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hectare, and generally, this project has determined that yield is more sensitive to fertiliser than 

to climate change, whilst climate change is the causal driver for the increase in net energy and 

carbon footprint at most locations. 

The integrated framework developed for this project has been validated and tested using maize, 

but can be applied to other biofuel crops provided that the proposed location has historical 

weather data, information about soil type and farm management details of the proposed crop 

type. Given the absolute importance of reducing carbon emissions. 





vii 

 

2.3 Future climate change projections on the sub-Saharan region .................................. 19 

2.4 Projected impact of climate change on crop yield .................................................... 26 

2.5 Strategies for climate change mitigation ................................................................... 29 

2.5.1 Paris Agreement to keep global warming below 2°C ........................................ 30 

2.5.2 Renewable energy development ........................................................................ 32 

2.6 Critical issues affecting biofuel sustainability .......................................................... 34 

2.7 Biofuel feedstock production in Nigeria ................................................................... 38 

2.8 Assessing climate change impact of biofuel feedstock production........................... 42 

2.8.1 Types of crop models and model components ................................................... 44 

2.9 Integrated Assessment Modelling (IAM) approach for energy crop sustainability .. 55 

2.10 Assessing the sustainability of biofuel feedstock production ................................... 58 

2.10.1 Life Cycle Assessment (LCA) ........................................................................... 59 

2.11 Quantification of impact assessment using LCA-Regression analysis ..................... 69 

2.12 Summary ................................................................................................................... 72 

3 Research Methodology .................................................................................................... 75 

3.1 Introduction ............................................................................................................... 75 

3.2 Integrated modelling framework ............................................................................... 76 

3.3 Site area and climate description ............................................................................... 79 

3.4 Data collection........................................................................................................... 81 

3.4.1 Historical weather data ...................................................................................... 81 

3.4.2 Generating long-term synthetic climate data ..................................................... 82 





ix 

 

4.5.1 Energy input results and analysis ..................................................................... 150 

4.5.2 Total energy output under climate change and farm management scenarios .. 156 

4.5.3 Energy indices in maize production assessment .............................................. 159 

4.5.4 GHG emissions from fertiliser production and application ............................. 163 

4.6 Regression model analysis ...................................................................................... 179 

4.6.1 Design of experiment ....................................................................................... 179 

4.7 Jos location .............................................................................................................. 181 

4.7.1 Multiple regression analysis ............................................................................ 181 

4.7.2 Simple linear regression analysis ..................................................................... 185 

4.8 Ibadan location ........................................................................................................ 188 

4.8.1 Multiple linear regression analysis .................................................................. 188 

4.8.2 Simple linear regression analysis ..................................................................... 191 

4.9 Enugu location......................................................................................................... 195 

4.9.1 Multiple linear regression analysis .................................................................. 195 

4.9.2 Simple linear regression analysis ..................................................................... 199 

4.10 Ilorin location .......................................................................................................... 203 

4.10.1 Multiple linear regression analysis .................................................................. 203 

4.10.2 Simple linear regression analysis ..................................................................... 207 

5 Discussion ...................................................................................................................... 210 

5.1 Introduction ............................................................................................................. 210 

5.2 Climate data............................................................................................................. 211 



x 

 

5.3 Validation of LARS-WG results ............................................................................. 212 

5.4 Analysis of projected climate change...................................................................... 213 

5.5 Analysis of climate change impact on maize yield ................................................. 215 

5.6 Effect of N fertiliser treatment on yield .................................................................. 219 

5.7 LCA analysis of energy use, GHG and Carbon footprint ....................................... 221 

5.7.1 Energy use assessment ..................................................................................... 222 

5.7.2 GHG emission evaluation ................................................................................ 226 

5.8 Regression analysis ................................................................................................. 244 

6 Conclusion and recommendations ................................................................................. 251 

6.1 Conclusion ............................................................................................................... 251 

6.2 Research limitations ................................................................................................ 258 

6.3 Recommendation for future research ...................................................................... 259 

References .............................................................................................................................. 261 

Appendices ............................................................................................................................. 319 

Appendix A......................................................................................................................... 319 

Appendix B ......................................................................................................................... 321 

Appendix C ......................................................................................................................... 322 

Appendix D......................................................................................................................... 324 

Appendix E ......................................................................................................................... 325 

Appendix F ......................................................................................................................... 326 

Appendix G......................................................................................................................... 327 



xi 

 

Appendix H......................................................................................................................... 331 

Appendix I .......................................................................................................................... 335 

Appendix J ............................................................................ Error! Bookmark not defined. 

 

 

 

 



xii 

 

List of Tables 

Table 2.1: Production of liquid biofuels by region. ................................................................. 38 

Table 2.2:  Categories of energy crop models ......................................................................... 47 

Table 3.1: NiMet synoptic weather stations. Fifteen-year average meteorological details of 

study sites. ................................................................................................................................ 80 

Table 3.2: Energy coefficients of inputs and outputs used for maize cultivation. ................. 103 

Table 3.3: Estimated average working time (hours per hectare) and fuel consumption for 

various farming operations .................................................................................................... 104 

Table 3.4: Estimated emission factors (EF) for various farming inputs and sources ............ 108 

Table 4.1: KS-test: The quarterly probability distributions for the length of wet and dry series 

and length of frost spells (minimum temperature < 00C) and heat spells (maximum temperature 

>300C) ................................................................................................................................... 129 

Table 4.2: KS-test: The quarterly probability distributions for the length of wet and dry series 

and length of frost spells (minimum temperature < 00C) and heat spells (maximum temperature 

>300C) ................................................................................................................................... 129 

Table 4.3: KS-test: The quarterly probability distributions for the length of wet and dry series 

and length of frost spells (minimum temperature < 00C) and heat spells (maximum temperature 

>300C) ................................................................................................................................... 130 

file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863228




xiv 

 

Table 4.12: N2O and CO2 emissions from fertiliser application (direct and indirect emissions)

................................................................................................................................................ 168 

Table 4.13: GHG emissions from diesel fuel production and combustion used for various field 

operations and tillage systems for maize production. ............................................................ 169 

Table 4.14: Calculated GHG emissions from the production of farm inputs and emissions from 

various field tillage operations. Table includes the percentage contribution to the total GHG 

emissions for different management systems. ....................................................................... 172 

Table 4.15: Generated codes used to create the experiment design. ..................................... 179 

Table 4.16: Database created in Minitab showing design matrix for the statistical analysis. 180 

Table 4.17: An extract of the experimental design exported to MATLAB software for training 

the models. ............................................................................................................................. 180 

Table 4.18: Estimated coefficients of the multiple regression for Jos. .................................. 181 

