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Abstract 

For some renewable energy such as solar energy, the mismatch between the side of 

generation and demand should be tackled by thermal energy storage techniques with 

high energy density and low thermal losses. Thermochemical energy storage is a 

promising technology to meet these requirements. Within a thermochemical energy 

storage system, reactor is one of the critical components to achieve the optimal 

performance. While few studies have investigated the three-phase reactor applied in 

open thermochemical system in building’s application. This study presents a numerical 

description of a three-phase thermochemical reactor with air, solid thermochemical 

material and water flow. Zeolite 13X has been selected as the working thermochemical 

material and experimental tests have been conducted to obtain the temperature 

profiles in both the charging and discharging processes. A two dimensional numerical 

model of the reactors has been developed, verified and validated. A good agreement 

has been obtained by comparing the numerical and experimental results with the root 

mean square percent error ranging from 6.02% to 12.29%. Additionally, parameters 

sensitivity analysis has been conducted for reference diffusivity, heterogeneity factor, 

and initial water uptake of the zeolite. The numerical model and the investigation 

provide the tool reactor design optimisation, charging and discharging processes 

evaluation and reactor performance improvement. 

  

Keywords: Thermochemical energy storage; Adsorption; Numerical modelling; 

Three-phase thermochemical reactor, Zeolite 13X  
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Nomenclature 

Symbol Term Unit 

𝐴 contact area m2 

𝐴1 adsorption potential J/kg 

𝑎 specific surface area of adsorbent m2/m3 

𝑐𝑝 specific heat capacity at constant pressure J/(kg·K) 

𝐷 diameter m 

𝐷𝑒 equivalent diffusivity of adsorbent particles m2/s 

𝐷0 reference diffusivity of adsorbent particles m2/s 

𝑑𝑝 diameter of adsorbent particle m 

𝐸 characteristic energy of adsorption in Dubinin–

Astakhov equation 

J/kgH2O 

𝐸𝑎 activation energy in linear driving force model J/mol 

ℎ𝑟 enthalpy of adsorption J/kgH2O 

ℎ convection heat transfer coefficient W/(m2·K) 

𝐾 permeability of adsorbent m2 

𝑘𝑚 mass transfer resistance coefficient in linear driving 

force model 

1/s 

𝐿 length m 

𝑚 mass kg 

�̇� mass flow rate kg/s 

𝑁𝑢 Nusselt number - 

𝑛 heterogeneity parameter - 

𝑃 pressure Pa 

𝑃𝑟 Prandtl number - 

𝑅 ideal gas constant J/(K·mol) 

𝑅𝑒 Reynolds number - 

𝑅𝑤 specific gas constant of water vapour J/(kg·K) 

𝑟𝑝 radius m 

𝑟′ coefficient of correlation - 

𝑇 temperature K 

𝑡 time s 
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𝑈 thermal conductance W/(m2·K) 

𝑢 velocity m/s 

𝑊 adsorption volume m3/kgadsorbent 

𝑤 absolute humidity ratio of air kgH2O/kgdry air 

𝑋 water uptake of adsorbent kgH2O/kgadsorbent 

Greek symbols   

𝛼 thermal diffusivity m2/s 

𝛿 metal pipe thickness m 

𝜀 porosity - 

ρ density kg/ m3 

𝜆 thermal conductivity W/(m·K) 

𝜇 dynamic viscosity Pa·s 

𝜈 kinematic viscosity m2/s 

Subscriptions and 

superscriptions 

  

0 reference point  

𝑎 air  

𝑏 reactor bed  

𝑒 equilibrium  

𝑖𝑛 inlet flow  

𝑚 metal tube  

𝑜𝑢𝑡 outlet flow  

𝑝 zeolite particle  

𝑠 dry adsorbent solid  

𝑠𝑎𝑡 saturation  

𝑣 vapour  

𝑤 water  
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1. Introduction 

To tackle climate and meet urgent energy conservation goals around the world, the 

application of renewable energy in buildings is essential. Research findings indicate 

that the building sector is responsible for more than 30% of worldwide carbon 

emissions [1]. However, to increase the use of renewable energy and reduce the 

dependency of fossil fuels, the mismatch between the renewable energy generation 

and demand of end users should be tackled [2]. Taking solar energy as an example, 

at the generation side, it can be stored by thermochemical energy storage systems at 

times when abundantly available. When it gets dark the energy can be released and 

provide a continuous flow of clean energy to meet the space heating demand.  

 

Thermochemical energy storage involves the process of reversible physical and 

chemical interaction between a solid (thermochemical material) and a working fluid 

(such as water vapour) to store and release thermal energy. Due to the principle of 

thermochemical reactions, the technology features nearly zero energy loss and 2-10 

times higher energy storage density compared to water [3].  

 

A critical part of a thermochemical energy storage system is the reactor. It contains 

thermochemical material and provide the space where the energy storage and release 

processes take place. The reactor has been considered as one of the vital components 

to achieve the optimal performance in energy charging and discharging [4–6]. In the 

current literature, despite the applied thermochemical materials, the reactor can be 

classified as two-phase and three-phase reactor. The two-phase reactor contains the 

thermochemical material and the sorption pair/reactant such as air or vapour. While 

the three-phase reactor is added with a second working fluid. The second working fluid 

is disconnected from the other two reaction phases, but it acts as heat exchange media 

to supply/extract heat to/from the reactor.  

