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EXECUTIVE SUMMARY 

 

This study considers a new abstract and probabilistic stochastic finance asset price  and 

contingent claim valuation model with  an augmented Schrödinger PDE representation 

and Sturm-Liouville solutions, leading to additional requirements and outlooks of the 

probability density function and measurable price quantization effects with increased 

degrees of freedom.  It is an analytical and valuation framework that  explores  existing 

pricing problems and models from a common point of high abstraction using a 

dimensionality reduction approach,  under real-time trading assumptions. The context of 

the new model is a realistic market, made-up of a network of financial intermediaries and 

products whose prices  are  stochastic, measurable through transformable random 

variables, and a network of investors (individuals and firms) with rational and measurable 

preferences and expectations, seeking to maximize the expected utility of their final 

wealth in a multi-period time horizon. This study models pricing of assets and contingent 

claim at any time node and considers a zero-dimension reduction around each node in 

order to identify additional probability and price-change behavior effects, subsequently 

yielding new testable techniques of pricing assets and contingent claims. 
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1.0 INTRODUCTION 

 

This research study introduces a new stochastic asset pricing model that can be used to 

value conventional financial assets, including financial derivatives. The new model 

utilises a generalised Schrödinger-Sturm-Liouville Eigen-price  function and algorithm1. 

It stipulates a plausible  probability density - price function duality phenomenon, 

incorporating relevant add-on price quantization effects. It allows for  inclusion of  

increased degrees of freedom  and subsequently increased accurancy in price forecasting 

. This is done by including  effects of information dissipation and quantum ‘tunnelling’2. 

The new asset pricing model leads to a whole new set of pricing analytics  that can be 

empirically applicable across asset classes such as  equities, debt instruments, financial 

derivatives, etc. 

 

The abstracted pricing framework is formed  through a process of breaking-apart,  re-

arranging, and re-assmbling previously known asset-pricing models, using a 

dimensionality-reduction approach, under real-time trading assumptions. It is 

accomplished by relaxing specific assumptions often used in obtaining and validating 

existing pricing models. Instead, I theorise using a general master expresison that reflects 

                                                           

1 A GSE-Sturm-Liouville algorithm implementing the modelled PDE in C++ with NAGS and allows for computation 

of Eigen price levels within an open-form quantum system. This is further elaborated in Chapters five and six. 
2 With the term “tunnelling” we refer to the % of information known to-day that travels to the next time point through 

quantum market penetration. 
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(i) price developments on time-series basis, and (ii) spatial probability distribution effects,  

carefully formulated around the probability density - price function duality. This implies 

an equilibrium of effects. It it possible  to explain this  from an efficient market hypothesis 

angle (Fama, 1991; Malkiel, 2003). The information, expected to be reflected in  the 

market price, is dissipated by the quantum structure fitted at a market point. Information 

is fragmented and  price quantized within the structure. I hypothesize that quantum and  

market prices develop simultaneously. Therefore by studying information and price 

effects in the quantum structure, one might sufficiently predict the market price. This is 

in-line with the broader conceptualisation around Markov’s property (Markov, 

1954:1971; Seneta, 1996; Gilks et al., 1996). 

 

In order to empirically test the new pricing techniques, I consider real-life market 

conditions, where a financial market is made up of an integrated system of financial 

intermediaries and financial assets whose prices follow a stochastic process measurable 

through transformable3 random variables. The financial market in this study is comprised 

of a network of institutional and retail investors with rational and measurable preferences 

and expectations, in-line with the Arrow-Pratt risk aversive attribution theory (Arrow, 

1971:1988;  Pratt, 1964; Gollier and Schlesinger, 1996). 

 

These investors seek to maximise the expected utility of their final wealth in a multi-

                                                           

3 Changing a variable from a Cartesian system representation to spherical, but also replicative expansion of one single 

variable to two or more within the intended space-dimensions. 
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period time frame. This is in stark contrast to prior theoretical asset pricing formulations 

such as Black and Scholes (1973), Cox et al. (1979), Jarrow and Rudd (1983), Leisen and 

Reimer (1996), etc., that employ a large number of simplifications, such as oversimplified 

market activity and investment participation along each time-period investment horizon.  

 

This approach enables pricing of financial assets at each point along the market line by 

considering a zero-dimension reduction around each point4. In such context, I refer to 

these points as zero-time objects or simply zero-objects.  Zero-objects are quantum 

systems with attributed quantised space topologies (Barrett, 1999; Baaquie et al., 2002; 

Abramsky and Coecke, 2007). This is important because such zero-object representations 

of time points, unlike their use in traditional science disciplines, have been partially 

considered in a Financial domain, such as in the works of Bardou et al., (2016), Levental 

et al., (2016), Benaim and Raimon, (2003), Benaïm et al., (2002), Aldous et al., (1988), 

Nastasiuk (2015), and Casena (2007) to name a few5.  

 

It makes it possible to identify additional probability and price-changing behavioural 

effects that could lead to  better explanations of future price levels, while being consistent 

with the Markov property that only the present state of the price would provide relevance 

to any immediate future price pattern development (Spitzer, 1970; Snyder and Miller, 

1991; Seneta, 1996; Parzen, 2015). 

                                                           

4 A time point as a zero-object with no space dimensions, but that can be modelled through a three-dimensional 

quantum system. 

5 Treated in detail in the section “Relevant Ⓓ↓↑-World Quantum Effects and Quantized Market Price Distribution”.  
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Market price evolution and price pattern development are driven in part by the dissipated 

information and the asset price “DNA” within  quantized price points. All of the 

dissipated information is reflected first and foremost onto price change levels, before it 

becomes an actualised price in the market. The quantized price point as a zero-object 

serves as a price repository. The price behaviour forecast depends on the degree of 

information dissipation and “tunnelling”. We assume that information “tunnelling” 

effects will have stronger price reflection on  near-neighbour future market prices and 

less so further out in time (Haven, 2002:2004:2005:2008a:2008b, Callegaro, 2018a). This 

is an effect directly linked to the information we may hold about the state of nature6 in 

the future (if any at all), factored in efficient market hypothesis (Malkiel, 2003). 

 

Terms such as ‘financial derivatives’ and ‘contingent claims’ are used interchangeably 

here. It is a generalisation around broader types of financial derivatives, although I often 

refer to financial options (Jarrow and Turnbull, 1998). Both assets and contingent claims 

can be  valued in duality; along the market line, and  in a zero-dimension ‘universe’7 i.e.  

a set of orthogonal Eigen-price levels within each quantum point. These patterns allow 

for  consideration of  increased degrees of freedom in price forecasting.  

 

                                                           

6 Future patterns of uncertainty tied in good part to future events. 
7 Refers to a system where measurability of one or more variables (i.e. price, probability, etc.) is decided along its 

dimensions; typically three dimensions, but less or more than three dimensions may be used to explain the variables, 

depending on the nature of the variable and variable change-behaviour complexity. 
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Markowitz (1952), Tobin (1965), Black and Scholes (1973), Treynor and Black (1973), 

Stulz (1981), and  many others have incorporated time as the main dimension where 

wealth growth can be measured. Moreover price valuation is carried out in a dual manner: 

at athe underlying asset base, and asset-protection levels8.  

 

The time implication is of paramount importance, while computing the  expectation term9. 

This is also evident in pricing models that follow a discrete time process, such as those 

described  in the works of Cox et al. (1979), Jarrow and Rudd (1983), Leisen and Reimer 

(1996). They theorise pricing contingent claims through well formed multi - period 

binomial trees. Asset prices  are evolved through multiplicative moves , following well 

established and testable formulae. Jarrow and Turnbull (1998) argue that a contingent 

claim is a random variable, defined on an underlying probability space. Subsequently it 

may be regarded as the payoff at a time point of some contract 10  with a protection 

mechanism (subsequently a claim) on the underlying. 

 

Specifically in the Jarrow and Rudd (1983) model11, the individual multiplicative price 

moves at each time point are equally probable. Cox et al. (1979) propose an alternative 

choice of  multiplicative price motion formulae 12  validated within a risk-neutral 

                                                           

8 Where buying or selling price is locked. 

9  Can be seen more clearly through the Black-Scholes formula for a call in a slightly different way, as 

    21
rTrT dXNdNSeec  

 or     21T
rT dXNdNSec  

. The expression inside the square brackets represents the expected 

payoff of the option, EQ[]. N(d2) is the probability that the call will be exercised in a risk-neutral world, where a share 

that pays no dividends has an expected return of the risk-free rate. 
10 Locks the buying or selling price of the underlying. 
11 The Jarrow-Rudd (JR) model uses   tt5.0qrexpu 2   and   δtσδt0.5σqrexpd 2  . 

12 The Cox, Ross, and Rubinstein (CRR) model uses   tuln  and   tdln   
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environment with a slight upward bias.  

 

A third set of parameters13 for developing the share price tree was proposed by Leisen 

and Reimer (1996) with  two important advantages over JR and CRR parameters; firstly 

they suggest better and separate probability estimates, and secondly by centring the share 

price tree at maturity on the exercise price, the convergence oscillation reported in the 

Jarrow and Rudd (1983) as well as the Cox et al. (1979) trees is removed. 

 

The contingent claim valuation models by Aase (1988) and the original work of Black 

and Scholes (1973) are based on continuous stochastic processes, where the expectation 

term has a probabilistic nature with a time parameter. Stock price changes may also be 

represented by a one-parameter stochastic process, whereas interest rates are naturally 

represented by a dual-parameter process; the first parameter is the time to maturity of the 

fixed income instrument, whereas the second parameter is the “real” time, such that the 

process modelled is a random surface from where one may obtain various implied 

measurable such as volatility (Merton ,1973:1974; Aase, 1988; Tanaka, 1991; Parzen, 

2015).  

 

Furthermore an equity-based contingent claim can be represented by a one parameter 

stochastic process, where real trading time is the only parameter. In addition, two-

                                                           

13  The Leisen and Reisen (LR) up and down price multipliers for the share price moves in the tree are 

  tqrexpbwherep/'bpu  , and    p1/'p1bd  . 
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parameter processes serve better  the purpose of price valuation of financial derivatives 

or contingent claims on fixed-income instruments, where the first parameter is  real time, 

whereas the second represents time to expiration or the actual trading time. In  interest-

rate markets, bonds are tradable assets (Cox et al., 1985; Fujihara and Park, 1990; Tanaka, 

1991; Heath, et al., 1992; Fabozzi, 1995; Miltersen et al., 1997; Cuthbertson and Nitzsche, 

2004; Batten et al., 2004).  

 

The expectation term, subsequently the probability density and distribution of the 

underlying asset are discussed in Black and Scholes (1973), Black (1989), with well 

formed assumptions around normality. Likewise the classical parametrised asset and 

financial derivatives14 pricing models cannot fully explain price behaviour at  each point 

along the market line. 

 

Expressed differently, existing financial pricing model can forecast  price,  however they 

fail to match its value at the end of the investment holding times15. King (1966),  Elton et 

al. (1978), Conner and Korajczyk (1995),  Bodie et al. (2009), Elton and Gruber (2011), 

as well as Brealey et al. (2008), Hillier et al. (2001), among, others, articulate well the 

use of factor-tracking based on  linear indexing16 and subsequently the capital asset 

                                                           

14 The terms ‘contingent claim’ and ‘financial derivative’ are equivalents and are used interchangeably throughout this 

research study. 
15 The end of buy-and-hold position within a finite interval. 

16 Indexing ri = αi + βim + εi , where ri is the rate of return of security i, beta the volatility sensitivity, m a common 

economic factor, and epsilon the stochastic regressor; an independent variable with a zero expectation, linked to the 

residual effect. The individual security variance: 2
i = 2

i2
m + 2(i), where m is the market risk and  (i), the 

stochastic regressor error dispersion. 
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pricing model, (i.e. CAPM) as an equilibrium model that underlies modern financial 

theory. 

 

It is normally derived using principles of diversification with simplified assumptions 

stated well in the works of the above mentioned authors with original development 

credited to various researchers such as Markowitz, Sharpe, Lintner, and Mossin. In the 

model, the common economical factor tracked is usually the market return. It  explains to 

a good degree price movements of other stock in market (Markowitz, 1952:2000; Sharpe, 

1964; Lintner, 1965; Varian, 1993; Mossin, 1966).  

 

In the single index model (Sharp, 1964) there is only a single degree of freedom that stock 

price return variability will depend on. According to Conner and Korajczyk (1995), as 

well as  Hillier et al. (2001), an increase in degrees of freedom will allow for inclusion of  

additional macro-economic variables, firm-specific events, and statistical procedures. 

This would enable investors to rationalise their preferences around maximisation of their 

utilities. As long as factorisation is “realistic”, factor loading and model maching can be 

achieved, subsequently allowing rational investors to identify arbitrage. Elton and Gruber 

(2011) provide equivalents of indexing for fixed-income assets and the argument of the 

price behaviour follows the same logic. The increase in the number of factors increases 

the degrees of freedom in the model, although the market  price change behaviour is still 

only partially explained. 
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I have put forward the hypothesis that a smooth and continuous development of market 

prices between any two points along the market line (one already observed, and the other 

stochastically market -implied and to be observed in the future) can only be inferred by 

unobserved discretised time-space “universe”, where its internal orthogonal price patterns 

are the only quantized  price clusters relevant to explain the market price at the near-

neighbour point, along the market line. This signifies price perturbances due to 

uncertainty where factors and events fuel uncertainty and could not possibly be 

established only in anticipation (Callegaro et al., 2017a:2017b).  

 

In addition, the hypothesis stipulate that orthogonal and observable discretised price 

jumps at any stoppage time along the market line, can be explained by an observable 

continuous time-space “universe” effect; often this is a combination of factors in that 

“universe”, such as company announcements with information on internal business 

augmentations of sorts, dividend policy, ex-dividend dates, release of financial 

statements, mergers and acquisition, consolidated cash flows, and any information that 

would incur a time-node saturated cumulative increase or decrease in the demand or 

supply (Fama et al., 1969;  Fama, 1970:1991;  Hall, 1980; Stein and Stein, 1991; Strong, 

2004). 

 

Subsequently, the inability to fully explain future price changes is due to the inclusion of 

a “realistic” probability density function only in a partial consideration, and the exclusion 

of possible price effects that come through possible probability admixing and an “upper-

ceiling" limitation in the degrees of freedom of the existing models. The contemporary 
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models allow, at best, forecasting on the basis of factor tracking and loading and are 

measured in expectation (King, 1966; Farrell, 1997; Elton et al., 1979; Hillier et al., 2011).  

 

Price prediction requires a system with higher degrees of freedom According to Benaïm 

and Raimon (2003), one may theorise on the transition from factorization onto 

quantization with self-interacting diffusion on a compact Riemannian manifold at each 

time-node. It can be achieved by retaining the number of time parameters and the degrees 

of freedom provided by the classical model as a “classical” contributor to the price value. 

It also requires exploding the degrees of freedom of the pricing system around a zero-

dimension constrain (zero time parameter consideration). Subsequently providing a fuller 

time-parameterization spectrum, This would allow to better observe price behaviour at 

each time-node. It includes  3x additional degrees of freedom and a quantizer contribution 

to the price (Luschgy and Pages, 2002).  

 

Following from the hypothesis, it is possible to consider  asset pricing and contingent 

claim valuation models, where  stochastic residual effects are intrinsically assigned an 

occurrence  measure for  unanticipated events, that  can contribute to price dynamics 

within the quantum system (Luschgy and Pages , 2002).  

 

Values of stochastic variables, such as price change, capital weights, etc., can be 

computed within the quantum system. They can be used in combination with the 

expectation forecast in order to match a future market value that is decided from a 
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previously observed market value and  the effect of filtration dissipation. Revus and Yor 

(2004), Karatzas and Shreve  (1998b), Shiryaev et al. (2006), Callegaro et al. (2013), 

among many and in a similar manner, provide good argumentation on filtrations. They 

consider real-time shock effects on  asset prices, observable and measurable in the market. 

However, we consider an additional and unrelated “orthogonal” filtration effect on  asset 

prices, which we attribute to the strength of filtrations. This is linear to the  ability of the 

market to dissipate information. Market’s ability to dissipate information  (and 

subsequently reflect it on price)  is conceptualised in parity to quantum system’s 

capability to recognise and process it internally. For the latter to occur, we would need to 

fit it with reasonable “mechanics”. 

 

I consider the “orthogonal” filtration to be responsible for the quantized price change 

behaviour at each p-tip17. It drives the actual p-tip spin (positive or negative price change) 

at the market point. Extreme price confinement is particularly of interest because the 

dissipated information may relay some form of “hint” or “warning”  about forward-time 

events that are unanticipated. Information dissipated by the system may “tunnel” through 

to immediately adjacent future p-points as self-interacting diffusion on a compact 

Riemannian manifold.  It  reaches out to the future adjacent market points, before 

diminishing in the extended time horizon. This would make the forecast plausible, at least 

between two adjacent time-nodes (Luschgy and Pages, 2002; Benaïm and Raimon, 2003).  

                                                           

17 Refers to the price point or the market observed value from a  quantum view..  
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The stochastic shock effect is often modelled through the Weiner process and has a 

Gaussian distribution (Stein and Stein, 1991; Shreve, 2004a:2004b). However, this 

research suggests that the p-tip probability distribution system contains either (i) a 

probability distribution with many splits, or (ii) several probability distributions with 

various degrees of admixing. The system itself exists in various Eigen-states where 

mixing or splits occur: a quantization effect that follows directly from the 3x expansion 

of the price-system’s degrees of freedom. The Gaussian probability distribution function 

corresponds to the lowest and most stable Eigen-state, however at higher quantized levels 

(i.e. higher volatilities and irregularities in filtrations patterns), there are distribution 

splits, evident both mathematically and through numerical illustrations (Dirac, 1958; 

Callegaro, 2013:2015:2017a:2017b). 

 

The new model considers additional price changes due to quantization effects at each 

market point. Subsequently factors-in the cumulative price-change (i.e. more precisely 

the return rate) effects through classical pricing models with  additional quantization 

effects at each point along the market line (Chen, 2001:2003; Haven, 

2002:2003:2004:2005:2008a:2008b; Callegaro, 2018a).  

 

The new pricing framework has profound implications in financial instrument pricing, 

especially financial derivatives. Classical  option pricing models such as Black and 

Scholes option pricing,  among others, commonly use well-formed assumptions on 
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normal or lognormal distributions. These assumptions need to be upgraded to include 

probability distribution system admixing and additional Fermi-Dirac probability 

distribution effects for the zero-object system fitted at each price-point along the market 

line. I consider a probability distribution system made up of various distributions at 

various stages of admixing (density of distributions); a system that possesses different 

levels or states (density of states), where the lowest level represents the optimum effect 

of admixing of distributions, as inference and reflection of the internal p-point price 

pattern dynamics (Dirac, 1926:1958; Black and Scholes, 1973; Merton, 1974; Black, 

1989; Haven, 2002; Callegaro, 2018a). 

 

Hence, the objective of this research is fourfold. First, I reconsider pricing problems 

starting from a postulated  master formulation, leading to asset price and financial 

derivative valuation formulations in partial differential forms; secondly, I derive 

valuation expressions that are in-line with a rational investor’s expectations, although 

derived as an abstract and unified formulation; thirdly, I incorporate quantization effects 

in the probability distribution and the price-change system, subsequently augment it to a 

generalised Schrödinger-Sturm-Liouville mathematical representation to obtain tangible 

solutions to  pricing problems (Bailey, 1966; Sharpe et al., 1995). I bring the master 

pricing model to an application level with various new variables and concepts fitted. To 

that end I carry out various numerical simulations and compare results with those from 

various classical models. 

 

I use a postulate-implied problem with a very abstract formulation (i.e. master expression) 

and solve various common cases that are in-line with contemporary pricing models. They 
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are further extended and empirically tested. The problem is a financial instrument 

valuation challenge, springing from the master expression (generalised Schrödinger 

equation), with Sturm-Liouville adapt-solutions, in order to observe quantization effects 

at a price’s point in the time line (Bailey , 1966; Haven, 2002; Callegaro, 2018a).  

 

The approach and results of this study relate to, and  extend classical and contemporary 

works in asset pricing, among others, the works of Black et al. (1972),  Black and Scholes 

(1973),  Black (1989), Eisenberg and Jarrow (1991), Sharp et al. (1995), Cox et al. (1979), 

Elton and Gruber (2011), Bodie et al., (2009), Shreve, (2004), Chen (2001:2003), Haven 

(2002:2003:2004:2005:2008a:2008b), to name a few. I treat gaps in literature and move 

beyond market tracking (Hillier et al., 2011) to treat the price function along a  time 

horizon and at each zero-dimension point. 

 

This research work is conceptualised as a ‘3+1’ knowledge volume. The bottom layer is 

constructed around a conceptual cognitive map that includes, as part of the critical 

literature review, concepts such as random variables, differential function preliminaries, 

Brownian motion fundamentals, stochastic utility, the Arrow-Pratt absolute risk aversion, 

stochastic portfolio, indexing, stochastic contingent claim valuation, quantum 

mechanics(Callegaro et al., 2017a:2017b), and the Sturm-Liouville model (Bailey, 1966; 

Kong and Zettl, 1996). 

 

The middle layer represents the mathematical finance layer of the new value knowledge, 
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addressing the existing research gap in this domain. It infers knowledge at a deeper level, 

utilising quantitative and mathematical finance patterns of deductive reasoning to bring 

the new knowledge to the level of Finance applications. More specifically the middle 

layer is made up of theoretical Chapter 4, “An Abstract  Stochastic Asset Pricing and 

Contingent Claim Valuation Framework with Schrödinger PDE Augmentation”, whose 

main storyline is built around a postulate-implied master formulation (based on a 

generalised Schrödinger PDE), new pricing sub-models, the justified complete 

equilibrium concept, probability space continuum, and the curvature surface linked to 

and extending contemporary financial asset pricing models.  

 

The middle layer includes Chapter 5 “Asset Price Rapprochement: Split PDE Identities 

and Sturm-Liouville Quantum Fitting”, with focus on various price-cut off functions, the 

derivation of various option price PDEs (Black-Scholes derived from our postulate-

implied master expression as a special case), as well as the acquisition of Sturm-Liouville 

PDEs, allowing us to fit a quantum system at each market price point i.e. the zero-object.  

 

The top knowledge tier is the Finance and Financial trading layer organized as theoretical 

Chapter 6,  ‘Computation of  Asset Prices  in Forward Time with Eigen-Value 

Conversion” and Chapter 7, ‘Comparative Valuation of Financial Options with Eigen-

Value Conversion and Classical Models’. Both chapters focus the financial  asset and 

derivatives pricing applications  using the main concepts in this research with emphasis 

on numerical and empirical tests.  
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I generate data algorithmically and test several cut-off price functions with clearly stated 

boundary conditions. More specifically testing financial instrument pricing capabilities 

of our model through several scenarios based on the technique of fitting a cut-off price 

function in each case; (i) constant, (ii) harmonic, (iii) Gaussian, (iv) Cosh, (v) inverse, 

(vi) Arctan, and (vii)  decaying exponential.  

 

After fitting the augmented Schrödinger-Sturm-Liouville PDE and the boundary 

conditions on the price zero-object18, I then compute the Eigen-price levels and generate 

delta- distributions. Much work is done on developing the pricing theory within a zero-

object and its highly quantized space constraint. Furthermore I conceptually “connect” 

the Ⓒ and Ⓓ-worlds in one “universe”, which serves to translate financial asset measures 

(liquidity, volatility, etc.) from the Ⓒ-world onto the Ⓓ world and vice-versa. Finally I 

show cases the use of  our model in asset and option pricing, and compare  it to a range 

of existing pricing models. 

 

The internal space of the zero-object is measured through the newly introduced quantum 

parameter, which serves as a space “converter” 19. Whereas within the zero-object space, 

the depth, radius, etc., are all measured relative to the quantum- translated volatility, more 

                                                           

18 Refers to the quantum system. Typically here it refers to quantized price points along the market line. 
19 Converts values as we know them in our world to equivalents in the Ⓓ-world. 
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precisely, I fit the zero-object with a quantum volatility surface. It follows an extensive 

amount of work with trial and tribulations to establish the internal space dynamics of a 

zero-object for what it means in our financial asset pricing domain. I calculcate Eigen-

prices, probabilities, and translate them to a price vector in the Ⓒ world for further use.  

 

All asset price attributes are represented in percentages I use Eigen-price terms as a short-

hand reference to quantized logarithmic price values, differentiation of which provides 

us with the liquidity measure of a financial asset. Of importance here is the new element 

of theory added in the last theory chapter for the provision of the price spin. It allows for 

both positive and negative changes in price. The end results are not only the delta-

distributions, Eigen-probabilities, but also price-vectors, which are translated back to the 

Ⓒ-world for further consideration. Both assets and financial derivatives are priced 

methodically within this new approach. Finally, I  price options and compare the results 

with existing models such as the Black-Scholes (normal and lognormal versions), 

Binomial, RG, etc., (Black and Scholes, 1973; Cox et al., 1979; Jarrow and Rudd, 1983; 

Leisen and Reimer, 1996; Milevsky and Posner, 1998). 

 

The effects of probability distribution splits are illustrated both mathematically and 

graphically. Although I trial a Gaussian, any other probability distribution function can 

be used. Moreover, financial derivatives’ pricing using different Eigen-states can be 

achieved. The lowest Eigen-state solution matches the Black-Scholes-Merton model. The 

new option pricing model  appears to correct the overestimation present in option prices 

for longer-term contracts. The testing of specific sub-models follows the hypothesis that 
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the abnormal spread from the market thresholds is narrowed or diminished with the  new 

models, as compared to the existing models, thus leading to better price forecasting 

(Black and Scholes, 1973; Geske and Roll, 1984; Hull and White, 1987; Milevsky and 

Posner, 1998; Haven, 2002:2003; Chousa and González, 2016; Bustamante and 

Contreras, 2016). 

 

The additional ‘+1’ layer, dimension of this research study represents the body of 

research methodologies used to investigate  contemporary literature,  utilization of data 

generated streams, gaps in literature, as well as the use of analytics to reach relevant 

findings. This study’s research methodology is rooted on  deductive reasoning, on which 

our master-formulation and sub-models are based on. Although intrinsically non-formal 

as a theory, I apply strong forms of coherence and cohesion in order to investigate pricing 

aspects of financial assets and derivatives. This is an attempt at completeness that makes 

it possibleto lift the framework to an abstract level (Adams and Schvaneveldt, 1991; 

Cooper and Schindler, 2001;Saunders et al.,  2003). 

 

 

Throughout the thesis, I use an adapted form of first-order predicate logic20 to put forward 

the ideas that allow me to strengthen the storyline throughout the thesis. It embeds first-

order language with reflection of strong forms of “identity” of items and relationships, 

                                                           

20  A highly formal mathematical representation with quantifiable variables that uses logical description through 

variables rather than non-logical objects. 
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with variables, connectives, quantifiers, and some primitive terms represented also within 

logical betweenness and equidistance (Tarski and Givant, 1987; Barwise, 1977; Barwise 

and Etchemendy, 2000; Hazewinkel, 1997:2001; Saonov, 2001; Gamut, 1991; 

Haewinkel, 2001; Andrews, 2002; Rautenberg, 2010). 

 

The simplicity, but also the expressiveness of this language consists in the fact that it 

allows for the quantification on individual finance-related variables and their 

relationships. In order to achieve measurable tests, I leverage strong forms of 

methodological foundations with balanced views and a clear research strategy with 

emphasis on correctness and sufficiency in the quantitative data. It allows me to 

centralise, in good part, the solutions around the postulate-implied master expression and 

the research hypothesis (Hazewinkel, 1997:2001; Chiribella et al., 2012).  

 

I also consider appropriate time-horizons where I saturate the first and second tiers of  

this research knowledge-base and knowledge management on cross-sectional forms of 

research with a focus on any individual market points, with the reduced dimension effects 

incurring at each point; the zero object. On the third tier, I shift to a more limited 

longitudinal research form by investigating the behaviour of asset prices between any two 

or more market points (Adams and Schvaneveldt, 1991; Saunders et al., 2003; Gulati, 

2009; Wilson, 2010).  

 

It helps to conceptualise the longitudinal investment time horizon as a “medium” in which 
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future events, subsequent uncertainty and financial risk exist. From a present perspective, 

I are unable to hold certainty on any future events, subsequently observed on unexpected 

price dispersions. This is an intrinsic time-related limitation of effectively identifying 

future prices or price behaviour patterns with certainty. When I employ the use of cross-

sectional research, the dimension reduction aspect helps me to identify a quantized zero 

object as an “environment” where price changes and patterns can exist and are 

investigated (Adams and Schvaneveldt, 1991; Chousa and González, 2016; Bustamante 

and Contreras, 2016).  

 

I believe that cumulative flirtations dissipated by the market are fragmented with different 

degrees of fine granulation within the zero-object. Events are reflected in the current 

market price in-line with the efficient market hypothesis, whereas patterns formed out of 

such fragments are in parity with unexpected future price developments. This is in-line 

with the Markov property (Markov, 1954:1971; Seneta, 1996; Gilks et al., 1996). 

 

This allows me to identify different ‘realities’ dependent on the topological space 

configuration of the zero object and to contemplate fitting of appropriate price 

distributions. Although I put this forward as a measurable environment, it does allow for 

some elements of interpretation on what could appear to link to a more interpretive 

research philosophy that I attempt to centre around the specific internal fittings with intent 

to unearth logic behind such construct, which would allow me to focus on price change 

behaviour and pattern recognition (Remenyi et al., 1998; Haven, 2002; Busemeyer, et al., 

2009; Li et al., 2017).  
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The fact that a new topological space construct has been fitted within a zero-object 

different from our own may appear as a limitation. However it comes with the advantage 

to deploy and use attributes of a deductive and meta-physical philosophy with the new 

‘universe’ in which the price exists; The Ⓓ universe is different from ours, however I 

unify  research methodology through a functional enhancement of zero-objects and their 

internal topological space configurations, along the market line and orthogonal at each 

stoppage time. This is the inferenced enhancement in this research that successfully takes 

on the literature gap and the lack of function knowledge in the domain and where new 

value is created (Adams and Schvaneveldt, 1991; Cooper and Schindler, 2001). 

 

The research strategy used in this study is a combination of grounded theory and 

experimentation with a comprehensive application of deductive reasoning in order to 

develop a new theory, driven by  a postulated master expression, which represents the 

asset price unification model, whose solutions lead to existing and new asset price 

expressions in PDE form. The experimental research strategy helps establish the cause-

effect relationship between market filtration dissipation and price evolution in forward 

time. It is emphasised in the use of  different distributions and price cut-off  “geometries”  

fitted in the quantized price system. Finally we deploy various pricing cases and 

scenarios. These are made up of various numerical  simulations and empirical testing 

scenarios, using several sets of input data. This is aligned and integrated fully with the 

other two research strategies (experimental and grounded theory), for a more effective 

research outcome (Leedy and Ormrod, 2016; Creswell, 2013). 
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On the practical side, I  provide a wide range of numerical illustrations through the use 

of various computational procedures and techniques in order to illustrate several effects 

and cases, such the Metropolis Algorithm described well in Gilks et al. (1996), which 

allows for  the use of a proposal probability function and subsequent testing of  various 

scenarios where probability distribution splits. Although the proposal distribution put 

forward here is a Gaussian, any other distribution could be trialled in a similar fashion 

(Kennedy, 1997).  

 

This effect is demonstrated mathematically in this study. The MATLAB program 

implements Monte-Carlo integration and generates various distribution mixings. Various 

C++ programs invoke NAG routines to compute Eigen-price levels using a Schrödinger-

Sturm-Liouville solution augmentation, which we then plot in Excel. Python and VBA 

are used to demonstrate the effect of stock price simulation using an Euler discretized 

Brownian motion by generating various price paths. It is along such paths that the zero-

objects are fitted in our theoretical and practical considerations (Pruess et al., 1995; 

Karatzas and Shreve, 1998b; Gilks et al., 1996; Moller and Zettl, 1996; Agarwal and 

Wong, 1995; Flannery et al., 2002a:2002b; Jackson and Staunton, 2004; Pages and 

Printems, 2005; Hıra and Altınısık, 2014; Tharwat, 2015; Rees, 2017; Bormetti et al. 

2018; Rebentrost et al., 2018). 

 

This study adds value in the form of a new set of valuation analytics that could potentially 
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be used to price financial instruments, ranging from single financial securities and their 

derivatives,  to complex portfolios, exotic option spreads, and structured products. It also 

inherits various limititations, such as those stemming from the statistical sampling size. 

In addition  the multiple pricing “realities” and the subsequent  interpretations may give 

rise to ambiguity (Daughterly, 2011;  Gurajati and Porter, 2010). 

 

The literature review, by virtue of its finite size, provides a limitation in that it is not 

possible to scan all literature, although a considerably broad range of published work has 

been investigated. Another limitation is the depth at which a topic, however related to 

this research, is treated by previous research and often with very limited scope without a 

properly established “bridge” between the zero-object with its space quantization 

configurations to financial asset pricing. 

 

The quantitative method of research does allow for the application of strong forms of 

analytics with secondary data. An earlier limitation in generating such data was resolved, 

which enabled testing to be conducted. There is also a minor limitation on algorithmic 

simulations, in that as this is research in Finance, the time spent to construct the 

algorithms was significant and that took some of the focus away, such as getting access 

and configuring NAG routines, writing algorithms that integrate NAG functionality, etc.  

 

Even though I provide a generalised pricing framework, only  several zero-object price 

sub-models are tested. These are validated in partial capacity by existing literature and 
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therefore are a safe leap forward (Haven, 2002; Nastasiuk, 2015; Luschgy and  Page, 

2005;  Callegaro et al., 2017a:2017b:2018a).  The necessary logic of obtaining 

contemporary pricing models from the  general pricing framework is provided. This work 

is a conceptual framework with partial, but sufficient  numerical testing. Due to the 

overall deductive theory approach employed here, interlinked with limited forms of 

interpretative philosophy,  there is a possibility of bias, however we attempt to mitigate 

bias through sufficient numerical  simulations and empirical testing. 

 

I theorise that the zero-object is fitted with price-differential distributions at different 

stages  of admixture, corresponding to each quantum state, This would reflect well on the 

levels of price definition and stability. Moreover, both the classical form of volatility and 

filtration-implied volatility may co-exist when we align both universes;  the zero-

dimension topological space and the observable continuous price universe. It is also 

possible to convert classical measures to meaningful new quantum measures and vice-

versa. 

 

Another core new value element in this research is the use of replicative function 

‘identities’ and variable separation adaptations. It enables us to form our view of an 

absolute general equilibrium away from the particularism of foundational hedging effects 

and the likes (Black and Scholes, 1973; Merton, 1973:1974; Cox et al., 1979; Jarrow and 

Rudd, 1983; Foller and Schweizer, 1990; Leisen and Reimer 1996).  
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Such “identity” functions are polymorphic21. Their identities may be established  by using  

variable separation techniques. Subsequently the “identity” of such functions work out to 

either be a pricing, price change distribution, or any other combination, including effects 

of hedging at an abstract point of consideration. It enables deeper investigation and better 

understanding of asset price valuation. This approach provides new value and sets this 

work apart, while at the same time it complements existing literature in areas of financial 

quantum mechanics (Bardou et al., 2016; Levental et al., 2016; Benaim and Raimon, 

2003; Benaïm et al., 2002; Aldous et al., 1988;  Haven, 2002; Chen, 2002; Nastasiuk, 

2015; Luschgy and  Page, 2005;  Callegaro et al., 2017a:2017b:2018a). This study 

provides a testable pricing framework, using only meaningful financial variables.  

 

The investigation of asset price behaviour within a zero-dimensional topological space 22 

(Schafer, 1966; Pears, 1975; Banakh and Cauty, 1994; Banakh, 1997; Fedorchuk, 1999; 

Haven, 2006; Khrennikov, 2009) and a nonzero-system23 with a functional alignment 

between the two, has led to various new areas of research, that could be explored beyond 

this study. Such is the application of the main model (and its variants) in “live” financial 

trading scenarios with a range of forward-time technical analysis of use in intra-day 

financial trading, which may rival Fibonacci24 and Ichimoku25 techniques. Furthermore 

we sought PDE representations of mathematical variable relationships, and solved at the 

                                                           

21 Variable forms. 

22 The zero object or zero dimension price-point “universe”. 

23 Refers to an observable continuous time-space price “universe” i.e. our own “living” world. 
24 https://www.ig.com/uk/trading-opportunities/a-guide-to-using-the-fibonacci-tool-to-trade-41033-171206 (accessed: 

11:45am, 22/02/2018) 
25 https://www.ichimokutrade.com/articles/Ichimoku_Ebook.pdf (accessed: 12:57pm, 22/022018) 
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PDE level. Further research could be done to obtain expectation expressions through 

integration, while including a high degree of formalism of mathematical workings with 

theorems, lemmas, and corollaries, which would require a considerable amount of 

research time. 

  

2.0 LITERATURE REVIEW 

 

I consider relevant concepts  of existing literature in the form of a critical literature 

review.  Each concept has either a first or second order relevance to the research problem. 

I provide a review of such concepts in the context of a relevant research cognitive map, 

followed by the identification of the “literature gap”, within which  this research 

undertaking is justified. Shortcomings of existing theories in asset pricing are highlighted. 

 

I consider the “universe” to be the sum effect of Ⓒ-and Ⓓ-worlds. The former refers to 

our own world with its non-zero dimension topological space; this is the very world in 

which we observe prices. The latter refers to a zero-object26; represents a discretised time-

space world. Such object is capable of dissipating information filtrations. It also allows 

for the development of price behaviour. This subsequently leads to  observed prices along 

the market line.  

                                                           

26 Quantized or a zero-dimension topological space. 
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Thus the concepts I have reviewed are either Ⓓ-world or Ⓒ-world relevant or within an 

integrated Ⓒ+Ⓓ-view. The Ⓓ-world is a relatively new construct, which I explore 

significantly in this study. The two “worlds” are explicitly linked to the research problem 

and hypothesis. A mathematically inclined reader or examiner, may wish  to refer to 

formulae and additional descriptions provided on footers. 

 

2.1 PRELIMINARIES 

 

One of the essential components of this research study is the abstract and probabilistic 

framework, which acts as a fundamental base in asset and contingent claim valuation 

scenarios. All pricing and valuation work links to this framework in either explicit or 

implied manner. I consider here a form of probability description of either an observed or 

implied probability space, which may be interconnect to other implied surfaces such as 

the volatility surface. The probability space is structured as a probability triple27. The 

probability triple construct is fully described and explained in existing literature (Karatzas 

and Shreve, 1998b; Williams, 1991; Rogers and Williams, 2000a:2000b; Shiryaev et al., 

2006; Sondermann 2007; Lamberton, and Bernard 2007; Callegaro et al., 2017b).  

 

                                                           

27 Represented as ( Ω , F,  P), consisting  of a non-empty set Ω, the sample space, a -field F of subsets of Ω and a 

probability (measure) P defined on F,  in a non-empty set of subsets (events) of Ω  with closed under taking 

complements: A ∈ F    implies that    Ac =  Ω  \ A ∈ F,  with countable unions:  Ai ∈ F,  i = 1, 2, ...,  implying that  

⋃ 𝐴𝑖 ∈ 𝐹∞
𝑖=1              
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Within a financial context, I consider probability triple effects such as  the state of nature, 

events, and subsequently the actual probabilities. Probabilities are outcomes of events, 

whereas events are linked to specific states of nature28.  Specifically, the probability triple 

concept in Levental et al, (2016), is related  to the construction of uncertainty with a 

many-dimensional standard Brownian motion over a specific time horizon. With the 

exception of notation variation, the concept is the same in its basic form and reported 

broadly in existing literature (Neveu, 1965:1975; Billingsley, 1995).  

 

I seek to recreate the concept in a Financial asset pricing context  to reflect expanding 

degrees of freedom.  I intend to gain insight on the under-domain curvature in probability-

implied surfaces. This is more evidently represented over a martingale and in implied 

volatility surfaces driven by market prices. The martingale itself is a stochastic process 

with a realised sequence of outcomes from uncertain events where all prior values are 

observed and for which, at a particular time in the sequence, the conditioned expectation 

of the next value in the same sequence is equal to the presently observed value (Dalang 

et al., 1990; Stein and Stein, 1991; Madan and Milne, 1991; Rogers and Williams, 

2000a:2000b; Hazewinkel, 2001; Grimmett and Stirzaker, 2001;  Gulisashvili and  Stein, 

2010). 

 

I am interested in quantum asset pricing and probable patterns in implied volatility 

surfaces. This interest me  because of  price quantization at each zero-dimension object (

                                                           

28 Refers to any future patterns of uncertainty. 
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Ⓓ-world) along the market-price line. Previous researchers have studied quantization 

within mathematical domains, and attempts have been made to link it to asset pricing, 

portfolio valuation, and option pricing (Pierce, 1970; Graf  and  Luschgy, 2000; Luschgy 

and Pages, 2002; Pages et al., 2003; Pages and Printems, 2005; Andersen and Piterbarg, 

2007; Pages and Sagna, 2015). 

 

Research interest in option pricing with open-form solutions (OFS) on American and 

exotic options has gained momentum in recent times, particularly in the works of Luschgy 

and Pages (2005), Levental et al. (2016),  and Callegaro et al. (2018a:2018b). Their focus 

has been on the quantization of asset pricing with a combined treatment of underlying 

stochastic processeses. This study complements their work by exploring zero-dimension 

topological configurations for asset pricing and emphasing a holistic approach to financial 

instrument valuation. Moreover, I attempt to unravell the Eigen-price dynamics within 

the quantized price space. If I was to ‘observe’   price developments within a zero-

dimension object,  what could I tell of its internal mechanics? What is its structure and 

composition? What are the key inputs and how  do the two worlds interface in order to 

relay information? 

  

Levental et al. (2016) argue that uncertainty may be represented by a finite-time29 

multiple-dimensional standard geometric Brownian motion. It is reflected in probability 

                                                           

29 Refers to [0, T] 
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space30,  embedded in filtrations31, and observed in real time. However, Levental et al. 

(2016) do not suggest a possible factorisation of quantum effects, nor do they  establish a 

link to probability surface curvatures and zero-object internal effects. I consider  volatility 

surfaces to be implied by quantized topological spaces. This is the space where filtrations 

are fragmented and deposited. I consider a zero-object32 with deposited filtrations to be 

fully loaded. The actual price  is created within its space and driven by its internal 

dynamics.  

 

The work of Callegaro et al. (2017a:2017b:2018a:2018b) is particularly interesting as it 

appears to be concurrent and overlaps in general purpose with my own research. They 

include quantization effects in asset pricing. Although such effects are computed with a 

Fourier−quantization algorithm instead. Furthermore Callegaro et al. (2018a)  do not use 

numerical integration required by Fourier-based approaches. They focus instead on 

transition probabilities for  financial assets in order to price American options. Their work  

builds on Carr and Madan (1999), who priced options using fast Fourier transforms.  

 

Callegaro et al. (2017a) achieved price quantization through a multinomial lattice 

discretization scheme, using a quantization procedure. They  modelled Fourier transforms 

of a pure jump process at a given time. The pure jump processes  are driven by 

                                                           

30 Denoted as (Ω, F, P)   
31 {Ft : t ∈  [0, T]}   

32Short for a zero-dimensional object. 
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compensated Poisson and Levy processes (Hull and White, 1987; Keller-Ressel, 2011). 

They considered an increase in problem dimensionality through the inclusion of a two-

factor specification for the Heston (H) and double Heston (DH) volatility models. An in-

depth coverage of the H and DH models can be found on Heston (1993:1997), 

Christoffersen et al. (2009).  

 

They introduced a distortion function and expressed the density of a random variable ST 

in the distortion function in terms of a characteristic function through a Fourier inversion 

formula based in good part on Christoffersen et al. (2009). They claim to quantize all 

random variables (i.e. stochastic processes) at a fixed time by expressing the distortion 

function in terms of a Fourier representation of the price density. Furthermore it 

differentiates the distortion function, suggesting that its resolution tridiagonal structure is 

Hessian (Christoffersen et al., 2009). It builds in part on the work of Khrennikov 

(2007a:2007b) and his main argument of quantum randomness in financial markets. 

Subsequently it led them to a master equation that needed to be solved to obtain stationary 

quantizers. 

 

Callegaro et al. (2013:2017a:) introduced a filtered probability space (Ω, F, (Ft) t∈[0,T 

], P), where filtrations satisfy the hypotheses. They considered positive asset values such 

that S = (St)  t∈[0,T]. However, their model does not predict distribution splits, and while 

new functions have been introduced, there are no specific redefinitions or introduction of 

finance-related variables within the zero-object. What their work does well is match a 

quantization lattice and a d-dimensional Gaussian distribution to the Ornstein-Uhlenbeck 
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process and its bridge (Shephard, 1991; Stein and Stein, 1991; Gillespie, 1996; Schöbel 

and Zhu, 1999; Luschgy and Pages, 2002; Piotrowski et al., 2006) with quantization 

effects and data available from a known third party website33. 

 

Therefore the research by Callegaro et al. (2017a:2018a) is to a good measure a summary 

of known Stochastic processes with a fixed  fit of a quantization grid downloaded from a 

third party website (Hull and White, 1987; Keller-Ressel, 2011; Madan et al., 1998; 

Jacobs and Li, 2008). They do provide internal topological details of the zero-object. 

Independent and concurrent to Callegaro et al. (2018a), my research does introduce a 

master expression too, however I develop new theoretical alternatives through the 

application of different price cut-off “geometries”. This is done  within a zero-object and 

with a generalised Schrödinger-Sturm-Liouville process (Bailey, 1966; Pruess, 1973; 

Kong and Zettl, 1996; Tharwat et al., 2013; Hira and Altinisik, 2014; Yang, et al., 2015). 

I place special emphasis on the topological constraint and its internal configuration, such 

that it leads to a comprehensive set of sub models that can be used to price with alternative 

quantization effects. Moreover I generate  case and scenario specific quantized data, 

dependent on attributes of the zero-object. Although independent and concurrent, my 

research study complements the work of Callegaro et al. (2018a:2018b). 

 

In considering uncertainty and ways it impacts on asset prices, I place emphasis on  

                                                           

33 http://www.quantize.maths-fi.com 
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outcome measures of such uncertainty, through random variables, properties of which are 

of great interest and use in this work. Existing literature reasonably justifies the 

incorporation of a random variable in a pricing function, where the sample space is 

probability-implied by a non-empty set of events or filtrations, observable in real terms 

and whose expectations are well defined and measurable 34  (Hull and White, 1987; 

Karatzas and Shreve, 1998a:1998b; Shreve, 2004a:2004b; Shiryaev et al., 2006; 

Sondermann, 2007; Lamberton and Bernard, 2007; Keller-Ressel, 2011; Callegaro et al., 

2013).  

 

Levental et al. (2016) take this further and recognise that the underlying processes are 

progressively measurable35. This is relevant in recognising filtration effects in  prices. It 

can also be expressed in well-defined mathematical terms. However, Levental et al. 

(2016) do not go far  enough in their investigation of the domain. It is the same domain 

this research is centred on. Moreover they do not provision any changes to  existing 

pricing models. Merely including some form of mathematical representation of effects, 

does not change the fact that a good part of previously published research work has not 

led to “realistic” and comprehensive considerations of quantized effects in pricing. 

Although Callegaro et al. (2017a:2018a) is in a reasonable part an exception.  

                                                           

34 Random variable x  in a function x : Ω → R measurable with respect to F that is all the event (x ≤ c) = ( Ω  : x( Ω 

) ≤ c) ∈ F  for all real numbers c ∈ R , and the smallest -field with respect to which a random variable  is measurable 

is the -field generated by x, which we denote (x) and the expectation for a  non-negative random variable x,  is 

defined as E(x) = ∫ x(Ω)dP which may be + ∞. 
35 Denotes L(V)  the set of V-valued progressively measurable processes, and for any p  R, and further on 

provides an expression for the probability based L(V): Lp(V) = {x ∈ L(V); E [∫ ‖xt‖pT

0
] < ∞} , where 

‖xt‖2 = xt
′xt  (respectively, trace(xt

′xt)).   
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If the goal is to improve price predictions and develop simple-enough inner zero-object 

topologies with theoretical alignments across dimensional constrains, then in  my view 

research  in asset pricing and contingent claim valuation would need to integrate  probable 

surface curvatures in a concrete and measurable manner. This is particularly relevant in 

this study as there needs to be clarity in terms of what price or price-related variables are 

stochastic and what not; should one consider the capital allocation problem to be driven 

by a stochastic process?  In an n-asset portfolio, the weights, although constrained to 1, 

are stochastic variables. Furthermore, what role does information diffusion play in the 

capital allocation problem? The true nature of x will depend on many externalities.  

Previous research provides a good guide, for example Malkiel and Fama (1970), Gragg 

and Malkiel (1982) as supporters of efficient market hypothesis, argue that  daily 

logarithmic stock price changes follow a random walk. Furthermore they argue that these 

daily events are independent of each other and move upward or downward in a random 

manner, and can be approximated by a normal distribution. This is was explored  further 

in works of  Stein and Stein (1991), and Malkiel (2003:2011)   with focus on stock price 

distributions with stochastic volatility. 

 

One can also argue that considering Black and Scholes (1973), Merton (1974),  Black 

(1989), Shafer (2002), Terence et al. (2006) in relation to contingent claims with “rights”, 

or more specifically the financial options, the variable measuring the pay-out of such 

devices is a stochastic variable indeed. More specifically these “devices” with the right 

to buy ct= max(St – k, 0) or the right to sell pt= max(0, k- St) are augmented random 
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variables. Such approach would also be implied in cases where the distribution of the 

underlying is not normal, such as the case of a contingent claim valuation through a 

binomial pricing framework where underlying follows a binomial distribution (Cox et al., 

1979; Jarrow and Rudd, 1983; Leisen and Reimer, 1996).  

 

Stochastic financial variables represent randomizer effects that are attributed to  

information-diffusion processes, although one would wish to identify the deterministic 

component of a process of this type, the non-deterministic part will be a source of 

contribution to the random measure (Bachelier, 1900; Kennedy, 1994; Kallenberg, 2017). 

Benaim and Raimon (2003) investigated convergence properties of self-interacting 

diffusion on a compact Riemannian manifold. They considered self-interacting diffusions 

to be continuous-time stochastic processes living in a Riemannian manifold and defined 

the process mathematically through the use of a “family” of Brownian motion, smooth 

vector fields, and a potential-like function36. 

 

For contingent claims with the right to buy or sell the underlying, the difference between 

the spot price and the exercise price (call options) or the difference between the exercise 

and the underlying’s spot price (put options)  is a non-negative random variable. Wealth 

is created  by conditionally executing the contract if actual price rises above (calls) or 

                                                           

36  dxt = ∑ Fa(xt) a dBt
α −

1

t
(∫ ∇Vxs

(xt)ds
t

0
) dt,    where (Bα)α is a family of  Brownian motions, (Fα)α is 

a family of smooth vector fields on M such that ∑ Fα(Fαf)α = ∆f , for f ∈ C∞(M), where  denotes the 

Laplacian on M and Vu(x) a potential" function. 



42 

 

falls below (puts) the exercise price. Such conditioned non-negative random variables 

have interesting properties defined well in existing literature. For example Shephard 

(1991) provides a good basis of such properties, with detailed argumentations in a well-

defined undercutting probability space, the conditional expectation is well defined and 

measurable for all filtrations, where indicators of events may be known37.  

 

This is supported by other authors (Takesaki, 1972:2001; Harrison and Pliska, 1981; 

Cragg and Malkiel, 1982; Cox et al., 1985; Karatzas and Shreve, 1998a:1998b; Jarrow 

and Turnbull, 1998; Shiryaev et al., 2006) who more specifically consider the conditional 

expectation E(x | g) to only be defined up to sets of probability 0 and for any random walk 

variable x for which the unconditioned expectation E(x) is defined. By taking A = Ω,  one 

may consider  E(E(x | g)) = E(x)  to be true for any x for which E(x) is defined. This is 

also extended in validity in cases of chained conditioning of such expectation, or the 

conditional form of Jenson’s inequality38 for convex functions operational in a real and 

measurable system, such as pricing and the effects of a bond’s term structure.  

 

For a random variable x and g-measurable random variable y for which both E(x) and 

E(xy) are defined,  then  E(xy | g) = E(x | g)y. This  shows that when y is g-measurable, 

it may be treated effectively as a constant when conditioning on g and taken outside the 

                                                           

37 that when g ⊆ F is a sub -field of ℱ, and in cases of  a non-negative random variable x, the conditional expectation 

of x given g can be expressed as E(x | g),  with x  a g-measurable random variable satisfying E[E(x | g)IA] = E(xIA) for 

all events A ∈ g, where IA is the indicator of the event A; that is, IA( Ω ) = 1 or 0 according as  Ω  ∈ A or  Ω  ∉ A. 
38 Jensen’s inequality that f(E(x | g)) ≤ E(f(x) | g)  for a convex function f : R → R  when f(x) is integrable; the 

inequality is reversed when f is a concave function. 
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conditional expectation. In other words, given g, y is known. In the case of two -fields 

g and h, with g ⊆ h ⊆ F,  then E(E(x | h) | g) = E(x | g). This is often known as the tower 

property of conditional expectations (Takesaki, 1972:2001; Harrison and Pliska, 1981; 

Cragg and Malkiel, 1982; Cox et al., 1985; Karatzas and Shreve, 1998a:1998b; Jarrow 

and Turnbull, 1998; Shiryaev et al., 2006; Lamberton and Bernard, 2007) 

 

According to Takesaki (1972), Snyder and Miller, 1991, Kennedy (1994), Kallenberg 

(2017), the conditional form of the random variable x is independent of the -field g when 

(x), the -generated by x, and h are independent -fields; in this case E(x | g) = E(x). The 

-fields g and h are independent when P(G ∩ H) = P(G)P(H) for all events G ∈ g and H 

∈ h.  

 

These effects are applicable when pricing structured products (custom investment 

products of broad use) – both growth and yield enhancement products. In cases where  

fixed income instruments are combined with options (vanilla, exotic, spreads),  there are 

two or more random variables where at least one variable is event- conditioned  (Fabozzi, 

1995; Sharpe et al., 1995; Huager, 2001; Strong, 2004). Although properties of random 

variable and financial products are well researched,  I explore and re-apply stochastic 

concepts within a new “unified” pricing framework. In the same framework, I revisit and 

upgrade existing models, where possible. There is a gap in literature in terms of what is 

considered to be “realistic” pricing, such that counts in quantization effects (Chen, 2002; 

Haven, 2002:2004:2005:2008a:2008b;  Khrennikov, 2009; Callegaro et al., 2016).   Part 
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of this study represents an attempt at abstraction and unification of existing models. It is 

accomplished through a well-formed master expression, leading to  different pricing 

scenarios under specific assumptions. 

 

I am also interested in utilizing existing literature in concepts such as the rate of change 

of an implied probability surface or implied volatility surface.  Existing literature provides 

a good coverage of the building blocks. Sondermann (2007), Lamberton and Bernard  

(2007),   provide a good basis for a quantifiable probability change effect, especially as I  

explore  diffusion-related probability changes39. In the work of Shiryav et al. (2006), this 

is implied as a consequence of the Radon–Nikodym theorem that when Q ≪ P there exists 

a non-negative random variable L so that the probability Q may be represented in a well-

defined expression and in expectation40. Conversely Lamberton and Bernard (2007) argue 

that one may start with a non-negative random variable L with EL = 1 and define Q by 

Q(A)= E (LIA) for all events A ∈ ℱ.  It allows for Q  (probability) to be absolutely 

continuous with respect to P and for which L = dQ / dP.  

 

The conditioned properties of random variables can be utilized in alternative ways to 

derive the Black-Scholes option pricing formula (Black and Scholes, 1973). For example, 

Nielsen (1993) used the expected payoff expression and properties of conditioned 

                                                           

39 It provides premises to consider the new probability (measure) Q on (Ω,ℱ) to be  dominated by P (or Q is absolutely 

continuous with respect to P) if for any A ∈ ℱ, P(A) = 0 implies that Q(A)= 0. In the case when Q is dominated by P 

we write Q when Q ≪ P and P ≪ Q then P and Q are said to be equivalent; when Q and Pare equivalent then for an 

event A ∈ F, P(A) = 0 if and only if Q(A)=0 

40 Q(A) = E(LIA) for all events    A ∈ ℱ , where EL = Q( Ω ) = 1. The random variable L is usually written as L = 

dQ / dP and it is known as the Radon–Nikodym derivative of Q with respect to P. 
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probabilities to obtain the discretised Black-Scholes option pricing expression41. He used  

an option’s discounted expected payoff in a risk-neutral world and an expectation term 

with respect to a risk-neutral probability measure. I seek to use it on probability surfaces 

and at price diffusion points (zero-objects) along the market line. 

 

The concept of a random variable’s  direction (↑↓) is argued well in Banakh (1997), 

Karatzas and Shreve (1998a:1998b), Shiryaev et al. (2006), and Lamberton and Bernard 

(2007).  However there is lack of literature in terms of properties of a financial quantum-

world, unlike the continuous time-space world (Ⓒ-world), where randomized residual 

effects are exhibited and financial instruments’ prices are observed.  

 

I consider uncountable collections of random values (i.e. price behaviours in a typical 

case) with a supremum representation in the Ⓒ↓↑- and Ⓓ↑↓-worlds. This is a new concept 

within the gap in existing literature. While  focusing in the Ⓓ↑↓-world, I propose and test 

its internal mechanics and provide the necessary vocabulary to be used. The Ⓒ↓↑ and Ⓓ↑↓ 

constructs are well defined. In the latter case focus is placed in  effects of information 

dissipation and relay to the Ⓓ↑↓ system price-change density of state, thus representing  an 

essential supremum in onstrained space. Existing literature does not treat such constructs 

in this way, least so on the internal dynamics of price development within the Ⓓ↑↓-

                                                           

41 ct = e-r(T-t)EQ[max(ST-t - k, 0)] ; pt = e-r(T-t)EQ[max(0,  - ST-t)] ,  where  EQ[ ] denotes expectation with respect to 

the risk-neutral probability measure Q. Using the expected payoff formula and conditioned probability attributed, we 

may express  c = exp(−rT)EQ[(ST|ST > k)] − exp(−rT)EQ[(k|ST > k)]  
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system, and the quantification of information dissipation by such system with a 

forecasting level (Haven, 2002;  Khrennikov, 2009; Callegaro et al., 2016). 

 

Typically, in modern Finance, information and its relation to pricing is theorised by 

efficient market hypothesis. Malkiel and Fama (1970), Malkiel (2003), Asquith, (1983), 

Latham (1986), Bachelier (1990), Bernard and Thomas (1990), Davis and Etheridge 

(2006) provide a good base for discussion on market efficiency effects with the 

assumption that a probability triple space event follows a stochastic process.  

 

Therein lies the limit in terms of successful price change predictions or pre-event time-

horizon measurements of liquidity in our observable world, hence one anticipates 

understandings of price change dynamics through the consideration of new Ⓓ↑↓-system 

(Shephard, 1991; Stein and Stein, 1991; Seneta, 1996; Platen, 1997; Luschgy and Pages, 

2002; Parzen, 2015). To that end, I re-address existing literature gaps by further 

considerations on and around the price developments in relation to information 

filtrations within quantized space topologies. 

 

Following from concepts in the previous paragraphs, most financial variables change over 

time in a way that cannot be predicted with certainty.  Many of the variables in financial 

markets are also subject to fundamental uncertainty and are given by underlying 

stochastic processes. One can  not be certain about their value in the future. Interest rates, 

exchange rates, stock prices, and other asset prices are all variables that evolve over time 
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in an unpredictable manner. can make some probabilistic statement about the statistical 

distribution of their value. Those variables that are affected by uncertainty and change 

over time in an uncertain manner are classified as random variables, or stochastic process 

variables (Spitzer, 1970; Snyder and Miller, 1991; Seneta, 1996; Parzen, 2015).  

 

It is on the basis of Makov’s property that I consider the stop time and the Ⓓ↑↓ system, 

within which information not only is dissipated, but also some degree of information 

‘tunnelling’ occurs. This is something that existing literature does not include in finance 

or related domains in abundance. The information tunnelling effect is quantified well in 

literature, related to applied mathematics, but no feasible adaptation of it in finance has 

been reported.  

 

Harrison and Pliska (1983), Karatzas and Shreve (1998b), Shiryaev et al., (2006), 

Sondermann (2007), Lamberton and Bernard (2007), among many provide a similar 

description of a stochastic process in continuous time that takes real values and is a 

Brownian motion (or a Wiener process). Te set of values calculated as the difference of 

two time dependent adjacent random values demonstrate a normal distribution with a zero 

mean and a time dependent variance. They make their assumptions and the values are 

occurring in real time, and specify the distribution of the displacement of the process 

between two time points, with the classical statistical concept of the variance referred to 

as the variance parameter of the process itself; in the finance context the square root of 

that variance represents the volatility of the process.  
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Lamberton and Bernard (2007) explain that by the scaling property of the normal 

distribution, we obtain a Brownian motion with modified process variance, a modification 

that will depend on the a constant parameter, and could be standardized in scaling to 

obtain a standard Brownian motion with a zero mean and volatility of one. The adaptation 

of such process (standard Brownian motion) has been of widespread use in Finance with 

Levental et al. (2016) adapting such processes also in the investigation of optimization 

problems involving linked recursive preferences in a continuous Brownian motion setting 

and subsequently to infer that preferences depend on the volatility of wealth realization. 

 

In addition to the scaling property, Sondermann (2007) argues that a Brownian motion 

dependents not only on the present price value, but also the entire history up to the 

stopping time (at present), which itself implies a stronger than Markov property. 

Moreover, the price displacement between two time points is independent of the position 

at the first point (the first of any two time points), which Jacob and Shiryaev (2003) 

explain allows us to obtain a well-defined expression for the transition probabilities, the 

probability density function of the normal distribution, and the joint probability density 

function42.  

 

                                                           

42  P(Wtn
≤ xn | Wti

= xi,   0 ≤ i ≤ n − 1) = P(Wtn
− Wtn−1

≤ xn − xn−1) = ∫ φ(u, tn − tn−1)
xn−xn−1

−∞
du ,  where 

φ(x, t) = e−x2 2t⁄ √2πt⁄  is the probability density function of the normal distribution with mean 0 and variance t, and 

joint probability density function of Wt1,  … , W t n as  f(x1, … , xn) = ∏ φ(xi − xi−1,   ti − ti−1)n
1  
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Lamberton and Bernard (2007) argue that by the property of the normal distribution, it 

follows that the sum of independent random variables each having a normal distribution 

again has a normal distribution. It is well reported (Aase, 1988; Miltersen et al., 1997; 

Sondermann, 2007; Lamberton and Bernard, 2007; Shiryaev et al., 2006; Kallenberg, 

2017) that the process is spatially homogeneous so that the distribution of the price 

displacement or increment between any two time stops is dependent on the position at the 

first time stop, which is due to the zero convergence of expectation43. For Lamberton and 

Bernard (2007) the multivariate normal distribution is determined by its means and 

covariances, and normally-distributed random variables are independent if and only if 

their covariances are zero and the joint distribution is normal with zero means and 

covariances are well define mathematically; Jacob and Shiryaev (2003) describe them as 

the finite-dimensional distributions of the process in good detail. 

 

In accordance with Revuz and Yor (2004), the most important terminal-value claims are 

the European call and put options with strike price c and expiry time t0. These are 

contracts that entitle (but do not require) the holder to buy/sell one unit of stock at the 

fixed strike price at the fixed expiry time t0; on the other hand, an American call/put option 

entitles the holder to buy/sell one unit of stock at the fixed strike price at or before the 

fixed expiry time and it is not a terminal-value claim. The European call pays (St - c) + at 

the expiry time, whereas the put pays (c - St) + at the expiry time t; their prices at time t 

                                                           

43Increment Wt + s − Ws does not depend on the position, Ws, at time s for s, t > 0. For any t > s > 0, since EWs = EWt 

= 0 and Wt− Ws is independent of Ws, it follows that the covariance of Ws and Wt is   Cov(Ws, Wt) = E(WsWt) =
E[Ws(Wt − Ws + Ws)] = E[Ws(Wt − Ws)] + E(Ws

2) − E(Ws)E(Wt − Ws) + s = s , and for any s, t > 0 that the 

covariance is given by Cov (Ws, Wt) = s ∧ t,  (14) where s ∧ t = min (s, t).       
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are related through what is known as the call-put parity.  

 

2.2 APPLIED  STOCHASTIC FINANCE CONCEPTS  

 

A review of literature on various stochastic finance concepts is provided here, starting 

with attitudes of individual investors in relation to subjective investment decisions and 

risk, more specifically the notion of an investor’s individual utility function.  

 

Shiryaev et al. (2006) argue that in a deterministic model an investor will seek to 

maximise his or her wealth by making rational investment choices. Under a stochastic 

model, the investor’s final wealth is typically a random variable, w, and it would no 

longer make sense for the investor to make investment decisions seeking to maximise a 

random quantity, instead, the investor may wish to maximise the expected value of his or 

her final wealth, E(x), so that the investor achieves the largest wealth on average, or more 

generally it is often postulated that the investor will seek to maximise Eu(x) for some 

appropriate function u; this function is referred to as the investor’s utility function 

(Klinger and Levy (2009). Furthermore Lamberton and Bernard (2007) imply that any 

investor who orders his or her preferences of random outcomes in a suitably consistent 

way possesses an essentially unique utility function and that properties of this function 

may characterise his or her attitude towards risk. 
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In an n-asset portfolio, the capital weights are considered to be in range (zero to one) 

stochastic variables. A Monte-Carlo approach may be deployed to facilitate  mean-

variance analysis and the construction of the efficient frontier. Porter and Gaumnitz 

(1972) articulate a stochastic approach to mean-variance analysis, where, among 

portfolios giving a fixed mean return, an investor chooses the portfolio with smallest 

variance of the return. Sondermann (2007) reinforces the argument that the model is 

subjective both in its choice of optimality criterion, but also in its dependence on the 

investors’ beliefs about the means of the returns of the various available assets as well as 

the covariances between those returns. Lamberton and Bernard (2007) consider the 

implications for the whole market of the actions of individual investors within the context 

of capital-asset pricing equilibrium.  

 

Revuz and Yor (2004) define the term “equilibrium” in a general economic scale as the 

balance in equal measure between the overall demand and supply. Following from Revuz 

and Yor (2004) in the context here, the equilibrium in the market portfolio coincides with 

the tangency portfolio. It allows the pricing equation to be rewritten44. Lamberton and 

Bernard (2007)  rewrite the capital asset pricing model45, where μm denotes the expected 

return on the market portfolio,  and  βm = (β1,m, … , βs,m)
T

, where  βi.m represents the 

market beta for the market portfolio46. 

                                                           

44  To have supply equal to demand would require that (xm)i =
(∑ wj(1−x0,j)j∈J )(xt)i

∑ ∑ wj
s
k=1j∈J xk,j

=
(∑ wj(1−x0,j)j∈J )(xt)i

(∑ wj(1−x0,j)j∈J ) ∑ (xt)k
s
k=1

.  Since 

xt
Te = 1, in equilibrium the market portfolio coincides with the tangency portfolio. 

45 r = r0e + (μm − r0)βm        

46 βi.m = Cov(RI, xm
T R) Var(xm

T R)⁄  



52 

 

 

 Lamberton and Bernard (2007) note that while mean-variance analysis provides a useful 

framework for thinking about the issues of portfolio choice, its usefulness in applications 

depends on the availability of good estimates of mean returns of assets and of the 

covariance between those returns, which may not be easy to obtain. Revuz and Yor (2004) 

point out that problems of similar nature arise with the capital-asset pricing model, in 

such cases when it is viewed in a dynamic setting, where changes over time in estimates 

of parameters in the model from market data may lead to instability in the market beta 

estimates. 

 

Sondermann (2007) defines a contingent claim, f, as a random variable on an underlying 

probability space, and regards it as the payoff at time t+h of some contract; the value of f 

is not observed until time t+h. Shiryaev et al. (2006) elaborate on the archetypal example 

of a contingent claim, that of a call option at some strike price k on one of the risky assets 

(for example asset 1), which would pay (S1,1−k) + at time 1, where contingent claims with 

a finite second moment are denoted f ={f: Ef2 < ∞}.  In the simplest form in a time horizon 

h (t to t+h), it would take two values: f(ω1) in the case when ω1 is the true state of nature 

(in which case the stock price becomes uS0 at time t+h) and f(ω2) when ω2 is the governing 

state of nature (and then the stock price takes the value dS0 at time t+h). The holder of the 

claim, who has bought it at time t with no knowledge of which states of nature, ω1 or ω2 
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would be the prevailing one, receives the random payoff f at time t+h. 

 

Shiryaev et al. (2006) follow this from the assumptions that one would wish to establish 

the amount that an investor would pay at time t to hold the claim f, or equivalently the 

amount charged by the seller of the claim who will have the liability to pay out the amount 

f at time t+h. Cox et al. (1979) consider the problem from the point of view of an investor 

who has sold the claim and wishes to ‘hedge’ against his or her liability to pay f at time 

t+h by forming a portfolio at time t consisting of an amount y in the bank account, - ∞  < 

y <  ∞ , and x units of stock, - ∞  < x <  ∞.   

 

It is argued in Cox et al. (1979) that a negative value of y would correspond to borrowing 

from the bank while a negative value of x corresponds to holding a short position in the 

stock; that is,  | x |  units of stock are borrowed at time t (and they must be paid back at 

time t+h).  

 

According to Lamberton and Bernard (2007), these form the basis of a one time-period 

(denoted here as h) model. Cox et al. (1979) use the one-time period model as an option 

pricing building block of a larger binomial pricing framework, which can be used to 

determine the price of an option (i.e. contingent claim with a ‘right’ buy or sell the 

underlying), given the characteristics of the stock or other underlying asset, and under the 

assumption that  the price of the underlying asset can move up or down by a specified 
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amount, and with the price following a binomial distribution.  

 

In Cox et al. (1979), the one-time period model specifically considers one time horizon 

(h=1), between t and t+h  and the existence of two assets, a riskless asset such a bank 

account (or treasury bill/government bond) in that 1 unit of wealth at time t held in the 

bank account becomes (1+r) with certainty at time t+h, where r ≥ 0 is a constant and may 

be interpreted as the interest rate on the bank account, and a risky asset, typically stock 

where St  is price at time t, where St > 0 is constant, and its price at time t+h is a random 

variable St+h.  

 

Hull (2014) discusses a similar model, with assumptions that at St+h, takes just two 

possible values uSt and dSt where u and d are given constants, the quantities 1 and 2 

represent a probability sample set, interpreted as the two states of nature - two outcomes 

of the future uncertainty, leading to two states of economy, or discrete market-level 

movements. The  u and d are proportional changes to the stock price; u  reflects   an ‘up’ 

jump of the stock price, and  d  the  ‘down’ price correction, such that 0 < u > 1 and 0 < 

d < 1.  

 

Single-step binomial trees for the stock price S,  the contingent claim f, and  a riskless  

portfolio can be cnstrcuted. The latter replicates the payoff of the contigent claim and 

consists of  shares of stock and an amount B in a bank account (borrowed or a short 
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position on a bond). An expression for   can be derived47. Hull (2014) shows that when 

combining m shares with n claims, the portfolio becomes riskless48. It is referred here as 

the portfolio (x, y) that replicates (or hedges) the claim f , thus eliminating the exposure 

to risk on the part of the seller of the claim independent of the prevailing state of nature. 

At time 1 the portfolio provides exactly the amount required to pay the claim.  

 

Cox et al. (1979) compute the initial cost of setting up such portfolio, α[q1f(ω1) + q2f(ω2)], 

and determine the minimum price at which the seller would be prepared to sell the claim. 

It follows from the arguments in Cox et al. (1979) and confirmed among others by Hull 

(2014) that any amount more than that sum would yield a riskless profit to the seller, and 

the amount used is the maximum amount that the buyer would be prepared to pay to hold 

the claim; if the claim was priced at an amount below that in Cox et al. (1979), one could 

sell the claim from the portfolio and take in the riskless profit. Cox et al. (1979) argue 

that in a single-step binomial model, the discounted probability average is the “fair”  

claim. This is important because the model represents the building block of expanded 

binomial trees, where the price development follows a pattern of pricing regularity. 

 

Cox et al. (1979), Jarrow and Rudd (1983), Leisen and Reimer (1996) provide multi-

                                                           

47      r1bωΔsωc htht   , which in the case of the one period binomial becomes the set of two equations: 

               
           .2htP2ωhtΔSr1br1b2ωhtΔs2ωhtc

,1ωhtc1ωhtΔsr1br1b1ωhtΔs1ωhtc



        

    Subsequently after subtracting the two expressions above we find 
       

   2ht1ht

2ht1ht

ωSωs

ωcωc
Δ










 

48     ht2ht1ht πωπωπ    
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period binomial models where the stock price at time r is represented by Sr = S0 ∏ Zi
r
i=1 . 

The random variables (Zi) are assumed to be independent and identically distributed (iid); 

much of the discussion of pricing and hedging claims may be extended to the case where  

both of these assumptions are relaxed in the probability space Ω, as given in earlier 

considerations, with stock price at time r depending only on (ω1, ..., ωr); that is, Sr = S 

r  (ω1, ..., ωr).  

 

The proportional change in the stock price between times r and r + 1, for 1 ≤ r < n, can be 

computed49; Z1(ω1) = S1(ω1) / S0 where the initial stock price S0 is a constant with u0 = 

S1(1) / S0 and d0 = S1(0) / S, ur and dr are random variables with values determined at time 

r, 1 ≤ r < n, such that that ur > dr. Here, u0 and d0 will be constants with u0 > d0. The 

interest rate on the bank account between times r and r + 1 may be considered  to be a 

random variable ρr = ρr(ω1, ..., ωr). 

 

The information available at time r will be ℱr = σ(Z1, ..., Z).  It is equivalent to knowing 

the values of ω1, ..., ωr. The interest rate on the bank account for the period r to r + 1 is 

then known at time r when one has observed ℱr, so investment in the bank account for 

that period is riskless; equivalently, if one  sets αr = 1 / (1 + ρr), then αr is the price of a 

bond bought at time r yielding 1 unit with certainty at time r + 1. Assume that on each 

                                                           

49 Zr+1(ω1, … , ωr+1) =
Sr+1(ω1,…,ωr+1)

Sr(ω1,…,ωr)
      and Zr + 1 will be assumed to take just two values Zr + 1(ω1, ..., ωr, 1) = ur(ω1, 

..., ωr)    and    Zr + 1(ω1, ..., ωr, 0) = dr(ω1, ..., ωr)   corresponding to an up jump, ωr + 1 = 1, and a down jump, ωr + 1 = 0, 

respectively. 
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branch of the binary tree there is no arbitrage50. To specify the underlying probability P 

on the sample space Ω, I first assume that for 1 ≤ r < n, pr = pr(ω1, ..., ωr), with 0 < pr < 1, 

denotes the conditional probability of an “up” jump between r and r + 1 given the 

outcomes ω1, ..., ωr, with 1 - pr being the conditional probability of a “down” jump51 (Cox 

et al.,1979; Shiryaev et al., 2006; Lamberton and Bernard, 2007).  

 

In accordance with Cox et al. (1979), Jarrow and Rudd (1983), Leisen and Reimer (1996), 

I consider an economy operating over one period from time t to time t+h. Suppose that 

there are s risky assets, i = 1,....., s; the prices of these at time 0 are given by a deterministic 

vector S0 = (S1, 0, ..., Ss, 0)⊤ ∈ Rs and the prices at time t+h are determined by a random 

vector S1 = (S1, t+h, ..., Ss, t+h)⊤ taking values in Rs.  