Table 4.19: Estimated coefficients of the simple linear regression for Jos ........................... 185 

Table 4.20: Estimated coefficients of the Regression Analysis for Ibadan ........................... 188 

Table 4.21: Estimated coefficients of the simple linear regression for Ibadan ...................... 192 

Table 4.22: Estimated coefficients of the multiple linear regression for Enugu ................... 195 

Table 4.23: Estimated coefficients of the simple linear regression for Enugu ...................... 199 

Table 4.24: Estimated coefficients of the multiple linear regression for Ilorin ..................... 203 

Table 4.25: Estimated coefficients of the simple linear regression for Ilorin ........................ 207 

file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863245
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863245
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863249
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863249


file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863151
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863151
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863151
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863152
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863152
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863152
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863153
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863153
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863154
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863154
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863155
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863156
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863156
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863157
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863157
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863158
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863160
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863160


xvi 

 

Figure 4.1: Average values of climatic variables computed from the 15-year observation data 

obtained for Jos location. ....................................................................................................... 122 

Figure 4.2: Average values of climatic variables computed from the 15-year observation data 

obtained for Ibadan location. ................................................................................................. 122 

Figure 4.3: Average values of climatic variables computed from the 15-year observation data 

obtained for Enugu location. .................................................................................................. 123 

Figure 4.4: Average values of climatic variables computed from the 15-year observation data 

obtained for Ilorin location. ................................................................................................... 123 

Figure 4.5: Comparison of the mean monthly rainfall, minimum and maximum temperature 

and solar radiation of observed 15-year climate data and Lars-WG generated 30-year climate 

data in Jos station. .................................................................................................................. 125 

Figure 4.6: Comparison of the mean monthly rainfall, minimum and maximum temperature 

and solar radiation of observed 15-year climate data and Lars-WG generated 30-year climate 

data in Ibadan station. ............................................................................................................ 125 

Figure 4.7: Comparison of the mean monthly rainfall, minimum and maximum temperature 

and solar radiation of observed 15-year climate data and Lars-WG generated 30-year climate 

data in Enugu station. ............................................................................................................. 126 

Figure 4.8: Comparison of the mean monthly rainfall, minimum and maximum temperature 

and solar radiation of observed 15-year climate data and Lars-WG generated 30-year climate 

data in Ilorin station. .............................................................................................................. 126 



file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863169
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863169
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863169
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863170
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863170
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863170
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863171
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863171
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863171
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863172
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863172
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863173
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863173
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863174
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863174
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863175
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863175
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863176
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863177
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863177


file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863178
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863178
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863179
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863179
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863180
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863180
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863181
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863181
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863182
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863182
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863183
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863183
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863184
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863184
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863184
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863185
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863185
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863185


file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863188
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863188
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863188
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863189
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863189
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863189
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863190
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863191
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863192
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863195
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863195
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863196
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863196
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863196


xx 

 

Figure 4.37: Relationship evaluation between input (fertiliser rate, climate change scenarios) 

and response variables (yield GHG emissions, carbon footprint and Net energy) for Enugu.

................................................................................................................................................ 202 

Figure 4.38: Relationship evaluation between input (fertiliser rate, climate change scenarios) 

and response variables (yield GHG emissions, carbon footprint and Net energy). ............... 209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863197
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863197
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863197
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863198
file:///C:/Users/OgbolUc/my%20doc/Draft%20Thesis%20for%20formating22.docx%23_Toc3863198


xxi 

 

ACRONYMS AND ABBREVIATIONS  

AFOLU  Agriculture, Forestry and Other Land Use 

AEZ  Agro-Ecological Zones 

AR5  Fifth Assessment Report 

ARDL Autoregressive Distributed Lag 

APSIM Agricultural Production Systems Simulator 

ARC African Rainfall Climatology  

CO(NH2)2 Urea 

COP 21 Conference of the Parties-21st conference 

CH4  Methane 

CO2  Carbon dioxide 

CO2-equiv. Carbon dioxide equivalent 

CDD consecutive Dry Days  

CWD Consecutive Wet Days 

CORDEX Coordinated Regional Downscaling Experiment  

CCS Carbon Capture and Storage 

CC Climate change 

CT Conventional Tillage 

CF Carbon Footprint 

CRU Climatic Research Unit 

CSAF Crop Sustainability Asessment Framework 

CERES-EGC Crop Environment Resource Synthesis - Environnement et 

Grandes Cultures 

CERES-Maize Crop Environment Resource Synthesis-Maize 

CERES-Wheat Crop Environment Resource Synthesis-Wheat 



xxii 

 

COP21 

21st Conference of the Parties to the United Nations Framework 

Convention on Climate Change 

CMIP5 Fifth Climate Model Intercomparison Project 

DAYCENT Daily Century Model 

DSSAT Decision Support System For Agrotechnology Transfer 

DSSAT-CSM Decision Support System For Agrotechnology Transfer-Crop 

Simulation Model 

DSSAT-Perturb Decision Support System For Agrotechnology Transfer-Perturb 

DNDC DeNitrification-DeComposition 

DSS Decision Support System  

DOE Design of Experiment 

EU European Union 

EF  Emission factor 

EFM Energy-Food Model  

EIA Environmental Impact Assessment 

FU Functional Unit  

FAO  Food and Agriculture Organization of the United Nations 

GWP Global Warming Potential 

GHG  Greenhouse gas 

GCM Global climate models 

GYGA Global Yield Gap Atlas  

GDD Growing Degree Days 

g gram 

ha Hectare 

HCO3- Bicarbonate 

ISO International Organization for Standardisation 



xxiii 

 

IEA  International Energy Agency 

IPCC  Intergovernmental Panel on Climate Change 

IBSNAT International Benchmark Sites Network for Agrotechnology 

Transfer  

IAMs Integrated Assessment Models  

IITA International Institute of Tropical Agriculture 

ICRISAT International Crops Research Institute for the Semi-Arid Tropics 

iLUC Indirect Land Use Change 

IRENA International Renewable Energy Agency 

IEA  International Energy Agency  

IPAR Incident Photosynthetically Active Radiation 

LARS-WG Long Ashton Research Station-Weather Generator 

LCA Life Cycle Assessment  

LCIA Life Cycle Impact Assessment  

LCI Life Cycle Inventory 

LAI Leaf Area Index 

kg kilogram  

K2O Potassium Oxide 

MJ Megajoule 

ME Marine Eutrophication  

MATLAB Matrix laboratory 

NT No Tillage 

N2O  Nitrous oxide 

NH3 Ammonia 

NO3
- Nitrate 

N Nitrogen 



xxiv 

 

