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Abstract: The distribution of karst landscapes over the Earth’s surface, to a large extent, follows the 
distribution of carbonate (limestone and dolomite) and gypsum rocks and together these make up 
about 12% of the Earth’s land area, and the largest karst region in to world is in Southwestern China. 
Characterized by a unique set of landforms, these geographical areas also differ from other geomorphic 
regions by the presence of cave systems in the subsurface. Unfortunately, due to human disturbances, 
such as deforestation, agricultural expansion, livestock overgrazing and fre, these regions have been 
affected by varying degrees of degradation, which could also be worsened if water and soil erosion 
phenomena typical of these areas are considered. Therefore, there is a need to implement measures 
and strategies to protect these karst areas and develop plans to restore vegetation in this region. 
To support local and national authorities to achieve this goal, this study aims to characterize nutrient 
defciencies in degraded areas and estimate what could be the thresholds required to facilitate the 
restoration of vegetation in karst areas in southwest China. The results obtained confrm that the 
total element concentrations for Soil Organic Carbon (SOC), N, K, Ca, P, S and Mg were relatively 
high in the study karst area in southwest China. However, the total amounts of soil nutrients stored 
were very low due to the limited amount of soil identifed as a consequence of previous deforestation 
processes undertaken within this study area and this aspect needs to be taken into consideration if 
aiming at a positive success of future restoration processes. 

Keywords: karst ecosystem; karst rocky desertifcation; nutrient concentration; nutrient limitation; 
soil loss; vegetation restoration 

1. Introduction 

Karst topography is a type of special landform that develops on carbonate rocks such as limestone 
or dolomite due to the action of water [1,2]. Karst areas are widely distributed around the world, cover 
a total area of approximately 22 million km2, accounting for about 12% of the total world land area [3–7]. 
These areas are inhabited by nearly 1 billion people [3]. Southwestern China is the largest karst region 
in the world with a total area of approximately 540,000 km2, and its ecosystems and environments 
are affected by the natural and hydrological processes typical of karst regions. Guizhou Province 
(0.12 million km2, with 61.17% of the region’s total land area [7]) is the largest contribution, followed 
by Yunnan Province and Guangxi Zhuang Autonomous Region. Due to continuous urbanization 
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during the last decade in these regions, the request for land and wood has increased and this has 
led to land change use and intense deforestation, which has consequently caused huge soil losses [8]. 
Additionally, many karst forests have been damaged to varying degrees over the past few decades 
due to increasing human disturbance, which is refected in logging issues, agricultural expansion, 
overgrazing, and human induced fres. Unfortunately, recent studies have also confrmed how these 
soil losses have caused a serious environmental threat to the sustainability of these regions [9–11] and 
models have been developed to estimate the spatial and temporal patterns of soil loss [12–14]. 

To aggravate the situation, due to the lack of soil, fertilizer and evenly distributed access to 
water for the plants, the vegetation typical of this karst area is broad-leaved mixed forest even if it 
should be characterized by evergreen broad-leaved forests and seasonal rain forests being affected by a 
subtropical climate and thus infuenced by abundant rainfall and high temperatures [15]. 

The results obtained by these developed models have been provided to local and national 
authorities to assist them with the stipulation and implementation of strategic guidelines to improve 
the management of these karst areas and enhance the conservation of soil and water resources [14,16,17]. 
However, despite the continuous progress, due to the challenging habitat under consideration and the 
constraints on developing efficient plans for vegetation restoration, most actions have been unsuccessful. 

Due to its nature, karst land is characterized by rocks that contain acid-insoluble material, which 
makes the soil formation an extremely low process. Wang and Zhang (1999) [18] found that the 
formation of 1 cm of soil in the limestone area of southwest China required 4000 to 5000 years. Another 
example is associated with the rockiness rate of the Maolan Karst forest. In this forest, the level of rocks 
can be 70–80%, and only a small amount of soil exists in the rock crevice. In parallel, soil erosion is 
quite consistent, leading to extremely shallow soil in the karst area [19]. It was reported that the mean 
depth of topsoil on the karst hills was only about 2–9 cm [20,21], and therefore the lack of soil refects 
on the lack of water and hence less nutrients available. The droughts caused by karst landforms have 
also been considered to be the most important factors limiting plant growth and vegetation restoration 
in this karst region [22]. 