 

In addition, there is a riskless asset, 0, which provides a deterministic return r1 > 0 between 

time t and time t+h; the initial price of the riskless asset may be taken as 1 and here r1 − 

1 is the fixed interest rate, with the price of the riskless asset at time 1 being r1. Underlying 

the model is a probability space (Ω, ℱ, P) on which the random vector S1 is defined. The 

set Ω, which represents the set of possible states of nature ω ∈ Ω, is equipped with a σ-

                                                           

50 ur(ω1, ..., ωr) > 1 + ρr(ω1, ..., ωr) > dr(ω1, ..., ωr)   the interest rate ρ0 for the first period will be a constant with u0 > 1 

+ ρ0 > d0. 
51 that is P(ωr + 1 = 1 | ℱr) = pr    and    P(ωr + 1 = 0 | ℱr) = 1 - pr    a constant p0, with 0 < p0 < 1, will be the (unconditional) 

probability of an up jump between times 0 and 1. For 1 ≤  r < n, the conditional probability at the rth step is 

then, P(ωr+1|ω1, … , ωr) = pr
ωr+1(1 − pr)1−ωr+1          
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field ℱ of measurable events, or subsets, of Ω and P is a given probability. In this section 

assume that E ∥ S1∥2 <  ∞ ,that is E(Si,1)
2 < ∞ for each i = 1, ..., s (Shiryaev et al., 2006). 

 

Shiryaev et al. (2006) consider a market at times 0, 1, ..., n and s risky assets for which 

the prices are specified by S0, S1,...,Sn. The random vector Sj = (S1, j, ..., Ss, j)⊤, which is 

defined on some underlying probability space Ω, is such that Si,j is the price of asset i (i 

= 1, ..., s) at time j (j = 0, 1, ..., n). In line with Shiryaev et al. (2006), I consider a market 

evolving in time with the information available to investors at each time point. 

Sondermann (2007) treats this mathematically by specifying an expanding sequence of 

σ-fields ℱ0 ⊆ ℱ1 ⊆ ... ⊆ ℱn in Ω such a sequence is known as a filtration, literature 

coverage is also provided in the previous section of the literature review.  

 

In Shiryaev et al. (2006), the σ-field Fj represents the information available at time j and 

intuitively it may be thought of as being specified by a partition of events (subsets) of Ω, 

and when Ω is finite this is precisely the situation, but for more general Ω the intuition 

that this provides will be adequate normally. Sondermann (2007) considers that the 

evolution of the system is governed by the actual state of nature ω ∈ Ω, which is not 

observed, assuming that at time j one has gathered information by observing events that 

have occurred (or that have not occurred), that itself which allows for narrowing down of 

the reigning ω ∈ Ω. In line with Shiryaev et al. (2006), the collection of events (denoted 

Fj) is the event set whose occurrence or non-occurrence is known at time j, therefore by 

having the access to Fj one may infer the actual partition in which ω lies.  
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Shiryaev et al. (2006) argue that at time j + 1, one may have acquired more information 

than at time j, so that can think of Fj + 1 as being a finer subdivision or partition of Ω, and 

so forth, which allows us to conceptualize the information within a cascaded structure. 

Lamberton and Bernard (2007) articulate that an investor observes the prices Sj at time j 

so the components of the random vector must be random variables which are effectively 

constant on the events in the partition determining Fj (for, if not, they would be giving 

further information about the ‘true’ ω).  

 

Further on, they state that a random variable is an Fj random variable if its value is known 

after observing Fj and when the sequence {Xj} is such that Xj is an Fj random vector, for 

each j, such that the sequence is adapted to the filtration {ℱj}. Moreover Revuz and Yor 

(2004) note that Fj will often be determined by {S0, ..., Sj, R0, ..., Rj + 1} (in this situation, 

formally say Fj is generated by {S0, ..., Sj, R0, ..., Rj + 1} and write ℱj =  ∂{S0, ..., Sj, R0, 

..., Rj + 1}, and argue that no restriction need to be placed to that case as investors may be 

able to observe other random variables (other than the asset prices), which help provide 

important information about the underlying ω ∈ Ω. 

 

Further onto trading strategies and in relative links to concepts reviewed above, a trading 

strategy or portfolio is said to be self-financing when no money is injected or withdrawn 

between setting up the strategy and the terminal time according to Lamberton and Bernard 

(2007), who consider a self-financing trading strategy to replicate the claim when its value 
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matches that of the claim at the payoff time of the claim, which in the most typified case 

is the terminal time n and articulate well that for any claim f a replicating trading strategy 

exists and show how it is calculated.  

 

In such cases and under the same theme, Hull (2014) makes various assumptions in terms 

of the number of units of stock held between time r and r+1 for the trading strategy by Xr 

and the holding in the bank account (or riskless bond) from r to r+1 by Yr, where Xr and 

Yr are considered random variables with attributions consistent with those reviewed in 

the previous section, where the claim dependency on stock price Sr at time r is well 

established.  

 

Similarly, Cox et al. (1979) determine the appropriate values of these random variables 

by using dynamic programming, which is the technique of backward induction, to 

calculate the values (Xr, Yr) successively for r = n - 1, n - 2, ..., 0, by calculating first the 

values that the pair (Xn - 1, Yn - 1) should take at all possible nodes of the form (i, n - 1), 0 

≤ i ≤ n - 1, at time n−1, that is for all possible values of the stock price Sn - 1 at time n−1, 

then move on to calculate the values (Xn - 2, Yn - 2), and so forth, as the step backward 

induction goes through the binary tree.  

 

Revuz and Yor (2004), Shiryaev et al. (2006), model a trading strategy T = ((X0, Y0), (X1, 

Y1), ..., (Xn, Yn)), as an adapted sequence of random vectors X = {Xj} and an adapted 
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sequence of random variables Y = {Yj}; here Xj = (X1, j, ..., Xs, j)⊤, with Xi,j representing 

the amount of asset i and Yj the amount of asset 0 held from time j to time j + 1 using the 

strategy T, under the assumption that Xn ≡ 0 and Yn ≡ 0, so that the model terminates at 

time n. The requirement that the strategy is  adapted means that an investor may wait until 

he or she has observed the prices Sj and Rj+1 at time j before assembling the portfolio to 

hold for the period from j to j + 1 and onto its application of the trading strategy T = (X,Y) 

and its dividend sequence realisation52. The discount price process is given by {BjSj, ℱj : 

0 ≤ j ≤ n}, where j =1,…,n are time nodes, with non occurring one–period arbitrage, and 

an equivalent probability Q such that the discounted price process53 is a martingale under 

Q.  

 

This is consistent with both continuous and discrete underlying process. Under a 

continuous process, investor will  be selective in his or her choice of observation times 

and the frequency (preferable at some regularity). In discretised models, the observations 

match the time nodes (at possible stoppage times), but the consideration of the filtration 

and its effect on the price follows a similar pattern; it provides a clear framework in the 

terms of pricing under the effects of filtration, although no insight in terms of prediction 

on the future price is included (Cox et al., 1979; Jarrow and Rudd, 1983; Leisen and 

Reimer, 1996; Shiryaev et al., 2006; Klinger and Levy, 2009).  

                                                           

52  DT = (D1
T, … , Dn

T), given by Dj
T = (Xj−1 − Xj)

T
Sj + (Yj−1 − Yj)Rj  for  j = 1, …, n. The Fj-random variable Dj

T  is 

the amount ‘consumed’ at time j using the strategy T and it is the difference between the amount the portfolio is worth 

at time j through investing from time j − 1 and the amount re-invested to be carried over to time j + 1. 
53 that is EQ ‖ BjSj ‖  <  ∞  and  Bj − 1Sj − 1 = EQ  ( BjSj | ℱj − 1)    for    1 ≤ j ≤ n 
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Independent of the nature of the underlying process, literature does not provide clear 

provision of the underworkings of the filtrations within the market “medium”, nor does it 

provide a system within which one may try to investigate the dissipation effects of 

information and provide, at least in part, better price change prediction to at least the 

nearest future time point.  

 

An understanding of dimensionality in important to understand better the underworkings 

of information at each dissipation point along the market line, one of which (and a very 

important one) is time. I  consider here a “black-box medium” where events are vectorised 

along a pattern of uncertainty that subsequently affect price change projections. It triggers 

market line residual (stochastic) deviations in prediction. In both continuous and discrete 

processes,  market price observations at well-articulated intervals, and the sense of 

betweenness and equidistance in unobserved intervals in my logic follow  Halmos (1957), 

Tarski and Givant (1987). 

 

In the previous consideration of a simple single-step stock price development at time t+h 

(one time horizon h=1), the stock price at time t+h will depend on the state of nature. In 

a generic model, the elemental condition  is 0< d < 1 < u, however Jarrow and Rudd 

(1983), referred to as JR here,  provide a traceable set of the price multipliers as well as a 

well justified set of  probabilities. The share price multipliers u and d, are chosen such 

that the mean and variance over extended number of  steps match those required for share 
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price returns54. The probabilities are said to be equiprobable. 

 

The share price process in the JR tree superimposes a risk-neutral drift term and a second 

term based on volatility. The drift term ensures that the share has an expected rate of 

return of (r-q) when valued in a risk-neutral world. The expected value of the price 

multiplier is exp[(r-q)δt]. Since the annual volatility measure σ is a standard deviation, 

the volatility term σ√δt incorporates the square root of the step size (Jarrow and Rudd, 

1983).  

 

Variance at an individual binomial step is given by σ2δt.  After n steps or over time T, 

the variance of log share price becomes σ2T. Cox et al. (1979) underlines that dividends 

will affect only the probabilities in the CRR model, not the share price values, whereas 

in the JR tree the opposite is true. In addition, Cox et al. (1979) serve a  generalised  option 

pricing expression, similar in “shape” to the Black-Scholes model, where the continuous 

normal distribution functions, N(d), in the Black – Scholes result  is replaced by discrete 

binomial distribution functions  (Black and Scholes, 1989; Jarrow and Rudd, 1983).  

 

These binomial approximations hold for European options. They involve the so called 

“complimentary” binomial distribution function Φ, which is one minus the distribution 

                                                           

54 Expressed algebraically, the JR tree parameters are:  ln(u) = (r − q −
1

2
σ2) δt + σ√δt ,   ln(d) = (r − q −

1

2
σ2) δt − σ√δt       
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function. Each of the N(d) terms in the Black-Scholes formula can be replaced with a 

term based on the complimentary binomial distribution function Φ . The quantity a 

represents the minimum number of “up” moves required for the call to end “in-the-

money”, that is for the terminal value to exceed X. The other new parameter, p* is a 

modified probability55. Cox et al. (1979) provide a concise CRR binomial option pricing 

formula where distribution functions are generally defined in terms of the probabilities in 

the left-hand tail of the distribution, whereas the complimentary distribution function 

refers to the right-hand tail56.  

 

The third set of parameters is that proposed by Leisen and Reimer (1996). Their choice 

has two important advantages over JR and CRR parameters. First, they suggest better and 

separate estimates for the N(d1) and N(d2) values in the Black-Scholes formula. Then by 

centring the share price tree at maturity around the exercise price, the oscillation in 

convergence seen with JR and CRR trees is removed. In the LR model, the parameters 

are chosen in reverse order to the JR and CRR models. Probabilities are decided first and 

then the share price moves. Expressions for probabilities are derived using an inversion 

formula that provides accurate binomial estimates for the normal distribution function. 

Probability p relates to d2, whereas  probability p* relates to d1 found in  option pricing 

expressions by Black and Scholes (1973), Nielsen (1993), Shafer (2002). 

 

                                                           

55 given by the formula: p′ = p
u

e(r−q)δt 

56 c = se−q(t∗−t)Φ (a: n, p′) − ke−r(t∗−t)N(Φ(a: n, p)) 
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The accuracy of the term equivalent to N(d2) (i.e. the Φ(a: n, p)  ) can be seen by 

comparing it to Black-Scholes N(d2). Note that parameter a takes the value (n+1)/2 in the 

LR tree to ensure that the share price tree is centred around the exercise price. Similar to 

the two models reviewed above, Leisen and Reimer (1996) describe their own price 

multipliers for the share price moves in the binomial tree57. 

 

The option pricing model published by Black and Scholes (1973) has gained popularity 

and use over the years, despite initial resistance to accept it. It is now the most widely 

used option valuation model, typified in the pricing of European options, but agile enough 

to respond to adaptations for other types of financial derivatives and with various types 

of underlying securities.  

 

The Black-Scholes option pricing model takes its name from the two financial theorists 

that came up with it in the early 70’s.  Both Black and Scholes recognised that their work 

on option pricing was preceded by research and publications in derivatives pricing, 

especially in the 60’s, with initial focus on warrants. The works of Sprenckle (1961), 

Ayres (1963), Bones (1964), Samuelson (1965), Baumol et al. (1966), Chen (1970), all 

produced valuation formulas in a similar general and incomplete form. Their models 

included one or more arbitrary parameters. Particularly the Sprenckle’s derivative pricing 

                                                           

57 u = e(r−q)δt p′

p
;  d = e(r−q)δt 1−p′

1−p
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expression appears to be close to the Black and Scholes option formula (Black, 1989). 

 

I treat the Black-Scholes option pricing model here as a special case under the new 

abstracted and unified financial instrument valuation framework. In first appearance, the 

differences between Black and Scholes (1973) option pricing model and earlier 

Sprenckle’s (1961) formula 58  appear to be minor. They are similar in their general 

mathematical form and the  underlying stochastic process. In Sprenckle (1961), x is 

defined  to be the stock price, c the exercise price, t* the maturity date, t the current date, 

v2 the variance rate of the return on the stock, ln the natural logarithm, N(b) the cumulative 

normal density function. However in the model, k and k* are unknown parameters or 

parameters that were not fully justified theoretically or empirically. Although Sprenkle 

(1961) defined k as the ratio of the expected value of the stock price at the time the warrant 

matures to the current stock price, and k* as a discount factor that depends on the risk of 

the stock. Furthermore Sprenkle (1961) tried to estimate the values of k and k* 

empirically to no avail (Black, 1989).  

 

Samuelson (1965) published his pricing model with parameters  and , where  is the 

                                                           

58kxN(d1) − k∗cN(b2); b1 =
lnkx c⁄ +

1

2
v2(t∗−t)

v√(t∗−t)
 ;  b2 =

lnkx c⁄ −
1

2
v2(t∗−t)

v√(t∗−t)
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rate of expected return on the stock, and  is the rate of expected return on the warrant or 

the discount rate to be applied to the warrant. Samuelson (1965) makes the assumption 

that a log-normal distribution prevails for possible stock prices at warrant’s maturity and 

takes the expected value of this distribution, with a cut-off at the exercise price, which is 

then discounted at present value, under the discounting rate . The pricing process in 

Samuelson (1965) is not supported by literature, nor justified under any implied 

conditions of capital market equilibrium for security pricing. It was not regarded to be an 

appropriate procedure to price a warrant either, nor could empirical testing justify it. In 

their subsequent paper, Samuelson and Merton (1969) recognised the fact that 

discounting the expected value of the distribution of possible values of the warrant when 

it is exercised is not an appropriate procedure and advanced the theory by treating the 

option price as a function of the stock price, which is fully justified. 

 

Furthermore Samuelson and Merton (1969) recognised that the discount rates are 

determined in part by the requirement that investors would be willing to hold all of the 

outstanding amounts of both the stock and the option. Their view on this is limited 

because they do not make use of the fact that investors must hold other assets as well or 

that investors are mean-variance efficient with no justification of why they should take 

idiosyncratic risk, and the risk of an option or stock that affects its discount rate is only 

that part of the risk that cannot be diversified away. Their  pricing model depends on the 

general form of the utility function assumed by them for a typical investor.  

 

Others had  tried to come up with a warrant pricing model, using an empirical testing and 
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fitting procedure. Thorp and Kassouf (1967) obtained  an empirical valuation formula for 

warrants by fitting a curve to actual warrant prices, a concept that was taken into 

consideration by Black and Scholes (1973) in their work. Furthermore Thorp and Kassouf 

(1967) use the empirically fitted formula to calculate the ratio of shares of stock to options 

needed to create a hedged position by holding a long on one security and short on the 

other.  

 

However, Thorp and Kassouf (1967)  failed to pick up on the fact that in equilibrium such 

hedged position would lead to a riskless portfolio with an expected return matching that 

of a riskless asset, something that Black and Scholes (1973) fully utilised in their option 

pricing model. It is exactly this equilibrium condition that can be used to derive a 

theoretical option pricing formula. Black and Scholes (1973) initial purpose was to come 

up with an option pricing formula that could be used to price European options with no 

probability of an early exercise, recognise sensitivities of the option price on the stock 

price, exercise price, stock volatility, and interest rate, although the dividend yield 

sensitivity was factored in the initial model by Merton (1974),  Rubinstein (1976), and 

Cox et al. (1979).  

 

Merton (1974) had considered the case of a constant dividend yield without success in 

finding a closed form solution. Geske (1978) extended  the option pricing model to 

include the stochastic effect of the dividend yield on stock, which he based on assumption 

of a log-normal dividend yield as a reasonable stochastic process describing the 

uncertainty around dividends, which seems to address in part successfully the under-
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pricing effects for deep-out-money options and prevalent for longer exercise periods for 

options and warrants.  

 

Merton (1974) did not change the initial Black and Scholes (1973) essential argument on 

the expected correlation between a traded underlying stock and the derivative contract - 

hedging a trading position by going long on the stock and short on the derivative by a 

well-defined volume of trade, thus creating a riskless trading portfolio. He recognised that 

in order to maintain an effective and continuous hedged position in the trade, one would 

need to maintain changing the position on the underlying, the option, or both. Masoliver 

and Perello  articulate this well in their 2003 work. Merton (1974) did not find a closed-

form solution to the constant dividend for options with a finite life. He did however find 

a reasonable solution for a perpetual option when there is no probability of early exercise, 

which seems to align well to the initial model by Black and Scholes (1973). 

 

 

Once a riskless portfolio is set up, Black and Scholes’ (1973) intuition drove the process 

forward, in that such portfolio can only yield a rate of return equivalent to that of a riskless 

investment such as T-Bills, LIBOR rate, etc. Further on Black (1989) explain that one 

can obtain the same option pricing formula by considering a reverse hedge basis, or even 

a neutral spread position, under the assumption that a neutral spread must earn the interest 

rate, that is when shorting one option and longing another option on the same stock in the 

right ratio, one obtains a neutral spread. Furthermore this is plausible even for a spread 

where you take in money, because one may be in a position to invest the proceeds of a 
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sale of options for our own benefit. Black (1989) in the paper ‘How we came up with the 

formula’ further argue that the option pricing formula can be obtained without assuming 

any hedging or spreading at all.  

 

Black and Scholes option pricing model is based on a broad list of initial assumptions, 

such as that (i) the short term interest rate is known and constant at all times, (ii) stock 

price follows a random walk in continuous time with a variance rate proportional to the 

square of the stock price; thus the distribution of possible stock prices at the end of the 

finite interval is log-normal, the variance on stock is constant or homoscedastic, (iii) stock 

pays no dividend, or other distributions, (iv) the option is “European”, that is it can only 

be exercised at maturity, (v) there are no transaction costs in buying or selling the stock 

or the option, (vi) it is possible to borrow any fraction of the price of a security to buy it 

or to hold it at the short term interest rate, (vii) there are no penalties to short selling; a 

seller that does not own a security will simply accept the price of the security from a buy, 

and will agree to settle with the buyer on some future date by passing him an amount 

equal to the price of the security on that date (Black and Scholes, 1973; Black, 

1976:1989).  

 

Black (1989) reported that not all assumptions were necessary and the model itself failed 

empirical testing on possible matches to the option market prices, but subsequent testing 

showed its validity in the inverted manner, using the Black and Scholes formula with 

market prices for the option to compute the implied volatility.  
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Merton (1974) contributed the dividend effect to the initial Black and Scholes option 

pricing model, thus updating it to what is known as the Black, Scholes and Merton 

formula, still flowing from the same assumption that log returns of the share underlying 

the option are normally distributed with the share price assumed to follow a stochastic 

process with a multiplicative sequence of moves of variable size or, more so, a process 

known as geometric Brownian motion, with the specificity of the Ito process and 

subsequently the use of the Ito Lemma in the derivation of the Black and Scholes 

differential equation (Black and Scholes, 1973).  

 

Itó (1951) and Goldstein (1969) cover well the broad basis of the Itó process. The well 

known Black and Scholes option pricing formula was derived  on the basis of the Itó 

process and Itó Lemma (Black and Scholes, 1973). Curtain and Falb (1970) had 

previously extended the Itó lemma to a Hilbert space context for real random variables. 

It allowed for the formulation of a juxtaposition of the Weiner process and stochastic 

differential processes in a Hilbert space. This was then extended with focus  to  local 

behaviour of Hilbert space (Hilbert and Ackermann, 1950; Kotelenez and Curtain, 1982; 

Aerts and Gabora, 2005).  

 

Without deriving the Black-Scholes formula here, the values for a European call option, 

c, and a European put, p, on a share that pays dividends is given through well defined and 

applicable expressions. The call price c (s, k, r, q, t, )  dependents on the current share 
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price s, the exercise price k,  the continuously compounded risk-free interest rate of return, 

stock’s dividend yield q, option life t, and the stock price volatility. The expression uses 

exp(-rT) to measure the risk-free discount factor over period T. It further makes use of  

state of nature quantities N (d1), and N (d2). The notation N (d) is used to denote the 

cumulative standard probability distribution for value d. Here d1 and d2 are well defined 

expressions. The expression of the put can also be obtained, alternatively, by using the 

put-call parity formula. This is achieved by linking the value of the put and call options 

on the same share with current value s, exercise price k, and time to maturity t  (Black 

and Scholes, 1973; Black, 1989).  

 

It represents a self-replicating portfolio (well-formed long position on stock and 

borrowing), with further characterisation of the distribution through its moments about 

the mean of a normal distribution or equivalently through its moments about zero of a log 

normal distribution. Moreover it recognises the implications of normal returns (log-

normal distribution, moments with M1, M2) versus lognormal returns (normal distribution 

with moments M, V) in the option pricing formula (Black and Scholes, 1973; Geske and 

Roll, 1984; Hull and White, 1987; Hull, 2014).  

 

The first moment of any distribution is its mean (denoted M1 or M), while the second 

moment (about the mean) is the variance, V as opposed to the second moment about zero 

(Lipster and Shiryaev, 2000; Shiryaev et al., 2006), which allows one to instrument 

properly the information on moments in using correctly either the normal Black-Scholes 

or the log-normal Black-Scholes option pricing formula as described by many 
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contemporary authors, (Hull and White, 1990; Batten et al., 2004; Blümke, 2009; Hull, 

2014). The Black-Scholes discretised option pricing formula may be derived using 

alternative ways.  Nielsen (1993) used the conditional probability concept,  coupled with 

the payoff at expiration time T of an option to derive an expression that matches the 

Black-Scholes (1973). 

 

2.3  RELEVANT  QUANTUM FINANCE MODELS: Q-MARKETS AND PRICE 

DISTRIBUTIONS  

 

This section includes a review of relevant literature  with focus on  effects of quantization 

in markets and asset pricing.  

 

Chen (2001) proposes a non-arbitrage quantum model for a binomial financial market. 

He argues that its risk-neutral world exhibits a disk-like structure in the unit ball of R3 

whose radius is a function of the risk-free interest rate with two states.  He proves that the 

Cox et al. (1979) binomial option pricing expression can be re-established by considering 

Maxwell-Boltzmann statistics of the system of N distinguishable particles. Meanwhile, 

Haven (2002)  considers  the Black–Scholes option pricing model (Black and Scholes, 

1973), within a quantum physical context. The option price is considered to be a state 

function, which he then uses to establish a “potential” function. Thus allowing for  the 

option price to satisfy the Schrodinger’s partial differential equation (PDE).  
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Haven (2002) interprets the “potential” function as an arbitrage lever and argues that 

when the arbitrage is established,  the existence of a “Financial” state may be determined. 

He favours the existence of an arbitrage-free price when the “potential” function 

converges to one. The existence of arbitrage hinges on the non-zero value of the Planck 

constant. He then links this constant  to a parameter which regulates the probability of 

occurrence of strategy paths, brands it the “belief” parameter, and interprets it as a proxy 

arbitrage. Haven’s (2002) work moves from the Black–Scholes option pricing model 

(Black and Scholes, 1973) to a quantum version of it,  thus providing the first step  in the  

inclusion of arbitrage in an otherwise arbitrage free model.  

 

Meanwhile, Baaquie et al (2002) use quantum theory techniques with emphasis on the 

connection between quantum mechanics and quantum field theory to illustrate some of 

the methods of lattice simulations of path integrals for  option pricing. The ideas are 

sketched out for simple option pricing models, such as the Black-Scholes (1973)  model, 

where analytical and numerical results are then compared. Applications of the method to 

nonlinear systems are also briefly overviewed in Baaquie et al (2002). More general 

models, for exotic or path-dependent options are discussed in the same work. These 

models are partially based  on the work of  Rubinstein and Reiner (1995). 

 

 

In quantum pricing models, stock is assumed to behave according to Maxwell-Boltzmann 

classical statistics (Meyer, 1999; Chen, 2001). In his 2003 research work, Chen 
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considered a many-particle system satisfying Bose-Einstein statistics as a model of the 

multi-period binomial markets, yielding an  alternative binomial option pricing 

expression. By replacing Maxwell–Boltzmann statistics with quantum Bose–Einstein 

statistics,  he was able to  produce  prices that are different from those obtained by the 

Cox-Ross-Rubinstein option pricing model (Cox et al., 1979). This is because he treated 

stock like a quantum boson particle instead of a classical particle. 

 

In his 2002 and 2003 work, Haven argues that  the quantum physical Hamiltonian may 

be derived from the classical Hamiltonian, through the use of an operator. He makes the 

case that once a quantum physical Hamiltonian operator is found, the time-dependent 

Schrodinger can then be obtained. Haven consideres  the original physical parameters 

present in the Schrodinger  PDE, such as  mass, complex number, Planck’s coefficient, 

and potential function. He then provides interpretations within a financial context for 

these parameters. He reproduces the  equation in its short form, using the definition of the 

Hamiltonian as the sum of potential and kinetic energy. 

 

Haven (2002:2003) is of the view that arbitrage is ill-modelled in Finance. He proposes 

the arbitrage potential to address  explicit mispricing and subsequently capture arbitrage. 

It is this arbitrage potential that allowes Haven to define the existence of a probability 

amplitude function, and then solve the Schrodinger equation. He further addresses 

mispricing modalities, and finds that the arbitrage parameter is a call option with hedging 

parameter of ‘1’ or else a fully hedged call option. He discusses the arbitrage opportunities 

in both cases and comes to  conclusion that in the case of a fully hedged call option, the 
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Planck constant for no-arbitrage must be non-zero.   

 

Haven (2002:2003)  provides an intuitive discussion on the Financial aspects of the 

Planck constant too. In essence  he  looks at the difference between the potential and 

energy  as a potential arbitrage proxy in a financial context. The issue of establishing a 

relationship between the number of paths and the value of the Planck constant is of key 

importance, since multiple paths, when those paths are strategies, must indicate there is 

limited rationality (Abramowitz and Stegun, 1972; Glimm and Jaffe, 1981; Baaquie, 

2004). 

 

In his 2003 paper “A Black-Scholes-Schrödinger option price: bit versus qubit”, Haven 

re-focused on the Black-Scholes differential equation  in order to further explore  pricing 

of financial derivatives. He argues that the uncertainty environment of an option price can 

be described by the classical “bit”:  a system with two possible states. He introduces  an 

uncertainty environment, characterised by a “qubit” (quantum “bit”), to obtain an 

information-based option price. He then discusses the differences between this option 

price and the classical option price obtained through the Black and Scholes (1973) model. 

 

Haven (2002:2003:2004) work utilises the Brownian motion as the process on which 

the Black-Scholes (1973) option pricing model is based on. A detailed  coverage of the 

Brownian motion  can be found in Nelson (1967),  Karatzas and Shreve (1998b), Revuz 

and Yor (2004), Shreve (2004b), etc. In Finance literature there exists a close connection 



77 

 

between the binomial option pricing model and the Black-Scholes model (Cox et al., 

1979; Nielsen, 1993; Hull, 2014). The Black-Scholes (1973) model can be derived from 

the binomial model when the number of binomial steps is increased sufficiently to allow 

for full convergence of the binomial distribution to a normal distribution.  

 

In binomial models (Cox et al., 1979; Jarrow and Rudd, 1983),  Leisen and Reimer, 996), 

stock price can take on two different positions at each time step. In analogy with 

information theory (Cover et al. 1989; Mackay, 2003), the binomial model represents a 

bit: a system with two possible states (at each time step). The “bit” notion is also 

implicitly used  in the so called “Arrow-Debreu” paradigm, where future payments are a 

function of both time and the states of the world (Föllmer and Sondermann, 1986; Föllmer  

and Schweizer, 1990).  

 

According to William Sharpe, a well recognised finance academic, this paradigm is part 

of what he brands ‘nuclear financial economics’. The “qubit” model is the most uncertain, 

since the information carried per price step in the next period of time is quite less than in 

the “bit” model. The Black-Scholes portfolio is not even risk free in that case (Sharpe , 

1964; Varian, 1993; Sharpe et al., 1995). 

 

Baaquie et al. (2003) considered a broader  focus with pricing of options, warrants and 

other derivative securities.  He articulates that  these financial products can be modeled 

and simulated using quantum mechanical instruments based on a Hamiltonian 
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formulation. This paved the way for  inter-disciplinary research, such as  the work of 

Vidya and Shivakumar  (2007),  who  constructed  quantum algorithms  in order to speed 

up solutions of Hamiltonian cycle problems.  Baaquie et al. (2003) also demonstrate  some 

applications of these methods for various potentials, via lattice Langevin and Monte Carlo 

algorithms. on  barrier or path dependent options, showing in some detail the 

computational strategies involved.  Further  work of relevance on  Monte-Carlo 

simulations within  this context can also be found on  Gilks et al. (1996),  Robert and 

Casella (2004),  Pages and Printems (2005),  Rebentrost et al.  (2018).   

 

Haven (2004) proposed an interpretation of the wave-equivalent of the Black–Scholes 

option price. He considered Nelson’s version of the Brownian motion (Nelson, 1967) and 

uses this specific motion as an input to produce a Black–Scholes PDE with a risk 

premium. Previously, Cox et al. (1985) in their seminar paper  had also demonstrated that 

the price of any contingent claim satisfies a particular PDE in the Black–Scholes world59. 

Haven (2004) provides argumentation as to why pilot-wave theory could be of use in 

financial economics through the adaptation of the notion of information wave. This 

allows  for the introduction of a stochastic guidance equation where part of the “drift” 

term in that equation refers to the phase of the wave. He argues that in order to embed 

information in financial option pricing, one  may  use such a drift.  
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Baaquie et al. (2003) believes that his path integral formulation will turn out to be very 

effective for the simulation of complex portfolios, as well as for the inclusion of 

constraints in the price evolution of derivatives.  Haven (2005) on the other hand shows 

that that if a portfolio of a financial option  and a stock is  placed in an environment where 

the value of an asset (besides its price) is formalised as a superposition of price states, 

such portfolio may not be risk free and fuzzy preferences for risk premiums may exist. 

He argues for a modification of the classical Brownian motion process (Nelson, 1967)  in 

order to price financial options. He further argues that such modification can be shown to 

have a connection with the quantum physical Schrödinger equation. 

 

Piotrowski et al. (2005) proposed an option pricing model based on the Ornstein-

Uhlenbeck process. It represents a new way of looking at the Black-Scholes formula  from 

the  foundations of quantum game theory. They articulate the differences between a 

classical  model, where price evolution is driven by a Wiener process,  and price  

development  supported by a quantum model. They argue that these differences are visible 

for very liquid financial instruments. Furthermore, they provide  an alternative description 

of the time evolution of market price, making corrections in the Wiener-Bachelier model, 

which follows itself from the Ornstein-Uhlenback process (Gillespie,  1996; Lamberton 

and Lapevre, 2008; Kennedy, 2010; Parzen, 2015). This process has been explored  

previously by Vasicek (1977)  for modeling short time interest rates. 
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There has been an increase in the use of game theory with the inclusion of   quantum 

formalism. This is particularly exemplified in Piotrowski and Sładkowski (2004), based 

on earlier work by Eiser et al. (1999).  It has qualitatively broaden the capabilities of this 

discipline describing the strategy which can not be realised in classical models. Game 

theory (von Neumann and Morgenstern, 1947; Rasmusen, 1989; Anjan, 1991), describes 

conflict scenarios between a number of individuals or groups who try to maximise their 

own profit, or minimise profits made by their opponents. However, by adopting quantum 

trading strategies it seems that players can make more sophisticated decisions, which 

may lead to better profit opportunities.  

 

The success of quantum information theory (quantum algorithm or quantum 

cryptography) could make these futuristic-sounding quantum trading systems a reality, 

due to quantum computer development it will be possible to better model the market and  

price derivative instruments with relative ease (Preskill, 1988; Baaquie et. al., 2002; 

Piotrowski and Sładkowski, 2004).  

 

Rebentrost et al. (2018) argue  that existing algorithms allow  quantum computers to 

price financial derivatives with a square root advantage over classical methods. It marks 

a shift from using quantum mechanics to gain insight into computational finance, to 

using quantum systems - quantum computers, to perform those calculations. Finance 

community is always looking for ways to overcome the performance issues that arise 

when pricing options. This has led to research on alternative financial computing 

techniques such as quantum computing (Deutsch and Jozsa, 1992; Cleve et al., 1998; 
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Chen et al., 2000;  Raj and Shivakumar, 2007 ). 

 

Quantum computers have shown to outperform classical computers when it comes to 

simulating quantum mechanics (Boghosian and Washington,, 1998), as well as several 

other algorithms such as Shor's algorithm for factorisation and Grover's algorithm for 

quantum search, making them an attractive area to research for solving computational 

finance problems (Deutsch and Jozsa, 1992; Shor, 1997; Grover, 1996;  Cleve et al., 1998; 

Chen et al., 2000;  Raj and  Shivakumar, 2007; Nielsen and Chuang, 2010 ). 

 

Accardi  and Boukas (2007) were motivated by the work of Segal and Segal (1998) on 

the Black-Scholes pricing formula in the quantum context.  They studied a quantum 

extension of the Black-Scholes equation within the context of Hudson-Parthasarathy 

quantum stochastic calculus (Parthasarathy, 1992). They use a quantum Brownian motion 

and a Poisson process to describe stock markets. 

 

Pricing options quickly and accurately is a well known problem in finance. Quantum 

computing is being researched with the hope that quantum computers will be able to price 

options more efficiently than classical computers. Research work of Meyer (2009) 

extends the quantum binomial option pricing model proposed by Chen (2001:2003:2004) 

to European put options and to Barrier options and develops a quantum algorithm to price 

them. It produced three key results. First, when Maxwell-Boltzmann statistics are 

assumed, the quantum binomial model option prices are equivalent to the classical 
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binomial model. Second, options can be priced efficiently on a quantum computer after 

the circuit has been built. The time complexity falls under the quantum computational 

complexity class. Finally, challenges extending the quantum binomial model to 

American, Asian and Bermudan options still persist as the quantum binomial model does 

not take early exercise into account. 

 

The quantum probability theory was developed to address  the paradoxical findings from 

classical theory that can not be explained. Recent findings in cognitive psychology have 

revealed that quantum probability can describe human decisions in an elegant way. 

Moreira and Wichert (2014) explain  that human thoughts are seen as superposed waves 

that can interfere with each other, influencing decisions, whenever a decision is to be 

made. Bianchi (2013a:2013b)  argues that  most of quantum mechanics’ predictions are 

irreducibly statistical,  therefore quantum mechanics must itself be a probabilistic theory.  

 

The first attempts to clarify quantum mchanics’ content made use of the concept of 

statistical ensembles, describing identical abstract copies of the system under 

consideration, each of which would represent a different state in which the system might 

be found to be in. This statistical ensemble interpretation of quantum systems was 

originally put forward by Albert Einstein (Einstein, 1958), and subsequently supported 

by others, such as Ballentine (1970). 

 

Pearl (1988) argues that Bayesian Networks are structures that integrate data from 
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multiple sources of evidence and enable the generation of a coherent interpretation of that 

data through a reasoning process. The fusion of all these multiple data sources can be 

done using Bayes theorem. When a data source is unknown, then the Bayes rule is 

extended in order to sum out all possible values of the probability distribution 

representing the unknown data source. Quantum Bayesian Network takes advantage of 

these uncertainties by representing them in a superposition state  (Tucci, 1995; Gutiérrez 

and Hadi, 1997; Gal, 2007; Fenton and Neil, 2007). 

 

Their results in Moreira and Wichert (2014:2016) revealed that the quantum-like 

Bayesian Network can affect drastically the probabilistic inferences, specially when the 

levels of uncertainty of the network are very high. The proposed quantum-like network 

collapses to its classical counterpart under low levels of uncertainty. This validates 

partially the work on Quantum Bayesian networks introduced in Tucci (1995). 

 

The overall results of Moreira and Wichert, (2014) suggest that when the classical 

probability of some variable is already high, then the quantum probability tends to 

increase it even more. When the classical probability is very low, then the proposed model 

tends to lower it. When there are many unobserved nodes in the network then the levels 

of uncertainty are very high. But, in the opposite scenario, when there are very few 

unobserved nodes, then the proposed quantum model tends to collapse into its classical 

counterpart, since the uncertainty levels are very low.  
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Moreira  and Wichert (2014) were motivated by preliminary experiments of Tversky and 

Kahneman  (1992) about violations of the classical probability theory on the sure-thing 

principle. This principle states that if one chooses action A over B in a state of the world 

X, and if one also chooses action A over B under the complementary state of the world 

X, then one should always choose action A over B, even when the state of the world in 

unspecified. When humans need to make decisions under risk, several heuristics are used, 

since humans cannot process large amounts of data. These decisions coupled with 

heuristics lead to violations on the law of total probability. 

 

Research in quantum probability theory  has revealed new techniques of computing 

probabilities by expanding existing classical probabilities through the inclusion of an 

interference effect. Such effect is linked to variable beliefs that are constantly updated, 

when making a decision. The classical probability theory assumes  that all beliefs have a 

definitive value prior to a decision is made, and this value is the outcome of the decision. 

Therefore, quantum probability theory includes the classical probabilities as a special case 

when the interference term is zero. This is particularly useful in modeling cognitive 

systems of decision making (Hoerrniuo, 1963; Khrennikov  and Haven, 2009;  Aerts et 

al., 2010; Khrennikov, 2012; Haven and Khrennikov, 2013;  Moreira and Wichert, 

2014:2016; Haven and Khrennikov, 2016).  

 

There are two ongoing areas of research that are particularly of interest in relation to this 

study; (i) the development of a better stochastic model describing the main features 

encountered in empirical analysis with the non-Gaussian shape of price returns PDF as 
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one of common themes, (ii) the development of a theoretical model that is able to 

encompass the essential features of real financial system which is characterised by such 

PDF. Existing research combines a statistical-mechanical description with a quantum 

mechanical representation as a way to  construct a financial quantum theory. This  is often 

done through a direct postulation of Schrödinger’s equation with pre-set boundry 

conditions (Nastasiuk’s, 2015; Moreira and Wichert, 2016; Haven and Khrennikov, 

2016).  

 

Nastasiuk (2015) argues that it is possible to derive a comprehensive quantum mechanical 

framework by extermizing Fisher information. It can be applied to finance with a 

statistical characterisation of financial markets through the inclusion of PDF evaluation., 

where the probability distribution function (PDF) for financial market prices can be 

obtained. Nastasiuk (2015) uses a common Fisher-technique to replace the system 

entropy. This leads to a quantum-like description of financial markets where different 

models  map out to quantum mechanical equivalents. While the maximum entropy 

problem  has a solution of a fixed exponential form, the minimizing (extremizing) Fisher 

information function leads to a second order differential equation of Schrödinger type, 

whose solutions exhibit a variety of mathematical forms with the flexibility of varying 

the potential function.  

 

Arbitrage is a very important  concept in the theory of asset pricing and is key in financial 

decision making and behavioural economics. The presence of arbitrage possibilities has 

an observable effect  on the psychology of financial market agents. It implies that when 
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taking a trading position in an asset which entails no financial risk, a positive financial 

return can be realised, which is in excess of the risk free rate of interest. One  may argue 

that, after disregarding the cost that may incur for finding arbitrage opportunities, an 

arbitrage opportunity is akin to earning what is often referred in common parlance as a 

“free lunch” (Ross, 1976; Harrison and Kreps, 1979; Ross and Roll, 1980; Dalang et al., 

1990; Delbaen and Schachermayer, 2006; Haven and  Khrennikov, 2016). 

 

Haven and  Khrennikov (2016) make good use of Fourier transforms to introduce  

quantum-like ideas in economics. They argue that  superposed quantum values should   

match the  unobserved, agent based prices. The collapse of a wave function could then 

yield the per-capita based price. They articulate that arbitrage/non arbitrage can be well 

defined within a quantum-like paradigm and briefly theorise on its behavioural 

dimension. Callegaro et al. (2018a)  modelled Fourier transforms of a pure jump process 

at a given time to obtain price quantization through a multinomial lattice discretization 

scheme.  

 

Haven and  Khrennikov (2016)  characterise arbitrage by a curvature measure derived  

from the theory of “fibre bundles”, explained in good detail in Steenrod (1951). They 

argue that the curvature parameter can be entered into an “action” function. A Fourier 

transform can then be used to show that a PDF60 on  an amplitude function of wave 

                                                           

60 Probability distribution function. 
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numbers  yields another PDF from which one can source the arbitrage based risk neutral 

probabilities. They then  connect the probabilities emerging from a (non) zero linear 

action with those risk neutral probabilities and show that the Fourier transform cannot be 

sensibly used in the non-arbitrage case as the  PDF is not useable.  

 

It is intuitive that the underlying process of pricing financial assets is often a martingale.  

However, this is not necessarily the case when one considers a continuous parameter 

process. Asset pricing hinges  on the concept of an equivalent martingale which in essence 

refers to the use of a probability which converts a semi-martingale into a martingale. 

(Williams, 1991; Rodgers and Williams, 2000a:200b; Revus and Yor, 2004; Lamberton 

and Lapevre, 2008; Kennedy, 2010; Parzen, 2015).  Karatzas and Schreve (1998b) argue 

that this type of equivalent measure bears a striking similarity to de Finetti’s (1937:1974) 

theory of coherent subjective probabilities and inferences. Nau (2001) agrees with De 

Finetti’s argument that  probability does not exist in an objective sense. Instead, it exits 

only subjectively within an individual’s mind and across individuals in their beliefs. 

 

De Finetti (1937:1974)  defines subjective probabilities in terms of the rates at which one 

would be willing to bet money on events, even though, in principle, these betting rates 

may very well depend on individual preferences for money as well as well-formed 

individual beliefs at a specific time. Haven and Khrennikov (2016)   more recently discuss 

subjective interpretations of probability within a quantum-like environment. In this 

research study, I take de Finetti’s view on probability, however I  view it dependent  to 

state-dependent marginal utility (preference for money), but also on the Eigen-states 
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within the fitted quantum well, in accordance with my own beliefs (refer to chapter 7.0 

in this work for  actual calculations and use in pricing options). 

 

The utilisation of wave functions, or the use of analogies with an uncertainty principle 

can (but does not have to) invoke quantum features. Wave functions are found in classical 

mechanics (Goldstein et al., 2002; Thornton and Marion, 2003;  Kibble et al., 2004; 

Morin, 2008). The concept of quantum probability (in decision making) is deployed  when 

a context with a “quantum feature” is needed, such as the case  in this research work, and 

can be difficult to study. Quantum features occur also in the use of Fisher information in 

economics and finance. Fisher information is narrowly linked to a particular “potential” 

function which emerges from quantum mechanics (Hoerrniuo, 1963; Meyer, 1993; 

Haven, 2002:2005; Choustova, 2006:2009; Khrennikov, 2010;  Hawkins and Frieden, 

2010; Nastasiuk, 2015). 

 

For Khrennikov and Haven (2016) it is the preponderance of the field of quantum 

information, which puts to the fore the interpretation that the wave function, a central 

object in quantum mechanics, is informational in nature. They further explain, the 

formalism of quantum mechanics can be used to describe information processing of any 

system, whether social or physical, with the caveat that there must be some sort of 

quantum feature to the system under study.  

 

Bustamante  and Contreras (2016) developed an interacting model for option pricing that 
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generalises the usual Black–Scholes formulation to include a more general case of 

quantum interactions, defined by arbitrage possibilities, and triggered by market 

imperfections, such as such as transaction cost, asymmetric information issues, short-term 

volatility, extreme discontinuities, or serial correlations.  Simialr to  Haven (2002),  they 

interpret the Black–Scholes PDE  as the free particle’s imaginary time Schrödinger 

equation. It can be used to represent a financial system in a state of equilibrium. However, 

market inperfections will cause deviations from the state of equilibrium,  subsequently  

violating the classical non-arbitrage assumption of the Black–Scholes model, implying a 

non-risk-free portfolio.   

 

The new Black–Scholes–Schrödinger model in Bustamante and Contreras (2016) is based 

in the endogenous arbitrage option pricing formulation introduced by Contreras et al. 

(2010). Arbitrage is incorporated as an external time dependent force with an associated 

potential related to the random dynamic of the underlying asset price. The  model can be 

interpreted as a Schrödinger equation in imaginary time for a particle of mass 1/σ2 with a 

wave function in an external field force generated by the arbitrage potential. They applied 

semi-classical methods to find an approximate analytical solution of the Black–Scholes 

equation in the presence of market imperfections.  

 

The tests in Bustamante  and Contreras (2016)   include a suitable potential  of the 

analogous Schrödinger equation for different arbitrage bubble forms (step, linear and 

parabolic). Contreras et al.  (2010) modelled the arbitrage bubble as an inverse scattering 

problem, that is, from the real financial data, the ‘‘nuclear potential’’ V(S,t) and the 
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arbitrage bubble f(S,t), can be obtained. Still, they assumed an evolutionary dynamic 

problem, where the arbitrage bubble should be determined by maximizing or minimizing 

a certain functional in each time step.  Bustamante  and Contreras (2016)  argue that, 

during empirical testing, the quantum model could be calibrated on a case by case basis. 

They concluded that for the different time dependent arbitrage bubble forms, the semi-

classical solution is a good approximation, when the bubble amplitudes remain below 

40% of the market’s volatility.  

 

The analysis of classical Hamiltonian and Lagrangian of a quantized Black–Scholes 

system of many-assets, reveal that the canonical momentums can at times be written in 

terms of  quantities other than the presumed velocities. The Black–Scholes equation for 

a portfolio of assets can be seen as a multi-dimensional Schrödinger equation of one 

partcile.(Vinogradov and Kupershmidt, 1981; Baaquie et al., 2003;  Baaquie, 2004: Vidya 

and Shivakumar, 2007; Bustamante and Contreras, 2016). This feature is a typical 

characteristic of the constrained system that appears in the high-energy physics. To study 

this model in the proper form, one must apply Dirac’s method for constrained systems. 

The results of the Dirac’s analysis indicate that in the correlation parameters space of the 

multi-assets model, there exists a surface (called the Kummer surface ΣK , where the 

determinant of the correlation matrix is null) on which the constraint number can vary 

(Dirac, 1958; Godstein and Poole, 2002; Tharwat, 2015).  

Bustamante and Contreras (2016) argue that a financial multi-assets Black–Scholes 

model is a variable constrained system. The structure of the constraints in the space-phase 

is completely determined by the geometry of the Kummer surface ΣK. Pestov’s (2016) 
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studied high-dimensional spaces with an exact nearest-neighbour search focus and how 

this is affected at a fundamental level. He relied on nearest-neighbour learning algorithms, 

such as the NN-classifier. He proved  that the performance of the classifier is unstable in 

very high dimensions and inconsistent at each reduced level of dimensionality.  Existing 

models for statistical learning are oblivious of dimension of the domain, therefore every 

learning problem admits a universally consistent deterministic reduction to the one-

dimensional case by means of  Boral isomorphism (Berberian, 1988; Kechris, 1995; 

Dudley, 2002; Kallenberg, 2017).  

 

In this research study, I assume that  price-surfaces and subsequently implied volatility 

surfaces can traced and fitted with quantum grids. The latter are assumed to have 

“memory” about the forward nearest-neighbour market points. It extends to a degree the 

work of Bustamante and Contreras (2016), by identifying and testing various 

“geometries” for the fitted quantum system. Moreover, I rely on a comprehensive solution 

of the generalised Schrödinger-Sturm-Liouville PDE. This complements and  exceeds 

existing research in the domain (Meyer, 1993; Goldstein et al., 2002; Thornton and 

Marion, 2003;  Kibble et al., 2004; Morin, 2008; Choustova, 2006:2009; Khrennikov, 

2010;  Hawkins and Frieden, 2010; Nastasiuk, 2015). 

 

Rebentrost et al. (2018) researched the interface between quantum computing and 

finance.  They explored relevant probability distributions in quantum superposition and 

created a quantum Monte-Carlo algorithm for pricing purposes.  Key to their argument 
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was the use of quantum circuits to implement payoff functions, and quantum 

measurements to price financial derivatives. They applied the amplitude estimation 

algorithm, explained in detail in Lomonaco (2002), and Nielsen and Chuang (2010), to 

achieve a quadratic quantum speedup in the number of steps needed to compute the price 

with high confidence. Their work represents a starting point for further research in the 

domain. 

 

Duwell (2018) examined the theoretical foundations of quantum mechanics and quantum 

phenomena. He extended  Le Bihan's (2017) view on the understanding of phenomena by 

focusing on the rich nexus of internal and external understandings in intricate theories. In 

his analysis, he used a modal approach to argue that theory understandings are not 

mutually exclusive, instead they aid further exploration. The modal view of 

understanding is capable of explaining how significantly different activities are when 

formulating theories in terms of what one can or cannot do. But also when developing 

new axiomatizations of  existing theories, or investigating  plausible interfaces and 

correlations of multiple-worlds. Thus aiding in the development of  theories  that can be 

seen to facilitate understanding of phenomena in a quantized financial pricing system 

(Barnum et al., 2012; Abramsky and Coecke, 2007;  Acin et al., 2006;   Barrett et al., 

2005; Piotrowski and Sladkowski, 2001:2002). 

 

 

Duwell’s (2018) extended modal-view of understanding provides a unified approach in 
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quantum domains and is relevant to the understanding of constrained topologies such as 

the zero-objects considered in this  research study. This is so because of the pragmatic 

approach to understanding adequacy conditions when dealing with both the Ⓒ and Ⓓ-

worlds in a unified “universe”. Adequacy conditions do shift across researchers and over 

time. Quite clearly,  any condition that works must be open to further development and 

new  interpretations and is not an adequacy condition that all researchers have to adopt.  

 

Khrennikov (2018) explored randomness in classical and quantum-like models by 

analyzing  complex financial and general economic processes.  His analysis and 

hypothesis) imply that a quantum-like probabilistic description is  more natural for 

financial markets than the classical one. He looked at the possibility of applications of the 

quantum probabilistic models to agents of financial markets. Furthermore, Khrennikov 

(2018) argues that although the direct quantum (physical) reduction, based on using the 

scales of quantum mechanics, is meaningless, one may still apply quantum-like models. 

He considered quantum-like probabilistic behaviour to be a consequence of the context 

of statistical data in finance and economics in general. However, the hypothesis on the 

”quantumness” of financial data needed to be  tested experimentally. 

 

Khrennikov (2018) presented a new statistical test based on a generalization of the well 

known  quantum physics Bell’s inequality (Khrennikov, 2002; Acin et al.,2006). The 

financial market is a complex dynamical system. However there have been a number of  

studies devoted to various aspects of the random description of financial processes over 

a significant time period, such as the works of Bachelier (1890),  Davis  and Etheridge 
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(2006), etc. The conventional quantum interpretation of superposition induces a rather 

special viewpoint on randomness i.e. individual randomness (von Neumann, 1955). It is 

commonly assumed that quantum randomness described by a complex wave function 

ψ(x)) may not be reduced to the classical ensemble randomness. The latter is induced by 

a variety of properties of elements of a statistical ensemble. It is described by the classical 

measure-theoretical approach based on the axiomatics of Kolmogorov (Kolmogorov, 

1956; Camerer and Ho, 1994; Cover et al., 1989). 

 

Einstein, Schrodinger, De Broglie, and Bohm (Einstein et al., 1935; Bohm, 1951; 

Einstein, 1948:1958; Bohm and Hiley, 1993) strongly opposed  views that see  

randomness as a quantum attribute. They were convinced that quantum randomness could 

be reduced to classical ensemble randomness. Khrennikov  (2018) recognizes that such 

views have been persistent, yet maintains that  in combining quantum probability with 

classical ensemble probability, the main problem  is to find a reasonable explanation of 

the interference of probabilities,  instead of just the ordinary addition of probabilities of 

alternatives. Therefore Khrennikov’s (2018) proposed test aimed to confirm the pre-set 

hypothesis about quantum-like probabilistic behaviour of  financial markets. This would 

have  interesting consequences for foundations of finance. In a quantum-like approach, 

the fundamental assumption of modern finance, namely, the efficient market hypothesis 

may be questioned (Fama, 1970; Black and Scholes, 1972; Rubinstein, 1975; Piotrowski 

and Sladkowski, 2002). 

 

In Khrennikov (2018), the financial context (the financial market, expectations, 
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prognoses, political situation, social opinion) is represented by a complex probability 

amplitude, financial wave function ψ(t, q), where t is time, and q is a vector of stock prices 

(it has a very large dimension). He describes the  evolution of ψ(t, q) by  using the 

Schrodinger equation. His hopes are that the evolution of the financial context could be 

predicted, at least in principle. He argues that at the moment one could not even dream 

about the possibility to solve the problem analytically or numerically. His main argument 

is based on the ambiguity on how the “financial Hamiltonian” should be constructed, that 

is the quantum-like operator representing the “energy” of the financial market.  

Khrennikov (2018) alleges that another problem is the huge dimension of the problem. 

This is based in the earlier work by  Haven (2004:2006), Haven and Khrennikov (2016), 

etc. 

 

The quantum-like model in this research study here may provide the necessary implied-

qualitative and quantitative prediction that given enough time, for further developments 

of financial technologies, one may improve and apply to induce perpetually exploitable 

profit opportunities. This would be complementary to the conventional model based on 

the efficient market hypothesis, rather than in opposition as argued by Khrennikov (2018). 

My view is congruent to Einstein, Schrodinger, De Broglie, and Bohm. However it also 

validates some aspects of Khrennikov (2018).  That is: quantum randomness may be 

mapped out to classical ensemble randomness or there may be parity between the two, 

where both may be co-varied. The quantum randomness is what classical randomness 

would look like in a dimensionally reduced “universe”, such as the Ⓓ-world.  
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Then the question is whether the Ⓒ  and Ⓓ  worlds are correlated and with a clear 

interface. I argue here that they may be, hence randomness may be in parity in the two 

worlds. But if the topological constrain “suppresses” the classical randomness, then the 

quantized randomness is expected to be further fragmented and shuffled, thus leading to 

better random attribution that in extreme cases may be alterned extensively. Although this 

is tackled here from a different angle than Khrennikov, it does confirm part of his view. 

Could the two be independent? Does the existence of quantum randomness cancel out 

classical randomness as stipulated by Khrennikov (2018)? The answer to the first question 

is linked to very nature of the fitted quantum wells (depth, radius, price cut-off potential 

function, etc.). On the second, one needs to reflect in terms of the very nature of the 

mathematical model used, which I address in detail in the theory/empirical chapters of 

this study (Einstein et al., 1935; Bohm, 1951; Einstein, 1948:1958; Bohm and Hiley, 

1993; Raedt et al., 2012; Khrennikov, 2018). 

 

I emphasize that the creation of quantum-like financial concepts  does not imply lower 

complexity in the model, compared with the conventional one (Morin, 2008; Khrennikov 

and Haven, 2009). The latter implies that financial processes can be represented by a 

special class of classical stochastic processes, martingales (Revus and Yor, 2004; 

Lamberton and Lapevre, 2008; Kennedy, 2010; Parzen, 2015). For any such process, I 

may construct a single Kolmogorov probability space for all realizations of this process. 

This is the essence of the famous Kolmogorov theorem (Kolmogorov, 1956; Cover et al., 

1989). In contrast to a single space description, in quantum asset pricing  models, I can 

not assume that the quantum-like process, based on the evolution of the financial context, 
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could be embedded into a single Kolmogorov probability space. 

 

In classical financial mathematics, there have been numerous fundamental investigations 

to find an adequate stochastic process that could match real financial data: Brownian, 

geometric Brownian, general Levy processes (Nelson, 1967; Madan and Milne, 1991; 

Gobet, 2000; Kuchler and Tappe, 2008). My own view is that when using a quantum-like 

approach, the problem cannot even be formulated in such a way. There is no classical 

stochastic process that matches real financial data, because a single Kolmogorov space is 

not efficient to describe the whole financial market. Financial data can only be represented 

by a quantum-like financial process (Doob, 1953; Harrison and Pliska, 1981, Karlin and 

Taylor, 1981; Malliaris, 1982;  Karatzas and Shreve, 1998b; Shiryaev, 1998, Oksendal, 

2000; Shiryaev et al., 2006;  Lamberton and Lapevre, 2008; Keller-Ressel, 2011; Kijima, 

2013). 

 

Bardou et al. (2016) focused their work on the process of risk minimization as a way to 

hedge various forms of risk on financial and energy markets. They articulated  an optimal 

portfolio strategy by virtue of dynamic minimization of conditional value-at-risk. They 

used a stochastic approximation algorithm, obtaining the optimal quantization through 

the application of variance reduction techniques, where filtration oddities were linked to 

highly impacting, but infrequent,  probability triple space events.  They assumed  that the 

process describing the source of risk and financial asset prices is a Markovian process 

(Garczynski, 1969; Spitzer, 1970; Markov, 1971; Hull and White, 1987; Stein and Stein, 

1991;  Seneta, 1996; Mura and Swiatczak, 2007) . 
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Furthermore, Bardou et al. (2016) considered a complete financial market, under which 

an investor, faced with a contingent claim, has the choice to perfectly hedge the 

underlying across a finite horizon time, considering realistic financial and energy market 

conditions, which are intrinsically incomplete due to the effects of stochastic volatility, 

jumps, and other externalities with impact on the market - for example the impact of 

temperature in price of a commodity (Stein and Stein, 1991; Keller-Ressel, 2011). This 

is a limitation across energy markets. Bardot et al. (2016) argue that imperfect conditions 

on a complete market complicate the pricing process through replication. Such pricing 

limitations can be bypassed with the use of alternative pricing frameworks. It is relatively 

safe to argue that all current pricing models carry deficiencies in the provision of a 

consistent and effective pricing tool across markets.  

 

Pages et al. (2003) used a stochastic approximation algorithm with a detailed treatment 

of numerical performances of quadratic functional quantization with limited applications 

in Finance. They concentrated their effort on product quantizers and the Karhunen-Loeve 

expansion of Gaussian processes with special interest in the Brownian motion. This is 

also in line with research work from Luschgy and Pages (2002), and Wilbertz (2005). 

Moreover, Pages et al. (2003) computed efficient functional quantizers for Brownian 

diffusion and through collaboration with Luschgy applied functional quantizers in option 

pricing (Luschgy and Pages, 2002; Delattre et al., 2006).   

 



99 

 

Pages and Luschgy (2005) proposed a quadrature expression, based on a Romberg log-

extrapolation of functional quantization. The Romberg log-extrapolation is covered in 

detail in Romberg (1955): It applies an iterative superposition of the trapezoidal rule for 

different grid sizes.  Freeden and Gerhards (2017), further formulated Romberg 

extrapolation for Euler summation-based cubature on arbitrary q-dimensional regular 

lattices. Luschgy and Pages (2002), then carried out various pricing scenarios within a 

Heston stochastic volatility framework (Heston, 1997; Heston and Zhou, 2000). Their 

findings suggest that functional quantization is a very efficient integration method for 

various path-dependent functions of diffusion processes, because it produces 

deterministic results which outperform Monte Carlo simulations within the usually 

expected error tolerance levels (Caflisch 1998; Dupire, 1998; Pages et al., 2003; Dick et 

al., 2013; Rebentrost et al., 2018).  

 

Levental et al. (2016) argue that all uncertainty is generated by a d-dimensional standard 

Brownian motion B over the finite time horizon [0, T], supported by a probability space 

(, F, P), where all processes are assumed to be progressively measurable with respect 

to the augmented filtration {Ft : t ∈  [0, T]}  generated by B. For any subset V  

(respectively V n x m
), with L(V) denoting the set of V-valued progressively 

measurable processes, and for any p  R, given in well defined terms61. They used a 

subspace, and considered the portfolio maximization problem of a single agent in 

                                                           

61 Lp(V) = {x ∈ L(V); E [∫ ‖xt‖pT

0
] < ∞}, where ‖xt‖2 = xt

′xt  (respectively, trace(xt
′xt)). 
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complete markets with an aggregator that depends on current wealth. 

 

Benaïm and Raimon (2003) studied the convergence in law properties of self-interacting 

diffusions on a compact Riemannian manifold, where self-interacting diffusions are 

continuous time stochastic processes living on a Riemannian manifold M, which can be 

typically described as solutions to a stochastic differential equation (SDE)62, with the 

implication of a special family of Brownian motions, and (Fα)α  a family of smooth 

vector fields on M such that ∑ Fα(Fαf)α = ∆f , for f ∈ C∞(M), where  denotes the 

Laplacian on M, and Vu(x) a "potential" function.  

 

The “potential” function is an important construct around our own concept of replicative 

function identities in asset pricing, and play an important role in the dynamics of solution-

finding. According to Benaïm and Raimon (2003), these processes are characterized by 

the fact that the drift term depends both on the position of the process Xt , and its empirical 

occupation measure up to a stopping time t63. Benaim and Raimon (2003) also argue in 

favour of the asymptotic behaviour as a further development of their earlier work: Benaïm 

et al. (2002). 

 

                                                           

62 dXt = ∑ Fa(Xt) a dBt
α −

1

t
(∫ ∇VXs

(Xt)ds
t

0
) dt  

63 μt =
1

t
∫ δxs

t

0
ds 
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Benaïm et al. (2002) describe the long-term behaviour of {μt} in terms of the long-term 

behaviour of a certain deterministic semi-flow {t}t≥0  defined in the space of a 

probability measure on M. This includes  situations (depending on the shape of V) in 

which {μt} converges almost surely to an equilibrium point μ∗ of  . In other situations 

the limit  set for {μt} coincides almost surely with a periodic orbit for . In the simple 

case when μt converges to μ∗, one expects (Xt+s, s   0) to behave like a homogeneous 

diffusion of a generator64.  

 

Benaïm et al. (2002) explored self-interacting diffusions on a smooth compact manifold 

using e Girsanov transfer technique to distinguish interactions that reflect symmetry65 

with a positive or negative self-adjoin operator, making use of Borel probability measure 

and gradient of interactions (Berberian, 1988; Srivastava, 1998). These interactions are 

self-repelling when the  gradient is positive, and self-attracting when the gradient is 

negative. They show that , if V1 is a constant function, for all repelling cases or weakly 

attracting cases (α > −αG, with αG > 0), the empirical occupation measure of the 

associated self-interacting diffusion converges towards λ, and when α <−αG, this is not 

the case, and μt may converge towards μ∗  λ with the interaction, on the n-dimensional 

sphere Sn. Benaïm and Raimond (2002) showed that in the cases when α  −(n+1)/4, μt 

converges towards λ and when α <−(n+1)/4, there exists an Sn-valued random variable v 

                                                           

64G(x)  = ∫ Vy(x)μ∗(dy)  and 〈∙ , ∙〉 denotes the Riemannian inner product. 
65 V is symmetric and defines a positive or a negative self-adjoin operator acting on L2(λ), that can be written 

in the form  V= α ∫ G(u, x)
Cf

ci
G(u, y)v(du), where C is compact,  written Borel probability measure, G: C 

× M →R is continuous and α ∈ R., which known as gradient interactions that produce examples for which 

Px,r,μ(̃) = 1   and the limit μ∗ may be random. 
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such that μt converges towards exp[βn(α)cos(d(x,v))]λ(dx)/Zn,α, where Zn,α is the 

normalization constant and βn(α) is a constant depending only on n and α. They 

articulated an example of an interaction on Sn, which is not a gradient interaction, for 

which Px,r,μ(̃) = 0.  

 

Benaim and Cloez (2015) conducted analysis using a stochastic approximation algorithm 

in order to simulate  quasi-stationary distributions on finite state spaces. They found out 

that the asymptotic behaviour of an empirical occupation measure66  is precisely related 

to the asymptotic behaviour of some deterministic dynamical system induced by a vector 

field on the unit simplex. This represents new proof oconvergence of  asymptotic rates in 

a constrained topological space. It led to a generalization of the method introduced 

previously by Aldous et al. (1988). In their 1988 work, Aldous et al., focused on  a process  

(Yn)n≥0, that maps out to a Markov chain on a finite state space F with a transition matrix 

P = (Pi,j)i,j∈F

67,  which is not assumed to be aperiodic68. 

 

Benaim and Cloez (2015)  concluded that a process behaves like (Yn)n0 until it 

diminishes, which occurs when it hits 0. After  it diminishes, it  then comes back to life 

in a state randomly chosen according to its empirical occupation measure; this process is 

                                                           

66 Empirical occupation measure of the process,  ℱn = σ{Xk, k ≤ n}.  

67 Under the assumptions that, (i) the system admits an (attainable) absorbing state, say 0, such that F* = 

F\{0} is an irreducible class for P, which means Pi,0 > 0 for i  F*, P0,i = 0 for all i  F*, and ∑ Pi,j
k > 0k>0  

for all i, j  F*; (ii) P could be either period or aperiodic67; (iii) process  (Xn)n≥0 is limited on F*, for every 

n  0, and stands for an empirical occupation measure of the process,  ℱn = σ{Xk, k ≤ n}.   
68  For all i  F,  and any probability measure  on F (or F*),, ℙ𝑖( ∙ ) = ℙ𝑖(∙ |Y0 = 𝑖), ℙ𝑖( ∙ ) = ℙ𝜇 =
∑ 𝜇(𝑖)ℙ𝑖𝑖∈𝐹 and 𝔼𝑖 , 𝔼𝜇 denote the corresponding expectations. 
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not Markovian and can be understood as a reinforced or extended random walk. They 

used a natural embedment of such process onto  continuous-time multi-type branching 

processes. Aldous et al. (1988) provisioned the central limit theorem and further on 

proved the convergence of (Xn)n0. Under the condition n=1/n, Benaim and Cloez (2015) 

also provisioned the central limit theorem, using similar techniques, that allow for 

convergence rates to compare with a discrete-time version of the algorithm. 

 

Mantegna and Stanley (1995:2000) provide a complete statistical characterization of 

different markets 69 ,  including important aspects of PDF evaluation. There is a 

considerable amount of on-going work to develop the most satisfactory stochastic model, 

that could describe the main features encountered in empirical analysis, where the non-

Gaussian shape of price returns’ PDF is one of common research venues (Milevsky and 

Posner, 1998; Madan et al., 1988; Kuchler and Tappe, 2008). Nastasiuk (2015) argues 

that a major area of research concerns the development of a theoretical model that is able 

to encompass the essential features of a real financial system characterized by such PDF. 

Financial economics borrows results in statistics (Huang and Litzenberger, 1988; 

Cuthbertson and Nitzsche, 2004; Bodie et al., 2009; Jacus, 2008; Franke and Heardle, 

2011; Berenson et al., 2012), and in addition to the statistical-mechanical description, a 

quantum mechanical representation has also emerged (Baaquie, 2004; Haven, 2005; 

Nastasiuk, 2015).  

                                                           

69 Stock, commodities, foreign exchange, etc.  
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Researchers such as Matia et al, (2003), attribute distribution particularities  to asset 

classes and industry sector categorisations. They studied  price behaviour of stock and 

commodities and concluded  that commodities have a significantly broader multifractal 

price spectrum compared to stocks. They proposed that  such multifractal properties for 

both stocks and commodities are mainly  due  to the broad probability distribution of price 

fluctuations and secondarily to their temporal organisation. Furthermore, they concluded 

that  for commodities it is the  stronger higher-order correlations in price fluctuations that 

cause  the multifractal spectra to be broader.  

 

Market prices change randomly, while remaining near the same on average. By taking a 

sequence of price changes x (logarithmic returns commonly used in financial analysis), 

one can obtain the dispersion measure σ2 =E[(x –E(x))]2. Its square root is used to compute 

the volatility  (Markowitz, 1952;Geske and Roll, 1984; Hull and White, 1987; Bodie et. 

al.,2009; Elton and Gruber, 2011; Hull, 2014).  Nastasiuk (2015) elaborates on the 

concept of volatility  with a quantum mechanics framework. He argues that the variance 

is the expectation of the deviation squared or σ2 =E[(x –E(x))2], which itself matches in 

meaning and expression the classical form of the same concept. He explores this further 

and provides a well-defined probability distribution70 with ψ(x) ≡ √p(x) forming the 

lower bound for the dispersion and in accordance to the Cramer and Rao inequality. This 

                                                           

70 I = ∫ dxp(x) (
d ln p(x)

dx
)

2

= 4 ∫ dx (
dψ(x)

dx
)

2
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is expressed as σ2 ∙ 1 ≥ 1, and serve as a quality metric of  price change predictability 

(Cramér, 1946; Rao, 1945; Fabian and Hannan, 1977; Rao, 1994).   

 

Many of contemporary research papers, in the area of quantum asset pricing, make use of 

models that include Physical tangibles (Haven, 2002:2005; Baaquie, 2004; Nastasiuk, 

2015; Moreira and Wichert, 2016; Haven and Khrennikov, 2016).  Interactions between 

tangibles cannot be fully delegated to finance, at least in the reported form. Although they 

implicate the financial system’s states, one cannot overcome the limitation of their 

application in a proper and purely financial context. Literature does not provide a clear-

cut explanation on how such interactions could be conceptualised in a financial system 

with no interactive objects. This work focuses at possible connections between 

probability, space-time geometry, quantum mechanics, and intergration of  Ⓒ↓↑ and Ⓓ↓↑ 

worlds in a way and manner that  makes pricing of  financial  assets and financial options 

possible without  the involvement of physical tangibles. 

 

Canessa (2007) stipulates an association of an analogous probabilistic description with a 

space-time geometry in the Schwarzschild metric from a macro domain to to a micro one. 

In the context of my own research work here, it  implies the Ⓒ↓↑ and Ⓓ↓↑ worlds. He 

argues that that there is a possible connection among normalised probabilities within a 

space-time geometry  in the form of Schwarzschild radii rs,  and quantum mechanics in 

the form of complex wave functions, along nested probability surfaces (Schwarzschild, 

1996). This is in-line with the works of Klauck (2003), Plotnitsky (2009), and  Cabello 
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(2018). It  has first order relevance to this research, however concepts such as 

inhomogeneous density of matter have no equivalence in finance.  

 

In this study, I attempt to fit a Sturm-Liouville system to nested probability surfaces. 

Bailey (1966) describes well the Sturm-Liouville system in terms of a well-defined 

expression, where p(r) can be a function of the stochastic process random variable (i.e. 

rate of return) or can be simply a constant and q(r, )  is a function of the random variable 

r and the Eigen-value This has since been explored by various researchers (Pruess, 

1973; Pruess et al., 1995; Kong and Zettl, 1996; Tharwat, et al, 2013; Hira and Altinisik, 

2014; Yang et al., 2015). I expand this concept considerably in the theoretical chapters. 

 

2.4  LITERATURE REVIEW CLOSING REMARKS 

 

Part of this research work is revisionary,  intended  to  (i)  to enhance what is already 

known,  (ii)  to abstract and unify known theories through a complete equilibrium PDE. 

I have particularly made choices on publications from 1900s to date. The first 40 years 

of the 20th century include the introduction of quantum mechanics, in the context of more 

traditional sciences, with the initial contribution in  quantum theory by Planck and 

Einstein in early 1900  and mid-20s, followed by mathematical formalism and modern 

style reporting on its use across disciplines (Neumann, 1955;  Jammer, 1966; DeWitt, 

1970; DeWitt and Graham, 1973).  
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The development of quantum models has seen financial theorists and practitioners 

attempt to include quantum option pricing.  They are always looking for ways to 

overcome the resulting performance issues that arise when pricing options with classical 

and quantum models. This has led to research that employs alternative computing 

techniques in finance. Focused has been placed on the quantization of the classical Black–

Scholes–Merton PDE with emphasis on the instrumentation of  the known Schrödinger 

PDE (Ilinski, 2001; Baaquie, 1997:2002:2004:2005:2007:2013:2014; Haven, 

2002:2004:2005; Accardi and Boukas, 2007; Nastasiuk, 2015; Benaim and Cloez, 2015; 

Haven and Khrennikov, 2016; Khrennikov, 2007a:2007b:2018; Callegaro, et al., 2018a).  

 

Haven (2002) builds on the work of Chen (2001) and others, but considers the market 

from the perspective of the Schrödinger equation. The key message in Haven's work is 

that the Black–Scholes–Merton PDE is a special case of the Schrödinger PDE with the 

assumption that markets are efficient. The Schrödinger-based equation that Haven derives 

has a parameter ħ that represents the amount of arbitrage present in a market. It  is driven 

by non-infinitely fast price changes, non-infinitely fast information dissemination, and 

unequal wealth among market participants. Haven argues that by setting the parameter ħ 

appropriately, a more accurate option price could potentially be derived. However  in 

reality markets are not truly efficient.  

 

In existing physics-finance  research, I have noted the use of prevailing classical physics. 

This is exhibited mostly with researchers  attempting to find Financial meaning to  truly 

Physics  or Physical quantities and parameters. I believe this is a “hard” limitation. There 
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have been a limited number of research papers on the application of elements of quantum 

physics in Finance. Young (1999) used  the Gauge theory to a simplified foreign exchange 

problem. Whereas Ilinski (2001) used Gauge theory to explain non-equilibrium pricing 

and further  proposed  the Schrodinger equation when dealing with dynamics of money 

flows for single investors and  horizons. Baaquie et al. (2002) and Haven (2002) proposed 

a Black–Scholes–Schrodinger equation, with the “hard” limitation prevailing.  

 

The overarching technique in this study is the removal of the “hard” limitation, by 

formulating an augmented generalization of Schrödinger PDE, without the use of 

parameters such as Energy, ħ, etc. It suffice to mention that Black and Scholes (1973)  

classical option pricing model  did  in a similar manner abstract early derivatives pricing 

prototypes through a process of removal  of  parameters that  had  dual meaning i.e. 

Physics and Finance (Black, 1989).  

 

It is possible that a quantum option pricing model could be more accurate than a classical 

one. Baaquie has published many papers on quantum finance that brings relevant 

concepts together (Baaquie, 1997:2004:2005:2007:2013:2014). Core to Baaquie's 

research and others like Matacz (2000) were Feynman's path integrals (Feynman and 

Hibbs, 1965). Baaquie applied path integrals to a number of exotic options and compared 

analytical results to those  acquired through the application of  the Black–Scholes–Merton 

equation (Black and Scholes, 1973; Merton, 1974), showing that they are very similar 

(Rubinstein et al., 1995; Falloon and Turner, 1999; Bormetti et al., 2018).  
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Piotrowski et al.(2001) took a different approach by changing the Black–Scholes–Merton 

assumption regarding the behaviour of the stock underlying the option. Instead of 

assuming a Wiener-Bachelier process, they consider that stock price follows an Ornstein-

Uhlenbeck process (Doob, 1953; Karlin and Taylor, 1981; Shafer, 2002; Hull, 2014; 

Gillespie, 1996; Schöbel and Zhu, 1999) . Subsequently, they derived a quantum finance 

valuation model as well as a European call option expression.  

 

Other models such as Hull and White (1990) and Cox et al. (1985) have successfully used 

the same approach in the classical setting with interest rate derivatives. Khrennikov 

(2007a:2007b) builds on the work of Haven (2002:2004:2005)  and others and further 

bolsters the idea that the market efficiency, assumed in the Black–Scholes–Merton 

equation, may not be appropriate. To support this idea, Khrennikov proposed a 

framework of contextual probabilities using agents as a way of overcoming criticism of 

applying quantum theory to finance. Accardi and Boukas (2007) proposed a quantized  

Black–Scholes–Merton equation and  considered the underlying stock to follow both 

Brownian and Poisson processes.  