NE Net Energy 

NH4+ Ammonium 

NIMET Nigerian Meteorological Agency 

OECD Organisation for Economic Co-operation and Development 

OH- Hydroxyl 

P2O5 Phosphate 

RMSE Root Mean Square Error 

USA United States of America 

UK United Kingdom 

UN United Nations 

UNFCCC  United Nations Framework Convention on Climate Change 

USDA United States Department of Agriculture 

UDEL University of Delaware  

RCP Representative Concentration Pathway 

RT Reduced Tillage 

RUE Radiation Use Efficiency 

RCM Regional Climate Model 

RDA Redundancy Analysis  

RWS Reference Weather Station 

SRES Special Report on Emission Scenarios 

SCFs Seasonal Climate Forecasts  

SOC Soil Organic Carbon  

SDG Sustainable Development Goals  

TA Terrestrial Acidification  

WEC World Energy Council 





2 

 

Carbon dioxide (CO2) from fossil fuel combustion and industrial processes is the largest 

contributing GHG (78%) and accounted for 76% (49 GtCO2eq) of the total anthropogenic GHG 

emissions in 2010 (IPCC 2014c). In 2017, CO2 remains the major GHG accounting for 73% of 

total anthropogenic GHG emissions (Olivier and Peters 2018). The IEA (2011) reported CO2 

emissions increased by 1.4% in 2011, reaching a record 31.6 GTCO2 yr-1. In 2017, energy-

related CO2 emissions reached 32.5 GTCO2, which, according to the IEA (2018) is the highest 

increase, recorded in history. 

Carbon dioxide emissions associated with energy production (predominantly in developed 

countries) dominate GHG emissions, followed by agricultural GHG emissions estimated at 

11% of total global emissions per year (IPCC 2014c, Tubiello et al. 2015). Agricultural 

emissions are expected to rise the fastest in developing countries driven by expanding 

economies and total agricultural outputs (Wollenberg et al. 2016, FAO 2016a). An evaluation 

of global agricultural emissions data averaged over 2000-2010, revealed that 70% of total 

agricultural emissions from synthetic fertilisers came from developing countries (Tubiello et 

al. 2013). The FAO (2014) estimated that 13% of agricultural emissions in 2011 was from 

fertiliser application. 

As the impact of climate change varies across regions and continents, there remains a level of 

uncertainty as to how future climates will respond to ever-increasing GHG emissions. Increase 

in climate variance have already been observed, and a radical shift outside of the historical 

bounds of climate variability is projected for tropical regions if nothing is done to curb 

emissions (Mora et al. 2013, IPCC 2007, 2014d, Harrington et al. 2016). To illustrate this, 

Mora et al. (2013) developed an index to determine the timing of climate shifts from the range 

of historical bounds using two model projection pathways (RCP 4.5 and 8.5). According to the 

Mora index, estimations showed that for near surface air temperature, climate departure - using 



3 

 

current projections - will occur by 2047 under RCP 8.5 (Mora et al. 2013). With concerted 

rapid CO2 mitigation however, climate departure would later occur by 2069 under RCP 4.5 

(Mora et al. 2013). As a result of projections like these, the perceived threats of climate change 

to global stability continue to be sources of scientific and political concern, which should create 

a consensus to develop a mitigation strategy, which could prevent further global warming 

(UNFCCC 2016, IEA and IRENA 2017, Ricke et al. 2017).  

Energy is essential for social, economic and environmental developments (Elum et al. 2017). 

Furthermore, fossil energy is finite and contributes to atmospheric pollution through the release 

of GHGs, which in turn promotes global warming. Aside from agricultural emissions, the IPCC 

estimated that in 2010, 14% (37.2 GTCO2eq) of the total CO2 emissions came from the 

transport sector and that 27% of the total global energy was used within this period (IPCC 

2014c, Dick 2014). Interestingly, global demand for fossil energy is still projected to increase 

throughout the next century (IPCC 2014).  

Earlier mention was made of the fact that developing countries contribute to climate change 

through agricultural practice however, in an attempt to accelerate economic development these 

countries are adopting a more carbon intensive mode (Malik et al. 2016). Thus increasing 

demand for non-renewable fossil fuels despite concerns over climate change, unstable oil 

prices, depletion of fossil reserves and energy insecurity giving rise to a global discussion on 

how to offset the deficit (Garba 2014, Dutta et al. 2014). Essentially, this demand could be 

partially offset by harnessing and developing renewable energy resources, a key route to 

achieving global temperature stabilisation (Viana and Perez 2013). In support of this, it is 

important to note that the International Energy Agency (IEA) reported that low-carbon energy 

technologies such as solar, wind and bioenergy have received much research and policy support 

in recent years (IEA 2017). This is exemplified by the fact that the work undertaken thus far is 
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GHG emission from intense land use, in addition to human rights abuses, concentration of 

ownership and potential civil unrest.  

Interest in biomass production for biofuels has increased over the last two decades and the 

focus has shifted towards sustainable feedstock development (Smith 2013, Dutta et al. 2014, 

Okoro et al. 2018). Biofuel is considered carbon neutral only if the production generates a net 

reduction in emissions (Creutzig et al. 2015). To determine the sustainability of the product, 

every aspect of its life cycle has to be considered. Nevertheless, according to Souza et al. 

(2017), there is growing evidence that bioenergy can be managed and produced sustainably. 

Souza et al. (2017) and Haus (2018) suggested factors that can significantly reduce GHG 

emissions from forest biomass production and use to include; adopting approaches such as 

agro-ecological zoning, best management practices, and the use of eco-hydrology and 

biodiversity-friendly agricultural management techniques at field, watershed and landscape 

scales are also suggested.  

Fundamentally, there is a global scientific consensus that climate change will have an immense 

effect on agriculture (Alexander et al. 2018). This is because climate change alters weather 

conditions, and consequentially crop production becomes influenced by changes in 

atmospheric CO2 concentrations, increased temperature and precipitation variability (Long et 

al. 2015, Atay 2015, Wang, J. et al. 2018). This subsequently has an impact on the timing and 

length of growing seasons, transpiration rates, water use efficiency, soil carbon and nitrogen 

biochemical transformations which ultimately results in biomass production disparities (Wang 

et al. 2014, FAO 2016a, He et al. 2018). The direct biophysical effects of the impact of climate 

variability on agricultural productivity is significant (Ventrella et al. 2012, Rosenzweig et al. 

2014, FAO 2016a). The IPCC Fifth Assessment Report (AR5) on future projections post 2030 

suggest that climate change will have an impact on crop yield which will become increasingly 
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negative and severe in all regions (FAO 2016a, Alexander et al. 2018). Thus, assessing the 

ultimate consequences of these effects will require an integrated assessment approach (Nelson 

et al. 2014).  

