparison between the median of the clean data, the 
median of the data with noise added, and the median of 
the cluster. In Figure 6(c), a combination of movement and 
electrical noise prevented a cluster formingwithin the defned 
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Figure 6: Comparison between clustering and nonclustering for a variety of inputs. (a) Simulatedmovement artefacts, (b) simulated electrical 
noise, (c) simulated electrical artefact and movement noise, (d) no noise, and (e) white noise as an input. Note that in (c) and (e) a cluster of 
sufcient size was not formed; therefore the algorithm reported no result. 
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Table 1: RMSE comparisons between noncluster and cluster algorithms for diferent noise situations. Note that where there is signifcant 
noise the cluster method returns a time-out error. 

Panel in 
Figure 6 Simulated noise 

RMSE between clean median pulse 
and median of all noisy pulses (15  

pulses) 

RMSE between clean median pulse 
and median of cluster (20 pulses) 

Movement artefact (10% noise) 0.0  0.14 
Movement artefact (20% noise) 0.12 0.14 
Movement artefact ( 0% noise) 0.2  0.11 
Movement artefact (40% noise) 0.27 0.07 

(a) Movement artefact (50% noise) 0.4  0.12 
Movement artefact (60% noise) 0.64 — 

(b) Electrical noise 0.12 0.09 
(c) Movement ( 0%) and electrical noise 0.66 — 

thresholds, and the median of all of the noisy pulses is 0.7 
deviating signifcantly from the clean signal. In Figure 6(e), 
we used white noise as the input. Again, there was no cluster  
formed; however, the data was still gated by the ECGR-waves 
and therefore a median of pulses of noise is produced. Te 
ability of the cluster algorithm to not produce a median pulse 
is extremely important as it prevents returning a false signal 
for disease diagnosis. 

Table 1 shows the RMSE values for each of these cases, 
showing in all situations where a cluster was formed that this 
produced a median pulse closer to the median pulse from RM
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the original clean data. No RMSE values can be calculated 0.0 
0 10 20 30 40 50 60 70

for a white noise input as seen in Figure 6(e), as there is no Percentage of signal with movement noise original “clean” data signal. Te biggest improvement of the 
cluster algorithm is seen with a high proportion ofmovement Cluster 
noise on the signal.Temovement noise is sporadic and only  
afects individual pulses; removing these pulses can result 
in a dramatic improvement. By contrast, electric noise is 
applied to all pulses, and therefore it is more difcult for a 
cluster based algorithm to select individual pulses without 
noise. Despite this, with simulated electrical noise, the cluster 
analysis produced an RMSE almost half the size of the RMSE 
from a median of all the pulses. 

Te performance of the cluster algorithm increased as 
the proportion of the signal contaminated by movement 
noise was set from 10% to 50%. Te comparison between the 
RMSE of the cluster algorithm and a median of all pulses 
is shown in Figure 7. Tis  shows that the  cluster result  
returns broadly consistent results independent of the noise 
added to the signal, until it is no longer able to produce 
a result. By comparison, the median of all pulses becomes 
increasingly poor at representing the original signal. At very 
low noise levels, a better result can be achieved through 
averaging over more pulses; therefore the cluster algorithm 
limiting the number of pulses averaged to 20 performs worse. 
However, as the noise level increases, the clustering algorithm 
is superior. Note also that the time for the algorithm to 
return a result increases with the cluster method as the 
noise content increases, and indeed noise contamination 
greater than 50% could be achieved by increasing the time-
out limit. By comparison, a median of all pulses will take 
a fxed duration of time independent of the signal quality 

All pulses 

Figure 7: Comparison between the cluster and noncluster algo-
rithms with increasing noise. 

and will therefore take signifcantly longer than the cluster 
method where there is low noise contamination. For real-
world clinical application, the algorithm has the scope to 
indicate when a probe has become unattached from the 
measurement site or has failed. 

Further work linked to photoplethysmography can 
include assessments of our method approach across a wide 
range of recordings from healthy subjects and vascular 
patients and also for diferent peripheral measurement sites 
such as the ear lobe and fnger pads. 

4. Conclusions 

We have shown that clustering can be used within a real-
time algorithm to minimise the efects of noise on a periodic 
physiological signal, with an algorithm that can be tailored 
to individual signal type. For this paper, we have explored 
its value for photoplethysmography waveforms as the input 
signal, where a dramatic reduction in the efect of noise on the 
output result has been demonstrated. Furthermore, if there is 
insufcient quality of data, the algorithm returns a null result 

http:outlimit.By
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rather than an incorrect median pulse. Te algorithm returns 
a consistent result as the noise on the signal is increased and 
at low noise levels can produce a result quickly and efciently. 
Tis algorithm was developed to be computationally fast, 
such that it could be run in real time on an embedded 
microcontroller within a portable medical device. 
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