 

It is  only in the last decade or so that publications on the use of quantum mechanics and 

its underlying theory could be applied in financial domains, but to no particular useful 

effect in pricing despite the general claims to the contrary. I attempt to rectify this here 

by providing a conceptual and measurable framework that considers the Ⓒ- and Ⓓ- 
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worlds combined in a financial pricing gauge with tangible effects. Additional effects of 

inference on literature review are also included in the theoretical chapters. 

 

3.0 RESEARCH METHODOLOGY 

 

I provide justification for the selection of research tools, strategies, approach, and 

philosophy demployed throughout this study. The selection is based on an adaptive - 

layered research framework.  

 

From the outset, a good portion of this research is driven by deductive reasoning  with 

model building, finalised at the last stage with numerical simulations, and illustrations 

using the pricing analytics put forward in this work. I include a detailed treatment of all 

aspects of the research methodology relevant to this type of research and most suitable 

for this domain, with all of the research elements that have made the research in this 

domain possible, by making extensive use of secondary sources (Saunders et al., 2003;  

Pelissier, 2008; Snieder and Larner, 2009; Wilson, 2010). 

 

Where books are used, they serve the purpose of setting the stage for more detailed and 

contemporary research powered by dated and recent articles. In summary, this chapter 

provides the research ‘frame’ which is made up of my choice of the research philosophy 

of interpretivism, with a deductive approach. I make use of quantitative techniques for 

data and information acquisition and carry out research analysis (Saunders et al., 2003;  
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Pelissier, 2008; Snieder and Larner, 2009; Wilson, 2010). These are embedded in 

subsequent chapters. 

 

3.1 RESEARCH PHILOSOPHY  

 

I start with the outer-most layer of the research framework, that of the research 

philosophy, and proceed to the application of a broad and balanced spectrum of views on 

research philosophy driven by my understanding of what constitutes the best philosophy 

construct for this body of research work, and that leads to acceptable new knowledge in 

the domain.  

 

The interpretivism epistemology view is valid due to the fact that this research is based 

on inferred knowledge, where research elements and outcomes follow interpretations 

according to the views formed in the process; typically, I consider the views to come from 

own knowledge acquisition and inference over time and through experience. 

Expectations are formed within a rather ‘fluid’ process where what is perceived as 

acceptable knowledge is revised over time within own knowledge base, which allows for 

revision of expectations accordingly.  

 

I seek to match my internal expectations with those implied by other collaborated work 

in a published form and which are broadly acceptable by the research community i.e. 

external expectations. I believe that with proper management of all elements of this 



112 

 

research and the knowledge inferred, I seek not only to align those external expectations, 

but also to exceed them. The process of the external research expectations’ alignment 

makes it possible to revise the logic over a time horizon with new developments and 

experiences that drive  varied interpretations.  

 

Such research epistemology view is only taken in partial consideration, when adapted to 

a rigorous domain such Finance allows for the augmentation of a strong view, particularly 

on the establishment of the interface and ‘interactivity’ between two ‘worlds’ under 

consideration; the Ⓓ-world71 and the Ⓒ-world72. Although these two worlds were not put 

together in the past, they are explored independently in prior literature with substantial 

theoretical foundations to support one another. To that end I utilise deductive reasoning 

in a reasonable part and in line with Karl Popper’s view (Popper, 1974). There is some 

theory construction which again is based in part in previously existing axioms.   

 

I discard the effects of a possible objectivist view that separates the two “worlds”. It is 

essential to determine and understand the factors that impact, govern, and affect my very 

own interpretation of the two worlds, their separation, and betweenness. Existing research 

                                                           

71 Refers to the quantised worlds or the zero-dimension discretised ‘universe’, which represents each price-point along 

the market line. 

72 Refers to ‘our’ world, the continuous time-space world, or the ‘real’ world, in which information or filtrations 

(outputs of events) develop that have a direct impact in the quantised world or the p-point ‘universe’. 
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either focuses on the Ⓒ-world, or the Ⓓ-world, or when the two are connected, the 

justification is no well-formed or fully justified for  financial valuation purposes. The 

relevant concepts of betweenness,  the nonlinearity of probability, and the likely 

connection between probability and  space-time geometry in a  quantum system are 

explored in the works of Camerer and Ho (1994), and Canessa (2007).  

 

In this work and in minor capacity, I make use of a dual-track research philosophical 

view, where conventional logical positivism is applied as a major effect and in a forward 

manner, with the minor effect of inductive phenomenology applied within a reversed 

track approach to concrete outcomes. The former is based on the fact that  my starting 

point in this research is the creation of a new theoretical framework with merging of 

alternative theories, and subsequent numerical testing. This leads to the compilation of a  

finance model through deductive reasoning. However, I also use an extensive amount of 

trial-by-error numerical scenarios as a means to generate new elements of theory.  

 

It provides a good basis for exploration of properties and internal price-related dynamics 

within the Ⓓ-world. It also helps provide clarity on the actual interface between the two 

worlds within Finance and for the purpose of asset pricing. This is evident in  the 

numerical analysis section, further allowing for a minor use of  an inductive approach 

within a phenomenology philosophical view to a partial effect.  

 

Data and events are utilised within such ‘worlds’ and at the interface between the two. I 
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consider a very minimal regard for any other ‘world’ beyond the two considered. 

Moreover, in my consideration of the Ⓓ-w and the Ⓒ-w, I place greater emphasis on 

specific elements with minimum regard to other factors, thus counting in only those 

variables and factors that we expect to have an impact or that are relevant to our purpose 

set beforehand, rather than effects and outcomes in hindsight. This allows for new 

elements of theory, also through the means of numerical simulations and testing, as a way 

to compliment the data emulations and the different financial pricing scenarios.  

 

There is some fragmental symbolic interactionism in the research philosophy deployed 

here, such as the consideration of the Ⓒ-world and Ⓓ-world interactions and the eventual 

effect of pricing.  It is first developed within the Ⓓ-world and observed in the market 

line in the Ⓒ-world. This is in full alignment with our interpretivist belief in multiple 

realities (i.e. multiple universes or worlds) as articulated in the worlds of Schwandt (998), 

and Denzin and Lincoln (2003).  

 

Furthermore, I not only consider different  ‘worlds’, but focus on each in line with 

phenomenology, then draw and create meanings and apply different points of view in 

order to analyse different valuation scenarios and validate the existing theories and 

practices as reported in published academic literature (Hatch and Cuncliffe, 2006).  

 

I believe that by the greater extend, the research philosophical view with the conventional 

deductive  phenomenology is best suited for this research study; it provides the 
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framework that factors-in the effects of change in price or asset price behaviours at each 

quantized point, along the market line. It also allows for adjustments to a new layer of 

knowledge acquired and inferred, and contributes to the development of new elements of 

theory.  

 

It does permit for utilisation of data simulated and analysis as a form of proof and 

validation of the new concepts and the model, which I hope will add to the acceptance of 

the new knowledge. Its general outlook is more ‘realistic’ and as such it allows for 

consideration of some elements of  “positivism”. It  provide reliance on scientific 

evidence, intermitted with a variant of Karl Popper style philosophical falsifiability in 

weighting validity through carefully fitted numerical experimentations.  It facilitates the 

acquisition of necessary and relevant results for the purpose of proving or disproving new 

elements of our theory. Moreover to gain understanding of the factors that determine the 

validity of the new theory introduced in this research (Popper, 1974; Easterby-Smith et 

al., 1991; Saunders et al., 2003; Gulati, 2009; Creswell, 2013). 

 

It is evident from the research philosophy, the research problem, and the  deducted  

financial models that   the correct research instruments  are deployed to seek suitable 

solutions. In good part, it is due to the complex nature of this research; it crosses over to 

subdomains of finance and in cases to theories that to-date are minimally or only partially 

adapted in financial asset pricing. It provides a greater degree of flexibility and agility in 

pursuit of the answers to the research problem.  
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Thus, where necessary I switch to a scorched ground-up approach with elements of 

empirical testability. To have such flexibility I also take a pragmatist position, which 

enables me to deduce and induce new layers of knowledge and adjust freely around any 

bias in order to mitigate it and related effects. Furthermore I  place greater  focus on 

qualitative strategies. I switch the research philosophical position as needed withing the  

deductive research framework (Saunders et al., 2003;  Pelissier, 2008; Snieder and 

Larner, 2009; Gulati, 2009; Wilson, 2010). 

 

Where and when needed, I address “bias” in the application of any constituent 

philosophies within this study’s framework. Creswell (2013) explores the likelihood of 

bias. Less so in the  deductive approach, but expected in follow-up interpretations that 

directly come from the closeness of the researcher and the researched domain. It also 

prescribes self-reflection as a solution to such bias.  

 

The trial-by-error approach in this study’s numerical analysis is an instance of 

“bracketing the truth” through self-reflection. Moreover I try to ascertain a relationship 

between two very different “worlds” in which the asset price is developed. Furthermore 

it allows me to enquire deeper in the discretised universe as a way to unravel the 

mechanics of price setting, exhibitory of information dissipation and reflection by the 

market. Thus I attempt to get “close” to the acumen of the ‘reality’ of such worlds (Ⓓ-

world and Ⓒ-world), although in a partial capacity due to the lack of predictability of 
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future states of nature (Gleason,1957;  DeWitt, 1970; DeWitt and Graham, 1973;  

Stenger, 1995; Barrett,  1999; Polley,  2001; Saunders, 2004:2006; Jaeger, 2009; Barrett 

and Zalta, 2010; Bokulich and Jaeger, 2010; Rummens,and Cuypers, 2010).  

 

3.2 RESEARCH APPROACH 

 

In this section I consider the next layer of our research methodology framework. Further 

I justify the adapted research approach. This research involves developing a theory, 

testing, and revising it. New theory elementsare added,  following numerical trials, 

through mathematical means and empirical cases.  

 

I have also set the research problem with an extensive use of a deductive approach. 

However in the last stage, although the data are collected and analysed to reinforce the 

deduced theory or aspects of it, there are some small elements of theory adjustments that 

are driven by the empirical testing, which allows for an added inductive approach 

attribution to this research, although in much smaller consideration; mostly a set of theory 

testing scenarios, but where necessary, some upgrade of the developed theory or aspects 

of it takes place. It adds an element of inductive diversion, although by and large the 

deductive approach is retained.  

 

I am aware of the shortcomings of both approaches, hence I attempt to combine them to 

for optimum research effect. Previously, researchers have criticised the deductive 
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approach due to it generating cause-effect links between specific variables without 

consideration of human interpretation (Saunders et al., 2003; Creswell, 2013), arguing 

that the “world” observed is independent of the researcher, in line with previous work 

such as Dummett (1978).  

 

In this study it means that the cause-effect links between asset price change behaviour in 

two interrelated worlds (the Ⓒ  and Ⓓ  worlds) should be independent of my own 

interpretations, which is not possible, due to several ‘realities’ or patterns of price 

development within each such world, however my main research probe leads to a 

generalisation, one at the high level of abstraction (the first two theory chapters), and I 

try to validate the theory in the context of specific scenarios, under clear boundary 

conditions, in the last theory chapter on empirical testing of the new model for various 

price cut-off geometries.  

 

This is in line with views from Robson (1993) and his recommendation that a deductive 

approach is a theory testing practice, arising from an established theory or generalisation. 

It allows for validation of theory in the context of specific instances, scenarios, and cases. 

Although this research is not just a test of an established theory, it further develops new 

elements  as  extensions and generalisations of existing theories.  

 

I attempt to amend and enhance exiting theories, with additional features that require 

proof of validity, to develop new aspects of them and to further generalise them. It 



119 

 

subsequently leads to a new theoretical model and framework in pricing, which are 

exhibitions of deductive theories and formal theories as two subsequent outcomes of that 

very process (Frege, 1884; Dedekind, 1901; Kennedy, 1974; Gillies, 1982; Edwards, 

1983; Hausman, 1990; Kamp and Reyle, 1993; Zaitsev, 1994; Segre, 1994; Nicolle, 

2003). 

 

The deductive approach represents a suitable methodical paradigm for this research study 

due to breadth and depth of knowledge as well as the challenge of knowledge 

management in an efficient and representative manner at a time when published literature 

has increased exponentially, especially in the recent decades in the financial domain and 

more specifically in pricing related subdomains (Jashapara, 2004, Creswell, 2013).  

 

According to Jashapara (2004), knowledge management is the central challenge of 

research, and has been around for millennia. Creswell (2013) suggests that a deductive 

approach would be a better approach when there is a large amount of literature in a 

specific research domain. Following a deductive approach, ensures a highly structured 

methodology (Hausman, 1990; Politzer  and Macchi, 2000; Dummett, 2002; Nicolle, 

2003; Rosen, 2009; Brenner, 2010). This would serve well the theoretical developments 

and applications in extension to the third theoretical chapter of this study. 

 

Probably the most well-known is the ontological-metaphysical problem of the nature of 

mathematical objects where schools differ. Quine (1948) consistently argued against 
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Logical-Empiricism, specifically on the analytic-synthetic distinction. His argument is 

seen as part of a holistic view of the world with no clear distinction between empirical 

science and philosophy, Quine (1948) proposed that the mathematical schools  were 

disputing essentially on an update-to-numbers version of the medieval debate on the 

nature of universals, developed further in the work of Benacerraf (1964), and  the more 

recent debate  on the same by Ebert (2007).  

 

The three schools represent three doctrines: logicism presents the realist position holding 

that numbers exist in a sort of platonic world which is more real than the phenomenical 

flow of appearances of the empirical world; intuitionism holds a conceptualist view in 

which numbers are considered the product of human creativity; formalists use the 

nominalist version for the belief that numbers are just names, flatus vocis. Suppes 

(1986:1999) noted that the metaphysical-ontological dispute concludes with three 

failures: Russell’s paradox – Frege (1903) argues that the logicist entities are 

contradictory. The fact that many important mathematical objects are not 

intuitionistically plausible excludes the conceptualist view from the scenario. Gödel’s 

results reduce significantly the ontological-metaphysical position in order to take 

particular stances in other domains such as epistemology, semantics, and methodology 

for a more effective philosophical discourse (Gödel, 1941:1951; Benacerraf, 1967; 

Auerbach, 1985; Smullyan, 1991; Franzén, 2005).  

 

The postmodernist attention for a sharp ontological-metaphysical position on the nature 

of  mathematical entities aims at the production of  a consequence of rigorous definitions, 
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which for millennia have been assumed and work out without any trouble. In shifting the 

attention from the metaphysical/ontological problem on the nature of numbers to the 

definitions, where definitions play an important role in the deductive reasoning by them 

and the general objectivity, the challenging problem  in my own research study is trying 

to identify a notion of private grasp of the concepts which will bear the weight of being 

the source of meaning and truth concerning it (Politzer and Macchi, 2000).  

 

Pylyshyn (2002) recollects the prima facie reasonable theories for such a notion and very 

briefly explains why they seem to be inadequate to the task, focusing on the understanding 

as consisting of a definition or mental picture, or understanding as consisting of some 

mental state. This is fully in line with earlier publications, such as the work of Benacerraf 

and Putnam (1964), Gillies (1982),  Frege (1984), Suppes (1988), etc. 

 

In conclusion to this section,  the technique of generating theory through a deductive 

method is consistent with Pylyshyn (2002) Specifically this form of practice cannot 

change, although I may change my technique, or part of it as is the case with the trial-by-

error approach in the theoretical injection of a new concept in the empirical testing, such 

that to validate Frege’s view: There is no contradiction in an inference being valid that 

everybody takes to be invalid. For there is no contradiction in the supposition that we are 

dealing with both the Ⓒ and Ⓓ worlds with the former our own, whereas the latter is 

very different form of  “life” and system from the one we in fact have (Frege, 1902:1903; 

Bokulich and Jaeger, 2010; Rummens,and Cuypers, 2010; Quilty-Dunn and 

Mandelbaum, 2018). 
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3.3 METHODOLOGICAL FOUNDATIONS 

 

In this section I articulate the methodological foundations of this research. This itself 

represents the inner-core layers of my research framework, such as own methodological 

choice, research strategy(ies), time horizon, techniques and procedures, including also 

limitations.  

 

Saunders et al. (2003) explains that research methods are aligned with the methods used 

for data and information acquisition and the actual analysis. Furthermore quantitative 

research is associated with numeric data collection and analysis, while qualitative 

methods are used with non-numeric data or data that are gained through inference.  

 

This study allows in part for a methodological choice that could reflect well from a 

theoretical and methodical perspective, such as in the form of methodological 

triangulation. Considering them in a mutually exclusive manner would not be good for 

this research work, thus I combine the them in a suitable pattern or manner. Such 

combinations are valid and also suggested by literature, such as in the work of Creswell 

(2013). The main advantage is to get a different perspective while attempting to address 

the research problem, the deduced theoretical “volume”, and also make reliable 

interpretations (Saunders et al., 2009).  
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While understanding what these methods offer individually for this research, I define  my 

methodical position by virtue of utilisation of quantitative and qualitative methods, 

although the large part is based in the quantitative paradigm. I find the methodology 

configuration optimal to drive me to the essential layers or depths of knowledge. Other 

postmodernist work or work written in the modern style apply different research methods 

separately with almost no implied linkage, articulated in the work of Creswell and Clark 

(2007), who also provides a good distinctive description of the methods. 

 

I  rely on a generalised master expression with relevant testing scenarios carried out with 

data generated through algorithmic applications. This is emphasised across theoretical 

chapters, where I demonstrate numerical analyses and graphical models with empirical 

testing. Information is also acquired from theories and relevant literature, which I analyse 

qualitatively.  

 

However, within the adapted and standard deductive approach explained in preceding 

sections, my starting position is in the general master formulation with replicative 

mathematical function identities (price cut-off potentials). Thus I carry-out my research 

analysis, in subsequent theory and empirical chapters, in a structured manner as well as 

with articulated inferences from theories and other quantitative analysis (Saunders et al., 

2009).  

 

The research strategy provides a rough picture about how the research problem and 
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research hypothesis will be addressed. It also specifies the sources for the main 

mathematical expressions, the data and information acquisition and hindrances faced 

throughout this research, such as data access limitations, time constraints, economical, 

and ethical issues. Saunders et al. (2003) explain that research strategy is concerned with 

the overall approach one can adopt, while the tactics involve details such as data and 

information acquisition methods. This is the under-theme  in my own consideration of  

the processes I deploy in this research. This includes the cluster of financial models that 

follow the master formulation with consistency in logic, algorithmic emulation of data, 

random data, and other relevant published data as well as the data analysis methodology.  

 

There are several strategies that I can employ - deductive, inductive, or adopted. I have 

articulated in previous sections that I have adopted a deductive approach in this study. 

Strategies following deductive reasoning, emulatation of data, and other secondary data 

methodological processing,  are well suited (and commonly used) in this type of research 

(Saunders et al., 2009; Creswell, 2013).  

 

I  acquire and use a considerable and varied amount of data to determine the relationships 

between the price-change variables and the interlink between Ⓒ and Ⓓ worlds in which  

price-related variables exist. Much of the discussion in my methodology review in 

centred on the deductive theory. My main goal is to develop a new theory through 

mathematical inferences using a postulated master-expression as a starting point, 

followed by financial model validation and asset pricing. 
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I choose a language with identity and elemental attributes: variables; connectives, a high-

level mathematical symbolism, and expressions, in line with  modern style writing and 

representation; the quantifiers; some primitive terms, etc., and in Tarski’s style. 

Incidentally, the argument of using the correct language as discussed in Suppes (1988), 

and  Givant (1991) bears also on Fodor’s idea of a private language that he calls a 

language of thought. From this view one  tries to mentally  implement such language 

within some mental “machine”; the human storage and processing unit (the brain), which 

itself does not readily and in its natural form contain a criterion for the correct use of 

language, symbols, and expressions.  

 

However, it can be normalised through a natural source of norms and symbols when 

addressing an object, which is expected to be implemented. As such it would no longer 

be a private language, but a language I use to address an object, which, in Fodor’s 

hypothesis, I accept as the normalised language for use when addressing the object, in 

this case the mathematical and financial object (Burgess, and Rosen, 1997; Pylyshyn, 

2002). 

 

The choice of the language normalisation when treating a mathematical and/or financial 

“object” depends on the fact that  must agree on what counts as correct in both application 

and proof. Nevertheless, such agreement does exist where the criterion for the use of 

language is the same when addressing objects of the same classification and is not 
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subjective. However, what is known to-date is subject to change either individually or 

collectively. The simplicity but also the expressive limit of this language consists in the 

fact that it allows quantification on individual variables only. Meanwhile, scholars will 

continue to generate new mathematical and financial theories. The introduction of new 

financial models contributes to new knowledge (Hersh, 1997; Benacerraf and Putnam, 

1983). 

 

According to Givant (1991), Smullyan (1961),  Hausman (1990),  and Burgess and Rosen 

(1997), the deductive apparatus of the formal theory is the calculus, serving the purpose 

of formalising and making explicit the deductive rules. They are implicit in the deductive 

theory I wish to formalise. The particular choice of the calculus does not affect the 

development of the theory. I simply assume that one of them is at my disposal. Thanks 

to the deductive apparatus of the formalised theory, every time a proof is produced, it can 

be inspected and checked for correctness. In this way proofs themselves become very 

precise objects, logical objects (Finey et al., 2000).  

 

I try to include calculus as much as possible, to further establish the main theoretical 

model at a high abstraction level, where the various sub-theories link to. However, I  

certainly do not aim to include everything in it. One significant challenge is on  how to 

interconnect the theories in a proper and justifiable manner. For instance, I consider in a 

form of probability description of an implied probability space, which I interconnect to 

other implied surfaces, such as the volatility surface (Finey et al., 2000).  
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The probability space deployed here is structured as a probability triple Π = ( Ω , F,  P), 

consisting of a non-empty set Ω, the sample space, a -field F of subsets of Ω and a 

probability measure P defined on F, in a non-empty set of subsets (events) of Ω with 

closed under taking complements: A ∈ F   implies that  Ac =  Ω  \ A ∈ F,  with countable 

unions:  Ai ∈ F,  i = 1, 2, ...,  implying that  ⋃ Ai ∈ F∞
i=1   (Stein and Stein, 1991; Shephard,  

1991; Madan et al.,1998). 

 

Furthermore, I formulate around a general function Ψ = (Π,  R, Γ, E), whose dependency 

is on function structures  Π,  R, Γ, E ; where the existence of a replicative function identity 

set  Γ  = (Π, R, Ψ, E, Q) is possible and  where Ψ  ∈ Γ. Evidently both structures contain 

a substructure R, which is the structure of the stochastic value field within a spherical 

transformation. This helps to  see that the interconnection between different theories is 

the intersection between the sets of numbers which represent the quantities assigned to 

the objects of the theories. In  this study, one Ψ and Γ intersection occurs on R, however 

there is more than one intersection present, evidently on E and Π, where the latter is itself 

a triplet substructure (Kuchler and Tappe, 2008)  

 

While more challenging, it allows  for consideration  on   how the “world” must configure 

if  all possible intersections of the theories are  to be established.  I also take into account 

relevant theory modifications. I recognise that much depends on the historical-

philosophical orientation. In fact, there are two opposite positions disputing over this 
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point. One considers the science of mathematics behind finance to be a discontinuous 

enterprise and the other a cumulative one (Ladyman et al., 2007).  

 

A central layer of this study’s research framework is the time horizon. Saunders et al. 

(2003) provides good argumentation on the time-paradigm;  cross-sectional vs 

longitudinal time frames. In the cross-sectional approach prominence is given to  

occurrences, with data and information outputs, around specific time-points (snap shot-

alike).  The longitudinal approach adds “movement” due to the Ⓒ -world’s time-

dimension of  events and information, I find it reasonably fitting to adapt both time-frame 

positions in this work.  

 

The “snap shot – like” or cross-sectional time frame, is best suited in the investigation of 

price change dynamics within the Ⓓ -world (price-point universe), whereas the 

longitudinal is best used when investigating price changes, financial instruments’ 

liquidity, and forecasting over time, thus adding  the time dimension in an appropriate 

measure and with relevance to the Ⓒ-world,  which is the environment where market 

prices are fully observed.  

 

The Ⓓ-world is the quantized topological space , where price behaviour is developed 

prior to any price exhibition in the Ⓒ -world. The consideration of both “worlds” 

combined, allows for a well-formed and holistic time-horizon perspective (cross-

sectional and longitudinal). Adam and Schvaneveldt (1991) explain in good detail the 
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advantages of a longitudinal research especially when focusing on the development of a 

variable of an entire “world”.  

 

Longitudinal studies do come with limitations; time itself is a constraint.  In cross-

sectional research, a certain phenomenon in a specific “world”, such as  asset price 

behaviour or rate of return can be re-defined in a reduced topological space (Ⓓ-world). 

It is also observed longitudinally in the Ⓒ-world.  It allows one to further explore the Ⓓ

-world as a 3-dimension system; “real” time is diminished or put at a complete phase to 

the other dimensions under consideration (Saunders, 2004:2006; Bokulich and Jaeger, 

2010).  

 

This study explores the financial asset price-development within the two worlds under 

consideration - the Ⓒ-world and the Ⓓ-world in a holistic manner (Saunders, 2004:2006; 

Bokulich and Jaeger, 2010);  it further  computes Eigen-prices and asset prices at a 

market-observed point by factoring-in dissipated longitudinal information filtrations at 

time nodes, along the market line. Such process requires leveraging of quantitative 

methods in good measure (Easterby-Smith et al., 1991; Saunders et al., 2003; Pelissier, 

2008; Gulati, 2009). 

 

Data collection and analysis are an important element in this study’s research framework. 

Secondary data (documentary and test-complied) are acquired through various channels, 

including Bloomberg. Relevant trial data sets are generated through computer coding of 
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existing and new theories (presented here), either as stand-alone programming solutions 

and/or integrated with external capabilities, such as NAG-routines. Price data cannot truly 

be observed in the Ⓓ -world due to the very “nature” of such world; its reduced 

dimensionality and greater disparity with our own world (Bokulich and Jaeger, 2010).  

 

However, I implement partial differential expressions through computer programs using 

adapt numerical methods to inference the Ⓓ-world  and generate asset pricing data, 

which is then emulated  in the Ⓒ-world with probable price path scenarios (Keller, 1992; 

Kloeden et. al., 1994; Saunders, 2004). It is absolutely necessary to test the new pricing 

model or test essential aspects of it, which is best done with secondary data. Moreover, I 

develop and test various cases on asset and financial derivative pricing where secondary 

data are utilised to a great extent. Use of secondary data is in-line with Saunders et al. 

(2003), and is referred in this study at times as documentary data and test-complied data.  

 

The data collection process does not come without its limitations, ranging from the 

sample size, secondary data errors (including statistical), to research “bias” such as our 

choice of the “reflective” function identities in the GSE (General-Schrӧdinger-Equation), 

and the algorithms when emulating stochastically progressing price development paths. 

This is so, despite the inclusion of additional features such as shuffling and safeguards in 

our random –generating algorithm, which still falls short of emulating an absolute random 

measure or an absolute random congruent sequence, because simply such is impossible, 

but I do settle for improved algorithmic routines from those in existing literature such as 
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those in Kerningham and Richie (1988), and Flannery et al. (2002a:2002b) that I have 

adapted and extended here. Generally, the reliability and validity of data depend on 

methods used to collect the data, but also on the source of such data (Saunders et al., 

2003; Gulati, 2009; Creswell, 2013). 

 

4.0 AN ABSTRACT STOCHASTIC ASSET PRICING AND CONTIGENT 

CLAIM VALUATION FRAMEWORK WITH SHRÖDINGER PDE 

AUGMENTATION 

 

I  introduce the research problem as an abstract and probabilistic stochastic asset pricing 

and contingent claim formulation. I then solve it for various common cases that are in 

line with contemporary pricing models. The problem is a financial instrument valuation 

challenge, springing from our master expression, with subsequent Sturm-Liouville adapt 

solutions.  

 

It provides the basis to incorporate price quantization effects at each point along the 

market line. Through the model, I add new valuation dynamics to existing asset pricing. 

The  approach and results here are related to classical and contemporary work in 

quantitative asset pricing.  However, I develop the theory within the literature gap, with 

consideration of the price function within time periods, while implicating orthogonality 

in the fitted probability distribution system at each price point along the market line. 
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4.1 INTUITION AND RATIONALE  

 

The master expression related rationale is to address the main hypotheses; (1) that the 

continuously compounded price evolution effects are due in good part to underlying 

discrete time-space effects, described by dynamics within a quantized medium, and (2) 

that discrete price evolution can be explained within a continuous time-space medium. 

This is in line with information market hypotheses, however it develops the condition that 

price development reflects filtrations, dissipated at each point in the market line. 

Subsequently  “tunneling” information through quantum “walls” from one zero-object 

onto the next along  the market line. Thus, I consider a general equilibrium relationship, 

where the space domain is in phase with price effects in the time domain.  

 

I am interested  to broaden the treatment of the subject from  existing approaches  of 

hedging, market tracking, and self-financing strategies to a more generalised function, 

whose identity is both replicated and reflected within the equilibrium. 

 

The starting point is to re-consider the highly irregular, continuous, paths of a standard 

Brownian motion {Wt., t ≥ 0}, with the limitation that they are not differentiable; in 

addition, they are of unbounded variation on every finite time interval with probability 1. 

Recall that a function f: [0, ∞) → R is of unbounded variation on the interval [0, t] when 

sup
Pn

∑ |f(ti) − f(ti−1)| = ∞n
i=1       (1) 
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Where the supremum is taken over all finite partitions.  

 

Evidently, construction of the stochastic integral is a non-trivial exercise. Although  basic 

properties of stochastic integral can be established to simplify the process, I treat the 

problem at a partial differential level, without the need  to pursue  integration. 

Subsequently the problem  has a solution in  a PDE form - the Sturm-Liouville. The 

Sturm-Liouville PDE is itself a class of a problem, however for the postulate-implied 

problem, it serves well as a solution due  to known numerical PDE methods available for 

such a problem-class (Bailey, 1966; Pruess, 1973; Pruess and Fulton, 1993; Pruess et al., 

1995; Bailey et al, 1996; Kong and Zettl, 1996; Zettl, 1997; Kong et al., 2000:2001:2004; 

Agarwal and Wong, 1995; Tharwat et al., 2013; Zhang, et al., 2014; Yang et al., 2015).  

 

Thus, within the scope of this research, integrals would not provide an extra helpful layer 

in the problem resolution. Where necessary numerical methods are fitted to solve the 

problem. This underlines the approach in this research work, although with properties 

established, working with ordinary integrals of stochastic processes would no longer be 

a challenge. These would be integrals of the form∫ Ysds
t

0
. For an adapt stochastic process 

{Ys, s ≥ 0} for which the integral is defined, this may be arranged in a differential notation; 

a stochastic differential equation of the form dXt = Ytdt + ZtdWt, which is shorthand for 

the statement that {Xt, t ≥ 0} is the process defined by 

Xt = X0 + ∫ Ysds + ∫ ZsdWs
t

0

t

0
,  for t ≥ 0    (2) 
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where X0 is the initial position of the process. When working with stochastic integrals the 

principal difference from ordinary calculus is in the treatment of quantities of (dWt)2 

order (Giller, 1982; Harrison and Pliska, 1981; Kotelenez and Curtain, 1982; Weidmann, 

1987; Karatzas and Shreve, 1998a:1998b; Revus and Yor, 2004). 

 

 

A differentiable function f(t) is an infinitesimal quantity of the same order of magnitude 

as dt. When Wt is a standard Brownian motion, the differential dWt should be regarded 

as a stochastic infinitesimal quantity of order  √dt, but  (dWt)2 may be worked with as if 

it is the deterministic quantity db  (Giller, 1982; Weidmann, 1987; Karatzas and Shreve, 

1998a:1998b; Øksendal, 2000). To get a heuristic idea of why this is the case, we recall 

that an increment of Brownian motion  ΔWt = Wt+Δt - Wt is a random variable having a 

normal distribution with mean 0 and variance Δt; then the increment may be represented 

as ∆Wt = σ√∆t, where  has the standard normal distribution with mean 0 and variance 

1. By Chebychev’s inequality we write 

P(|(∆Wt)2 − ∆t| >∈) = P(∆t|σ2 − 1| >∈) ≤ (∆t)2E(σ2 − 1)2/∈2    (3) 

so that for any ∈ which is of larger order than Δt the right-hand side tends to 0 as Δ t → 

0. The most important result in stochastic calculus for this study’s purposes is Itô’s 

Lemma (Ito, 1951; Doobs, 1953; Spitzer, 1970; Snyder and Miller, 1991; Seneta, 1996; 

Parzen, 2015). 

 

THEOREM 1.0:  Suppose that {Xt, t ≥ 0} is a stochastic process that may be represented 

as dXt = Ytdt + ZtdWt and that f(x,t) is a function with continuous second partial 
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derivatives. The stochastic process f(Xt,t) may be represented as 

df(Xt, t) = (Yt
∂f

∂x
+

∂f

∂t
+

1

2
Zt

2 ∂2f

∂x2) dt + Zt
∂f

∂x
dWt        (4) 

where the partial derivatives are evaluated at (Xt, t). 

 

To appreciate the difference from the deterministic case, when xi, yt, zt and Wt are 

deterministic and linked by dxt = ytdt + ztdwt, then 

df(xt, t) =
∂f

∂x
dxt +

∂f

∂t
dt = (yt

∂f

∂x
+

∂f

∂t
) dt + zt

∂f

∂x
dwt       (5) 

In the stochastic case,  the extra term 
1

2
𝑍𝑡

2 𝜕2𝑓

𝜕𝑥2  on the right-hand side is picked up. While 

I will not provide proof of Itô’s Lemma here, an understanding can be acquired from the 

use of  Taylor’s Theorem, such that   

∆f(Xt, t) = f(Xt+∆t, t + ∆t) − f(Xt, t) =
∂f

∂x
∆Xt +

∂f

∂t
∆t +

1

2

∂2f

∂x2
(∆Xt)2 +

∂2f

∂x ∂t
∆Xt∆t +

1

2

∂2f

∂t2
(∆t)2 + ⋯    (6) 

But, ΔXt = YtΔt + ZtΔWt and by the explanation above (∆Xt)
2 = Zt

2∆t + o(∆t),  with 

terms like (ΔXt) (Δt) being o(Δt), so that they are of smaller order than Δt. If only the 

terms of order no smaller than Δt are retained, this becomes 

∆f(Xt, t) =
∂f

∂x
∆Xt + (

∂f

∂t
+

1

2
Zt

2 ∂2f

∂x2) ∆t     (7) 

which gives the correct expression when one substitutes for ΔXt. A formal proof of Itô’s 

Lemma requires use of Taylor’s Theorem along the lines of the above and the definition 
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of the stochastic integral as a limit over approximating Zt(Pn)  (Karlin and Taylor, 

1975:1981; Malliaris, 1982; Øksendal, 2000; Bru et al., 2009; Bru and Bru, 2018). 

 

COROLLARY 1.0: Suppose that {Xt, t ≥ 0} is a stochastic process that may be represented 

as dXt = Ytdt + ZtdWt. For (suitably nice) functions f(x, t) and g(x, t), the  stochastic 

differential d(fg) is  given by 

d(fg) = fdg + gdf + Zt
2 ∂f

∂x

∂g

∂x
dt    (8) 

where f, g and the partial derivatives are evaluated at (Xt, t). 

PROOF: 

I first set F = fg, then apply Itô’s Lemma to F to obtain 

dF(Xt, t) = (Yt
∂F

∂x
+

∂F

∂t
+

1

2
Zt

2 ∂2F

∂x2
) dt + Zt

∂F

∂x
dWt    (9) 

I then substitute in  

∂F

∂x
= f

∂g

∂x
+ g

∂f

∂x
;      

∂F

∂t
= f

∂g

∂t
+ g

∂f

∂t
;     

∂2F

∂x2
= f

∂2g

∂x2
+ g

∂2f

∂x2
+ 2

∂f

∂x

∂g

∂x
      (10) 

then 

dF(Xt, t) = (Yt (f
∂g

∂x
+ g

∂f

∂x
) + (f

∂g

∂t
+ g

∂f

∂t
) +

1

2
Zt

2 (f
∂2g

∂x2 + g
∂2f

∂x2 + 2
∂f

∂x

∂g

∂x
)) dt +

Zt (f
∂g

∂x
+ g

∂f

∂x
) dWt    (11) 

and re-arrange and group terms to produce the result. 
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COROLLARY 2.0: Suppose that {Wt, t ≥ 0} is a stochastic process  both of whose 

differential and integral representations exist. Then the stochastic integral ∫ 𝑊𝑠𝑑𝑊𝑠
𝑡

0
 is 

given by 

∫ WsdWs
t

0
=

1

2
(Wt

2 − t)       (12) 

PROOF: 

Suppose that the integral equals f(Wt, t) by Itô’s Lemma 

WtdWt = df(Wt, t) = (
∂f

∂t
+

1

2

∂2f

∂x2) dt +
∂f

∂x
dWt    (13) 

which gives  

∂f

∂t
+

1

2

∂2f

∂x2 = 0  and   
∂f

∂x
= x       (14) 

from which I see that 

∂2f

∂x2 = 1 ; 
∂f

∂t
= −

1

2
         (15) 

  

Integrate to get f =  − t / 2 + g(x), with g ″  = 1 so that g(x) = x2 / 2 + c; because f(x, 0) 

= 0 we see that c = 0. It follows that  

 

∫ WsdWs
t

0
=

1

2
(Wt

2 − t)      (16) 
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I consider here a form of probability description of either an observed or implied 

probability space, which I interconnect to other implied surfaces such as the volatility 

surface (Gnedenko and Kolmogorov, 1954; Neveu, 1965:1975, Milnor, 1968; Loeve, 

1977;  Heson, 1993; Billingsley, 1995;  Schobel and Zhu, 1999; Saonov, 2001; 

Gulisashvili and Stein, 2010; Keller-Ressel, 2011; Grasselli, 2017).  

 

The probability space considered here is structured as a probability triple, represented as 

( Ω , F,  P), consisting  of a non-empty set Ω, the sample space, a -field F of subsets of 

Ω and a probability (measure) P defined on F, in a non-empty set of subsets (events) of 

Ω with closed under taking complements: A ∈ F implies that Ac =  Ω  \ A ∈ F,  with 

countable unions:  Ai ∈ F,  i = 1, 2, ...,  implying that  ⋃ Ai ∈ F∞
i=1    (Doobs, (1953; Spitzer, 

1970; Snyder and Miller, 1991). 

         

I seek to recreate the concept in the new context to include the fact that, in an expanding 

degrees of freedom representation, I seek some form of pattern in the under-domain 

curvature in the probability-implied surface; this is more obviously represented over a 

martingale and in implied volatility surfaces driven by market prices (Hull and White, 

1987; Stein and Stein,  1991).  

 

In considering uncertainty and the ways it impacts on asset prices, emphasis are placed 

on the measure of the outcome of such uncertainty, through random variables, the 

properties of which are of great interest and are used in this work. The incorporation of a 
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random variable in a pricing function is fully justified, where the sample space is 

probability-implied by a non-empty set of events or filtrations, observable in  real terms 

and whose expectation is a well-defined and measurable random variable x  in a function 

x :  Ω  → R measurable with respect to F (Malliaris, 1982; Øksendal, 2000, Bru et al., 

2012; Bru and Bru, 2018; Khrennikov, 2018).  

 

The event (x ≤ c) = ( Ω  : x( Ω ) ≤ c) ∈ F  for all real numbers c ∈ R , and the smallest -

field with respect to which a random variable  is measurable, is the -field generated by 

x, which is denoted (x) and the expectation for a  non-negative random variable x,  is 

defined as   E(x) = ∫ x(Ω)dP , which may be + ∞  (Levy 1925; Billingsley, 1954, 

Gnedenko and Kolmogorov, 1954; Hazewinkel, 2001; Bernard, 2007), Shiryaev et al., 

2006).  

 

I have adopted the usual convention for the relations between two random variables, x, y, 

under the condition x ≤ y, or x =y which without any further qualification may be taken 

to hold with probability 1, or represent an “almost certain”  event. The uncertainty, 

random variable representation and the underlying stochastic process representations 

need further clarity in terms of how one would obtain augmented stochastic variables. 

Doobs (1953), Malliaris (1982),  Øksendal (2000), and Bru et al. (2012) provide a good 

background on arbitrary random variables. An arbitrary random variable x can be 

obtained  as the difference of two non-negative random variables, x = x+  − x–  where 

x+= max(x, 0) and x −  = max ( − x, 0) under the provision that  at least one of E(x+ ) and 

E(x− ) is finite and defines E(x) = E(x+ ) – E(x−) to be  finite. Moreover random variable 
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x  is integrable when E | x |  <  ∞ ,  that is when both E(x+ ) and E(x− ) are finite. 

 

Stochastic financial variables represent randomizer effects that are attributed filtration 

diffusion processes, although one would wish to identify the deterministic component of 

a process of this type, the non-deterministic part will be a source of contribution to the 

random measure. Benaim and Raimon (2003) investigated convergence properties of self-

interacting diffusion on a compact Riemannian manifold, and considered self-interacting 

diffusions to be continuous time stochastic processes living in a Riemannian manifold M, 

and defined the process mathematically through the use of a “family” of Brownian 

motions, smooth vector fields, and a potential-like function (Doobs, 1953; Fox, 1962; 

Karlin and Taylor, 1981; Van-Buskirk, 1985;  Shafer, 2002; Benaim et al., 2002; Sheldon, 

2003; Hunt and Kennedy, 2004; Gillespie, 1996; Schöbel and Zhu, 1999; Baaquie et al., 

2003; Piotrowski and Sladkowski, 2005; Nastasiuk, 2015;  Fiorin et al., 2018). 

 

This is supported by other authors (Malliaris, 1982;  Karatzas and Shreve, 1998b; 

Øksendal, 2000; Bru et al., 2012; Doobs, 1953; Lamberton and Bernard, 2007; Shiryaev 

et al., 2006), who more specifically consider the conditional expectation E(x | g) to only 

be defined up to sets of probability 0 and  for any random walk variable x  for which the 

unconditioned expectation E(x) is defined. This is also extended in validity in cases of 

chained conditioning of such expectation, or the conditional form of Jenson’s inequality 

that f(E(x | g)) ≤ E(f(x) | g)  for a convex function f : R → R  when f(x) is integrable; the 

inequality is reversed when f is a concave function. For a convex function operational in 

a real and measurable  system, such as pricing and the effects of  a bond’s term structure.  
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Moreover for two random variables where one is conditioned and measured in relation to 

that very condition, the conditioned expectation of the two random variables’ product, 

would relate the condition dependency of the originally conditioned random variable and  

pass on the condition dependency to the first random variable. More specifically, we 

extend that argument for any x for which E(x) is defined and by taking A = Ω that E(E(x 

| g)) = E(x)  (Merton 1974:1976; Jarrow and Turnbull, 1998; Parzen, 2015).  

 

For a random variable x and g-measurable random variable y for which both E(x) and 

E(xy) are defined, then E(xy | g) = E(x | g)y, which shows that when y is g-measurable it 

may be treated effectively as a constant when conditioning on g and taken outside the 

conditional expectation.  In other words, given g, y is known (Lamberton and Bernard, 

2007; Parzen, 2015;).   

 

In the case of two -fields g and h, with g ⊆ h ⊆ F, E(E(x | h) | g) = E(x | g), according to 

what is often known as the tower property of conditional expectations. The conditional 

form of the random variable x is independent of the -field g when (x), the -generated 

by x, and h are independent -fields; in this case E(x | g) = E(x).  The -fields g and h are 

independent when P(G ∩ H) = P(G)P(H) for all events G ∈ g and H ∈ h (Karatzas and 

Shreve, 1998b; Gillespie, 1996; Schöbel and Zhu, 1999; Shiryaev et al., 2006; Parzen, 

2015).  
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These effects are applicable in pricing structured products (custom investment products 

of  broad  use), both growth based and  yield enhancement products, particularly in cases 

where a bond is combined with vanilla options, or barrier options. Moreover in cases 

when spread  option  strategies are  combined with a fixed income instrument making use 

of two or more random variables, where  at least one variable  is conditioned, while 

considering all filtrations and probable event indicators, subsequently effecting price 

development (Jackwerth and Rubinstein, 1996; Jarrow and Turnbull, 1998; Falloon and 

Turner, 1999; Batten et al., 2004; Shiryaev et al., 2006; Blumke, 2009; Palmer, 2010; 

Parzen, 2015; Ho and Lee (2015).  

 

It is in this context that I define the asset price function, contingent claims and rate of 

returns, as random variables defined on the underlying probability space. In the case of a 

contingent claim or financial derivatives, it may be regarded as the payoff at time 1 of 

some contract; the value of c is not observed until time 1. The ubiquitous example to keep 

in mind is a call option at some strike price c on one of the risky assets, asset 1 say; this 

would pay (S1, 1 − c) + at time 1 (Karatzas and Shreve, 1998b; Shiryaev et al., 2006; 

Kanniainen and Piché, 2013).  

 

I also consider an  extension to sets of random variables as uncountable collections  with 

one random variable   representing the essential supremum of the collection,  {xγ : γ ∈  Γ 

}, the quantity supγ ∈  Γ xγ may not necessarily be a random variable; however, there 

exists a random variable y, known as the essential supremum of the collection and written 

as y = ess [supγ ∈  Γ (xγ)] which has the properties (i) y ≥ xγ for all γ ∈  Γ ; and (ii) 
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if z is a random variable with z ≥ xγ for all γ ∈  Γ  then z ≥ y (Karatzas and Shreve, 1998b; 

Gillespie, 1996; Shiryaev et al., 2006).  

.  

 

Sondermann (2007) defines a filtration { Ft, 0 ≤ t ≤ n} to be an expanding sequence of -

fields F 0 ⊆ F 1 ⊆ … ⊆ F n ⊆ F,  under the supposition  that ( Ω , F,  P) is the underlying 

probability space, and explains  that when one makes observations of a process over times 

t = 0, 1, …, n,  Ft  can be thought of as  the cumulative information available at time t with 

the  -fields Ft corresponding to the increasingly finer partitions of the sample space Ω. 

A sequence of random variables {xt, 0 ≤ t ≤ n} is adapted to the filtration {Ft} when xt is 

Ft - measurable for each t = 0, 1, …, n; intuitively, this means that when the information 

in Ft has been observed, the value of xt is known.  

 

Jacob and Shiryaev (2003) provide a detailed definition of integrable random variables 

{χt, 0 ≤ t ≤ n}, which according to them represent a martingale (relative to a given 

filtration {Ft, 0 ≤ t ≤ n} and a probability P) if the sequence is adapted and for E(xt + 1 | 

Ft) = xt    for all    0 ≤ t < n . Similar definitions  may be provided for  sub-, and super - 

martingales (Doobs, 1953; Feller, 1971; Fuk and Nagaev, 1971; Hull, and White, 1987; 

Stein and Stein,  1991; Siminelakis and Paris 2010; Parzen, 2015).  

 

A stopping time (relative to the filtration {Ft, 0 ≤ t ≤ n}) is a random variable taking values 

in the set {0, 1, …, n} such that the event (T ≤ t) ∈ Ft for each  t = 0, 1, …, n.  This relation 
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is equivalent to requiring that the event (T = t) ∈ Ft  for each r. Intuitively, a stopping time 

is a rule which tells us when to stop, based only on knowing the history up to the instant 

of stopping; that is, it does not look into the future. We note that if τ and T are stopping 

times then τ ∧ T = min (τ, T) and  τ ∨ T = min (τ, T) are also stopping times; in particular, 

T ∧ t is a stopping time when t is a constant time.  For a stopping time T the σ-field ℱT is 

defined to be the set of those events A ∈ F such that A ∩ (T ≤ t) ∈ Ft for each t = 0, 1,...,n. 

It is straightforward to check that FT is a -field and it should be noted that it represents 

the information available through observing the history up to the stopping time T (Doobs, 

1953;; Stein and Stein,  1991; Parzen, 2015).  

 

Furthermore, when a sequence of random variables {xt, 0 ≤ t ≤ n} is adopted then the 

random variable xT is FT-measurable. When τ and T are stopping times with τ ≤ T ≤ 

n    and {xt, 0 ≤ t ≤ n} is martingale, then we have E(xT | Fτ) = xτ,  which shows that the 

martingale property is preserved at stopping times; this is known as the Optional 

Sampling Theorem (Doobs, 1953; Parzen, 2015; Hull, and White, 1987; Stein and Stein,  

1991; Lamberton and Bernard, 2007).  

 

It may be deduced that for any stopping time T, the sequence {xT ∧ t, 0 ≤ t ≤ n} is a 

martingale. When {xt, 0 ≤ t ≤ n} is a sub-martingale, one may use the inequality E(xT | 

Fτ) ≥ xτ, and in the case of a super-martingale by E(xT | Fτ) ≤ xτ, note that  a sequence of 

random vectors {xt, 0 ≤ t ≤ n} taking values in Rτ with xt = (x1, t, …, xτ, t)⊤, is a martingale 

relative to the fixed filtration and probability if each coordinate sequence {xi, t, 0 ≤ t ≤ n} 

is a martingale, i = 1, …, s (Fuk and Nagaev, 1971; Stein and Stein,  1991; Hira and 
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Altinisik, 2014; Parzen, 2015).  

 

A collection {Ft, 0 ≤ t <  ∞ } of sub -field of  F is a filtration when Fτ ⊆ Ft whenever 0 

≤ τ ≤ t. Furthermore, a stochastic process {xt, 0 ≤ t <  ∞ }; that is, a collection of random 

variables indexed by t ≥ 0) adapted to the filtration {Ft} is a martingale when xt is 

integrable for each t and E(xt | Fs) = xτ when 0 ≤ τ ≤ t. I assign a general meaning to the 

stopping time in this study -  the zero-time of pricing (or trading) interest in which a 

quantifiable Ⓓ↓↑- system can be fitted (Doobs, 1953; Hull, and White, 1987; Stein and 

Stein,  1991; Lamberton and Bernard, 2007; Hira and Altinisik, 2014; Parzen, 2015). 

 

In addition to the scaling property, a Brownian motion  has independent increments with 

future price value dependent not only on the present price value, but also on the entire 

history up to the stopping time which itself implies a stronger than Markov property, and 

moreover, the price displacement between two time points is independent of the position 

at the first point (the first of any two time points). It allows one to obtain a well-defined 

expression for the transition probabilities, the probability density function of the normal 

distribution, and a joint probability density function (Doobs, 1953; Spitzer, 1970; Snyder 

and Miller, 1991; Seneta, 1996; Parzen, 2015). 

 

Brownian motion  pathsare continuous. With probability of one, these paths are not 

differentiable. Boobs (1953), Spitzer (1970), Snyder and Miller (1991), Jacob and 

Shiryaev (2003), and Sondermann (2007),  consider some properties of the Brownian 
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motion process using elementary arguments; many of these results may be obtained more 

easily using the machinery of martingale theory, but they argue that it is instructive to get 

a feel for working with Brownian motion from first principles. By the symmetry of the 

normal distribution it is immediate that when {Wt, t ≥ 0} is a standard Brownian motion 

then { − Wt, t ≥ 0} is again a standard Brownian motion. Also, when s ≥ 0 is any fixed 

time {Wt + s − Ws, t ≥ 0} is a standard Brownian motion. According to them, what is also 

true is that for certain random times T, called stopping times of the process, {Wt + T − 

WT, t ≥ 0} is again a standard Brownian motion and is independent of the process {Ws, 0 

≤ s ≤ T}.  

 

The information available at time t is the history of the price process, ℱ1 = σ (Su, 0 ≤ u ≤ 

t),  that is the information obtained by observing the movements of the stock price process 

up to time t; equivalently, it is σ(Wu, 0 ≤ u ≤ t),  the information obtained by observing 

the driving Brownian motion in the stochastic differential equation  (Giller, 1982; 

Weidmann, 1987; Øksendal, 2000). 

 

4.2. THE MODEL 

 

 

In this section, I present the new abstract and stochastic valuation model. It ispresented 

as  the master formulation. The model is applied  to special cases, leading to probability 

density function variations, and asset pricing. Where necessary the classic concepts and 

frameworks that have contributed much to existing pricing theories are blended in here 

for comparison purposes to the new model; in part this will give weight to the validity of 
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the new abstract model.  From the centre-piece formulation to each asset-pricing model, 

case, and scenario, I make use of at least one transformable stochastic process and 

differentiable function. 

 

4.3 PROPOSAL PROBABILITY DENSITY AND ASSET PRICING PDEs 

 

I seek to formulate the problem in partial differential form, present it as a master 

expression, and subsequently fit a solution without involving integration. This intuition 

is based on the concepts in the above sections, however I contemplate the inclusion of the 

phase factor which is not evident in the Taylor’s expression. I stipulate a compact PDE 

formulation that takes on relevant and significant effects; a framework from where  

known asset pricing models can be derived with varying assumptions. After many trials 

and tribulations, I have finalised it as a postulate of the form  

 

∀q ∈ {1, … , Q}, ∀m ∈ {0, … , M}, ∀n ∈ {0, … , N} {[(
1

2

∂2

∂χ2
− γ(χ, t) +

(in)m ∂

∂t
) f(χ, t)]

q

} = 0        (17) 

 

This master expression represents a general equilibrium. It incorporates two sets of effects 

- the continuous and discretised price related space - time effects, which balance each 

other out. It is also relatively easy to see that the two effects can be treated as additive 

with small adjustments to the expression and lowering of the power q term. “ Space”  here 

will refer to the zero-dimensional topological space or quantum price depth. In contingent 



148 

 

claims, this will include also the depth of “moneyness”. 

 

At q=1, I generate a sufficient formulation to explain most of the current asset pricing 

formulations. This simplifies the expression to 

 

∀m ∈ {0, … , M}, ∀n ∈ {0, … , N} [(
1

2

∂2

∂χ2 − γ(χ, t) + (in)m ∂

∂t
) f(χ, t)] = 0     (18) 

 

 

This is significantly relevant, because it does include the second order effects to match 

the equivalent Taylor expansion around f(x, t). Furthermore it also includes the phase 

factor. Of the two effects, one has to be the imaginary term. If one concentrates on the 

market price timeline, then the market depth is in phase with it and subsequently with the 

imaginary effect, and vice versa. 

 

Equation (18) appears to be a generalised version of Schrodinger’s equation (GSE). I 

refer to it in this work as GSE or the master expression, interchangeably. In its most 

simple representation, it has been previously used  to study the behaviour of microscopic 

systems within a branch of quantum mechanics known as wave mechanics (Bailey, 

1966; Barrett, 1999). My intuition has led to the confirmation of Schrodinger’s equation 

to deal adequately with the research problem in asset pricing in this study. However, I  

make no use of quantities with physical attributes in its original form.  

 

This is contrary to the works of Chen (2001:2003), Haven, 
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(2002:2004:2005:2008a:2008b), and other contemporary research work in the domain. 

Such relaxation of variables is in line with own intuition and supported by previous cases 

such as the option pricing models of  Black and Scholes (1973), and Sprenckle’s (1961). 

Sprenckle had derived an option pricing model prior to Black and Scholes. However he 

included  parameters of partial relevance, whose measurability proved problematic in a 

purely financial context. These parameters were set to one on the Black and Scholes 

model and were assigned no meaning. Black discusses this in detail in his 1989 paper. I 

subsequently refer to  new asset pricing model as the generalised Schrödinger equation 

(GSE) or more generically as the master equation. I proceed to treat the use of GSE in 

asset pricing through a sequence of models, cases, and specific scenarios. 

 

Within the theoretical framework, I make use a system of assumptions, updated 

throughout this work and in various sections to support the model augmentations for 

pricing purposes. The initial assumptions are (i)  {t, t ≥ 0} is a stochastic process, (ii) 

f(,t) is a composite function with an identity characterised by “memory-less-ness”, and 

(ii) {t, t ≥ 0}, and f(,t)   have continuous second partial derivatives of a  generic form 

(eq. 17). 

       

The q power takes any integer values from 1 onwards, although this is built in the GSE 

to include higher order terms, in actuality q=1 is sufficient to draw a simpler formulation 

that allows one to compile the PDE versions of the contemporary asset pricing models, 

under sufficient terms’ inclusion and significance. Under q=1, equation (17) takes a 

simpler form:  
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(−
1

2

∂2

∂χ2 + γ(χ, t)) f(χ, t) = (in)m ∂

∂t
f(χ, t)        (19)        

The term (𝑖𝑛)𝑚 on the right hand side of  Equation (19) can be treated in two probable 

ways; the first approach is subjectively intuitive, and is explained below, whereas the 

second approach blends  power integers (𝑖𝑛)𝑚 ≡ 𝑖𝑠, where s is linked to the quantized 

rate-of-return system i.e. the price change behaviour at quantized levels. The second 

approach is evident at the later stages, but either-way their effects are not conflictual with 

each other in the theory put forward here.  

 

In the first approach, I consider a power coefficient n with discrete numerical values of 

0, 1, 2, etc., to be dependent on the identity of function f(, t) and whether f(, t) measures 

the probability density function, or more precisely the square root of it; 0 if it does not 

and 1 if it does. If the probability density function has a dual outlook and is treated jointly 

for a financial security and its protection73, then n=2, etc...  

 

The m coefficient takes integer values, 0, 1, 2, etc., is associated with the identity of 

function f (, t), more precisely the number of constituent pricing functions.; (a) If the 

composite function f (, t) is a pricing function and its relations or constituent functions 

are financial instruments such as financial securities,  financial derivatives, etc., then m=1, 

                                                           

73 In the context of investments, terms such as protection, insurance, contingent claim and financial derivative are used 

interchangeably. 
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if there is one and the corresponding number of 2, 3, etc., if there are 2, 3, etc. constituent 

pricing functions. If  f(, t) measures the square root of the probability density function 

and contains only one pricing constituent function, then (𝑖1)1 = 𝑖 = √−1, and if the 

function to  be established is the square root of the probability density, then n = 1, thus  

(−1)
1

2 = √−1, subsequently the right hand side of the equation becomes a phase factor.  

 

In simple terms, if the function f (, t) contains one asset pricing constituent function in 

its composition, m=1; if there are two different constituent functions of a pricing nature, 

then m=2, and the number is increased linearly with the number of constituent functions. 

The γ (, t) function is central and reflective of the identity of composite function f (, t) 

and its relations to the constituent function(s).  The precise nature of the γ (, t) function 

depends on the identity of function f (, t) and will be established for each case considered 

here. This is different from the interpretations given in existing literature, including works 

of Segal and Segal (1998), Haven, (2002:2004:2005:2008a:2008b), Haven and 

Khrennikov (2016), etc., that have been reviewed in preceding  chapters. 

 

4.3.1 CASE 1.0 : TIME - INDEPENDANT GSE 

From the initial assumptions, I also consider  that it is possible to consider an additional 

assumption - (iv) function f(,t) can be de-composed  by means of variable separation, 

such that   f(,t)  is transformed and  represented in a time-independent differential form, 

as shown here below: 
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(−
1

2

∂2

∂χ2 + κη(χ)) ψ(χ) = αψ(χ)        (20)        

Where α = (in)m [
1

𝜉(𝑡)

∂ξ(𝑡)

∂t
]  is a constant and  is a time independent function with an 

observable identity. Solution provided in Appendix II – Case 1.0. 

 

4.3.2 CASE 2.0 - CAPITAL ASSET PRICING PDE 

Inline with  assumption (i) with respect to {, t ≥ 0}, I consider  {X, t ≥ 0} also to be a  

stochastic processes with known transformation relationships between them. By the 

current  system of assumptions,  ψ() function is a time-independent function with (v) 

continuous second partial derivatives, (vi)  representing an important part of the square 

root of the probability density function, (vii)  (t) is a time dependent function with 

continuous derivatives, representing a risk-free asset price function. The system of seven  

assumptions is sufficient to establish a  generalised  capital asset pricing PDE expression 

in equilibrium.  

 

I consider the augmented equation (20) and assume (viii) an economy that contains at 

least one risk free investment with a rate of return rf, and a risky investment (i.e. equity) 

with a rate of return of  and risk measured through its standard deviation, σ. These are 

risk and return concepts described in the works of Markowitz (1952), Sharp (1964), 

Treynor. and Black (1973), Bodie et. al. (2009), and Elton and Gruber (2011), typified in 

a classical two-fund separation problem. Starting with the expression (20), where α is 

defined previously.   
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Although the constant can take any value, I consider the special case that leads to the 

known stochastic risk-free asset price function, and so I define                                                     

[
1

ξ(t)

∂ξ(t)

∂t
] = rf     =>   ξ(t) =  ξ(0) e(rft)      (21) 

In this case, function ψ() is a constituent function of  f(, t) in the GSE and retains the 

square root of the probability density function, thus n=1. I also define χ = (X − μ) 𝜎⁄ , in 

line with Gurajati and Porter (2010), where both {χ, t ≥ 0} and {X, t ≥ 0}, are themselves 

both random variables, the identities of which are well explained in Daughterly (2011). 

Furthermore, Berenson et al. (2012) provide empirical cases of the random behaviour of 

such variables. These are observables, where the X represents a stock’s rate of return 

variable, and χ a standardized statistical measure. Using the expression for , I obtain its 

partial derivative ∂ ∂X = 1 σ⁄⁄   and  (∂)2 = σ−2(∂X)2 , which I substitute back in 

equation (20) to obtain 

(−
1

2
𝜎2 ∂2

∂X2
+ κη(X)) ψ(X) = αψ(X)         (22) 

The existence of price change behaviour identities (i.e. the explicit risk-free and implicit 

risky asset pricing functions), makes it possible to establish the value m=2, subsequently  

α = (i1)2 [
1

ξ(t)

∂ξ(t)

∂t
] = i2rf = (√−1)

2
rf = −rf         (23) 

It follows that  
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(−
1

2
σ2 ∂2

∂X2 + κη(X)) ψ(X) = −rfψ(X)        (24) 

which can be expressed in the following compact form: 

(−
1

2
σ2 ∂2

∂X2 + rf + κη(X)) ψ(X) = 0        (25) 

 

4.3.2.1 SCENARIO 1.0 

With the existing  system of assumptions, I  consider {r, t ≥ 0} to be a stochastic process, 

where ψ(r) function is a time-independent function with continuous second partial 

derivatives representing an important part of the square root of the probability density 

function, and a two-fund separation problem of a portfolio constructed with a risk-free 

asset (i.e. a bank account, or a treasury bill) with return rf, and an equity account with a 

rate of return of r . I further assume that (viii) market tracking and portfolio factor-loading 

are possible. 

 

Such concepts are discussed in good detail in various sources. Hillier et al. (2011) 

articulate the concepts of factor reduction and portfolio factor loading, in that while there 

might be more than one economic and financial factor that can determine the return on an 

equity account, it is also possible to factor-load the portfolio around one significant factor 

at a time. This is based  in part on  the work of Christoffersen et al. (2009). The number 

of factors matches the degrees of freedom in the price behaviour system and can only 

partially serve as inference to market price dynamics and can be used to measure 
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investor’s expectations. 

 

Consider equation (25) where Xr  to obtain 

(−
1

2
σ2 ∂2

∂r2 + rf + κη(r)) ψ(r) = 0       (26) 

 and taken k and (r) to be two matrices with n x 1 and 1 x n dimensions, respectively. 

Then equation (26)  can be expressed as  

(−
1

2
σ2 ∂2

∂r2 + rf + κ[nx1]η[1xn](r)) ψ(r) = 0         (27) 

Such that 

κη(r) = κ11η11 + κ21η12 + κ31η13 + ⋯ + κn1η1n = β11F11 + β21F12 +

β31F13 + ⋯ + βn1F1n        (28) 

Where the variables are simply re-labled to facilitate an easier recognition of the  terms 

as those on the known multi-index capital asset pricing model. This can be set to represent 

the rate of return, r, of the equity account. The equity account can be conceptualised as 

an equity portfolio following a multifactor model, where pure-factor portfolios and 

subsequently momentary arbitrage are observables (Ross, 1976; Ross and Roll, 1980; 

Conner and Korajczyk, 1995; Delbaen and Schachermayer, 2006; Hillier et al., 2011). 

This allows us to simplify expression (27) to  

(−
1

2
σ2 ∂2

∂r2
+ r) ψ(r) = 0         (29) 
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Consider that a pure factor portfolio similar to those articulated by Hillier et al. (2011) 

can be engineered and assume that only factor 11 can be tracked, then equation (27), can 

be simplified to 

(−
1

2
σ2 ∂2

∂r2 + rf + κ11η11(r)) ψ(r) = 0      (30) 

One can intuitively pick up the term 1111, set it to be rm, where rm is the market rate of 

return, and subsequently obtain 

(−
1

2
σ2 ∂2

∂r2 + rf + βrm) ψ(r) = 0        (31) 

It is easy to see that the expression under the normal brackets in equation (31) represents 

the PDE form of the capital asset pricing model for the rate of return, where rm  is the rate 

of return of a market-tracking portfolio. This is a differential expression that can be solved 

relatively easy. Further  compare the expression within brackets on the left  hand side of 

the equation (31) with the classical form of  CAPM  

−
1

2
σ2 ∂2

∂r2 + rf + βrm = rf + βrm + ε          (32) 

to obtain an expression for the stochastic residual  effect 

ε = −
1

2
σ2 ∂2

∂r2
        (33) 

Expression (33) is an important finding because  the residual effect in the classical capital 

asset pricing model is associated with real time effects from unanticipated future events. 

Whereas the right-hand side represents the quantization effect within the quantum box. 

In equilibrium the two are equal. One can draw from this that  the cumulative effect of 
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filtrations or present and past events  when dissipated  within the zero-object are 

fragmented and exist within new  quantized patterns. This leads to conclusion that future 

prices are decided by the present state of the price. In-line with the market efficiency 

hypothesis the spot price reflects all relevant  past and present events (Asquith, 1983); 

Bachelier, 1990; Bernard and Thomas, 1990; Bodie et al., 2009;  Khrennikov, 2018). This 

is an exhibition of  the Markov property (Markov, 1971; Mura and Swiatczak, 2007; 

Busemayer et al., 2009;  Fiorin et al., 2018) within this study’s conceptual  framework. 

 

4.3.2.2 SCENARIO 2.0 

One can similarly treat the same elements in the alternative scenario, where the equity 

account is replaced by a fixed-income account. Elton and Gruber (2011) explore the 

single and multi-index models for bonds, under the assumptions of expectation theory 

and consider the total return of the portfolio to be the sum of (i) the expected return (i.e. 

expectation theory), (ii) return due to an unanticipated shift in the yield curve, and (iii) 

the stochastic residual return term, expressed as 

ri = E(ri) + βi[rm − E(rm)] + ei      (34) 

where ei is independent of the bond index, and βi = Di Dm⁄ ;  Di and Dm are durations of 

the bond and market index, respectively. Derivation of equation (34) is evident in great 

detail in Elton and Gruber (2011). I can now re-write the equation (29) as 

{−
1

2
σ2 ∂2

∂r2 + [E(r) +
D

Dm
[rm − E(rm)] + ei]} ψ(r) = 0      (35) 

where subscript i is dropped for simplicity. Expression (35) is simplified when  



158 

 

considering the equality of equation (33). More specifically (35) becomes 

E(r) +
D

Dm
[rm − E(rm)] = 0        (36) 

Expression (36) appears to be free of quantization effects. However this is related to 

several issues in  equation (34). There are two specific issues with the expression (34); 

(a) it ignores the convexity effect due to the curvature on the bond yield, and (b) it ignores 

the multifactor effects and sensitivities often regressed out of data in common practice. 

The first issue can be relaxed under the assumption that  (ix) a preference-driven investor 

expects bond price changes to be small, an argument articulated in greater depth by Elton 

and Gruber (2011), although the expression could be generalised to include the convexity 

effect, whereas the second issue can be resolved by considering expression (35), with α 

=E(r).  

When I consider 3x degrees of freedom in the development dynamics of the rate of return, 

then the operator can be generalised as  

∇2= (
∂2

∂rdim1 
2 +

∂2

∂rdim2 
2 +

∂2

∂rdim3 
2 )        (37) 

Using the operator expressed in (37), equation (29) is generalised with extended degrees 

of freedom. The expression takes the form. 

(−
1

2
σ2∇2 + r) ψ(r) = 0         (38) 

or 

∇2ψ(r) = 2 (
r

σ2
) ψ(r)      (39) 
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Subsequently it allows me to obtain the observable expression for the operator: 

∇ ≡ ±
1

σ
√2r         (40) 

Equation (39) provides the general equilibrium between two systems with their own 

degrees of freedom, the first contributed by the known multifactor model, whereas the 

second is attributed to a quasi-zero environment. The latter contributes 3x additional 

degrees of freedom to the model, adding price behaviour quantization effects at each time-

node along the market line. It is best represented in the expression by the      
 

1

2
σ2∇2ψ(r)          (41) 

 

4.3.2.3 SCENARIO 3.0 

Suppose that {, t ≥ 0}, {x, t ≥ 0}, and {s, t ≥ 0} comply to assumption (i), thus are 

stochastic processes with known transformation relationships between them. By 

assumptions  (v) and (vi), ψ() is a time-independent function with continuous second 

partial derivatives, representing an important part of the square-root of the probability 

density function. By assumption (vii)  (t) is a time dependent function with continuous 

derivatives, representing a risk-free asset price function, and further consider s is the price 

of a risky asset at time t (assumption x).  

 

We consider equations (20), (21), and assumption (viii). We consider the same risk and 

rate of return concepts following the observation and measurement mechanics as those 
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typified in the studies of Bodie et. al. (2009), Elton and Gruber (2011), and based on the 

original Markowitz framework. In this case the function ψ() is a constituent function of 

the f(, t) (i.e. GSE) and retains the square root of the probability density function, thus 

n=1. We define  

χ =
x−μ

σ
,  where {x, t ≥ 0}       (42) 

which are stochastic processes and 

dχ =
1

σ
dx =

1

σ
d (∫

ds

s
) =

1

σs
ds        (43) 

where s is the risky asset price (i.e. stock price), and based on known relations found 

across statistics and econometrics literature, among others, in Daughterly (2011),  

Gurajati and Porter (2010), Franke and Heardle (2011), Berenson et al., (2012). The 

existence of pricing concepts allows us to establish the value m=2.  Subsequently  we 

obtain the same result as that in equation (23). It  follows that  

(−
1

2
σ2s2 ∂2

∂s2
+ κη(s)) ψ(s) = −rfψ(s)       (44) 

 

4.3.2.4. SCENARIO 4.0 – PART I 

Suppose that by (i) {, t ≥ 0} is a stochastic process, and assume ψ() has a probability 

density function identity with continuous second order partial derivatives and is at a phase 

factor to any additional asset pricing function present (assumption xi). The probability 

density function identity of ψ() is inline with the main assumption that the postulated 
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expression (18), and subsequently the master expression (19) are polymorphic in identity.  

 

We consider the variable separation solution (Appendix II - Case 1.0), where 

f(χ, t) = ψ(χ)ξ(t)        (45) 

To determine the meaning of the constant α, for this specific case we consider equations 

(19), and (20) with the given expression for  and a probability density function present 

in the formulation (n=1); ψ() function  retains the nature of the function in its square 

root form and there is one asset pricing function (m=1) in the formulation  

(−
1

2

∂2

∂χ2 + γ(χ)) ψ(χ) = (in)m (
1

ξ(t)

∂ξ(t)

∂t
) ψ(χ)          (46) 

where the right-hand side of (46) is determined through the following expression  

(in)m (
1

ξ(t)

∂ξ(t)

∂t
) = (i1)1 (

1

ξ(t)

∂ξ(t)

∂t
) = i (

1

ξ(t)

∂ξ(t)

∂t
) = iα        (47) 

Subsequently, the solution is found as 

ξ(t) = ξ(0)eiαt     (48) 

This result assures that when the probability density function u() is sought, the phase 

factor in expression (45) and the effect of  is diminished entirely, and that   

u(χ, t) = f(χ, t) ∙ f ∗(χ, t) = |ψ(χ)|2ξ(t) ∙ ξ∗(t) = |ψ(χ)|2ξ(0)eiαt ∙ ξ(0)e−iαt =

ξ(0)2|ψ(χ)|2 = |ψ(χ)|2     (49) 
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Where f*(,t) is the conjugate of f(,t). From (49) we can see that u(χ, t) is independent 

of time, or u(χ, t) ≡ u(χ, 0) ≡ u(χ). Under such condition we set 𝜉(0) = 1   to obtain     

u(χ) = |ψ(χ)|2          (50) 

In such case, the true nature of α can be established, but it plays no role in the 

establishment of the probability density function. Its true nature is important in 

identifying the dynamics of the asset pricing when treated separately. This is in 

congruence with the fact that the primary identity of the differential expression is the 

square root of the probability density function.   

 

4.3.2.5. SCENARIO 4.0 – PART II 

We consider  (t) to represent the stock price at time t. We further simplify its notation to 

t, where t is determined by the stochastic differential equation 

dξt = ξt(μdt + σdWt)      (51)      

with {Wt, t ≥ 0} being a standard Brownian motion, σ > 0, and μ are constants,  in-line 

with Doobs (1953),  Spitzer (1970), Snyder and Miller (1991), Revus and Yor (2004), 

Sondermann (2007), Parzen (2015). In the financial trading context and in line with 

literature (Elton and Gruber, 2011), parameter σ is known to represent the volatility of 

stock. We consider next a stochastic differential equation for the exponential Brownian 

motion equivalent to the Euler (Karatzas and Shreve, 1998a:1998b; Gobet, 2000) 

discretised solution of equation (66). Solving (66) through integration, we obtain the 

exponential Brownian motion t = 0 exp(σWt + μt), where Wt is the standard Brownian 
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motion and 0 is a constant. Using the argument in Kennedy (2010), we further replace 

μ  by μ − σ2/2  and obtain the discretised solution of the form  

ξt = ξ0exp [(μ −
σ2

2
) t + σWt]       (52)  

which evolves the state variable using an Euler discretisation scheme. It follows that the 

stock-price process {t, t ≥ 0} is an exponential Brownian motion similar to the ones 

reported across literature, specifically in the works of Kennedy (2010), Shreve (2004), 

Kijima (2013), Lamberton and Bernard (2007), Karatzas and Shreve (1998a:1998b), to 

name a few. Further on and in accordance with Jackson and Staunton (2004), we set  

Wt = Zt√t        (53) 

where Zt is ~N(0, 1), typified by a shuffling randomiser procedure in practical application,  

suggested by Flannery et al., (2002).  Combining expressions (52) and (53), we obtain 

ξt = ξ0exp [(μ −
σ2

2
) t + σWt] = ξ0exp [(μ −

σ2

2
) t + σZt√t]        (54) 

Under the effect of the master expression, the right-hand-side phase factor affects the 

function where t is the asset price proxy and the α is an expectation term 

α = E [(μ −
σ2

2
+

σZt

√t
) t] = μ −

σ2

2
         (55) 

Subsequently 

ξt = ξ0exp [(μ −
σ2

2
) t]          (56) 

and 
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St = S0exp(σZt√t)ξt = S0exp(αt + σZt√t)        (57) 

After substituting the new expression for  α we obtain 

(−
1

2

∂2

∂χ2 + κη(χ)) ψ(χ) = i × (μ −
1

2
σ2) ψ(χ)        (58) 

Where  is an asset price equivalent function and ( )χψ  is the square root of probability 

density function. Both functions are postulated in a phase factor relationship as described 

in the GSE. 