In terms of assessment approaches, many studies have documented the GHG mitigation 

potential of bioenergy systems using life-cycle assessments (Dale et al. 2013). For example, 

using this method, the total GHG emissions calculated from cassava-based ethanol production 

was 58.4 gCO2 MJ-1 of the product compared to gasoline (94.0 gCO2 MJ-1) in Vietnam (Pirelli 

et al. 2018). The relevance of an LCA is evidenced by the fact that it is the scientific evaluation 

method of choice used to measure the net environmental burdens associated with producing 

products such as biofuel (Carus 2017). Haus (2018) utilised a life cycle perspective to analyse 

climate impact of the production and use of biomass for biofuel.  

Crop yield responses to climate change have been and can be analysed using different 

approaches such as coupling climate to crop models (Wang et al. 2014, He et al. 2018), 

coupling crop-climate models to economic models (Nelson et al. 2014, Atay 2015, Okoro et 

al. 2017) and coupling crop-climate to economic and environmental models (Zimmermann et 

al. 2017). According to Nelson et al. (2014), a major criticism and the implication of a stand-

alone crop-climate model assessment is that it may underestimate the capacity to respond to 

climate impacts. Although Nelson et al. (2014) advocate that the assessment of climate change 

impacts should include use of integrated assessment models such as climate, crop, and 

economic models, studies have also featured environmental impact models within the 

framework (Garba 2014, Nelson et al. 2014, Zimmermann et al. 2017, Arvesen et al. 2018).  

Further to an integrated approach to assessment, Zimmermann et al. (2017) quantified climate 

change impact on crop yield, using an integrated assessment modelling (IAM) framework, 

coupling three disciplinary models (crop, economic and environmental) by linking model 
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outputs. In support of this, Arvesen et al. (2018) describes the benefits of integrating LCA 

results in impact assessment modelling as accounting for direct and indirect emissions of 

technology and scenario alternatives. This is exemplified further in the work undertaken by 

Garba (2014) who also utilised integrated modelling to study the impact of climate change on 

GHG emissions of biofuels. However, although the analysis compared GHG emissions from 

beginning to end, the main weakness of the study was the failure to address why farm level 

GHG emissions were estimated using generic eco-invent data and synthetic climate change 

scenarios, instead of more plausible GCM downscaled data. In addition to this, none of the 

studies reviewed conducted a statistical comparison of the environmental impact against 

climate change scenarios and varying farm technologies. In contrast, Nelson et al. (2014) 

statistically quantified the contributions of several sources of variations for each environmental 

and economic response variable, while Zimmermann et al. (2017) did not attribute the 

environmental changes to the effect of climate change or any assumptions about crop 

management during their study. This shows a serious limitation in terms of previous studies.  

From the foregoing discussion, there is a knowledge and information gap in terms of integrated 

assessment analyses that evaluate a holistic combination of factors influencing key 

environmental impact variables. Understanding environmental impact holistic responses to 

future climate change and farm management techniques, and the significance of each 

contributing variable, is key to providing factual and robust support when strategic decision 

making. With regards to this and due to lack of systematic quantification with the contribution 

of different factors (e.g. climate change and farm management) to the variability of yield and 

environmental impact, within the context of assessing climate change and the impact on 

bioenergy systems; this study will help to address this gap in knowledge. More specifically, 

this study proposes coupling a regression model with an impact chain, to quantify the effects 

of climate change and farm management on yield, and environmental variables using a 
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1.6 Thesis Structure 

This thesis consists of six chapters.  

Chapter 1 presents the research background and the research aims and objectives.  

Chapter 2 reviews literature on climate change and adaptations; climate change mitigation, the 

potential of biofuels, policies for rapid development and the projection of future climate 

impacts on bioenergy sector. In this chapter, a comprehensive report is presented on climate-

crop model uncertainty and applications on a local scale. A life cycle impact assessment of 

bioenergy feedstock production is also included in the report.  

In Chapter 3, the Crop Sustainability Assessment Framework (CSAF), which forms the 

framework applied in the research, is introduced. The development of the climate-crop model 

simulation and LCA-linear regression modelling approach are explained in detail in this 

chapter.   

Chapter 4 is divided into two sections and report the results of the climate-crop model 

simulation and LCA-linear regression modelling data. In the first part of this chapter, 

downscaled GCM projections for two representative concentration pathways (RCPs 6.0 and 

8.5) are evaluated followed by crop yield (kg ha-1) to estimate the impact of farm management 

scenarios and climate change. In the second section of this chapter, the preliminary analysis of 

the GHG emission, carbon footprint (CF) and net energy (NE) assessed from LCA is presented, 

as well as regression modelling results of different factors on the LCA outputs is analysed. 

Chapter 5 is used to discuss the results obtained from previous chapter. Here, the results are 

compared with outputs from similar studies and the implications of the results on future 

sustainability of bioenergy crop production are evaluated in detail.  
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Finally, Chapter 6 is used to draw conclusions on the research findings, and hence make 

recommendations for biofuel strategies and farm management practices and then to suggest 

directions for future research.  
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et al. 2014, FAO 2016a). According to Lesk et al. (2016), about one-quarter of climate related 

damage and crop losses have occurred in developing countries. Further to this, a study by the 

FAO (2016a) estimated that between 2003 and 2013, about 25% share of the economic impact 

of climate-related disasters within developing countries were felt in agriculture. As a result, a 

significant number of studies have documented that the impacts of climate change, especially 

increasing temperature, have had a largely negative as opposed to positive effect on crops such 

as wheat, rice and maize amongst others across regions (Ringler et al. 2010, Asseng et al. 2011, 

Lobell et al. 2011, Rosenzweig et al. 2014, FAO 2016a, Chen et al. 2018). In addition, studies 

show that climate change could potentially cause a shift in crop suitability to occur, as the 

climate gets warmer (Rippke et al. 2016). Therefore, urgent adaptive measures such as mixed 

farming, irrigation to prolong suitability and planting of alternative viable substitutes in many 

locations are needed in order to mitigate the impact of further climate change on crop 

productivity. 