1.1. The state-of-the-art of the numerical thermochemical reactor studies 

The majority of the reactor studies have been focusing on two-phase reactors. Within 

the scope, in 2016, Tatsidjodoung et al. have developed a one dimensional numerical 

model to investigate the charging and discharging performance of a zeolite 13X 

packed bed reactor [7]. Then the authors have validated the model by comparing its 
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results with the experimental tests and suggested the suitable mass transfer 

resistance coefficient to achieve the desirable agreement between numerical and 

experimental results. In another study published in 2018, Kuznik et al. have developed 

and validated a three-dimensional numerical model of a zeolite 13X reactor for 

building’s application [8]. The model considers the zeolite and air as two phases in a 

reactor with their own temperature. Validation has been conducted with respect to 

experimental tests under different charging temperature (120 °C and 180 °C) and air 

flow rates (60 m3/h, 80 m3/h, and 90 m3/h). Additionally, in 2017, Gaeini et al. have 

developed a two dimensional model to investigate the flow, moisture and heat transfer 

in a pack bed reactor [9]. When validating the model, the authors have used pressure 

drop, air flow velocity and adsorbent temperature profile obtained in the experimental 

tests. Specifically, the concentration of adsorbed water in the packed bed has been 

compared with the results from MRI (Magnetic Resonance Imaging) experiments.  

 

When it comes to three-phase reactor studies, most of the studies are limited to the 

closed system which is isolated from the ambient with a specific working pressure. In 

2016, Fopah-Lele et al. have presented a numerical investigation study in a three-

phase reactor, as shown in Figure 1 (a) [10]. The cylinder chamber contains 

thermochemical material MgCl2. In a discharging process, the water vapour enters the 

chamber at the bottom for heat release. A pipe fin heat exchanger is integrated in the 

chamber where heat transfer fluid such as water can travel through it for domestic hot 

water or space heating supply. Using the Comsol software, the authors have reported 

the results from an analytical sharp front model to identify the optimal parameters in 

order to achieve the desirable reactor performance. With a similar reactor design, in 

2015, Schreiber et al. have reported a dynamic model to investigate the energy 

storage process of a closed thermochemical system for heat supply in industrial batch 

processes (Figure 1 (b)) [11]. To allow the heat transfer fluid temperature higher than 

100 °C, thermal oil has been used as the working fluid in the heat exchanger. In 

another study, as shown in Figure 2 [12], a three-phase thermochemical reactor has 

been proposed and investigated numerically. The reactor is in sandwich structure 

where zeolite is integrated with heating/cooling panels at the top and bottom. The 

authors have built a three dimensional numerical model to evaluate the reactor 

geometrical configuration influences in the reactor performance. As reported by the 

authors, the model has been validated experimentally. Apart from integrating a heat 
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exchanger with the thermochemical material, some studies such as [13] and [14] have 

used air to oil heat exchanger at the air flow path to extract heat from the exhaust air. 

According to the experimental and numerical study in [14], the authors have reported 

that 60% of the released thermal power has been transferred to the working fluid while 

the other has been lost due to the insufficient heat insulation. 

 

Figure 1 Three-phase thermochemical reactor: (a) Fin pipe exchanger in building’s 

application [10], (b) heat exchanger for cogeneration in industrial batch process [11] 

 

Figure 2 Cross section view of the sandwich structure three-phase reactor [12] 
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Figure 3 Heat exchanger located at the air flow path in a thermochemical reactor: (a) 

3D illustration, (b) cross section view [14]  

1.2. Aim and contributions of the paper 

When reviewing these studies, currently, few studies have investigated the three-

phase reactor applied in open thermochemical energy storage system. This paper 

aims to investigate a three-phase thermochemical reactor through an experimentally 

validated numerical model. A two dimensional thermochemical reactor numerical 

model has been developed and validated. The validation is supported by the original 

experimental data. The study methodology including reactor design, experimental 

setup and operation conditions are detailed in section 2. Section 3 describes the 

numerical model and section 4 presents the model verification and validation. 

Additionally, sensitive parameters affecting the reactor performance has been 

evaluated and presented. This paper provides a valuable approach for reactor 

performance analysis, reactor design optimisation, and performance improvement. 

 

2. Methodology 

The methodology of this study has been shown in Figure 4. The methodology section 

demonstrates the experimental system, experiment operation conditions, and 

statistical analysis indicators. The following section 3 details the reactor numerical 

modelling.  
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Figure 4 Graphic flow chart of the study methodology 

In order to provide experimental results for the numerical model validation, an 

experimental system has been developed (Figure 5). In this system, an electric heater 

has been used to in charging processes. In discharging processes, water is the 

working fluid. Specifically, air from the ambient is pumped by the fan and driven 

through the platform. Firstly, it travels across the heat exchanger where the ambient 

air can be heated by the exhaust air. Then it travels through the air duct heater with 

15 kW power and the ability 300 °C maximum outlet temperature. Next to the heater, 

a humidification pipe has been installed to connect the humidifier and the main air 

duct. The air can be humidified with the humidification capacity at 6 kg/h. Upon the 
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reactor entrance, the air flow is directed into the reactor. When the air leaving the 

reactors, it heads to the air to air heat exchanger where the sensible heat of the 

exhaust air transfer to the intake air from the ambient. With respect to the metal pipes, 

driven by a pump, water flows through the reactor and circulates to a water tank. In 

order to reduce the heat loss to the ambient and eliminate condensation across the air 

duct, the complete testing platform has been insulated using 50 mm thickness glass 

wool.  