 

4.3.3 CASE 3.0 - GENERALISED OPERATOR 

Suppose that {, t ≥ 0} is a stochastic process, S()  and () have quasi-zero time-

dimension asset and portfolio pricing function identities, respectively. We establish that 

they have continuous second order partial derivatives and can be expressed in differential 

forms: 

Os ∙ S(χ) = 0   where operator    Os =  [−
1

2

∂2

∂χ2 +  (μ −
1

2
σ2)]              (59)     

OΠ ∙ Π(χ) = 0   where operator    OΠ =  [−
1

2

∂2

∂χ2 +  (μ −
1

2
σ2) − rf]       (60) 

To determine the meaning of the k and α we can consider GSE with no probability 

density function identity present (n=0) and the two-fund separation problem; the portfolio 

of a risk free investment and a risky asset, such as stock.  
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(−
1

2

∂2

∂x2 + κη(x)(χ)) ψ(x) = (in)m (
1

ξ(t)

∂ξ(t)

∂t
) ψ(x)           (61) 

(in)m (
1

ξ(t)

∂ξ(t)

∂t
) = (i0)m (

1

ξ(t)

∂ξ(t)

∂t
) = (

1

ξ(t)

∂ξ(t)

∂t
) = α        (62) 

We set α=0, justified by the fact that at a quasi-zero time point, the sensitivity of ξ on an 

infinitesimal time increment should diminish (Eugene and O’Donnell, 1997). Basically  

is constant and the asset price identity beyond the price-point and over the time horizon 

is assigned to the function, , that also leads to the asset pricing identity assignment to 

composite function f(, t) i.e. refer to the master formulation (GSE). It is exactly this that 

sets (i0)m=1, due to the lack of a probability density function identity in this consideration. 

Such considerations lead to the purpose of augmentation of  the GSE to entirely represent 

an asset pricing differential equation, endowed by properties of ordinary differential 

equations (Birkoff and Rota, 1962; Nagle et al., 2004). This allows us to express (76) as 

−
1

2

∂2S(χ)

∂χ2 + κη(χ)S(χ) = 0           (63) 

where )χ(ψ≡)χ(S  representing the asset p-point74 function, which in this case is an equity 

account function. The )χ(S value is dictated by the filtration effect at time t. The more 

holistic form of it would be denoted Sℱ@t(), where ℱ @t represents the filtration effect 

at time t, however, we will carry on using the short hand notation for simplicity. The 

concept of filtrations, both in formulation and reflection of events’ processing at the 

market interface is discussed in greater length in Malliaris (1982), Øksendal (2000), Bru 

                                                           

74 Price-Point; a specific time-node reading of price in the market line and within a time horizon. 
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et al. (2012). Furthermore the events’ reflection on the asset price are in line with efficient 

market hypothesis (Asquith, 1983); Bachelier, 1990; Bernard and Thomas, 1990; Bodie 

et al., 2009, Khrennikov, 2018).   

 

It is possible to consider a non-zero solution by setting α = −rf, which can be possible 

under the consideration of a model that consists of an economy in which there are just 

two assets, a bank account paying a fixed continuously compounded interest rate rf per 

unit time and the second risky asset with a price given by a stochastic process; we will 

refer to the latter asset as a stock but it may be any other tradable asset, such as a foreign 

currency (Doobs, 1953; Spitzer, 1970;  Parzen, 2015).  

 

One unit in the bank at time 0 grows to exp (rft) by time t and we will assume that rf ≥ 0, 

although from the mathematical viewpoint this is not a requirement for all that follows. 

The bank account ensures that there is positive riskless borrowing so that for example, at 

time τ a bond paying off one unit at time t may be bought at a positive price exp(-(t-τ). 

This implies that the discount factor is exp (−rft)  at time t.  Under the two-fund portfolio 

basis, ψ() would represent the portfolio value function, ℱ@t () under the filtration 

effect at time, t. The subscript is dropped in the following consideration for simplicity 

(Doobs, 1953; Spitzer, 1970; Parzen, 2015). 

 

The price in both cases can progressively evolve along the time dimension, however we 
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additionally consider a  zero-dimension  reset effect, which allows us to dwell on possible  

price quantization effects at any given time point; the quasi zero quantized price  pattern 

will be independent of the time; this does not invalidate our understanding of the spatial 

price evolution nor its spatial distribution, but instead sheds light on additional price 

behaviour pattern dynamics, complimentary to the spatial one (Möller and Zettl, 1996; 

Yan et al., 2017; Fiorin et al., 2018). This can be assigned to the strength of filtrations, 

the dissipative effect of information by the market, and the subsequent reflections on the 

market price in line with an efficient market hypothesis (Jordan, 1983; Fama, 1991; 

Malkiel, 2003; Bodie et al., 2009). This implies a composite price pattern evolution within 

the probability space, attributed to the probability triple (Ω , ℱ, P), a non-empty set Ω, 

the sample space, a σ-field ℱ of subsets of Ω,  and a probability (measure) P defined on 

filtrations ℱ.  

 

From our  mathematical workings (see Appendix  II – CASE 3.0),  equations 

[−
1

2

∂2

∂χ2
+  (μ −

1

2
σ2)] 𝑆(𝜒) = 0               (64) 

[(𝑟𝑓 −
1

2

∂2

∂χ2 ) + (μ −
1

2
σ2)] Π(𝜒) = 0      (65) 

are easily recognized harmonics and in a form ready to be used for price valuation work 

at a quasi-zero dimension point, along the price evolution path. Furthermore on close 

inspection, we evidently see that a solution of Sturm-Liouville type can be sought out 

(Pruess, 1973; Pavel, 1975; Combescure and Ginibre, 1976;  Parthasarathy, 1992; Pruess 

and Fulton, 1993; Kong and Zettl, 1996; Kong et al.,  2000:2001:2004;  Savchuk and  
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Shkalikov,  1999;  Albeverio and Kurasov, 2000; Pages et al., 2003). We recall that stock 

price has an initial price assumed to be observed at time 0. The information available at 

time t is the history of the price process, ℱ1 = σ(Su, 0 ≤ u ≤ t).  That is the information 

obtained by observing movements of the stock price process up to time t; equivalently, it 

is σ(Wu, 0 ≤ u ≤ t);  information obtained by observing the driving Brownian motion in 

the stochastic differential equation (Ito, 1951; Karatzas and Shreve, 1998b; Parthasarathy, 

1992;  Øksendal, 2000, Jacus, 2008). 

 

4.3.4 CASE 4.0 – TIME INDEPENDENT EIGEN-STATE FORMULATION 

Suppose that {t, t ≥ 0} is a stochastic process, f(,t) is a time-independent function with 

continuous second order partial derivatives, γ() is a simple harmonic function. The 

probability density function un(t,t) may be represented in the time-independent 

discretised and Eigen-state form: 

un(χ) = |ψn(χ)|2 = (
α

√π
2nn!) |Hn(αχ)|2e−(αχ)2

    (66) 

where  χ = r − μ, a = 1 (σ√2⁄ ) , and n = 0 represents the classical expression of the 

probability density function at the lowest Eigen-state level: 

 
















2

 - r

2

1
-

0 e
2

1
ru               (67) 

        

For n = 0, we obtain the classical expression for the probability density functions u0(χ) 

and it has a maximum at χ = 0.   
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From our mathematical workings (Appendix II – CASE 4.0), we conclude that as n 

increases, the result moves away from the classical result implied. Further more equation  

ψn(χ) = (
α

√π
2nn!)

1

2
Hn(αχ)e−

1

2
(αχ)2

       (68) 

is a solution of the differential equation  

  
∂2F

∂χ2 − 2χ
∂F

∂χ
+ (2α − 1)F = 0           (69) 

See Appendix II – CASE 4.0 for the transformation ψ to F).It implies harmonic behaviour 

and its solutions are Hermite functions.  Equation (68) includes the square root of the 

weight function , so that the functions ψ(χ) are orthogonal when integrated from - to 

+, which is required by theory (Szego, 1939; Gupta et al., 1974; Walter, 1980; Greblicki, 

1981; Walter, 1980; Puig, 2003).  

 

The orthogonality of the Hermite polynomials is expressed by  

∫ e−χ2+∞

−∞
HnHmdχ = δnm2nn! √π          (70) 

where nmδ  is the Kronecker delta which is a function of two variables, usually just 

positive integers (Szego, 1939; Bailey, 1966; Gupta et al., 1974; Greblicki, 1981). The 

function is 1 if the variables are equal and 0 otherwise 

δij = {
0 if i ≠ j
1 if i = j

                (71) 
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is zero if m is not equal to n, and unity if m is equal to n.  

 

Schwartz (1967) provides the full mathematical work-out, and we do not reproduce it 

here. In essence  to prove it, one would need express the exponential times the Hermite 

polynomial of larger order as an nth derivative using the Rodrigues formula, and then 

use integration by parts until the polynomial of smaller order is differentiated to zero 

(Schwartz, 1967). If the orders are equal, the final integral, and subsequently the result 

is the integral of exp(−χ2) times a constant, and the normalisation constant becomes 

(√2π)n!  (Walter,1977). The orthogonality attribution can be used to expand an 

arbitrary function in a series of Hermite polynomials, in exactly the same way as a 

Fourier series (Sansone, 1939; Walter, 1980; Brigham, 1988; Puig, 2003; Fang and 

Oosterlee, 2009; Callegaro, et al., 2018a).  

 

5.0 ASSET PRICE RAPPROCHEMENT: SPLIT PDF IDENTITIES AND 

STURM-LIOUVILLE QUANTUM FITTING 

 

The main aims of this chapter are to (1) fit a quantum price system to our probabilistic 

stochastic finance asset price and contingent claim valuation model, and (2) establish the 

dynamics of Eigen-prices of an information-conservation and dissipation environment 

such as an efficient market affected by stochastic randomness with price moves skewed   

by market price impact of filtrations. The idea put forward is that in order to understand 

the dynamics of time-horizon based market-motive price moves, we need to make a  

strong assumption - that  in the absence of  a 3-dimensional physical confinement of the 

price (that would be illogical to consider),  it is reasonable to consider a factor-based 
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model and a zero-dimensional quantum price-system or view. This represents an actual 

point in the market-motive price line, modelled through a zero-dimensional quantum 

system with a measurable density of price states. It implies that the continuous market-

motive price line is a continuous exhibition of the discrete nature of prices within a 

quantum-price system.  

 

 

This will lead eventually to the identification, modelling, and measuring of a highly 

discretised quantum price distribution function to replace (or combine with) the 

probability density functions used by the existing models, such as the on suggested by 

Black and Scholes (1973). The essence of the chapter itself is in the creation of a new 

adaptive theory, as well as in the identification, measuring, and modelling of a 

parameterized zero-dimensional quantum price framework that would provide the 

theoretical basis for future research with the intention to extend it to alternative financial 

derivatives’ pricing models.  

 

 

The fundamental hypothesis is that the continuous price line in a conservative and 

dissipative information system such as an efficient market is a result of the discrete time-

space underplaying, where price jumps in the market surface are the result of continuous 

time-space effects, i.e. ex-dividend dates, cash flow projections, new technological 

innovations, etc. The focus here is on the discrete time-space effect which itself is the 

driving force behind the random or the stochastic nature of prices in a market–motive 

surface, and that once quantified can be combined or factored in derivative pricing 

models. 
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5.1   INTUITION AND RATIONALE  

 

In this study the asset price and contingent claim valuation is conceptualized across a 

sequence of time nodes and measured in the quasi-zero-dimension level in a model with 

an extended number of degrees of freedom. Modern  pricing theories  consider wealth 

growth along a parametrized “medium” (Cox et al. 1979; Ho and Lee, 1986; Black, 1989; 

Jarrow and Turnbull, 1998; Elton and  Gruber, 2011). Moreover in cases where the price 

valuation is carried out in a dual manner, at an underlying asset base, and at the asset-

protection level through contingent claims, the time implication is of paramount 

importance in the expectation term. It can be seen more clearly through the Black-Scholes 

formula for a call expressed in a slightly different way, such as 

    21
rTrT dXNdNSeec  

 or 
    21T

rT dXNdNSec  
     (72) 

The expression inside the square brackets represents the expected payoff of the option,  

EQ[… ]. N(d2) is the probability that the call will be exercised in a risk-neutral world, where 

a share that pays no dividends has an expected return or the risk-free rate.  

 

In the contingent claim valuation formulations  (Ho and Lee, 1986; Jarrow and Turnbull, 

1998; Hull, 2014), and the original work of Black and Scholes (1972:1973:1989) using a 

continuous stochastic process, the expectation term has a probabilistic nature with a time 

parameter too. Kennedy (2010)  articulates that stock price changes may also be 

represented by a one-parameter stochastic process, whereas interest rates are naturally 
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represented by a two-parameter process, where  the first parameter is the time that the 

loan matures, and the  second parameter is the ‘real’ time, so that the process modelled is 

a random surface economical factor tracked  usually to the market return and is claimed 

to explain to a good degree the price movements of other stock in the market. Bodie et al. 

(2009) also explains to a greater extent the price behaviour at each time-node and 

measures in terms of either logarithmic price change or a price percentage change. 

Additional factors  (i.e. indices) can be added to the index model, leading to an increase 

in the degrees of freedom. 

 

Karatzas and Shreve (1998b), Revus and Yor (2004), Shiryaev et al. (2006), and Kennedy 

(2010) articulate in depth the concept of filtrations and consider the real-time shock effect 

at the asset price, observable and measurable in the market volatility surface. However 

we consider an additional and unrelated “orthogonal” filtration effect to the asset price, 

which we attribute to the strength of the filtrations and the impact the filtrations’ degrees 

of strength have on each p-point75, but in symmetry with the “dissipation” ability of the 

market of each event or stream of events We consider the “orthogonal” filtration 

attribution to be responsible  for the quantized price change behaviour  at each p-point.  

 

The stochastic shock effect due to the relevant filtrations, absorbed by the markets and 

                                                           

75 The term p-point refers to a price point or a zero-time price point/system, alternatively the term p-tip is used in 

equivalence and implies ”orthogonally” in the price, or price/value identification at a zero-time point where it is difficult 

to establish with the current models; normally a supplementary effect in pricing or an additional term  unrelated or 

independent, which  is ignored by the classical asset pricing models. The terms are used interchangeably in this paper. 
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reflected in the stock price, is often modelled through the Weiner process and has a 

Gaussian distribution (Boobs 1953; Fujihara and Park, 1990). However, this study 

suggests that the “real” probability distribution system contains various probability 

distributions with various degrees of distribution mixing, where the system itself exists 

in various eigen-state levels of mixing or separation; a quantization effect that follows 

directly from the 3x expansion of the price-system’s degrees of freedom. The Gaussian 

probability distribution function corresponds to the lowest and most stable eigen-state, 

however at higher quantized levels (i.e. higher volatilities and irregularities in filtrations 

patterns), there are distribution splits, evident both mathematically and through numerical 

illustrations (Luschgy and Pages, 2002; Haven, 2002;  Bally and Pages, 2003; Zhang et 

al., 2014; Khrennikov, 2018).  

 

Further on the new model considers the additional price change effect due to the 

quantization effects at each price point, and subsequently models the cumulative price-

change (i.e. more precisely the return rate) effects through the classical pricing models 

with the additional quantization effects on the price-change at a quasi-zero time 

dimension of each point along the market line. This has profound implications in financial 

instrument pricing, especially in financial derivatives because the classical models such 

as Black and Scholes option pricing (Black and Scholes, 1972:1973;  Ho and Lee, 1986; 

Jarrow and Turnbull, 1998) among others, use a probability distribution with normal or 

lognormal distribution considerations, which under the new model needs to be upgraded  

to include the probability distribution system mixing and the additional Fermi-Dirac 

probability distribution for the quasi-zero price point system along the market line. 
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Hence, the objective of this chapter is threefold: First, reconsider pricing problems 

starting from our previously augmented generalisation of the Schrödinger PDE, leading 

to asset price and financial derivative valuation formulations in partial differential forms; 

secondly, we derive valuation expressions that are in line with a rational  investor’s 

expectations, although derived from an abstract and unified formulation; thirdly, we 

incorporate quantization effects in the probability distribution and the price-change 

systems, and subsequently provide a Sturm-Liouville  solutions (Bailey, 1966; Zettl, 

1997; Zhang et al., 2014). 

 

In this chapter we use a postulated problem with a very abstract formulation and various 

common cases that are in line with contemporary pricing models (Bodie et al., 2009); 

the problem is a financial instrument valuation challenge springing from an axiom, with 

Strum-Liouville adapt-solutions, in order to observe quantization effects at a price’s 

point in the time line.   

 

We seek to pick on patterned curvatures as an effect of price quantization at each time 

point in a market price line, assigned to internal mechanics of the Ⓓ-world. Attempts have 

been made by other  researchers to link this concept to asset pricing and portfolio 

valuation, although Levental et al. (2016) claim that all uncertainty is  generated by a 

multiple-dimensional standard geometric Browning motion over finite time horizon  [0, 

T], supported in probability space (  , F,  P), given tangible observations in real time of 

augmented filtration {Ft : t ∈  [0, T]} . However, there is no factorization of any 
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quantization effect or linkage to a possible regularly patterned probability surface 

curvature. We seek such Ⓓ-world implied curvature pattern in exhibitions of implied 

volatility surfaces. 

 

Stochastic financial variables represent randomizer effects that are attributed to filtration 

diffusion processes, although we would wish to identify the deterministic component of 

a process of this type, the non-deterministic part will be a source of contribution to the 

random measure.  

 

Although the properties of random variable and attributes of financial products are 

reported in modern  times, there is a status-quo in terms of the analytics, most are centred 

around the Black-Scholes option pricing (and indexing for bonds and stock). We attempt 

to connect the two here and reapply the stochastic concepts in order to leverage deeper 

knowledge and revisit the known models with intent to upgrade them.  

 

The concept of ↑↓ direction of a random variable is argued well in various existing 

literature, such as Lamberton and Bernard (2007), and Shiryaev et al. (2006), but there is 

a lack of literature in terms of attributing such as properties to other than our own ‘real’ 

universe, or the continues time-space world (the Ⓒ-world), where randomized residual 

effects are exhibited and financial instruments’ prices are developed and observed.  
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We consider both the application of such attribution to our own world, but also on each 

information dissipation point along the market line, or within the Ⓓ-world. We thus 

consider uncountable collections of random values (i.e. price behaviours in a typical case) 

within a supremum representation in both the Ⓒ↓↑ and Ⓓ↑↓-world. This is a new concept 

and there is little of significance in existing literature. With the new construct, we also 

provide the internal mechanics and the necessary vocabulary to be used along.  

 

The Ⓓ↑↓ system focus is on effects of dissipation and the appropriation of that on price 

density of states. It represents the essential supremum within the system and under the 

price-related information dissipation effects. No existing literature makes such 

connection or treats such constructs in this way, least so on the internal dynamics of the 

price development within the Ⓓ↑↓-system, and the quantification of information 

dissipation within such system.  

 

A stochastic process on its own and in its application in asset pricing or contingent claim 

valuation is typically composed of a deterministic part and an additional process known 

as the Weiner process. The Wiener process describes behaviour of a variable that is 

subject to random shocks that are completely uncorrelated over time. It satisfies the 

Markov property, which entails that the current observation of a variable summarizes all 

the relevant information we need to predict its future values; past history of the process 

is irrelevant. Such process is said to be a process without memory. It is on the basis of 

Markov property that we consider the stopping time and the Ⓓ↑↓ system; a zero-time 3-
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dimension expansion where information is dissipated by the market. We also consider 

that market ‘tunnelling’ effect is present in  well-regulated markets (Doobs, 1953; Spitzer, 

1970; Ho and Lee, 1986; Snyder and Miller, 1991; Seneta, 1996; Bally and Pages, 2003; 

Parzen, 2015; Rustemovich  and Mukmino, 2018). 

 

This is something that is not included in existing literature in finance or related domains. 

The information “tunneling” effect is quantified well in literature related to applied 

mathematics, but no feasible adaptation of it in finance has been reported. The stochastic 

process aligns to price development dynamics with the Ⓒ↓↑-world, and typically does not 

consider Ⓓ↑↓ system measures, which represents a missing link (matched by lack of 

literature, hence a research gap partition), that we integrate in our abstract analytical 

framework. 

 

Information available at time t is the history of the price process,ℱ1 = σ(Su, 0 ≤ u ≤ t),  

that is the information obtained by observing the movements of the stock price process 

up to time t; equivalently, it is σ(Wu, 0 ≤ u ≤ t),  the information obtained by observing 

the driving Brownian motion in the stochastic differential equation. Most authors, (among 

whom Karatzas and Shreve, 1998b; Øskedal, 2000; Shiryaev et al., 2006; Sondermann, 

2007; Lamberton and Bernard, 2007), consider the contingent claim valuation from basic 

assumptions of a one time period horizon and a discrete-time underlying process (i.e. not 

to be confused with the “orthogonal” price change or displacement within the discretised 

Ⓓ-system, although they interface at each discretised stop time or time node), and seek 



179 

 

an equivalent martingale measure (or probability), which is an equivalent probability Q 

under which the discounted stock-price process {e-ρtSt, 0 ≤ t ≤ t0} is a martingale.  

 

5.2. PROPOSED FINANCIAL DERIVATIVES’ PARTIAL DIFFERENTIAL 

EQUATIONS (PDEs) 
 

 

 

We start with the GSE, defined in the previous chapter and restated here for q =1: 

 

∀m ∈ {0, … , M}, ∀n ∈ {0, … , N} [(
1

2

∂2

∂x2 + γ(χ, t) + (in)m ∂

∂t
) f(χ, t)] = 0    (73) 

 

5.2.1 CASE 5.0 – TIME-DEPENDENT ASSET PRICING PDE 

Suppose that {t, t ≥ 0} is a stochastic process and that f(,t) is a time-dependent function 

with continuous second order partial derivatives. The composite function f(t,t) may be 

represented in the differential forms: 

(−
1

2

∂2

∂χ2
+ (γ(χ, t) − 𝛼)) ψ(χ, t) = ((in)m ∂

∂t
) ψ(χ, t)      (74) 

We do not make a claim on the identity of the function f(,t) at this point or for this 

theorem’s general effect, nor do we intend to do so in this formulation; it is a broadly 

generic expression. However, we seek a solution that considers it to be a composite 

function (Eugene and O’Donnell, 1997). This is suitable in cases where focus shifts to the 

identities of the constituent functions ψ(, t), and (t); typically they could be considered 

to be asset and contingent claim valuation functions. Refer to Appendix II – Case 5.0  for 
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mathematical workings.  

 

 

5.2.1.1. SCENARIO 1.0 – PART I 

Suppose the  usual assumptions such  that {t, t ≥ 0}, {xt, t ≥ 0},{st, t ≥ 0}, are stochastic 

processes with transformational inter-dependent relations and that f(,t) and ψ(,t)  are 

time-dependent functions with continuous second order partial derivatives. We then 

consider a scenario where one single contingent claim, with a function ψ(s, t), carries the 

legality of operating on (purchase or sell) a fraction of a stock, s (t). We also assume a 

financial environment where borrowing and lending are possible at the risk free rate rf. 

Alternatively, we assume there is one risk free investment in the economy, and it is 

possible to action a claim on an asset (such as stock) on the basis of an underwritten 

contract between parties (Black and Scholes, 1973; Merton, 1973:1974:1976; Hull and 

White, 1987; Black, 1989; Hull, 2014). We also consider random variable  to possess 

all the properties outlined earlier and articulated in good detail by Kennedy (2010).  

 

Next we define  

σ

μ-x
=χ  and

( )

s

tsd
=x

s
∫              (75) 

Where x = σ+μ, is also a random variable incorporated as a function x :  Ω  → R, 

measurable with respect to ℱ. That is all events (x ≤ σc+μ) = (Ω  : x( Ω ) ≤ σc+μ) ∈ ℱ for 

all real numbers σ ∈ R  , μ ∈ R , and c ∈ R   (Kennedy, 2010).  It follows that  
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22 dsdχand
σs

ds

σ

xd
χd

2

σs

1








              (76) 

We consider a pricing identity for ψ(s, t). More specifically a contingent claim, such as 

a financial option (Ross, 2003). We then substitute (76) into equation (74) to obtain 

 
 

 
t∂

ts,ψ∂
ts,ψt)γ(s,-α

s∂

ts,ψ∂
σs

2

1
- ][

2

2

         (77) 

It follows that  

 
 

 
f

20 r
t∂

tξ∂

tξ

1
iα ][ )(           (78) 

Further, we substitute (78) into (77) and move all terms onto the same side of the 

expression to obtain 

 
   

  0ts,ψt)γ(s,-r-
s∂

ts,ψ∂
sσ

2

1

t∂

ts,ψ∂
][ f2

2
22         (79)  

Next we establish the identity γ(s, t) by considering a portfolio, , under a risk-neutral 

environment and within one wealth-generating time horizon (Hull, 2014). Under this case 

ψ(s, t)  represents the value of a one tradable contingent claim, where the portfolio 

contains one option and –h (i.e.   𝜕𝜓 𝜕𝑠⁄ ) units of the underlying stock (Treynor and 

Black, 1973; Black, 1989; Bustamante and Contreras, 2016). The term r is the growth 

of riskless portfolio  in the time horizon. This allows us to set 

( ) ( ) ( ) tr
fff

feΠr=)s
s∂

ψ∂
-ψ(r=)sh-ψ(r=t,sψt,sγ-t,sψr         (80) 
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Expression (80) is consistent with the case of a self-financed portfolio, where h = ∂ψ ∂s⁄ , 

represents the hedge. Substitute (80) into our initial  PDE we obtain 

   
  0ts,ψ

s
s-1r-

s∂

ts,ψ∂
sσ

2

1

t∂

ts,ψ∂
][f2

2
22 




        (81) 

where the identity of γ is evidently  

γ = rs
∂

∂s
=  rsΩ    (82) 

The non-zero operator, Ω, underlines the fact that the price of the option is quantized at a 

quasi-zero dimensional point in the price evolution path, under the full effect of filtrations.  

We can write    

∂ψ(s, t)

∂t
+

1

2
σ2s2

∂2ψ(s, t)

∂s2
−, (s, t) + rsΩψ(s, t) = 0    (83) 

Replacing the expression for Ω, we obtain the Black-Scholes PDE. 

∂ψ(s, t)

∂t
+

1

2
σ2s2

∂2ψ(s, t)

∂s2
+ rs

∂ψ(s, t)

∂s
− rψ(s, t) = 0    (84) 

Equation (84) is a significant result, due to the fact that it validates the  GSE and gives us 

flexibility in terms of the identity of the function γ(s, t), which allows one to investigate 

different scenarios.  

 

In the classical approach and in alignment with Black and Scholes (1973), Black (1989), 

and  Shiryaev et al. (2006), the resulting expression (84) is achieved by using  Ito’s 

Lemma for a function with multiple variables (typically, variables s and t), relating a 
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small change in a function of a random variable to a small change in the variable itself  

with  a deterministic component dt and a random component d. Further  our finding that  

the Black-Scholes option pricing PDE is a special case of  Schrödinger’s  equation  is in-

line with the research work of Haven (2002).  

 

5.2.1.2. SCENARIO 1.0 – PART II 

Consider the usual assumptions that {t, t ≥ 0}, {xt, t ≥ 0}, {st, t ≥ 0}, are stochastic 

processes with transformational inter-dependent relations and that f(,t) and ψ(,t) are 

time-dependent functions with continuous second order partial derivatives. Given suitable 

relations between the stochastic processes,  we may write ψ(s, t)  in the form: 

( )
( ) 0=

sσ

h
)r+σ

2

1
-μ(-t,sψ

2s2σ

r
+

s∂

t,sψ∂

2

1
-

2f
2

2

2

      (85) 

where rf is the risk free rate of return and μ the rate of return on a risky asset such as 

stock. 

 

Following from SCENARIO 1.0 – PART I, we seek a solution that can easily be presented in 

the Sturm-Liouville form for easy valuation at a quasi-zero dimension price point (Bailey, 

1966). We start with expression (84) and with minor arrangements obtain 

( ) ( )
( )

( )
t∂

t,sψ∂
=t,sψr+

s∂

t,sψ∂
rs-

s∂

t,sψ∂
sσ

2

1
 -

2

2
22

                (86) 

then expand the right-hand side of (86) 
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 
 

   
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- ff2
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22          (87) 

and rearrange 

 
 

   
0

s∂

ts,ψ∂
sr-

t∂

s∂

s

1

s∂

ts,ψ∂
s-ts,ψr

s∂

ts,ψ∂
sσ

2

1
- ])([ ff2

2
22        (88) 

The price of the stock at time t is St, where St is determined by the stochastic differential 

equation 

( )
ttt dWσ+dtμS=dS                          (89) 

with {Wt, t ≥ 0} being a standard Brownian motion and σ > 0, μ are constants (Shiryaev 

et al., 2006; Parzen, 2015). It follows from equation (89) that stock-price process {St, t ≥ 

0} is an exponential Brownian motion and may be represented as 

)σWσ
2

1
-exp(μSS t

2

0t           (90) 

where S0 is the initial price of the stock, assumed to be observed at time 0. The 

information available at time t is the history of the price process, ℱ1 = σ(Su, 0 ≤ u ≤ t). 

That is, the information obtained by observing the movements of the stock price process 

up to time t; equivalently, it is σ(Wu, 0 ≤ u ≤ t),  the information obtained by observing 

the driving Brownian motion in the stochastic differential equation (Ito, 1951; Giller, 

1982;  Weidmann, 1987; Øskedal, 2000; Parzen, 2015).  It is evident that  

2σ
2

1
-μ

t∂

s∂

s

1








          (91) 
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We then substitute back into (88) and obtain 

 
  0r)sh2σ

2

1
-(μ-ts,rψ

2s∂

ts,ψ2∂2s2σ
2

1
-              (92) 

After re-arrangement, we get 

 
  0

s2σ

h
r)2σ

2

1
-(μ-ts,ψ

2s2σ

r

2s∂

ts,ψ2∂

2

1
-        (93) 

A special case arises when the right-hand side of equation (86) is set to zero. This is 

possible as we seek a solution of a quantized value pattern at zero-dimension price point, 

resulting in simplified mathematical expression 

 
  0hsr-ts,ψ

f
r

2s∂

ts,ψ2∂2s2σ
2

1
-       (94) 

  

5.3. PRELIMINARY PROPOSAL FOR THE  POTENTIAL 

‘IDENTITY’  FUNCTION 
 

 

In our previous sections and chapter, the function  γ(χ)  in the  GSE and subsequent  cases  

and scenarios, was identified. It reflects the main underlying idea behind the GSE in terms 

of what it does and how the functions ψ(χ) and f(χ, t) were identified, thus we refer to it 

at times as the “identity” function. That is because in order to get to identities of ψ(χ) 

and f(χ, t), we need to establish the identity of γ(χ)  first. We introduce preliminarily such 

function here and provide a much more detailed explanation in the next chapter. We 

consider it to stem from the following general expression. 
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         γ(χ) = ∑ κnχn = ⋯ + κ−iχ
−i + ⋯ + κ−2χ−2 + κ−1χ−1 + κ0

n=+∞
n=−∞ + κ1χ1 + κ2χ2 + ⋯ +

κiχ
i + ⋯        (95) 

 

where χ =
1

L
(

r−μ

σ
)  , or 

                     

γ(r) = ∑ κn (
1

L
(

r−μ

σ
))

n

= ⋯ + κ−i (
1

L
(

r−μ

σ
))

−i

+ ⋯ + κ−1 (
1

L
(

r−μ

σ
))

−1

+ κ0
n=+∞
n=−∞ + κ1 (

1

L
(

r−μ

σ
))

1

+

⋯ +κi (
1

L
(

r−μ

σ
))

i

+ ⋯         (96) 

 

The generalized potential “identity” function can be broken down to specific functions 

and solutions, dependent on the values of the coefficients n , and the value of n (Eugene 

and O’Donnell, 1997). The choice of the “identity” function is quite important as it is 

linked with the density of states and reflects the effect of the filtrations and patterns in a 

volatility surface of a financial market (Möller and Zettl, 1996). Furthermore it can drive 

price dynamics towards a stable state and lead to a reasonable cut-off price. All of the 

“identity” functions used in Table 2.0 can be generated by careful selection of values of 

n and κn. For example when n=0, κ+1 ≠ 0 and all the other coefficients are set to zero, it 

yields the harmonic case γ(χ) = κ+1χ2. Using the logic above we can generate many 

more testable functions (Möller and Zettl, 1996), some of which are tabulated below: 

 

    TABLE 1.  
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 NAME  AXIOM IDENITY FUNCTION 

1. GAUSSIAN γ(χ) = γ(0)[1 − exp(−χ2)] 

2. HARMONIC γ(χ) =
1

2
κχ2 

3. DECAYING EXPONENTIAL γ(χ) = γ(0)[1 − exp(−χ)] 

4. LINEAR γ(χ) = γ(0)χ 

5. CONSTANT SQUARE WELL γ(χ) = γ(0) 

6. 
ARCTAN 

 
γ(χ) =

1

2
γ(0) [

2

π
arctan (

1

b
χ) + 1] 

7. COSH-2 γ(χ) = γ(0)[1 − cosh−2(−χ2)] 

8. INVERSE  γ(χ) = −γ(0)
1

χ
 

 

All the functions listed in Table 1 represent alternative identities of functions, ψ(χ), and 

subsequently f(χ, t), (Eugene and O’Donnell, 1997). We previously proved that when 

γ(χ) function has a harmonic identity (equations 64 and 65), the solution obtained is the 

classical probability density function (Black and Scholes, 1972:1973). However, the 

harmonic function can be seen as the first order approximation of the Gaussian. Similarly, 

the linear function found in CASE 2.0 (equations 29 and 38), can also be seen as the first 

order approximation of a decreasing exponential function (Protter and Weinberger, 1984).  

 

5.3.1 CASE 6.0 –ASSET PRICING PDE WITH  A ‘HARMONIC’ POTENTIAL 

Suppose that {t, t ≥ 0} is a stochastic process, ψ(,t) is a time-independent function with 

continuous second order partial derivatives, tied to an identity of a probability density 

function, γ() is assumed or observed to be an approximated harmonic function. We 



188 

 

consider expression under CASE 4.0, the general effects of the master equation, and 

polynomial expression (95) with coefficients set to the creation of a Gaussian identity. 

Dependent on whether the formulae are expressed in term of χ or morphed to that of r, 

the Gaussian can be approximated by the harmonic function, which is useful because the 

quantization effects of a harmonic function are known (Abramowitz and Stegun, 1972).  

 

This can be seen by using the Taylor expansion 

 

 

γ(χ) = γ(χ)|χ=0 + (
dγ(χ)

dχ
|

χ=0

)
χ

1!
+ (

d2γ(χ)

dχ2
|

χ=0

)
χ2

2!
+ ⋯ + (

dnγ(χ)

dχn
|

χ=0

)
χn

n!
+ ⋯ 

          

1 − exp(−χ2) = 0 + 0 + 2
χ2

2!
− 0 − 12

χ4

4!
+ ⋯ h. o. t   (97) 

 

For χ ≪ 1 , terms χ4, χ6... approach zero much faster than χ2. Thus Gaussian is 

approximated by the harmonic function  

 

1 − exp(−χ2) ≈ χ2       (98) 

 

where   χ =
1

L
(

r−μ

σ
).   

 

 

Subsequently expression (98) is valid when (r - ) << or r << μ+. On the other hand, 

larger values of χ imply smaller volatility σ (i.e.  is inversely proportional to σ). 

Subsequently for  χ ≪ 1, r - ) <<  becomes less “true”, thus more terms on the right 

hand side of the expansion would be needed. Hence, a Gaussian identity function would 

be better suited (Abramowitz and Stegun, 1972).  

 

This shows that for small values of  or high volatilities, the harmonic is a good identity 
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representation of γ, but a poor approximation for large χ,  (small volatilities), in which 

case the Gaussian is more realistic (Abramowitz and Stegun, 1972). The approximations 

would be sensitive not only to the value of σ, but also that of μ, and a hypothesised rate 

of return, r, thus the Gaussian identity function would be all around a more generalized 

and inclusive representation than the harmonic (Eugene and O’Donnell, 1997). We 

replace expression (92) in equation (98) to obtain 

(−
1

2

∂2

∂χ2
+

1

2
κ(1 − e−χ2

)) ψ(χ) = αψ(χ)       (99) 

 

The market specifics and volatility influence the choice of γ(χ) (Joshi, 2008). In addition, 

a harmonic function’s suitability depends on many-asset correlation factors. 

 

We may apply the same logic for other expressions, however a similar transformation of 

significant impact is that of expression (84) (i.e. CASE 5.0), which is a complete match to 

the Black-Scholes PDE. Thus any update on the function would also be reflected in an 

update on the identity of the option pricing function ψ(s, t) (Malliaris, 1982; Øksendal, 

2000, Bru et al., 2012). 

 
 

 

5.3.1.1. SCENARIO 1.0  

Suppose {t, t ≥ 0} is a stochastic process, ψ(,t) is a time-independent function with 

continuous second order partial derivatives, tied to an identity of an asset’s indemnity or 

a contingent claim, γ() is assumed or observed to be an approximated linear identity.  

 

We consider the same logic and mathematical work-out as that of  CASE 5.0 to reach 

expression (84), recreated below: 
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   
  0ts,ψ1 -

s
sr

s∂

ts,ψ∂
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ts,ψ∂
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










      (100) 

 

We also  consider the general effects of master expression, and the polynomial expression 

(85)  with coefficients set in such a way to facilitate the creation of a decreasing 

exponential identity for γ(r). It is evident that a decreasing exponential can be 

approximated by a linear potential “identity” function, which is useful because it leads to 

classical Black-Scholes PDE (Karatzas and Shreve, 1998a:1998b).   

 

The linear γ(r) is only a good choice for small r or large σ, and not a good choice for 

larger r (and small volatility). The linear identity function has presumed observable or 

measurable quantization effects and is subsequently easier to treat mathematically or 

apply as the classical result shows. However, we seek to generalise with better inclusion 

of parameter sensitivities. We can see from the Taylor expansion of a decreasing 

exponential   

 

   h.o.t-r
3!

1
r

2!

1
-r

1!

1
r-exp-1 32 


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

















                  (101) 

 

For very small r (large σ), it can be approximated to a linear function 

 

  r≈r-exp-1                   (102) 

 

Which is then substituted back to equation (100) to obtain 

 

 

        0ts,ψ1 -
s

se-1
s∂

ts,ψ∂
σs

2

1

t∂
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2

2
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






         (103) 

 

Equation (103) provides a modification at a slightly more generalised level of the well 

reported and applied Black-Scholes PDE (Black and Scholes, 1973; Black, 1989). 

Another level of generalisation can be achieved by revisiting the problem treated 
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previously (i.e. CASE 5.0). 

 

5.3.2 CASE 7.0 – SUPERSET DERIVATIVES’ PRICING  PDE  

Suppose {t, t ≥ 0}, {st, t ≥ 0} are stochastic processes, and ψ(,t) is a time-dependent 

function with continuous second order partial derivatives. The composite function ψ(t,t) 

may be represented in  the following differential form: 

− (
∂

∂t
+ (1 + r))

2

ψ +
1

2
s (

∂

∂s
) ψ + ψ = 0        (104) 

 

Expression (104)  is a more generalised and abstract solution than the Black-Scholes 

PDE. Interesting in this case, the potential has a constant identity. See  Appendix II – 

CASE 7.0 for the full derivation of  equation (104). 

 
 

 

5.3.2.1. SCENARIO 1.0  

Suppose that {st, t ≥ 0} is a stochastic process, ψ(,t) is a time-independent function with 

continuous second order partial derivatives, tied to an identity of an asset’s indemnity or 

a contingent claim, γ is assumed or observed to have a constant identity.  We Consider  

equation (104) and apply the operator s/  to obtain 

1

2
[s

∂2

∂s2 + 3
∂

∂s
] ψ =

∂

∂s
[

∂

∂t
+ (1 + r)]

2

ψ         (105)    

or 
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1

2
[s

∂2

∂s2 + 3h] ψ =
∂

∂s
[

∂

∂t
+ (1 + r)]

2

ψ      (106)  

Previously we have considered cases that led to PDEs that could allow us to establish the 

quantization effects (Bailey, 1966; Giller, 1982; Weidmann, 1987), often those of price 

or log price. However in this case it would be the operator on the right hand side, which 

under the variable separation effect it is a constant. We denote it by [], as shown below                 

[Ξ] =
∂

∂s
[

∂

∂t
+ (1 + r)]

2

       (107) 

and after re-arrangement, we obtain 

s
1

2

∂2ψ

∂s2 +
3

2
h = [Ξ]ψ          (108) 

Which can  be generalized with various different Eigen-states dependent on l and k as 

∀l ∈ [0, … , L], ∀k ∈ [0, … , K]  [Ξ]l,k = (
∂

∂s
)

l

[(
∂

∂t
)

k

+ (1 + r)]
2

     (109) 

and  

∀l ∈ [0, … , L], ∀k ∈ [0, … , K]  s
1

2

∂2ψ

∂s2 +
3

2
h = [Ξ]l,kψ       (110) 

A special case rises for l = 0, and k = 0,  

  [Ξ]0,0 = (
∂

∂s
)

0

[(
∂

∂t
)

0

+ (1 + r)]
2

=  [1 + (1 + r)]2     (111) 

Subsequently, we obtain 

s
1

2

∂2ψ

∂s2 +
3

2
h = [1 + (1 + r)]2ψ      (112) 
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These appear to be variants of the Sturm-Liouville system (Bailey, 1966;  Pruess and 

Fulton, 1993; Bailey et al., 1996; Kong and  Zettl, 1996; Zettl, 1997; Agarwal and 

Wong, 1995;  Kong al et., 2001:2004).  

  

5.4. DENSITY OF STATES AND EIGEN-PRICE SYSTEM 

 

The prices ‘confined’ in an infinitesimally small interval in an efficient market with 

normal information dissipation  are strongly quantized. That is, the price spectrum, spread 

or pattern is discrete. As shown in Figure1.0, the quantization of price, or alternatively, 

the reduction of dimensionality of the system, is directly reflected in the density of states 

function. The density of states for a three-dimensional Eigen-price system (i.e. eigen-

price, α) has the form 

                                                                                    

dN

dα
∝

d

dα
(α

1

2)
3

   (113) 

 

Where we have established previously that  

 

∀n ∈ [0, … , N], ∀m ∈ [0, … , M]  α = (in)m [
1

ξ(t)

∂ξ

∂t
]   (114) 

 

 

 

Similarly, for a  two-dimensional Eigen-price system  is a step function of the form 

 

                                                    
dN

dα
∝

d

dα
∑ (α − εi)εj<α = ∑ 1εj<α     (115) 

 

Both of the previously established (i0)2 [
1

ξ(t)

∂ξ

∂t
] = rf   and (i1)2 [

1

ξ(t)

∂ξ

∂t
] = −rf   satisfy  

condition ∀j ∈ N  εj < α. On the other hand,  a one-dimensional system has a singularity, 

 
dN

dα
∝

d

dα
∑ (α − εi)

1

2εi<α = ∑ (α − εi)
−

1

2εi<α    (116) 
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In this research we are particularly interested in a zero-dimensional system, which  turns 

out to have the shape of  -peaks, 

 
dN

dχ
∝

d

dχ
∑ Θ(α − εi)εi<α = ∑ δ(α − εi)εi<α    (117) 

 

where, j are the discrete eigen-price levels,  is the Heaviside step function, and  is the 

Dirac function. This is actually the definition of the density of states! The sum of delta 

functions turns into the other forms, once it is integrated over the phase space in 1, 2 or 3 

dimensions. i.e. in limit the summations turn into integrals. 

 

 
 

 

Although the 0D are considered to be semi-zero dimensional systems, in mathematical 

terms, they are dealt with as 3-D coordinates. This is so, because we are dealing with 3-

D market price confinement. The price system is said to be confined, when it confines 

Eigen-price to regions comparable in size to 1/100 of 1% of 1bp in finance terms.  When 

such systems have confined Eigen-prices on the spaces mentioned above, then the 

quantum price effects arise. On 0D price systems, the space is quantized and the Fermi-

Dirac statistic have full validity. Also the prices we are treating in this research are prices 
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with a spin; both positive and negative price changes occur. The number of 0D Eigen 

prices per unit “volume” is given by 

 

n(α) = g(α)fFD(α)                 (118) 

 

Where g(𝛼), is the density of state of a 0D  market price system and fFD is the Fermi-Dirac 

distribution function 

 
fFD(α) =

1

{exp[
1

2
(

α−μ

σ
)]+1}

          (119) 

 

Referring to Eigen-price density instead of density of states is of relevance for the market 

information absorption and continuous-time price spectrum to achieve price change 

predictability along an efficient market price line (Merton, 1990). The treatment above is 

in a regulated and conditioned market context.  

 

The density of states of price in an unconditioned market can also be established for 3D, 

2D, 1D, and 0D systems. The density of states of a 3-dimentional unconditioned market 

price is proportional to the square root of the rate of return. 

 

g(α) = √2α     (120) 

 

The density of states, for an ideal 2-dimentional system, is constant. 

 

g(α) = 1     (121) 

 
Whereas the density of states of a one-dimensional system has a square-root singularity 

at the origin, as shown below  

g(α) = √
2

α
                  (122) 

 

The case which is of special interest to us in this research is that of the density of states 
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of 0-D unconditioned market price systems. An ideal zero-dimensional price is one that 

exists in a single state of fixed price change or range, 𝛼0. The density of states is then 

given simply by 

 

g(α) = δ(α − α0)           (123) 

 

 

where 𝛿(𝛼) is the Dirac delta-function (Dirac, 1926:1958). We can refer to our previous 

finding for 0, subsequently setting it to rf, thus ideally we would expect the price change 

to be in the -rf range. 

 
5.5. INFORMATION DISSIPATION, REFLECTION AND RELAY FROM 0D 

PRICE SYSTEM  

 

 

On understanding the market information dissipation and information reflection on price 

concepts, one needs to recall the fact that we are dealing here with infinitesimally small 

intervals. On most of 0D price systems and efficient markets, their properties will be 

dependent on filtrations, the market conditioning, and the degree of uncertainty. Such 

dependencies can be deficient and hence influence the properties in a 0D price system.  

 

The “size” of the 0DS (zero-dimensional system), the shape and depth of the potential 

‘identity’ function influences the density of states and the Eigen-price density. The 

information-reflection on the price pattern is linked with the quantity and quality of the 

information dissipated by the market and reflected at the 0DS level. On the other hand, 

the 0DS relays part of the information linked with the dissipation and reflection of 

information from the 0DS. The information dissipation and relay process can dictate the 
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prediction of a financial instrument’s market price. 

 

Information relay from the 0D system is a way of assessing the quality of dissipation by 

the markets and the information conservation system (0DS) properties. The information 

relay pattern is also relevant to us, as it is one measurement to which the calculations of 

the quantum price levels could be compared. For such comparison, one would need to 

carry out measurements of the spatial information relay with observable historical price 

horizons and information dissipation, then make the right plots of those quantities with 

respect to the Eigen-price. All the “significant” peaks on such plots correspond to 0DS of 

different dissipation depths (for instance, on price arrays/points on the historical line), 

whereas the rest of the “smoother” peaks would correspond to the transitions within each 

of the 0DS, i.e. such measurements are outside the scope of this research! 

 

The quasi-zero-dimensional quantum price points are a complete quantization of the 

price’s evolution path. The strong constraints imposed by the parameters recreates a 

“central” eigen-price tendency, it justifies the potential ‘identity’, and gives rise 

subsequently to the market motive dynamics and the price line. 

 

5.6. REBRANDING THE MASTER EXPRESSION  

 

We have used our master formulation throughout our research. Furthermore it has led to 

0D quantum fittings with focus on information dissipation, which is key to price change 

predictability. Thus at this point we prefer to refer to it as the effective information 

equation, with the potential ‘identity’ function as the cut-off price potential. Most simply, 

the price value confined by a cut-off price potential can be treated in the effective 
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information approximation. The positive and negative information causes the price in 

expectation to be oscillatory in nature. This is a phenomenon that is empirically evident.  

The Bloch theorem is adapted for such approximation and it tells us that the true wave 

function  can be written as the product 

 

Ψ ≈ ψ(r)u(r)     (124) 

 

Where u(r), the Bloch function describes the rapidly-varying price part of the wave 

function and , sometimes called the envelope function describes the part which is slowly 

varying on a 0-dimension quantized price point and scale. The envelope function obeys 

an expression which is a variant of our main axiom - like the equation which in the 

simplest cases near q=0, takes the form  

                                                              

[−
1

2
σ2∇2 + γ(r)] ψ = α[p(r)]ψ      (125) 

 

Where the price α(r) is measured at the cut-off edge, ψ is the envelope function, and γ 

does not include the spatial price potential. The entire effect of the spatial price potential 

is to change the information relevant to shift price from α  to α∗, where both values are 

linked to probabilities. The probability of α∗ is worked out from perfect information 

within the Bayesian framework. The price potential on the equation above contains the 

effect of all the external price behaviour potentials, and in particular, that due to changes 

in the market-line cut-off. 

 

We turn our attention now to the boundary conditions. The ideal “classical” boundary 

conditions for ψ  as treated by most quantum mechanics books and  related research 

publications (Bailey, 1966; Bailey et al., 1996; Canessa, 2007; Yan et al., 2017) are given 

by   
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          ψI(0) = ψII(0)    and    
dψI

dx
|

x=0
=

dψII

dx
|

x=0
       (125) 

         

 

where ψI  and ψII are respectively the “wavefunctions” of spinned prices (spin up and 

spin down) inside and outside on any “theoretical” quantum price cut-off region. An 

illustration of a quantum price well is shown below    

 

 
 

 

In the market surface however, the situation is different. There are various ideas proposed 

for the matching conditions of a function at market surface. The matching conditions 

presented here are those which are known as the Bastard conditions (Bailey, 1966). Those 

matching conditions were suggested and used even earlier by Ben-Daniel and Duke in 

1955.  

  

At the market surface/interface, the effective information and the cut-off potential are 

effectively discontinuous. The “proper” boundary conditions, at the market interface 

(x=0) between information/events I and II are  

 

 

ΨI(0) = ΨII(0)  and  
1

pI

dΨI

dx
|

x=0
=

1

pII

dΨII

dx
|

x=0
    (126) 
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The boundary conditions given above can be shown to imply conservation of the 

probability information flow J  for the full wave-function   ,  

 

𝐽 = −𝑅𝑒 [Ψ∗ 𝑎

𝑝0
𝑖∇Ψ]       (127) 

 

It is averaged over a small section containing the market surface interface. It also implies 

the existence of steady-state solutions, for the full wave-function Ψ, or over two adjacent 

market regions. 

 

 

Having introduced the effective information equation, we will refer to it as EIE from now 

on. Due to the oscillatory wave-like nature of the price, we establish the normalization 

condition. 

 

p(r, t) = |Ψ(r, t)|2   and   ∫ p(r, t)dτ = ∫|Ψ(r, t)|2dτ     (128) 

 

 

Integrated over the market region. One example is the case of the infinitely deep 

rectangular 0DS. 

 

 

The main postulated master expression has been adapted to a new quantum mechanics 

context to facilitate strongly quantized asset price valuations. We subsequently 

transformed it to the effective information equation for quantum-price systems (ODS). 

Going from the postulated formulation to the effective information equation is trivial. The 

effective information equation is the postulated main equation modified to read the 

effective information of market-impacting events, so that it takes into account the effect 

of the market potential on the price evolution.  
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One alternative interpretation p* is to see it as representing the confidence that a market-

aligned investor holds on the degree of information dissipation by the market on recent 

events and under the assumption of market efficiency (Latham, 1986). The p* can be seen 

as the confidence we have in the information and its impact in the price i.e. 0.90, can be 

interpreted as 90% confident that the information will have an impact on the price and as 

such is a subjective measure. However well aligned market makers and investors should 

freely use such measures based on their strong “views” on the markets. Its value should 

vary from 0 to 100%. It can also be written as p*=b = 1-p where p is the significance level 

of the information. The confidence level in this case is a measure of the quality of the 

filtration.

6.0     COMPUTATION OF  ASSET PRICES IN FORWARD TIME  WITH EIGEN-

VALUE CONVERSION 
 

 

This chapter follows from the theoretical framework, developed in previous chapters, for 

a strongly parameterized zero-dimension quantum price-system. The theoretical model 

considers zero-dimension quantum price systems of various “geometries”, corresponding 

to the particular  strength of the parameter–based potential functions or price potentials. 

The underlying theory is based on the GSE and modelling using various programming 

languages such as VBA, MATLAB, and C/C++. We have assigned a reflective price 

identity to the potential function . Within the 0D price constraint, it represents a physical 

geometry, emulated by the strength of filtrations and the market absorption of such 

filtrations. This leads to a confining and measurable system of Eigen-prices for each point 

along the market line. 
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In order to measure Eigen-price effects, we define the discrete time dimension constraint. 

An Eigen price can only exist in a system with no dimensions.  The time dimension is 

lost within an interval of less than 10 nseconds, in other terms, the price system is discrete 

in that confinement. Such systems can be called quasi zero-dimensional. The number of 

probable Eigen prices can be between 1 and 1000 within such constraints. 

 

The quasi-zero dimension treatment of the market surfaces is not considered in existing 

derivative pricing models. This chapter follows from our initial investigation on the 

possible inclusion of the quasi-zero dimension effects in a contingent claim’s payoff 

expectation term, and it intends to draw more attention to quasi-zero Eigen price systems. 

The small size makes them good at responding to a very narrow price spectrum range, 

thus making them suitable for more effective price change predictions.  

 

Practically, the ‘geometry’ of the confining 0D system is not a geometry in the true sense 

of the word, instead it allows us to establish cut offs in terms of how deep filtrations are 

absorbed by the market, and to what degree market prices are affected. Hence, we have 

modelled different geometries. Theoretically the cut-off of a quantum price system can 

be of any geometry, such as cubic, spherical, cylindrical, pyramidal etc. To build a model 

that fits such practical applications, one has to solve  the GSE derived expressions for 

different cut-off price potential functions. Further-more we seek to measure price change 

effects on the basis of fitting a Sturm-Liouville system on our  theoretical framework. 

 

Empirically, a price evolution path can be seen to display, however randomized, 
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oscillatory properties. In order to test the concepts and justify our theoretical framework, 

we have made the following assumptions: 

 

(i) A financial asset’s price evolution is a randomized oscillation or harmonic in 

nature. 

(ii) All information is reflected in price and has a two dimensional effect (1) 

orthogonal dissipation at the price point (time 0) and (2) relay over time and across 

other assets. 

(iii) The asset’s price can be modelled as a randomized outcome with two components 

(1) an imaginary space, and (2) an observed component in real time.  

(iv) At any price point and under the quasi-zero dimensional constraints, the price and 

subsequently the rate of return is quantized. The market price is the quantized 

price at the most stable degenerate level.  

(v) The quasi-zero dimension price point encapsulates a number of possible states 

with a price spread affected by factors such as uncertainty, and quality of 

information. 

(vi) Smoothness and continuity of a price evolution path are a result of discrete-time 

space information dissipation and relay. Discrete price jumps or orthogonal shifts 

are due to effects of continuous time-space events i.e. ex-dividend, etc. 

 

The stochastic shock effect due to filtrations, absorbed by the markets and reflected in 

stock price is often modelled through the Weiner process and has a Gaussian distribution 

(Shreve, 2004). However, this study suggests that the “real” probability distribution 

system contains various probability distributions with various degrees of distribution 

mixing. Where the system itself exists in various Eigen-state levels of mixing or 
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separation, quantization effects follow directly from the 3x expansion of the price-

system’s degrees of freedom and under infinitesimally small time-space constraints.  

 

The Gaussian probability distribution function corresponds to the lowest and most stable 

Eigen-state, however at higher quantized levels (i.e. higher volatilities and irregularities 

in filtrations patterns), there are distribution splits, evident both mathematically and 

through numerical illustrations. Further on the new model considers the additional price 

change effect due to the quantization effects at each price point. It subsequently models 

the cumulative price-change (i.e. more precisely the logarithmic price) effects through 

the classical pricing models with the additional quantization effects on the price behaviour 

at a quasi-zero time dimension of each point along the market line.  

 

This has profound implications in financial instrument pricing, especially in financial 

derivatives because the classical models such as Black and Scholes option pricing (Black 

and Scholes, 1973; Black, 1989), make use of a probability distribution with normal or 

lognormal distribution considerations. Under the new model this needs to be upgraded to 

include the probability distribution system mixing and the additional Fermi-Dirac 

probability distribution for the quasi-zero price point system along the market line. This 

has interesting pricing implications, where the expectation term need an upgrade to 

include both the special and orthogonal effects. Therefore each realised market price is 

the result of a two-way gamble; apart from N(d1) and N(d2) set, one would also need to 

include the conditioned Fermi-Dirac probabilities. 
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Hence, the objective of this chapter is threefold: First, we reconsider pricing problems 

starting from our formulated axiom, leading to asset price and financial derivative 

valuation formulations in partial differential forms; secondly, we consider valuation 

expressions that are in line with a rational  investor’s expectations with  various price 

cut-off identities; thirdly, we incorporate quantization effects in the probability 

distribution and the price-change systems, and subsequently provide a Sturm-Liouville  

solution (Bailey, 1966). 

 

In this chapter we set a postulated problem with a very abstract formulation and solve 

various common cases that are in line with contemporary pricing models (Bodie et al., 

2009); the problem is a financial instrument valuation challenge springing from an 

axiom, with Sturm-Liouville adapt-solutions, in order to compute quantization effects at 

a price’s point along the market line. Our approach and results are related to classical 

and contemporary work in asset pricing, among others, the work of Black and Scholes 

(1973), Sharp et al. (1995), Shreve, (2004),  Bodie et al. (2009), and Elton and Gruber 

(2011), but  moves in to the gaps in literature and goes beyond market tracking (Hillier 

et al., 2011), to the  dynamics of the price function not only spatially over a time horizon, 

but also at a zero-dimension point, thus implicating orthogonality in the combined 

probability distributions. 

 

We use various computational procedures and techniques to illustrate several effects and 

cases. We set the stage with a VBA generated demonstration of the effect of stock price 
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simulation using an Euler discretized Brownian motion, generating various price paths 

(Jackson and Staunton, 2004). Next we use the Metropolis Algorithm described well in 

Gilks et al. (1996), which allows us to set a proposal probability function and test various 

scenarios of probability distribution mixing. The MATLAB program implements Monte-

Carlo integration and generates various distribution mixings. Further on, various C++ 

programs invoke NAG routines to compute the price-changes using a Sturm-Liouville 

solution, which are then plotted in Excel. 

 

6.1.  DISCUSSIONS AND NUMERICAL ILLUSTRATIONS 
 

In this section, we illustrate numerically the abstract stochastic asset pricing model, 

Monte-Carlo integration with Metropolis Algorithm and the quantization effects 

through Sturm-Liouville fittings with various gamma functions, leading to pricing. 

  

6.1.1.   GEOMETRIC BROWNIAN MOTION SIMULATION OF STOCK PRICE 

In this section, we simulate stochastic price paths also as a context for further theoretical 

and practical expansion with quantum system fittings at each point along such simulated 

paths. The price of the stock at time t is St where St is determined by the stochastic 

differential equation 

( ) ( ) ( )[ ]tdWσ+dtμtS=tdS       (129) 

with {W(t), t ≥ 0} being a standard Brownian motion and σ > 0, μ are constants. In the 

context of finance, the parameter σ is known as the volatility of the stock (Boobs, 1953; 
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Karatzas and Shreve, 1998a:1998b; Hull and White, 1987; Stein and Stein,  1991). It 

follows that the stock-price process {S(t), t ≥ 0} is an exponential Brownian motion and 

it may be represented as 

( ) ( ) ( )]tWσ+t)σ
2

1
μexp[(0S=tS 2

          (130) 

where S(0) is the initial price of the stock, which it may be assumed is observed at time 

0. The information available at time t is the history of the price process,ℱ1 = σ(Su, 0 ≤ 

u ≤ t),  that is the information obtained by observing the movements of the stock price 

process up to time t; equivalently, it is σ(Wu, 0 ≤ u ≤ t),  the information obtained by 

observing the driving Brownian motion in the stochastic differential equation 

(Kennedy, 2010). We expand ( ) ttZ=)t(W , and for the purpose of the numerical 

illustration, we generate values of Z(t) as a random variate computed as a sum of 12 

random numbers, each between 0.0 and 1.0, finally subtracting 6 (Jackson and Staunton, 

2004). Further-more the programmable procedure evolves state variables using an Euler 

discretisation ln(S(t)), where z is ~N(0,1). 
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Figure 3: Four simulations/paths of a Geometric Brownian Motion for stock price, using 12 

random uniforms to generate 'normal' variates76. 

 

The orthogonal 0DS in the later sections are fittings along each of the price paths 

simulated above. 

 

6.1.2  MONTE-CARLO PROBABILITY DENSITY MIXING 

 

Throughout this chapter we have focused on the PDEs (refer to previously explored 

problem cases and scenarios) of relevance to financial instruments, and as this research 

does not develop further around expectation expressions, we think it is important to 

demonstrate simulated valuation at an expectation level as is the case of probability 

density distribution. We stress the importance of the Gaussian probability density 

function and its role in the computation of the expectation of the rate of return (Spitzer, 

1970; Snyder and Miller, 1991; Seneta, 1996 ).  

                                                           

76 Algorithm can be provided to anyone upon request. 
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 However, the proposed density function can be either a variant of the Gaussian or an 

entirely different function. We also established in CASE 5.0  that Gaussian is appropriate 

as a special case and that dependent, we say, on n (and non-regularity in the filtrations 

impact on the price), the density distribution can be replaced by a mixture of various 

Gaussians. We construct a Markov Chain fully simulated with the Monte-Carlo method 

and draw dependent (correlated) states, 0, 1, 2, …, from the chain, and subsequently 

perform Monte-Carlo integration with uT () (Robert and Casella, 2004).   

 

Let , ’ ∊ be states in the chain and vP(’|) be an arbitrary, easy-to-sample from an 

arbitrary proposal distribution (Robert and Casella, 2004), which does not satisfy detailed 

balance, and hence may not be a stationary distribution. However, suppose that 

)χ(u•)χ|χ(v>)χ(u•)χ|χ(v 'T'PT'P
    (131) 

then, there is a factor r(’|)  1 such that the above inequality is balanced 

[ )χ|χ(r•)]χ(u•)χ|χ(v[>)χ|χ(r•)]χ(u•)χ|χ(v ''T'P'T'P
      (132) 

and solving for r, yields 

][
)χ|'χ(Pv•)χ(Tu

'χ|χ(Pv•)'χ(Tu
,1min=)χ|χ(r '

          (133) 

which is then converted into an algorithm. Gilks et al. (1996), describes in good detail the 
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algorithm itself which is known as the Metropolis Algorithm. In such numerical 

simulation given a target distribution )χ(ψ , the proposal q would be valid if 

  ))χ|.q( supp(∪⊆  )u supp( χ         (134) 

where  }0>)χ(u:χ{=)u(psup T
 is the support of distribution u i.e. the non-zero probability 

set (Gilks et al., 1996). The condition itself supports the fact that that our proposal must 

have non-zero probability of moving to the states that have non-zero probability in the 

target. The actual distribution of the algorithm is given by 

][ '''P'''P'
M χd•)χ|χ(r•)χ|χ(v-1•)χ=χ(I+)χ|χ(r•)χ|χ(v=)χ|χ(p ∫          (135) 

A common proposal distribution to use is a Gaussian: v(’|)=N(’|, σ2), under an 

algorithmically simulated procedure known as the random walk Metropolis-Hasting 

algorithm (Andreieu et al., 2003). In the computational simulation itself, it is important 

to pick the right volatility σ to ensure that a reasonable number of the proposals are 

accepted. Under the algorithmic procedure, if the new state ’ is more probable than the 

current state , the proposal is always accepted r(’|)=1, otherwise it is accepted with 

probability u(’)/u(), however the proposal could also be independent of the current 

state:  v(x’|x)= v(x’) (Gilks et al., 1996).  Under the procedure we a mixture of two 1D 

Gaussians as the target distribution. 

)σ,μ|χ(w+)σ,μ|χ(w=)χ(u 22111 2
NN               (136) 

where w1 +w2 = 1 are the mixture weights. The proposal is a 1D Gaussian v(’|) = 
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N(’ |, σp), where σp,  is a parameter of the proposal (Gilks et al., 1996). 

 

   

Figure 4. A Metropolis Hastings algorithm, sampling from a mixture of two 1D Gaussians using a Gaussian 

proposal with variance σ2 = 102. Figure produced with Matlab77. 

  

The above algorithm can be adjusted to different degrees of probability distribution 

mixing, but also in cases where there is asymmetry in the proposal distribution and that 

may differ from the Gaussian (Gilks et al., 1996).  

 

A close look at  the expression CASE 5.0 of  reveals that the probability distribution 

                                                           

77 Algorithm can be provided to anyone upon request. 
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system possesses different quantized states (Schwartz, 1967), and that such system is 

absolutely stable at  n=0 or the ground state only, however the system can also exist in  

higher eigen-states, where a distribution split is evident and of profound implications in 

both asset pricing and  contingent claim valuation. We argue that the split in the 

probability distribution is in part the result of high volatilities and high irregularities in 

the filtration patterns. The first two eigen states (n=0, and n=1) of probability distribution 

mixing system are shown in figure 4. 

 

 

Fig. 5. The probability density functions u0 and u1. A distribution split occurs at n=1 or if there are different 

distribution contributions, they are only mixed in absolute terms at n=0.,   

 

6.1.3  AUGMENTED MARKET-MOTIVE POTENTIAL FUNCTION AND 

INFORMATION TUNNELING 

 

 

 

Having declared the general potential ‘identity’  function as a polynomial in the previous 

chapter, and rebranded it to the price cut-off potential, we further link it to dynamics of 

market price evolution, by referring to it as the market-motive potential interchangeably. 
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Furthermore, on our theoretical consideration we are more specific and choose several 

functions and specify boundary conditions for each of the ‘geometries’ of the price-cut-

off potential. These geometries are important in providing a finance space in market 

information penetration, but also in consideration of adjacent market regions with region 

abruptness linked with the degree of information tunnelling to the next market region, 

subsequently allowing us to contemplate the effect of information tunnelling and impact 

of fragmented information reflection in a future market price. On all the cases we have 

applied the same boundary conditions; R(r) is finite for r =0, since Y = rR = 0 for r = 0, 

R can be finite and so we define it to be such. R(r) = 0 as r  (Bailey, 1966;   Pruess 

and Fulton, 1993; Bailey et al.,1996; Kong al et., 2001). 

 

After converting to spherical coordinates, we establish an absolute finite limit to the depth 

of information penetration of the market and the quantum space radial consideration. Thus 

our previous potential functions and our initial potential functions are transformed to 

 
TABLE 2. 

 NAME  AXIOM IDENITY FUNCTION AUGMENTED AXIOM IDENITY FUNCTION 

1. GAUSSIAN γ(χ) = γ(0)[1 − exp(−χ2)] γ(r) = γ(0) [1 − exp (−
1

L2
(

r − μ

σ
)

2

)] 

2. HARMONIC γ(χ) =
1

2
κχ2 γ(r) =

1

2
κ

1

L2
(

r − μ

σ
)

2

 

3. 
DECAYING 

EXPONENTIAL 
γ(χ) = γ(0)[1 − exp(−χ)] γ(r) = γ(0) [1 − exp (−

1

L
(

𝑟 − 𝜇

𝜎
))] 

4. LINEAR γ(χ) = γ(0)χ γ(r) = γ(0)
1

L
(

r − μ

σ
) 

5. 
CONSTANT SQUARE 

WELL 
γ(χ) = γ(0) γ(r) = γ(0) 
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6. 
ARCTAN 

 
γ(χ) =

1

2
γ(0) [

2

π
arctan(χ) + 1] γ(r) =

1

2
γ(0) {

2

π
arctan [

1

bL
(

r − μ

σ
)] + 1} 

7. COSH-2 γ(χ) = γ(0)[1 − cosh−2(−χ2)] γ(r) = γ(0) [1 − cosh−2 (−
1

L2
(

r − μ

σ
)

2

)] 

8. INVERSE  γ(χ) = −γ(0)
1

χ
 γ(r) = −γ(0) (

Lσ

r − μ
) 

 

 
 

6.1.4 SUITABLE POTENTIAL FUNCTIONS 

 

 

We decide on the suitability of potential78 by using a criterion that takes account of the 

market specification combined with a theorised rationale. Different markets have varied 

information dissipation capabilities and its regulation and governance, which provides for 

the depth of the quantum dot or its radius. We may apply the same potential for different 

zero-dimension systems, with market particularities undercutting the impact of 

information dissipation and the market depth. Thus we would expect the candidate 

potential functions to change across the interface by depth value. We have used the 

dispersion measure as a linear measure of that depth and assume it to be homoscedastic.  

 

The higher the market regulatory/self-regulatory nature and external governance, the 

deeper the effect of information penetration in the market region of investigation. For 

forecasting purposes of research, we consider two adjacent market regions; the region of 

reference is a region observed, where all information dissipated is reflected in the 

observed market price, whereas the second region is a future market region with an abrupt 

                                                           

78 It refers  to  the cut-off price potential or  market motive potential function as an alternative short-hand name. 
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interface between them. Our assumption on the abrupt nature of the “orthogonal” 

interface between two adjacent market regions, which we may visualise as a form of a 

quantum well, is in line with the fact that we also expect the tunnelling of the filtration or 

a fraction of it to the future region with difficulty, which complies with the fact that it 

would be improbable to forecast market price without prior knowledge of future events.  

 

However, information that is already known and dissipated by the reference region is 

possible to tunnel through to the next region and may hold the key to the forecasting of 

the market price. If we take the view that the separation interface is abrupt, then on the 

same argument we may discard the harmonic and the triangular cut-off market price 

function (i.e. potential). 

 

The choice of the cut-off price function depends upon the abruptness of the boundary 

between the two market regions. We may also consider different layers in each market 

region and assume some separation between each as well as with the spatial market 

region. Following this argument, we can say that the rectangular potential is a reasonable 

function to consider. However the spherical is a simple model and we consider it below 

in comparison with others (Möller and Zettl, 1996).  

 

On a 0D quantum price system of a well-regulated or self-regulated market, the market 

region can be viewed as graded in layers with interfaces between and among the regions. 

The interfaces are formed by the observed reference /adjacent regions and therefore the 

interfaces between them are not abrupt. So a continuously varying cut-off potential may 

be fitted.  This filtration dissipation can be very selective, therefore both ARCTAN for 
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reasonably small values of dispersion, 𝜎 and the COSH-2, potentials would appear to 

provide a reasonable fit. However for prices evolved by the market under modulated 

filtrations, one would expect the potential to be smoother at the edges, one could reason 

that the Gaussian would be ideal for this situation. Dependant on how modulated the 

information is and internal “texture” of the market region under consideration with the 

occurrence of information diffusion, the Gaussian cut-off price potential is probably the 

most suitable one (Möller and Zettl, 1996).  

 

 

Thus from potential functions considered here, the most suitable are spherical square well 

(constant potential ), Gaussian, Cosh, Harmonic – step function. The Arctan potential, for 

very small values of dispersion, 𝜎, becomes similar to the square well (constant potential).  

 

 

We consider the quantized space measurable in terms of qwhere q = 10-7 of a basis 

point, where s is taken to be the minimum 10-4, the smallest dispersion in our 

consideration, subsequently 1qs is equal to 10-11. We call this a space conversion or 

transition coefficient. In practical terms we can convert market parameters defined in a 

continuous Ⓒ↓↑ system to equivalents in the quantized Ⓓ↑↓ and vice versa. On a spherical 

representation of a quantized market price, the radius is expressed in q terms, this way 

we avoid use of SI units for space that in Finance would not have relevance. The ‘space’ 

here is in terms of a price, subsequently it is a price-space. We also avoid use of currency 

symbols by using % representations, for example  becomes quantized as q and  

similarly to q. We have put greater emphasis in dispersion and its conversion to a 
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quantized measure as a measure of the ‘depth’ of the quantized market price point, hence 

the introduction of the unit qin our further theoretical and numerical considerations. 

 

The choice of  γ also depends on the size of the quantum price point. For small 0D 

systems defined with a radius of a less than 103 q, a substantial ‘mixing’ of market 

regions and information tunnelling is likely to occur across the region’s interface, and the  

γ within the quantum price point may not be ‘flat’. In these cases, a square well would be 

a poor approximation and a continuously varying γ such as the Gaussian would be a better 

fit. For larger quantised market points (~104 q radius) the square well γ, which has γ =0 

everywhere within the market price point, is better suited.  

 

The Gaussian γ offers a good approximation for small quantum market points. For small 

values of r the Gaussian can be approximated by the harmonic, which is useful because 

the eigenvalues of a harmonic γ  are known! This can be seen by using the Taylor 

expansion  

γ(χ) = γ(χ)|χ=0 + (
dγ(χ)

dχ
|

χ=0
)

χ

1!
+ (

d2γ(χ)

dχ2 |
χ=0

)
χ2

2!
+ ⋯ + (

dnγ(χ)

dχn |
χ=0

)
χn

n!
+ ⋯ (137) 

 

 

          

1 − exp(−χ2) = 0 + 0 + 2
χ2

2!
− 0 − 12

χ4

4!
+ ⋯ h. o. t    (138) 

 

For χ ≪ 1 ,  terms  χ4, χ6... approach zero much faster than χ2. Thus Gaussian is 

approximated by the harmonic function  

 

1 − exp(−χ2) ≈ χ2            (139) 
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Where   χ =
1

L
(

r−μ

σ
).  The relationship between stochastic variables χ and r is based on the 

usual convention between two random variables  χ ≤ r, or  χ =r. A relationship that holds 

with 100% certainty. The uncertainty, random variable and the underlying stochastic 

process representation χ is obtained through augmentation of the stochastic variable r =

(x2 + y2 + z2)
1

2 . Further-more r can be obtained as the difference of two non-negative 

random variables, r = r+  − r–  where r+= max(r, 0) and r −  = max ( − r, 0) under the 

provision that  at least one of E(r+ ) and E(r− ) is finite and defines E(r) = E(r+ ) – E(r−) 

–  finite and the  random variable r   when E | r |  <  ∞ ,  that is when both E(r+ ) and E(r− 

) are finite (Doobs 1953; Feller, 1971; Parzen, 2015).  

 

 

To represent a market price point at a quantum level, the harmonic should be cut off so 

that γ(r) = γ(0), values of r above some critical value, where γ(r) = γ(0)). We refer to 

this as the conditioned harmonic γ.  On the other hand, when we decrease the value of L 

(smaller quantum price point), (r-)/ << L becomes less “true”, thus more terms on the 

right hand side of the expansion would be needed. The smaller the radius the more terms 

should be included on the expansion, hence the Gaussian is better. This shows that the for 

small quantum price points Ⓓ↑↓ the harmonic is a poor approximation and the Gaussian 

is more realistic. 

 

The Cosh-2 is another smooth cut-off price potential that serves as a good approximation 

for small quantum price points. Using the Taylor expansion, one can see that this γ 

function as well as the Gaussian are good approximations for small quantum price points 
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Ⓓ↑↓. The spherical square well γ is a good approximation for large quantum price points 

Ⓓ↑↓. On this occasion the smooth price-cut off function such as Gaussian and COSH-2 

lose validity and a rectangular well with ‘abrupt’ edges may be a better approximation. 

 

The Arctan is a way of simulating “roughness”, possibly when diffusion of information 

across the market line is significant. The Arctan’s potential suitability depends on the 

value of the parameter b and the size of the quantum price point Ⓓ↑↓.  This price cut-off 

function can be a good approximation for a large price point Ⓓ↑↓. For such cases the 

arctan well is very similar to the rectangular well. The Arctan is more favourable than the 

square well, because it is more “adjustable” and “controllable” with respect to the 

“smoothness” of the ‘edges’. It can be seen as the square well with rounded edges for b 

very small. For more detailed analysis, this price cut-off γ can be expanded, using the 

Taylor expansion. The Harmonic γ function becomes a good approximation in the cases 

when there is no overlap of filtrations, or the sequence of events is orderly with the 

quantized price point, Ⓓ↑↓.  

 

The decreasing exponential γ is too smooth for even small quantum price points, Ⓓ↑↓. 