This review of literature seeks to focus on climate change and its potential impact on 

agriculture, as well as the assessment of sustainable bioenergy crop production through a life 

cycle assessment framework. Specifically, a review of historical climate and future climate 

change projections for Africa and the impact on crop production is presented in sections 2.2 to 

2.4. Section 2.5 highlights strategies for climate change mitigation, while sections 2.6 to 2.7 

discusses critical issues affecting biofuel sustainability and bio-feedstock availability in 

Nigeria. Section 2.8 describes the various methods used for assessing climate change impact 

on crop yield, and the review of an integrated assessment approach. Specific emphasis on life 

cycle assessment as an important tool is reviewed in sections 2.9 to 2.10. Finally, previous 

approaches that have attempted to integrate LCA with regression are discussed in section 2.11 

and the review outcome and knowledge gaps are summarised in section 2.12.  
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The uncertainties associated with regional climate change are challenging in terms of the 

production of reliable scenarios for the adaptive planning of future agricultural production 

(Sultan et al. 2014). Previous assessment of historical and future climate change over the West 

Africa region including the Sudanian and Sahelian regions have also shown this (Biasutti 2013, 

Monerie et al. 2013, Sultan et al. 2013, Alemaw and Simalenga 2015, Sylla et al. 2016, 

Ekwezuo et al. 2018).  

In 2016, Sylla et al. examined both historical temperature and precipitation change over West 

Africa from 1983 through 2010. This systematic report considered two of three observed 

datasets, which had the similar grid resolution of 0.5° × 0.5° (University of Delaware (UDEL) 

and the Climatic Research Unit Anglia (CRU) of the University of East Anglia). The remaining 

grid resolution for the third dataset, as per the African Rainfall Climatology (ARC), had a 

resolution of 0.1° × 0.1°. The dataset presented in Figures 2.1 and 2.2 represents these seasonal 

averages from May to September and shows historical temperature from UDEL and CRU with 

a clear warming trend within the range of 0.2 °C to more than 0.5 °C per decade; a trend of 

great significant for countries around the west Sahel and Gulf of Guinea.  

Furthermore, similar warming trends have been reported by the IPCC (2014) and are consistent 

in terms of aligning with observations of 0.5 °C  and 0.8 °C for west Africa and the Sahel 

between 1970 and 2010 (Niang et al. 2014). This shows that overall, temperatures have risen 

considerably over the last 50 years (Niang et al. 2014); and Girvetz et al. (2019) highlighting 

the fact that 19 out of the past 20 years have been hotter than any previous year on record in 

Africa. As a direct result of this, increasing temperatures have resulted in higher rates of 

evapotranspiration. So, for example, data from 2001 to 2017 shows a consistent increase in 

evaporative stress in Zambia between the years 2001 to 2017 (Girvetz et al. 2019). Put simply, 

hotter temperatures are gradually becoming the new normal and there is strong evidence of 
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no effective mitigation put in place to change current emission trajectory (Li, Y. et al. 2015, 

Haus 2018). It is projected that this pathway will in the long-term lead to higher energy demand 

and GHG concentration (a concentration of more than 1,370 ppm CO2eq). Adeniyi (2016) 

reported that the direction of projected precipitation changes across five regional domains of 

West Africa under RCP 4.5 (medium) and RCP 8.5 (high) scenarios are almost the same. 

The complex interaction between the ocean-atmosphere-sea and ice-land-surface relationships 

are represented in global climate models (GCMs) and simulated based on a three-dimensional 

grid over the globe (Lapp et al. 2009). The accuracy with which GCMs reproduce historical 

climate features and climate changes have increased the confidence of its use to make 

projections for the future (Taylor et al. 2012). In terms of a study based on this, Ramirez-

Villegas et al. (2013) assessed regional differences in seasonal GCM skills. What was noted 

was that outputs from GCMs cannot be applied directly to impact models at a regional and 

local scale, due to the coarse resolution and inherent systematic errors (bias), producing 

inaccurate reproduction of weather statistics including extreme events (Iizumi et al. 2012). 

Another source of climate impact uncertainty arose from large variations in simulation results 

amongst multiple GCMs, or the same GCM with different radiative forces (Li and Ye 2011). 

Thus although climate information from a combination of model ensembles gives a plausible 

range of eventualities, model selection based on performance is usually constrained due to the 

large spread of projections from GCMs, and by factors such as the availability of data from 

models or limited resources for in-depth strategic selection (McSweeney and Jones 2016).  

The Coupled Model Inter-comparison Project (CMIP) has, over the years, been the source of 

key model simulations that have been used in most studies for future climate projections (White 

et al. 2011, Taylor et al. 2012, Ramirez-Villegas et al. 2013). Its validity is evidenced as the 
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latest release of the CMIP5 (phase 5) GCM model ensemble was adopted for the IPPC Fifth 

Assessment Report (AR5). Further to this, recent studies have used the Coupled Model Inter-

comparison Project Phase 5 (CMIP5) multi-model simulations to determine temperature and 

precipitation projections over different parts of West and Central Africa (Giannini et al. 2013, 

Laprise et al. 2013, Roehrig et al. 2013, Biasutti 2013, Mehran et al. 2014, Dike et al. 2015, 

Adeniyi 2016, Klutse et al. 2018, Diedhiou et al. 2018, Girvetz et al. 2019). 

Researchers such as Diedhiou et al. (2018) and Klutse et al. (2018) have examined the effects 

of changes in regional temperatures and precipitation extremes, based on a 1.5 °C and 2.0 °C 

global mean temperature change. Diedhiou et al. (2018) confirmed a linear increase of regional 

temperature with a global mean temperature increase. Diedhiou et al. (2018) also confirmed 

that larger regional warming is predicted to be highly likely. For example, GCM projections of 

global warming of 1.5 °C (2.0 °C) induced a regional temperature increase of 1.7 °C (2.3 °C). 

This is almost consistent with additional regional warming of 0.4 °C and 0.8 °C induced by 2.0 

°C global warming as reported by Klutse et al. (2018). In addition, Diedhiou et al. (2018) stated 

that extreme annual temperature of maximum and minimum daily temperature is projected to 

increase at higher magnitudes. Similarly, Niang et al. (2014) noted that the expected increase 

in near surface temperature is projected to rise faster in West Africa: one to two decades earlier 

than the global average. According to Girvetz et al. (2019), the CMIP5 multi-model simulations 

based on the RCP 8.5 temperature trajectory for Africa would be 1.7 °C by the 2030s, 2.7 °C 

by the 2050s and 4.5 °C by the 2080s above pre-industrial levels. Niang et al. (2014) also earlier 

reported projections of 3 °C and 6°C under RCP 4.5 and RCP 8.5 scenarios for West Africa by 

the end of the 21st century. 
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Although model agreement for the projections of precipitation varied and model bias still 

exists, the latest CMIP5 multi-model ensembles and projections confirm the expectations for 

the rest of the 21st century. All studies above used different climate models of varying 

resolutions at the regional scale: hence, the robustness of the simulations in terms of model 

agreements differed. For example, Klutse et al. (2018) reported 80% of model agreement, 

Figure 2.3: Average change in annual total precipitation (%) and mean temperature (°C), by country 

for the African continent (Source: Girvetz et al. 2019). 
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significant reduction (>10%) in suitable land area for crops such as maize, sorghum, banana, 

finger millet (Figure 2.4). Dinesh et al. (2015) and Challinor et al. (2014) added that adaptation 

is expected to be helpful in dealing with climate change through exploring autonomous 

measures such as cultivar substitution and a change in planting dates, to systemic and 

transformational changes that include climate-smart agriculture.  