 

Figure 5 Schematic diagram of the experimental setup 

Specifically, Figure 6 presents illustrations of the reactor container and pictures of the 

built reactor. Multiple side openings have been created as the air flow entrance and 

exit path. The width of the opening is 4 mm and the distance between any two 

openings is 3 mm. For the side of a built container, the openings are separated into 

three disconnected sections with separation bars to ensure accuracy of the opening 

geometry and structure stability during experimental tests. The distance between any 

two disconnected openings is 5 mm. 
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Figure 6 Illustrations of the reactor container and built reactor: (a) the container only, 

(b) the container with metal pipe installed 

The numerical model is validated by comparing the modelling data with the 

experimental results. Four comparison cases are conducted in the validation. The 

operating conditions for the obtained experiment data are presented in Table 1. A set 

of charging experimental data (Case 1) and three sets of discharging data (Case 2, 3 

and 4) have been used for the model validation. With respect to the discharging data, 

Case 2 is the discharging with humidified ambient; Case 3 is the discharging with 

humidified and preheated air at 50 °C; Case 4 is the discharging under the conditions 

of Case 3 but it turns on water circulation when reactor achieves peak temperature. 

 

Table 1 Operating conditions for charging and discharging the reactor 

Parameter Unit Charging Discharging 

  Case 1 Case 2 Case 3 Case 4 

Ambient 

temperature 

°C 21.33 18.52 13.21 21.18 

Air flow rate kg/s 0.048 0.024 0.045 0.045 
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Charging inlet 

temperature 

°C 110 - - - 

Discharging inlet 

temperature 

- 18.52 50 50 

Duration hour 7 2 7 2 

Water flow rate L/min - - - 0.5 

 

When validating the numerical model by the experimental results, correlation between 

the numerical and experimental data is presented with coefficient of correlation. It 

measures how well the two sets of data are related and can be calculated with the 

following equation: 

 
𝑟′ =

𝑁∑ 𝐹𝑖𝑂𝑖
𝑖=𝑁
𝑖=1 − ∑ (𝐹𝑖)

𝑖=𝑁
𝑖=1 ∑ (𝑂𝑖)

𝑖=𝑁
𝑖=1

√𝑁∑ 𝐹𝑖
2𝑖=𝑁

𝑖=1 − (∑ 𝐹𝑖
𝑖=𝑁
𝑖=1 )

2
√𝑁∑ 𝑂𝑖

2𝑖=𝑁
𝑖=1 − (∑ 𝑂𝑖

𝑖=𝑁
𝑖=1 )

2
 (1) 

When there are 𝑁 observations and forecast data, 𝐹𝑖 represents one of the forecast 

data obtained from the numerical model, 𝑂𝑖  represents an observed experimental 

data. 

 

Additionally, the root mean square of percent error (RMSPE) has been applied to the 

model validation which measures the percentage difference between the forecast data 

and observed values, given in the following expression: 

 𝑅𝑀𝑆𝑃𝐸 = √
1

𝑁
∑ (

𝑂𝑖 − 𝐹𝑖
𝑂𝑖

)
𝑖=𝑁

𝑖=1
× 100 

(2) 
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3. Reactor numerical modelling 

3.1. Calculation method 

 

Figure 7 Illustration of the calculation method 

Figure 7 illustrates the calculation method of the three-phase reactor model. It is 

consisted with air flow, water flow and solid thermochemical material. “Finite element” 

is used to transfer the reactor into numerous “differential” divisions where equations 

of heat and mass balance are applied to each element. As presented in Figure 7 (b), 

the whole calculation can be assumed to be integrated with unlimited elements with 

respect to the water flow direction, such as i-1, i, and i+1. Then to take the air flow into 

consideration, the computational element is further divided into sub-elements, such as 
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the j-1, j, and j+1. Newton iteration is used to achieve the equilibrium state of heat and 

mass transfer process. 

 

With respect to the heat transfer within the reactor, it is induced by temperature 

difference of water, air flow, and solid adsorbent. For instance, if the water temperature 

is higher than the adsorbent and air, heat is transferred from water to the adsorbent 

and air flow, as presented in Figure 8. Additionally, when there is temperature 

difference between air flow and adsorbent, the heat transfer between the two are 

considered.  

 

Figure 8 Heat transfer details in a porous bed with metal pipe 

To simplify the numerical simulation process, the following assumptions have been 

made: 

 Zeolite particles share the same property in the reactor and a unique bed porosity 

is used in the model [7];  

 Physical properties of zeolite such as thermal conductivity and specific heat 

capacity are not varying with temperature; 

 Radiative heat transfer, conductive heat transfer between adsorbent particles, 

work done by pressure changes, and viscous dissipation are neglected; 

 The humid air is assumed to be ideal gas with the composition of dry air and 

vapour; 
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 The external wall of the reactor is assumed adiabatic. 

 

3.2. Heat and mass transfer conservation equations 

Table 2 summaries the heat and mass transfer conservation equations in the 

thermochemical reactor. Heat transfer between air and zeolite, air and water, and 

water and zeolite have been presented. Some specific considerations are illustrated 

as follow. 

 

In terms of the convective heat transfer coefficient ℎ𝑠,𝑎 = 1 𝑅𝑐𝑜𝑛𝑣⁄  for solid adsorbent 

and air. It depends on the adsorbent particle diameter and air flow velocity. With 

respect to the bed porosity ranging from 0.2 to 0.9, Kuwahara et al. have proposed a 

correlation which has been reported to agree well with the experiment data [15]. The 

correlation has been given in equation (3). Considering the relatively wider application 

range of bed porosity, this correlation is used in the present study.  

 
ℎ𝑠,𝑎𝑑𝑝

𝜆𝑎
= (1 +

4(1 − 𝜀𝑏)

𝜀𝑏
) +

1

2
(1 − 𝜀𝑏)

1 2⁄ 𝑅𝑒0.6𝑃𝑟1 3⁄  (3) 

The convective heat transfer resistance can be obtained and written in equation (4). 