It is well known that plants require various nutrients, some in large quantities and others in 
small amounts, that can generally be acquired from the soil solution [23–34]. Karst soils are generally 
considered to be fertile due to higher organic matter content in lime soils, and nutrient restriction 
necessary for continuous vegetation growth is often overlooked. Nutrient availability is one of the most 
important drivers for the growth of ecosystems [35,36]. Considering the entire globe, the phenomenon 
of nutrient-restricted primary productivity and other biological processes is strongly combined in each 
ecosystem [37,38]. It is essential to maintain sufficient contents and stable proportions of different 
nutrients in plant tissues for healthy growth. Studies have in face demonstrated that especially the 
defciency of plant-available phosphorus (P) was considered to be one of the most important factors 
limiting plant productivity in karst habitats due to lowered mobility of P bound to calcium phosphates 
in calcareous soils [39]. This phenomenon was investigated within other karst areas in different 
countries. For example, it was also found that the limestone grassland in the UK was mainly limited 
by P [40]. Moreover, the overall productivity of calcareous grassland in northwestern Switzerland 
was limited by nitrogen (N) and legume growth was limited by P [41,42]. The wooded meadow on 
calcareous soils in Estonia [39], the calcareous grasslands in the Peak District of the UK [43] and in 
northern Switzerland [44] and Germany [45] were all co-limited by N and P. To date, only a few studies 
on the stoichiometry of karst plants indicated that plant growth in the karst region of southwestern 
China was mainly limited by P or co-limited by N and P [24,30,46,47]. Studies identifed in literature 
have shown that the lack of nutrients caused by the extremely low amount of soil may be a key limiting 
factor in vegetation restoration in karst areas [15,20,48]. 

Seasons play a signifcant role in the concentrations of phosphorus (P) and nitrogen (N) in plant 
leaves, characterizing nutrient availability, environmental conditions, annual physiological cycle, 
and the extent of maturity [49–53]. It has been demonstrated that the uptake of P from soils and its 
allocation into leaves mainly occur in spring (from mid-March to late May) [54], while the defciency of P 
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in plants may occur across growing seasons, especially for newly established vegetation [55]. Similarly, 
N uptake changes across chemical species and growing stages, depending on environmental conditions 
and ion proportions [56]. Seasonal changes of leaf N content refect plant physiology and environmental 
impacts [57]. Considering all these important concepts, it becomes essential to understand nutrient 
dynamics to be able to achieve the knowledge required to improve the management of fertilizers 
in order to optimize the growth of vegetation using efficient fertilization based on the plant uptake 
capacity of specifc nutrients required [56,58,59]. Additionally, other nutrients have been considered 
important for the conservation of plants because directly related with the species composition and the 
dynamics of the native vegetation, such as calcium (Ca), magnesium (Mg), sulfur (S), potassium (K) 
and carbon (C) [47]. 

Human activities, such as deforestation processes, natural disasters and the effects of climate 
change [60,61], such as heavy rainfall and consequent soil erosion, are altering the availability of 
these nutrients present in the soil, initiating conditions that may be lethal for the environments and 
its general growth. Thus, it is of primary importance to investigate the necessary quantities of these 
nutrients to deliver plans for an efficient restoration of these natural areas. To the authors’ knowledge, 
there is very limited research on soil nutrient reserves and nutrient requirements for the restoration of 
vegetation in karst areas and it is still unknown whether the total nutrient content in the extremely 
shallow soil typical of karst areas can meet the targets required. 

To fll this gap, the purpose of this study is to quantify the nutrient reserves and their allocation 
in karst ecosystems in southwestern China, and determine whether nutrient defciencies caused 
by the very low amount of soil are the restrictive factors for the restoration of vegetation in karst 
areas. This study focused on two different types of vegetation, arbor forest (F) and shrub–arbor forest 
transition (FS), and the parameters collected in the feld were values of the biomass, the soil volume and 
the soil nutrient reserves (carbon (C), nitrogen (N), potassium (K), calcium (Ca), phosphorus (P), sulfur 
(S) and magnesium (Mg)). All these parameters were essential to calculate the nutrient requirements 
for the restoration of vegetation typical for the passage from shrub–arbor forest to arbor forest. 

2. Materials and Methods 

2.1. Study Area 

The study area was located in a Karst area of Puding County, Guizhou province, southwestern 
China (E: 105◦27049”–105◦58051”, N: 26◦9036”–26◦31042”) as displayed in Figure 1. The elevation of the 
site ranges from 1100 to 1600 m above sea level. This area is affected by the north subtropical humid 
monsoon climate and the mean annual precipitation and temperature of this region are 1390 mm and 
15.1 ◦C, respectively. 