 

2.5 Strategies for climate change mitigation  

In order to tackle global warming, the United Nations Framework Convention on Climate 

Figure 2.4: Median changes in climatically suitable areas projected for 2050s under the RCP 8.5 

scenario, and relative to 1970-2000 historic data (Source: Dinesh et al. 2015). 
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 The responsibility is now on the 165 Governments that acted as signatories to the Paris 2016 

agreement (the Paris Agreement) to review existing national frameworks and enact rules, 

regulations and policies that will accelerate energy transition and collective reduction strategies 

of energy related CO2 emissions by 2.6% per year (IEA and IRENA 2017).  

Unlike the Kyoto protocol, that sets binding targets for industrialised countries; under the 2016 

Paris agreement, developed and developing countries were to put together nationally 

appropriate mitigation actions via the Intended Nationally Determined Contributions (INDC). 

This document was submitted to the UNFCCC and sets out quantitative targets to reduce GHG 

emissions (Mani et al. 2018, IEA and IRENA 2017, UNFCCC 2016). The reduction of 

agricultural GHG emission featured in most of the INDCs and some sub-Saharan African 

countries specifically pledged to promote, low-carbon strategy and adopt climate-smart 

agriculture (CSA) to reduce GHG emissions (FAO 2016b, UNFCCC 2016, Zheng and Han 

2018, Girvetz et al. 2019). In summary, Stirling (2018) gave an overview of the UNFCCC 

reporting process for national GHG emission reporting of direct nitrous oxide (N2O) emissions. 

The debate about emission mitigation gained prominence with Wollenberg et al. (2016) arguing 

that it is unclear how much emission mitigation is required and how feasible it is for agriculture 

to meet the proposed global target of limiting warming by 2°C. To counter this, Wollenberg et 

al. (2016) proposed a global target emission of 1 GtCO2e yr-1 by 2030, to achieve the 2°C 

warming limit in 2100 under the RCP 2.6 scenario pathway. They noted that the consequences 

of excluding agricultural emissions from mitigation targets and plans could reduce the 

feasibility of meeting the 2°C limit and may increase the cost of mitigation in other sectors. 

Therefore, to meet the 1.5°C or 2°C targets, countries will need to be ambitious in pursuing 

agricultural emission reductions through technology development and transfer (Richards et al. 

2018). 
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2.5.2 Renewable energy development 

Endorsement of the Paris Agreement charts a course for addressing both mitigation of GHG 

emissions and adaptation to climate change impacts (WEC 2016). It is an important step 

towards a truly global emission reduction strategy that will stabilise GHG emissions and 

provide an essential framework for any future international agreement on climate change (Mani 

et al. 2018). It also has implications for the energy sector, which is the single largest net 

contributor of GHGs due to the burning of fossil fuels. Hence, the energy sector is at the core 

of efforts to combat climate change (IEA and IRENA 2017).  

Energy plays a central role in the economy because it drives all the other elements of the 

system: the industrial, agricultural, commercial and government sectors, including private life. 

It has been estimated that by mid-century, global energy demand could rise by 50% (WEC 

2016). Worryingly, developing countries are adopting a more carbon-intensive standard of 

living increasing the demand for non-renewable fossil fuels (Garba 2014, Dutta et al. 2014). 

However, this demand could be partially offset by harnessing and developing renewable energy 

resources. A key route for achieving national binding emission targets would be less 

dependence on fossil energy and intensification of the production of cleaner forms of low-

carbon renewable energy. Many studies have established the climatic and economic benefits 

of renewable energy technologies in terms of sustainable development (Viana and Perez 2013, 

IRENA 2016, Souza et al. 2017, Mani et al. 2018). Any increase in the use of energy from 

renewable sources is an important measure to offset climate change, reduce GHG emissions 

and promote the security of energy supplies (Pang et al. 2014).  

The International Energy Agency (IEA) reported that low-carbon energy technologies such as 

solar, wind and bioenergy, have received much research and policy support in gaining 
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presented on biofuels sustainability (Bauer et al. 2018). Strong expert views have been 

expressed stressing that biofuel development competes with food and food resources, and the 

production does produce negative energy value (Balogun and Salami 2016). For example, 

Teweldemedhin and Mwewa (2014) reported that biofuel production diverted land and labour 

meant for food production to the cultivation of Jathropa in Zambia. The findings were however 

based on a survey of 65 contract farmers (out of 8,000 recruited); whom despite owning large 

hectares of farmland, used approximately 50% for Jathropa production.  

Kline et al. (2017) suggested that by focusing only on the negative impacts of biofuels, debaters 

are obscuring the main drivers of local food insecurity, ignoring opportunities for biofuels to 

contribute to the solution. It was discussed that an understanding the nexus of food security, 

bioenergy sustainability and resource management could facilitate the goal to end hunger and 

ensure sustainable energy for all to meet the targets of the 2030 Sustainable Development Goals 

(SDG) and the United Nations Paris agreement on climate change (Kline et al. 2017).  

On the contrary, some experts, view biofuel development as providing opportunities for rural 

infrastructural development in ways that may enhance future food security (Omer 2010, Carus 

2017, Souza et al. 2017). For example, Mudombi et al. (2018) used a poverty index to 

determine local multi-dimensional poverty effects of growing biofuels in Malawi, Swaziland 

and Mozambique. Evaluation of sugarcane production workers when compared to Jathropa 

counterparts using a regression analysis method to estimate poverty effects around biofuel 

projects, revealed that groups involved in biofuel value chains had lower poverty than the 

control group. Similarly, Herrmann et al. (2018) used econometrics to assess the implications 

of expanding biofuel feedstock production on food production. Although food availability for 

households participating in sugarcane outgrower schemes in Dwangwa, Malawi were not 

significantly affected and they earned significant higher incomes, the study further revealed 
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that expansion of sugarcane plantations for biofuel and food crop expansion by outgrowers 

might affect food crop production of other households not involved in the scheme through land 

competition or labour resources. Furthermore, Herrmann et al. (2018) noted that the scheme 

provided higher carbon sequestration, but it is a direct driver of land-use change, contributing 

to ecosystem loss.   