Therefore it will be discarded. Moreover, the price gradient in the region near r = 0 could 

not be possible. This γ approximates to a triangular cut-off price function for small values 

of   χ =
1

L
(

r−μ

σ
). This can be seen from the Taylor expansion of the decreasing exponential  

                           

1 − exp [−
1

L
(

r−μ

σ
)] = +

1

L
(

r−μ

σ
) −

1

2L2
(

r−μ

σ
)

2

+
1

6L3
(

r−μ

σ
)

3

− ⋯ + h. o. t     (140) 
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when   χ =
1

L
(

r−μ

σ
)  is very small, then  

 

1 − exp [−
1

L
(

r−μ

σ
)] ≈

1

L
(

r−μ

σ
)                                       (141) 

 

 

The inverse cut-off price function cannot be a good approximation for quantum price 

points, Ⓓ↑↓. because it would imply some form of singularity in the quantum price point 

centre. The internal quantum price point dynamics do not imply such lateral γ effect. 

 

As mentioned above, the suitability of the price cut-off function factors in market 

specification combined with a theorised rational and our choice of γ depends upon the 

“abruptness” of the boundary between the two market regions and possibly the different 

layers in each market region. In addition, the harmonic cut-off price function depends on 

the many events in filtrations, their sequencing and overlapping effect.  Comparing the 

inverse γ with the lateral equivalents could provide a venue of investigation into the nature 

of event-sequencing and overlapping and their impact on pricing. 

 

 

6.1.5 NUMERICAL ANALYSIS   
   

 

We are interested in the log price distribution of the eigenvalues of the 0D system, or the 

density of states. We consider logarithmic price, because we consider each of the 

eigenvalues, in a discretized time-space system, to be part of a continuum of market price 

points or a network of 0D systems or market price points with a c continuous 

compounding effect. To look at this we are able to plot the eigenvalues against log price 

as a histogram. For widely spaced eigenvalues, the range appears to contain a series of 

delta functions. By varying the size of the logarithmic price “bin range” we are able to 
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vary the resolution of the density of states plot.  With a small enough bin range, the range 

always consists of discrete states.  

 

We compiled the histograms from the data generated for different programs representing 

the different symmetric γ functions listed above. In all cases the data were generated by 

a C++ program containing NAG Routines79. Data generated appear to show discreteness 

of the log price levels for small quantum price points - price conservation dots in the 

market line. The increase of log price levels is dependent on the cut-off price function 

depth, quantum price point’s radius (x2 + y2 + z2)
1

2 , etc.  Running the programs and 

analysing the data, we observed the following: 

 

The number of price-conservation levels located is controlled by a loop. The number of 

eigenvalues which exist is controlled by γ0, where γ0 is a certain depth of the well. For 

the quantum price systems Ⓓ↑↓ and the different price cut-off functions considered in this 

research, the results appear to indicate price eigenvalues sensitivity to the market ‘depth’ 

of the well, radius of the quantum price point and a ‘tolerance’ parameter. For the Arctan 

γ, the parameter b appears to additionally influence price eigenvalues. 

 

An increase of the depth of the well increases the values of the price-conservation levels. 

This is illustrated for the spherical square well potential i.e. data in Table 3.0 

 

                                                           

79 Algorithm can be provided to anyone upon request. 
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Table 3:      Data generated from the C++ program for different well depth for the spherical square well γ 

function. 

               
 

 
 

Figure 6: A plot of the density of states against eigen-price for constant γ (spherical well function) is shown 

on the graph below.  
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Figure 7:  Density of states plot showing the delta functions for a spherical square well (constant) γ. 

                     . 

 

When the radius of the quantum price point Ⓓ↑↓ is decreased, the price eigenvalues 

increase, also the highest and lowest levels have values which increase at different paces. 

The uppermost value increases only just, whereas the lowest values increases fast. This 

can be expressed mathematically as ∆PEigen ≈
(1 qσ)2

∆Radius
. This also implies that, as the 

quantum “well” gets narrower near the bottom, the confinement increases. We illustrate 

this below for the COSH-2 price cut-off γ function.  

 

 

 
  
Table 4:   Data generated from the C++ program for COSH-2 γ for two different sized  

                   quantum price points. 

 

The density of states graph for the COSH-2 γ well is shown below. The depth value of the well is 

taken γ0=6 q which is a relatively shallow well. The radius is 2000 q. 

 



224 

 

 
 
Figure 8:   Density of states plot for the COSH-2 γ, showing delta functions as predicted from the 

theory. 

 

 

                       Figure 9: Eigen Return Rate with various depth. 

 
 

The quantum price point’s depth of γ0=6 q corresponds to a rather shallow well, but also 

the eigenvalues at this depth have good resolution for the purpose of demonstrating the 

density of state –eigen log price plot. 

 

The price eigenvalues generated for Arctan will become similar to the square well, when 

the parameter b is very small. When b is large, the spacing between the eigenvalues 
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becomes very small. This shows how the price quantum levels may be affected by 

‘roughness’ in the quantum price point ‘interface’. This is shown by the data in Table 5, 

where the radius of the quantum price point is kept fixed at 1000 q. 

  

 

 
 
Table 5   The Eigenvalues generated by the C++ program for the spherical square well and arctan wells at 

the depth of γ(0) = 6 qσ. 

 
 
 

 
 
Figure 10:  An explicit density of states graph for the Arctan  
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Figure 11:     Showing the delta functions for the Arctan cut-off price potential, for b= 0.1 q. 

 
 

 

A similar plot, but for b very large, would show the delta peaks “poorly” resolved; it. can 

be clearly seen from the data in Table 5 . 

 

Based on the data generated for the harmonic potential, we analysed the data and plotted 

the     histograms. In this case we expect the separation between the successive price levels 

to be equal. The data generated from the program show this too. In functions of this type 

(harmonic) in quantum mechanics, we often refer to the concept of angular momentum. 

This is not an applicable concept here, thus our exclusion of it from our definition of the 

gamma function is equivalent to setting it to zero. We do so for the sake of our C++ 

program generating the data consistently (Strousrup, 2000). This is done to avoid using 

the term as in previous cases, for the harmonic γ  our main quantum number n = k + 1. 

Subsequently, and in general, logarithmic prices will be given by αn and the differences 

between successive price levels would be constant dα = αn − α(n−1). The data generated 

from the program for the Harmonic γ show exactly this. 



227 

 

 

 

 
 

Table 6    Data generated for the harmonic γ at well depth of γ0=10 q 
 

 
 

Figure 12: Figure 10:  An explicit density of states graph for the Harmonic gamma.  

 

Also a histogram for this case shows the expected result, illustrating once more that the 

quantum price level separation remains constant and for the selected small enough bin 

range, the plot is equivalent to the density of states for 0D, illustrated in the. histogram 

below (Figure 13). 
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                         Figure 13: Density of States-Eigeneprice plot 

 

 

The comparison of the quantum price eigenvalues generated for the COSH-2 and Gaussian 

respectively show similarities. The data show that the values in both cases are very similar 

at the top corner of the well and less similar at the bottom of the well. For the purpose of 

illustration, this is shown clearer by the data, rather than the plot. 

 

 
 

   

 Table 7:   Data for Gaussian and Cosh-2 price cut-off γ function. 
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Figure 14: Stock price per quantum level. 

 
 

We also  included  an inverse cut-off price  function γ, although we have argued that  this 

may not be a good  price reflective  identify function  because it implies a central  price 

point singularity, such as is  normally conceptualized in the context of a real physical 

confinement, but would also need further consideration of the quantum price point 

dynamics, which would in specific terms require consideration of price  effects from 

filtration sequencing and overlapping within the dissipative quantized market region with 

the hypothesis that overlapping of events of filtrations within the quantized region  creates 

a singular point. We illustrate it here only for brief comparative reasons.   

 

 
 

Table 8:   Data for inverse and square well price cut-off γ function, γ (0) = 15q. 

 



230 

 

 

 
 
Figure 15: Eigen-return values vs quantum level numbe. 

 

 
 
 Figure 16:  Density of States vs Eigen price plot for an inverse gamma. 

 

 

We define a parameter N =
1

n2 , where n is the main quantum number (n = k + 1). A plot of 

the eigenvalues against parameter N exhibits a straight line. The data generated for this 

situation have been plotted and shown below. This example shows that the numerical 

method is capable of locating the price eigenvalues and gives confidence in the method. 
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                    Figure 17:  Inverse price cut-off function γ. 

 

 
6.1.6 INFORMATION TUNNELLING AND PRICE TRANSITION 

 

To obtain such graphs we need to pick up one of our programs with a “suitable” potential. 

Out of choice, we pick up the program for the Gaussian γ. The transition market price is 

given by                               

          

    
∀k ∈ {0, … , K}, ∀n ∈ {1, … , N} , ∀τ ∈ {0, … , T}  ∴ K ⊨ N & T ⊨ N,   rk

=:
1

2
{[diff(LN(P))

L
] + [diff(LN(P))

H
] + 𝑞μ [1 +  (τ − C⊳(۝

τ
 | Fτ)

τ

n)]} 

                                                                                                                               (142) 

 
 

We define C⊳(۝
τ
 | Fτ) as the quality of filtration in expectation as a coefficient, related to 

the degree of congruence of market regulation and governance. This is a constant 

coefficient that tends to vary from market to market. Tau represents the stoppage times 

from 0 to T. We also provide an additional interpretation to C⊳(۝
τ
 | Fτ) as the % of 

filtration tunnelling to the market adjacent region.  For computations in the current region 
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we use tau = 0 and for a considerable number of Eigen states, considering the information 

is completely contained in the current region with no tunnelling, we get the same result 

as shown in the previous calculations. However for the next adjacent region C⊳(۝
τ
 | Fτ) the 

effect will be non-zero. The value of n is k+1. We may consider a “graded” composition 

of the market region with different effects of dissipation and tunnelling at each of the 

quantum levels or may set this value to the largest n or the highest Eigen level if we 

assume a rather homogeneous market composition in how it dissipates information. 

Further on 

 

∀k ∈ {0, … , K} Ptransition→II = Pspot→Iexp (rk)       (143) 

 

 

   ∀k ∈ {K, … , 0} diff(LN(P))
H

= LN(P)∀i∈{K,…1} − LN(P)∀j∈{K−1,…0}                      

(144) 

And 

∀n ∈ {0, … , N = K − 1} diff(LN(P))
L

= LN(P)∀i∈{0,…N} − LN(P)∀j∈{1 …K} 

      (145) 
                                                             

In this research for the most part, our focus is on any two adjacent quantized market 

regions.  In the computations above, we used1 + [τ − C⊳(۝
τ
 | Fτ)

τ

k+1] = 0. It is easy to see from 

the table below that for quantized region 1 (tau-0) this term becomes zero. For a sequence 

of quantum points along the market line, this effect increases, which translates to larger 

asset price moves or higher uncertainty. 
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Figure 9: Quantized market point data at  the lowest Eigen state. 

 

We also plot the transition price against the radius of the price quantum point in q 

considering that only 40% of the information tunnels through from the current dissipative 

region to the next adjacent one. 

 

 
 

 
Table 10: Quantum prices  and  conversion to a forecast price set in the observed world 
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Figure 18:  Eigen-price vs radius of the quantized topological space. 

 

 
 
Figure 19: The quantum price versus radius in q. 

 

 

In the case of a Harmonic cut-off price function and within the classical conceptualization 

of quantum systems, one would to resolve a misalignment with the introduction of angular 

momentum. This is a concept that would not make sense in our work.  Although we have 

coded our C++ program to deal with this, we subsequently avoid consideration of such 

concept and only consider the effect of the main quantum number n. This in effect meant 

that we have scaled down our loop structure in our C++ program, by removing the angular 

momentum effect given through L2 = l(l + 1), where l is the angular momentum number. 
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Instead, we use integer k = n-1, where n is the main quantum number.  

 

 

Ideally we would sketch the relationship between the main quantum number and the 

angular momentum number, however as the latter is relaxed from our treatment, we show-

case it with the main quantum number dependency. For the harmonic γ  the price 

eigenvalue separation f remains roughly constant. This is shown pictorially below and 

can be established from the data generated with the NAG routine. 

 
 
 

 
 

Figure 20: A sketch indicating the price Eigen-levels for (n) with l = 0 for a market quantum well. 

 

 

With the removal of the angular momentum consideration we are left with the challenge 

of the price spin, a phenomenon that is linked to the price change being negative (spin 

down) or positive (spin up). We have resolved this through the introduction of the 
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quantum rate of return  

 

∀k ∈ {0, … , K}, ∀n ∈ {1, … , N} , ∀τ ∈ {0, … , T}  ∴ K ⊨ N & T ⊨ N,   rk

=:
1

2
{[diff(LN(P))

L
] + [diff(LN(P))

H
] + 𝑞μ [1 + (τ − C⊳(۝

τ
 | Fτ)

τ

k+1)]} 

(146) 

 

Therefore our relaxation of the angular momentum concept in our research has been 

properly addressed to give tangible results. 

 

To price at the next quantum region, we keep the radius of the quantum market point 

constant and vary the fraction of information tunnelled to the adjacent quantized market 

region. For each value of C⊳(۝
τ
 | Fτ) we obtain the values of the lowest transition (k=0) 

price. The transition price set is computed in the same fashion as above using the same 

formula. The market quantum well considered is Gaussian and the radius is kept constant 

at 100 q. The data generated by the program are 

 
 
 
Table 11: Quantum prices  and  conversion to a forecast price set in the observed world 
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Table 12: Quantum prices  and  conversion to a forecast price set in the observed world 

 

If we approached the problem from the current quantized region (region I), then tau would 

be zero. 

 

 
 
Table 13: Quantum prices  and  conversion to a forecast price set in the observed world 

 

We can price for the next region (region II) and compare the results with the previous 
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approach. 

 
 
Table 14: Quantum prices  and  conversion to a forecast price set in the observed world. Different scenarios 

 

 
 
Table 15: Quantum prices  and  conversion to a forecast price set in the observed world. Different scenarios 

with a Gaussian. 
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Figure 21: Transition Eigen-Price - Fraction of information dissipated and tunnelled. 

 

 

 
 

6.1.7 INTENSITY OF INFORMATION REFLECTION ON PRICE (IIRP) 

 

We establish the concept of the intensity of information reflection on price as a 

proportional measure to the probability density function on the continuous probability 

space. We denote IIRP = I∆(۝
τ
 | Fτ)  to be the intensity of information reflection on price 

and consider the continuous space probability density of the normal distribution. 

 

I∆(۝
τ
 | Fτ)  ∝ f (r|μ, σ2) = 1

√2πσ2
e−1

2(
r−μ

σ )
2

     (147) 

 

Where  is the expectation, and  the standard deviation. In our previous section’s 

numerical considerations we moved between continuous and quantized spaces through 

the quantum effect q =10-11. This, is expressed mathematically below: 

 

I∆(۝
τ
 | Fτ) ∝ e−1

2(
qr−qμ

qσ )
2

= e−1
2(

r−μ
σ )

2

          (148) 

 

Thus the probability density effects observed in the continuous space are in equilibrium 

with I∆(۝
τ
 | Fτ), where the IIPR reflects its independence from the quantum effect 

measure. However, it is possible to treat the subject from a more comprehensive angle. 
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In our closing segments of the first theoretical chapter, we established the probability 

density function to depend on quantum system’s main quantum number 

 

un(r) = |ψn(r)|2 =
1

√π

α

2nn!
|Hn(αr)|2e−(αr)2

    (148) 

 

Where for n = 0, we obtained the classical expression for the probability density function 

u0(r) = f(r|μ, σ2)  , therefore I∆(۝
τ
 | Fτ) ∝ u0(r). It has a maximum at r = 0 . We also 

concluded that as n increases, the result moves away from the classical result, implied by 

the equation above. From our concluding remarks on the first theoretical chapter, we 

considered the square root of the weight function w(r), so that the functions ψ(r)are 

orthogonal when integrated from - to +, which is required by theory (Szego, 1939).  

 

We established in the first theoretical chapter that the orthogonality of the Hermite 

polynomials is expressed by  

∫ e−r2+∞

−∞
HnHmdr = δnm2nn! √π             (150) 

where nmδ  is the Kronecker delta which is a function of two variables, usually just 

positive integers (Szego, 1939; Puig, 2003). The function is 1 if the variables are equal 

and 0 otherwise 

δij = {
0 if i ≠ j
1 if i = j

          (151)                 

is zero if m is not equal to n, and unity if m is equal to n. Without proving the full 
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mathematical work-out, to prove this one needs to express the exponential times the 

Hermite polynomial of larger order as an nth derivative using the Rodrigues formula, 

and then use integration by parts until the polynomial of smaller order is differentiated 

to zero (Schwartz, 1967). If the orders are equal, the final integral, and subsequently the 

result is the integral of exp(−r2)  times a constant, and the normalization constant 

becomes (√2π)n!  (Walter, 1977).  The orthogonality attribution can be used to 

expand an arbitrary function in a series of Hermite polynomials, in exactly the same way 

as a Fourier series (Sansone, 1939; Walter, 1980;  Puig, 2003).  

 

Subsequently, the intensity of information reflection on price has a Gaussian-like shape 

and is dependent on market’s expectation and volatility. On theoretical considerations, 

we can use contemporary asset pricing models to compute both the expectation and 

volatility. A theoretical graph of this is shown below 

 

 
 
 

     Figure 22   The intensity” of information reflection of price vs transition Eigen price. 
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The investigation into the intensity of information reflection on price could focus on a 

singular quantized market point (or arbitrary radius) and at a specific time or across a 

sample containing a number of quantum price points. The number of price dots  is very 

large. This type of analysis is linked with the transition Eigen price - radius analysis as 

above. The points of this range correspond to the ground state price transitions i.e. refer 

to Chapter 4 for mathematical workings. It is also the Eigen state that we have considered 

in the previous computations. For higher Eigen-states, we would expect the intensity of 

the information reflection on price to split. 

 

 

Our theoretical framework served well for the purposes of calculating price eigen-values 

we had started the research with a purely theoretical model, by describing the price cut-

off as a very general polynomial. Our maximized formulation was then aligned to 

quantized market points, thus resulting in an effective information equation. We advanced 

by choosing several price cut-off functions, and solved our master expression for each of 

them.  

 

 

Further developments of this work could include a closer and more comprehensive 

investigation of the intensity of information reflection on price for a large number of 

quantum market points, and subsequent asset price for casting across a large time horizon. 

In addition, numerical computations could be carried out for additional price cut-off 

geometries, which we have not considered in this research, such as pyramidal and 

cylindrical geometries, as these provide the challenge of dealing with more complicated 
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boundary conditions. Further future research could be focused on the possible use of price 

cut-off potentials within our quantum theorization for intraday trading as a range of new 

technical analysis case studies. 

 
 

6.2  STURM-LIOUVILLE LOGARITHMIC PRICE EIGEN-VALUE SYSTEM 
 

The GSE and mathematical expressions that followed are examples of a Sturm-Liouville 

eigenvalue problem and therefore can be solved by numerical and mathematical methods 

developed for that specific type of problem (Bailey, 1966). We start with our master 

formula (i.e. GSE) with =(r-μ)/σ and ∂2 = (1/σ2)∂r2 and re-arrange  it to obtain 

(−
1

2
σ2 ∂2

∂r2 + κη(r)) ψ(r) = αψ(r)        (152) 

or 

∂2ψ(r)

∂r2 +
2

σ2 (α − κη(r))ψ(r) = 0        (153) 

Conversion to one variable dependency allows for the partials to be converted to full 

differentials, thus (153) we can write as 

d

dr
(

dψ

dr
) +

2

σ2
(α − κη(r))ψ = 0     (154) 

Bailey (1966), describes well the Sturm-Liouville system which is given by 

d

dr
(p(r)

dψ

dr
) + q(r, λ)ψ = 0      (155)                                                

where p(r) can be a function of the stochastic process random variable  (i.e. rate of return) 

or can be simply a constant, and q(r,) is a function of the random variable r and the 
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eigen-value  (Bailey, 1966). A comparison of equations  between the equations show 

that they become the same when p = 1, ε=(2/σ2), and q(r) =ε[α-k(r)], with the boundary 

conditions 

a2ψ(a) = a1p(a)ψ′(a)      (156) 

b2ψ(b) = b1p(b)ψ′(b)      (157) 

 

where a and b are the end points. Although, theoretically, we seek the end points (), 

for numerical illustrations, and programmatically we use two finite end points, a, and b, 

due to the adapt D02KAF –Nag routine used which is specific for second order Sturm-

Liouville systems defined on a finite range, using a Pruefer transformation and a shooting 

method, thus the boundary conditions become 

ψ = 0    at    r → 0          (158) 

ψ = 0    at    r → +∞     (159) 

The D02KAF finds a specified eigenvalue λ of a SturmLiouville system defined by a self-

adjoin differential equation of the second-order (i.e. equation 155) where a < r < b.  At 

the two finite end points a and b, the functions p and q are real-valued and defined by a 

(sub) program COEFFN supplied.   

 

For the theoretical basis of the numerical method to be valid, the following conditions 

should hold on the coefficient functions: p(r) must be non-zero and of constant sign 

throughout the closed interval [a, b]; ∂q/∂λ must be of constant sign and non-zero 
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throughout the open interval (a, b) and for all relevant values of λ, and must not  be 

identically zero as r varies, for any relevant value λ; p and q should (functions of r) have 

continuous derivatives, preferable up to the fourth-order, on [a, b]. The differential 

equation code is used to integrate through mild discontinuities, but probably with severely 

reduced efficiency. Therefore, if p and q violate this condition, D02KAF should be used.  

 

The eigenvalue λ is determined by a shooting method based on a Pruefer transformation 

of the differential equations (Bailey, 1966). Providing certain assumptions are met, the 

computed value of λ will be correct to within a mixed absolute / relative error specified 

by the user-supplied value TOL. D02KAF is a driver routine for the more complicated 

routine D02KDF whose specification provides more details of the techniques used. A good 

account of the Sturm-Liouville systems, with some description of Pruefer 

transformations, is given in Birkhoff and Rota (1962). The best introduction to the use of 

Pruefer transformations for the numerical solution of eigenvalue is given in Bailey 

(1966). 

 

Having declared the general function γ(χ) as a polynomial, we need to be more specific 

and choose several cases for the true nature of it compliant to the general cases developed 

in section 2.0 and declare the boundary conditions. On all the cases we have applied the 

same generic boundary conditions as shown above. Next we map the proposed potential 

functions to the equivalent Sturm-Liouville q(χ) function, shown in the table16  below 

 

TABLE 16 
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 NAME STURM-LIOUVILLE FUNCTION AUGMENTED STURM-LIOUVILLE FUNCTION 

1. GAUSSIAN q(χ) = ε[α − γ(0)(1 − exp(−χ2))] q(r) = ε [α − γ(0) (1 − exp (−
1

L2
(

r − μ

σ
)

2

))] 

2. HARMONIC q(χ) = ε [α −
1

2
κχ2] q(r) = ε [α −

κ

2L2 (
r − μ

σ
)

2

] 

4. 
DECAYING 

EXPONENTIAL 
q(χ) = ε[α − γ(0)(1 − exp(−χ))] q(r) = ε [α − γ(0) (1 − exp (−

1

L
(

r − μ

σ
)))] 

5. LINEAR q(χ) = ε[α − γ(0)χ] q(r) = ε [α − γ(0)
1

L
(

r − μ

σ
)] 

6. 
CONSTANT 

SQUARE WELL 
( )( )0γ-αε=)χ(q  

q(r) = ε[α − γ(0)] 

8. ARCTAN q(χ) = ε {α −
1

2
γ(0) [

2

π
arctan(χ) + 1]} q(r) = ε {α −

1

2
γ(0) [

2

π
arctan (

1

bL
(

r − μ

σ
)) + 1]} 

9. COSH-2 q(χ) = ε{α − γ(0)[1 − cosh−2(−χ2)]} q(r) = ε {α − γ(0) [1 − cosh−2 (−
1

L2 (
r − μ

σ
)

2

)]} 

10

. 
INVERSE  γ(χ) = ε [α + γ(0)

1

χ
] 

q(r) = ε [α + γ(0) (
Lσ

r − μ
)] 

 

Where   is a constant, established in relation to the degree of convergence and regulation 

within a specific market in which asset price is evolved. For a well-regulated and 

functioning market, we set  to 1. Some of the potential functions mentioned above are 

illustrated below 
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The γ functions listed above belong in the “family” of the generalized potential given in 

the previous chapter. The harmonic γ can be seen as the first order approximation of the 

Gaussian, where the Gaussian is a “sub-family” of the generalised function given as a 

summation. The triangular γ, also can be seen as the first order approximation of the 

decay exponential potential, where the decay exponential is also a “sub-family” function 

of the generalised γ. 

 

For the purpose of the illustration, we use a set of generic data for the σ, κ, α, and four 

cases of the presumed nature of γ, which cover the main theoretical scenarios developed 

in previous sections. In order to normalize the probability density of states relative to the 

return rate Eigen-value set, we set γ(0) = 1/(2)0.5  (160), which also allowed for better 

comparison  between the  various potential functions proposed. Sturm-Liouville solutions 

were found on all of the proposed potentials, although emphasis was placed on the 

harmonic, Gaussian, linear, decreasing exponential, and constant functions. From a 

theoretical point of view the Cosh-2 function would also be a good potential to fit for small 

values of χ; a simple Taylor expansion would match its fitness to the Gaussian.  

 

 

Apart from the Metropolis algorithm, and the Brownian motion simulation, the rest of 

applications are based on  Sturm-Liouville formulations (Bailey, 1966). In this section 
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we have used arbitrary  input data, although further detailed work is included above .  

 

All  compute logarithmic asset price or some variant of it, depending on the scenario 

considered, thus the Sturm-Liouville form of the expressions led to the computation of 

the eigenvalues  of the rate of return. It follows that we are interested in the probability 

distribution of the eigenvalues of the rate of return, or the density of states. It is also 

possible that a full pricing model can be developed out of the Sturm-Liouville solution, 

for contingent claims and their underlying, however that would expand this paper’s 

research beyond its initial scope, but it remains to be established in the future. However 

we are able to plot the density of states against the rate of return as a histogram (Berenson, 

2012).  

 

For widely spaced eigenvalues, the spectrum appears as a series of delta functions. By 

varying the size of the return rate “bin range” we are able to vary the resolution of the 

density of states plot.  With a small enough bin range, the spectrum always consists of 

discrete states.  Such histograms are made from the data generated for different programs 

representing the different gamma functions mentioned above. In all cases the data were 

generated by a newly designed C++ program invoking NAG routines.  These plots clearly 

show the discreteness of the return rate (and subsequent the price) levels for a quasi-zero 

dimension point in the market line.  

 

Running the programs and analysing the data, we observed that the discretisation of the 

rate of return and subsequently of price is a set of deltas equally spaced in the case of the 

harmonic gamma, but progressively spacy for the Gaussian potential examples wth the 
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generic or default input data. With the arbitrary trial data used, the highest intensities of 

the rate of return probability distribution are reached between 2.1% to 3.1% in the case 

of the Harmonic and between 1.2% to 2.25% in the Gaussian case.  

 

On the other hand for the linear potential function suitable in the case of contingent 

claims, as seen in the case of the Black-Scholes PDE derived from the main  postulated  

expression, the increased intensity of the distribution is accompanied with a parity effect 

between 0.9% and 1.3%; typically such case would be associated with the quantization 

of rate of return and effectively of both the financial derivative and the underlying asset. 

The decreasing exponential has a matching effect to that of the liner potential, around 

1.02%., whereas the constant potential scenario, is not good all together, however is it an 

example of  reasonable approximation around very small values of χ  or very high levels 

of volatility. 

 

  

Figure 24a 

 
Figure   24b 
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 Figure 24c 

 
Figure   24d 

 

 

  

 Figure   24. 

 

Probability Density of State vs the rate of 

return Eigen-values at a quantization market 

point. 

 

In relevance to the quantization effects in the price change behaviour, if we revert back 

to earlier sections, it is possible to consider for all scenarios an α = rtot, or 𝛼 = rtot − rf, 

where the total rate of return (or total risk premium)  is  the sum of the rate of return  

obtained through any of classical pricing models and the value directly linked to the  

quantization of price change behaviour at each p-point. 

 

7.0 COMPARATIVE VALUATION OF   

FINANCIAL OPTIONS WITH EIGEN-VALUE CONVERSION AND CLASSICAL 

MODELS 

 

 

In this chapter, I make use of the theoretical framework with quantization effects within 

the zero-object to price financial options. It builds coherently from theoretical and 
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numerical considerations  of  preceding chapters. Results are then compared with those 

from some of the more common classical option pricing models, such as the Black-

Scholes, Binomial, and RG.  I consider the duality of pricing the underlying and the 

options with a strong form of  dependency between the two. Subsequently all assumptions 

made in chapter 5.0 are valid. My strategy is to price with various quantum pricing sub-

models and to further identify the quantum option pricing sub-model that is best-suited 

to address the known shortcomings of classical option pricing models reported in existing 

literature.  

 

7.1 FINANCIAL OPTIONS WITH EIGEN-VALUE CONVERSION  

In previous chapter, I discussed  various  zero-object  “geometries” through various  cut-

off price potentials. Further more, I  have previously introduced  equation (142) for the 

transition market price, reproduced here below:                               

          

    
∀k ∈ {0, … , K}, ∀n ∈ {1, … , N} , ∀τ ∈ {0, … , T}  ∴ K ⊨ N & T ⊨ N,   rk

=:
1

2
{[diff(LN(P))

L
] + [diff(LN(P))

H
]

+ 𝑞μ [1 +  (τ − C⊳(۝
τ
 | Fτ)

τ
n)]} 

                                                                                                                             (161)   

 

Equation (160) allows me to compute  the Eigen-prices within a quantum zero-object.  It 

also implies  that information  dissipated  by zero-objects  is quantized. However, I have 

not  theorised or modelled  information quantisation separately in this research study. I 

consider sufficiently that events in a filtration are reflected on asset prices in-line with 

efficient market hypothesis (Asquith, 1983; Bachelier, 1890; Bernard and Thomas, 1990; 

Bodie et al., 2009, Khrennikov, 2018).   
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This is based on the presumption that investors act rationally and without bias, and they 

estimate the value of an asset based on future expectations. Under these conditions, all 

existing information affects the price, which changes only when new information arrives. 

By definition, new information may appear randomly and influences the asset price 

randomly. Corresponding continuous time models are based on stochastic processes 

(Bachelier, 1890, Shiryaev, 1999, Mantenga and Stanley, 2003, Choustova, 2006). 

However randomness in  financial markets can be better described by quantum mechanics 

where extreme irregularities in the evolution of price may be explained by quantum 

effects (Segal and Segal, 1998; Choustova, 2006; Haven, 2008a:2008b). 

 

 The information-price reflection must be in some form of parity  between the Ⓒ↓↑ and Ⓓ↑↓ 

worlds,  where quite probably only part of filtration may be “absorbed”  by the zero-

object. This is related to the quality of filtrations. For that purpose I  have defined  

C⊳(۝
τ
 | Fτ) to be the quality of filtration in expectation, related to the degree of 

congruence of market regulation and governance and as a sign of connectivity of the two 

worlds. For information-quality issues in asset pricing, please see  papers by Haven 

(2008a:2008b), and  Epstein and Schneider (2008),  

 

In order to work out the transition prices, I  have considered a “graded” composition of  

each market region with different effects of dissipation and tunnelling at each quantum 

level. To that end, I have introduced formulations for  transition price, as expressed in 

equations (143), (144), and (145),  reproduced here below: 
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∀k ∈ {0, … , K} Ptransition→II = Pspot→Iexp (rk)      (162)  

 

 

  ∀k ∈ {K, … , 0} diff(LN(P))
H

= LN(P)∀i∈{K,…1} − LN(P)∀j∈{K−1,…0}      (163)  

 

∀n ∈ {0, … , N = K − 1} diff(LN(P))
L

= LN(P)∀i∈{0,…N} − LN(P)∀j∈{1 …K}    (164)  

                                                             

 

As previously indicated focus in this research is on any two adjacent zero-objects along 

the market line, where my computations have shown that 

 1 + [τ − C⊳(۝
τ
 | Fτ)

τ

k+1] = 0        (165)  

For a sequence of p-points along the market line, this effect is expected to increase, which 

implies larger asset price moves, subsequently higher uncertainty. This means there is 

more certainty in  price prediction when  one considers two immediate zero-objects and 

within a short time horizon (i.e. intraday trading),  but  less so when a sequence of  zero 

object within a considerable time horizon is considered. There is an increasing body of 

evidence suggesting that exact nearest neighbour search in high-dimensional spaces is 

affected by the curse of dimensionality at a fundamental level (Schafer, 1966; Milnor, 

1868; Kong et al., 2000; Pestov, 2006; Canessa, 2007). 

 

The new theoretical framework has led to asset pricing. I have also shown in previous 

chapters that the Black-Scholes option pricing model is a special case of the Sturm-

Liouville fitted system. Attention is now turned to option pricing with quantum-value 

conversion. As expected such process would be strongly bound to the pricing of the 

underlying, elaborated above and in previous chapters (Black and Scholes, 1973; Cox et 

al., 1979; Milevsky and Posner, 1998). 
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With the  task to compute the option price using the zero-object models, one of the main 

hurdles is the computation  of  the probability within its space. Quantum mechanics is a 

probabilistic theory, as most of its predictions are irreducibly statistical. It is therefore 

understandable that the first attempts to clarify its content made use of the well-tested 

concept of statistical ensembles, describing identical abstract copies of the system under 

consideration, each of which would represent a different state in which the system might 

be found to be in. This statistical ensemble interpretation of quantum physics was 

originally put forward  by Albert Einstein (Einstein, 1958;  Ballentine, 1970; Aerts and 

Gabora, 2005;  Bianchi, 2013). 

 

I have introduced important ideas regarding the possibility of a realistic interpretation 

of the behaviour of quantum systems in a financial context. Further I apply intuition into 

the computation of possible quantum probabilities. These are  understood as epistemic 

statements associated  with lack of knowledge not about the state of the system, but 

about the exact “interaction” taking between Ⓒ↓↑- and Ⓓ↑↓- worlds, according to Aerts’ 

hidden-measurement approach (Asano et al., 2011:2012; Aerts et al., 2010:2013). This 

approach is also supported by Bianchi (2013a).  

 

In this research study, I  have nonetheless quantified   the possible forms of interaction 

between the two worlds (refer to previous chapter).  I have done so by somehow 

reverting the logic of Einstein’s celebrated quote, that “God does not play dice” (Irene 
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Born, 1971), showing that the simple act of rolling a die (stochastic event) and according 

to certain protocols, is a truly quantum experiment, which can be described using a  

projection postulate and the Born rule (Max Born, 1926), and which is capable to 

produce interference effects.   

 

For example Busemeyer et al. (2009) computed quantum probabilities in a Markov 

model using Feynman’s path rules using single projected path dependencies between 

variables. In practical terms, this means that I may project probabilities from the 

generated Eigen-values.I have established previously the dependencies between 

variables in the two worlds. Surely probabilities are worked out of information and 

information itself is reflected on the price within classical Bayesian and Markov 

networks,  modelled respectively to Ⓒ↓↑ and Ⓓ↑↓-worlds. This may be projected within 

the zero-object and the interaction (interface) between the two worlds (Tucci, 1995; Gal, 

2007; Darwiche, 2009; Asano et al., 2012; Moreira and Wichert, 2016).   

 

In connecting the two worlds , contemporary work is varied and provides a good  base. 

Leifer and Poulin (2008), proposed a quantum Bayesian network by replacing the 

classical formulas used to perform the inference process by their quantum counterpart. 

Whereas Busemeyer et al. (2009), proposed a quantum dynamic Markov model based 

on the findings of cognitive psychologists and interference terms.  

 

Khrennikov (2006) also modelled mental processes through quantum probabilities, 
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where the interference process plays an important role in the process of recognizing 

images(Conte et al., 2009). Other interesting works of this author applying similar 

quantum formalisms correspond to Khrennikov (2007a:2007b:2009), Tentori et al. 

(2013), etc., where the proposed quantum model on quantum probabilities  incorporated 

entangled decisions. 

 

In this study, I have worked  these out as weighted probabilities through a process of  

“normalisation”  and for each  Eigen-state.  

∀k ∈ {n, … , 0} wk
Ξ =

LN(P)k
Ξ

∑ LN(P)k
Ξ0

k=n

         (166)  

  
I then use equation (162) to compute asset’s  future price. This follows from the 

application of the asset price computation with Eigen-value conversation (refer to 

previous chapter). The single  path dependency between the asset  prices in the Ⓒ↓↑ and 

Ⓓ↑↓  -world is utilised consistently (Wu and Gonzalez, 1996; Prelec, 1998; Barberis and 

Huang, 2008; Polkovnichenko and Zhao, 2012).  

 

 I now revert back to equation (162)  for the computation of the transition asset  prices. 

These are  converted  to  Ⓒ ↓↑ -world asset prices through a process of quantum 

convergence and direct inference, detailed in the previous chapter. Previously I observed 

market prices in the Ⓒ↓↑ -world, computed Eigen-state values in the Ⓓ↑↓, then converted 

them back to Ⓒ↓↑ -world prices, one time horizon in the future. There is direct inference 

involved in variable mapping between the two worlds. Due to the fact that equation (162) 
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deals with the Ⓒ↓↑ -world future prices, one may use expected payoff formula for options, 

expressed below (Politzer and Macchi, 2000; Hull, 2014). 

CT = MAX(ST − X, 0)      (167)  

PT = MAX(0, X − ST)       (168)  

CT and PT are payoffs for call and put, respectively. ST is the spot (market) price at time 

T, and X is option’s exercise price.  In  classical option valuation  theories (Black and 

Scholes, 1973; Cox et al., 1979; Jarrow and Rudd, 1983; Leisen and Reimer, 1996; 

Milevsky and Posner, 1998; Garman and Kohlhagen, 1983; Hull, 2014), the value of an 

option is equal to its expected payoff in a risk-neutral world, discounted at the risk-free 

interest rate, which can be written as: 

c = e−rTEQ ∈ Ⓒ↓↑[MAX(ST − X, 0)]        (169)   

p = e−rTEQ ∈ Ⓒ↓↑[MAX(0, X − ST)]       (170)   

Where EQ ∈Ⓒ↓↑[], denotes the expectation with respect to some risk-neutral probability 

measure Q  in the  Ⓒ↓↑ − world. This term is identified later  in this chapter for each of 

the commonly used  option pricing models. The exp(-rT) is the discount term. The  

notation convention here  is to use capital C and P for  payoffs of calls and puts, 

respectively, and lower case c and p for  option price equivalents. I have also dropped the 

subscript for option prices at  time zero in the  Ⓒ↓↑ − world. 

 

Similarly and by analogy, using a zero-object to price options, I may write 

cΞ = e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST − X, 0)]        (171)   
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pΞ = e−rTEQΞ ∈ Ⓓ↑↓[MAX(0, X − ST)]       (172)   

Where EQΞ ∈ Ⓓ↑↓[], denotes the expectation with respect to some  probability measure QΞ   

(that may be risk-neutral) inferenced in the  Ⓓ↓↑ − world. I do not identify a discretised 

expression for this term due to the fact that I have treated the asset and derivatives’ pricing 

problem at a PDE level. Therefore it is outside of the scope of this research study. 

However, I can calculate Eigen-state weighted probabilities from computationally-

generated Eigen-values using the PDE expressions of previous chapters. The notation 

convention for option prices uses  the superscript  Ξ  to indicate that the  call and put 

option values are established through zero-object inference. The expressions inside the 

square brackets in in both cases represent the expected payoff of the option.  

 

The probability measures are important and have been treated in contemporary research 

linked to financial arbitrage. For example Haven (2008a:2008b)  explored  the concept 

of an “information wave function”, and further  underlined the role of risk-neutral 

probabilities for financial non-arbitrage. He argued that a change in the probabilities 

may introduce  arbitrage 80  and that the conditions for no-arbitrage for a discrete 

parameter process  must be met  (Harrison and Kreps, 1979). It is important to make the 

distinction on the required conditions for non-arbitrage, between discrete and continuous 

underlying processes (Karatzas and Schreve, 1998a:1998b).  

 

                                                           

80 Arbitrage implies that a positive financial return can be realised, which is in excess of the risk free rate of interest. 
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On the last leg of the process and prior to the actual use of the new theory to price options, 

I establish the most suitable zero-object sub-models. I use the previous chapters’ 

discussions with focus on the suitability of cut-off price  potentials to establish that 

Square-Well,  Gaussian,  Cosh-2, and Arctan are the  sub-models  in trial i.e. refer to table 

(16) for the full set of cut-off  price potentials. Recall from previous chapter that these 

geometries are important in the consideration of filtration penetration of markets under 

the previously applied  boundary conditions. I have applied  a criteria  that combines  

market  attributes and  theoretical  considerations.  

 

In the previous chapter, I considered self-regulated market, where   market regions were 

viewed as composed of layers with interfaces. These  are not abrupt, therefore allowing 

for  continuously varying cut-off  price potentials  to be  fitted.  I have argued that for 

smaller  radius quantum zero-objects,  the cut-off price potential  polynomial explanation 

(eq. 137 and  138) should include a considerable number  of terms,  therefore a Gaussian 

γ would be most suitable in the model. A careful  observation of  the polynomial  

expansion (eq. 138) shows that the for small quantum zero-objects, the harmonic is a poor 

approximation and the Gaussian is more realistic (refer to equation 139). The Cosh-2 (refer 

to table 2.0) is another smooth cut-off price potential. From the Taylor expansion, one 

can see that  Cosh-2, similar to Gaussian, is good approximation cut-off price  function 

for small quantum zero-objects. 

 

 

I  have also provided arguments for cases  where filtration dissipation is varied across 

quantum zero-objects, along the market line. In such cases, consideration of the  “depth” 
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of  the quantum construct was needed. therefore Arctan would be deemed to be suitable, 

particularly for  reasonably small values of dispersion, 𝜎. Dependant on how modulated 

the information is and the internal “texture” of the market region under consideration with 

the occurrence of information diffusion, the Gaussian cut-off price potential is probably 

still the most suitable one, particularly for smaller radius zero-objects. Recall that  Arctan 

is a way of simulating “roughness”, possibly when diffusion of information across the 

market line is significant (Möller and Zettl, 1996; Kong et al., 2000; Canessa, 2007; Yan 

et al., 2017; Kim and  Lototsky, 2017).  

 

 

The Arctan’s potential suitability depends on the value of the parameter b and the size of 

the quantum zero-object. This price cut-off function can be a good approximation for 

large radius. However for larger zero-objects (radius), it followed that the rectangular-

well was a reasonable sub-model to consider. The price eigenvalues generated for Arctan 

will become similar to the square well, when the parameter b is very small. When b is 

large, the spacing between the eigenvalues becomes very small. This shows how the price 

quantum levels may be affected by “roughness” in the quantized “interface”. 

 

 

For more detailed analysis, this price cut-off potential can be expanded, using the Taylor 

expansion (refer to previous chapter). The Harmonic potential function becomes a good 

approximation in the cases when there is no overlap of filtrations, or the sequence of 

events is orderly within the quantized construct. However this research does not explore 

patter formation of quantized flirtations, where minute fragmentation and overlaps could 



261 

 

occur. Instead, the harmonic  potential can be seen as suitable for not too small and  not 

too large zero-objects  (refer equation 139) . I subsequently,  discarded    decaying 

exponential, linear,   triangular, and inverse  models,  (Möller and Zettl, 1996; Kong  et 

al.,  2000).  

 

The  price cut-off  potentials selected here to trial option valuation are the Square-Well, 

Gaussian, Arctan, Cosh-2, and Harmonic. These are deemed most suitable based on  

theoretical rational and assumptions  on market attributes (refer to previous chapter 

discussion and previous paragraphs). I use  numerical simulations and analysis in the 

following sections, that lead to  the validation of the best-suited zero-object  “geometry”  

in  pricing options. The forward strategy is to compare results with those obtained  from 

classical  option pricing  models (Black and Scholes, 1973; Cox et al., 1979; Jarrow and 

Rudd, 1983; Leisen and Reimer, 1996; Milevsky and Posner, 1998). I highlight 

improvements in option valuation attributed to  the proposed  quantum  zero-object 

models by referring to deficiencies of existing and reported empirical tests on  the 

classical  models.  

 

In this study,  I allege that sensitives on the cut-off price potential can induce  arbitrage. 

As previously elaborated, the wave function, is another very basic concept in quantum 

mechanics, can be fruitfully used to explaining arbitrage (Bossaerts et al., 2010; 

Khrennikov and Haven, 2009; Bruguier et al., 2010). This study does not represent a 

first attempt to link the potential function to financial arbitrage within a quantum 

construct.  Haven (2002), considered the price of an option to be a financial-state 
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function. This would satisfy the Schrödinger differential equation and is in-line with our 

conceptualisation as explained in previous sections and chapters.   

 

Moreover , Haven (2002) argued that an arbitrate-free price may be acquired when the 

potential function converges to one, whereas arbitrage can be achieved when the Planck’s 

constant is non-zero. According to Haven, the Planck’s parameter regulates the 

probability of strategy paths’ occurrence.  Haven (2002) called this parameter the “belief” 

parameter. This is important due to the fact that the classical option pricing models are 

arbitrage-free models. Therefore, Haven (2002) provides a basic approach to include  

arbitrage in a natural way. According to Haven (2002) the  “belief” parameter could only 

serve as a  proxy to arbitrage.  

 

The small “diversion” above should serve to highlight the value of  this research’s  

quantum zero-object model (Generalised Shrodinger-Sturm-Liouville) in comparison 

with existing quantum models. This is so because I do not use the Plank’s constant at all. 

The parameter has significance in Physics and is defined in a non-financial context. It 

may help to see that such relaxation of the Plank’s contestant is equivalent to setting its 

value to one, which is  subsequently non-zero and reflective of arbitrage. Haven (2002) 

then  links arbitrage to the potential function i.e. the price-cut-off  potential function. The 

use of the Planck’s  constant and the potential function in this way has not been tested 

and includes oddities in logic congruency. However, in this work I do not link Plank’s  

parameter to arbitrage at all. Further empirical tests and analysis in this study (further 

down) show that such parameters are irrelevant and do not effect the price Eigen-values.  



263 

 

It is  the quantum “geometries”, best reflected through the cut-off price potentials, that  

proxy arbitrage (refer to chapter 4).   

 

Haven (2002:2003:2005) uses a binary format for  arbitrage and non-arbitrage occurrence  

i.e. potential value of zero and one. This is too simplistic when considering the 

comprehensiveness of the potential functions I  have included in this study. Furthermore, 

I believe that further research in the quantisation of filtrations on zero-objects may hold 

the  key  to the missing layer of knowledge on how information is dissipated and tunnelled 

to adjacent quantum regions along the market line. This is important if  one is to predict  

future events by impact  level and degree.  In comparison, it suffice to say that the 

potential  function with  0 and 1 values  in the works of Haven (2002:2003:2005)  is a 

special case to this study’s square-well  price cut-off potential, and only partially suitable 

in option pricing for  large quantum zero-objects. I consider  various potentials and zero-

object  of various  sizes (refer to discussions  in  preceding sections and chapters). 

 
7.2 FINANCIAL OPTION VALUATION  WITH  SQUARE-WELL, GAUSSIAN, COSH, 

AND ARCTAN ZERO-OBJECT MODELS 

 

 

I now turn  attention to  the  calculation of option prices using  the  justified selection of 

zero-object models discussed in the preceding section.  There are two sets of inputs used;  

(i) the Ⓒ↓↑ - world inputs , and (ii) Ⓓ↑↓ - world inputs. I  have applied the Ⓓ↑↓ - world 

inputs through the relevant algorithm with NAG-subroutine embedment.  

 

I have already introduced  measures of direct inference, thus mapping  variables between 
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the two worlds  in which  the quantized space is measurable in terms of qm with the 

parameter q = 10-7 of a basis point (BP), where m is taken to be the smallest dispersion 

in consideration, m =10-4  (refer  to chapter 5, section 5.1.4). Ioften drop the subscript ‘m’ 

for simplicity when focusing on the Ⓓ↓↑ - world only. Subsequently 1qm is equal to 10-

11. I have branded this  to be a space conversion or transition coefficient. This allows to 

map out inputs across  the two worlds. I have previously assumed a spherical  zero-object  

where its radius is expressed in q terms. This averts the use of SI units for space  in 

Finance, which would  be illogical. The space” and time here is dimensioned  on   price 

as  a price - spacetime representation. I avoid use of currency symbols by using % 

representations. The choice of  γ also depends on the size of the quantum price point i.e. 

refer to chapter 5, section 5.1.4 for further details. 

 

 

To keep the proof of concept as simple as possible, I use  the following common   Ⓒ↓↑ - 

world inputs. This also allows to connect back-to-back with the data used in the numerical 

analysis in chapter 5. 
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Table 17. Sample inputs for option pricing tests. 

 

However, we  also need measures of dispersion, , meaningful in theⒸ↓↑ - world. We 

do vary them across  the test scenarios, hence we do introduce them as needed. For 

simplicity our choice of dispersion  is mapped directly  to (0) through  the relation  

σ =
γ(0)

q
         (173)     

Where 1 = 10-7, and (0) is expressed in qm (refer to chapter 5, section 5.1.4). This allows 

us  to re-use data from the asset pricing simulations of  chapter 5. 

 

Eigen – prices are generated from the C++ program through the invocation of NAG 

routines. We have trialled various Sturm-Liouville  fittings to our master expression 

(chapter 5, section 5.3). We have also generated  data with the quantised  generalisation  

of the Black-Scholes expression. We placed greater emphasis on equation (104) for 

Sturm-Liouville fitting (Shrodinger-Sturm-Liouville-Euler).  Eigen-price sets were 

generated  programmatically, because  it appears to be a more generalised and abstract 

solution than the quantised Black-Scholes PDE. Under such case, interestingly, the cut-

off price potential, referred to as potential function in Haven (2002),  has a constant 

identity.  

 

We recall from our discussion in the previous section that Haven (2002) was very keen 

to link the existence of an arbitrage-free price to the potential function convergence to 

one and an arbitrage price with  a non-zero Planck contestant. The Plank constant in our 
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formulations is one, indicating arbitrage according to Haven (2002). However, in our 

work, arbitrage is achieved through the differential of the quantum operator with the 

residual effect (reflected in the cut-off price potential function) and when such differential 

is non-zero. Equivalently an arbitrate-free model is achieved when the same differential 

is zero. Such is the ‘Shrodinger-Sturm-Liouville-Euler’ model trialled here. This implies 

that the quantised flirtations are well formed within the quantum zero object and in 

complete parity with the residual effect i.e. driven by the underlying stochastic process. 

 

The tabulated data in tables (17, 18, 19)  below are generated  through a process that  

involved the following  steps: (i)  use  of equation (161)  to obtain  the  rate of return 

Eigen-vector from Eigen-prices, (ii)  application of equation (162) for the acquisition of 

the price transition vector, (iii) calculation of  Eigen-probabilities, explored in previous 

sections of this chapter, through equation  (236),  (iv)  use of equations (167) and (168) 

to obtain call and put option payoffs, and  (v)  use of equations (169) and (170) to  

compute call and put option prices, respectively.  

 

It’s important to note that step (v) is achieved without a discretised formulation of the 

expectation term,EQ ∈ Ⓒ↓↑[⋯ ].  This is because in this research work we have treated 

the problem at a partial different equation level. This is quite common practice when 

quantum settings are used. It is so because our formulated problem, like many others. 

involves  option pricing with additional complexity and the challenge to address very 

fast changing markets. In order to take advantage of arbitrage due to mispriced financial 

stock options, the computation must complete prior the next change in a continuously 
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changing stock market. It serves to justify in part the problem addressed  at a PDE level 

rather than at the expectation. There is an abundance of research that has applied 

alternative  computation algorithms to finance (including quantum finance). We do so 

in this research  work, but also the works of Boghosian and Washington (1998), Baaquie 

et al. (2002), Hirvensalo (2003),  Khrennikov, (1999:2006:2007a:2007b), Meyer (2009),  

Rebentrost et al. (2018), etc. Nonetheless the EQ ∈ Ⓒ↓↑[⋯ ] has been invoked by our 

algorithm, such that the necessary results are obtained. 

 

 

Table 18:      Data generated from the C++ program for different well depth for the square well γ function. 

Call ption payoff are computed as well as the option prices for various price cut-off γ values; γ (0) = 15q, 

γ (0) = 25q,  γ (0) = 35q, exercise price x = £90.00, and option life t = 9 months. 
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In  table (18), the de-quantised (0)  was set to match the  dispersion measure. We 

notice that when the volatility is increased from 15% to 25%, and then 35%, the price 

of the call option increased. However  such increase is small. 

 

                         Figure 25:     Call option price vs volatility. ‘Square-Well’ zero-object model used. 

         

 

                                                           

81 Divided by the q parameter, 10-7. 
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Table 19:      Data generated from the C++ program for Gaussian, COSH-2, and Arctan cut-off γ function; 

γ (0) = 10q(Gaussian and COSH-2), and γ (0) = 6qwith bq Call ption payoffs and prices 

computed for an option with exercise price of x= £90.00 with a 9-month maturity time. 

 

 

In  table (19), Gaussian, Cosh-2, and Arctan price cut-off potentials are used. We notice 

that  for  a volatility of 10%,  matched with the (0)/q,  Gaussian produces a lower option 

value than  Cosh-2. The value of the option is further lowered when Arctan is tested with 

a volatility of 6% and  a very large coefficient b = 10E12 qm. Recall that Arctan may 

be seen as  more favourable than the square well, because it is more “adjustable” with 

respect to the ‘smoothness’ of the ‘edges’. As can be seen by figure 23b,  it does 

converge  to an a square well equivalent with rounded edges for b very small. Here the 

coefficient b is chosen to be very large, hence  the expectation that its behaviour and 

subsequently the option  value would move away from the value produced by the  square 

well model. 

 

Table 20:      Data generated from the C++ program for Harmonic and Arctan cut-off γ function; γ (0) = 

10q(Harmonic), and γ (0) = 6qwith bqandbq((Arctan). Call option payoffs and 

prices are computed for an option with exercise price of x= £90.00 with a 9-month maturity time. 
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In table (20), the Harmonic and Arctan cut-off potentials are used.  The(0) is varied 

across the two quantum zero-object “geometries”.  The b coefficient is chosen 

significantly smaller compared to the previous exhibit (table 19). For such a  small (0), 

and subsequently , the model would  be expected to  work better for very large b. Small 

(0) value here leads  to  the call option overpricing. 

 

Equivalently, we may compute the put option value under the quantised  probability 

expectation. Starting with equation (171), reproduced below, with several 

transformation steps. 

cΞ = e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST − X, 0)]         (174) 

We first  add the zero-sum term (X ∙ e−rT − X ∙ e−rT)  on the right hand side: 

e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST − X, 0)] + X ∙ e−rT − X ∙ e−rT

= e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST, X)] − X ∙ e−rT        (175) 

Followed by another zero-sum term (ST ∙ e−rT– ST ∙ e−rT). 

cΞ = e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST, X)] − X ∙ e−rT + ST∙e
−rT − ST ∙ e−rT

= e−rTEQΞ ∈ Ⓓ↑↓[MAX(0, X − ST)] − X ∙ e−rT + ST∙e
−rT       (176) 

We notice that the first term in the right hand side  is the same expression as that for the 

put option value given by  equation (172). We transform it further as follows: 

cΞ = pΞ − X ∙ e−rT + ST∙e
−rT         (177) 
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Finally, we add the dividend  effect to  discounted price and re-arrange the formula to 

get the  call-put parity condition. 

cΞ + X ∙ e−rT = pΞ + S ∙ e−qT       (178) 

Subsequently, we may use  the following arrangement  of the above to price  the put 

option price under arbitrage-neutral conditions. 

pΞ = cΞ + e−rT ∙ X −  𝑆e−qT      (179) 

or 

pΞ = cΞ + e−rT ∙ (𝑋 − 𝑆e(𝑟−𝑞)T)           (180) 

Using the  input data, computed quantum implied call option values (table 18), and  

equation (179), we obtain  the put option price. 

 

Table 21:      Quantum-implied call and put values  under non-arbitrage conditions. 

 

I have also investigated and found an alternative way to compute the put option value as 

an implied  quantum zero-object measure. To complete the computation for  the put 

option through   quantum zero-object models, I re-address equation (161), with a small 

modification to account for the  price spin. For the call the market  “spin-up”  if the call 



272 

 

is to be in-the-money, presented through the integer  +1. Equivalently for a put, the “spin” 

would be “down” if the put option is to land in the money, presented  with -1. This effect 

is reflected on the modified equation below: 

∀k ∈ {0, … , K}, ∀n ∈ {1, … , N} , ∀τ ∈ {0, … , T}  ∴ K ⊨ N & T ⊨ N,      rk
↑↓   

=: ±
1

2
{[diff(LN(P))

L
] + [diff(LN(P))

H
]

+ qμ [1 +  (τ − C⊳(۝
τ
 | Fτ)

τ
n)]}                               (181) 

 

In our computation procedure we use the parameter iopt = ±1  i.e. +1 for call, -1 for put. 

Interestingly the  quantised Eigen-values are the same, however the  converted stock price 

shifts, thus a new vector of values is generated.  

 

Table 22:      Eigen-price values generated  with C++ with NAG routines embedded.  The quantum 

conversion is worked out with ‘spin-down’, such that the ‘spin-down’  price vector is  obtained. 
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Table 23:      Quantum-implied  put values  under arbitrage conditions. 

 

It’s evident from the set of data given that the  contract would be set up initially  as an 

‘in-the money’ call option  i.e. because  90.00 < 100.34. This is reflected in lower prices 

for the  put option contract. This is quite logical and understandable. The demand shift 

would move towards calls and away from puts. This implies arbitrage. Therefore the 

values above are arbitrage-implied values.  
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Table 24:      Quantum-implied call and put values  under arbitrage and non-arbitrage conditions. 

 

 

           Figure 26:     Put option values. Arbitrage vs Non-Arbitrage with square-well price cut-off potential 

We notice that under arbitrage, the put option would appear to be mispriced i.e. underpriced for 

 = 15% and 35%, but slightly overpriced at = 25%. 

 

 

 

7.3  FINANCIAL OPTION VALUATION  WITH  BLACK-SCHOLES, CRR BINOMIAL, 

RG MODELS 

 

7.3.1 THE BLACK-SCHOLES MODEL 



275 

 

We start here with  the Black-Scholes-Merton option pricing model as one of the most 

celebrated classical models.  Our goal it to simply identify its main elements that we  then 

use to  complete the computation of option prices. The Black-Scholes  analysis provide 

valuation for straightforward European options (i.e. can only be exercised at maturity), 

that can also be adapted to value a range of other options. The Black-Scholes-Merton 

analysis assumes that log returns of the share underlying the option are normally 

distributed (Black and Scholes, 1973;  Black, 1989; McDonald, 2006; Hull, 2014).  

 

Suppose the option on a share (currently priced S) is a call which can only be exercised 

when the call matures after time period T, the exercise price being X. The payoff from 

the call at time T is then given  by  equation (167), reproduced here below: 

CT = MAX(ST − X, 0)        (182) 

Here ST represents the share price at time T, i.e. it is a random variable with a  probability 

distribution. The standard assumptions are that the share price follows a stochastic 

process with a multiplicative sequence of moves of variable size or, more exactly, what 

is known as geometric Brownian motion. This model of the share price process is very 

plausibly explained in Black and Scholes (1973), McDonald (2006), Hull (2014) on the 

behaviour of stock prices.  

 

In the Black-Scholes analysis, the call to be valued is combined with a  fraction of the 

share to form the hedge portfolio, which is constructed to be risk-free. Thus the hedge 

portfolio must earn the risk-free rate of return.  The algebra leads on to a partial 
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differential equation (known as the diffusion or heat equation). The differential equation 

is  solved to give the Black-Scholes formula. 

 

The Black-Scholes values for a  European call option, c, on a share that does not pay 

dividends is worked out of  the fully formed equation (169). When solved mathematically 

it  becomes : 

c = S ∙ e−qT ∙ N(d1) − X ∙ e−rT ∙ N(d2)    (183) 

Where S is the current share price, X the exercise price for the call at time T, r the 

continuously compounded risk-free interest rate, hence the expression exp(-rT) for the 

risk-free discount factor over period T. The N(d) term is used to denote the cumulative 

standard probability distribution for value d. Here d1 and d2 are given by: 

d1 =
ln(

S

X
)+(r+q+

1

2
σ2)T

σ√T
           (184) 

d2 =
ln(

S

X
)+(r+q−

1

2
σ2)T

σ√T
    𝑜𝑟   d2 = d1 −  σ√T           (185) 

We notice that the rate of return on the share, µ, does not appear in the formula. The 

reason for this is apparent when we have understood the significance of the hedge 

portfolio. The value of the put option  could be obtained by using the put-call parity  

c + X ∙ e−rT = p + S ∙ e−qT          (186)                                                                         

and the Black-Scholes call expression. The value of a European put option on a share is: 

p = X ∙ e−rT ∙ N(−d2) − S ∙ e−qT ∙ N(−d1)           (187) 

(Black, 1973:1989; McDonald, 2006; Hull, 2014). 
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We compute N(d) as a probability measure using Excel’s  function NORMSDIST(…). In 

order to simplify the calculation process for calls and puts, we  combine  the call and put 

formulae into one unified expression, included here below: 

opt_value = iopt ∙ [S ∙ e−qT ∙ N(iopt ∙ d1) − X ∙ e−rT ∙ N(iopt ∙ d2)]         (188) 

The iopt is an integer parameter, and it takes only two values; +1 for a  call, and -1 for 

the put. It  is easy to see that  for iopt equal to +1, the expression  become  the call option 

valuation formula. Similarly when iop  is equal to -1, we obtain the put option valuation 

expression (Jackson and Staunton, 2001; Sengupta, 2009; Rees, 2017; Häcker and Ernst, 

2017). 

 

7.3.2 THE CRR BINOMIAL MODEL 

The binomial option pricing framework (with of its variations)  is an alternative to the 

Black-Scholes-Merton model.  The option pricing  multi-period binomial framework  is 

one that extends both the one time period model and the foundational assumptions, in that 

like the one time period from an observed market price of the underlying asset we expand 

it to time n through a multiplicative process, generating a ‘spectrum’ of prices at time n. 

The values are from highest to lowest in range. Unlike the one time period, where there 

is   only one single  binomial set of prices (High and Low).  The simplest multi-period 

form of the model operates over times 0,1,...,n, where n is a fixed positive integer and is 

the terminal time of the model. We assume there are just two assets: a stock for which the 

price evolves randomly from period to period and a bank account paying a constant rate 
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of interest, r ≥ 0, per period.  

 

The evolution of stock price follows a tree-like expansion as shown in the  illustration for 

the values corresponding to times 0,1,2,3, 4. 

 

where u and d are the up and down price multipliers.  It is useful to think of the node in 

the binary tree correspond to the stock price St = uid(t-i)S0 as (i, t) so that the binary tree may 

be represented in the following manner: 

 

In an n-step tree, there are (n+1) terminal time stock values and the total number of nodes 

for the full tree is given by  

1 + 2 + ⋯ + (n + 1) =
1

2
(n + 1)(n + 2)           (189) 

The Cox, Ross and Rubinstein (CRR) provides expressions for the price multipliers and 
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the probability set for the full tree, specifically on the assumption that the u and d price 

multipliers have a dependency on volatility and time across each step(in small and equal 

increments), but no dependency whatsoever on the drift. 

u = eσ√δt                   (190) 

d = e−σ√δt    or   d =  
1

u
                 (191) 

where  is the annualized volatility and t the length of the time step. The CRR model 

despite the instance of dependency on the drift in u and d, it  offset the absence of a drift, 

where the probability of an up move in CRR is usually greater than 0.5 to ensure that the 

expected value of the price increases by a factor of exp[(r-q)t] on each step with the 

probability formula as shown below: 

p =
b−d

u−d
       where    b = e(r−q)δt           (192) 

The dividends affect only the probabilities in the CRR model, not the share price values 

and in general the CRR theory reinforces the link between the continuous normal 

distribution function, N(d), discrete binomial distribution function . From a practical 

point of view the CRR provides a fitting apparatus of math instruments that facilitates the 

development of the full tree and the full underlying asset price range and subsequently 

the price of the derivative (Cox et al., 1979; Cox and Rubinstein, 1985; McDonald, 2006; 

Hull, 2014). 

 

The compact CRR binomial option pricing formula can be written as 

c = S ∙ e−qT ∙ Φ(a ∶ n,  p′) − X ∙ e−rT ∙ Φ(a ∶ n, p)         (193) 
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where Φ(a ∶ n,  p′)  and  Φ(a ∶ n, p)  are probability-like measures  computed here 

through Excel’s function BINOMDIST(…, true). Running this function returns the 

individual term binomial distribution probability. It’s is quite suitable in our case  because 

BINOMDIST works well  for  problems such as ours with a fixed number of trials, 

because we seek  outcomes of each trial to be only success or failure, independent, and 

the probability of success a constant throughout the experiment. Distribution  functions 

are generally defined in terms of probabilities in the left hand tail of the distribution, 

whereas the complimentary  distribution function refers to right-hand tail. Thus  the 

binomial distribution is evaluated here for a-1 i.e. 1-BINOMDIST(…, true). Parameter n 

represents the number of trials (i.e. should be les or equal to number of steps in the  

binomial tree),  a is  the number of successes in trials.  We compute a using the formula 

a = MAX {0, 1 + INT [
ln(

X

S0dn)

ln(
u

d
)

]}          (194) 

where n is the number of steps in the binomial tree. Function INT(…)  performs data 

casting by  converting floating point numbers to a integer values. 

 

In a  similar manner to that of  the Black-Scholes model, we may use the call-put parity 

to obtain the put option expression. Further we reduce the computation process by  

combining the call and put equations in one unified expression: 

opt_value = iopt ∙ {S ∙ e−qT ∙ [
1+iopt

2
− iopt ∙ Φ(a ∶ n,  p′)] − X ∙ e−rT ∙ [

1+iopt

2
− iopt ∙

Φ(a ∶ n, p)]}           (195) 

The switch from call to put is  facilitated through the iopt parameter. 
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Results of option pricing (calls and puts) using Black-Scholes-Merton and CRR models are shown 

below: 

 

Table 25:      Call option values, computed with Black-Scholes and CRR models. 

 

 

                                 Table 26:      Tabulated  Call option values. Black-Scholes and CRR models. 

 

 

                            Figure 27:     Call option values. Black-Scholes-Merton  vs CRR models. 
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Table 27:      Put option values, computed with Black-Scholes and CRR models. 

 

 

                                 Table 28:      Tabulated  Put option values. Black-Scholes and CRR models. 

 

 

                       Figure 28:     Put option values. Black-Scholes-Merton  vs CRR 
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7.3.3 LOGNORMAL BLACK-SCHOLES MODEL 

Following from our  discussions in previous paragraphs, we now emphasize an alternative 

form of the Black-Scholes formula expressed in terms of the mean and variance of the 

normal distribution for log share returns. The Black-Scholes can also be expressed in 

terms of the first two moments of the lognormal distribution for share prices. 

                              

Asset Returns Log returns 

   

Distribution Lognormal Normal 

   

First Moment M1 M 

Second Moment M2 V 

   

First moment link M1=exp(M+0.5V) M=2ln(M1)-0.5ln(M2) 

Second moment link M2=exp(2M+2V) V =-2ln(M1) + ln(M2) 

 

                          Table 29: The formulae for the moments. 

We may characterize a distribution through its moments about the mean (as for the normal 

distribution)  or equivalently through its moments about zero (as for the log normal 

distribution). The first moment of any distribution is its mean (denoted M1 or M), while 

the second moment (about the mean) is the variance, V as opposed to the second moment 

about zero. This equivalence allows us to translate parameters between the normal and 

lognormal distributions. 

 

 Let us assume that the log returns have a normal distribution with mean M and variance 

V. Then we can find the moments about zero (M1 and M2) of the corresponding lognormal 
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distribution for returns using the links given in the table, We can also reverse this process. 

By stressing the normal distribution of log share prices,  mean and variance can be 

calculated and the Black-Scholes formula reworked from these moments. 

 

With out further mathematical detial, the pricing formula (referred to as the lognormal 

version of Black-Scholes) can also be expressed  compactly in terms of the moments of 

the lognormal distribution attributed to share prices.  

c = e−rT ∙ (M ∙ N(d1) − X ∙ N(d2))        (196) 

Where d1 and d2 are expressed in terms of M1 and M2.  

d1 =
M−ln(X)+V

√V
              (197) 

d2 =
M−ln(X)

√V
= d1 − √V       (198) 

The moments for the lognormal distribution (M1 and M2) can be calculated from the 

moments of the normal distribution M and V as follows: 

M1 = eM+
1

2
V

        (199) 

M1 = e2M+2V         (200) 

The first two moments (mean M and variance V)  of the normal distribution attributed to 

the log share price can be easily calculated. The put option equivalent can be obtained 

through the application of the  call-put parity condition. 

 

7.3.4 THE RECIPROCAL-GAMMA MODEL 
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We may also use moments M1 and M2   as the starting point for an alternative option 

pricing approach, one that replaces the lognormal assumption with the alternative 

assumption that the share prices follow the reciprocal gamm 82  (RG) distribution. 

Milevsky and Posner (1998) suggested this distribution as appropriate for the valuation 

of “so-called” basket options. It  can also  be used also for  vanilla options with skewed 

distributions. 

 

The reciprocal gamma version of the pricing formula replaces the normal N(d) with the 

reciprocal distribution function. The gamma distribution depends on the reciprocal of the 

exercise (1/X) and two parameters; alpha and beta.  

α =
2M2−M1

2

M2−M1
2           (201) 

β =
M2−M1

2

M2M1
             (202) 

The latter two inputs are calculated from the moments M1 and M2. Without further  

mathematical detail, the RG pricing formula for a call option  can be expressed as follows: 

c = e−rT ∙ (M1 ∙ g1 − X ∙ g2)          (203) 

Where g1 and g2 replace the normal distribution functions N(d1) and N(d2).  An expression 

for the put option can be obtained through the application of the call-put parity condition  

(McDonald, 2006, Hull, 2014).  We compute  g1 and g2 values with a modulated version 

                                                           

82 Not to be confused with the gamma function used in the modulated GSE expression. 
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of  Excel’s GAMMADIST (Jackson and Staunton, 2001; Sengupta, 2009; Rees, 2017; 

Häcker and Ernst, 2017).     

 

Similar to previous cases, when computing option price  with the  lognormal Black-

Scholes and the RG models, all  input parameters are known, apart from the volatility of 

the share returns over the life of option. For a chosen level of volatility, we use the 

formulae to  generate the option values.  In order to simply the computation process, we  

combine  the call and put expression in one  unified  formula. 

 

Lognormal Black-Scholes: 

opt_value = iopt ∙ e−rT ∙ [M ∙ N(iopt ∙ d1) − X ∙ e−rT ∙ N(iopt ∙ d2)]         (204) 

The Reciprocal- Gamma: 

opt_value = iopt ∙ e−rT ∙ [M ∙ g1 − X ∙ g2]                     (205) 

We use table (17) inputs with the RG and  lognormal BS modes  and obtain the call option 

prices. 
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Table 30:      Call option values, computed with Lognormal Black-Scholes and RG models. 

 

The two sets of call option prices are very close. The lognormal Black-Scholes produces 

the same results as previously computed. The RG model produces only very slightly 

lower call option values from the Black-Scholes equivalent. 

 

Figure 28:     Call option values. Lognormal Black-Scholes-Merton  vs RG models. 

 

 

Figure 29:     Put option values. Lognormal Black-Scholes-Merton  vs RG models. 
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7.4 EMPIRICAL TESTING AND ANALYSIS WITH HISTORICAL VOLATILITY-  

CLASSIC vs  QUANTUM SW   

 

In this section, I concentrate on numerical analysis  of combined quantum and classical  

option pricing. It provides an application of Quantum-SW, BSM, CRR, LN-BSM, and 

RG models, explored in previous sections.  With the data in table (17) and volatilities  of  

15%, 25%, and 35%, the following call and put option prices are obtained. 

 

Table 31:      Call option values, computed with Quantum-SW, BSM, CRR, LN-BSM, and RG models. 

 

We note from table (31) that the Quantum-SW model produces  comparative  option 

values with  existing  option pricing classical models. These are  consistent across the 

range of volatilities (15%, 25%, and 35%).  Black-Scholes-Merton model is known to 

over-estimate the option value for  longer term contracts and   larger volatilities. The 

Quantum-SW produces slightly more conservative values for the call option. 
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Table 32:      Put option values, computed with Quantum-SW, BSM, CRR, LN-BSM, and RG models. 

 

Similar to the set of  values  the previous table (31),  in table (32) we note again  slightly 

more conservative  put values produced by  our Quantum-SW model in comparison to 

existing classical option  pricing models. The RG values are also slightly more 

conservative put values  compared to the BSM model. This, perhaps, is  understandable 

given  that  the  underlying’s probability distribution may be  skewed from  expected 

normality. 
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Table 33:      Bloomberg listed financial call and put options on FTSE100 (UKX Ticker) underlying. 

 

Data in table (33) are extracted from Bloombeg. These are UKX options (calls and puts) 

with  “bid” and “ask” price quotations. Here the bid-price is the latest price level at which 

a market participant wishes to buy a particular option. For example for a 12/18 C6900 

call option, if trader enters a "market order" to sell the December 18, 2018, 6900-Strike 

call,  then trader would sell it at the bid-price of £161.00.  Similarly, the ask-price is the 

latest price put forward by a market participant in order to sell  the option. For example 

if a trader enters a "market order" to buy the December 18,  2018, 6900-Strike call, then 

trader  would buy it at the ask-price of £179.00  (Dubofsky ad Miller, 2002; McDonald, 

2006; Sundaram, 2011; Hull, 2014). 
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Market-makers trade on the spread between the bid and ask prices i.e. buy at the bid price 

and sell at  ask price. Typically, more active  options,  have a smaller bid/ask spread. A 

greater bid/ask differential implies issues with  liquidity and it can turn out to be  

problematic for any trader, especially for  intraday trading or  any short-term trading 

activity. In the case of the 12/18 C6900 Call, the bid is £161.00 and the ask is £179.00. 

Which means  that if trader buys  the option at one instance at  £179.00 ask-price and sell 

it an instant later at  the £161.00 bid-price, trader would incur  a loss of 10% on the trade 

i.e. computed using (bid – ask)/ask. (Dubofsky and Miller, 2002; McDonald, 2006; 

Sundaram, 2011; Hull, 2014). 
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Table 34:      FTSE100 (UKX Ticker) performance data (source: Bloomberg). 

 

The data in table (34) are performance measures of the FTSE100. To obtain them I use 

the PRTU and PORT capabilities in Bloomberg. The FTSE100 is itself a portfolio, 

therefore loading it on Bloomberg’s PORT capabilities does work. I have made sure to 

include a reasonable time duration (18 years in this case). I  have back tested it through 

the past 18 years in order to  obtain the  “precipitated”  performance values. 

 

Table 35a: Normalisation factors used to calibrate quantum option values. 

 

Table 35b:      Call option values computed  with (i) Bloomberg, (ii) Quantum-SW,  (iii) BSM, (iv) CRR, 

(v) LN-BSM, and (vi) RG. 
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I have explained  throughout this research work that e pricing problems are tracked using 

partial differential formulations. The algorithms were written to  solve the problem at the 

PDE level. This is justified because market prices evolve continuously with instantaneous 

and infinitesimally small  changes.I have used the FTSE100 volatility of  = 13.20% 

which is obtained from table (34) i.e. it is the value for the annualised  standard deviation 

in the table. The results  clearly show that  the Quantum-SW produces values closer to 

those put forward from maket-makers (ref. Bloomberg) and very close to the Black-

Scholes-Merton option values. The arbitrage-neutral put option values can easily be 

computed using the call-put parity condition as explained in previous sections of this 

chapter. For the classical models, the procedure is also explained in detail in McDonald 

(2006),  Sundaram (2011),  Hull (2014). 