As previously mentioned, calcareous soil (Chinese soil genetic classifcation or United States 
Department of Agriculture (USDA) soil taxonomy) and yellow soils (Chinese soil genetic classifcation) 
are the main soil types found in this region. Over the last decade, this area has been in direct contact 
with expansion due to human activities and wide deforestation processes have signifcantly modifed 
it. After feld observation, it was found that within this area of study there were two typical vegetation 
types, which could be related to F and FS (Figures 2 and 3). 

As it is possible to notice from Figure 2, deciduous and evergreen trees higher than 10 m dominated 
the arbor forest (F). On the other side, the shrub–arbor forest mainly consisted of trees and shrubs with 
a small diameter at breast height (DBH). The shrub arbor forest (FS) was the vegetation generated due 
to deforestation processes within the study area. On the other side, the arbor forest (F) was a natural 
forest characterized by a relatively small amount of damage induced by deforestation processes. The F 
and FS plots studied in this work were chosen very close together; hence, they are affected by the same 
lithology and climate conditions. FS was not the climax vegetation in our study area. 
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Studies have identifed that there is a complex and interactive role between forest and forest soils 
within the environment [62,63]. The second category is vital for ecosystem processes such as nutrient 
uptake, decomposition, and water availability but it also provides a structural support because it 
works as an anchorage for the trees. Nevertheless, trees are essential for the creation of new soil due to 
the continuous decomposition of rot leaves they lose. 

Thus, if the vegetation is restored from FS to F within the area of study it will correspond to a higher 
consume of soil elements needed by the trees to grow, but it is essential to protect trees and forests 
because both of these vital resources play pivotal roles in food security and a healthy environment. 

For this study, a total of 10 representative plots were established in the area selected within Guizhou 
Province. The characteristics and specifc details of these plots and their correspondent vegetation are 
presented in Table 1 (Supplementary datasets can be found online within this manuscript). 

Table 1. Description of the two types of vegetation. 

Vegetation Type Number of Plots Plot Area (m2) Dominant Species Community 
Height (m) 

Canopy 
Cover (%) 

FS 4 200 

Platycarya longipes, 
Machilus cavaleriei, 

Rhamnus heterophylla, 
Rosa cymosa 

<5 90 

F 6 400 

Platycarya longipes, 
Lithocarpus confnis, 

Itea yunnanensis, 
Machilus cavaleriei, 

Quercus aliena 

>10 80 

2.2. Vegetation Sampling 

The feld data collection was conducted in January, June, August 2009 and January, June 2010. 
In the F and FS stands, all woody plants with height ≥ 1.5 m were measured inside each plot. 
Height, DBH, basal diameter (BD) (only for shrubs) were recorded for each plant using measure tapes. 
The human errors in recording height, DHB and BD were quantifed between 1–3% of the measurement 
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taken. Woody plants with height below 1.5 m were measured in 3 subplots of 25 m2 size (5 m × 5 m). 
BD instead of DBH was recorded for all individuals. Four herbaceous subplots (2 m × 2 m) were set up 
in each plot. 

2.3. Biomass Determination 

The aboveground biomass of the woody plants in all plots was estimated from plot-level fled 
surveys of species composition, DBH (for trees higher than 1.5 m) and BD (for shrub species groups) 
using allometric regression equations. The method and these equations were introduced in detail in 
our previous study [21,47,64]. In all study plots, allometric equations were used to estimating woody 
parts and foliar materials. All herbaceous plants were harvested in 2 m × 2 m subplots. Fresh weights 
were determined in the feld while oven-dried weights were determined in the laboratory. The ratios of 
belowground biomass to aboveground biomass for FS and F are 0.57 and 0.53, respectively, in line with 
those identifed in another karst area in Guizhou [65]. Tables 2 and 3 display the allometric regression 
equations for most typical species identifed within the area for foliage and wood. 

Table 2. Allometric regression equations (foliage) for the most typical biomass in the karst study area, 
southwest China [21]. DT (Dedicous tree); ET (Evergreen tree); DS (Deciduous Shrub). WL, WW, 
DBH, BD, H are biomass of leaf (g), diameter at breast height (mm), basal diameter (mm) and 
height (m), respectively. 