 
𝑅𝑐𝑜𝑛𝑣 =

1

ℎ𝑠,𝑎
=

𝑑𝑝

𝜆𝑎 ((1 +
4(1 − 𝜀𝑏)

𝜀𝑏
) +

1
2
(1 − 𝜀𝑏)1 2⁄ 𝑅𝑒0.6𝑃𝑟1 3⁄ )

 (4) 

 

With respect to the heat transfer between air and water flow, conductive thermal 

resistance of the metal pipe has been neglected. The terms of  ℎ𝑤,𝑚 and ℎ𝑚,𝑎 are the 

heat transfer coefficient of water flow within the metal pipe and heat transfer coefficient 

of air flow across the metal pipe. They can be evaluated by their Nusselt number.  

Nusselt number of water flow 

The equations for calculating the Nusselt number of water flow is determined by 

whether it is laminar flow or turbulent flow. To identify the status, the critical Reynolds 

number is 2300. In terms of laminar flow, Sieder and Tate have given the equation 

according to their experimental data [16], expressed as: 

 𝑁𝑢𝑤 = 1.86 (𝑃𝑒
𝐷

𝐿
)
1 3⁄

(
𝜇𝑤
𝜇𝑚
)
0.14

 
(5) 
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Where the Peclet Number 𝑃𝑒  can be calculated with the Reynolds and Prandtl 

number. 

 𝑃𝑒 = 𝑅𝑒𝑃𝑟 (6) 

When the water flow is turbulent flow, the Nusselt number can be calculated by the 

equation proposed by Dittus and Boelter [16], expressed as: 

 𝑁𝑢𝑤 = 0.023𝑅𝑒
0.8𝑃𝑟𝑛 𝑤𝑖𝑡ℎ {

𝑛 = 0.3 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡 
     𝑛 = 0.4 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡

 (7) 

Where the Reynolds, Prandtl and Nusselt number is referred as: 

 𝑅𝑒 = (
𝑢𝐷

𝜈
)
𝑤

 (8) 

 𝑃𝑟 = (
𝜇𝑐𝑝

𝜆
)
𝑤

 (9) 

 𝑁𝑢𝑤 = (
ℎ𝐷

𝜆
)
𝑤

 (10) 

Nusselt number of air flow through the metal pipe 

Considering air flowing over the metal pipe embedded in porous medium, the Nusselt 

number can be expressed as [17]: 

 𝑁𝑢𝐷 = 1.015(𝑅𝑒𝑃𝑟)𝐷
1 2⁄

 
(11) 

Therefore, the convective heat transfer coefficient ℎ𝑚,𝑎  can be calculated with 

equation (12). 

 
ℎ𝑚,𝑎 =

𝜆𝑎 ∙ 1.015 (
𝜌𝑎𝑢𝑎𝐷𝑐𝑝,𝑎

𝜆𝑎
)
1 2⁄

𝐷
 

(12) 

 

 

Additionally, the contact area of metal pipe and adsorbent particle is: 

 𝑑𝐴𝑚,𝑠 = (1 − 𝜀𝑏) ∙ 𝜋𝐷 ∙ 𝐿2 
(13) 

 

 

 



Table 2  Summary of the heat and mass transfer equations in the numerical model 

Terms Equations 

Heat transfer between zeolite and air 

Convective heat transfer between solid adsorbent 

and air flow 

𝑑𝑞𝑠→𝑎⏟  
𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑒

= (𝑇𝑠 − 𝑇𝑎,𝑖𝑛)/ (
1

𝑈𝑠,𝑎
)𝑑𝐴𝑠,𝑎

⏟                
𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑟𝑜𝑚 𝑧𝑒𝑜𝑙𝑖𝑡𝑒 𝑡𝑜 𝑎𝑖𝑟

 

Overall conductance 𝑈𝑠,𝑎 for heat conduction within a 

zeolite particle and heat convection between the 

adsorbent particle and air flow 

1

𝑈𝑠,𝑎
= 𝑅𝑐𝑜𝑛𝑣 + 𝑅𝑐𝑜𝑛𝑑 

Conductive heat transfer resistance within the 

adsorbent particle [18] 
𝑅𝑐𝑜𝑛𝑑 =

𝑑𝑝

2𝜆𝑏
(1 −

1

√2
3 ) 

Convective heat transfer resistance [15] 
𝑅𝑐𝑜𝑛𝑣 =

1

ℎ𝑠,𝑎
=

𝑑𝑝

𝜆𝑎 ((1 +
4(1 − 𝜀𝑏)

𝜀𝑏
) +

1
2
(1 − 𝜀𝑏)1 2⁄ 𝑅𝑒0.6𝑃𝑟1 3⁄ )

 

Heat transfer between air and water flow 

Heat transfer rate of air and water flow 𝑑𝑞𝑎→𝑤 = (𝑇𝑎,𝑖𝑛 − 𝑇𝑤,𝑖𝑛)/ (
1

ℎ𝑤,𝑚 ∙ 𝑑𝐴𝑤
+

1

ℎ𝑚,𝑎 ∙ 𝑑𝐴𝑚,𝑎
) 