 

 
7.5 EMPIRICAL TESTING AND ANALYSIS WITH LOCAL VOLATILITY AND 

PRICE-SURFACE QUANTUM SW FITTING  
 

 In this section, I expand empirical testing and analysis by including a sample of 30 stock, 

carefully selected across countries, sectors, CAP size, and risk-return trade-offs. The 

sample includes several equity indexes.  

 

7.5.1   REAL-TIME OPTION PRICING, TESTING, AND ANALYSIS 

 

In the previous section, several classical option pricing models were used, with results 

compared with those of the quantum SW model. By including a quantum option pricing 
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model, the option sensitivities expand beyond (s, k, r, q, t, ) to include attributes of the 

quantum well itself, such as radius of the dot, length (depth) of the well, and the price 

cut-off potential function. The latter represents the well’s “identify”. The previous 

consideration included a homoscedastic behaviour of volatility (constant ), although 

quantum square-well results were calibrated. In this section the volatility is presumed to 

be stochastic s (t, s), subsequently heteroscedastic. The data analysis here include 

statistical hypothesis. 

 

The statistical sample includes equity options and stock index options. They have much 

in common, but generally differ most in that a stock index will pay a dividend stream that 

tends to resemble a continuous payment stream, while individual equities pay a dividend 

stream that is quite obviously not continuous. While this distinction is to some extent 

arbitrary, because an index pays discrete dividends corresponding to those of its 

components, the distinction nevertheless may make some option pricing methods 

impractical for one type or the other (Criss, 1996; Brigo et al., 2003; Hull, 2014).  

 

The empirical testing includes statistical hypothesis testing, I have made use of a simple 

random routine in Python programming to select the sample out of the  larger  population 

of stock listed in Bloomberg (SECF command in Bloomberg). Once the trading tickers 

have been identified the market price of calls and put options have been obtained. Due to 

the random selection of the tickers and option maturities, the sample of 30 stock turned 

out to be diverse enough in terms of attributes such as volatility, dividend, geography, 

sector, etc. 
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Table 36:  Sample data of stock and stock index by trading ticker, market stock price,  exercise, maturity, 

volatility,  forward price, market rate, dividend yield, market call and put option price. Extracted from 

Bloomberg on 25/05/2019. 

 

Although the sample incudes 30 trading tickers only, considering that stock indexes are 

equity portfolios, all together the sample runs in hundreds of stock, therefore the sample 
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itself represents reasonably the equity market on a global scale. 

 

The approach here takes notice of the potential relationship between the stock price and 

and its own contigent claim. Hull (2014) provides some theoretical treqtment of  

correlation between the spot  of the market index and the price of index  futures that can 

be modelled by 

St = α + βFt + εt      (206) 

where,  

 

This relationship can also be stiupulated with a time delay or lead. There is also validity 

of indexing when the derivative is an option, instead. 
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Figure 31:  Sample exmaples  of pot  price vs call (put) value, extracted from Bloomberg on 25/05/2019. 

 

However, the statistical hypothesis would need the samples to contain  variables that are 

independent and indentically distributed (iid).  I test for correlation of spot price with 

option value (or vice versa), so that I can theorise within the sample “space”. I then also 

perform data filtering and calibration, within a short time-frame, prior to the final leg of 

the process - the hypothesis testing. Relevant scales such as the ratio of spot price with 
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the first sample call  or put value are noted across the sample, thus making the first sample 

pairs (stock/call, stock/put) the reference pair. I observe a high correclation between spot 

and option prices across  trading tickers in the sample. Hence a  form of indexing can be 

used during the processes of data calibration and option value forecasting. 

 

 

Figure 32: Graphs based on the sample data (30 stock). Clockwise listing, (i) spot price vs market call value 

(scaled), (ii) spot price vs market put value (scaled), (iii) market call value vs spot, and (iv) market put 

value vs spot. 

 

7.5.2  REVISED OPTION PRICING MODELS  

 

In this section, I revisit several equity option pricing methods as best fits. These are 

categorised by considering the choices I have made, such as: (i) assumptions on the stock 
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process; (ii) assumptions  on payment of future dividends; and (iii) having made choices 

for the first two, the choice of the numerical solution method most appropriate to use. I 

have dropped the RG model for further consideration as it would add no additional value 

on European vanilla option valuation. This is in part to keep the testing around three broad 

categories: (i) option pricing with the Black-Scholes and its variations (incl. discretised 

BS and local volatility), (ii) option pricing with the trinomial (an improved binomial), 

and (iii) option pricing with the quantum square-well model (Black and Scholes, 1973; 

Lee, 2004; Gatheral, 2006; Rubinstein, 2000; Haven, 2002; Hundsdorfer and Verwer, 

2003;  Jarrow, 2006).  

 

 

Table 37: Summary of best-fit option pricing models. Trinomial, Black-Scholes (continuous, 

discretised, local volatility), and quantum square well. 

 

The stock process BS refers to the stock process in the standard Black-Scholes model, 

with time-varying parameters(Black and Scholes, 1973); and LV refers to the stock 

process in the local volatility model (Dupire, 1994:1997), essentially, the Black-Scholes 

model extended by making the volatility a function of both time and stock price i.e. (t, 

s). The discrete dividend treatments are of two types:  in “Discrete Type  1”, the present 

value of dividends is subtracted from the initial stock price and the remaining portion is 
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viewed as the uncertain part, subject to diffusion without subsequent jumps; in “Discrete 

Type 2”, the entire initial stock price is subject to diffusion, and jumps are introduced at 

each discrete dividend date (Black and Scholes, 1973; Lee, 2004;  Gatheral, 2006; Orosi, 

2010).  

 

The solution methods used are of three types: analytic solutions, or formulas; partial 

differential equations (PDEs) solved numerically using a discretization over a grid; and 

trinomial trees, which can be viewed as a specialisation of the PDE solution method 

(Black and Scholes, 1973; Dupire, 1994:1997; Derman et al., 1996). 

 

The following notation is used: 

 

Table 38: Relevant notation. 

 

The stock process model, describes the assumed possible paths of future stock prices and 

the probabilities of those paths (Karatzas and Shreve, 1998b; Barberis  and  Huang, 2008). 

The most common such model for equities is Black-Scholes with continuous proportional 

dividends (initially discussed in section 7.3), where the stock process under the risk-

neutral measure is given by the stochastic differential equation (129), reproduced here: 
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dSt = (r − q)Stdt + σStdWt      (207) 

This model for stock price movement assumes stock price paths are continuous, changes 

in log-price over any time interval are normally distributed, and the changes in price over 

one or more disjoint intervals are independent. A further refinement, adding absolute 

discrete dividends, adds a downward jump in the stock price at known dividend times ti 

to the above process (Black and Scholes, 1973; Karatzas and Shreve, 1998b; Revus and 

Yor, 2004; Hull, 2014): 

Sti

+ = Sti

− − Di     (208) 

A second choice is the local volatility model. This is a generalization of Black- Scholes, 

where the volatility is assumed to be a deterministic function of both time and future 

stock price, thus heteroscedastic (Dupire, 1994:1997;  Lee, 2004; Gatheral, 2006; Orosi, 

2010). Under this model, the process followed by the stock price  is given by the slightly 

augmented  equation (129), reproduced below 

dSt = (r − q)Stdt + σ(t, St)StdWt        (209) 

where σ(t, St) is called the “local volatility”. The advantage of using this more general 

functional form for σ is that the model can now be calibrated to match market option 

prices at multiple strikes at a single expiration (Brigo and Mercurio, 2002; Gatheral, 

2006). 

 

The discrete Black-Scholes (Black and Scholes, 1973), is the option pricing PDE, 

previously discussed (eq. 84), and reproduced here: 
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∂ψ(s,t)

∂t
+

1

2
σ2s2 ∂2ψ(s,t)

∂s2 + rs
∂ψ(s,t)

∂s
− rψ(s, t) = 0       (210) 

I have also shifted focus here from the binomial model to the trinomial option pricing 

upgrade. Trinomial trees are equivalent to explicit finite difference methods (FDMs) if 

spatial boundary conditions are applied and the full lattice is populated. They truly appear 

to be a hybrid of the binomial and the finite difference methods. The previously discussed 

binomial trees (section 7.3) are regarded in this section as a special case of trinomial trees 

with the middle probability set to zero.  (Brennan and Schwartz, 1978; Chriss, 1996; 

Derman et al.,  1996; Heston and Zhou, 2000; Rubinstein, 2000; Chan et al., 2009; 

O’Sullivan and O’Sullivan, 2013;  Hull, 2014).  

 

 

                                     Figure 33: Illustration of the trinomial treet. 

 

Hull (2014), and Derman et al.,(1996), among others, provide the price development 

and trinomial probability expressions.  
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u = eσ√3∆t,   d =
1

u
         (211) 

pu = √
∆t

12σ2 (r −
σ2

2
) +

1

6
,     pm =

2

3
, pd = −√

∆t

12σ2 (r −
σ2

2
) +

1

6
        (212) 

 

The variables used here are the same as those  in section 7.3. Making r or q (denoted also 

as ) a function of time does not affect the geometry of the tree. The probabilities on the 

tree become functions of time.  The stock price  can be considered to be a function of 

time by making the lengths of the time steps inversely proportional to the variance rate 

(Brennan and Schwartz, 1978; Rubinstein, 2000; Chan et al., 2009; O’Sullivan and 

O’Sullivan, 2013). 

 

The option prices from the trinomial model as well as  Black-Scholes (continuous and 

discretised), are as follows: 
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Table 39:  Sample data of stock and stock index by trading ticker, market stock price, exercise, maturity, 

volatility, forward price, market rate, dividend yield, market call value, market put value, BS continuous, 

BS discretised, and trinomial call and put option values.  

 

The calcuclations of  option price are carried out using the the Local Volatility model, 

first proposed by Dupire (1994).  Derman and  Kani (1994) noted that there is a unique 

diffusion process consistent with the risk neutral densities derived from the market prices 

of European options. Derman and Kani (1994) described and implemented a local 

volatility function to model instantaneous volatility. They used this function at each node 

in a binomial options pricing model. The tree successfully produced option valuations 

consistent with all market prices across strikes and expirations. The Derman-Kani model 

was thus formulated with discrete time and stock-price steps. Derman and Kani produced 

what is called an "implied binomial tree"; with Chriss (1996) they extended this to an 
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implied trinomial tree (Derman et al., 1996). 

 

The starting PDE in Dupire (1994) was an extension of the Black-Scholes model (Black 

and Scholes, 1973) in which volatility is a function of spot price and time: 

dSt

St
= (r − q)dt + σ(t, St)dWt    (213) 

This is the same as equation (129). The key continuous-time equation used in local 

volatility models states: 

∂c

∂t
=

1

2
σ2(k, t, S0)k2 ∂2c

∂k2 − (r − q)k
∂c

∂k
− dc      (214) 

The parameters here are those discussed in previous sections, where c,  option value; , 

the volatility; k, the strike price; s0, the initial spot price; r, the interest rate;  q, the 

dividend yield. The Local Volatility model has the great advantage of being consistent 

with market prices for all options on a given underlying, and it allows you to price exotic 

options in a way that is consistent with observed prices of vanilla options (Heston, 1997; 

Heston and Zhou, 2000; Christoffersen et al., 2009; Damghani  and Kos, 2013). The 

workings are not reproduced here, but can be found in Dupire (1994).  

. 

The implied volatility surface relies on a heteroscadistic volatility and is a fundamental 

object for the pricing and risk management of derivatives. The construction of this surface 

from listed option prices typically proceeds in two stages. First, since forward prices are 

not directly quoted in the listed markets, a forward curve has to be implied in a manner 

consistent with the observed option prices. Second, given the forward, an implied 
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volatility model has to be calibrated to the observed option prices (Heston, 1997; Heston 

and Zhou, 2000; Gatheral, 2006; Christoffersen et al., 2009;  Doughterly, 2011; 

Damghani  and Kos, 2013. 

 

The time and spot dependent volatilities used in the Local Volatility Model are called 

Local Volatilities. A Local Volatility surface is composed of forward instantaneous 

volatilities and can in theory be calculated from market prices of options on the selected 

underlying. However, extracting the Local Volatilities from prices is an unstable inverse 

problem and is usually avoided. This is why most market practitioners extract Local 

Volatility surfaces from Black-Scholes spot volatility surfaces using some form of 

stripping (Dupire, 1994:1997; Dumas et al., 1998; Berestycki, et al., 2002; Brigo and 

Mercurio, 2002; Gatheral, 2006). 

 

The Black-Scholes surface needs to be smooth and free of arbitrages to be able to generate 

a positive and regular Local Volatility surface: building the Local Volatility surface is a 

good check to visualize potential issues (arbitrages) in a given Black-Scholes surface 

(Dupire, 1998; Brigo and Mercurio, 2002; Gatheral, 2006; Damghani and  Kos, 2013). 
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Figure 34: Implied volatility surfaces (from the sample). Clockwise listing, (i) Walt. Dis. Co,,  (ii) Uber 

Technlogie, (iii) British American Tobacco, and (iv) Euro Stoxx 50. 
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Figure 35: Implied volatility surfaces (from the sample). Clockwise listing, (i) Facebook.com Inc.,  

(ii)Amazon.com Inc., (iii) NASDAQ 100 Stock Index, and (iv) Qualcomm  Inc. 

. 
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Table 40  Sample data from table (38) updated to include call and put option values, computed with the 

local volatility model.. 

 

The difference between the market values of calls and puts with the equivalents obtained 

through the local volatility model are the smallest when compared to the classical models, 

particularly with cases where a homoscedastic volatility measure is used (Dumas et al, 

1998; Damghani and  Kos, 2013). 

 

The quantum model selected for additional testing is the constant square-well. This is the 

PDE with the constant price cut-off function (ref. chapter 5.0, table 2.0). Properties of 
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constant square-well quantum systems have been discussed throughout this study, more 

specifically in previous sections of this chapter.  Suitability of the quantum square well 

system in pricing options has also been theorised in works of Haven (2002) and Callegaro 

(2013:2015:2017a:2017b). We have also previously established promising results when 

such system is used. In addition it requires modest data filtering and calibration. 

 

It is important to note that existing option pricing models, such as the Black-Scholes or 

the Local Volatility do inform market making and are reflected well in markets. In the 

case of  the quantum square-well, I have tried various different scenarios with variations 

of properties. I established that a quantum square-well system with  (0) = 5q, L = 5q, 

and k = 9 (Eigen-states), leads to more reasonable results. Further testing could 

potentially be done with varied quantum well depths and radius, however this was 

sufficient to allow for engagment with data filtering and calibration. The theorisation is 

contained within the sample “space” and within one trading day, which is a  unique 

approach because it allows for independence in  the treatment of the statistical sample 

and the  hypothesis testing (Berenson  and Krehbiel, 1992; Lind, 2010; Doughterly, 

2011). 
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Table 41a  Eigen-values computes for Q-SW with (0) = 5q, L= 5q, k = 9 (ten Eigen-states) 

 

The computation work is carried out inline with the theorisation of the previous section. 

The  IBM quantum square-well  stock price set is developed. Subsequently, call and put 

option values are calculcated to be 3.20, and 2.50, respectively. The same computation 

procedure is applied to each of stock in the statistical sample83 

 

                                                           

83 The Eigen-data and MS-Excel work with computations for each stock in the sample can be provided to anyone 

upon request. 
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Table 41b: Eigen-states, the  IBM QSW stock price set, and IBM QSW call and put 

values. 

 

The process  of computing the call and put option prices is the same as before. However 

the following data filtering and calibration has been applied: 

(i) Random market stock price and the corresponding market option (call/put) 

values are selected for each trading ticker within a time box of  1 trading day. 

(ii) Using the market stock price for each trading ticker, the theorised quantum  

values of the call option are computed using the procedure established in 

previous chapter 6.0,  and previous sections in this chapter, with equation (174), 

reproduced here 
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cΞ = e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST − X, 0)]     (215) 

where the EQΞ ∈ Ⓓ↑↓[⋯ ] is invoked by the algorithm with the help of the NAG 

routine DEKAF, such that the Eigen-values are obtained and normalised. A 

fixed quantum grid is fitted wth k = 9, and  L=(0) = 5qacross the implied 

volatility surface. This of course could be varied, but is kept so here as a way 

to simply the data filtering and calibration process. 

(iii) Ratio of market call price with  the  quantum-well implied obtained is used as a 

calibration coefficient. This is deemed good enough within 1-trading day and 

assumed reliable for intraday trading. 

(iv) Market stock price  is obtained at elapsed time. Theorised quantum  values of 

the call option are computed again using the same procedure as before. The 

quantum-well implied  call value is multiplied with the calibration coefficient. 

The result is  used as the final QSW call value. Equation (179) is used to obtain 

the put option value.  

pΞ = cΞ + e−rT ∙ X −  𝑆e−qT    (216) 

In essence, I am only interested in values (stock and option) that are near 

neighbours in the market line. 

(v) Values from (iv) are compared with the final market option values for calls and 

puts. 

(vi) The above can be repeated each day. Condition expressed  in equation (165) still 

applies. 
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The process above allows for the volatility surface to be varied, despite the homogenious 

fitting of the quantum grid.  In doing so the expectation is that the results are expected to 

be  closest to those obtained from the application of the local volatility model, which uses 

the implied volatility  concept, although in an entirely  different way. Existing researchers 

such as Callegaro et al. (2015), and Bustamante  and Contreras (2016) have also applied 

a form of quantum calibration in local volatility. The classical models appear to fail 

option valation for stock with limited history and subsequent default historical volatility 

(Dumas et al., 1998). This is the case of UBER in the sample used here. In scuh case 

implied voilatility is used. It leads to reasonable values. 
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Table 42  Sample market call and put option values and the data calibration coefficients, valid for 1 trading 

day (25/05/2019). 

 

The computed include Eigen-state values, as well as QSW stock and option prices for the 

entire sample84. Following the process  of data filtering and calibration, the summarised 

final QSW values for  the call and  put for each trading ticker (30 in total) are shown in 

the following table. 

 

                                                           

84 The Eigen-data and MS-Excel work  with computations can be provided to anyone upon request. 
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Table 43  Sample data. Includes market and quantum square-well call and put option values, post 

calibration, valid for 1 trading day (25/05/2019). 

 

I have also computed the forward prices for each stock using the  market values as well 

as the QSW value set. The forward price of equity is a fundamental quantity impacting 

option pricing, hedging and implied volatility. Interpolating the futures curve at an 

intermediate option maturity is a nontrivial task because future dividends payments and 

payment times, aside from those already announced for the very near term, are generally 

unknown. Hence forward prices must be implied from market observables, e.g. exchange-

traded instruments like equity futures, equity options, dividend futures, and OTC 

instruments such as dividend swaps and total return swaps (Dupire, 1994; Dumas et al., 
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1998; Masoliver and Perello, 2003;  Lee, 2004; Gatheral, 2006; Orosi, 2010; Hull, 2014). 

 

In principle, forward prices are straightforward to derive via put-call parity of European 

option prices: 

F(T) = C(X, T) − P(X, T) + X       (217) 

where F (T ) is the forward at time T , C(X, T ) and P (X, T ) are respectively the future 

values of European call and put options struck at X as of the expiration time T. Similarly 

an expression is established for implied QSW forward prices. Starting with equation 

(178), by compounding each term in that expression, the following QSW forward price 

expression is obtained: 

FΞ(T) = CΞ(X, T) − PΞ(X, T) + X       (218) 

In practice, many difficulties impede the usage of this simple relationship. In some cases, 

the underlying asset and options on the asset trade during different times on different 

exchanges. For example, stocks in the Nikkei 225 index trade on the Tokyo Stock 

Exchange between 0900 – 1130 hrs and 1230 – 1500 hrs Tokyo time. Nikkei index 

options, however, trade 0900 – 1515 hrs (pit) and 1630 – 0300 hrs (electronic) on the 

Osaka Stock Exchange, hence the spot price of the underying is unavailable during 

substantially large periods of option trading. Even when the spot market is open, the 

index spot price being an average of non-contemporaneous traded prices of the 

constituent members, can be unreliable, especially within the first few minutes of the 

opening of a new trading session when not all constituents have started trading yet 

(Dumas et al, 1998; Lee, 2004; Gatheral, 2006).  
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The  futures price of the prompt contract are consistently higher than the spot price 

(implying a negative dividend yield on the index), therefore indicating an unreliable spot 

price. Option prices can also be quite erratic, especially close to the opening and closing 

times of the trading session. At other times too, it is not uncommon to see a complete 

lack of quoting activity (even for near-the-money strikes), or a one-sided market, or two-

sided markets with unreasonably wide bid-ask spreads (Dumat et al., 1998; Lee, 2004; 

Gatheral, 2006). 

 

 

Table 44  Sample data. Includes market and quantum square-well  forward prices. Value difference, 

highlighted in yellow colour. 
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For comparison purposes, I have sumamrised all option value data, computed with  

various models in the table below. It also includes the difference between the theorised 

option values and the market option value equivalents. 

 

 

Table 45  Sample data. Market and theorised option values (BS, TRI, LV, QSW). Value difference, 

highlighted in yellow colour. 

 

The mean difference between the market call and put option values with those obtained 

through the Black-Scholes equivalent are 3.4 and 3.7, respectively. These are similar to 

the mean difference of the market with the values acquired from the application of the 

trinomial option pricing model. I notice that this is significantly reduced when comparing 

market option values and the local volatility values (-1.11 and -0.78) as well as the price-
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surface quantum square well model (0.18 and -0.31). The local volatility model appears 

to slightly underestimate the option prices. Similarly the price-surface QSW (quantum 

square-well) yields improved values, closer to the market values with a slight 

overestimation of the call and a slight underestimation of put value. 

 

 

Table 46 Sample data. Variance of the option value difference between the market and  LV, and market 

with QSW.  
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The local volatility and the QSW yield better estimates compared to classical Black-

Scholes and Trinomial models. I further compute the sample variability of such mean 

differences for the local volatility and the QSW;  (i) 151.15 and 121.03 for local volatility 

calls and puts,  (ii) 31.10 and 19.98 for the QSW calls and puts, respectively. However 

these are the results of a finite size sample and is further tested in the following section.  

 

7.5.3   SAMPLE HYPOTHESIS TESTING 

 

Using the data and pricing results above, I test several statistical hypothesis in order to 

validate the significance of these results, under the assumptions that, (i) the same data 

filtering/calibration procedure  is applied across samples, and (ii) samples are  drawn in 

the same manner.  Could the results above be confirmed within a reasonable confidence 

level?  

 

To answer the question, I have set and test the following statistical hypothesis: 

(i)      Make an inference about the mean of one group (T-test).  This is suitable because 

the mean in question is the average of the differences between the market price of the 

option and the theorised value. An absolute match in values (theory and market) would 

be achieved if that mean difference is 0. Therefore the hypothesized population mean 

difference is set to zero. The standard deviation of the population is not known, therefore 

the T-test (rather than the Z-test) is performed at 95% confidence level (Berenson  and 

Krehbiel, 1992; Lind, 2010; Doughterly, 2011). 
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H0 : The mean CALL price diffeerence between market and QSW is 0.00  H0 : µCALL_DIFF=0.00  

H1 : The mean CALL price diffeerence between market  and  QSW is not 0.00 H1 : µCALL_DIFF≠0.00 

 

H0 : The mean PUT price diffeerence between market and QSW is 0.00  H0 : µPUT_DIFF=0.00  

H1 : The mean PUT price diffeerence between market and QSW is not 0.00 H1 : µPUT_DIFF≠0.00 

 

  
 

Table 47a: T-test for mean difference between 

market call option price and the QSW at 95% 

confidence level. 

 

Table 47b: T-test for mean difference between 

market  put option price and the QSW at 95% 

confidence level. 

 
  

The null hypothesis statement is proven to be true at 95% confidence level. Therefore, If 

I am to draw samples  in the same manner, then 95% of the samples will confirm the 

validity of the null hypothesis. It implies that, although the sample mean diference for 

calls and puts is non zero, over the entire population,  it is expected to converge to 0, 

therefore the mean  option value  acquired through the QSW and the market will match. 
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(ii)    Compare variances of two independent groups (F-test). To complete this test, first 

and foremost, the variance of the mean option price difference (market / local volatility, 

and market / quantum square well) must be established.  I seek to prove that the variability 

of call (put) price difference between the market and QSW is equal or less than the call 

(put) price difference between market and LVM (local volatility model). The upper-tail 

test is most suitable in this case (Berenson  and Krehbiel, 1992; Lind, 2010; Doughterly, 

2011).  

 

Data in table (46) is used for testing. It is important that “Population 1 Sample” is the one 

with the greater variability (standard deviation). If the NULL hypothesis fail, focus is 

then shifted onto the pool-variance T-test. This is important particularly because the test 

may fail due to the fact that the two groups  belong to the same population, rather than in 

two distinct ones (Berenson  and Krehbiel, 1992; Lind, 2010; Doughterly, 2011). 

  

H0 : The variability of CALL price diffeerence between market and LVM is 

equal or less  than to that  of  market and QSW and the two groups 

belong to independent populations 

     H0 : σMLV –σMQSW≤0 

H1 : The variability of CALL price diffeerence between market and LVM  

is greater than to that  of  market and QSW, and the two groups belong 

to  independent populations. 

     H1 : σMLV-σMQSW>0 

 

H0 : The variability of PUT price diffeerence between market and LVM is 

equal or less  than to that  of  market and QSW and the two groups 

belong to independent populations. 

     H0 : σMLV -σMQSW≤0 

H1 : The variability of PUT price diffeerence between market and LVM  is 

greater than to that  of  market and QSW, and the two groups belong to  

independent populations. 

     H1 : σMLV-σMQSW>0 
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Table 48a: F-test for mean difference between 

market- LV call option price with the market-QSW 

at 95% confidence level. 

 

Table 48b: F-test for mean difference between 

market-LV put option price and the market-QSW 

at 95% confidence level. 

 

The NULL hypothesis statement is rejected. This can be so because (i) the variability of 

CALL (or PUT) price diffeerence between market and LVM is not equal or less  than the 

one from market and QSW, or (ii) two groups do not belong to independent populations. 

Instead, it would be reasonable to follow a  pool-variance scenario testing (Doughterly, 

2011).  This is evident as both samples are drawn in relation to the market. 
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H0 : The variability of CALL price diffeerence between market and QSW is 

equal or less  than to that  of  market and  LVM and the two groups 

belong to the same population pool. 

     H0 : σMQSW –σMLV≤0 

H1 : The variability of CALL price diffeerence between market and QSW  

is greater than to that  of  market and LVM, and the two groups belong 

to  same populations pool. 

     H1 : σMQSW-σMLV>0 

 

H0 : The variability of PUT price diffeerence between market and QSW is 

equal or less  than to that  of  market and LVM and the two groups 

belong to the same population pool. 

     H0 : σMQSW -σMLV≤0 

H1 : The variability of PUT price diffeerence between market and QSW  is 

greater than to that  of  market and LVM, and the two groups belong to  

population pool. 

     H1 : σMQSW-σMLV>0 

 

 

Table 49: Pool-variance t-test for variance of  the difference between (i) market and QSW call option price, 

and (ii)  the market and LV at 95% confidence level. 



326 

 

 

Table 50: Pool-variance t-test for variance of  the difference between (i) market and QSW put option price, 

and (ii)  the market and LV at 95% confidence level. 

 

Under the pool-variance scenario, the null hypothesis is true for both calls and puts at 

95% confidence. It would remain true for 95% of samples drawn in the same way 

(Berenson  and Krehbiel, 1992; Lind, 2010). 

 

(iii)    Compare more than two groups through a one-way ANOVA. To test this, I refer to 

the difference in option price between the market and BS, TR, LV, and QSW, 

respectively. I wish to hypothesize that the population’s  mean option price difference  is 
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zero across the four groups.   

 

H0 : The mean difference  of CALL option price between the market and 

BS, Trinomial, LV, and QSW are all equal  

H0 : 

µBSC=µTRC=µLV=µQSWC; 

H0 :  µ1=µ2=µ3=µ4 

H1 : The mean difference  of  CALL option price between the market and 

BS, Trinomial, LV, and QSW are not all equal 

H1 : Not all µ1 are equal 

H1 : ∃ i,j : µi≠µj 
(*) Reject H0 as soon as just one is different.  

 

H0 : The mean difference  of PUT option price between the MARKET and BS, 

Trinomial, Local Volatility, and Quantum Square Well are all equal  

 

H0 : µBS=µTR=µLV=µQSW; 

H0 :  µ1=µ2=µ3=µ4 

H1 : The mean difference  of  PUT option price between the MARKET and BS, 

Trinomial, Local Volatility, and Quantum Square Well are not all equal 

H1 : Not all µ1 are equal 

H1 : ∃ i,j : µi≠µj 

 

 

Table 51: ANOVA (single factor). The F-test for the mean difference  of CALL option price between the 

market and BS, Trinomial, LV, and QSW at 95% confidence level. 

 

The degrees of freedom (df) are 4 (between groups + 1) and 120 (within groups). The Q-

statistic  of 3.69 can be extracted from E.7 table in Berenson  and Krehbiel (1992). It is 
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further used to perform the Tukey-Kramer test, shown below. Both tests confirm (P-value 

> 0.05 in table 51) that if the sample is drawn in the same manner, there would be no call 

option-price difference across the population groups in 95% of cases (Berenson  and 

Krehbiel, 1992; Doughterly, 2011). 

 

 

Table 52: Tukey-Kramer multiple pair comparisons for the mean-difference in CALL prices..  

 

The results are also confirmed for the mean-difference in put options across the groups 

as shown in tables 53, where the P-value of 0.8320 is greater than the level of significance 

of 0.05. From table 54, “means are not different” across the groups (Berenson  and 

Krehbiel, 1992; Doughterly, 2011). 
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Table 53: ANOVA (single factor). The F-test for the mean difference  of  PUT option price between the 

market and BS, Trinomial, LV, and QSW at 95% confidence level. 

 

 

Table 54: Tukey-Kramer multiple pair comparisons for the mean-difference in PUT prices. 

 

The critical-range in table (52) and (54) are computed using the following formula: 

Critical Range =  Qa√
MSW

2
(

1

nj
+

1

nj′
)          (219) 
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Where Qa is the ctirical value from the studentized range distribution; MSW the mean 

square within;  nj and nj’ are the sample sizes from group j and j’.  In this case, the Q-

statistic represents the critical value from studentized range distribution with 4 and 120 

degrees of freedom (Berenson  and Krehbiel, 1992). Given enough time for the priceto 

develop, the mean-difference  of option-prices would be the same across all models. 

 

(iv)     Analyse the relationship between two variables (simple linear regression). 

H0 : There is no linear relationship between CALL option price  and STOCK price, 

across  the SAMPLE (the slope is zero) 

H0 : β1=0  

 

H1 : There is a linear relationship between CALL option price and STOCK prices, 

across  the SAMPLE (the slope is not zero) 
H1 : β1≠0  

 

 

  Table 55: Inference about the slope of a linear regression (call price  vs stock price). 

 

Exhibit (a): Regression data, call vs stock price. 

 

Exhibit (b): Durbin-Watson caculations. 

From table 55, exhibit (a), the P-value is 0.0000. This is  less than the 0.05 significance 
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level, therefore the null hypothesis is rejected, subsequently there is a  linear relationship 

between call option value and stock price in the sample “space”. The Durbin-Watson 

statistic is 2.5677. which according to  Doughterly (2011) confirms negative 

autocorrelation. 

 

Table 56: Inference about the slope of a linear regression (put option price  vs stock price). 

 
 

Exhibit (a): Regression data, put vs stock price. 

 

 
 

Exhibit (b): Durbin-Watson caculations. 

 

 

From table 56, exhibit (a), the P-value is 0.0000. This is less than the 0.05 significance 

level, therefore the null hypothesis  is rejected, subsequently there is a  linear relationship 

between put option value and stock price. The Durbin-Watson statistic is 1.7937. which 

according to  Doughterly (2011) confirms positive autocorrelation. 
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According to Doughterly (2011), autocorrelation exits if residuals in one time period are 

related to residuals in another period. The  Durbin-Watson statistic is used to compare 

residuals over time. The put option price displays positive autocorrelation, thus 

indicating that the put option price on the 25/05/2019 has a positive correlation with the 

put option  price on 26/05/2019. It also means that  if the call price fell on the 25th of 

May 2019, it is also likely that it will fall in the next trading day.  The call price  displays 

negative autocorrelation, which means that it has a negative influence on itself over time, 

such  that a drop in price on the observation day (25/05/2019), would mean it is  quite 

probable that it will rise in the following trading day. The finding is import  because it 

allows for the use of  the statistical sample as a price forecasting  device across assets. 

 

 
 

8.0 CONCLUSIONS  

 

In study we have considered a postulate-implied formulation that allows us to develop 

the necessary mathematics on asset and financial derivative pricing. We have shown that 

starting with a generalized and augmented Schrodinger expression, we can derive the 

Gaussian density function, but also that it is a special case and that there is the effect of 

quantization at zero-dimension time point which impacts not only on the probability 

density function, but on the asset and financial derivatives valuation. We also have shown 

that through  our master-formulation we can derive a replica of the Black-Scholes PDE 

which is traditionally achieved through the Ito-Lemma, the results were exact, but our 

postulate-implied master-formulation allowed us to lift the PDE to a more abstract level 
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and to set  the problem  in such a way that we may seek  Sturm-Liouville solutions.  

 

Moreover the theoretical model, composed for the purpose of  calculating the asset and  

derivatives’  prices worked well through eigenvalue conversion. We  had started this 

research with a mere idea that we worked out in a system of equations linked to a Master-

formulation. We advanced by choosing several price cut-off equations and  solved  our 

maximized expression  for each cut-off price potential function. 

 

For “spherical” price-developing systems or  quantum price points,  we used spherical 

polar coordinates for  the quantum-topological space. On the path to obtain the Eigne-

values, we used NAG_Routines and C++ programming with numerical recipes. 

Although, theoretically we  had a “say” in the choice of  the shape of  the price-

preservation system or the zero-dimension object, this is not a case that can be observed, 

but can be treated on assumption. 

 

We applied a criterion based on assumptions on zero-object price behaviour  and 

theoretical reasoning to come to the  conclusion that  the “suitable”  price cut off functions 

are (i) Constant/Square Well, (ii) Gaussian, (iii) Cosh-2, , (iv) Arctan (for small values of 

b),  and (v) the Harmonic.  We established that the most generalized solution of the 

master-equation  had a constant square well price cut-off potential. This was used to price 

European options with very good results. 
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The data generated by the programs was analyzed and  from such analysis we have seen 

that increasing price-conservation system’s size and depth of the quantized topological 

space, caused increases on the range of Eigen-values. The Eigen-prices generated for the 

Arctan (for b very small), were very similar to the Eigen-values  generated by the  square-

well potential_program. The comparison  between the price Eigen-values  generated  for 

the Gaussian and the COSH gammas, show  that there are similarities in their values. 

Although those similarities were more obvious at market surface.   We developed further 

the model by adding a quantifier related to degree of information penetration of the 

market or the quality of the information as well as dependent on market  external 

governance. We  then  converted Eigen-price values to expectations in possible forecasts 

in our “world”. The price vectors were connected back to back with existing methods not 

only for comparison, but also for option valuation. Computation of options prices 

(European calls and puts were used as proof of concept constructs) was completed with 

very  encouraging results. Where the Black-Scholes-Merton model appeared to 

overestimate option prices, our selected quantum sub-model appeared to be more 

conservative. 

 

A sample of 30 equity and equity index options was tested using a variety of classical 

models as well as a calibrated quantum square model. Further statistical hypothesis were 

carried out. All in all the local volatility model appears to yield close to the market  option 

prices. The price-surface quantum square well model yields   closer option prices to the 

market and leads overall to improved results. 
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A  sub-model was  composed on calculating the transition prices for price forecasting 

purposes and plotting them against the radius of the information-conservation system or 

the zero-object. This was based on the  fact that changes of the quantum point size,  caused 

changes in  price Eigen-values, hence the transition price sets   between the ground levels. 

A plot of the transition or forward price   against the radius of the of the zero object was 

obtained . 

 

Analysis and plots of the “Intensity” of the information reflection and dissipation  with 

respect to the forward prices, could have been the next step,  had the time permitted. Also 

an “upgrade” of our theoretical model to  account for other market-motive effects or 

additional parameters and price cut-off “geometries” would be a useful extension of our 

work. 

 

This is a domain needs more time and attention, however we have accomplished what 

we set out at the start of the work on this research study, and overall the results show 

that the intuition behind the main axiom is correct.  
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10. APPENDIX I 

 

- BROWNIAN MOTION SIMULATION USING EULER DISCRETIZATION - 

'********************************************************************* 

'*          Simulation of GBM using  Euler discretization scheme 

'*          By: Adrian Euler 

'********************************************************************* 

Option Explicit 

Const TWELVE = 12 

Const SIX = 6 

Private keep_on_going As Boolean 

Private Type GBM_process 

    mu As Double                'Stock drift 
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    sigma As Double             'Stock volatility 

    rr As Double                'Stock  short rate 

    S_0 As Double               'Initial stock price 

    T As Double                 'Final time 

    N As Long                   'Number of time steps 

     d_t As Double               'The time step 

    sigma_sqrt_d_t As Double    'Speed-up bit 

End Type 

'********************************************************************* 

'*         Sub main to read in parameters from the front end and to 

'*         write a BS value to the front end 

Sub Main() 

    Dim my_GBM_process As GBM_process 

    Dim Elapsed_time As Double                      'Time to complete 

    Dim loop_counter As Long 

      Elapsed_time = Timer                            'Get the time (in seconds) 

    keep_on_going = True 

    loop_counter = 0 

    Sheet1.Cells(9, 4).Value = "" 
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      Application.OnDoubleClick = "my_DoubleClick"    'Escape from the loop by double 

clicking 

    Randomize        'Randomize sets the random seed for the VBA function Rnd 

    If Not Read_in_parameters(my_GBM_process) Then Exit Sub 

     Do Until keep_on_going = False 

            If Application.Wait(Now + TimeValue("00:00:05")) Then 

            loop_counter = loop_counter + 1 

            Sheet1.Cells(9, 4).Value = loop_counter 

            If Not Simulate(my_GBM_process) Then Exit Sub 

            DoEvents 

        End If 

      Loop 

        Elapsed_time = Timer - Elapsed_time 

    Sheet1.Cells(8, 4).Value = Elapsed_time 

    Beep 

    MsgBox "Programme has finished" 

End Sub 

'*********************************************************************

************' 
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'*          Simulate 

'*          A procedure to simulate a GBM 

Function Simulate(ByRef this_GBM_process As GBM_process) As Boolean 

     Dim i As Integer 

    Dim next_value As Double 

    Dim current_value As Double 

    Dim normal_number As Double 

    Simulate = False 

  

'********************************************************************** 

 '*          Simulate the path 

        For i = 1 To this_GBM_process.N 

        Sheet1.Cells(15 + i, 9).Value = i 

    Next i 

        current_value = this_GBM_process.S_0 

    Sheet1.Cells(15, 9).Value = 0                                  'Initialise stuff 

    Sheet1.Cells(15, 10).Value = current_value 

        Application.ScreenUpdating = False   

    For i = 1 To this_GBM_process.N                                          'For each time step 
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        normal_number = normal_poor                                          'Get a 'normal' variate 

        next_value = Next_S(this_GBM_process, current_value, normal_number)  'Evolve 

the next stock price 

        current_value = next_value 

        Sheet1.Cells(15 + i, 10).Value = current_value                              'Write out   the 

current step 

    Next i 

    Application.ScreenUpdating = True 

    Simulate = True 

Exit Function 

'********************************************************************* 

'*         The error handling subroutine 

error_label: 

    Beep    'To annoy the user 

    MsgBox prompt:="Error encountered:  " & Err & "  " & Error(), _ 

            Buttons:=vbCritical, _ 

            Title:="Error in main" 

End Function 

'********************************************************************* 
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'* 

'*          Read_in_parameters() 

'*          Reads in stuff from the front end 

'* 

'********************************************************************* 

Function Read_in_parameters(ByRef this_GBM_process As GBM_process) As 

Boolean 

        Read_in_parameters = False 

On Error GoTo error_label 

    this_GBM_process.mu = Sheet1.Cells(15, 4).Value 

    this_GBM_process.sigma = Sheet1.Cells(16, 4).Value 

    this_GBM_process.rr = Sheet1.Cells(17, 4).Value 

    this_GBM_process.S_0 = Sheet1.Cells(18, 4).Value 

    this_GBM_process.T = Sheet1.Cells(16, 7).Value 

    this_GBM_process.N = Sheet1.Cells(15, 7).Value 

      this_GBM_process.d_t = this_GBM_process.T / this_GBM_process.N                'The 

time step 

    this_GBM_process.sigma_sqrt_d_t = this_GBM_process.sigma * 

Sqr(this_GBM_process.d_t)     
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    If this_GBM_process.mu > 0 And _ 

        this_GBM_process.sigma > 0 And _ 

        this_GBM_process.S_0 > 0 And _ 

        this_GBM_process.T > 0 And _ 

        this_GBM_process.N > 0 _ 

    Then 

        Read_in_parameters = True 

        Exit Function 

    End If 

error_label: 

    Beep 

    MsgBox ("Data is invalid")        

End Function 

'********************************************************************** 

'*          normal_poor() 

'*        generates a normal variate from 12 rnd 

Function normal_poor() As Double 

    Dim running_total As Double 

    Dim i As Integer 
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    running_total = 0 

    For i = 1 To TWELVE 

        running_total = running_total + Rnd() 

    Next i 

    normal_poor = running_total - SIX 

End Function 

'********************************************************************* 

'*          Next_S(Previous_S as double, z as double) as double 

'*          Generates the next value of the stock price S 

Function Next_S(this_GBM_process As GBM_process, current_value As Double, z As 

Double) As Double 

 

    'Evolves state variable using an Euler discretisation lg ln S. 

    'z is ~N(0,1) 

    Next_S = current_value _ 

        * Exp((this_GBM_process.rr - 0.5 * this_GBM_process.sigma ^ 2) _ 

                * this_GBM_process.d_t + z * this_GBM_process.sigma_sqrt_d_t)  

End Function 

'********************************************************************* 



387 

 

'*          my_DoubleClick traps the DoubleClick event 

Sub my_DoubleClick() 

    keep_on_going = False 

End Sub 

 

 

11. APPENDIX II 

- MATHEMATICAL DERIVATIONS  - 

CASE 1.0:  

Starting with the master equation (chapter 4 eq., 19), when n  0 and m  0, we seek a 

time-independent solution of the form: 

f(χ, t) = ψ(χ)ξ(t) 

∂f(χ, t)

∂χ
=

∂ψ(χ)

∂x
ξ(t) 

∂2f(χ, t)

∂χ2
=

∂2ψ(χ)

∂χ2
ξ(t) 

∂f(χ, t)

∂t
=

∂ξ(t)

∂t
ψ(χ) 

Where   ( ) ( )χκη=t,χγ   and k is a constant. 

Substituting back to the master equation, we obtain 
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( ) ( ) ( )
( )

( )
( )χψ

t∂

tξ∂

tξ

1
i=χψχκη+

χ∂

∂

2

1
- ][][ mn

2

2

               (C1-1) 

where .1-=i   

Two functions of different separable variables can only be equal for all values of their 

arguments if each is equal to the same constant, denoted here by α. We subsequently 

obtain 

( ) ( ) ( )
( )

( )
( ) ( )χαψ=χψ

t∂

tξ∂

tξ

1
i=χψχκη+

χ∂

∂

2

1
- ][][ mn

2

2

        (C1-2) 

Which we express in a compact and generic form as 

( ) ( ) ( )χαψ=χψχκη+
χ∂

∂

2

1
- ][

2

2

             (C1-3) 

where α is given by the expression  

( )
( )

( )][
t∂

tξ∂

tξ

1
i=α

mn
.             (C1-4) 

 

CASE 3.0: 

Under the latter case, equation (24) in chapter 4.0 can be written as 

     




















fr
2∂

2∂

2

1
-

      (C3-1) 

Or,  expressed in a more compact form as 
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 
    0q

∂

∂

2

1
-

2

2












          (C3-2) 

where   

    frq                 (C3-4) 

 

Before any possible evaluation of chapter 4.0 equations (23) and (C3-1) can be done, a 

concrete expression for q(χ) needs to be established. We consider price of stock at time 

t to be St, where St is determined by the stochastic differential equation 

 ttt dWdtSdS              (C3-5) 

with {Wt, t ≥ 0} being a standard Brownian motion and σ > 0, μ are constants; parameter 

σ is known as the volatility and μ the rate of return (Karatzas and Shreve, 1998). We 

consider next a stochastic differential equation for exponential Brownian motion. 

Consider the exponential Brownian motion St = S0 exp {σWt + μt}, where Wt is standard 

Brownian motion and S0 is a constant (Karatzas and Shreve, 1998; Malliaris, 1982; 

Øksenda, (2000, Bru et al., 2002). We then apply Itô’s Lemma with Xt = Wt, so that Yt ≡ 

0 and Zt ≡ 1, and with f(, t) = S0exp {σ + μt} to obtain 

 


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





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
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





















  ttt2

2

tt dWdtSdW
∂

f∂
dt

∂

f∂

2

1

t∂

f∂
t,WdfdS

2

2

1
-          (C3-6) 

Comparing the terms, allows us to extract the two expressions below: 
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


































 2
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1
-tS

2∂

f2∂

2

1

t∂

f∂        (C3-7) 

and 

tSσ=
x∂

f∂
           (C3-8) 

where we consider St ≡ f, and re-write (C3-7), using the same asset price function 

notation on both sides. 

  










 2

t2

2

2

1
-S

∂

S∂

2

1

t∂

S∂        (C3-9) 

which is then re-arranged and reset at a quasi-zero point in the time evolving path. 

0S
∂

S∂

2

1
- t2

2

t∂

∂
-2
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- 
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
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          (C3-10) 

Comparing expressions (24 in chapter 4.0) and (C3-1), we obtain the identity of q to be 

independent of χ and of the form 

2

2

1
-

t∂

∂
-2

2

1
-q 



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
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














 

        (C3-11) 

At a quasi-zero dimension point in the asset price time-evolution path, operator 𝜕/𝜕𝑡 

diminishes to zero, thus allowing us to simplify expression (C3-10). 

2σ
2

1
-μ=κη                (C3-12) 
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Subsequently, we establish the identity of q as 









 

2

ff
2

1
-rrq        (C3-13) 

Finally, we can re-write equations (C3-10) and (C3-13) as 

0)(S
2
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1
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and   

  0r
∂

∂
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- 2
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CASE 4.0: 

Consider the  GSE with a simple harmonic q() = k() of the form: 

  2

2

1
             (C4-1)                                                               

We substitute (C4-1) back to the GSE (master expression) to obtain 
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Further, we re-arrange (C4-2) in the compact form 
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      0-2
∂

∂ 2

2

2





       (C4-3)      

 

We recall that random variable   incorporated  is  a function  :  Ω  → R measurable 

with respect to ℱ; that is all events ( ≤ c) = ( Ω  : ( Ω ) ≤ c) ∈ ℱ for all real numbers c 

∈ R , and the smallest σ-field with respect to which a random variable  is measurable is 

the σ-field generated by , which we denote σ()  (Siminelakis, Paris, 2010; Shirayaev et 

al., 2006). We then use the differential equation and maximisation principles of Protter 

and Weinberger (1984) to obtain an expression for the optimum trading frequency 

22χκ-α2
π2

1
=υ             (C4-5) 

where the time that it takes to complete one cycle of one maximum and one minimum is 

given by 

22χκ-α2π2=τ         (C4-6) 

Using the stochastic process that produces a harmonic pattern with the special case of k 

= 1, we obtain a compact expression. 
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
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

           (C4-7) 

We expect solutions of equation (C4-7) to show rapid decline at χ ⇢ ±∞. A simple 

inspection of the asymptotic form i.e. χ ≫ 2α, shows ψ ∼ exp (− χ2 2⁄ ) is a solution in 

this region (Eugene and O'Donnell, 1997). Recall equation (29) from chapter 4.0, that a 

similar effect is achieved without the inspection of the asymptotic form, so therefore we 

can use this solution without loss of generality. This therefore suggests the presence of 
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general solutions of the form F(χ)exp(− χ2 2⁄ ), where F is a polynomial (Eugene and 

O'Donnell, 1997). Substituting this form into equation (C4-7) yields an expression for the 

first and second order partial differentials. After differentiation with respect to χ,  we 

obtain a first order partial derivative  
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Furthermore, we also apply a second partial derivation to obtain  
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Then, we substitute (C4-8) back to (C4-9) to obtain 
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which, after simplification, can be written  
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  0F
d

dF
2-

d

Fd
1 -2

2

2







             (C4-11) 

There might also exist non-polynomial i.e. infinite series, solutions of equation (C4-11), 

but they all have divergent behaviour at large χ (Birkoff and Rota, 1962). Suppose the 

leading term of F is χn. This contributes 

( ) ( ) nn2-n χ1-α2+χ2n-χ1-nn            (C4-12) 

to the left of equation (C4-11). The coefficient of χn  must vanish to comply with equation 

(C4-11) and as lower-order terms in the polynomial F only contribute to χn−1  or lower 

powers, we demand from equation (C4-12) that 

...,.........3,2,1,0=nwhere
2

1
+n=α                (C4-13) 

 

The probability density ground state is obtained at n = 0, in which case F is a constant, so 

that u ∝ exp(−χ2 2⁄ ), and with the application of the normalization condition, we obtain 

a Gaussian function (Malliaris, 1982; Øksendal, 2000, Bru et al., 2002). Subsequently, 

we establish the expectation value for χ  at the ground state to be  

    0dudPE 2

000  



          (C4-14) 

To construct the 𝑛 ≥ 1  probability density functions, one must substitute a full 

polynomial for F in equation (C4-11) and equate the coefficients of all powers (not just 

χn) to zero. One obtains the following set of functions for F (to within an overall constant) 

1, 2𝜒, 4𝜒2 − 2, 8𝜒3 − 12𝜒, ….. for n =0, 1, 2, 3,…. These functions are well known to 
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mathematicians as Hermite polynomials, denoted Hn(χ), and are discussed in great detail 

in Walter (1977), and (Szego, 1939). Equation (106) is a Hermite equation. The Hn() 

may all be generated by successive operations as follows:   

Hn(χ) = (−1)neχ2 dn

dχn
e−χ2

   (C4-15) 

The normalization factors may be evaluated using the properties of Hermite polynomials 

(Szego, 1939). One obtains the ψ function  

ψn(χ) = (
α

√π
2nn!)

1

2
Hn(αχ)e−

1

2
(αχ)2

    (C4-16)     

and subsequently in full alignment with the work of Schwartz (1967), the probability 

density function is: 

un(χ) = |ψn(χ)|2 = (
α

√π
2nn!) |Hn(αχ)|2e−(αχ)2

      (C4-17) 

 

CASE 5.0: 

 Starting with GSE
85, we seek a solution of the form: 

( ) ( ) ( )tξt,χψ=t,χf                  (C5-1) 

Next, we take the partial derivatives with respect to  and time, following the rules of 

differentiation (Birkoff and Rota, 1962) 

                                                           

85 Generalised Schrodinger Equation or referred equivalently as the Master expression. 
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( )
( )

( )
( )

( )

t∂

tξ∂
t,χψ+

t∂

t,χψ∂
tξ=

t∂

t,χf∂
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Substituting these expressions back into the master formula, we obtain 
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Next, we divide both sides by  to obtain: 
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      (C5-6) 

We set ( )
( )

( )
][

t∂

tξ∂

tξ

1
i=α

mn
 in exactly the same manner as in all scenarios in the previous 

chapter, and re-arrange the equation to obtain 

         




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

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α-t)γ(χ,
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tχ,ψ∂

2

1
-        (C5-7) 

Thus obtaining the desired expression as set out in this theorem. 

 

CASE 7:  

Starting with the GSE, we seek a general solution of the form 
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     tχ,ξtχ,ψtχ,f               (C7-1) 

We assume that both functions are dependent on  and t. Further on we take the partial 

derivatives of (C7-1). First order partial derivative of f(, t) with respect to :  

 
χ∂

ξ∂
ψ

χ∂
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         (C7-2) 

Second order partial derivative of f(, t) with respect to :  
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First order partial derivative of f(, t) with respect to t:  
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Which are then substituted back in the master expression  to obtain 
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We divide each term by  to obtain 
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Then set    
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t∂

ξ∂

ξ
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and substitute back in equation (C7-6) to obtain 
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Under the assumption of no explicit probability density identity presence (n=0), we obtain  

  1i
m0  , and then re-arrange equation (C7-8) to obtain 
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which is then further simplified into  
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We re-arrange it  

 ψχγ2ψ2
t∂

ψ∂
2ψ

t∂

ψ∂
2

t∂

ψ∂ 2

2

2









             (C7-11) 

to further obtain 
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Which clearly has resulted in a separation of variables  and t. We add one unit of ψ on 

both sides to reduce the expression to a more compact form 

      ψ1χ2γψ12
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or 
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Separation of variables is persistent and the left hand side can be equal to the right hand 

side if both are equal to a constant. We may contemplate a special case by setting it to 0, 

which implies that γ(χ) = −1 2⁄ . Thus we obtain a PDE representation that is entirely 

independent of stochastic process variable χ. 
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We further re-arrange and write it in a compact form as 

  0ψα1
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


                       (C7-16) 

In all of the examples we have considered, the true identity of α has been either the interest 

rate, risk-free rate of return, or hypothesized rate of return. We consider a financial option-

like identity for ψ with the α = rf, the rate of return of a riskless asset (Black, 1973; Jarrow 

and Turnbull, 1998; Hull, 2014; Ho and Lee, 2015). 
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
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               (C7-17) 

 

If we  apply the same logic as that leading to expression (80) in CASE 5.0 of chapter 5.0, where we 

consider a portfolio of one option with a legal right to claim h shares, where h is hedge and given 

by h = ∂ψ ∂s⁄  (Kennedy, 2010). Alternatively, we could consider a portfolio made up of a risk 

free investment and a certain number of shares (Bodie et al., 2009). The right-hand side of (104) 
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can be written 







s

ψ
sψhsψγψ2ψ                             (C7-18) 

 

Where Π represents the value of such portfolio. Expression (C7-18) allows us to 

establish the identity of cut-off price potential as an operator γ = s(1 2⁄ ) (∂ ∂s⁄ ), which 

is similar to that of  CASE 5.0. 

 

We re-write equation (C7-18) to obtain 
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	1.0 INTRODUCTION 
	 
	 
	 
	Expressed differently, existing financial pricing model can forecast  price,  however they fail to match its value at the end of the investment holding times15. King (1966),  Elton et al. (1978), Conner and Korajczyk (1995),  Bodie et al. (2009), Elton and Gruber (2011), as well as Brealey et al. (2008), Hillier et al. (2001), among, others, articulate well the use of factor-tracking based on  linear indexing16 and subsequently the capital asset 
	pricing model, (i.e. CAPM) as an equilibrium model that underlies modern financial theory. 
	In the single index model (Sharp, 1964) there is only a single degree of freedom that stock price return variability will depend on. According to Conner and Korajczyk (1995), as well as  Hillier et al. (2001), an increase in degrees of freedom will allow for inclusion of  additional macro-economic variables, firm-specific events, and statistical procedures. This would enable investors to rationalise their preferences around maximisation of their utilities. As long as factorisation is “realistic”, factor loa
	 
	This research work is conceptualised as a ‘3+1’ knowledge volume. The bottom layer is constructed around a conceptual cognitive map that includes, as part of the critical literature review, concepts such as random variables, differential function preliminaries, Brownian motion fundamentals, stochastic utility, the Arrow-Pratt absolute risk aversion, stochastic portfolio, indexing, stochastic contingent claim valuation, quantum mechanics(Callegaro et al., 2017a:2017b), and the Sturm-Liouville model (Bailey, 
	 
	The middle layer represents the mathematical finance layer of the new value knowledge, 
	addressing the existing research gap in this domain. It infers knowledge at a deeper level, utilising quantitative and mathematical finance patterns of deductive reasoning to bring the new knowledge to the level of Finance applications. More specifically the middle layer is made up of theoretical Chapter 4, “An Abstract  Stochastic Asset Pricing and Contingent Claim Valuation Framework with Schrödinger PDE Augmentation”, whose main storyline is built around a postulate-implied master formulation (based on a
	 
	The middle layer includes Chapter 5 “Asset Price Rapprochement: Split PDE Identities and Sturm-Liouville Quantum Fitting”, with focus on various price-cut off functions, the derivation of various option price PDEs (Black-Scholes derived from our postulate-implied master expression as a special case), as well as the acquisition of Sturm-Liouville PDEs, allowing us to fit a quantum system at each market price point i.e. the zero-object.  
	 
	The top knowledge tier is the Finance and Financial trading layer organized as theoretical Chapter 6,  ‘Computation of  Asset Prices  in Forward Time with Eigen-Value Conversion” and Chapter 7, ‘Comparative Valuation of Financial Options with Eigen-Value Conversion and Classical Models’. Both chapters focus the financial  asset and derivatives pricing applications  using the main concepts in this research with emphasis on numerical and empirical tests.  
	 
	I generate data algorithmically and test several cut-off price functions with clearly stated boundary conditions. More specifically testing financial instrument pricing capabilities of our model through several scenarios based on the technique of fitting a cut-off price function in each case; (i) constant, (ii) harmonic, (iii) Gaussian, (iv) Cosh, (v) inverse, (vi) Arctan, and (vii)  decaying exponential.  
	 
	After fitting the augmented Schrödinger-Sturm-Liouville PDE and the boundary conditions on the price zero-object18, I then compute the Eigen-price levels and generate delta- distributions. Much work is done on developing the pricing theory within a zero-object and its highly quantized space constraint. Furthermore I conceptually “connect” the Ⓒ and Ⓓ-worlds in one “universe”, which serves to translate financial asset measures (liquidity, volatility, etc.) from the Ⓒ-world onto the Ⓓ world and vice-versa. Fi
	 
	The internal space of the zero-object is measured through the newly introduced quantum parameter, which serves as a space “converter” 19. Whereas within the zero-object space, the depth, radius, etc., are all measured relative to the quantum- translated volatility, more 
	precisely, I fit the zero-object with a quantum volatility surface. It follows an extensive amount of work with trial and tribulations to establish the internal space dynamics of a zero-object for what it means in our financial asset pricing domain. I calculcate Eigen-prices, probabilities, and translate them to a price vector in the Ⓒ world for further use.  
	 
	All asset price attributes are represented in percentages I use Eigen-price terms as a short-hand reference to quantized logarithmic price values, differentiation of which provides us with the liquidity measure of a financial asset. Of importance here is the new element of theory added in the last theory chapter for the provision of the price spin. It allows for both positive and negative changes in price. The end results are not only the delta-distributions, Eigen-probabilities, but also price-vectors, whi
	 
	The effects of probability distribution splits are illustrated both mathematically and graphically. Although I trial a Gaussian, any other probability distribution function can be used. Moreover, financial derivatives’ pricing using different Eigen-states can be achieved. The lowest Eigen-state solution matches the Black-Scholes-Merton model. The new option pricing model  appears to correct the overestimation present in option prices for longer-term contracts. The testing of specific sub-models follows the 
	the abnormal spread from the market thresholds is narrowed or diminished with the  new models, as compared to the existing models, thus leading to better price forecasting (Black and Scholes, 1973; Geske and Roll, 1984; Hull and White, 1987; Milevsky and Posner, 1998; Haven, 2002:2003; Chousa and González, 2016; Bustamante and Contreras, 2016). 
	 
	The additional ‘+1’ layer, dimension of this research study represents the body of research methodologies used to investigate  contemporary literature,  utilization of data generated streams, gaps in literature, as well as the use of analytics to reach relevant findings. This study’s research methodology is rooted on  deductive reasoning, on which our master-formulation and sub-models are based on. Although intrinsically non-formal as a theory, I apply strong forms of coherence and cohesion in order to inve
	 
	Throughout the thesis, I use an adapted form of first-order predicate logic20 to put forward the ideas that allow me to strengthen the storyline throughout the thesis. It embeds ﬁrst-order language with reflection of strong forms of “identity” of items and relationships, 
	with variables, connectives, quantiﬁers, and some primitive terms represented also within logical betweenness and equidistance (Tarski and Givant, 1987; Barwise, 1977; Barwise and Etchemendy, 2000; Hazewinkel, 1997:2001; Saonov, 2001; Gamut, 1991; Haewinkel, 2001; Andrews, 2002; Rautenberg, 2010). 
	 
	The simplicity, but also the expressiveness of this language consists in the fact that it allows for the quantiﬁcation on individual finance-related variables and their relationships. In order to achieve measurable tests, I leverage strong forms of methodological foundations with balanced views and a clear research strategy with emphasis on correctness and sufficiency in the quantitative data. It allows me to centralise, in good part, the solutions around the postulate-implied master expression and the rese
	 
	I also consider appropriate time-horizons where I saturate the first and second tiers of  this research knowledge-base and knowledge management on cross-sectional forms of research with a focus on any individual market points, with the reduced dimension effects incurring at each point; the zero object. On the third tier, I shift to a more limited longitudinal research form by investigating the behaviour of asset prices between any two or more market points (Adams and Schvaneveldt, 1991; Saunders et al., 200
	 
	It helps to conceptualise the longitudinal investment time horizon as a “medium” in which 
	future events, subsequent uncertainty and financial risk exist. From a present perspective, I are unable to hold certainty on any future events, subsequently observed on unexpected price dispersions. This is an intrinsic time-related limitation of effectively identifying future prices or price behaviour patterns with certainty. When I employ the use of cross-sectional research, the dimension reduction aspect helps me to identify a quantized zero object as an “environment” where price changes and patterns ca
	 
	I believe that cumulative flirtations dissipated by the market are fragmented with different degrees of fine granulation within the zero-object. Events are reflected in the current market price in-line with the efficient market hypothesis, whereas patterns formed out of such fragments are in parity with unexpected future price developments. This is in-line with the Markov property (Markov, 1954:1971; Seneta, 1996; Gilks et al., 1996). 
	 
	This allows me to identify different ‘realities’ dependent on the topological space configuration of the zero object and to contemplate fitting of appropriate price distributions. Although I put this forward as a measurable environment, it does allow for some elements of interpretation on what could appear to link to a more interpretive research philosophy that I attempt to centre around the specific internal fittings with intent to unearth logic behind such construct, which would allow me to focus on price
	 
	The fact that a new topological space construct has been fitted within a zero-object different from our own may appear as a limitation. However it comes with the advantage to deploy and use attributes of a deductive and meta-physical philosophy with the new ‘universe’ in which the price exists; The Ⓓ universe is different from ours, however I unify  research methodology through a functional enhancement of zero-objects and their internal topological space configurations, along the market line and orthogonal 
	 
	The research strategy used in this study is a combination of grounded theory and experimentation with a comprehensive application of deductive reasoning in order to develop a new theory, driven by  a postulated master expression, which represents the asset price unification model, whose solutions lead to existing and new asset price expressions in PDE form. The experimental research strategy helps establish the cause-effect relationship between market filtration dissipation and price evolution in forward ti
	 
	On the practical side, I  provide a wide range of numerical illustrations through the use of various computational procedures and techniques in order to illustrate several effects and cases, such the Metropolis Algorithm described well in Gilks et al. (1996), which allows for  the use of a proposal probability function and subsequent testing of  various scenarios where probability distribution splits. Although the proposal distribution put forward here is a Gaussian, any other distribution could be trialled
	 
	This effect is demonstrated mathematically in this study. The MATLAB program implements Monte-Carlo integration and generates various distribution mixings. Various C++ programs invoke NAG routines to compute Eigen-price levels using a Schrödinger-Sturm-Liouville solution augmentation, which we then plot in Excel. Python and VBA are used to demonstrate the effect of stock price simulation using an Euler discretized Brownian motion by generating various price paths. It is along such paths that the zero-object
	 
	This study adds value in the form of a new set of valuation analytics that could potentially 
	be used to price financial instruments, ranging from single financial securities and their derivatives,  to complex portfolios, exotic option spreads, and structured products. It also inherits various limititations, such as those stemming from the statistical sampling size. In addition  the multiple pricing “realities” and the subsequent  interpretations may give rise to ambiguity (Daughterly, 2011;  Gurajati and Porter, 2010). 
	 
	The literature review, by virtue of its finite size, provides a limitation in that it is not possible to scan all literature, although a considerably broad range of published work has been investigated. Another limitation is the depth at which a topic, however related to this research, is treated by previous research and often with very limited scope without a properly established “bridge” between the zero-object with its space quantization configurations to financial asset pricing. 
	 
	The quantitative method of research does allow for the application of strong forms of analytics with secondary data. An earlier limitation in generating such data was resolved, which enabled testing to be conducted. There is also a minor limitation on algorithmic simulations, in that as this is research in Finance, the time spent to construct the algorithms was significant and that took some of the focus away, such as getting access and configuring NAG routines, writing algorithms that integrate NAG functio
	 
	Even though I provide a generalised pricing framework, only  several zero-object price sub-models are tested. These are validated in partial capacity by existing literature and 
	therefore are a safe leap forward (Haven, 2002; Nastasiuk, 2015; Luschgy and  Page, 2005;  Callegaro et al., 2017a:2017b:2018a).  The necessary logic of obtaining contemporary pricing models from the  general pricing framework is provided. This work is a conceptual framework with partial, but sufficient  numerical testing. Due to the overall deductive theory approach employed here, interlinked with limited forms of interpretative philosophy,  there is a possibility of bias, however we attempt to mitigate bi
	 
	I theorise that the zero-object is fitted with price-differential distributions at different stages  of admixture, corresponding to each quantum state, This would reflect well on the levels of price definition and stability. Moreover, both the classical form of volatility and filtration-implied volatility may co-exist when we align both universes;  the zero-dimension topological space and the observable continuous price universe. It is also possible to convert classical measures to meaningful new quantum me
	 
	Another core new value element in this research is the use of replicative function ‘identities’ and variable separation adaptations. It enables us to form our view of an absolute general equilibrium away from the particularism of foundational hedging effects and the likes (Black and Scholes, 1973; Merton, 1973:1974; Cox et al., 1979; Jarrow and Rudd, 1983; Foller and Schweizer, 1990; Leisen and Reimer 1996).  
	 
	Such “identity” functions are polymorphic21. Their identities may be established  by using  variable separation techniques. Subsequently the “identity” of such functions work out to either be a pricing, price change distribution, or any other combination, including effects of hedging at an abstract point of consideration. It enables deeper investigation and better understanding of asset price valuation. This approach provides new value and sets this work apart, while at the same time it complements existing
	 
	The investigation of asset price behaviour within a zero-dimensional topological space 22 (Schafer, 1966; Pears, 1975; Banakh and Cauty, 1994; Banakh, 1997; Fedorchuk, 1999; Haven, 2006; Khrennikov, 2009) and a nonzero-system23 with a functional alignment between the two, has led to various new areas of research, that could be explored beyond this study. Such is the application of the main model (and its variants) in “live” financial trading scenarios with a range of forward-time technical analysis of use i
	PDE level. Further research could be done to obtain expectation expressions through integration, while including a high degree of formalism of mathematical workings with theorems, lemmas, and corollaries, which would require a considerable amount of research time. 
	  
	2.0 LITERATURE REVIEW 
	 
	 
	2.1 PRELIMINARIES 
	 
	Typically, in modern Finance, information and its relation to pricing is theorised by efficient market hypothesis. Malkiel and Fama (1970), Malkiel (2003), Asquith, (1983), Latham (1986), Bachelier (1990), Bernard and Thomas (1990), Davis and Etheridge (2006) provide a good base for discussion on market efficiency effects with the assumption that a probability triple space event follows a stochastic process.  
	 
	Therein lies the limit in terms of successful price change predictions or pre-event time-horizon measurements of liquidity in our observable world, hence one anticipates understandings of price change dynamics through the consideration of new Ⓓ↑↓-system (Shephard, 1991; Stein and Stein, 1991; Seneta, 1996; Platen, 1997; Luschgy and Pages, 2002; Parzen, 2015). To that end, I re-address existing literature gaps by further considerations on and around the price developments in relation to information filtratio
	 
	2.2 APPLIED  STOCHASTIC FINANCE CONCEPTS  
	 
	A review of literature on various stochastic finance concepts is provided here, starting with attitudes of individual investors in relation to subjective investment decisions and risk, more specifically the notion of an investor’s individual utility function.  
	 
	Shiryaev et al. (2006) argue that in a deterministic model an investor will seek to maximise his or her wealth by making rational investment choices. Under a stochastic model, the investor’s final wealth is typically a random variable, w, and it would no longer make sense for the investor to make investment decisions seeking to maximise a random quantity, instead, the investor may wish to maximise the expected value of his or her final wealth, E(x), so that the investor achieves the largest wealth on averag
	2.3  RELEVANT  QUANTUM FINANCE MODELS: Q-MARKETS AND PRICE DISTRIBUTIONS  
	 
	Haven (2002:2003:2004) work utilises the Brownian motion as the process on which the Black-Scholes (1973) option pricing model is based on. A detailed  coverage of the Brownian motion  can be found in Nelson (1967),  Karatzas and Shreve (1998b), Revuz and Yor (2004), Shreve (2004b), etc. In Finance literature there exists a close connection 
	between the binomial option pricing model and the Black-Scholes model (Cox et al., 1979; Nielsen, 1993; Hull, 2014). The Black-Scholes (1973) model can be derived from the binomial model when the number of binomial steps is increased sufficiently to allow for full convergence of the binomial distribution to a normal distribution.  
	 
	In binomial models (Cox et al., 1979; Jarrow and Rudd, 1983),  Leisen and Reimer, 996), stock price can take on two different positions at each time step. In analogy with information theory (Cover et al. 1989; Mackay, 2003), the binomial model represents a bit: a system with two possible states (at each time step). The “bit” notion is also implicitly used  in the so called “Arrow-Debreu” paradigm, where future payments are a function of both time and the states of the world (Föllmer and Sondermann, 1986; Fö
	According to William Sharpe, a well recognised finance academic, this paradigm is part of what he brands ‘nuclear financial economics’. The “qubit” model is the most uncertain, since the information carried per price step in the next period of time is quite less than in the “bit” model. The Black-Scholes portfolio is not even risk free in that case (Sharpe , 1964; Varian, 1993; Sharpe et al., 1995). 
	There has been an increase in the use of game theory with the inclusion of   quantum formalism. This is particularly exemplified in Piotrowski and Sładkowski (2004), based on earlier work by Eiser et al. (1999).  It has qualitatively broaden the capabilities of this discipline describing the strategy which can not be realised in classical models. Game theory (von Neumann and Morgenstern, 1947; Rasmusen, 1989; Anjan, 1991), describes conﬂict scenarios between a number of individuals or groups who try to maxi
	 
	The success of quantum information theory (quantum algorithm or quantum cryptography) could make these futuristic-sounding quantum trading systems a reality, due to quantum computer development it will be possible to better model the market and  price derivative instruments with relative ease (Preskill, 1988; Baaquie et. al., 2002; Piotrowski and Sładkowski, 2004).  
	 
	Rebentrost et al. (2018) argue  that existing algorithms allow  quantum computers to price financial derivatives with a square root advantage over classical methods. It marks a shift from using quantum mechanics to gain insight into computational finance, to using quantum systems - quantum computers, to perform those calculations. Finance community is always looking for ways to overcome the performance issues that arise when pricing options. This has led to research on alternative financial computing techni
	Chen et al., 2000;  Raj and Shivakumar, 2007 ). 
	 
	 
	Levental et al. (2016) argue that all uncertainty is generated by a d-dimensional standard Brownian motion B over the finite time horizon [0, T], supported by a probability space (, F, P), where all processes are assumed to be progressively measurable with respect to the augmented filtration {Ft :t∈ [0,T]} generated by B. For any subset V  (respectively V n x m), with L(V) denoting the set of V-valued progressively measurable processes, and for any p  R, given in well defined terms61. They used a subs
	complete markets with an aggregator that depends on current wealth. 
	 
	Benaïm and Raimon (2003) studied the convergence in law properties of self-interacting diffusions on a compact Riemannian manifold, where self-interacting diffusions are continuous time stochastic processes living on a Riemannian manifold M, which can be typically described as solutions to a stochastic differential equation (SDE)62, with the implication of a special family of Brownian motions, and (Fα)α a family of smooth vector fields on M such that ∑Fα(Fαf)α=∆f, for f∈C∞(M), where  denotes the Laplacian 
	 
	The “potential” function is an important construct around our own concept of replicative function identities in asset pricing, and play an important role in the dynamics of solution-finding. According to Benaïm and Raimon (2003), these processes are characterized by the fact that the drift term depends both on the position of the process Xt , and its empirical occupation measure up to a stopping time t63. Benaim and Raimon (2003) also argue in favour of the asymptotic behaviour as a further development of t
	 
	Benaïm et al. (2002) describe the long-term behaviour of {μt} in terms of the long-term behaviour of a certain deterministic semi-flow {t}t≥0 defined in the space of a probability measure on M. This includes  situations (depending on the shape of V) in which {μt} converges almost surely to an equilibrium point μ∗ of  . In other situations the limit  set for {μt} coincides almost surely with a periodic orbit for . In the simple case when μt converges to μ∗, one expects (Xt+s, s   0) to behave like a homo
	 
	Benaïm et al. (2002) explored self-interacting diffusions on a smooth compact manifold using e Girsanov transfer technique to distinguish interactions that reflect symmetry65 with a positive or negative self-adjoin operator, making use of Borel probability measure and gradient of interactions (Berberian, 1988; Srivastava, 1998). These interactions are self-repelling when the  gradient is positive, and self-attracting when the gradient is negative. They show that , if V1 is a constant function, for all repel
	such that μt converges towards exp[βn(α)cos(d(x,v))]λ(dx)/Zn,α, where Zn,α is the normalization constant and βn(α) is a constant depending only on n and α. They articulated an example of an interaction on Sn, which is not a gradient interaction, for which Px,r,μ(̃) = 0.  
	 
	Benaim and Cloez (2015) conducted analysis using a stochastic approximation algorithm in order to simulate  quasi-stationary distributions on finite state spaces. They found out that the asymptotic behaviour of an empirical occupation measure66  is precisely related to the asymptotic behaviour of some deterministic dynamical system induced by a vector field on the unit simplex. This represents new proof oconvergence of  asymptotic rates in a constrained topological space. It led to a generalization of the m
	 
	Benaim and Cloez (2015)  concluded that a process behaves like (Yn)n0 until it diminishes, which occurs when it hits 0. After  it diminishes, it  then comes back to life in a state randomly chosen according to its empirical occupation measure; this process is 
	not Markovian and can be understood as a reinforced or extended random walk. They used a natural embedment of such process onto  continuous-time multi-type branching processes. Aldous et al. (1988) provisioned the central limit theorem and further on proved the convergence of (Xn)n0. Under the condition n=1/n, Benaim and Cloez (2015) also provisioned the central limit theorem, using similar techniques, that allow for convergence rates to compare with a discrete-time version of the algorithm. 
	2.4  LITERATURE REVIEW CLOSING REMARKS 
	 
	Part of this research work is revisionary,  intended  to  (i)  to enhance what is already known,  (ii)  to abstract and unify known theories through a complete equilibrium PDE. I have particularly made choices on publications from 1900s to date. The first 40 years of the 20th century include the introduction of quantum mechanics, in the context of more traditional sciences, with the initial contribution in  quantum theory by Planck and Einstein in early 1900  and mid-20s, followed by mathematical formalism 
	 
	It is  only in the last decade or so that publications on the use of quantum mechanics and its underlying theory could be applied in financial domains, but to no particular useful effect in pricing despite the general claims to the contrary. I attempt to rectify this here by providing a conceptual and measurable framework that considers the Ⓒ- and Ⓓ- 
	worlds combined in a financial pricing gauge with tangible effects. Additional effects of inference on literature review are also included in the theoretical chapters. 
	 
	3.0 RESEARCH METHODOLOGY 
	 
	I provide justification for the selection of research tools, strategies, approach, and philosophy demployed throughout this study. The selection is based on an adaptive - layered research framework.  
	 