Species Life Form Samples Foliage R2 

Platycarya longipes DT 10 ·H)0.7016WL = 1.0488(DBH2 0.985 
Quercus aliena DT 8 ·H)0.6577WL = 0.6885(DBH2 0.98 

Itea yunnanensis ET 7 WL = 0.0311(DBH2
·H) 0.948 

Machilus cavaleriei ET 11 WL = 0.0432(DBH2
·H) 0.982 

Lithocarpus confnis ET 10 ·H)1.0448WL = 0.1512(DBH2 0.973 
Rosa cymosa DS 9 WL = 0.3264(BD2

·H) 0.877 
Rhamnus heterophylla ES 8 WL = 0.0726(BD2

·H) 0.808 

Table 3. Allometric regression equations (wood) for the most typical biomass in the karst study area, 
southwest China [21]. DT (Dedicous tree); ET (Evergreen tree); DS (Deciduous Shrub). WL, WW, DBH, 
BD, H are biomass of woody material (g), diameter at breast height (mm), basal diameter (mm) and 
height (m), respectively. 

Species Life Form Samples Wood R2 

Platycarya longipes DT 10 ·H)0.9162WW = 1.3941(DBH2 0.989 
Quercus aliena DT 8 ·H)0.9587WW = 0.691(DBH2 0.997 

Itea yunnanensis ET 7 ·H)0.9297WW = 1.0465(DBH2 0.995 
Machilus cavaleriei ET 11 WW = 0.5097(DBH2

·H) 0.998 
Lithocarpus confnis ET 10 ·H)0.9643WW = 0.6007(DBH2 0.985 

Rosa cymosa DS 9 WW = 0.7212(BD2
·H) 0.973 

Rhamnus heterophylla ES 8 WW = 0.3584(BD2
·H) 0.954 

2.4. Soil Sampling 

Karst habitat is a very special and different from all the other existing ones across the world. 
Within this study area, soil and litter distribution was patchy. The depth and cover area of the soil were 
uneven. As a result, the general methods to determine soil quantities were not completely suitable 
in this habitat. Therefore, the microhabitats inventory method was preferred to determine the total 
soil amount in each plot under investigation. Based on topography and whether there was soil or 
not, the whole habitat was divided into many microhabitats. A steel driller (diameter, 1 cm; length, 
1.2 m) was used to measure the depth of soil and this was repeated at three locations within typical 
microhabitats. For each of these positions, the soil cover area was recorded. Furthermore, soil samples 
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were collected by a cylindrical soil sampler at three points within each plot. Organic layer on top of 
the soil was removed before sampling. Soil samples were taken at three depths (0–10 cm, 10–20 cm, 
>20 cm) for each measurement location. There was very little soil below 20 cm, and the depth was 
uneven. Some places were only a little more than 20 cm, while some places tcould be 50 cm deep or 
more. Therefore, soil samples of the last level were collected at 20–40 cm depth for places deeper than 
50 cm. Soil samples were air-dried and then sieved with a 2-mm sieve and homogenized for further 
chemical analysis. The bulk density in the soil cores (volume, 100 cm3) was measured from the three 
layers, with three replicates for four plots. Each soil core was carefully checked to determine whether 
it contained rock skeletons. If there were rock skeletons, they were then weighed and their volume 
was measured with a graduated cylinder. By completing this step, the infuence of the rock skeletons 
was removed when calculating the bulk density. The stocks of soil (SS) (Mg/ha), where (1 Mg = 106 g), 
could be calculated as follows: Xn 

SS = ( SAi × SDi) × B× 10, 000/A (1)
i=1 

where parameters SAi, SDi, B, A are the soil area of the i microhabitat (m2), the average depth of the i 
soil microhabitat (m), the bulk density (g/cm3) and the plot area (m2), respectively. To calculate the 
nutrients’ reserves, the soil reserves were multiplied by the nutrient concentrations of each layer. 

2.5. Chemical Analysis 

The methods adopted for the chemical analysis were introduced in detail in our previous 
study [21,64]. Total C was determined using the oil-bath potassium dichromate titration method. Total 
N concentration was analyzed using the Kjeldahl method. The other nutrients (K, P, S, Ca and Mg) 
were determined by microwave digestion using the inductively coupled plasma optical emission 
spectrometer (Thermo 6300, Thermo Fisher Scientifc, USA). Soil alkali-hydrolysable N (available N, 
or AN) was determined by titration with a dilute solution of H2SO4 after extraction with a mixture of 
ferrous sulfate and sodium hydroxide. Available phosphorus (AP) was determined by molybdate blue 
colorimetry after extraction with sodium bicarbonate. Available K (AK) was determined with ICP after 
extraction with ammonium acetate. 