Although differences of opinion do exist, there appears to be some agreement from Carus 

(2017) that local production of bio-based feedstock would be beneficial for the socio-economic 

development of rural areas. Furthermore, many argue that if bioenergy feedstock is sustainably 

produced, farmers will in turn, become resilient, and adapt better to climate change (Carus, 

2017, Kline et al. 2017). Although there are still concerns over the economic and social viability 

of biofuels, it remains unclear how sustainable future production will be maintained under 

climate change. This is because the sustainability of biofuel feedstock sources largely depends 

on land availability, and despite the huge expanse of available land in Africa, the World Energy 

Council (WEC 2016) reported that in 2014, the nominal share of biofuel production in Africa 

was measured at 1% compared to North America (44%), Europe (16.5%) and Asia (10.5%) as 

shown in Figure 2.5. However, others have highlighted the relevance of biofuel projects that 

are well into implementation in some developing countries such as Malaysia, Kenya, South 

Africa, Ghana and Nigeria, using feedstock such as palm oil, sugarcane, sorghum, maize 

amongst others as for biofuel. Production is ongoing despite the environmental consequences 

of land use change, impact on ecosystem, biodiversity from high deployment of land-intensive 

bioenergy feedstock (Creutzig et al. 2015, Okoro et al. 2018). 
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Table 2.1: Production of liquid biofuels by region (Adapted from the World Energy Council (WEC 

2016). 

Region Percentage 
 

1993 2003 2013 2014      

Asia Pacific 
 

3.3% 9.5% 10.5% 

Africa 
   

1.0% 

Middle East 
    

Europe & Eurasia 1.1% 11.1% 17.1% 16.5% 

South & Central America 71.4% 49.2% 28.5% 28.7% 

North America 27.4% 36.4% 44.8% 44.1% 

 

2.7 Biofuel feedstock production in Nigeria 

Nigeria is committed to the renewable energy targets set out in the INDC report to reduce 

climate change (Federal Ministry of Environment 2015). Other motivating factors to promote 

renewable energy development include the potential of supporting rural development, boosting 

the agricultural sector and creating huge financial benefits to local farmers, businesses and jobs. 

Through the national biofuel policy, the government seeks to create an enabling environment 

for biofuel production investment, utilisation and market orientation (Mohammed et al. 2014, 

Aliyu et al. 2017). The study by Shaaban and Petinrin (2014), and Aliyu et al. (2015), showed 

that the renewable energy potential in Nigeria is 1.5 times that of fossil energy, and the 

available 28.2 million hectares of arable land has the potential to produce up to 0.256 million 

tons mix of crops per day. The generalisability of much published research on this issue is 

problematic and (Oyedepo 2014) also notes that renewable development in Nigeria has been 

sporadic with no consistent national policy in place. 
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With reference to the debate of sustainable bioenergy development in Nigeria, many studies 

have reviewed government renewable energy development policy (Ohimain 2013a, 2013b, 

Shaaban and Petinrin 2014, Aliyu et al. 2017, Elum and Momodu 2017); resource availability 

(Udoakah and Umoh 2014, Shaaban and Petinrin 2014, Mohammed et al. 2014, Aliyu et al. 

2015, Ben-Iwo et al. 2016, Akuru et al. 2017); benefits and cost (Oyedepo 2014, Ohimain 2015, 

Edomah 2016, Aliyu et al. 2017, Okoro et al. 2018). 

More literature has emerged from Edomah (2016) and Elum and Momodu (2017) that 

highlights the challenges of sustainable bioenergy development in Nigeria; including high 

investment costs, legal and regulatory barriers. Through the Nigerian Biofuel Policy incentive, 

bio-refining industries using first generation biomass feedstock are exempt from taxation (Ben-

Iwo et al. 2016), however, Edomah (2016) advised on the removal of petrol subsidies to 

encourage market competition. Furthermore, Akuru et al. (2017) evaluated the availability of 

biomass resources within the country with respect to its conversion to electricity rather than as 

a biofuel, while Udoakah and Umoh (2014) suggested that municipal waste in addition to 

agricultural residue could be a viable alternative to generate electricity and biofuel for 

automobiles. In addition to this, Oyedepo (2014) is of the opinion that the Nigerian government 

could consider extending biomass residues into power generation, as the feedstock is widely 

available and renewable. This review is supported by Mohammed et al. (2014) and Elum et al. 

(2017), who agree with the idea of substituting agricultural biomass residues as feedstock, 

because (1) use of biomass residue for energy has little effect on food security (2) modern 

bioelectric power generation methods using bio-residues are efficient and can minimise energy 

losses and minimise emissions. 
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In a follow-up report, Elum et al. (2017) reported on utilising bioenergy to address issues of 

socioeconomic and environmental concerns in Nigeria. Growing certain energy crops 

dedicated solely to biofuel production was recommended, as this would create a strong synergy 

between the energy and agricultural sectors. Amongst the challenges identified to constrain the 

development of bioenergy in Nigeria, Elum et al. (2017) did not include the impending threat 

of climate change on the production of energy crops. 

Dick (2014) estimated the supply capacity of biofuel feedstock, bioethanol production and the 

potential and likely impacts of feedstock demand on national energy and food supplies. 

Findings from the sectoral Energy-Food Model (EFM) suggests that bioethanol from crops will 

not affect domestic food supply or increase commodity prices due to substantial acreage of 

fertile lands. Dick (2014) also emphasised that Nigeria has the potential to produce sufficient 

feedstock to meet domestic bioethanol requirements and an annual production of 5.14 billion 

litres of ethanol is feasible from all regions.  

 In addition, Nigeria has an enormous land resource for biofuel feedstock production, and 

cassava, sugarcane, maize and sorghum are viable energy crops that can be grown on marginal 

or degraded agricultural land for biofuel (Mohammed et al. 2014, Ben-Iwo et al. 2016). Current 

investments in sugarcane and cassava feedstock plantations in Nigeria are over $3.86 billion, 

with up to 10,000 units of mini refineries and 19 ethanol bio-refineries built according to Aliyu 

et al. (2017). According to Okoro et al. (2018), public support for bioenergy development in 

Nigeria is still debateable, but there is a consensus that bioenergy as a substitution to fossil-

fuel energy could benefit the environment in terms of GHG emission reductions and provide 

an element of energy security. Balogun and Salami (2016) reviewed responses from local 

stakeholders on the effects of the development of biofuel production in regions where 

production has been established in Nigeria. Across all three ecological zones, the perception 
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(2017) and Jiang et al. (2017), field experiments can be expensive, repetitive over long periods 

to capture seasonal weather variations and may not be representative of site conditions due to 

spatial heterogeneity. Although computer solutions are not a substitute for field experiments, 

the use of agricultural and climate models has dominated scientific literature in evaluating the 

risks of climate change and adaptation assessments (Fealy 2013, Asseng et al. 2015, Zhai et al. 