	From the outset, a good portion of this research is driven by deductive reasoning  with model building, finalised at the last stage with numerical simulations, and illustrations using the pricing analytics put forward in this work. I include a detailed treatment of all aspects of the research methodology relevant to this type of research and most suitable for this domain, with all of the research elements that have made the research in this domain possible, by making extensive use of secondary sources (Saun
	 
	Where books are used, they serve the purpose of setting the stage for more detailed and contemporary research powered by dated and recent articles. In summary, this chapter provides the research ‘frame’ which is made up of my choice of the research philosophy of interpretivism, with a deductive approach. I make use of quantitative techniques for data and information acquisition and carry out research analysis (Saunders et al., 2003;  
	Pelissier, 2008; Snieder and Larner, 2009; Wilson, 2010). These are embedded in subsequent chapters. 
	 
	3.1 RESEARCH PHILOSOPHY  
	 
	I start with the outer-most layer of the research framework, that of the research philosophy, and proceed to the application of a broad and balanced spectrum of views on research philosophy driven by my understanding of what constitutes the best philosophy construct for this body of research work, and that leads to acceptable new knowledge in the domain.  
	 
	The interpretivism epistemology view is valid due to the fact that this research is based on inferred knowledge, where research elements and outcomes follow interpretations according to the views formed in the process; typically, I consider the views to come from own knowledge acquisition and inference over time and through experience. Expectations are formed within a rather ‘fluid’ process where what is perceived as acceptable knowledge is revised over time within own knowledge base, which allows for revis
	 
	I seek to match my internal expectations with those implied by other collaborated work in a published form and which are broadly acceptable by the research community i.e. external expectations. I believe that with proper management of all elements of this 
	research and the knowledge inferred, I seek not only to align those external expectations, but also to exceed them. The process of the external research expectations’ alignment makes it possible to revise the logic over a time horizon with new developments and experiences that drive  varied interpretations.  
	 
	Such research epistemology view is only taken in partial consideration, when adapted to a rigorous domain such Finance allows for the augmentation of a strong view, particularly on the establishment of the interface and ‘interactivity’ between two ‘worlds’ under consideration; the Ⓓ-world71 and the Ⓒ-world72. Although these two worlds were not put together in the past, they are explored independently in prior literature with substantial theoretical foundations to support one another. To that end I utilise d
	 
	I discard the effects of a possible objectivist view that separates the two “worlds”. It is essential to determine and understand the factors that impact, govern, and affect my very own interpretation of the two worlds, their separation, and betweenness. Existing research 
	either focuses on the Ⓒ-world, or the Ⓓ-world, or when the two are connected, the justification is no well-formed or fully justified for  financial valuation purposes. The relevant concepts of betweenness,  the nonlinearity of probability, and the likely connection between probability and  space-time geometry in a  quantum system are explored in the works of Camerer and Ho (1994), and Canessa (2007).  
	 
	In this work and in minor capacity, I make use of a dual-track research philosophical view, where conventional logical positivism is applied as a major effect and in a forward manner, with the minor effect of inductive phenomenology applied within a reversed track approach to concrete outcomes. The former is based on the fact that  my starting point in this research is the creation of a new theoretical framework with merging of alternative theories, and subsequent numerical testing. This leads to the compil
	 
	It provides a good basis for exploration of properties and internal price-related dynamics within the Ⓓ-world. It also helps provide clarity on the actual interface between the two worlds within Finance and for the purpose of asset pricing. This is evident in  the numerical analysis section, further allowing for a minor use of  an inductive approach within a phenomenology philosophical view to a partial effect.  
	 
	Data and events are utilised within such ‘worlds’ and at the interface between the two. I 
	consider a very minimal regard for any other ‘world’ beyond the two considered. Moreover, in my consideration of the Ⓓ-w and the Ⓒ-w, I place greater emphasis on specific elements with minimum regard to other factors, thus counting in only those variables and factors that we expect to have an impact or that are relevant to our purpose set beforehand, rather than effects and outcomes in hindsight. This allows for new elements of theory, also through the means of numerical simulations and testing, as a way to
	 
	There is some fragmental symbolic interactionism in the research philosophy deployed here, such as the consideration of the Ⓒ-world and Ⓓ-world interactions and the eventual effect of pricing.  It is first developed within the Ⓓ-world and observed in the market line in the Ⓒ-world. This is in full alignment with our interpretivist belief in multiple realities (i.e. multiple universes or worlds) as articulated in the worlds of Schwandt (998), and Denzin and Lincoln (2003).  
	 
	Furthermore, I not only consider different  ‘worlds’, but focus on each in line with phenomenology, then draw and create meanings and apply different points of view in order to analyse different valuation scenarios and validate the existing theories and practices as reported in published academic literature (Hatch and Cuncliffe, 2006).  
	 
	I believe that by the greater extend, the research philosophical view with the conventional deductive  phenomenology is best suited for this research study; it provides the 
	framework that factors-in the effects of change in price or asset price behaviours at each quantized point, along the market line. It also allows for adjustments to a new layer of knowledge acquired and inferred, and contributes to the development of new elements of theory.  
	 
	It does permit for utilisation of data simulated and analysis as a form of proof and validation of the new concepts and the model, which I hope will add to the acceptance of the new knowledge. Its general outlook is more ‘realistic’ and as such it allows for consideration of some elements of  “positivism”. It  provide reliance on scientific evidence, intermitted with a variant of Karl Popper style philosophical falsifiability in weighting validity through carefully fitted numerical experimentations.  It fac
	 
	It is evident from the research philosophy, the research problem, and the  deducted  financial models that   the correct research instruments  are deployed to seek suitable solutions. In good part, it is due to the complex nature of this research; it crosses over to subdomains of finance and in cases to theories that to-date are minimally or only partially adapted in financial asset pricing. It provides a greater degree of flexibility and agility in pursuit of the answers to the research problem.  
	 
	Thus, where necessary I switch to a scorched ground-up approach with elements of empirical testability. To have such flexibility I also take a pragmatist position, which enables me to deduce and induce new layers of knowledge and adjust freely around any bias in order to mitigate it and related effects. Furthermore I  place greater  focus on qualitative strategies. I switch the research philosophical position as needed withing the  deductive research framework (Saunders et al., 2003;  Pelissier, 2008; Snied
	 
	Where and when needed, I address “bias” in the application of any constituent philosophies within this study’s framework. Creswell (2013) explores the likelihood of bias. Less so in the  deductive approach, but expected in follow-up interpretations that directly come from the closeness of the researcher and the researched domain. It also prescribes self-reflection as a solution to such bias.  
	 
	The trial-by-error approach in this study’s numerical analysis is an instance of “bracketing the truth” through self-reflection. Moreover I try to ascertain a relationship between two very different “worlds” in which the asset price is developed. Furthermore it allows me to enquire deeper in the discretised universe as a way to unravel the mechanics of price setting, exhibitory of information dissipation and reflection by the market. Thus I attempt to get “close” to the acumen of the ‘reality’ of such world
	future states of nature (Gleason,1957;  DeWitt, 1970; DeWitt and Graham, 1973;  Stenger, 1995; Barrett,  1999; Polley,  2001; Saunders, 2004:2006; Jaeger, 2009; Barrett and Zalta, 2010; Bokulich and Jaeger, 2010; Rummens,and Cuypers, 2010).  
	 
	3.2 RESEARCH APPROACH 
	 
	In this section I consider the next layer of our research methodology framework. Further I justify the adapted research approach. This research involves developing a theory, testing, and revising it. New theory elementsare added,  following numerical trials, through mathematical means and empirical cases.  
	 
	I have also set the research problem with an extensive use of a deductive approach. However in the last stage, although the data are collected and analysed to reinforce the deduced theory or aspects of it, there are some small elements of theory adjustments that are driven by the empirical testing, which allows for an added inductive approach attribution to this research, although in much smaller consideration; mostly a set of theory testing scenarios, but where necessary, some upgrade of the developed theo
	 
	I am aware of the shortcomings of both approaches, hence I attempt to combine them to for optimum research effect. Previously, researchers have criticised the deductive 
	approach due to it generating cause-effect links between specific variables without consideration of human interpretation (Saunders et al., 2003; Creswell, 2013), arguing that the “world” observed is independent of the researcher, in line with previous work such as Dummett (1978).  
	 
	In this study it means that the cause-effect links between asset price change behaviour in two interrelated worlds (the Ⓒ and Ⓓ worlds) should be independent of my own interpretations, which is not possible, due to several ‘realities’ or patterns of price development within each such world, however my main research probe leads to a generalisation, one at the high level of abstraction (the first two theory chapters), and I try to validate the theory in the context of specific scenarios, under clear boundary 
	 
	This is in line with views from Robson (1993) and his recommendation that a deductive approach is a theory testing practice, arising from an established theory or generalisation. It allows for validation of theory in the context of specific instances, scenarios, and cases. Although this research is not just a test of an established theory, it further develops new elements  as  extensions and generalisations of existing theories.  
	 
	I attempt to amend and enhance exiting theories, with additional features that require proof of validity, to develop new aspects of them and to further generalise them. It 
	subsequently leads to a new theoretical model and framework in pricing, which are exhibitions of deductive theories and formal theories as two subsequent outcomes of that very process (Frege, 1884; Dedekind, 1901; Kennedy, 1974; Gillies, 1982; Edwards, 1983; Hausman, 1990; Kamp and Reyle, 1993; Zaitsev, 1994; Segre, 1994; Nicolle, 2003). 
	 
	The deductive approach represents a suitable methodical paradigm for this research study due to breadth and depth of knowledge as well as the challenge of knowledge management in an efficient and representative manner at a time when published literature has increased exponentially, especially in the recent decades in the financial domain and more specifically in pricing related subdomains (Jashapara, 2004, Creswell, 2013).  
	 
	According to Jashapara (2004), knowledge management is the central challenge of research, and has been around for millennia. Creswell (2013) suggests that a deductive approach would be a better approach when there is a large amount of literature in a specific research domain. Following a deductive approach, ensures a highly structured methodology (Hausman, 1990; Politzer  and Macchi, 2000; Dummett, 2002; Nicolle, 2003; Rosen, 2009; Brenner, 2010). This would serve well the theoretical developments and appli
	 
	Probably the most well-known is the ontological-metaphysical problem of the nature of mathematical objects where schools differ. Quine (1948) consistently argued against 
	Logical-Empiricism, specifically on the analytic-synthetic distinction. His argument is seen as part of a holistic view of the world with no clear distinction between empirical science and philosophy, Quine (1948) proposed that the mathematical schools  were disputing essentially on an update-to-numbers version of the medieval debate on the nature of universals, developed further in the work of Benacerraf (1964), and  the more recent debate  on the same by Ebert (2007).  
	 
	The three schools represent three doctrines: logicism presents the realist position holding that numbers exist in a sort of platonic world which is more real than the phenomenical ﬂow of appearances of the empirical world; intuitionism holds a conceptualist view in which numbers are considered the product of human creativity; formalists use the nominalist version for the belief that numbers are just names, ﬂatus vocis. Suppes (1986:1999) noted that the metaphysical-ontological dispute concludes with three f
	 
	The postmodernist attention for a sharp ontological-metaphysical position on the nature of  mathematical entities aims at the production of  a consequence of rigorous deﬁnitions, 
	which for millennia have been assumed and work out without any trouble. In shifting the attention from the metaphysical/ontological problem on the nature of numbers to the deﬁnitions, where definitions play an important role in the deductive reasoning by them and the general objectivity, the challenging problem  in my own research study is trying to identify a notion of private grasp of the concepts which will bear the weight of being the source of meaning and truth concerning it (Politzer and Macchi, 2000)
	 
	Pylyshyn (2002) recollects the prima facie reasonable theories for such a notion and very brieﬂy explains why they seem to be inadequate to the task, focusing on the understanding as consisting of a deﬁnition or mental picture, or understanding as consisting of some mental state. This is fully in line with earlier publications, such as the work of Benacerraf and Putnam (1964), Gillies (1982),  Frege (1984), Suppes (1988), etc. 
	 
	In conclusion to this section,  the technique of generating theory through a deductive method is consistent with Pylyshyn (2002) Specifically this form of practice cannot change, although I may change my technique, or part of it as is the case with the trial-by-error approach in the theoretical injection of a new concept in the empirical testing, such that to validate Frege’s view: There is no contradiction in an inference being valid that everybody takes to be invalid. For there is no contradiction in the 
	  
	3.3 METHODOLOGICAL FOUNDATIONS 
	 
	In this section I articulate the methodological foundations of this research. This itself represents the inner-core layers of my research framework, such as own methodological choice, research strategy(ies), time horizon, techniques and procedures, including also limitations.  
	 
	Saunders et al. (2003) explains that research methods are aligned with the methods used for data and information acquisition and the actual analysis. Furthermore quantitative research is associated with numeric data collection and analysis, while qualitative methods are used with non-numeric data or data that are gained through inference.  
	 
	This study allows in part for a methodological choice that could reflect well from a theoretical and methodical perspective, such as in the form of methodological triangulation. Considering them in a mutually exclusive manner would not be good for this research work, thus I combine the them in a suitable pattern or manner. Such combinations are valid and also suggested by literature, such as in the work of Creswell (2013). The main advantage is to get a different perspective while attempting to address the 
	 
	While understanding what these methods offer individually for this research, I define  my methodical position by virtue of utilisation of quantitative and qualitative methods, although the large part is based in the quantitative paradigm. I find the methodology configuration optimal to drive me to the essential layers or depths of knowledge. Other postmodernist work or work written in the modern style apply different research methods separately with almost no implied linkage, articulated in the work of Cres
	 
	I  rely on a generalised master expression with relevant testing scenarios carried out with data generated through algorithmic applications. This is emphasised across theoretical chapters, where I demonstrate numerical analyses and graphical models with empirical testing. Information is also acquired from theories and relevant literature, which I analyse qualitatively.  
	 
	However, within the adapted and standard deductive approach explained in preceding sections, my starting position is in the general master formulation with replicative mathematical function identities (price cut-off potentials). Thus I carry-out my research analysis, in subsequent theory and empirical chapters, in a structured manner as well as with articulated inferences from theories and other quantitative analysis (Saunders et al., 2009).  
	 
	The research strategy provides a rough picture about how the research problem and 
	research hypothesis will be addressed. It also specifies the sources for the main mathematical expressions, the data and information acquisition and hindrances faced throughout this research, such as data access limitations, time constraints, economical, and ethical issues. Saunders et al. (2003) explain that research strategy is concerned with the overall approach one can adopt, while the tactics involve details such as data and information acquisition methods. This is the under-theme  in my own considerat
	 
	There are several strategies that I can employ - deductive, inductive, or adopted. I have articulated in previous sections that I have adopted a deductive approach in this study. Strategies following deductive reasoning, emulatation of data, and other secondary data methodological processing,  are well suited (and commonly used) in this type of research (Saunders et al., 2009; Creswell, 2013).  
	 
	I  acquire and use a considerable and varied amount of data to determine the relationships between the price-change variables and the interlink between Ⓒ and Ⓓ worlds in which  price-related variables exist. Much of the discussion in my methodology review in centred on the deductive theory. My main goal is to develop a new theory through mathematical inferences using a postulated master-expression as a starting point, followed by financial model validation and asset pricing. 
	 
	I choose a language with identity and elemental attributes: variables; connectives, a high-level mathematical symbolism, and expressions, in line with  modern style writing and representation; the quantiﬁers; some primitive terms, etc., and in Tarski’s style. Incidentally, the argument of using the correct language as discussed in Suppes (1988), and  Givant (1991) bears also on Fodor’s idea of a private language that he calls a language of thought. From this view one  tries to mentally  implement such langu
	 
	However, it can be normalised through a natural source of norms and symbols when addressing an object, which is expected to be implemented. As such it would no longer be a private language, but a language I use to address an object, which, in Fodor’s hypothesis, I accept as the normalised language for use when addressing the object, in this case the mathematical and financial object (Burgess, and Rosen, 1997; Pylyshyn, 2002). 
	 
	The choice of the language normalisation when treating a mathematical and/or financial “object” depends on the fact that  must agree on what counts as correct in both application and proof. Nevertheless, such agreement does exist where the criterion for the use of language is the same when addressing objects of the same classification and is not 
	subjective. However, what is known to-date is subject to change either individually or collectively. The simplicity but also the expressive limit of this language consists in the fact that it allows quantiﬁcation on individual variables only. Meanwhile, scholars will continue to generate new mathematical and financial theories. The introduction of new financial models contributes to new knowledge (Hersh, 1997; Benacerraf and Putnam, 1983). 
	 
	According to Givant (1991), Smullyan (1961),  Hausman (1990),  and Burgess and Rosen (1997), the deductive apparatus of the formal theory is the calculus, serving the purpose of formalising and making explicit the deductive rules. They are implicit in the deductive theory I wish to formalise. The particular choice of the calculus does not aﬀect the development of the theory. I simply assume that one of them is at my disposal. Thanks to the deductive apparatus of the formalised theory, every time a proof is 
	 
	I try to include calculus as much as possible, to further establish the main theoretical model at a high abstraction level, where the various sub-theories link to. However, I  certainly do not aim to include everything in it. One significant challenge is on  how to interconnect the theories in a proper and justifiable manner. For instance, I consider in a form of probability description of an implied probability space, which I interconnect to other implied surfaces, such as the volatility surface (Finey et 
	 
	The probability space deployed here is structured as a probability triple Π = ( Ω , F,  P), consisting of a non-empty set Ω, the sample space, a -field F of subsets of Ω and a probability measure P defined on F, in a non-empty set of subsets (events) of Ω with closed under taking complements: A ∈ F   implies that  Ac =  Ω  \ A ∈ F,  with countable unions:  Ai ∈ F,  i = 1, 2, ...,  implying that  ⋃Ai∈F∞i=1  (Stein and Stein, 1991; Shephard,  1991; Madan et al.,1998). 
	Furthermore, I formulate around a general function Ψ = (Π,  R, Γ, E), whose dependency is on function structures  Π,  R, Γ, E ; where the existence of a replicative function identity set  Γ  = (Π, R, Ψ, E, Q) is possible and  where Ψ  ∈ Γ. Evidently both structures contain a substructure R, which is the structure of the stochastic value ﬁeld within a spherical transformation. This helps to  see that the interconnection between diﬀerent theories is the intersection between the sets of numbers which represent
	 
	While more challenging, it allows  for consideration  on   how the “world” must conﬁgure if  all possible intersections of the theories are  to be established.  I also take into account relevant theory modifications. I recognise that much depends on the historical-philosophical orientation. In fact, there are two opposite positions disputing over this 
	point. One considers the science of mathematics behind finance to be a discontinuous enterprise and the other a cumulative one (Ladyman et al., 2007).  
	 
	A central layer of this study’s research framework is the time horizon. Saunders et al. (2003) provides good argumentation on the time-paradigm;  cross-sectional vs longitudinal time frames. In the cross-sectional approach prominence is given to  occurrences, with data and information outputs, around specific time-points (snap shot-alike).  The longitudinal approach adds “movement” due to the Ⓒ-world’s time-dimension of  events and information, I find it reasonably fitting to adapt both time-frame positions
	 
	The “snap shot – like” or cross-sectional time frame, is best suited in the investigation of price change dynamics within the Ⓓ-world (price-point universe), whereas the longitudinal is best used when investigating price changes, financial instruments’ liquidity, and forecasting over time, thus adding  the time dimension in an appropriate measure and with relevance to the Ⓒ-world,  which is the environment where market prices are fully observed.  
	 
	The Ⓓ-world is the quantized topological space , where price behaviour is developed prior to any price exhibition in the Ⓒ-world. The consideration of both “worlds” combined, allows for a well-formed and holistic time-horizon perspective (cross-sectional and longitudinal). Adam and Schvaneveldt (1991) explain in good detail the 
	advantages of a longitudinal research especially when focusing on the development of a variable of an entire “world”.  
	 
	Longitudinal studies do come with limitations; time itself is a constraint.  In cross-sectional research, a certain phenomenon in a specific “world”, such as  asset price behaviour or rate of return can be re-defined in a reduced topological space (Ⓓ-world). It is also observed longitudinally in the Ⓒ-world.  It allows one to further explore the Ⓓ-world as a 3-dimension system; “real” time is diminished or put at a complete phase to the other dimensions under consideration (Saunders, 2004:2006; Bokulich and
	 
	This study explores the financial asset price-development within the two worlds under consideration - the Ⓒ-world and the Ⓓ-world in a holistic manner (Saunders, 2004:2006; Bokulich and Jaeger, 2010);  it further  computes Eigen-prices and asset prices at a market-observed point by factoring-in dissipated longitudinal information filtrations at time nodes, along the market line. Such process requires leveraging of quantitative methods in good measure (Easterby-Smith et al., 1991; Saunders et al., 2003; Peli
	 
	Data collection and analysis are an important element in this study’s research framework. Secondary data (documentary and test-complied) are acquired through various channels, including Bloomberg. Relevant trial data sets are generated through computer coding of 
	existing and new theories (presented here), either as stand-alone programming solutions and/or integrated with external capabilities, such as NAG-routines. Price data cannot truly be observed in the Ⓓ-world due to the very “nature” of such world; its reduced dimensionality and greater disparity with our own world (Bokulich and Jaeger, 2010).  
	 
	However, I implement partial differential expressions through computer programs using adapt numerical methods to inference the Ⓓ-world  and generate asset pricing data, which is then emulated  in the Ⓒ-world with probable price path scenarios (Keller, 1992; Kloeden et. al., 1994; Saunders, 2004). It is absolutely necessary to test the new pricing model or test essential aspects of it, which is best done with secondary data. Moreover, I develop and test various cases on asset and financial derivative pricing
	 
	The data collection process does not come without its limitations, ranging from the sample size, secondary data errors (including statistical), to research “bias” such as our choice of the “reflective” function identities in the GSE (General-Schrӧdinger-Equation), and the algorithms when emulating stochastically progressing price development paths. This is so, despite the inclusion of additional features such as shuffling and safeguards in our random –generating algorithm, which still falls short of emulati
	those in Kerningham and Richie (1988), and Flannery et al. (2002a:2002b) that I have adapted and extended here. Generally, the reliability and validity of data depend on methods used to collect the data, but also on the source of such data (Saunders et al., 2003; Gulati, 2009; Creswell, 2013). 
	 
	4.0 AN ABSTRACT STOCHASTIC ASSET PRICING AND CONTIGENT CLAIM VALUATION FRAMEWORK WITH SHRÖDINGER PDE AUGMENTATION 
	4.2. THE MODEL 
	 
	4.3 PROPOSAL PROBABILITY DENSITY AND ASSET PRICING PDEs 
	 
	Equation (18) appears to be a generalised version of Schrodinger’s equation (GSE). I refer to it in this work as GSE or the master expression, interchangeably. In its most simple representation, it has been previously used  to study the behaviour of microscopic systems within a branch of quantum mechanics known as wave mechanics (Bailey, 1966; Barrett, 1999). My intuition has led to the confirmation of Schrodinger’s equation to deal adequately with the research problem in asset pricing in this study. Howeve
	 
	This is contrary to the works of Chen (2001:2003), Haven, 
	(2002:2004:2005:2008a:2008b), and other contemporary research work in the domain. Such relaxation of variables is in line with own intuition and supported by previous cases such as the option pricing models of  Black and Scholes (1973), and Sprenckle’s (1961). Sprenckle had derived an option pricing model prior to Black and Scholes. However he included  parameters of partial relevance, whose measurability proved problematic in a purely financial context. These parameters were set to one on the Black and Sch
	 
	Within the theoretical framework, I make use a system of assumptions, updated throughout this work and in various sections to support the model augmentations for pricing purposes. The initial assumptions are (i)  {t, t ≥ 0} is a stochastic process, (ii) f(,t) is a composite function with an identity characterised by “memory-less-ness”, and (ii) {t, t ≥ 0}, and f(,t)   have continuous second partial derivatives of a  generic form (eq. 17). 
	 
	Where α=(in)m[1𝜉(𝑡)∂ξ(𝑡)∂t]  is a constant and  is a time independent function with an observable identity. Solution provided in Appendix II – Case 1.0. 
	 
	Inline with  assumption (i) with respect to {, t ≥ 0}, I consider  {X, t ≥ 0} also to be a  stochastic processes with known transformation relationships between them. By the current  system of assumptions,  ψ() function is a time-independent function with (v) continuous second partial derivatives, (vi)  representing an important part of the square root of the probability density function, (vii)  (t) is a time dependent function with continuous derivatives, representing a risk-free asset price function. T
	4.3.2.1 SCENARIO 1.0 
	 
	4.3.2.2 SCENARIO 2.0 
	4.3.2.3 SCENARIO 3.0 
	4.3.2.4. SCENARIO 4.0 – PART I 
	4.3.2.5. SCENARIO 4.0 – PART II 
	              (67) 
	is zero if m is not equal to n, and unity if m is equal to n.  
	 
	Schwartz (1967) provides the full mathematical work-out, and we do not reproduce it here. In essence  to prove it, one would need express the exponential times the Hermite polynomial of larger order as an nth derivative using the Rodrigues formula, and then use integration by parts until the polynomial of smaller order is differentiated to zero (Schwartz, 1967). If the orders are equal, the final integral, and subsequently the result is the integral of exp(−χ2) times a constant, and the normalisation consta
	 
	5.0 ASSET PRICE RAPPROCHEMENT: SPLIT PDF IDENTITIES AND STURM-LIOUVILLE QUANTUM FITTING 
	 
	5.1   INTUITION AND RATIONALE  
	 
	 
	5.2. PROPOSED FINANCIAL DERIVATIVES’ PARTIAL DIFFERENTIAL EQUATIONS (PDEs) 
	 
	 
	 
	(−12∂2∂χ2+(γ(χ,t)−𝛼))ψ(χ,t)=((in)m∂∂t)ψ(χ,t)      (74) 
	 
	 
	5.2.1.1. SCENARIO 1.0 – PART I 
	γ=rs∂∂s= rsΩ    (82) 
	∂ψ(s,t)∂t+12σ2s2∂2ψ(s,t)∂s2−,(s,t)+rsΩψ(s,t)=0    (83) 
	∂ψ(s,t)∂t+12σ2s2∂2ψ(s,t)∂s2+rs∂ψ(s,t)∂s−rψ(s,t)=0    (84) 
	Equation (84) is a significant result, due to the fact that it validates the  GSE and gives us flexibility in terms of the identity of the function γ(s,t), which allows one to investigate different scenarios.  
	 
	In the classical approach and in alignment with Black and Scholes (1973), Black (1989), and  Shiryaev et al. (2006), the resulting expression (84) is achieved by using  Ito’s Lemma for a function with multiple variables (typically, variables s and t), relating a 
	small change in a function of a random variable to a small change in the variable itself  with  a deterministic component dt and a random component d. Further  our finding that  the Black-Scholes option pricing PDE is a special case of  Schrödinger’s  equation  is in-line with the research work of Haven (2002).  
	 
	5.2.1.2. SCENARIO 1.0 – PART II 
	where rf is the risk free rate of return and μ the rate of return on a risky asset such as stock. 
	 
	5.3. PRELIMINARY PROPOSAL FOR THE  POTENTIAL ‘IDENTITY’  FUNCTION 
	 
	5.3.1.1. SCENARIO 1.0  
	 
	Equation (103) provides a modification at a slightly more generalised level of the well reported and applied Black-Scholes PDE (Black and Scholes, 1973; Black, 1989). Another level of generalisation can be achieved by revisiting the problem treated 
	previously (i.e. CASE 5.0). 
	 
	Expression (104)  is a more generalised and abstract solution than the Black-Scholes PDE. Interesting in this case, the potential has a constant identity. See  Appendix II – CASE 7.0 for the full derivation of  equation (104). 
	 
	5.3.2.1. SCENARIO 1.0  
	These appear to be variants of the Sturm-Liouville system (Bailey, 1966;  Pruess and Fulton, 1993; Bailey et al., 1996; Kong and  Zettl, 1996; Zettl, 1997; Agarwal and Wong, 1995;  Kong al et., 2001:2004).  
	  
	5.4. DENSITY OF STATES AND EIGEN-PRICE SYSTEM 
	 
	5.5. INFORMATION DISSIPATION, REFLECTION AND RELAY FROM 0D PRICE SYSTEM  
	5.6. REBRANDING THE MASTER EXPRESSION  
	 
	 
	 
	We use various computational procedures and techniques to illustrate several effects and cases. We set the stage with a VBA generated demonstration of the effect of stock price 
	simulation using an Euler discretized Brownian motion, generating various price paths (Jackson and Staunton, 2004). Next we use the Metropolis Algorithm described well in Gilks et al. (1996), which allows us to set a proposal probability function and test various scenarios of probability distribution mixing. The MATLAB program implements Monte-Carlo integration and generates various distribution mixings. Further on, various C++ programs invoke NAG routines to compute the price-changes using a Sturm-Liouvill
	 
	6.1.  DISCUSSIONS AND NUMERICAL ILLUSTRATIONS 
	 
	In this section, we illustrate numerically the abstract stochastic asset pricing model, Monte-Carlo integration with Metropolis Algorithm and the quantization effects through Sturm-Liouville fittings with various gamma functions, leading to pricing. 
	  
	6.1.1.   GEOMETRIC BROWNIAN MOTION SIMULATION OF STOCK PRICE 
	 
	 
	The orthogonal 0DS in the later sections are fittings along each of the price paths simulated above. 
	 
	6.1.2  MONTE-CARLO PROBABILITY DENSITY MIXING 
	 
	    (131) 
	 
	6.1.3  AUGMENTED MARKET-MOTIVE POTENTIAL FUNCTION AND INFORMATION TUNNELING 
	6.1.4 SUITABLE POTENTIAL FUNCTIONS 
	 
	6.1.5 NUMERICAL ANALYSIS      
	is zero if m is not equal to n, and unity if m is equal to n. Without proving the full 
	mathematical work-out, to prove this one needs to express the exponential times the Hermite polynomial of larger order as an nth derivative using the Rodrigues formula, and then use integration by parts until the polynomial of smaller order is differentiated to zero (Schwartz, 1967). If the orders are equal, the final integral, and subsequently the result is the integral of exp(−r2) times a constant, and the normalization constant becomes (√2π)n!  (Walter,1977).  The orthogonality attribution can be used to
	 
	Subsequently, the intensity of information reflection on price has a Gaussian-like shape and is dependent on market’s expectation and volatility. On theoretical considerations, we can use contemporary asset pricing models to compute both the expectation and volatility. A theoretical graph of this is shown below 
	 
	In relevance to the quantization effects in the price change behaviour, if we revert back to earlier sections, it is possible to consider for all scenarios an α=rtot, or 𝛼=rtot−rf, where the total rate of return (or total risk premium)  is  the sum of the rate of return  obtained through any of classical pricing models and the value directly linked to the  quantization of price change behaviour at each p-point. 
	 
	7.1 FINANCIAL OPTIONS WITH EIGEN-VALUE CONVERSION  
	 
	The new theoretical framework has led to asset pricing. I have also shown in previous chapters that the Black-Scholes option pricing model is a special case of the Sturm-Liouville fitted system. Attention is now turned to option pricing with quantum-value conversion. As expected such process would be strongly bound to the pricing of the underlying, elaborated above and in previous chapters (Black and Scholes, 1973; Cox et al., 1979; Milevsky and Posner, 1998). 
	 
	With the  task to compute the option price using the zero-object models, one of the main hurdles is the computation  of  the probability within its space. Quantum mechanics is a probabilistic theory, as most of its predictions are irreducibly statistical. It is therefore understandable that the first attempts to clarify its content made use of the well-tested concept of statistical ensembles, describing identical abstract copies of the system under consideration, each of which would represent a different st
	 
	I have introduced important ideas regarding the possibility of a realistic interpretation of the behaviour of quantum systems in a financial context. Further I apply intuition into the computation of possible quantum probabilities. These are  understood as epistemic statements associated  with lack of knowledge not about the state of the system, but about the exact “interaction” taking between Ⓒ↓↑- and Ⓓ↑↓- worlds, according to Aerts’ hidden-measurement approach (Asano et al., 2011:2012; Aerts et al., 2010:
	 
	In this research study, I  have nonetheless quantified   the possible forms of interaction between the two worlds (refer to previous chapter).  I have done so by somehow reverting the logic of Einstein’s celebrated quote, that “God does not play dice” (Irene 
	Born, 1971), showing that the simple act of rolling a die (stochastic event) and according to certain protocols, is a truly quantum experiment, which can be described using a  projection postulate and the Born rule (Max Born, 1926), and which is capable to produce interference effects.   
	 
	For example Busemeyer et al. (2009) computed quantum probabilities in a Markov model using Feynman’s path rules using single projected path dependencies between variables. In practical terms, this means that I may project probabilities from the generated Eigen-values.I have established previously the dependencies between variables in the two worlds. Surely probabilities are worked out of information and information itself is reflected on the price within classical Bayesian and Markov networks,  modelled res
	 
	In connecting the two worlds , contemporary work is varied and provides a good  base. Leifer and Poulin (2008), proposed a quantum Bayesian network by replacing the classical formulas used to perform the inference process by their quantum counterpart. Whereas Busemeyer et al. (2009), proposed a quantum dynamic Markov model based on the findings of cognitive psychologists and interference terms.  
	 
	Khrennikov (2006) also modelled mental processes through quantum probabilities, 
	where the interference process plays an important role in the process of recognizing images(Conte et al., 2009). Other interesting works of this author applying similar quantum formalisms correspond to Khrennikov (2007a:2007b:2009), Tentori et al. (2013), etc., where the proposed quantum model on quantum probabilities  incorporated entangled decisions. 
	 
	In this study, I have worked  these out as weighted probabilities through a process of  “normalisation”  and for each  Eigen-state.  
	I then use equation (162) to compute asset’s  future price. This follows from the application of the asset price computation with Eigen-value conversation (refer to previous chapter). The single  path dependency between the asset  prices in the Ⓒ↓↑ and Ⓓ↑↓  -world is utilised consistently (Wu and Gonzalez, 1996; Prelec, 1998; Barberis and Huang, 2008; Polkovnichenko and Zhao, 2012).  
	 
	 I now revert back to equation (162)  for the computation of the transition asset  prices. These are  converted  to  Ⓒ↓↑ -world asset prices through a process of quantum convergence and direct inference, detailed in the previous chapter. Previously I observed market prices in the Ⓒ↓↑ -world, computed Eigen-state values in the Ⓓ↑↓, then converted them back to Ⓒ↓↑ -world prices, one time horizon in the future. There is direct inference involved in variable mapping between the two worlds. Due to the fact that 
	deals with the Ⓒ↓↑ -world future prices, one may use expected payoff formula for options, expressed below (Politzer and Macchi, 2000; Hull, 2014). 
	CT=MAX(ST−X,0)      (167)  
	PT=MAX(0,X−ST)       (168)  
	CT and PT are payoffs for call and put, respectively. ST is the spot (market) price at time T, and X is option’s exercise price.  In  classical option valuation  theories (Black and Scholes, 1973; Cox et al., 1979; Jarrow and Rudd, 1983; Leisen and Reimer, 1996; Milevsky and Posner, 1998; Garman and Kohlhagen, 1983; Hull, 2014), the value of an option is equal to its expected payoff in a risk-neutral world, discounted at the risk-free interest rate, which can be written as: 
	c=e−rTEQ ∈ Ⓒ↓↑[MAX(ST−X,0)]        (169)   
	p=e−rTEQ ∈ Ⓒ↓↑[MAX(0,X−ST)]       (170)   
	Where EQ ∈Ⓒ↓↑[], denotes the expectation with respect to some risk-neutral probability measure Q  in the  Ⓒ↓↑− world. This term is identified later  in this chapter for each of the commonly used  option pricing models. The exp(-rT) is the discount term. The  notation convention here  is to use capital C and P for  payoffs of calls and puts, respectively, and lower case c and p for  option price equivalents. I have also dropped the subscript for option prices at  time zero in the  Ⓒ↓↑− world. 
	 
	Similarly and by analogy, using a zero-object to price options, I may write 
	cΞ=e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST−X,0)]        (171)   
	pΞ=e−rTEQΞ ∈ Ⓓ↑↓[MAX(0,X−ST)]       (172)   
	Where EQΞ ∈ Ⓓ↑↓[], denotes the expectation with respect to some  probability measure QΞ   (that may be risk-neutral) inferenced in the  Ⓓ↓↑− world. I do not identify a discretised expression for this term due to the fact that I have treated the asset and derivatives’ pricing problem at a PDE level. Therefore it is outside of the scope of this research study. However, I can calculate Eigen-state weighted probabilities from computationally-generated Eigen-values using the PDE expressions of previous chapters.
	 
	The probability measures are important and have been treated in contemporary research linked to financial arbitrage. For example Haven (2008a:2008b)  explored  the concept of an “information wave function”, and further  underlined the role of risk-neutral probabilities for financial non-arbitrage. He argued that a change in the probabilities may introduce  arbitrage80 and that the conditions for no-arbitrage for a discrete parameter process  must be met  (Harrison and Kreps, 1979). It is important to make t
	 
	The  price cut-off  potentials selected here to trial option valuation are the Square-Well, Gaussian, Arctan, Cosh-2, and Harmonic. These are deemed most suitable based on  theoretical rational and assumptions  on market attributes (refer to previous chapter discussion and previous paragraphs). I use  numerical simulations and analysis in the following sections, that lead to  the validation of the best-suited zero-object  “geometry”  in  pricing options. The forward strategy is to compare results with those
	 
	In this study,  I allege that sensitives on the cut-off price potential can induce  arbitrage. As previously elaborated, the wave function, is another very basic concept in quantum mechanics, can be fruitfully used to explaining arbitrage (Bossaerts et al., 2010; Khrennikov and Haven, 2009; Bruguier et al., 2010). This study does not represent a first attempt to link the potential function to financial arbitrage within a quantum construct.  Haven (2002), considered the price of an option to be a financial-s
	function. This would satisfy the Schrödinger differential equation and is in-line with our conceptualisation as explained in previous sections and chapters.   
	 
	Moreover , Haven (2002) argued that an arbitrate-free price may be acquired when the potential function converges to one, whereas arbitrage can be achieved when the Planck’s constant is non-zero. According to Haven, the Planck’s parameter regulates the probability of strategy paths’ occurrence.  Haven (2002) called this parameter the “belief” parameter. This is important due to the fact that the classical option pricing models are arbitrage-free models. Therefore, Haven (2002) provides a basic approach to i
	 
	The small “diversion” above should serve to highlight the value of  this research’s  quantum zero-object model (Generalised Shrodinger-Sturm-Liouville) in comparison with existing quantum models. This is so because I do not use the Plank’s constant at all. The parameter has significance in Physics and is defined in a non-financial context. It may help to see that such relaxation of the Plank’s contestant is equivalent to setting its value to one, which is  subsequently non-zero and reflective of arbitrage. 
	It is  the quantum “geometries”, best reflected through the cut-off price potentials, that  proxy arbitrage (refer to chapter 4).   
	 
	Haven (2002:2003:2005) uses a binary format for  arbitrage and non-arbitrage occurrence  i.e. potential value of zero and one. This is too simplistic when considering the comprehensiveness of the potential functions I  have included in this study. Furthermore, I believe that further research in the quantisation of filtrations on zero-objects may hold the  key  to the missing layer of knowledge on how information is dissipated and tunnelled to adjacent quantum regions along the market line. This is important
	I now turn  attention to  the  calculation of option prices using  the  justified selection of zero-object models discussed in the preceding section.  There are two sets of inputs used;  (i) the Ⓒ↓↑ - world inputs , and (ii) Ⓓ↑↓ - world inputs. I  have applied the Ⓓ↑↓ - world inputs through the relevant algorithm with NAG-subroutine embedment.  
	To keep the proof of concept as simple as possible, I use  the following common   Ⓒ↓↑ - world inputs. This also allows to connect back-to-back with the data used in the numerical analysis in chapter 5. 
	 
	However, we  also need measures of dispersion, , meaningful in theⒸ↓↑ - world. We do vary them across  the test scenarios, hence we do introduce them as needed. For simplicity our choice of dispersion  is mapped directly  to (0) through  the relation  
	σ=γ(0)q         (173)     
	Where 1 = 10-7, and (0) is expressed in qm (refer to chapter 5, section 5.1.4). This allows us  to re-use data from the asset pricing simulations of  chapter 5. 
	 
	Eigen – prices are generated from the C++ program through the invocation of NAG routines. We have trialled various Sturm-Liouville  fittings to our master expression (chapter 5, section 5.3). We have also generated  data with the quantised  generalisation  of the Black-Scholes expression. We placed greater emphasis on equation (104) for Sturm-Liouville fitting (Shrodinger-Sturm-Liouville-Euler).  Eigen-price sets were generated  programmatically, because  it appears to be a more generalised and abstract sol
	 
	We recall from our discussion in the previous section that Haven (2002) was very keen to link the existence of an arbitrage-free price to the potential function convergence to one and an arbitrage price with  a non-zero Planck contestant. The Plank constant in our 
	formulations is one, indicating arbitrage according to Haven (2002). However, in our work, arbitrage is achieved through the differential of the quantum operator with the residual effect (reflected in the cut-off price potential function) and when such differential is non-zero. Equivalently an arbitrate-free model is achieved when the same differential is zero. Such is the ‘Shrodinger-Sturm-Liouville-Euler’ model trialled here. This implies that the quantised flirtations are well formed within the quantum z
	 
	The tabulated data in tables (17, 18, 19)  below are generated  through a process that  involved the following  steps: (i)  use  of equation (161)  to obtain  the  rate of return Eigen-vector from Eigen-prices, (ii)  application of equation (162) for the acquisition of the price transition vector, (iii) calculation of  Eigen-probabilities, explored in previous sections of this chapter, through equation  (236),  (iv)  use of equations (167) and (168) to obtain call and put option payoffs, and  (v)  use of eq
	 
	It’s important to note that step (v) is achieved without a discretised formulation of the expectation term,EQ ∈ Ⓒ↓↑[⋯].  This is because in this research work we have treated the problem at a partial different equation level. This is quite common practice when quantum settings are used. It is so because our formulated problem, like many others. involves  option pricing with additional complexity and the challenge to address very fast changing markets. In order to take advantage of arbitrage due to mispriced
	changing stock market. It serves to justify in part the problem addressed  at a PDE level rather than at the expectation. There is an abundance of research that has applied alternative  computation algorithms to finance (including quantum finance). We do so in this research  work, but also the works of Boghosian and Washington (1998), Baaquie et al. (2002), Hirvensalo (2003),  Khrennikov, (1999:2006:2007a:2007b), Meyer (2009),  Rebentrost et al. (2018), etc. Nonetheless the EQ ∈ Ⓒ↓↑[⋯] has been invoked by o
	 
	 
	 
	In  table (18), the de-quantised (0)  was set to match the  dispersion measure. We notice that when the volatility is increased from 15% to 25%, and then 35%, the price of the call option increased. However  such increase is small. 
	 
	                         Figure 25:     Call option price vs volatility. ‘Square-Well’ zero-object model used. 
	         
	 
	 
	In  table (19), Gaussian, Cosh-2, and Arctan price cut-off potentials are used. We notice that  for  a volatility of 10%,  matched with the (0)/q,  Gaussian produces a lower option value than  Cosh-2. The value of the option is further lowered when Arctan is tested with a volatility of 6% and  a very large coefficient b = 10E12 qm. Recall that Arctan may be seen as  more favourable than the square well, because it is more “adjustable” with respect to the ‘smoothness’ of the ‘edges’. As can be seen by figu
	 
	 
	In table (20), the Harmonic and Arctan cut-off potentials are used.  The(0) is varied across the two quantum zero-object “geometries”.  The b coefficient is chosen significantly smaller compared to the previous exhibit (table 19). For such a  small (0), and subsequently , the model would  be expected to  work better for very large b. Small (0) value here leads  to  the call option overpricing. 
	 
	Equivalently, we may compute the put option value under the quantised  probability expectation. Starting with equation (171), reproduced below, with several transformation steps. 
	cΞ=e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST−X,0)]         (174) 
	We first  add the zero-sum term (X∙e−rT−X∙e−rT)  on the right hand side: 
	e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST−X,0)]+X∙e−rT−X∙e−rT=e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST,X)]−X∙e−rT        (175) 
	Followed by another zero-sum term (ST ∙e−rT– ST ∙e−rT). 
	cΞ=e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST,X)]−X∙e−rT+ST∙e−rT−ST∙e−rT=e−rTEQΞ ∈ Ⓓ↑↓[MAX(0,X−ST)]−X∙e−rT+ST∙e−rT       (176) 
	We notice that the first term in the right hand side  is the same expression as that for the put option value given by  equation (172). We transform it further as follows: 
	cΞ=pΞ−X∙e−rT+ST∙e−rT         (177) 
	Finally, we add the dividend  effect to  discounted price and re-arrange the formula to get the  call-put parity condition. 
	cΞ+X∙e−rT=pΞ+S∙e−qT       (178) 
	Subsequently, we may use  the following arrangement  of the above to price  the put option price under arbitrage-neutral conditions. 
	pΞ=cΞ+e−rT∙X− 𝑆e−qT      (179) 
	or 
	pΞ=cΞ+e−rT∙(𝑋−𝑆e(𝑟−𝑞)T)           (180) 
	Using the  input data, computed quantum implied call option values (table 18), and  equation (179), we obtain  the put option price. 
	 
	Table 21:      Quantum-implied call and put values  under non-arbitrage conditions. 
	 
	I have also investigated and found an alternative way to compute the put option value as an implied  quantum zero-object measure. To complete the computation for  the put option through   quantum zero-object models, I re-address equation (161), with a small modification to account for the  price spin. For the call the market  “spin-up”  if the call 
	is to be in-the-money, presented through the integer  +1. Equivalently for a put, the “spin” would be “down” if the put option is to land in the money, presented  with -1. This effect is reflected on the modified equation below: 
	 
	In our computation procedure we use the parameter iopt = ±1  i.e. +1 for call, -1 for put. Interestingly the  quantised Eigen-values are the same, however the  converted stock price shifts, thus a new vector of values is generated.  
	 
	Table 22:      Eigen-price values generated  with C++ with NAG routines embedded.  The quantum conversion is worked out with ‘spin-down’, such that the ‘spin-down’  price vector is  obtained. 
	 
	 
	Table 23:      Quantum-implied  put values  under arbitrage conditions. 
	 
	It’s evident from the set of data given that the  contract would be set up initially  as an ‘in-the money’ call option  i.e. because  90.00 < 100.34. This is reflected in lower prices for the  put option contract. This is quite logical and understandable. The demand shift would move towards calls and away from puts. This implies arbitrage. Therefore the values above are arbitrage-implied values.  
	  
	 
	Table 24:      Quantum-implied call and put values  under arbitrage and non-arbitrage conditions. 
	 
	 
	           Figure 26:     Put option values. Arbitrage vs Non-Arbitrage with square-well price cut-off potential 
	 
	Table 25:      Call option values, computed with Black-Scholes and CRR models. 
	                                 Table 26:      Tabulated  Call option values. Black-Scholes and CRR models. 
	                            Figure 27:     Call option values. Black-Scholes-Merton  vs CRR models. 
	Table 27:      Put option values, computed with Black-Scholes and CRR models. 
	                                 Table 28:      Tabulated  Put option values. Black-Scholes and CRR models. 
	                       Figure 28:     Put option values. Black-Scholes-Merton  vs CRR 
	 
	                          Table 29: The formulae for the moments. 
	Table 30:      Call option values, computed with Lognormal Black-Scholes and RG models. 
	Table 31:      Call option values, computed with Quantum-SW, BSM, CRR, LN-BSM, and RG models. 
	Table 32:      Put option values, computed with Quantum-SW, BSM, CRR, LN-BSM, and RG models. 
	Table 33:      Bloomberg listed financial call and put options on FTSE100 (UKX Ticker) underlying. 
	 
	Data in table (33) are extracted from Bloombeg. These are UKX options (calls and puts) with  “bid” and “ask” price quotations. Here the bid-price is the latest price level at which a market participant wishes to buy a particular option. For example for a 12/18 C6900 call option, if trader enters a "market order" to sell the December 18, 2018, 6900-Strike call,  then trader would sell it at the bid-price of £161.00.  Similarly, the ask-price is the latest price put forward by a market participant in order to
	 
	Market-makers trade on the spread between the bid and ask prices i.e. buy at the bid price and sell at  ask price. Typically, more active  options,  have a smaller bid/ask spread. A greater bid/ask differential implies issues with  liquidity and it can turn out to be  problematic for any trader, especially for  intraday trading or  any short-term trading activity. In the case of the 12/18 C6900 Call, the bid is £161.00 and the ask is £179.00. Which means  that if trader buys  the option at one instance at  
	 
	Table 34:      FTSE100 (UKX Ticker) performance data (source: Bloomberg). 
	Table 35b:      Call option values computed  with (i) Bloomberg, (ii) Quantum-SW,  (iii) BSM, (iv) CRR, (v) LN-BSM, and (vi) RG. 
	 
	 
	 In this section, I expand empirical testing and analysis by including a sample of 30 stock, carefully selected across countries, sectors, CAP size, and risk-return trade-offs. The sample includes several equity indexes.  
	 
	In the previous section, several classical option pricing models were used, with results compared with those of the quantum SW model. By including a quantum option pricing 
	model, the option sensitivities expand beyond (s, k, r, q, t, ) to include attributes of the quantum well itself, such as radius of the dot, length (depth) of the well, and the price cut-off potential function. The latter represents the well’s “identify”. The previous consideration included a homoscedastic behaviour of volatility (constant ), although quantum square-well results were calibrated. In this section the volatility is presumed to be stochastic s (t, s), subsequently heteroscedastic. The data an
	 
	The statistical sample includes equity options and stock index options. They have much in common, but generally differ most in that a stock index will pay a dividend stream that tends to resemble a continuous payment stream, while individual equities pay a dividend stream that is quite obviously not continuous. While this distinction is to some extent arbitrary, because an index pays discrete dividends corresponding to those of its components, the distinction nevertheless may make some option pricing method
	 
	The empirical testing includes statistical hypothesis testing, I have made use of a simple random routine in Python programming to select the sample out of the  larger  population of stock listed in Bloomberg (SECF command in Bloomberg). Once the trading tickers have been identified the market price of calls and put options have been obtained. Due to the random selection of the tickers and option maturities, the sample of 30 stock turned out to be diverse enough in terms of attributes such as volatility, di
	 
	 
	 
	Table 36:  Sample data of stock and stock index by trading ticker, market stock price,  exercise, maturity, volatility,  forward price, market rate, dividend yield, market call and put option price. Extracted from Bloomberg on 25/05/2019. 
	 
	Although the sample incudes 30 trading tickers only, considering that stock indexes are equity portfolios, all together the sample runs in hundreds of stock, therefore the sample 
	itself represents reasonably the equity market on a global scale. 
	 
	The approach here takes notice of the potential relationship between the stock price and and its own contigent claim. Hull (2014) provides some theoretical treqtment of  correlation between the spot  of the market index and the price of index  futures that can be modelled by 
	St=α+βFt+εt      (206) 
	where,  
	 
	This relationship can also be stiupulated with a time delay or lead. There is also validity of indexing when the derivative is an option, instead. 
	 
	Figure 31:  Sample exmaples  of pot  price vs call (put) value, extracted from Bloomberg on 25/05/2019. 
	However, the statistical hypothesis would need the samples to contain  variables that are independent and indentically distributed (iid).  I test for correlation of spot price with option value (or vice versa), so that I can theorise within the sample “space”. I then also perform data filtering and calibration, within a short time-frame, prior to the final leg of the process - the hypothesis testing. Relevant scales such as the ratio of spot price with 
	the first sample call  or put value are noted across the sample, thus making the first sample pairs (stock/call, stock/put) the reference pair. I observe a high correclation between spot and option prices across  trading tickers in the sample. Hence a  form of indexing can be used during the processes of data calibration and option value forecasting. 
	 
	 
	Figure 32: Graphs based on the sample data (30 stock). Clockwise listing, (i) spot price vs market call value (scaled), (ii) spot price vs market put value (scaled), (iii) market call value vs spot, and (iv) market put value vs spot. 
	 
	 
	In this section, I revisit several equity option pricing methods as best fits. These are categorised by considering the choices I have made, such as: (i) assumptions on the stock 
	process; (ii) assumptions  on payment of future dividends; and (iii) having made choices for the first two, the choice of the numerical solution method most appropriate to use. I have dropped the RG model for further consideration as it would add no additional value on European vanilla option valuation. This is in part to keep the testing around three broad categories: (i) option pricing with the Black-Scholes and its variations (incl. discretised BS and local volatility), (ii) option pricing with the trino
	 
	 
	Table 37: Summary of best-fit option pricing models. Trinomial, Black-Scholes (continuous, discretised, local volatility), and quantum square well. 
	 
	The stock process BS refers to the stock process in the standard Black-Scholes model, with time-varying parameters(Black and Scholes, 1973); and LV refers to the stock process in the local volatility model (Dupire, 1994:1997), essentially, the Black-Scholes model extended by making the volatility a function of both time and stock price i.e. (t, s). The discrete dividend treatments are of two types:  in “Discrete Type  1”, the present value of dividends is subtracted from the initial stock price and the rem
	viewed as the uncertain part, subject to diffusion without subsequent jumps; in “Discrete Type 2”, the entire initial stock price is subject to diffusion, and jumps are introduced at each discrete dividend date (Black and Scholes, 1973; Lee, 2004;  Gatheral, 2006; Orosi, 2010).  
	 
	The solution methods used are of three types: analytic solutions, or formulas; partial differential equations (PDEs) solved numerically using a discretization over a grid; and trinomial trees, which can be viewed as a specialisation of the PDE solution method (Black and Scholes, 1973; Dupire, 1994:1997; Derman et al., 1996). 
	 
	The following notation is used: 
	 
	Table 38: Relevant notation. 
	 
	The stock process model, describes the assumed possible paths of future stock prices and the probabilities of those paths (Karatzas and Shreve, 1998b; Barberis  and  Huang, 2008). The most common such model for equities is Black-Scholes with continuous proportional dividends (initially discussed in section 7.3), where the stock process under the risk-neutral measure is given by the stochastic differential equation (129), reproduced here: 
	dSt=(r−q)Stdt+σStdWt      (207) 
	This model for stock price movement assumes stock price paths are continuous, changes in log-price over any time interval are normally distributed, and the changes in price over one or more disjoint intervals are independent. A further refinement, adding absolute discrete dividends, adds a downward jump in the stock price at known dividend times ti to the above process (Black and Scholes, 1973; Karatzas and Shreve, 1998b; Revus and Yor, 2004; Hull, 2014): 
	A second choice is the local volatility model. This is a generalization of Black- Scholes, where the volatility is assumed to be a deterministic function of both time and future stock price, thus heteroscedastic (Dupire, 1994:1997;  Lee, 2004; Gatheral, 2006; Orosi, 2010). Under this model, the process followed by the stock price  is given by the slightly augmented  equation (129), reproduced below 
	where σ(t, St) is called the “local volatility”. The advantage of using this more general functional form for σ is that the model can now be calibrated to match market option prices at multiple strikes at a single expiration (Brigo and Mercurio, 2002; Gatheral, 2006). 
	 
	The discrete Black-Scholes (Black and Scholes, 1973), is the option pricing PDE, previously discussed (eq. 84), and reproduced here: 
	∂ψ(s,t)∂t+12σ2s2∂2ψ(s,t)∂s2+rs∂ψ(s,t)∂s−rψ(s,t)=0       (210) 
	I have also shifted focus here from the binomial model to the trinomial option pricing upgrade. Trinomial trees are equivalent to explicit finite difference methods (FDMs) if spatial boundary conditions are applied and the full lattice is populated. They truly appear to be a hybrid of the binomial and the finite difference methods. The previously discussed binomial trees (section 7.3) are regarded in this section as a special case of trinomial trees with the middle probability set to zero.  (Brennan and Sch
	 
	 
	                                     Figure 33: Illustration of the trinomial treet. 
	 
	Hull (2014), and Derman et al.,(1996), among others, provide the price development and trinomial probability expressions.  
	u=eσ√3∆t,   d=1u         (211) 
	pu=√∆t12σ2(r−σ22)+16,     pm=23,pd=−√∆t12σ2(r−σ22)+16        (212) 
	 
	The variables used here are the same as those  in section 7.3. Making r or q (denoted also as ) a function of time does not affect the geometry of the tree. The probabilities on the tree become functions of time.  The stock price  can be considered to be a function of time by making the lengths of the time steps inversely proportional to the variance rate (Brennan and Schwartz, 1978; Rubinstein, 2000; Chan et al., 2009; O’Sullivan and O’Sullivan, 2013). 
	 
	The option prices from the trinomial model as well as  Black-Scholes (continuous and discretised), are as follows: 
	 
	Table 39:  Sample data of stock and stock index by trading ticker, market stock price, exercise, maturity, volatility, forward price, market rate, dividend yield, market call value, market put value, BS continuous, BS discretised, and trinomial call and put option values.  
	 
	The calcuclations of  option price are carried out using the the Local Volatility model, first proposed by Dupire (1994).  Derman and  Kani (1994) noted that there is a unique diffusion process consistent with the risk neutral densities derived from the market prices of European options. Derman and Kani (1994) described and implemented a local volatility function to model instantaneous volatility. They used this function at each node in a binomial options pricing model. The tree successfully produced option
	implied trinomial tree (Derman et al., 1996). 
	 
	The starting PDE in Dupire (1994) was an extension of the Black-Scholes model (Black and Scholes, 1973) in which volatility is a function of spot price and time: 
	This is the same as equation (129). The key continuous-time equation used in local volatility models states: 
	∂c∂t=12σ2(k,t,S0)k2∂2c∂k2−(r−q)k∂c∂k−dc      (214) 
	The parameters here are those discussed in previous sections, where c,  option value; , the volatility; k, the strike price; s0, the initial spot price; r, the interest rate;  q, the dividend yield. The Local Volatility model has the great advantage of being consistent with market prices for all options on a given underlying, and it allows you to price exotic options in a way that is consistent with observed prices of vanilla options (Heston, 1997; Heston and Zhou, 2000; Christoffersen et al., 2009; Damgha
	. 
	The implied volatility surface relies on a heteroscadistic volatility and is a fundamental object for the pricing and risk management of derivatives. The construction of this surface from listed option prices typically proceeds in two stages. First, since forward prices are not directly quoted in the listed markets, a forward curve has to be implied in a manner consistent with the observed option prices. Second, given the forward, an implied 
	volatility model has to be calibrated to the observed option prices (Heston, 1997; Heston and Zhou, 2000; Gatheral, 2006; Christoffersen et al., 2009;  Doughterly, 2011; Damghani  and Kos, 2013. 
	 
	The time and spot dependent volatilities used in the Local Volatility Model are called Local Volatilities. A Local Volatility surface is composed of forward instantaneous volatilities and can in theory be calculated from market prices of options on the selected underlying. However, extracting the Local Volatilities from prices is an unstable inverse problem and is usually avoided. This is why most market practitioners extract Local Volatility surfaces from Black-Scholes spot volatility surfaces using some f
	 
	The Black-Scholes surface needs to be smooth and free of arbitrages to be able to generate a positive and regular Local Volatility surface: building the Local Volatility surface is a good check to visualize potential issues (arbitrages) in a given Black-Scholes surface (Dupire, 1998; Brigo and Mercurio, 2002; Gatheral, 2006; Damghani and  Kos, 2013). 
	 
	 
	 
	 
	 
	 
	 
	 
	Figure 34: Implied volatility surfaces (from the sample). Clockwise listing, (i) Walt. Dis. Co,,  (ii) Uber Technlogie, (iii) British American Tobacco, and (iv) Euro Stoxx 50. 
	 
	 
	Figure 35: Implied volatility surfaces (from the sample). Clockwise listing, (i) Facebook.com Inc.,  (ii)Amazon.com Inc., (iii) NASDAQ 100 Stock Index, and (iv) Qualcomm  Inc. 
	. 
	 
	 
	Table 40  Sample data from table (38) updated to include call and put option values, computed with the local volatility model.. 
	 
	The difference between the market values of calls and puts with the equivalents obtained through the local volatility model are the smallest when compared to the classical models, particularly with cases where a homoscedastic volatility measure is used (Dumas et al, 1998; Damghani and  Kos, 2013). 
	 
	The quantum model selected for additional testing is the constant square-well. This is the PDE with the constant price cut-off function (ref. chapter 5.0, table 2.0). Properties of 
	constant square-well quantum systems have been discussed throughout this study, more specifically in previous sections of this chapter.  Suitability of the quantum square well system in pricing options has also been theorised in works of Haven (2002) and Callegaro (2013:2015:2017a:2017b). We have also previously established promising results when such system is used. In addition it requires modest data filtering and calibration. 
	 
	It is important to note that existing option pricing models, such as the Black-Scholes or the Local Volatility do inform market making and are reflected well in markets. In the case of  the quantum square-well, I have tried various different scenarios with variations of properties. I established that a quantum square-well system with  (0) = 5q, L = 5q, and k = 9 (Eigen-states), leads to more reasonable results. Further testing could potentially be done with varied quantum well depths and radius, however 
	 
	 
	Table 41a  Eigen-values computes for Q-SW with (0) = 5q, L= 5q, k = 9 (ten Eigen-states) 
	 
	The computation work is carried out inline with the theorisation of the previous section. The  IBM quantum square-well  stock price set is developed. Subsequently, call and put option values are calculcated to be 3.20, and 2.50, respectively. The same computation procedure is applied to each of stock in the statistical sample83 
	 
	The process  of computing the call and put option prices is the same as before. However the following data filtering and calibration has been applied: 
	(i) Random market stock price and the corresponding market option (call/put) values are selected for each trading ticker within a time box of  1 trading day. 
	(ii) Using the market stock price for each trading ticker, the theorised quantum  values of the call option are computed using the procedure established in previous chapter 6.0,  and previous sections in this chapter, with equation (174), reproduced here 
	cΞ=e−rTEQΞ ∈ Ⓓ↑↓[MAX(ST−X,0)]     (215) 
	where the EQΞ ∈ Ⓓ↑↓[⋯] is invoked by the algorithm with the help of the NAG routine DEKAF, such that the Eigen-values are obtained and normalised. A fixed quantum grid is fitted wth k = 9, and  L=(0) = 5qacross the implied volatility surface. This of course could be varied, but is kept so here as a way to simply the data filtering and calibration process. 
	(iii) Ratio of market call price with  the  quantum-well implied obtained is used as a calibration coefficient. This is deemed good enough within 1-trading day and assumed reliable for intraday trading. 
	(iv) Market stock price  is obtained at elapsed time. Theorised quantum  values of the call option are computed again using the same procedure as before. The quantum-well implied  call value is multiplied with the calibration coefficient. The result is  used as the final QSW call value. Equation (179) is used to obtain the put option value.  
	pΞ=cΞ+e−rT∙X− 𝑆e−qT    (216) 
	In essence, I am only interested in values (stock and option) that are near neighbours in the market line. 
	(v) Values from (iv) are compared with the final market option values for calls and puts. 
	(vi) The above can be repeated each day. Condition expressed  in equation (165) still applies. 
	 
	The process above allows for the volatility surface to be varied, despite the homogenious fitting of the quantum grid.  In doing so the expectation is that the results are expected to be  closest to those obtained from the application of the local volatility model, which uses the implied volatility  concept, although in an entirely  different way. Existing researchers such as Callegaro et al. (2015), and Bustamante  and Contreras (2016) have also applied a form of quantum calibration in local volatility. Th
	 
	 
	Table 42  Sample market call and put option values and the data calibration coefficients, valid for 1 trading day (25/05/2019). 
	 
	 
	Table 43  Sample data. Includes market and quantum square-well call and put option values, post calibration, valid for 1 trading day (25/05/2019). 
	 
	I have also computed the forward prices for each stock using the  market values as well as the QSW value set. The forward price of equity is a fundamental quantity impacting option pricing, hedging and implied volatility. Interpolating the futures curve at an intermediate option maturity is a nontrivial task because future dividends payments and payment times, aside from those already announced for the very near term, are generally unknown. Hence forward prices must be implied from market observables, e.g. 
	1998; Masoliver and Perello, 2003;  Lee, 2004; Gatheral, 2006; Orosi, 2010; Hull, 2014). 
	 
	In principle, forward prices are straightforward to derive via put-call parity of European option prices: 
	F(T)=C(X,T)−P(X,T)+X       (217) 
	where F (T ) is the forward at time T , C(X, T ) and P (X, T ) are respectively the future values of European call and put options struck at X as of the expiration time T. Similarly an expression is established for implied QSW forward prices. Starting with equation (178), by compounding each term in that expression, the following QSW forward price expression is obtained: 
	FΞ(T)=CΞ(X,T)−PΞ(X,T)+X       (218) 
	In practice, many difficulties impede the usage of this simple relationship. In some cases, the underlying asset and options on the asset trade during different times on different exchanges. For example, stocks in the Nikkei 225 index trade on the Tokyo Stock Exchange between 0900 – 1130 hrs and 1230 – 1500 hrs Tokyo time. Nikkei index options, however, trade 0900 – 1515 hrs (pit) and 1630 – 0300 hrs (electronic) on the Osaka Stock Exchange, hence the spot price of the underying is unavailable during substa
	 
	The  futures price of the prompt contract are consistently higher than the spot price (implying a negative dividend yield on the index), therefore indicating an unreliable spot price. Option prices can also be quite erratic, especially close to the opening and closing times of the trading session. At other times too, it is not uncommon to see a complete lack of quoting activity (even for near-the-money strikes), or a one-sided market, or two-sided markets with unreasonably wide bid-ask spreads (Dumat et al.
	 
	 
	Table 44  Sample data. Includes market and quantum square-well  forward prices. Value difference, highlighted in yellow colour. 
	 
	For comparison purposes, I have sumamrised all option value data, computed with  various models in the table below. It also includes the difference between the theorised option values and the market option value equivalents. 
	 
	Table 45  Sample data. Market and theorised option values (BS, TRI, LV, QSW). Value difference, highlighted in yellow colour. 
	Table 46 Sample data. Variance of the option value difference between the market and  LV, and market with QSW.  
	Table 49: Pool-variance t-test for variance of  the difference between (i) market and QSW call option price, and (ii)  the market and LV at 95% confidence level. 
	Table 50: Pool-variance t-test for variance of  the difference between (i) market and QSW put option price, and (ii)  the market and LV at 95% confidence level. 
	Table 51: ANOVA (single factor). The F-test for the mean difference  of CALL option price between the market and BS, Trinomial, LV, and QSW at 95% confidence level. 
	 
	The degrees of freedom (df) are 4 (between groups + 1) and 120 (within groups). The Q-statistic  of 3.69 can be extracted from E.7 table in Berenson  and Krehbiel (1992). It is 
	further used to perform the Tukey-Kramer test, shown below. Both tests confirm (P-value > 0.05 in table 51) that if the sample is drawn in the same manner, there would be no call option-price difference across the population groups in 95% of cases (Berenson  and Krehbiel, 1992; Doughterly, 2011). 
	Table 52: Tukey-Kramer multiple pair comparisons for the mean-difference in CALL prices..  
	Table 53: ANOVA (single factor). The F-test for the mean difference  of  PUT option price between the market and BS, Trinomial, LV, and QSW at 95% confidence level. 
	Table 54: Tukey-Kramer multiple pair comparisons for the mean-difference in PUT prices. 
	 
	The critical-range in table (52) and (54) are computed using the following formula: 
	Critical Range= Qa√MSW2(1nj+1nj′)          (219) 
	Where Qa is the ctirical value from the studentized range distribution; MSW the mean square within;  nj and nj’ are the sample sizes from group j and j’.  In this case, the Q-statistic represents the critical value from studentized range distribution with 4 and 120 degrees of freedom (Berenson  and Krehbiel, 1992). Given enough time for the priceto develop, the mean-difference  of option-prices would be the same across all models. 
	  Table 55: Inference about the slope of a linear regression (call price  vs stock price). 
	 
	Exhibit (a): Regression data, call vs stock price. 
	 
	Exhibit (b): Durbin-Watson caculations. 
	From table 55, exhibit (a), the P-value is 0.0000. This is  less than the 0.05 significance 
	level, therefore the null hypothesis is rejected, subsequently there is a  linear relationship between call option value and stock price in the sample “space”. The Durbin-Watson statistic is 2.5677. which according to  Doughterly (2011) confirms negative autocorrelation. 
	 
	Table 56: Inference about the slope of a linear regression (put option price  vs stock price). 
	Exhibit (a): Regression data, put vs stock price. 
	Exhibit (b): Durbin-Watson caculations. 
	From table 56, exhibit (a), the P-value is 0.0000. This is less than the 0.05 significance level, therefore the null hypothesis  is rejected, subsequently there is a  linear relationship between put option value and stock price. The Durbin-Watson statistic is 1.7937. which according to  Doughterly (2011) confirms positive autocorrelation. 
	 
	According to Doughterly (2011), autocorrelation exits if residuals in one time period are related to residuals in another period. The  Durbin-Watson statistic is used to compare residuals over time. The put option price displays positive autocorrelation, thus indicating that the put option price on the 25/05/2019 has a positive correlation with the put option  price on 26/05/2019. It also means that  if the call price fell on the 25th of May 2019, it is also likely that it will fall in the next trading day.
	 