2.6. Statistical Analysis 

The content of biomass elements and the content of soil elements were analyzed by t-test. ANOVA 
was used to compare the content of different levels of soil. All effects were considered signifcant 
at p < 0.05. Statistical analyses were performed using SPSS (v20.0, International Business Machines 
Corporation (IBM); New York, NY, USA). 

3. Results 

3.1. Biomass Nutrients Concentrations and Stocks 

The results displayed in Figure 4 show that no signifcant difference was recorded in the mean 
content of all elements for aboveground biomass, trunk, leaf, grass, coarse woody debris (CWD) and 
litter between the two vegetation types (t-test, p > 0.05). Similarly, the leaf nutrient contents of the same 
species were not signifcantly different in the two vegetation types (Table 4). Despite a mean annual 
precipitation of 1390 mm in this site, the two stands had low total biomass measured (210.89 Mg/ha 
recorded for F and 70.53 Mg/ha recorded for FS) (Figure 5). In the F stand, the total recorded biomass 
stocks of C, N, K, Ca, P, S and Mg were 98.17, 1.19, 0.49, 1.99, 0.14, 0.17 and 0.18 Mg/ha, respectively, 
(Figure 4) while in the FS stand, the total recorded biomass stocks of C, N, K, Ca, P, S and Mg were 
32.97, 0.40, 0.17, 0.61, 0.048, 0.059 and 0.064 Mg/ha, respectively (Figure 4). It is clear that the highest 
content collected in all the cases always refers to C, while the lowest quantities identifed are specifc to 
the nutrient P. 

http:cylinder.By
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Table 4. Leaf nutrient concentrations of typical species in the karst study area, southwest China. F (abor forest); FS (shrub–arbor forest). 

Species Vegetation 
Type 

Number of 
Samples C N K 

Nutrients Concentrations (g/kg) 