Heat transfer coefficient of water flow 

ℎ𝑤,𝑚

= 0.023𝜆𝑤 (
𝑢𝐷

𝜈
)
𝑤

0.8

(
𝜇𝑐𝑝

𝜆
)
𝑤

𝑛

 𝑤𝑖𝑡ℎ {
𝑛 = 0.3 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡 

     𝑛 = 0.4 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡
 



1 
 

Heat transfer coefficient of air flowing over metal pipe 
ℎ𝑚,𝑎 =

𝜆𝑎 ∙ 1.015 (
𝜌𝑎𝑢𝑎𝐷𝑐𝑝,𝑎

𝜆𝑎
)
1 2⁄

𝐷
 

Heat transfer between water and zeolite 

Conductive heat transfer between metal pipe and 

zeolite 
𝑑𝑞𝑤→𝑠𝑜𝑙𝑖𝑑 = (𝑇𝑤,𝑖𝑛 − 𝑇𝑠)/ (

1

ℎ𝑤,𝑚 ∙ 𝑑𝐴𝑤
) 

Mass transfer between zeolite and air 

Mass balance 
�̇�𝑎(𝑤𝑎,𝑜𝑢𝑡 − 𝑤𝑎,𝑖𝑛)⏟            
𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑓𝑜𝑟 𝑎𝑖𝑟

= −
𝑑𝑋

𝑑𝑡
𝑚𝑠⏟    

𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑓𝑜𝑟 𝑧𝑒𝑜𝑙𝑖𝑡𝑒

 



3.3. Numerical model of adsorption equilibrium and sorption kinetics 

Equilibrium and kinetics are two basic ingredients of adsorption and desorption 

processes. Equilibrium data provide information about initial and final state of a system 

while kinetics offer the change of chemical properties in time especially the rate of 

change. This section illustrates the applied equations for zeolite/water equilibrium and 

adsorption/desorption kinetics.   

3.3.1. Zeolite and water equilibrium 

The zeolite’s water mass fraction equilibrium, i.e. isotherm, is calculated using the 

Dubinin-Astakhov equation, given in equation (14) [19]. 𝑊0 is to maximum adsorption 

volume of the microporous system; and 𝑊 is the volume which has been filled by the 

water molecules.  

 𝑊 = 𝑊0𝑒𝑥𝑝 [−(
𝐴1
𝐸
)
𝑛

] (14) 

An essential parameter is 𝐴1, defined by: 

 𝐴1 = 𝑅𝑤𝑇𝑙𝑛 (
𝑃𝑠𝑎𝑡
𝑃𝑣
) 

(15) 

By Polanyi, 𝐴1  is the adsorption potential. In this equation, 𝑃𝑣  is the equilibrium 

pressure at temperature 𝑇 ; 𝑃𝑠𝑎𝑡  is the saturated vapour pressure which can be 

expressed by [20]: 

 𝑃𝑠𝑎𝑡 = 0.61121𝑒𝑥𝑝 ((18.678 −
𝑇

234.5
) (

𝑇

257.14 + 𝑇
)) 

(16) 

It is noted that the unit in the 𝑃𝑠𝑎𝑡 equation is kPa for 𝑃𝑠𝑎𝑡 and °C for 𝑇. 

 

Dubinin and co-workers considered the adsorption process to be a process of volume 

filling and introduced the ratio 𝑊 𝑊0⁄  as the degree of filling of the micropores. 

Additionally, they adopted a thermodynamic interpretation from Polanyi adsorption 

potential and conducted a fundamental postulate that 𝑊 𝑊0⁄ = 𝑓(𝐴 𝐸⁄ ). Dubinin and 

Astakhov expanded the equation with the addition of a parameter n, then simplified to 

the Dubinin-Astakhov equation. Additionally, Mette et al. have validated the Dubinin-

Astakhov equation by comparing with the results from experimental measurements 

[21]. The authors have confirmed the applicability of the equation and suggested the 

corresponding values of the parameters are: 𝑊0 = 0.341𝑒
−3  m3/kg, 𝐸 = 1.1923e6 

J/kg. 
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Once obtained the volume of the adsorption water molecules 𝑊, the related water 

uptake (mass ratio of the adsorbed water) can be calculated. The water uptake at 

equilibrium state is calculated using the density of the adsorbed moisture 𝜌𝐻2𝑂 and 

adsorption volume 𝑊.  

 𝑋𝑒 = 𝜌𝐻2𝑂 ∙ 𝑊 (17) 

 𝜌𝐻2𝑂 =
𝜌20𝐶

1 + 𝛽20𝐶(𝑇𝑠 − 293.15)
 (18) 

Where 𝜌20𝐶  is the moisture density at 20 C and 𝛽20𝐶  is the thermal expansion 

coefficient of water vapour at 20 C.  

 

The term 𝑛  is referred as the heterogeneity factor. In general, heterogeneity is 

observed when adsorbed molecules display varying affinity to the adsorbent surface 

depending on the surface location [22]. Due to the nature of matter, there are always 

shoulders, peaks and valleys on the adsorbent material. These shoulders, peaks and 

valleys can be non-uniform chemical composition, surface defects, porosity, etc. The   

heterogeneity factor reflects the width of energy distribution [23]. This parameter is 

further analysed in the parameter sensitivity analysis section. 

 

3.3.2. Mass transfer resistance using linear driving force model 

Mass transfer resistance occurs when moisture transfers between its fluid phases to 

micro-pores of adsorbent. To describe the mass transfer resistance, linear driving 

force model can be applied. The model, originally proposed by Glueckauf and Coates 

(1947), has been frequently used because it is simple and analytical [25]. The linear 

driving force model gives the rate of water uptake in equation (19). 