	8.0 CONCLUSIONS  
	 
	 
	9.0  BIBLIOGRAPHY 
	 
	 
	AASE, K.K. (1988). Contingent Claim Valuation when the Security Price  is a Combination of an Ito Process and a Random Point Process. Stochastic and Applications,  28(2): 185-220. 
	ABRAMOWITZ, M.,  STEGUN, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics - Series 55. USA Department of Commerce. 
	ABRAMSKY,  S., COECKE, B. (2007).  Categorical quantum mechanics. In K. Engesser, D. Gabbay, & D. Lehmann (Eds.), Handbook of quantum logic and quantum Structures: Quantum logic. Elsevier. 
	ACCARDI, L., BOUKAS, A. (2007) The Quantum Black-Scholes Equation. arXiv.org, Quantitative Finance Papers. 2. 
	ACIN, A., GISIN, N., MASANES, L. (2006).  From Bell's theorem to secure quantum keydistribution. Physical Review Letters, 97: 120-405. 
	ADAMS, G.,  SCHVANEVELDT, J.D. (1991). Understanding Research Methods. Longman. 
	AERTS, D.,  GABORA, L. (2005).  A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes, 34 (1/2): 192-221. 
	AERTS, D., D'HOOGHE, B., HAVEN, E. (2010). Quantum experimental data in psychology and economics. International Journal of Theoretical Physics, 49 (12): 2971-2990. 
	AGARWAL, R.P., WONG,  P.J.Y. (1995). Existence of solutions for singular boundary value problems for higher order differential equations. Seminario Mat. e. Fis. di Milano, 65(1): 249.  
	ALDOUS, D., , FLANNERY, B., PALACIOS, J.L. (1988). Two applications of Urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of markov chains. Probab. Eng. Inf. Sci., 2(3):293–307. 
	ANDERSEN, L.B.G., PITERBARG, V.V. (2007). Moment explosions in stochastic volatility models. Finance and Stochastics, 11(1): 29–50. 
	ANDREIEU, C., DE-FREITAS, N.,  DOUCET, A.,  JORDAN, M. (2003).  An introduction to MCMC for machine learning. Machine Learning, 50(1):5–43.  
	ANDREWS, P. B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. 2nd Edition. Berlin: Kluwer Academic Publishers. Available from Springer. 
	ANJAN, V.T. (1991). Game Theory in Finance.  Financial Management, 20(1): 71-94. 
	ARROW, K. J. (1971).  Essays in the Theory of Risk Bearing. Chicago: Markham. 
	ASANO, M., BASIEVA, I., KHRENNIKOV, A., OHYA, M., TANAKA, Y. (2012).  Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. J. Math. Psychol., 56 (12): 166–175. 
	ASANO, M., OHYA, M., TANAKA, Y., BASIEVA, I., KHRENNIKOV, A. (2011).  Quantum like model of brain’s functioning: decision making from de-coherence. Journal of Theoretical Biology, 281: 56–64. 
	ASQUITH, P. (1983). A Two-Event Study of Merger Bids, Market Uncertainty, and Stockholder Returns. Journal of Financial Economics, 11(1-4):51-83. 
	AUERBACH, D. (1985). Intensionality and the Gödel theorems. Philosophical Studies, 48 (3): 337–51. 
	AYRES,  H. F. (1963). Risk Aversion in the Warrants Market.  Indus. Management  Rev., 4: 497-505. 
	BAAQUIE, B. E., CORIAN, C., SRIKANT, M. (2003). Hamiltonian and potentials in  derivative pricing models: exact results and lattice simulations. Physica A, 334: 531 – 557. 
	BAAQUIE, B. E., MARTIN, F. (2007). Quantum Psyche: Quantum Field Theory of the Human Psyche. NeuroQuantology, 3(1). 
	BAAQUIE, B.E.  (2004). Quantum finance. Cambridge University Press.  
	BAAQUIE, B.E.,  CORIANO, C.,  MARAKANI, S. (2002).  Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance.  Nonlinear Physics, 333-339. 
	BACHELIER, L. (1900). Theorie de la speculation, Ann. Sci. Ecole Norm. Sup.,  17: 21-86. English translation in: The Random Character of Stock Market Prices, P.Cootner ed.,Cambridge, Mass.: MIT Press, 1964, 17-78. 
	BAILEY, P. B.,  EVERITT, W. N.,  ZETTL, A. (1996).  Regular and singular Sturm-Liouville problems with coupled boundary conditions. Pro. Royal So. of Edinburgh (A), 126 (3): 505-514. 
	BAILEY, P.B. (1966). Sturm-Liouville eigenvalues via a phase function. SIAM J. Appl. Math., 24: 242-249. 
	BALLENTINE, L.E. (1970). The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys., 42(4): 358–381. 
	BALLY, V.,  PAGES, G. (2003). A quantization algorithm for solving multidimensional discrete-time optimal stopping problems. Bernoulli, 9 (6): 1003–1049. 
	BANAKH, T. O. (1997). Topological classification of spaces of probability measures on projective spaces. Math. Notes, 61(3): 360–363. 
	BANAKH, T. O., CAUTY, R. (1994). Topological classification of spaces of probability measures for co-analytic sets. Math. Notes, 55(1): 8–13. 
	BARBERIS, N., HUANG, M. (2008). Stocks as Lotteries: The Implications of Probability Weighting for Security Prices. Am. Econ. Rev., 98(5): 2066–2100. 
	BARDOU, O., FRIKHA, N., PAGES, G. (2016). CVaR Hedging Using Quantization-Based Stochastic Approximation Algorithm. Mathematical Finance, 26(1): 184-229. 
	BARNUM, H., BARRETT, J., LEIFER, M., WILCE, A. (2012). Teleportation in generalized probabilistic theories. In: Mathematical foundations of information Flow: Proceedings of the Clifford Lectures 2008. In Proceedings of symposia in applied mathematics, 71: 25-47. 
	BARRETT, J. A.  (1999). The Quantum Mechanics of Minds and Worlds. Oxford: University 
	Press. 
	BARRETT, J. A.,  ZALTA, E.N. (2010). Everett's Relative-State Formulation of Quantum  Mechanics.The Stanford Encyclopedia of Philosophy. 
	BARRETT, J. (2007). Information processing in generalized probabilistic theories. American Physical Society, 75(3): 032304. 
	BARRETT, J., HARDY, L., KENT, A. (2005). No signaling and quantum key distribution. Physical Review Letters, 95(1): 010503. 
	BARWISE, J. (1977). An Introduction to First-Order Logic, in Barwise, Jon, ed. (1982), Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics. Amsterdam, NL: North-Holland.  
	BARWISE, J., ETCHEMENDY, J. (2000). Language Proof and Logic. Stanford, CA: CSLI Publications (Distributed by the University of Chicago Press). 
	BATTEN, A.J., FETHERSTON, A.T., SZILAGYI, P. (2004). European fixed income markets money, bond, and interest rate derivatives. John Willey & Sons. 
	BAUMOL, W. J., MALKIEL,  B.G., QUANDT,  R. E. (1966). The Valuation of Convertible Securities. Q.J.E., 80(1): 48-59. 
	BENACERRAF, P. (1967). God, the Devil, and Gödel. The Monist, 51: 9–32. 
	BENACERRAF, P., PUTNAM, H. (1964). Philosophy of Mathematics: Selected Readings. Cambridge University Press. 
	BENAIM, M.,  CLOEZ, B. (2015). A stochastic approximation approach to quasi-stationary distributions on finite spaces. Electronic communications in probability, 20(37): 1-13.  
	BENAÏM, M.,  LEDOUX, M., RAIMOND, O. (2002). Self-interacting diffusions, Probab. Theory Related Fields. Springer-Verlag, 122(1): 1–41. 
	BENAÏM, M.,  RAIMOND, O. (2003). Self-Interactive  Diffusions II: Convergence in Law. Elsevier, Ann. I. H. Poincaré – PR, 39(6): 1043–1055. 
	BERBERIAN, S. K. (1988). Borel Spaces. University of Texas Press. 
	BERENSON M., LEVINE D., KREHBIEL T. (2012). Basic Business Statistics. 12th Edition. Prentice Hall. 
	BERESTYCKI, H., BUSCA, J., FLORENT, I. (2002). Asymptotics and calibration of local volatility models. Quantitative finance, 2 (1): 61–69. 
	BERNARD, V., THOMAS, J. (1990). Evidence that stock prices do not fully reflect the implications of current earnings for future earnings. Journal of Accounting and Economics, 13(4): 205-340. 
	BIANCHI, M.S. (2013a). The Observer Effect. Foundations of Science, 18(2): 213-243. 
	BIANCHI, M.S. (2013b). Quantum Dice, Annals of Physics,  336(1): 56-75. 
	BILLINGSLEY, P.,  (1995), Probability and Measure 3rd Edition. Chichester: John Wiley & Sons. 
	BIRKOFF, G.,  ROTA, G. C. (1962).  Ordinary Differential Equations. Boston and New York: Ginn & Co. 
	BLACK, F. (1976). The Pricing of Currency and Commodity Contracts.  Journal of Financial Economics, 3: 167-179. 
	BLACK, F. (1989). How We Came up with the Option Formula. Journal of Portfolio Management, Winter: 4-8. 
	BLACK, F., JENSON, M. C., SCHOLES, M. (1972).  The Capital Asset Pricing Model: Some Empirical Tests, pp. 79–121 in M. Jensen ed. Studies in the Theory of Capital Markets. New York: Praeger Publishers. 
	BLACK, F., SCHOLES, M. (1972). The Valuation of Option Contracts and a Test of Market Efficiency. Journal of Finance, 27, 399-417. 
	BLACK, F., SCHOLES, M. (1973). The pricing of options and corporate liabilities. J. Political Econ., 81: 637-659. 
	BLUMKE, A. (2009). How to invest in structured products: A guide for investors and investment advisors. Wiley. 
	BODIE, Z.,  MERTON, R.C., CLEETON, D.L. (2009).  Financial Economics. 2nd Edition. NJ: Prentice Hall. 
	BOGHOSIAN, B., WASHINGTON, T. (1998). Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena, 120(1-2): 30-42. 
	BOHM, D. (1951). Quantum Theory. New York: Prentice-Hall. 
	BOHM, D., HILEY, B. (1993). The Undivided Universe: An Ontological Interpretation of Quantum Mechanics. London: Routledge and Kegan Paul. 
	BOKULICH, A., JAEGER, G. (2010). Philosophy of Quantum Information and Entanglement. Cambridge University Press. 
	BONESS, A. J. (1964). Elements of a Theory of  Stock-Option Values.  l.P.E., 72: 163-75. 
	BORMETTI, G., CALLEGARO,  G., LIVIERI, G.,  PALLAVICINI, A. (2018). A backward Monte Carlo approach to exotic option pricing. European Journal of Applied Mathematics, 29(1): 146-187. 
	BORN, I.  (1971). Letter to Max Born (4 December 1926) and The Born–Einstein Letter. New York: Walker and Company. 
	BOSSAERTS, P.,  GHIRARDATO,  P., GUARNASCHELLI,  S.,  ZAME, W. (2010). Prices and Allocations in Asset Markets with Heterogeneous Attitudes Towards Ambiguity. Rev. Financ. Stud.. 23. 10.1093/rfs/hhp106. 
	BOYARCHENKO,  S., LEVENDORSKII,  S.Z. (2000). Non-Gaussian Merton-Black-Scholes Theory. World Scientific Publishing. 
	BOYLE, P.,   EMANUEL, D. (1980). Discretely Adjusted Option Hedges. Journal of Financial Economics, 8(3): 259-282. 
	BREALEY, R.A., MYERS, S.C.,  ALLEN,  F. (2008). Principles of Corporate Finance, 9th Edition. McGraw-Hill. 
	BRENNAN, M., SCHWARTZ, E. (1978). Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis. Journal of Financial and Quantitative Analysis, 13: 461-474. 
	BRENNER, J.E.  (2010). The Logical Process of Model-Based Reasoning. In W. Carnielli L.Magnani (ed.). Model-Based Reasoning in Science and Technology, 333-358. 
	BRIGHAM, E. O. (1988). The fast Fourier transform and its applications. Signal processing series. Englewood Cliffs, NJ: Prentice Hall. 
	BRIGO, D., MERCURIO, F. (2002).  Lognormal-Mixture Dynamics and Calibration to Market Volatility Smiles. International Journal of Theoretical & Applied  Finance, 5(4): 427-446. 
	BRIGO, D., MERCURIO, F., SARTORELLI, G. (2003). Alternative asset-price dynamics and volatility smile.  Quantitative Finance, 3 (3): 173–183. 
	BRU, B., BRU, M.F. (2018).  Dice Games.  Statistical Science, 33: 285-297. 
	BRU, B., BRU, M.F., CHUNG, K. L. (2009).  Borel and the St. Petersburg martingale. Electronic Journal for History of Probability and Statistics, 5(1). 
	BRU, M.F., BRU, B., EID, S. (2012). An analytical introduction to analytical theory. Electronic Journal for History of Probability and Statistics, 8(1). 
	BRUGUIER,  A.J., QUARTZ,  S.R., BOSSAERTS, P. (2010).  Exploring the Nature of  Trader Intuition. J. Finance, 65: 1703–1723. 
	BURGESS, J. P., ROSEN, G. (1997).  A Subject With No Object. Strategies for Nominalistic Interpretations of Mathematics. Oxford: Clarendon Press. 
	BUSEMEYER J., WANG, Z., MOGILIANSKY, A.L, (2009), Empirical comparison of Markov and quantum models of decision making, J. Math. Psychol. 53: 423–433. 
	BUSTAMANTE, M., CONTRERAS, C. (2016). Multi-asset Black–Scholes model as a variable second class constrained dynamical system. Physica A, 457: 540–572. 
	CABELLO, A. (2018). Bibliographic guide to the foundations of quantum mechanics and quantum information. Departamento de Fısica Aplicada II. Universidad de Sevilla. Spain. 
	CAFLISCH, R.E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numer, 7: 1–49. 
	CALLEGARO, G.,  FIORIN, L., GRASSELLI, M.  (2015). Quantized calibration in local volatility.  Risk (Cutting hedge: Derivatives pricing), 56-67. 
	CALLEGARO, G., FIORIN, L., GRASSELLI, M. (2018a). Quantization meets Fourier: a new technology for pricing options. Annals of Operations Research, doi:10.1007/s10479-018-3048z 
	CALLEGARO, G.,  FIORIN, L., GRASSELLI, M. (2018b). American quantized calibration in stochastic volatility. Risk, 84-88. Link: www.risk.net/5408496.   
	CALLEGARO, G.,  GAIGI, M., SCOTTI, S., SGARRA, C. (2017b). Optimal Investment in Markets with Over and Under-Reaction to Information. Mathematics and Financial Economics, 11(3): 299-322. 
	CALLEGARO, G., FIORIN, L., GRASSELLI, M. (2017a). Pricing via quantization in stochastic volatility models. Quantitative Finance, 17(6): 855-872. 
	CALLEGARO, G., FIORIN, L., GRASSELLI, M. (2016). Pricing via recursive quantization in stochastic volatility models. Quantitative Finance, 17(6): 855–872. 
	CALLEGARO, G., JEANBLANC, M., ZARGARI, B. (2013). Carthaginian enlargement of filtrations.  ESAIM: Probability and Statistics, 17: 550-566. 
	CAMERER, C. F.,  HO, T.H. (1994). Violations of the Betweenness Axiom and Nonlinearity in Probability. J. Risk Uncertainty, 8(2): 167–196. 
	CANESSA, E. (2007). Possible Connection between Probability, Space-time Geometry and Quantum Mechanics. Physica A, 385(1):185-190. 
	CARR, P.,  MADAN, D. B. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(1): 61–73. 
	CHAN, J.H., JOSHI, M., TANG, R., YANG, C. (2009). Trinomial or binomial: accelerating  American put option price on trees. Journal of Futures Markets, 29(9): 826-839. 
	CHEN, A. H. Y. (1970). A Model of Warrant Pricing in a Dynamic Market, 1. Finance 25(1): 1041- 1060. 
	CHEN, G., FULLING, S.A., CHEN, J. (2000). Generalization of Grover's Algorithm to Multi-object Search in Quantum Computing. Part I: Continuous Time and Discrete Time, quant-ph/0007123. 
	CHEN, Z., (2001), Quantum finance: The Finite Dimensional Case. arXiv:quant-ph/0112158v2. 
	CHEN, Z. (2003). The meaning of quantum finance. Acta Mathematica Scientia, 23A(1): 115-128. 
	CHEN, Z. (2004). Quantum Theory for the Binomial Model in Finance Theory. Journal of Systems Science and Complexity. arXiv:quant-ph/0112156.  
	CHIRIBELLA, G., d'ARIANO, G.M.,  PERINOTTI, P. (2012).  Informational axioms for quantum theory. AIP Conference Proceedings, 1424 (1): 270-281. 
	CHOUSA, J.P., GONZALES, M.V. (2016). A quantum derivation of a reputational risk premium. International Review of Financial Analysis, 47(C): 304-309. 
	CHOUSTOVA, O. (2006). Quantum bohmian model for financial markets. Physica A, 374(1): 
	304–314. 
	CHOUSTOVA, O. (2009). Quantum probability and financial market. Inf. Sci. 179(5): 478-484. 
	CHRISS, A. N. (1996).  Black–Scholes and Beyond: Option Pricing Models. McGraw-Hill Professional.  
	CHRISTOFFERSEN, P.,  HESTON, S., JACOBS, K. (2009). The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Management Science, 55(12): 1914–1932. 
	CLEVE, A. E., MACCHIAVELLO, C., MOSCA, M. (1998). Quantum algorithms revisited. Proceedings of the Royal Society of London, A454: 339–354. 
	COMBESCURE, M., GINIBRE, J.  (1976).  Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials. Annales de l’Institut Henri Poincaré. Nouvelle Série. Section A. Physique Théorique. 24. 
	CONNER, G.,  KORAJCZYK, R.A. (1995). The Arbitrary Theory and Multifactor Models of Asset Returns. In R.A. Jarrow, V. Malsimovic, and W.T. Ziemba (eds.). Handbooks in Operations Research and Management Science: Finance, 9: 87–144. 
	CONTE, E.,  KHRENNIKOV, A., TODARELLO, O., FEDERICI, A., MENDOLICCHIO, L., ZBILUT, J. (2009). Mental states follow quantum mechanics during perception and cognition of ambiguous figures. J. Open Syst. Inf. Dyn., 16: 1–17. 
	CONTRERAS, M.,  PELLICER, R., VILLENA, M.,  RUIZ, A.  (2010). A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit. Physica A, 389(23):  5447–5459.  
	COOPER, D.R., SCHINDLER P.S. (2001). Business Research Methods, McGraw-Hill Higher Education. 
	COVER, T. M., GACS, P., GRAY, R. M. (1989). Kolmogorov's Contributions to Information Theory and Algorithmic Complexity. The Annals of Probability, 17: 840-865. 
	COX, J. C.,  INGERSOLL J. E.,  ROSS, S..A. (1985).  A theory of the term structure of interest rates. Econometrica, 53: 385-407. 
	COX, J. C., RUBINSTEIN, M. (1985). Options Markets. New Jersey: Prentice Hall. 
	COX, J., ROSS, S., RUBINSTEIN, M. (1979). Option Pricing: A simplified Approach. Journal of Financial Economics, 7(3): 229-264. 
	CRAGG, J.G.,  MALKIEL, B.G. (1982). Expectations and the structure of share prices. Chicago: University of Chicago Press. 
	CRAMÉR, H. (1946). Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press. 
	CRESWELL, J.W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications. 
	CURTAIN, R.F., FALB, P.L. (1970). Itó's Lemma in Infinite Dimensions.  J. Math. Anal. Appl., 31: 434-448. 
	CUTHBERTSON, K., NITZSCHE, D. (2004). Quantitative Financial Economics: Stocks, Bonds and Foreign Exchange. 2nd Edition. Wiley. 
	DALANG, R.C., MORTON, A., WILLINGER, W. (1990). Equivalent martingale measures and no-arbitrage in stochastic securities market model. Stochastics Stoch. Rep., 29: 185-201. 
	DAMGHANI, M. B.,   KOS, A. (2013). De-arbitraging with a weak smile. Wilmott, 64: 40-49.  
	DARWICHE, A. (2009).  Modeling and Reasoning with Bayesian Networks. Cambridge University Press. 
	DAVIS, M., ETHERIDGE, A. (2006). Louis Bachelier's Theory of Speculation: The Origins of Modern Finance. Princeton University Press. 
	de FINETTI, B. (1974). Theory of Probability, Vol. 1. New York: John Wiley and Sons. 
	de FINETTI, B. (1937). La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré 7, 1-68. Translation reprinted in H.E. Kyburg and H.E. Smokler (eds.) (1980). Studies in Subjective Probability, 2nd Edition (pp. 53-118). New York: Robert Krieger. 
	DEDEKIND, R. (1901). Essays on the Theory of Numbers. W.W. Beman, ed. and trans. Chicago: Open Court Publishing Company. 
	DELATTRE, S., GRAF, S., LUSCHGY, H., PAGES, G. (2006). Quantization of probability distributions under norm-based distortion measures II: Self-similar distributions. J. Math. Anal. Appl., 318 (06):  507–516. 
	DELBAEN, F., SCHACHERMAYER , W. (2006). The Mathematics of Arbitrage. New York: Springer-Verlag. 
	DENZIN,  N.,  LINCOLN, Y. (2003). Collecting and Interpreting Qualitative Materials.  Sage Publications. 
	DERMAN, E., KANI, I. (1994), Riding on a Smile. Risk, 7(2): 139-145. 
	DERMAN, E., KANI, I., CHRISS, N. (1996). Implied Trinomial Trees of the Volatility Smile. Goldman Sachs Quantitative Strategies Research Notes. 
	DEUTSCH, D., JOZSA, R. (1992). Rapid solutions of problems by quantum computation. Proceedings of the Royal Society of London A, 439(1907): 553.  
	DEWITT, B. S. (1970). Quantum mechanics and reality. American Institute of Physics, 23(9): 30. 
	DEWITT, B.S., GRAHAM, N. (1973). The Many Worlds Interpretation of Quantum Mechanics.  Princeton University Press. 
	DICK, J., KUO, F., SLOAN,  I. H. (2013). High-dimensional integration: the quasi-Monte Carlo way. Acta Numer, 22: 133–288. 
	DIRAC, P.A.M. (1926).  On the theory of quantum mechanics. Proceedings of the Royal Society (London) A, 112: 281-305. 
	DIRAC, P.A.M. (1958). The Principles of Quantum Mechanics. Oxford University Press. 
	DOOBS, J. L. (1953). Stochastic Processes. New York: Wiley. 
	DOUGHTERLY C. (2011). Introduction to Econometrics. 4th Edition. Oxford University Press. 
	DUBOFSKY, D., MILLER, T.W. (2002). Derivatives: Valuation and Risk Management. Oxford University Press. 
	DUDLEY, R. (2002). Real Analysis and Probability. 2nd Edition. Cambridge University Press. 
	DUMAS, B., FLEMING, J., WHALEY, R. E. (1998). Implied volatility functions: Empirical tests. The Journal of Finance, 53(6): 2059-2106. 
	DUMMETT, M. (1978). Truth and Other Enigmas. Harvard University Press. 
	DUMMETT, M. (2002). La Justification de la Déduction. Philosophie 72 (1) : 36-54. 
	DUPIRE, B. (1994). Pricing with a Smile. Risk Magazine, 7(1): 18-20 
	DUPIRE, B. (1997). Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska. Cambridge University Press,  103–111.  
	DUPIRE, B. (1998). Monte Carlo: methodologies and applications for pricing and risk management. Risk. 
	DUWELL, A. (2018). Understanding quantum phenomena and quantum theories. Studies in History and Philosophy of Modern Physics.  https://doi.org/10.1016/j.shpsb.2018.06.002. 
	EASTERBY-SMITH, M.,  THORPE, R., LOWE, A. (1991). Management Research: An Introduction. London: Sage. 
	EBERT, P. A. (2007). What Mathematical Knowledge Could Not Be. St Andrews Undergraduate Philosophy Society Journal, 1(1): 46–70. 
	EDWARDS, H.M. (1983). Dedekind's invention of ideals, Bull. London Math. Soc., 15: 8–17. 
	EINSTEIN A. (1958). Albert Einstein, in: P.A. Schilpp (Ed.). Philosopher–Scientist. New York: Harper and Row. 
	EINSTEIN,  A. (1948). Quantum mechanics and reality. Dialectica, 2: 320–324. 
	EINSTEIN, A., PODOLSKY, B.,  ROSEN, N. (1935).  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev., 47(1): 777-780. 
	EISENBERG, L. K., JARROW, R.A. (1991). Option Pricing with Random Volatilities in Complete Markets. Federal Reserve Bank of Atlanta. Working Paper, 91-16. 
	EISER, J., WILKENS, M., LEWENSTEIN, M. (1999). Quantum games and quantum strategies. Phys. Rev. Lett., 83(1): 3077-3800. 
	ELTON,  E.J., GRUBER, M.J., PADBERG, M. (1978).  Simple Criteria for Optimal Portfolio Selection: Tracing out the Efficient Frontier.  Journal of Finance, 33: 296–302. 
	ELTON, E. J. & GRUBER, M. J. (2011).  Modern Portfolio Theory, 8th Edition.  John Wile & Sons. 
	EPSTEIN, L.G., SCHNEIDER, M. (2008). Ambiguity, Information Quality, and Asset Pricing. Journal of Finance, 63(1): 197-228. 
	EUGENE, S., O’DONNELL, J.C. (1997). Incidence Algebras, Pure and Applied Mathematics. 1st Edition. Chapman & Hall / CRC Press. 
	FABIAN, V., HANNAN, J. (1977). On the Cramer-Rao Inequality. Ann. Statist. 5 (1): 97–205.  
	FABOZZI, F. J.  (1995).  Investment Management. 2nd Edition.  New York: Prentice Hall. 
	FALLOON, W., TURNER, D.  (1999). The evolution of a market. Managing Energy Price 
	Risk. London: Risk Books.  
	FAMA, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2): 383-417.  
	FAMA, E. F. (1991). Efficient Capital Markets: II. Journal of Finance, 46(5): 1575-617. 
	FAMA, F. E., FISHER, L., JENSON, C. M., ROLL, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1): 1-21. 
	FANG, F., OOSTERLEE, C.W. (2009). A novel pricing method for european options based on Fourier-cosine series expansions. SIAM Journal on Scientific Computing, 31(2): 826–848. 
	FARRELL, J.L. (1997). Portfolio Management: Theory and Applications. New York: McGraw-Hill/Irwin. 
	FEDORCHUK, V. V. (1999). Topological completeness of spaces of measures. Izv. Math., 63(4): 827–843. 
	FUK, K. D.,  NAGAEV,  S. V. (1971). Probability  inequalities  for  sums of independent  random. Theory Probab. Appl., 16(4): 643–660. 
	FELLER, W. (1971). An introduction to probability theory and its applications. 2nd Edition. New York: John Wiley & Sons.  
	FENTON, N. E., NEIL, M. (2007). Managing Risk in the Modern World: Bayesian Networks and the Applications. London Mathematical Society, Knowledge Transfer Report (London). 
	FEYNMAN, R.F., HIBBS, A.R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill. 
	FINEY, R., DEMANA, F., WAITS, B., KENNEDY, D. (2000). Calculus: A Complete Course. 2nd Edition. Addison and Wesley. 
	FIORIN,  L., PAGES, G.,  SAGNA, A. (2018).  Product Markovian quantization of a diffusion 
	process with applications to finance. Methodology and Computing in Applied Probability.  Springer Link, 1: 1-32. 
	FLANNERY, B.P., TEUKOLSKY, S.,  PRESS, W.H., VETTERLING, W.T.  (2002a). Numerical Recipes in C++: The Art of Scientific Computing. 2nd Edition. Cambridge University Press. 
	FLANNERY, B.P., TEUKOLSKY, S.,  PRESS, W.H., VETTERLING, W.T.  (2002b). Numerical Recipes in C++: Examples Book. 2nd Edition.  Cambridge University Press. 
	FLANNERY, B.P., TEUKOLSKY, S.,  PRESS, W.H., VETTERLING, W.T. (1988).  Numerical Recipes in C: The Art of Scientific Computing. 1st Edition. Cambridge University Press. 
	FOX, R.H. (1962). A quick trip through knot theory, Topology of 3-Manifolds. Englewood Cliffs, N.J; Prentice-Hall,  120–167. 
	FRANKE, J., HEARDLE, W. (2011).  Statistics of Financial Markets. 3rd Edition. Springer. 
	FREEDEN, W., GERHARDS, C. (2017). Romberg extrapolation for Euler summation-based cubature on regular regions.  Int J Geomath, 8(2): 169-182. 
	FREGE, G. (1884). Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl. The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number. Complete translation by Austin J. L., in Austin [1974].  
	FREGE, G. (1902). Letter to Russell, in Jean van Heijenoort (ed.), From Frege to Gödel, Cambridge, Mass.: Harvard University Press, 1967, 126–128. 
	FREGE, G., (1903), The Russell Paradox,  in Gottlob Frege,  The Basic Laws of Arithmetic, Berkeley: University of California Press, 1964, 127–143. 
	FRIEDEN, B., HAWKINS, R. (2010), Asymmetric information and economics. Physica A., 389(1): 287–295. 
	FRIEDMAN, A. (1982). Variational Principles and Free-Boundary Problems. New York: John Wiley & Sons. 
	FRIEDMAN, A. (1983). Partial Differential Equations of Parabolic Type. Huntington, NY: Robert E. Krieger Publishing. 
	FUJIHARA, R., PARK, K. (1990). The Probability Distribution of Futures Prices in the Foreign Exchange market: A Comparison of Candidate Processes. The Journal of Futures Markets, 10(6): 623-641. 
	FӦLLER, H., SCHWEIZER, M. (1990). Hedging of contingent claims under incomplete information. Discussion Paper No. B–166. In: Davis, M.H.A., Elliott, R.J. (eds.). Applied Stochastic Analysis. Stochastic Monographs, 5: 389–414.  
	FӦLLER, H., SONDERMANN, D. (1986). Hedging of non-redundant contingent claims.  In: HILDEBRAND, W., MAS-COLELL, A. (eds.). Contributions to Mathematical Economics in Honor of Gérard Debreu. North-Holland, Amsterdam. 
	GAL. B. (2007). Bayesian Networks. John Wiley & Sons. 
	GAMUT, L.T.F. (1991). Logic, Language, and Meaning, Volume 2: Intensional Logic and Logical Grammar. Chicago, Illinois: University of Chicago Press. 
	GARCZYNSKI, W. (1969). Quantum Mechanics as a Quantum Markovian Process. Acta Phys. Polon., 1(1): 35-479. 
	GARCZYNSKI, W., (1973), Quantum Stochastic Processes and the Feynman Path Integrals for a Spinless Particle, Reports on Math. Phys. 4(1): 21-46 
	GARMAN, B. M.,  KOHLHAGEN, W. S. (1983). Foreign currency option values. Journal of International Money and Finance, 2(3): 231-237. 
	GATHERAL, J. (2006). The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons 
	GESKE, R. (1978). The Pricing of Options with Stochastic Dividend Yield. Journal of Finance, 
	33(2): 617-625. 
	GESKE, R., ROLL, R. (1984). On Valuing American Call Options with the Black-Scholes European Formula. The Journal of Finance, 39(2): 443-455. 
	GILKS, W.,  RICHARDSON, S., SPIEGELHALTER,  D. (1996).  Markov Chain Monte Carlo in Practice. Chapman and Hall. 
	GILLER, C. (1982). A family of links and the Conway calculus. Trans. Amer. Math. Soc., 270 (82): 75–109. 
	GILLESPIE, D.T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E., 54(2): 2084-2091. 
	GILLIES, D.A. (1982). Frege, Dedekind, and Peano on the foundations of arithmetic. Assen, Netherlands: Van Gorcum. 
	GIVANT, S. (1991). Tarski's development of logic and mathematics based on the calculus of relations, in Algebraic logic. Budapest, 1988 (Amsterdam, 1991), 1(1): 189-215. 
	GLEASON, A.M. (1957). Measures on the closed subspaces of a Hilbert space.  Journal of Mathematics and Mechanics, 6 (4): 885–893. 
	GLIMM, J., JAFFE, A. (1981). Quantum Physics. A Functional Integral Point of View. Springer-Verlag. New York. 
	GNEDENKO, B. V., KOLMOGOROV, A. N. (1954). Limit distributions for sums of independent random variables. Addison-Wesley. 
	GOBET, E. (2000). Weak approximation of killed diffusion using Euler schemes. Stoch. Process. Appl., 87 (2): 167–197 
	GÖDEL, K. (1951). Some Basic Theorems on the Foundations of Mathematics and their Implications (Gibbs Lecture). In GÖDEL, 1995: 304-323. 
	GODEL, K. (1941). In What Sense is Intuitionistic Logic Constructive? In Gödel, 1995: 189–200. 
	GOLDSTEIN, H., POOLE, C. P., SAFKO J. L. (2002). Classical Mechanics, 3rd Edition. Addison Wesley. 
	GOLDSTEIN, J.A. (1969). Second Order Itó Processes. Nagoya Math. J., 36(1):  27-63. 
	GOLLIER, C., SCHLESINGER, H. (1996).  Arrow’s Theorem on the Optimality of Deductibles: A Stochastic Dominance Approach. Econ. Theory, 7(1): 359–363. 
	GROVER, K. L. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 1(1): 212–219. 
	GRAF, S., LUSCHGY, H. (2000).  Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics n01730. Berlin: Springer. 
	GRASSELLI, M. (2017). The 4/2 stochastic volatility model. Mathematical Finance, 27(4): 1013–1034. 
	GREBLICKI,   W.   (1981).   Asymptotic   efficiency   of   classifying   procedures   using   the Hermite series estimate of multivariate  probability  densities.  IEEE  Trans.  Inform. Theory, 27(1):  364-366. 
	GRIMMETT, G., STIRZAKER, D. (2001). Probability and Random Processes. 3rd Edition. Oxford University Press. 
	GULATI, P.M. (2009). Research Management: Fundamental and Applied Research. Global India Publications. 
	GULISASHVILI, A.,  STEIN, E.M. (2010). Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models. Applied Mathematics and Optimization, 61(3): 287–315. 
	GUPTA, R.P.,  JAIN, G.C. (1974).  A Generalized Hermite distribution and Its Properties. 
	SIAM Journal on Applied Mathematics, 27(1): 359–363. 
	GURAJATI, N. D., PORTER, C. D. (2010). Essentials of Econometrics. New York: McGraw-Hill.  
	GUTIERREZ, C. E., HADI, J.M. (1997). Learning Bayesian Networks: Expert Systems and Probabilistic Network Models. Monographs in computer science. New York: Springer-Verlag. 
	HACKER, J., ERNST, D. (2017). Financial Modeling: An Introductory Guide to Excel and VBA Applications in Finance. Global Financial Markets. 
	HAEWINKEL, M.  (2001). Predicate calculus. Encyclopedia of Mathematics, Springer Science and Business Media B.V. / Kluwer Academic Publishers. 
	HALL, P. (1980). Estimating a density on the positive half line by the method of orthogonal series. Ann. Inst. Statist. Path., 32: 35l-362. 
	HALMOS, P. (1957). Review: Logic, semantics, metamathematics. Papers from 1923 to 1938 by Tarski, A.; translated by Woodger, J. H. Bull. Amer. Math. Soc., 63 (2): 155–156.  
	HARRISON, J. M., KREPS, D. M. (1979).  Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory, 20: 381-408. 
	HARRISON, J. M., PLISKA, S. R. (1981).  Martingales and stochastic integrals in the theory of continuous trading. Stochastic Proc. Appl., 11: 215-260. 
	HARRISON, J. M., PLISKA, S. R. (1983). A stochastic calculus model of continuous trading: complete markets. Stochastic Proc. Appl., 15: 313-316. 
	HAUSMAN, D. M. (1990). The Deductive Method. Midwest Studies in Philosophy, 15 (1): 372-388. 
	HAVEN, E. (2005). Pilot-wave theory and financial option pricing. International Journal of Theoretical Physics, 44 (11): 1957-1962. 
	HAVEN, E. (2006). Bohmian mechanics in a macroscopic quantum system. In Foundations of Probability and Physics. Melville, New York: AIP, 3: 330–340.  
	HAVEN, E. (2008a). Private information and the ‘information function’: a survey of possible uses. Theory and Decision, 64 (2-3): 193-228. 
	HAVEN, E. (2008b). The variation of financial arbitrage via the use of an information wave function. International Journal of Theoretical Physics, 47 (1): 193-199. 
	HAVEN, E., KHRENNIKOV, A. (2013). Quantum social science. Cambridge University Press. 
	HAVEN, E., KHRENNIKOV, A. (2016). Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making. Journal of Mathematical Psychology, 74(1): 82-91. 
	HAVEN, E., LIU, X., SHEN,  L. (2012). De-noising option prices with the wavelet method. European Journal of Operational Research, 222 (1): 104 - 112.  
	HAVEN, E. E. (2002).  A Discussion on Embedding the Black-Scholes Option Pricing Model in a Quantum Physics Setting, Physica A: Statistical Mechanics and its Applications, 304(3-4): 507-524. 
	HAVEN, E.E. (2003). A Black-Scholes Schrödinger option price: ‘bit’ versus ‘qubit’. Physica A: Statistical Mechanics and its Applications, 324 (1): 201-206. 
	HAVEN, E.E. (2004). The wave-equivalent of the Black–Scholes option price: an interpretation. Physica A., 344(1): 142–145  
	HAZEWINKEL, M. (1997).  Encyclopaedia of Mathematics, Amsterdam: Dordrecht. 
	HAZEWINKEL, M. (2001) [1994]. Martingale, Encyclopedia of Mathematics. Springer Science & Business Media B.V. / Kluwer Academic Publishers. 
	HEATH, D., JARROW, R. A.. MORTON, A. J.  (1992).  Bond pricing and the term structure 
	of interest rates: a new methodology for contingent claims valuation. Econometrica, 60(1): 77-105. 
	HERSH, R. (1997). What is Mathematics, Really? Oxford University Press. 
	HESTON, S.L.,  ZHOU, G. (2000). On the rate of convergence of discrete-time contingent claims. Math. Finan., 10 (1): 53–75.  
	HESTON, S.L. (1997). A simple new formula for options with stochastic volatility. Technical report. Washington University of St. Louis. 
	HESTON, S.L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud., 6 (2): 327–343. 
	HILBERT, D., ACKERMANN, W. (1950). Principles of Mathematical Logic. Chelsea (English translation of Grundzüge der theoretischen Logik, 1928 German first edition). 
	HILLIER, D., GRINBLATT, M., TITMAN, S. (2011). Financial Markets and Corporate Strategy. 2nd Edition. McGraw Hill. 
	HIRA, F., ALTINISIK, N. (2014). Sampling Theorems for Sturm Liouville Problem with Moving Discontinuity Points. Boundry Value Problems. Springer International, 2014(1): 1-15.  
	HIRVENSALO, M.  (2003). Quantum Computing. 2nd Edition. Berlin: Springer. 
	HOERRNIUO, W.  (1963).  Probability  inequalities  for sums of bounded random  variables. J. Amer. Statist. Assoc., 58 (1): 13-30. 
	HUANG, C.,  LITZENBERGER, R. (1988).  Foundations of Financial Economics. New York: North Holland,. 
	HULL J. C., WHITE, A. (1990).  Pricing interest rate derivative securities. Rev. Financial Studies, 3(1): 573-592. 
	HULL, J. (2014). Options, Futures, and Other Derivatives. 9th edition. Pearson.  
	HULL, J.,  WHITE, A. (1987).  The Pricing of Options on Assets with Stochastic Volatilities.  The Journal of Finance, 42: 281–300. 
	HUNDSDORFER, W., VERWER, J.G. (2003). Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Berlin: Springer. 
	HUNT, P. J., KENNEDY, J. E. (2004). Financial Derivatives in Theory and Practice. Revised Edition. Chichester: John Wiley & Sons, 
	ILINSKI,  K. (2001). Physics of finance. New York: John Wiley & Sons, 
	ITO, K. (1951). On Stochastic Differential Equations. Memoirs of the American Mathematical Society, no. 4. New York.: American Mathematical Society. 
	JACKSON, M., STAUNTON, M. (2004). Advanced Modelling in Finance. 2nd Edition. New York: John Wiley & Sons. 
	JACKWERTH, J. C..,  RUBINSTEIN, M. (1996). Recovering Probability Distributions from Option Prices.  Journal of Finance, 51 (5):  1611-1631. 
	JACOD, J.,  SHIRYAEV, A. (2003).  Limit Theorems for Stochastic Processes. Springer.  
	JACUS, S.M. (2008). Simulation and Inference for Stochastic Differential Equations. Number XVIII in Springer Series in Statistics. Springer Verlag. 
	JAEGER, G. (2009). Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer. 
	JAMMER, M. (1966). The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill. 
	JARROW, R. A.,  RUDD A. (1983). Option Pricing. Englewood Cliffs, NJ: Richard D. Irwin. 
	JARROW, R. L. (2006).  Derivatives Securities. 2nd Edition. Addison-Wesley. 
	JARROW, R.,  TURNBULL, S. (1998). A Unified Approach for Pricing Contingent Claims 
	on Multiple Term Structures. Review of Quantitative Finance and Accounting, Springer, 10(1): 5–19. 
	JASHAPARA, A. (2004).  Knowledge Management: An Integrated Approach. 1st Edition. Prentice Hall. 
	JORDAN, J. S. (1983). On the Efficient Markets Hypothesis, Econometrica. Econometric Society, 51(5): 1325-1343. 
	JOSHI,  M. (2008). The Concepts and Practice of Mathematical Finance. 2nd Edition. Cambridge University Press. 
	KALLENBERG, O. (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling (V77). Switzerland: Springer.  
	KAMP, H., REYLE, U., (1993), From Discourse to Logic: Introduction to Model theoretic Semantics of Natural. Springer. 
	KANNIAINEN, J.,  PICHE, R. (2013).  Stock price dynamics and option valuations under volatility feedback effect. Physica A: Statistical Mechanics and its Applications, 392(4): 722-740. 
	KARATZAS, I., SHREVE, S. (1998b). Brownian Motion and Stochastic Calculus. New York: Springer-Verlag. 
	KARATZAS, I., SHREVE, S.E. (1998a).  Methods of Mathematical Finance. New York: Springer-Verlag. 
	KARLIN, S., TAYLOR, H.  (1981). A Second Course in Stochastic Processes. New York: Academic Press. 
	KARLIN, S., TAYLOR, H.M. (1975).  A First Course in Stochastic Processes. 2nd  Edition. New York: Academic Press. 
	KECHRIS, A. (1995). Classical Descriptive Set Theory. Springer-Verlag. 
	KELLER, H. (1992). Numerical Methods for Two-Point Boundary-Value Problems. New York: Dover. 
	KELLER-RESSEL, M. (2011). Moment explosions and long-term behavior of affine stochastic volatility models. Mathematical Finance, 21(1): 73–98. 
	KENNEDY,  H.C. (1974). Peano's concept of number. Historia Mathematica, 1 (74): 387-408. 
	KENNEDY, D.P. (2010).  Stochastic Financial Models. Chapman and Hall/CRC. 
	KENNEDY, D.P. (1994).  The term structure of interest rates as a Gaussian random field. Mathematical Finance, 4(1): 247-258. 
	KENNEDY, D.P. (1997). Characterizing Gaussian models of the term structure of interest rates. Mathematical Finance, 7(1): 107-118. 
	KERNINGHAM, B., RICHIE, D. (1988). C Programming Language. 2nd Edition. Prentice Hall. 
	KHRENNIKOV, A. (1999). Classical and quantum mechanics on information spaces with applications to cognitive psychological, social and anomalous phenomena. Found. Phys., 29(1):  1065–1098. 
	KHRENNIKOV, A. (2006). Quantum-like brain: interference of minds. J. BioSyst., 84(1):  225–241. 
	KHRENNIKOV, A. (2007a).  Can quantum information be processed by macroscopic systems? Quant. Inf. Process, 6(1):  401–429. 
	KHRENNIKOV, A., (2007b), Classical and quantum randomness and the financial market, arXiv:0704.2865 [q-fin.ST]. Quantitative Finance. Cornell University. 
	KHRENNIKOV, A. (2009).  Description of composite quantum systems by means of classical random fields. Found. Phys., 40(1):  1051–1064. 
	KHRENNIKOV, A. (2009).  Quantum-like model of cognitive decision making and 
	information processing. J. BioSyst., 95 (1): 179–187. 
	KHRENNIKOV, A. (2012). Bell argument: Locality or Realism? Time to make the choice. AIP Conference Proceedings. 1424 (1), 160-175. 
	KHRENNIKOV, A. (2018). Classical and quantum randomness and the financial market. In arXiv:0704.2865 [q-fin.ST]. Quantitative Finance. Cornell University. 
	KHRENNIKOV, A.Y.,  HAVEN, E. (2009). Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 53 (5): 378-388. 
	KIBBLE, T.W.B., BERKSHIRE, F. H. (2004). Classical Mechanics. 5th Edition. London: Imperial College Press. 
	KIJIMA, M. (2013).  Stochastic Processes with Applications to Finance. Chapman and Hall. 
	KIM, H.J.,  LOTOTSKY, S. (2017). Heat Equation With a Geometric Rough Path Potential in One Space Dimension: Existence and Regularity of Solution. In arXiv:1712.08196 [math.AP]. Quantitative Finance. Cornell University. 
	KING, B.F. (1966).  Market and Industry Factors in Stock Price Behavior.  Journal of Business, 39(1): 139–191. 
	KLAUCK, H. (2003). Quantum time-space tradeoffs for sorting. Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, San Diego, CA, USA, Session 2A : 69-76. 
	KLOEDEN, P., PLATEN, E., SCHURZ, H.. (1994).  Numerical Solution of SDE Through Computer Experiments. Berlin: Springer. 
	KOLMOGOROV, A.N. (1956). Foundations of the theory of probability. 2nd English Edition. New York: Chelsea Publishing. 
	KONG, Q., WU, H.,  ZETTL, A. (2000). Geometric aspects of Sturm-Liouville problems, I. Structures on spaces of boundary conditions. Proc. Royal Soc. Edinburg, A130(00): 561-589. 
	KONG, Q., WU, H.,  ZETTL, A. (2001).  Sturm-Liouville problems with finite spectrum. J. Math. Anal. Appl., 263(01): 748-762. 
	KONG, Q., WU, H.,  ZETTL, A. (2004).  Sigular left-definite Sturm-Liouville problems. J. Differential Equations, 206(1): 1-29. 
	KONG, Q., ZETTL,  A. (1996). Eigenvalues of regular Sturm–Liouville problems J. Differential Equations, 131(1): 1-19. 
	KOTELENEZ, P., CURTAIN, R.F. (1982). Local Behaviour of Hilbert Space - valued Stochastic Integrals and the Continuity of Mild Solutions of Stochastic Evolution Equations. Stochastics, 6(1): 239-257. 
	KUCHLER, U., TAPPE, S. (2008). Bilateral gamma distributions and processes in financial mathematics. Stochastic Processes and their Applications, 118(2): 261–283. 
	LADYMAN, J., ROSS, D., SPURRETT, D., COLLIER, J.  (2007). Every Thing Must Go: Metaphysics Naturalized. Oxford University Press. 
	LAMBERTON, D.,  BERNARD, L. (2007). Introduction to Stochastic Calculus Applied to Finance. 2nd Edition. Chapman and Hall/CRC. 
	LAMBERTON, D., LAPEVRE, B. (2008).  Stochastic Calculus Applied to Finance. 2nd  Edition. Boca Raton, FL: Chapman & Hall/CRC. 
	LATHAM,  M. (1986). Informational Efficiency and Information Subsets. Journal of Finance, American Finance Association, 41(1): 39-52. 
	Le BIHAN, S., (2017),  Enlightening falsehoods: A modal view of scientific understanding. In S. Grimm, C. Baumberger, & S. Ammon (Eds.), Explaining Understanding: New perspectives from epistemology and philosophy of science (pp.111e136). Routledge. 
	LEE, W. R. (2004). The moment formula for implied volatility at extreme strikes. Mathematical Finance, 14(04): 469–480. 
	LEEDY, P., ORMROD, J.E. (2016). Practical Research: Planning and Design. 11th Edition. Pearson. 
	LEIFER, M., POULIN, D. (2008).  Quantum graphical models and belief propagation. Ann. Phys. J., 323: 1899–1946. 
	LEISEN D.P.J., REIMER,  M. (1996). Binomial Models for Option Valuation-Examining and Improving Convergence. Applied Mathematical Finance, 3: 319-346. 
	LEVENTAL, S.,  SINHA,  S.,  SCHRODER, M. (2016). Linked Recursive Preferences and Optimality. Mathematical Finance, 26(1): 86-121. 
	LI, Y., ZHANG, S., HAN, J. (2017). Dynamic pricing and periodic ordering for a stochastic inventory system with deteriorating items. Automatica, 76: 200–213. 
	LIND, D. (2010). Basic Statistics for Business and Economics. McGraw Hill. 
	LINTNER, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47 (1): 13–37. 
	LIPSTER, R. S.,  SHIRYAEV, A. N. (2000). Stochastic Modelling and Applied Probability. 2nd Edition. Berlin: Springer-Verlag. 
	LOEVE, M. (1977). Probability Theory I. New York: Springer Verlag. 
	LOMONACO, J.S.Jr. (2002). Quantum Computation and Quantum Information. AMS Contemporary Mathematics, 305:53-74. 
	LUSCHGY, H., PAGES, G. (2002). Functional quantization of Gaussian processes. Journal of Functional Analysis. Academic Press, 196(2): 486–531. 
	MACKAY, D. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press. 
	MADAN, D. B., CARR, P. P., CHANG,  E. C. (1998).  The Variance Gamma process and 
	option pricing. European finance review, 2(1): 79–105. 
	MADAN, D.B., MILNE, F. (1991). Option pricing with V.G. martingale components. Mathematical Finance, 1(4): 39–55.  
	MALKIEL, B.G. (2003). The Efficient Market Hypothesis and Its Critics. Journal of Economic Perspectives, 17(1): 59 - 82. 
	MALKIEL, B.G. (2011). A Random Walk Down Wall Street. The Best Investment Tactic for the New Century. New York: Norton & Co. 
	MALKIEL, B.G., FAMA, E.F. (1970).  Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(1): 383-417.  
	MALLIARIS, A.G. (1982). Stochastic Methods in Economics and Finance. New York: North-Holland.  
	MANTEGNA, R.N., STANLEY, H.E. (1995). Scaling behaviour in the dynamics of an economic index. Nature, 376(6535), 46–49. 
	MANTEGNA, R.N., STANLEY, H.E.  (2000). Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press. 
	MARKOV, A.A. (1954). Theory of Algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow. Academy of Sciences of the USSR. 
	MARKOV, A.A. (1971). Extension of the limit theorems of probability theory to a sum of variables connected in a chain, reprinted in Appendix B of: Howard, R., Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley & Sons. 
	MARKOWITZ,  H. (2000).  Mean–Variance Analysis in Portfolio Choice and Capital Markets. New Hope, PA: Frank J. Fabozzi Associates. 
	MARKOWITZ, H. (1952). Portfolio Selection. The Journal of Finance, 7(1): 77-91. 
	MASOLIVER, J., PERELLO, J. (2003).  Option pricing and perfect hedging on correlated stock. Physica A., 1(1): 330-622. 
	MATACZ, A., (2000), Financial Modeling and Option Theory with the Truncated Levy Process. International Journal of Theoretical and Applied Finance,  3(1): 143-163. 
	MATIA, K., ASHKENAZY, Y., STANLEY, H. E. (2003). Multifractal properties of price fluctuations of stocks and commodities. Europhys. Lett., 61(3): 422–428. 
	MCDONALD, L.R. (2006). Derivative Markets. 9th Edition. Addison-Wesley. 
	MERTON,  R.C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(1):  449-470. 
	MERTON, R.C.  (1973). Theory of rational option pricing. Bell J. Econ. Manage. Sci., 4(1): 141–183. 
	MERTON, R.C, (1976), Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 3: 125-144. 
	MERTON, R.C.  (1990). Continuous-time Finance. Cambridge, MA: Basil Black-Well.  
	MEYER, D.A. (1999). Quantum strategies. Phys. Rev. Lett., 82(1): 1052-1055. 
	MEYER, K. (2009).  Extending and simulating the quantum binomial options pricing model.  Thesis Presentation. Winnipeg, Manitoba: The University of Manitoba. 
	MEYER, P.A. (1993). Quantum Probability for Probabilists. Lecture Notes in Math., 1426. Berlin: Springer-Verlag. 
	MILEVSKY,  M.A,  POSNER, E.S. (1998). Asian Options: The Sum of Lognormals and The Reciprocal  Gamma Distribution. Journal of Financial and Quantitative Analysis, 33(3): 409-422. 
	MILNOR, J. (1968).  Singular Points of Complex Hypersurfaces. Princeton, N.J: Princeton 
	University Press. 
	MILTERSEN, K.R., SANDMANN, K., SONDERMANN, D. (1997). Closed form solutions for term structure derivatives with log-normal interest rates. J. Finance, 52(1): 409-430. 
	MOLLER, M., ZETTL, A. (1996). Differentiable dependence of eigenvalues of operators in Banach spaces J. Operator Theory, 36(1): 335-355. 
	MOREIRA, C., WICHERT, A. (2014). Interference effects in quantum belief networks. Applied Soft Computing, 25: 64-85. 
	MOREIRA, C., WICHERT, A. (2017). Exploring the Relations Between Quantum-Like Bayesian Networks and Decision-Making Tasks with Regard to Face Stimuli. Journal of Mathematical Psychology, 78:86-95. 
	MORIN, D. (2008). Introduction to Classical Mechanics: With Problems and Solutions, 1st Edition.  Cambridge University Press. 
	MOSSIN, J. (1966). Equilibrium in a Capital Asset Market.  Econometrica, 34(1): 768–783. 
	MURA, P.L., SWIATCZAK, L. (2007).  Markov entangled networks. Technical Report, in: AAAI Spring Symposium. 
	NAGLE, K. R., SAFF, E., SNIDER, D. A. (2004).  Fundamentals of Differential Equations. 6th Edition. Addison and Wesley. 
	NASTASIUK, V.A. (2015). Fisher information and quantum potential well model for ﬁnance. In arXiv:1504.03822 [q-fin.ST]. Statistical Finance. Cornell University Library. 
	NAU, R. F. (2001). De Finetti was Right: Probability Does Not Exist. Theory and Decision. Springer, 51(2–4): 89–124. 
	NELSON, E. (1967). Dynamical Theories of Brownian Motion. Princeton, NJ: Princeton University Press. 
	NEVEU,  J.  (1975).  Discrete-Parameter Martingales. Amsterdam: North-Holland. 
	NEVEU, J., (1965), Mathematical foundations of the calculus of probabilities. Holden-Day. 
	NICOLLE, S. (2003). Mental Models Theory and Relevance Theory in Quantificational Reasoning. Pragmatics and Cognition, 11(2):345-378. 
	NIELSEN,  M. A., CHUANG, I. L. (2010). Quantum Computation and Quantum Information. 10th Anniversary Edition. Cambridge University Press. 
	NIELSEN, L.T. (1993). Understanding N(d1) and N(d2): Risk-Adjusted Probability in the Black-Scholes Model. Revue Finance, 14: 95-106. 
	ØKSENDAL, B. (2000). Stochastic Differential Equations. An Introduction with Applications. 5th Edition. Springer.  
	OROSI, G. (2010). Improved Implementation of Local Volatility and Its Application to S&P 500 Index Options. The Journal of Derivatives, 17 (3): 53-64. 
	O'SULLIVAN, C., O'SULLIVAN, S. (2013). Pricing European and American options in the Heston model with accelerated explicit finite differencing methods. International Journal of Theoretical and Applied Finance, 16(3): 0219-0249. 
	PAGES, G., PHAM, H., PRINTEMS, J. (2003). Optimal  quantization  methods  and  applications  to numerical problems in finance. In Handbook of Computational  and Numerical Methods in Finance, Rachev, S.T., Editor. Boston: Birkhauser. 
	PAGES, G., PRINTEMS, J.  (2005).  Functional quantization for numerics with an application to option pricing. Monte Carlo Methods and Applications, 11(4):407–446. 
	PAGES, G., SAGNA, A. (2015).  Recursive marginal quantization of the Euler scheme of a diffusion process. Applied Mathematical Finance, 22(5): 463–498. 
	PARTHASARATHY,  K.P. (1992). An Introduction to Quantum Stochastic Calculus.  Basel: Birkhauser Verlag. 
	PARZEN, E.  (2015). Stochastic Processes. Courier Dover Publications. 
	PAVEL, N. (1975). Mixed boundary value problems for second order differential equations with monotone operators. Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie. Nouvelle Série. 19. 
	PEARL, J. (1988).  Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann Publishers.  
	PEARS, A. R. (1975). Dimension Theory of General Spaces. Cambridge University Press. 
	PELISSIER, R. (2008). Business Research Made Easy.  Juta and  Co. 
	PESTOV, V. (2006). Dynamics of infinite-dimensional groups. V40 of University Lecture Series. Providence, RI:  American Mathematical Society.  
	PIERCE, J. (1970). Asymptotic quantizing error for unbounded random variables. IEEE Transactions on Information Theory, 16(1): 81–83. 
	PIOTROWSKI, E., SLADKOWSKI,  J., (2004), Quantum game theory in finance. Quantitative Finance, 4: C61–C67. 
	PIOTROWSKI, E., SLADKOWSKI, J.S.,  (2003), An invitation to quantum game theory. 
	PIOTROWSKI, E., SLADKOWSKI, J.S., (2001), Quantum-like approach to financial risk: quantum anthropic principle, Acta Phys. Pol. B., 32: 3873–3879. 
	PIOTROWSKI, E., SLADKOWSKI, J.S., (2002), Quantum market games, Phys. A,  312(1–2): 208–216. 
	PIOTROWSKI, E., SLADKOWSKI, J.S., (2004) Quantum Games in Finance, Quantitative Finance 4 - 61. 
	PIOTROWSKI, E., SLADKOWSKI, J.S., (2005) , Quantum diffusion of prices and profits, Physica A, 345 185. 
	PIOTROWSKI, E.W., SCHROEDER, M., ZAMBRYZYCKA, A. (2006). Quantum extension of European option pricing based on the Ornstein Uhlenbeck process. Physica A., 368: 176–182. 
	PLATEN, E. (1997), A non-linear stochastic volatility model. Financial Mathematics Research. Report No. FMRR 005-97. Center for Financial Mathematics, Australian National University, Canberra. 
	PLISKA, S. R. (1997).   Introduction to Mathematical Finance, Discrete Time Models. Oxford: Blackwell. 
	PLOTNITSKY, A. (2009). Epistemology and probability: Bohr, Heisenberg, Schrodinger and the nature of quantum-theoretical thinking. Heidelberg-Berlin-New York: Springer. 
	POLITZER, G., MACCHI, L. (2000). Reasoning and Pragmatics. Mind and Society, 1(1) : 73-93. 
	POLKOVNICHENKO, V.,  ZHAO, F. (2012).  Probability Weighting Functions Implied by Options Prices. J. Financial Econ., 107(3): 580–609. 
	POLLEY, L. (2001). Position eigenstates and the Statistical Axiom of Quantum Mechanics. In arXiv:quant-ph/0102113. Foundations of Probability and Physics. Cornell University. 
	POPPER, K. (1974). The Autobiography of Karl Popper. In Schilpp (Ed.), 3-181. 
	PORTER, R. B., GAUMNITZ, J. E. (1972). Stochastic Dominance vs. Mean-Variance Portfolio Analysis: An Empirical Evaluation. American Economic Review, American Economic Association, 62(3): 438-446. 
	PRATT, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32: 122-136. 
	PRELEC, D. (1998). The Probability Weighting Function. Econometrica, 66(3): 497–527. 
	PRESKILL, J. (1988). Making Weirdness Work: Quantum Information and Computation. California Institute of Technology. 
	PROTTER, M.H., WEINBERGER, H.F. (1984). Maximum Principles in Differential Equations. 2nd Reprint. Springer. 
	PRUESS, S. (1973). Estimating the Eigenvalues of Sturm--Liouville Problems by Approximating the Differential Equation. SIAM Journal on Numerical Analysis, 10(1):55-68. 
	PRUESS, S., FULTON,  C. T. (1993). Mathematical software for Sturm-Liouville problems. ACM Transactions on Mathematical Software, 19( 3): 360-376. 
	PRUESS, S., FULTON, C.T., XIE, Y. (1995). An asymptotic numerical method for a class of singular Sturm-Liouville problems. SIAM J. Numer. Anal., 32(5): 1658–1676. 
	PUIG, P. (2003). Characterizing Additively Closed Discrete Models by a Property of Their Maximum Likelihood Estimators, with an Application to Generalized Hermite Distributions. Journal of the American Statistical Association, 98: 687–692.  
	PYLYSHYN, Z.W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25: 157–238. 
	QUILTY-DUNN, J., MANDELBAUM E. (2018). Inferential Transitions. Australasian Journal of Philosophy, 96 (3): 532-547. 
	QUINE W. V. O.  (1948).  On what there is. Review of Metaphysics, 2: 21-38. 
	RAEDT, H.D., MICHIELSEN, K, JIN, F. (2012). Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation. AIP Conference Proceedings, 1424 (1): 55-66. 
	RAO, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters.  Bulletin of the Calcutta Mathematical Society, 37: 81–89. 
	RAO, C. R. (1994). S. Das Gupta (ed.). Selected Papers of C. R. Rao. New York: Wiley. 
	RASMUSEN, E. (1989). Games and Information. Oxford: Basil Blackwell. 
	RAUTENBERG, W.  (2010). A Concise Introduction to Mathematical Logic. 3rd Edition.  New 
	York, NY: Springer.  
	REBENTROST, P.,  BRAJESH, G.,  BROMLEY, T.R. (2018).  Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A.,  98(2):  022321. 
	REES, M. (2017).  Principles of Financial Modelling: Model Design and Best Practices Using Excel and VBA. Wiley Finance Series. 
	REMENYI, D., WILLIAMS, B., MONEY, A., SWARTZ,  E. (1998). Doing Research in Business and Management. London: Sage Publications. 
	REVUS, D., YOR, M. (2004).  Continuous Martingales and Brownian Motion. 3rd  Edition. New York: Springer-Verlag. 
	ROBERT, C.,  CASELLA, G.  (2004). Monte Carlo Statistical Methods. 2nd Edition.  Springer. 
	ROBSON, C. (1993). Real World Research, A Resource for Social Scientists and Practitioner Researchers. Oxford: Blackwell Publishers Inc. 
	ROGERS,  L. C. G., WILLIAMS, D.  (2000a). Diffusions, Markov Processes and Martingales. Vol. 1, Foundations. 2nd Edition. Cambridge University Press. 
	ROGERS,  L. C. G., WILLIAMS, D.  (2000b).  Diffusions, Markov Processes and Martingales. Vol. 2, Itô Calculus. 2nd Edition. Cambridge University Press  
	ROMBERG, W. (1955). Vereinfachte numerische integration. Det Kongelige Norske Videnskabers Selskab Forhandlinger, 28: 30–36. 
	ROSS, S.A. (1976). The Arbitrage Theory of Capital Asset Pricing, Journal of Economic Theory, 13: 341–360. 
	ROSS, S.A., ROLL, R. (1980).  An Empirical Investigation of the Arbitrage Pricing Theory, Journal of Finance, 35: 1071–1103. 
	RUBINSTEIN, M., REINER, E., (1995), Exotic Options. Working Paper. University of 
	California at Berkeley.  
	RUBINSTEIN, M. (1975). Securities Market Efficiency in an Arrow-Debreu Economy, American Economic Review, American Economic Association, 65(5): 812-824. 
	RUBINSTEIN, M. (1976). The Valuation of Uncertain Income Streams and the Pricing of Options. The Bell Journal of Economics, 7(2): 407-425. 
	RUBINSTEIN, M. (1994). Implied Binomial Trees. Journal of Finance, 49(3): 771-818. 
	RUBINSTEIN, M. (2000). On the relation between binomial and trinomial option pricing models. Journal of Derivatives, 8(2): 47-50. 
	RUMMENS, S., CUYPERS, S. E. (2010). Determinism and the Paradox of Predictability. Erkenntnis: An International Journal of Scientific Philosophy, 72(2):233–249. 
	RUSTEMOVICH,  G. T., MUKMINOV, F. (2018). Perturbation of second order nonlinear equation by delta-like potential. Ufimskii Matematicheskii Zhurnal, 10(2): 31-43. 
	SAMUELSON, P.A. (1965). Proof That Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review Spring, 6: 41-49. 
	SAMUELSON, P.A., MERTON, R.C. (1969). A Complete Model of Warrant Pricing that Maximizes Utility. Indus. Management Rev., 10: 17-46. 
	SANSONE, G. (1939).  Orthogonal Functions.  New York: Interscience. 
	SAONOV, V.V., (2001) [1994], Probability space, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science & Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4. 
	SAUNDERS, M., LEWIS, P., THORNHILL, A. (2003). Research Methods for Business Students. Pearson Education. 
	SAUNDERS, S. (2004), What is Probability?  Quo Vadis Quantum Mechanics? In arXiv:quant-
	ph/0412194. The Frontiers Collection. 
	SAUNDERS, S. (2006).  On the explanation for quantum statistics. Studies in the History and Philosophy of Modern Physics, 37: 192-211. 
	SAVCHUK, A., SHKALIKOV, AA. (1999). Sturm-Liouville operators with singular potentials. Mathematical Notes, 66(6): 741–753. 
	SCHAFER, H.H. (1966). Topological Vector Spaces. Berlin: Springer-Verlag. 
	SCHOBEL, R., ZHU, J. (1999). Stochastic volatility with an Ornstein-Uhlenbeck process: An extension. Eur. Finance Rev., 3: 23–46. 
	SCHWANDT, T. (1998). The Landscape  of Qualitative Research: Theories and Issues. Sage Publications. 
	SCHWARTZ,  S.C. (1967). Estimation of a probability  density  by  an orthogonal series. Ann. ldath. Statist., 38(126): l-1265. 
	SCHWARZSCHILD, B. (1996).  Labs demonstrate logic gates for quantum computation.  Phys. Today, 49(3): 21-23. 
	SEGAL, W., SEGAL, I.E. (1998). The Black–Scholes pricing formula in the quantum context. Proc. Natl. Acad. Sci. USA,  95: 4072–4075. 
	SEGRE, M.  (1994). Peano's axioms in their historical context. Archive for History of Exact Science, 48 (3-4): 201-342. 
	SENETA, E. (1996). Markov and the Birth of Chain Dependence Theory. International Statistical Review, 64(3): 255–257. 
	SENGUPTA, C. (2009). Financial Analysis and Modeling Using Excel and VBA. Wiley Finance.  
	KLIGER, D., LEVY, O. (2009). Theories of Choice under Risk: Insights from Financial 
	Markets. J. Econ. Behav. Organization, 71(2): 330–346. 
	SHAFER, G. (2002). Black-Scholes Pricing: Stochastic and Game-Theoretic. Rutgers Business School. 
	SHARP, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, American Finance Association, 19(3): 425-442. 
	SHARPE, W.F., ALEXANDER, G.J.,  BAILEY, J.V.  (1995).  Investments. 6th Edition. Prentice Hall. 
	SHEPHARD,  N.  G.  (1991).  From  characteristic  function  to  distribution  function:  A  simple  framework  for the theory. Econometric Theory, 7(4): 519-529. 
	SHIRYAEV A.N. (1999). Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific Publishing Company. 
	SHIRYAEV, A.N., GROSSINHO, M.D.R., OLIVEIRA, P.E. ESQUIVEL, M.L. (2006).   Stochastic Finance. Springer. 
	SHOR, P. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. IAM Journal on Computing archive, 26(5): 1484-1509. 
	SHREVE,  S. E. (2004b).  Stochastic Calculus for Finance II, Continuous-Time Models. New York: Springer-Verlag. 
	SHREVE, S.E. (2004a).  Stochastic Calculus for Finance I, The Binomial Asset Pricing Model. New York: Springer-Verlag. 
	SMULLYAN, R. (1991). Gödel's Incompleteness Theorems. Oxford University Press. 
	SNIEDER, R., LARNER, K. (2009). The Art of Being a Scientist: A Guide for Graduate Students and their Mentors. Cambridge University Press. 
	SNYDER, D.L., MILLER,  M.I. (1991).  Random Point Processes in Time and Space. Springer. 
	SONDERMANN, D.  (2007). Introduction to Stochastic Calculus for Finance: A New Didactic Approach. 3rd Edition. Springer. 
	SPITZER, F. F. (1970). Interaction of Markov Processes. Advances in Mathematics, 5 (2):246–290. 
	SPRENCKLE,  C. (1961). Warrant Prices as Indications of Expectations.  Yale Econ. Essays, 1: 179-232. 
	SRIVASTAVA, S. M. (1998).  A Course on Borel Sets. New York: Springer. 
	STAUNTON, M., JACKSON, M. (2001). Advanced Modelling in Finance using Excel and VB. Wiley Finance Series. 
	STEENROD, N. (1951). The topology of Öbre bundles. Princeton University Press. 
	STEIN, E. M.,  STEIN, J. C. (1991). Stock price distributions with stochastic volatility: an analytic approach. Review of Financial Studies, 1(4):727–752. 
	STENGER, V. J. (1995). The Unconscious Quantum: Metaphysics in Modern Physics and Cosmology. Prometheus Books.  
	STOLL, M. (2001). Introduction to Real Analysis. 2nd Edition. Addison and Wesley. 
	STRONG, R. A. (2004).  Practical Investment Management. 3rd Edition. London: Thomson. 
	STROUSRUP, B. (2000). The C++ Programming Language. Special Edition “Written by the creator of C++”. Addison and Wesley. 
	STULZ, R.M. (1981). On the Effects of Barrriers to International Investment. Journey of Finance,  36(4): 923-934.  
	SUNDARAM., D.  (2011).  Derivatives: Principles and Practice. 1st Edition. McGraw-Hill. 
	SUPPES, P. (1986)(1984). Probabilistic Metaphysics. Blackwell. 
	SUPPES, P. (1988). Philosophical implications of Tarski's work. J. Symbolic Logic, 53 (1): 80-
	91. 
	SZCEGO, G. (1939).  Orthogonal Polynomials.  V32 of Amer.  Math.  Soc. Coll. Publ. Providence, R.I: American Mathematical Society.  
	TAKESAKI, M. (2001). Theory of Operator Algebras I. New York: Springer. 
	TAKESAKI,, M. (1972).  Conditional expectations in von Neumann algebras.  J. Funct. Anal., 9: 306-321. 
	TANAKA, N. (1991). Mathematical Works of N. Tanaka. Hokkaido Math. J. 20(2): 183.  
	TARSKI, A., GIVANT, S. (1987). A Formalization of Set Theory without Variables. V41 of  Amer.  Math.  Soc. Coll. Publ. Providence, R.I: American Mathematical Society. 
	TARSKI, A., GIVANT, S. (1999). Tarski's system of geometry. Bull. Symbolic Logic, 5 (2): 175-214. 
	TENTORI, K., CRUPI, V., RUSSO, S. (2013). On the determinants of the conjunction fallacy: confirmation versus probability. J. Exp. Psychol. Gen., 142(1):235-255. 
	TERENCE, L., LO, A.W.,  MERTON, R.C., SCHOLES, M.S. (2006). The Derivatives Sourcebook. Foundation and Trends in Finance. Now Publishers. 
	THARWAT, M.M. (2015). Approximation of eigenvalues of Dirac systems with eigen parameter in all boundary conditions by sinc-Gaussian method. Applied Mathematics and Computation, 262:113-127. 
	THARWAT, M.M., BHRAWY, A.H., YILDIRIM, A. (2013). Numerical computation of eigenvalues of discontinuous Sturm-Liouville problems with parameter dependent boundary conditions using sinc method. Numerical Algorithms, 63(1):  27–48 
	THORNTON, S.T., MARION, J. B. (2003). Classical Dynamics of Particles and Systems. 5th Edition.  Brooks Cole. 
	THORP, E., KASSOUF, S.T. (1967). Beat the Market. New York: Random House. 
	TOBIN, J. (1965).  The Theory of Portfolio Selection, in F.H. Hahn and  F. Brechling (eds.) The Theory of Interest Rates, Palgrave Macmillan for the International Economic Association, 3-51. 
	TREYNOR, J. L., BLACK, F. (1973). How to Use Security Analysis to Improve Portfolio Selection. Journal of Business, January: 66–88.  
	TU, Z.W.  ZHU, S. C. (2002). Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE Trans. On Pattern Analysis and Machine Intelligence, 24(5):657–673. 
	TUCCI, R.R. (1995).  Quantum Bayesian nets. Int. J. Mod. Phys. B., 9 (3): 295–337. 
	TVERSKY, A., KAHNEMAN, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. J. Risk Uncertainty, 5(4): 297–323. 
	Van BUSKIRK, J.M. (1985). Positive knots have positive Conway polynomials. In: Rolfsen D. (eds) Knot Theory and Manifolds. Lecture Notes in Mathematics, 1144. Berlin: Springer. 
	VARIAN, H. (1993).  A portfolio of Nobel Laureates: Markowitz, Miller and Sharpe. The journal of Economic perspectives, 1(7). 
	VASICEK, O. (1977). An equilibrium characterization of the term structure. J. Fin. Econ., 5: 177-188. 
	VIDYA, R.C.,  SHIVAKUMAR, M. S. (2007). Applying Quantum Algorithm to Speed Up the Solution of Hamiltonian Cycle Problems. V228 of  IFIP International Federation for Information Processing. Springer Boston. 
	VINOGRADOV, A. M., KUPERSHMIDT,  B. A. (1981). The structure of Hamiltonian mechanics. London Math. Soc. Lect. Notes Ser., 60. Cambridge University Press. 
	von NEUMANN, J., MORGENSTERN, O. (1947). The Theory of Games and Economic Behaviour. 2nd Edition. NewYork: Wiley. 
	von NEUMANN, J.V. (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press. 
	WALTER,   G.G. (1980).   Addendum   to   “Properties   of   Hermite   series   estimation  of  probability  density. Ann. Statist., 8: 454 - 455. 
	WALTER, G.G. (1977). Properties of Hermite series estimation of probability density. Ann. Statist., 1258-1264. 
	WEIDMANN, J. (1987). Spectral Theory of Ordinary Differential Operators. Lecture notes in Mathematics, 1258. doi: 10.1007/BFb0077960.. 
	WILBERTZ, B. (2005). Computational aspects of functional quantization for Gaussian measures and applications. Univ. Trier, Germany. 
	WILLIAMS, D. (1991).  Probability with Martingales. Cambridge University Press. 
	WILMOTT, HOWISON, P. S., DEWYNNE, J. (1996). The Mathematics of Financial Derivatives. Cambridge University press. 
	WILSON, J. (2010). Essentials of Business Research: A Guide to Doing Your Research Project. SAGE Publications. 
	WU, G.,  GONZALEZ, R.  (1996).  Curvature of the Probability Weighting Function. Manage. Sci., 42(12): 1676–1690. 
	YAARI, M. (1987). The Dual Theory of Choice under Risk. Econometrica, 55(1): 95–115. 
	YAN, J., SHI, G., ZHAO, J. (2017). Eigenvalues of Sturm-Liouville Operators with Distributional Potentials. Access from: https://www.researchgate.net/publication/321180550. 
	YANG, Q., GAO, X., WANG, W. (2015). Dependence of Eigenvalues of a Class of Higher-Order Sturm-Liouville Problems on the Boundary. Mathematical Problems in Engineering, 15(3):1-10. 
	ZAITSEV,  E.A. (1994). An interpretation of Peano's logic. Archive for History of Exact Science, 46 (4): 367-383. 
	ZETTL, A.  (1997). Sturm-Liouville problems, Spectral Theory and Computational Methods of Sturm-Liouville Problems. Lecture Notes in Pure and Applied Mathematics, 191(97): 1-104.  
	ZHANG, M., SUN, J., ZETTL, A. (2014). Eigenvalues of limit-point Sturm–Liouville problems. Journal of Mathematical Analysis and Applications, 419(1): 627-642. 
	 
	 
	 
	10. APPENDIX I 
	 
	'********************************************************************* 
	'*          Simulation of GBM using  Euler discretization scheme 
	'*          By: Adrian Euler 
	'********************************************************************* 
	Option Explicit 
	Const TWELVE = 12 
	Const SIX = 6 
	Private keep_on_going As Boolean 
	Private Type GBM_process 
	    mu As Double                'Stock drift 
	    sigma As Double             'Stock volatility 
	    rr As Double                'Stock  short rate 
	    S_0 As Double               'Initial stock price 
	    T As Double                 'Final time 
	    N As Long                   'Number of time steps 
	     d_t As Double               'The time step 
	    sigma_sqrt_d_t As Double    'Speed-up bit 
	End Type 
	'********************************************************************* 
	'*         Sub main to read in parameters from the front end and to 
	'*         write a BS value to the front end 
	Sub Main() 
	    Dim my_GBM_process As GBM_process 
	    Dim Elapsed_time As Double                      'Time to complete 
	    Dim loop_counter As Long 
	      Elapsed_time = Timer                            'Get the time (in seconds) 
	    keep_on_going = True 
	    loop_counter = 0 
	    Sheet1.Cells(9, 4).Value = "" 
	      Application.OnDoubleClick = "my_DoubleClick"    'Escape from the loop by double clicking 
	    Randomize        'Randomize sets the random seed for the VBA function Rnd 
	    If Not Read_in_parameters(my_GBM_process) Then Exit Sub 
	     Do Until keep_on_going = False 
	            If Application.Wait(Now + TimeValue("00:00:05")) Then 
	            loop_counter = loop_counter + 1 
	            Sheet1.Cells(9, 4).Value = loop_counter 
	            If Not Simulate(my_GBM_process) Then Exit Sub 
	            DoEvents 
	        End If 
	      Loop 
	        Elapsed_time = Timer - Elapsed_time 
	    Sheet1.Cells(8, 4).Value = Elapsed_time 
	    Beep 
	    MsgBox "Programme has finished" 
	End Sub 
	'*********************************************************************************' 
	'*          Simulate 
	'*          A procedure to simulate a GBM 
	Function Simulate(ByRef this_GBM_process As GBM_process) As Boolean 
	     Dim i As Integer 
	    Dim next_value As Double 
	    Dim current_value As Double 
	    Dim normal_number As Double 
	    Simulate = False 
	  '********************************************************************** 
	 '*          Simulate the path 
	        For i = 1 To this_GBM_process.N 
	        Sheet1.Cells(15 + i, 9).Value = i 
	    Next i 
	        current_value = this_GBM_process.S_0 
	    Sheet1.Cells(15, 9).Value = 0                                  'Initialise stuff 
	    Sheet1.Cells(15, 10).Value = current_value 
	        Application.ScreenUpdating = False   
	    For i = 1 To this_GBM_process.N                                          'For each time step 
	        normal_number = normal_poor                                          'Get a 'normal' variate 
	        next_value = Next_S(this_GBM_process, current_value, normal_number)  'Evolve the next stock price 
	        current_value = next_value 
	        Sheet1.Cells(15 + i, 10).Value = current_value                              'Write out   the current step 
	    Next i 
	    Application.ScreenUpdating = True 
	    Simulate = True 
	Exit Function 
	'********************************************************************* 
	'*         The error handling subroutine 
	error_label: 
	    Beep    'To annoy the user 
	    MsgBox prompt:="Error encountered:  " & Err & "  " & Error(), _ 
	            Buttons:=vbCritical, _ 
	            Title:="Error in main" 
	End Function 
	'********************************************************************* 
	'* 
	'*          Read_in_parameters() 
	'*          Reads in stuff from the front end 
	'* 
	'********************************************************************* 
	Function Read_in_parameters(ByRef this_GBM_process As GBM_process) As Boolean 
	        Read_in_parameters = False 
	On Error GoTo error_label 
	    this_GBM_process.mu = Sheet1.Cells(15, 4).Value 
	    this_GBM_process.sigma = Sheet1.Cells(16, 4).Value 
	    this_GBM_process.rr = Sheet1.Cells(17, 4).Value 
	    this_GBM_process.S_0 = Sheet1.Cells(18, 4).Value 
	    this_GBM_process.T = Sheet1.Cells(16, 7).Value 
	    this_GBM_process.N = Sheet1.Cells(15, 7).Value 
	      this_GBM_process.d_t = this_GBM_process.T / this_GBM_process.N                'The time step 
	    this_GBM_process.sigma_sqrt_d_t = this_GBM_process.sigma * Sqr(this_GBM_process.d_t)     
	    If this_GBM_process.mu > 0 And _ 
	        this_GBM_process.sigma > 0 And _ 
	        this_GBM_process.S_0 > 0 And _ 
	        this_GBM_process.T > 0 And _ 
	        this_GBM_process.N > 0 _ 
	    Then 
	        Read_in_parameters = True 
	        Exit Function 
	    End If 
	error_label: 
	    Beep 
	    MsgBox ("Data is invalid")        
	End Function 
	'********************************************************************** 
	'*          normal_poor() 
	'*        generates a normal variate from 12 rnd 
	Function normal_poor() As Double 
	    Dim running_total As Double 
	    Dim i As Integer 
	    running_total = 0 
	    For i = 1 To TWELVE 
	        running_total = running_total + Rnd() 
	    Next i 
	    normal_poor = running_total - SIX 
	End Function 
	'********************************************************************* 
	'*          Next_S(Previous_S as double, z as double) as double 
	'*          Generates the next value of the stock price S 
	Function Next_S(this_GBM_process As GBM_process, current_value As Double, z As Double) As Double 
	 
	    'Evolves state variable using an Euler discretisation lg ln S. 
	    'z is ~N(0,1) 
	    Next_S = current_value _ 
	        * Exp((this_GBM_process.rr - 0.5 * this_GBM_process.sigma ^ 2) _ 
	                * this_GBM_process.d_t + z * this_GBM_process.sigma_sqrt_d_t)  
	End Function 
	'********************************************************************* 
	'*          my_DoubleClick traps the DoubleClick event 
	Sub my_DoubleClick() 
	    keep_on_going = False 
	End Sub 
	 
	 
	11. APPENDIX II 
	- MATHEMATICAL DERIVATIONS  - 
	CASE 1.0:  
	.             (C1-4) 
	 
	CASE 3.0: 
	CASE 4.0: 
	                                                                                                                                (C4-10) 
	which, after simplification, can be written  
	CASE 5.0: 
	Thus obtaining the desired expression as set out in this theorem. 
	 
	CASE 7:  
	Which are then substituted back in the master expression  to obtain 