Ca P S Mg N/P Ratio 

Platycarya longipes F 
FS 

9 
11 

479.93 ± 6.28 
460.44 ± 8.53 

20.23 ± 0.85 
18.27 ± 0.75 

6.20 ± 1.10 
5.32 ± 0.90 

24.31 ± 1.47 
24.72 ± 2.4 

1.54 ± 0.11 
1.40 ± 0.09 

0.04 ± 0.005 
0.04 ± 0.003 

3.52 ± 0.21 
3.04 ± 0.17 

13.41 ± 0.55 
13.53 ± 0.98 

Quercus aliena F 
FS 

3 
4 

487.60 ± 29.19 
465.67 ± 5.75 

25.78 ± 4.58 
19.33 ± 1.44 

7.67 ± 1.54 
9.87 ± 2.24 

17.96 ± 1.11 
17.98 ± 0.72 

1.91 ± 0.26 
2.22 ± 0.15 

0.05 ± 0.006 
0.06 ± 0.013 

1.73 ± 0.49 
2.97 ± 0.12 

13.34 ± 0.52 
8.73 ± 0.58 

Itea yunnanensis F 
FS 

12 
8 

491.35 ± 12.46 
479.81 ± 9.42 

13.56 ± 0.33 
13.80 ± 0.28 

4.96 ± 0.47 
5.58 ± 0.44 

19.45 ± 1.08 
19.74 ± 1.52 

1.21 ± 0.05 
1.27 ± 0.05 

0.03 ± 0.002 
0.03 ± 0.001 

1.61 ± 0.12 
1.73 ± 0.16 

11.40 ± 0.34 
10.96 ± 0.36 

Machilus cavaleriei 
F 
FS 

11 
11 

531.95 ± 7.22 
541.06 ± 11.30 

13.76 ± 0.40 
14.07 ± 0.68 

4.46 ± 0.27 
4.16 ± 0.38 

5.00 ± 0.59 
6.69 ± 0.96 

1.30 ± 0.04 
1.40 ± 0.11 

0.03 ± 0.001 
0.04 ± 0.002 

1.55 ± 0.13 
2.18 ± 0.26 

10.72 ± 0.42 
10.44 ± 0.55 

Lithocarpus confnis F 
FS 

7 
4 

501.46 ± 8.16 
532.31 ± 29.09 

13.42 ± 0.45 
12.75 ± 0.98 

5.75 ± 0.50 
3.41 ± 0.56 

9.94 ± 0.66 
13.87 ± 2.17 

1.35 ± 0.11 
1.06 ± 0.13 

0.03 ± 0.005 
0.03 ± 0.001 

2.18 ± 0.24 
1.54 ± 0.05 

10.17 ± 0.55 
12.25 ± 0.71 

Rosa cymosa F 
FS 

10 
7 

444.19 ± 8.46 
455.45 ± 13.54 

14.58 ± 0.35 
14.43 ± 0.40 

7.73 ± 0.65 
7.72 ± 0.53 

22.52 ± 1.28 
18.53 ± 0.98 

1.41 ± 0.06 
1.42 ± 0.08 

0.03 ± 0.001 
0.03 ± 0.002 

3.85 ± 0.23 
4.42 ± 0.33 

10.51 ± 0.48 
10.34 ± 0.63 

Rhamnus heterophylla F 
FS 

11 
10 

453.04 ± 7.68 
479.50 ± 7.93 

21.43 ± 0.70 
21.48 ± 1.40 

12.98 ± 1.02 
10.85 ± 1.07 

30.31 ± 1.99 
24.17 ± 2.56 

1.31 ± 0.06 
1.40 ± 0.05 

0.04 ± 0.001 
0.05 ± 0.002 

2.85 ± 0.26 
2.71 ± 0.11 

16.56 ± 0.59 
15.44 ± 1.08 

Average F 
FS 

63 
55 

483.58 ± 5.17 
487.82 ± 6.05 

16.65 ± 0.56 
16.55 ± 0.54 

7.11 ± 0.46 
6.63 ± 0.47 

18.88 ± 1.18 
18.22 ± 1.15 

1.37 ± 0.03 
1.42 ± 0.05 

0.03 ± 0.001 
0.04 ± 0.002 

2.51 ± 0.14 
2.68 ± 0.14 

12.28 ± 0.34 
12.04 ± 0.42 



Forests 2020, 11, 797 10 of 18 Forests 2020, 11, x FOR PEER REVIEW 10 of 18 

 

 
Figure 5. Biomass and nutrient storage in the biomass of two different vegetation types in 
southwestern China. 

Comparing the results displayed in Figure 5, it is possible to notice that if there was a plan to 
restore the vegetation from FS to F, the total biomass required should be higher. In more detail, the 
required amount of C, N, K, Ca, P, S and Mg should be 65.20, 0.79, 0.33, 1.38, 0.093, 0.12 and 0.11 
mg/ha, respectively (Figure 5). 

3.2. Soil Total Nutrients Concentrations and Stocks 

As shown in Figure 6, no significant difference was noticed in soil bulk density and the content 
of total soil elements between the two types (F and FS) except Total P (TP) in the top 20-cm layer (t-
test, p < 0.05). Soil Organic Carbon (SOC) and Total N (TN) concentrations considerably reduced with 
the increase in soil depth (one-way ANOVA, p < 0.05). Ca nutrients were only significantly reduced 

Figure 5. Biomass and nutrient storage in the biomass of two different vegetation types in 
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Comparing the results displayed in Figure 5, it is possible to notice that if there was a plan 
to restore the vegetation from FS to F, the total biomass required should be higher. In more detail, 
the required amount of C, N, K, Ca, P, S and Mg should be 65.20, 0.79, 0.33, 1.38, 0.093, 0.12 and 
0.11 Mg/ha, respectively (Figure 5). 

3.2. Soil Total Nutrients Concentrations and Stocks 

As shown in Figure 6, no signifcant difference was noticed in soil bulk density and the content of 
total soil elements between the two types (F and FS) except Total P (TP) in the top 20-cm layer (t-test, 
p < 0.05). Soil Organic Carbon (SOC) and Total N (TN) concentrations considerably reduced with the 
increase in soil depth (one-way ANOVA, p < 0.05). Ca nutrients were only signifcantly reduced in the 



Forests 2020, 11, 797 11 of 18 

F stand, and this behavior was not notice with the same magnitude for the FS stand. Overall, the other 
nutrients and the soil bulk density did not change signifcantly with an increasing soil depth. 
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Figure 6 also confrms that most of the corresponding nutrients were stored at 0–10 cm of depth. 
The soil content in the FS stand was only 47.78% of the F. Moreover, the soil volume and nutrient 
content of the soil layer below 10 cm was extremely small. In the F stand, total soil mass, SOC, N, K, 
Ca, P, S and Mg stocks were 618.86, 56.31, 3.68, 6.55, 15.52, 0.53, 1.39 and 12.41 Mg/ha, respectively 
(Figure 7). In the FS stand, total soil mass, SOC, N, K, Ca, P, S and Mg stocks were 295.69, 24.18, 1.85, 
2.90, 4.20, 0.26, 0.56 and 3.35 Mg/ha, respectively (Figure 7). The nutrient demand associated with the 
restoration of vegetation (R) was lower than the total amount of elements in the FS. 
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3.3. Soil Plant-Available Nutrients Concentrations and Stocks 