 
𝑑𝑋

𝑑𝑡
= 𝑘𝑚(𝑋𝑒 − 𝑋) 

(19) 

where 𝑋𝑒 is the equilibrium water uptake of adsorbent at time 𝑡 in terms of air vapour 

pressure 𝑃𝑣 and adsorbent temperature 𝑇; however, 𝑋 is the actual water uptake of 

the adsorbent at time 𝑡 . The other coefficient 𝑘𝑚  is the internal mass transfer 

coefficient. It is obtained from experimental data [26] with a function of adsorbent 

particle radius 𝑟𝑝 and diffusivity 𝐷𝑒.   

 𝑘𝑚 = 15
𝐷𝑒
𝑟𝑝2

 (20) 

The equivalent diffusivity can be expressed as [18]: 



2 
 

 𝐷𝑒 = 𝐷0𝑒𝑥𝑝 (−
𝐸𝑎
𝑅𝑇𝑠

) (21) 

 

3.4. Differential heat of adsorption 

Thanks to the sorption mechanism and air flow, the energy transferred to the zeolite 

leads to the removal of water. The energy stored in the zeolite can be calculated by 

the multiplication of the change of enthalpy of adsorption ℎ𝑟  and change of water 

uptake. In this model, a polynomial fitting approximation of the measured heat of 

adsorption from Figure 9 [27] is used to determine the heat of adsorption at water 

uptake of 𝑋. The correlation between the differential enthalpy of adsorption ℎ𝑟  and 

zeolite water uptake 𝑋 is expressed as: 

 
ℎ𝑟 = 7 × 10

7𝑋6 − 7 × 107𝑋5 + 3 × 107𝑋4 − 7 × 106𝑋3 + 899951𝑋2

− 69983𝑋 + 6491.3 

(22) 

 

Figure 9 Adsorption enthalpy as function of water uptake (latent heat of evaporation 

2430 kJ/kg at 30 °C) [27] 

3.5. Viscosity of air 

The viscosity of air 𝜇  represents its resistance to shearing flows. However, it is 

dynamic since the value for air at 180 °C is 40% higher than that of 20 °C. Therefore, 

its dependence to air temperature cannot assumed to be negligible. The correlation in 

equation (23) has been used to calculate the air dynamic viscosity [8]. 
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 𝜇(𝑇𝑎) = 4.564 × 10
−8 × 𝑇𝑎 + 4.745 × 10

−6 (23) 

3.6. Effective air flow velocity 

The velocity of humid air through the adsorbent bed is determined by Darcy’s equation 

[28].  

 𝑢𝑎⃗⃗ ⃗⃗ = −
𝐾

𝜇
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃) 

(24) 

Where 𝐾 is the permeability of the adsorbent bed. It given by the hydraulic radius 

theory of Carman-Kozeny relation as follow equation (25) [28]: 

 𝐾 =
𝑑𝑝

2𝜀𝑏
3

180(1 − 𝜀𝑏)2
 

(25) 

Where 𝑑𝑝 is the average zeolite particle diameter.  

3.7. Simulation parameters 

Parameters used in the simulation are given in Table 3. 

Table 3 Parameters used in the numerical analysis 

Parameter Symbol Value Unit Reference 

Bed porosity 𝜀𝑏 0.39 - [7] 

 

 

 

Bead conductivity 𝜆𝑏 0.20 W/(m·K) 

Zeolite density ρ𝑠 0.85e3 kg/m3 

Activation energy 𝐸𝑎 2.95e4 J/mol 

Reference diffusivity 𝐷0 2e-6 m2/s 

Maximum adsorption 
volume 

𝑊0 0.34e-3 m3/kgadsorbent [21] 

 
Characteristic energy of 

adsorption in Dubinin–

Astakhov equation 

𝐸 1.1923e6 J/kgH2O 

Zeolite particle diameter 𝑑𝑝 4.0e-3 m [29] 

Particle 

Porosity 

𝜀𝑝 0.32 - [30] 

Dry air density ρ𝑎 1.177 kg/m3 [16] 

Air thermal conductivity 𝜆𝑎 2.62e-2 W/(m∙K) 
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4. Results and discussions 

By using the software Matlab, the equations in the numerical model has been solved. 

This section illustrates the model verification, validation, and sensitivity analysis of 

critical parameters.  

4.1. Numerical model verification 

Verification is conducted to determine and ensure the numerical model implementation 

accurately represents the conceptual description of the thermochemical reactor. Two 

approaches have been used in the verification process: static testing and dynamic 

testing [31].  

 

In the static testing, the Matlab program has been carefully reviewed and bugs have 

been fixed. Specifically, the authors have walked through the sections of parameter 

input, calculation cell division, heat and mass transfer coefficient calculation, 

adsorption equilibrium, adsorption kinetics, heat and mass balance equations, and 

calculation output.  

 

In the dynamic testing, the results of the numerical model have been compared with 

the simulation study by Tatsidjodoung et al. [7] in France, as shown in Table 4. 

Tatsidjodoung et al. have demonstrated the numerical model accuracy and 

applicability in their study. The parameters used by Tatsidjodoung et al. have been 

input to the current numerical model. For discharging simulation processes, two air 

inlet air flow velocity (0.06 m/s and 0.14 m/s) and two initial water uptake values (0.03 

kgH2O/kgzeolite and 0.06 kgH2O/kgzeolite) have been used. The peak reactor outlet air 

temperature has been calculated with the current numerical model and compared with 

the results from Tatsidjodoung et al. [7]. It is noted that the results are good 

accordance with each other, showing robustness and reliability of the present 

numerical model. 
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Table 4 Comparison between present study results and simulation results 

Study 

Inlet air 

temperature 

(°C) 

Inlet air 

flow 

velocity 

(m/s) 

Zeolite 

mass 

(kg) 