F and FS soil plant-available N, K and P concentrations showed no signifcant difference (t-test, 
p > 0.05). Soil plant-available nutrient content was very low, only between 0.26%–2.55% of the total 
element content. In the F stand, soil AN, AK, and AP stocks were 0.20, 0.094 and 0.0014 Mg/ha, 
respectively (Figure 8). In the FS stand, soil AN, AK, and AP stocks were 0.12, 0.048 and 0.00073 Mg/ha, 
respectively (Figure 8). They were far below the nutrient requirements for vegetation restoration. 
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forests in southwest China (0.87–1.86 g/kg) [51]. However, unlike the values recorded for the soil 
nutrient content, the soil available nutrient content was low, especially if we consider the soil AP 
content, which was clearly lower than most of the other forest soils present in the literature [66]. Due 
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Probably due to the soil erosion caused by the vegetation damage, soil reserve in the FS stand was 
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this study included all plant organisms, including plant live parts and other plant residues, including 
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4. Discussion and Implications of the Restoration of Vegetation in Karst Areas 

Since calcareous soil is based on carbonate rock development, the soil is fertile and rich in organic 
matter. In this study, soil SOC concentrations of the two vegetation types were very high, twice as 
much as other non-karst soils in this region [21]; therefore, the soil total nutrient content recorded 
was high. In addition, the soil total nutrients content was higher than that of other non-karst forests 
in southwest China (0.87–1.86 g/kg) [51]. However, unlike the values recorded for the soil nutrient 
content, the soil available nutrient content was low, especially if we consider the soil AP content, which 
was clearly lower than most of the other forest soils present in the literature [66]. Due to very slow 
rates of soil formation and the intense magnitude of soil erosion in karst areas, very little soil values 
were found in both F (618.86 Mg/ha) and FS (295.69 Mg/ha). Therefore, reserves of soil nutrients under 
the two vegetation types were considered low, especially plant available nutrients. Probably due to the 
soil erosion caused by the vegetation damage, soil reserve in the FS stand was less than half of the 
value found in F. 

In this study, the F stand was considered as the next stage of the succession or restoration of the FS 
stand. The differences between the two stages FS and F in terms of biomass and nutrient reserves were 
defned as the biomass and nutrient content required for vegetation restoration. The biomass in this 
study included all plant organisms, including plant live parts and other plant residues, including CWD 
and litter. FS biomass and its nutrient reserves were only 1/3 of F. Therefore, to achieve vegetation 
restoration, a large amount of biomass and elements would be required. However, reserves of soil total 
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nutrients in FS stand were all higher than the amounts of nutrients required for vegetation restoration. 
This indicated that the total elemental reserves in the soil of the FS stand could then aid the recovery 
of vegetation. In more detail, the N and P element requirements were close to half of the TN and TP 
reserves, and the K requirement was 1/8 of the soil TK in the FS stand. Another outcome of the feld 
campaign and the analysis of the dataset refers to the fact that most of the total element reserves in the 
soil were difficult to be absorbed by plants. As a matter of fact, the reserves of soil AN, AP and AK in 
the FS stand were only 7.2%, 0.3% and 1.7% of the TN, total TP and TK reserves, respectively; therefore, 
they were much lower than the nutrient requirements for the transition from FS to F. Although the 
form of soil elements was constantly changing, the total amount of elements available to plants was 
very low relative to the total reserves of the soil elements. In conclusion, the reserves of elements that 
could be utilized by the plants in FS were insufficient to maintain the development of vegetation to F. 

It is also fundamental to highlight that the shrub arbor forest (FS) was the vegetation generated 
due to deforestation processes within the study area while the arbor forest (F) was a natural forest 
characterized by a relatively little damage induced by deforestation processes. The F and FS plots 
studied in this work were chosen very close together; hence, they are characterized by the same lithology 
and climate conditions. However, there were certain minor differences within both environments 
(e.g., slope angles), and, in mountainous areas, the total nutrient reserves (potentially available for 
vegetation) do not have to be equal to the amount of soil nutrients. On the slope, some of the resources 
can be transported through mid-slope waters fowing down from higher areas; additionally, there is 
deposition with precipitation and the amount of ingredients released as a result of weathering from 
the rocks. This aspect was not considered in this study because the main focus was the analysis of soil 
samples at specifc locations. 

In the Karst area of southwest China, soil water stress due to shallow soil had been considered 
as a limiting factor for plant growth [22]. However, due to its location in subtropical and tropical 
regions, where rainfall is abundant, water stress for plant growth is often temporary [22]. In addition, 
caves and fssures can store water for plant use and these can alleviate the pressure of water stress in 
Karst areas. However, except the fact that nitrogen can be fxed by organisms via nitrogen deposition, 
the total reserves of most nutrients in soil and plant banks were almost constant. The destruction of 
vegetation, especially felling, had resulted in a signifcant reduction in biomass and a serious loss of 
nutrients. Moreover, according to the statistical fact that this region receives almost 1400 mm of annual 
precipitation, most of this water content is concentrated during the growing season. Hence, nutrient 
leaching is an additional issue because, due to the high porosity of the underlying carbonate rock 
characteristic of these karst areas, the low soil formation rate and high permeability of carbonate rocks 
create a fragile and vulnerable environment that is susceptible to continuous soil erosion. Soil loss, 
both from surface soil loss and subsurface soil leakage, in the karst regions of southwestern China is 
then a serious environmental problem that threatens sustainability. Vegetation restoration requires the 
transfer of nutrients from the soil bank to the plant bank. Then, with the restoration of vegetation, 
the nutrient reserves in the soil would start to lack or be limited, while, at the same time, the nutrient 
restrictions would become stronger. This phenomenon could consequently make the possibility to 
achieve a full restoration of the vegetation more difficult. 

Based on the results obtained in this study, to deliver promising and valuable plans for vegetation 
restoration in the karst area of southwest China, authorities not only need to pay attention to water 
restrictions due to the environmental conditions but also need to focus on the restricted availability of 
nutrient available. This study confrms that there is a link between available nutrients and vegetation 
biomass and this justifes the fact that, to achieve a full restoration of the area, there is a strong need to 
achieve the required soil nutrients. Local and national authorities will also have to consider the fact 
that due to the nature of the soil in these areas, mainly characterized by carbonate bedrock, the soil 
formation would be extremely slow [67] and there could also be a very limited support of nutrients 
from the surrounding environment [20]. Therefore, strengthening protection to prevent vegetation 
from damaging, reducing soil erosion and nutrient loss and at the same time adding exogenous 
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elements to promote vegetation restoration are good ways to restore degraded ecosystems in karst 
areas in southwest China. 

5. Conclusions 

This study was conducted to quantify the nutrient reserves and their allocation in karst ecosystems 
in southwestern China to determine whether nutrient defciencies caused by the very low amount 
of soil are the restrictive factors for the restoration of vegetation in karst areas recently affected by 
climate change and negative impacts induced by human activities. This study focused on two different 
types of vegetation, arbor forest (F) and shrub–arbor forest transition (FS), and the parameters required 
were collected in the study area located in Puding County, Guizhou province, southwestern China. 
In more detail, values of the biomass, soil volume and soil nutrient reserves (carbon (C), nitrogen (N), 
potassium (K), calcium (Ca), phosphorus (P), sulfur (S) and magnesium (Mg)) were gathered between 
January 2009 and June 2010. All these parameters were essential to calculate the nutrient requirements 
for the restoration of vegetation typical for the passage from shrub–arbor forest to arbor forest. 

The key results obtained by this study can be summarized as follows: 

1. The total element (SOC, N, K, Ca, P, S and Mg) concentrations were relatively high in the study 
karst area in southwest China. However, the total amounts of soil nutrients stored were very low 
due to the very small amount of soil as a consequence to deforestation processes; 

2. Vegetation recovery from FS to F requires large amounts of nutrients. The total soil elements 
measured in FS stands could meet the nutrient weight needed for vegetation restoration. However, 
the total amounts of plant available nutrients were not reaching the targets indicated for restoration, 
especially AP. 

This study highlighted how complex the process of vegetation restoration is and how its success 
is related to the optimization of multiple natural requirements, such as the nutrients in the soil as well 
as the nutrients in the plants. Local and national authorities should then consider the spatio-temporal 
variability of these nutrients during the implementation of restoration programs. Hence, this study 
aids decision making for the effective and sustainable management of large-scale restoration programs, 
which should also identify fnancial incentives, education, and the professional training of farmers, 
that are all key elements to implement the suggested restoration action. 
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