Initial water 

uptake 

(kgH2O/kgzeolite) 

Peak reactor 

outlet air 

temperature 

(°C) 

Simulation [7] 
20 0.06 40 0.03 57.4 

20 0.14 40 0.06 56.5 

Present study 
20 0.06 40 0.03 54.4 

20 0.14 40 0.06 52.6 

 

4.2. Numerical model validation 

To illustrate the degree of which the numerical model represents the actual world for 

the intended applicability, numerical model validation is conducted. This section 

compares the computed results with the experimental values in charging and 

discharging cases. The reactor outlet temperature, inlet air temperature and water 

outlet temperature are presented.  For both of the experimental and numerical results, 

during the charging process, the Zeolite 13X temperature at the outlet side presents 

the reactor outlet temperature; while during the discharging stage, the reactor outlet 

temperature is the outlet air temperature. 

 

4.2.1. Charging tests – Case 1 

Figure 10 shows a comparison between the experimental and numerical results for 

the reactor outlet temperature during a 7-hour charging study. The discrepancy 

between the experimental and numerical results is seen when the temperature is rising 

to the charging inlet temperature. The maximum temperature discrepancy during this 

stage reaches at 25 °C. However, after the reactor outlet temperature increases to 72 

°C, a good agreement is obtained. The temperature discrepancy can be resulted from: 

 Heat loss from the reactor to the environment has not been considered in the 

numerical model 

 Initial water content of zeolite in the charging test has not been identified. The 

difference in initial water content leads to different adsorption kinetics in the linear 

driving force model. 
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Figure 10 Measured and simulated inlet and outlet temperature of the reactor during 

the charging process 

4.3. Discharging tests – Case 2 and 3 

With respect to discharging, the comparison between computing values and 

experimental measurements are presented in Figure 11. Figure 11 (a) is the case 2 

where zeolite 13X has been discharged with air at ambient temperature while Figure 

11 (b) is for discharging with preheated air at 50 °C. Both figures have shown a good 

agreement between the experimental and numerical results. While for the numerical 

data, the reactor outlet temperature tends to achieve the peak discharging 

temperature faster than the values obtained in the experiment. The maximum 

temperature discrepancy has been observed during the temperature rising stage at 8 

°C and 7 °C, respectively. Specifically, in Figure 11 (b), the temperature profile 

presents a noticeable difference for the discharging after 4.3 hours. Because the air 

duct heater has been switched off after 4.3 hours. In experimental tests, the residual 

heat from the heater continues to preheat the air. While in the numerical model, the 

transitional stage has not been considered.  



7 
 

 

Figure 11 Measured and simulated reactor outlet temperature during the discharging 

process with (a) ambient air and (b) heated air 

4.4. Discharging test – Case 4 

Under the conditions of Case 3, water circulation has been switched on when the 

zeolite temperature reaches to the peak value at 68 °C. Figure 12 illustrates the 

comparison between the measured and computing values of water temperature at inlet 

and outlet of the reactor. An unstable temperature profile in the measurement has 

been witnessed. Because the heat from zeolite has been transferred to the metal pipe 

and water before 0.55 hours when the water circulation has been switched off. The 

transitional stage in the experiment has not been taken into validation. After this stage, 

the water circulation pump has been switched on and the inlet and outlet temperature 

profile become stable at 25 °C and 30 °C respectively. When comparing the 

experimental data with the computing values, the maximum temperature difference is 

9.6 °C during 0.6 to 0.8 hours when the measurements is reducing to a relatively stable 

value at around 30 °C. After 0.8 hours, the temperature discrepancy drops to 1.1°C. 

The contributions to the discrepancy can be: 

 The metal pipe energy accumulation has not been considered in the numerical 

model. 

 In the experiment, thermocouples are attached to the outside of the metal pipe. 

Therefore, the measured pipe temperature has been considered as the water 

temperature. 
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Figure 12 Measured and simulated inlet and outlet temperature of water  

4.5. Statistical analysis results 

The numerical model has been validated by comparing the computing values with the 

experimental results. Detailed statistical analysis is given in Table 5. The values of 

coefficient of correlation and root mean square percentage error have been calculated 

for validating the model for the three-phase thermochemical reactor. The maximum 

root mean square percent error is for Case 1 at 12.29%. As reported in literature, the 

acceptable error is 14% [32,33] or the average error of less than 12% [34]. Therefore, 

there is a good agreement between the computed and measured results in both the 

charging and discharging process. 

Table 5 Statistical analysis 

Parameter Value 

Charging Discharging 

Case 1 Case 2 Case 3 Case 4 

Coefficient of correlation 0.96 0.94 0.95 - 

Root mean square percent 

error (RMSPE) 

12.29% 7.64% 10.53% 6.02% 
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4.6. Parameters sensitivity analysis  

Three parameters have been identified as sensible on the reactor outlet temperature 

profile, the reference diffusivity 𝐷0, heterogeneity factor 𝑛, and initial water uptake 𝑋0. 

These parameters are critical to adsorption isotherm and adsorption kinetics which 

then affect the amount of heat charged or discharged from the thermochemical 

material. Additionally, however, literatures have reported uncertainty for the 

parameters. For instance, in terms of the heterogeneity factor, in general, value of 𝑛 <

2 are for heterogeneous carbons and value of 𝑛 > 2 are for highly homogeneous 

carbons. However, in [35], the suggested approximate value for zeolites is 4 to 6. While 

other literatures suggest the value ranges from 0.5 to 2 [36]. With respect to  the 

reference diffusivity 𝐷0, variations can occur with different calculation method [25] and 

molar fraction [37]. For the initial water uptake, different experiment tests may start 

from different initial water uptake, affecting the adsorption kinetics and energy 

exchange scenario. This section presents how these parameters influence the reactor 

temperature profiles.  

 

4.6.1. Effect of reference diffusivity (𝐷0) 

 

Figure 13 Influence of reference diffusivity to the temperature profile in (a) charging 

and (b) discharging  

In charging, as shown in Figure 13 (a), the reference diffusivity influences the elevation 

of temperature profile with the respect to charging time. Relatively larger reference 

diffusivity reduces the time required for the reactor reaching the charging inlet 

temperature. With the charging duration from 0 to 1 hour, the reactor outlet 
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temperature increases to 80 °C ~ 95 °C for diffusivity from 2e-6 m2/s to 4e-6 m2/s while 

it increases to around 60 °C for diffusivity from 2e-7 m2/s to 4e-7 m2/s. In discharging, 

as shown in Figure 13 (b), reference diffusivity ranging from 2e-7 m2/s to 4e-7 m2/s 

leads to less than 5 °C increase in reactor outlet temperature. While when the 

diffusivity increases to 2e-6 m2/s ~ 4e-6 m2/s, the reactor temperature outlet increases 

significantly. Additionally, the steepness of the temperature profiles has been 

influenced by the diffusivity. According to the linear driving force model, the mass 

transfer coefficient increases with the rise of diffusivity. Therefore, relatively larger 

amount of adsorption energy has released, increasing the reactor outlet temperature. 

 

4.6.2. Effect of heterogeneity factor (𝑛) 

Different heterogeneity factors for zeolite 13X have been reported in literatures [35,36]. 

The results presented below illustrate the effect of heterogeneity factor to the reactor 

outlet temperature (Figure 14). The heterogeneity factor 𝑛 has been investigated from 

0.5 to 6. At the beginning of the charging duration, there is a steep lift in the 

temperature profiles. The steepness has been enhanced by the increase of 

heterogeneity factor. At relatively larger heterogeneity factor, the reactor outlet 

temperature reaches to the heat source temperature in a reduced amount of time. In 

terms of discharging, heterogeneity factor affects the level of peak outlet temperature 

and the slope of the temperature profiles.  

 

Figure 14 Influence of heterogeneity factor to the temperature profile in (a) charging 

and (b) discharging 
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4.6.3. Effect of initial water uptake (𝑋0) 

The effect of initial water uptake of zeolite 13X has been evaluated, as shown in Figure 

15. In terms of in charging, the relatively smaller initial water uptake increases the 

steepness of the outlet temperature profile and leads to a relatively higher temperature 

level within the first hour of charging. Within the duration, the margins among the 

reached temperature levels are reducing. However, when the initial water uptake is 

larger than 0.20 kgH2O/kgzeolite, the outlet temperature profile starts dropping 

significantly in the first hour of charging. With the charging duration goes up to the 

hour of 7, all temperature profiles increase to the target charging temperature. 

Therefore, the initial water uptake is critical for the reactor temperature increasing at 

the start of a charging process. With respect to discharging, however, the relatively 

larger initial water uptake reduces the reactor outlet temperature drastically from 

around 55 °C to less than 20 °C (identical to the ambient temperature), as shown in 

Figure 15 (b). The initial water uptake at 0.15 kgH2O/kgzeolite can reach the peak 

discharging temperature under the current simulation conditions. The straight 

temperature profile indicates the adsorption energy is continuously transferring to the 

reactor within the 2 hours discharging session. However, when the initial water uptake 

increases to 0.30 kgH2O/kgzeolite, the temperature profile has been reaching to the 

ambient temperature, indicating little adsorption energy release. Therefore, under the 

current simulation conditions, the initial water uptake at 0.20 kgH2O/kgzeolite is a critical 

value for the reactor to reach an optimal outlet temperature.  

 

Figure 15 Influence of initial water uptake to the temperature profile in (a) charging 

and (b) discharging  
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5. Conclusions 

The present study numerically investigates a three-phase thermochemical reactor. In 

the current literature, the development and numerical investigation of the three-phase 

reactor is necessary and meaningful. To address the current research gap in three-

phase thermochemical reactors, according to the proposed three-phase reactor, the 

study demonstrates a numerical model to describe the heat and mass transfer. Within 

the reactor model, considerations have been made to the heat and mass conservation 

of the air, water and solid thermochemical material zeolite 13X. The software Matlab 

has been used to solve the equations and provide the evaluation of the heat and mass 

transfer. Original measurements obtained from the experimental tests are used to 

validate the numerical model. The good agreement between the computing value and 

experimental measurements are obtained through the 4 validation cases including 

charging and discharging tests. Followed by the validation, parameter sensitivity 

analysis is conducted with the highlight of the critical parameters to the numerical 

model output. The key outcomes of the study are summarised as follow. 

i. There is a fair agreement between the numerical and experimental values in the 

cases of charging and discharging with the root mean square percent error ranging 

from 6.02% to 12.29%. 

ii. Uncertainties in initial water content of zeolite and heat loss to the ambient lead to 

the discrepancy between the numerical and experimental values. 

iii. To increase water outlet temperature in discharging, control strategies should be 

investigated considering inlet air flow rate, inlet air temperature and water flow rate.  

iv. Reference diffusivity, heterogeneity factor, and initial water uptake can affect the 

numerical calculation results significantly. The application of the parameters should 

be adjusted to produce convincing computing values.  

v. The developed and validated three-phase thermochemical reactor model has 

provided fundamental basis for the reactor optimisation and performance 

evaluation. 
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