2017, Chen et al. 2018). Over the last decade, there has been an increase in the use of crop-

climate models to estimate crop productivity and develop adaptation options, given the growing 

interest in both the implications of climate change and the uncertainty surrounding future 

predictions (Challinor et al. 2018).  

Crop models are useful tools for assessing the sensitivity of crop growth and yield formation 

processes to climatic factors. Crop models bring together the best available knowledge on plant 

physiology, agronomy, soil science and agro-meteorology to predict plant growth under 

specific environmental conditions (Timsina and Humphreys 2010, White et al. 2011, Asseng 

et al. 2015). Nevertheless, the strategy has not escaped criticism from researchers and 

academics. According to Challinor et al. (2013) and Lobell (2013), crop models are simplified 

representations of reality (therefore will contain inevitable errors) and are therefore tools from 

which information can be retrieved rather than viewed as such which can compete with reality.   

There are various categories in which the application of crop models can be grouped but the 

main goal of most applications is to predict final yield. In essence, crop models can be applied 

as strategic, tactical and forecasting management tools (van Keulen 2013, Robert et al. 2016, 

Han et al. 2017). Under strategic and tactical applications, the models are run prior to planting 

of a crop to compare alternative crop management scenarios or evaluate various management 

options with respect to one or more management decisions incorporating historical or generated 

weather data. Apart from its broad application as an agronomic research tool, areas of specific 
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interest in some cases include the determination of resource use and the environmental impacts 

of land-use change or associated variables. The most common application of crop models in 

agricultural production systems however, is to simulate the effects of climate change such as 

elevated carbon dioxide, changes in temperature and rainfall on crop yield and water use 

requirements and to identify potential adaptation strategies (Hoogenboom et al. 2012b, 

Rosenzweig et al. 2014, Challinor et al. 2018).   

Most crop models operate at daily time steps which start at planting and end at the prediction 

of harvest or physiological maturity depending on the crop (White and Hoogenboom 2009). 

When using crop models to predict crop growth, initial field conditions such as the soil nutrient 

and water status, the planting date and density are specified. Other crop information such as 

cultivar characteristics, planting arrangement, irrigation, fertilizer application, tillage events, 

pest, diseases and other factors may be considered (Hoogenboom et al. 2012b). Most important 

for modelling crop yield at any particular location is the availability of daily weather data and 

CO2 concentration data corresponding with the historic, current or future scenarios of interest 

(White et al. 2011). It is important to note that crop models are not without limitations. 

According to Kasampalis et al. (2018), complex models are difficult to use and should be 

evaluated against the objectives of the study. Availability of sufficient soil profile 

characteristics, input data quality and extensive growth parameter data for model calibration, 

have all been identified as input limitations in terms of large area yield projection. 

Misrepresentation of natural field occurrences within model, model modifications, and over 

simplification of interactive effects have also been linked to model uncertainty (Palosuo et al. 

2011, Lobell 2013). 

2.8.1 Types of crop models and model components 
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Crop models calculate the causal relationships between the various plant functions and the 

environment, or they apply a statistical approach, using correlative relations between all 

processes. Crop models can be deterministic in that they make an exact calculation or 

prediction of the yield or dependent variable; or probabilistic or stochastic, which provide a 

different output for each calculation along with probabilities (Boote et al. 2013, Lobell 2013, 

Hoogenboom et al. 2012b, 2015, Islam et al. 2016, Liu et al. 2016).  

2.8.1.1  Process-based crop models 

Process-based models are computer-based mathematical representations of one or several 

physiological and physical processes characterising the agroecosystems (Buck-Sorlin 2013). 

Process-based models are extensively used in crop-climate modelling studies and have been 

tested against experimental datasets in different environments (Semenov et al. 2012, Asseng et 

al. 2015, Reynolds et al. 2018). The models can be data intensive as the processes are defined 

at a fine scale and calibration can be difficult due to the large number of uncertain parameters 

(Lobell and Burke 2010, Islam et al. 2016, Jiang et al. 2017). However, process-models are 

powerful tools designed to assist farmers with crop management decisions, and based on their 

high geographic resolution and combination of climate and soil data, can facilitate detailed and 

dynamic weather, soil and farm crop management analysis (van Keulen 2013, Islam et al. 2016, 

Jones et al. 2017).  

The number of process-based models has increased over the last four decades and their 

applications vary in terms of differences in approaches, parameterisation, assumptions and 

structures (Challinor et al. 2018). Rosenzweig et al. (2014) grouped seven crop models based 

on their purpose, structure and processes to determine the source of the variations in model 

results. The models were categorised into site-based models, which were developed to simulate 
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Process-based models have become more useful with the incorporation of Decision Support 

Systems (DSSs) which create an interface that integrates climate, crop and economic models 

to aid risk assessment and economic analysis of management strategies (Palosuo et al. 2011, 

Mubeen et al. 2016). In order to integrate a process-based model to seasonal climate forecast 

information, Han et al. (2017) developed a decision support system (DSS) that could effectively 

translate probabilistic seasonal climate forecasts (SCFs) to crop responses. The Agriculture-

Table 2.2:  Categories of energy crop models (Source: Jiang et al. 2017) 
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nitrogen data. The simulated grain yields matched the measured values but the model 

overestimated soil nitrogen, which according to Jones et al. (2012), reflects inadequate model 

representation of the degraded soil profile. Liu et al. (2017) compared the simulation of a long-

term wheat-maize rotation experiment (19 years) using DSSAT model coupled to the 

CENTURY-based soil C and N module in DSSAT v4.6. DSSAT was found to simulate grain 

yield with reasonable accuracy (R2 = 0.72) under no fertiliser treatment in comparison to higher 

fertiliser rate (R2 = 0.45). Due to the poor model performance under no fertiliser treatment, 

both studies noted that DSSAT-CSM model was sensitive to N stress than to real crop growth 

(Li et al. 2015, Liu et al. 2017). However, DSSAT-CSM model can still indicate the influence 

of some management practices and used to select optimum N management practices.   

2.8.1.2 Statistical crop models 

Statistical crop models (also known as empirical models) require the use of historical crop and 

climate datasets for model calibration (Lobell 2013, Liu et al. 2016, Lobell and Asseng 2017, 

Tebaldi and Lobell 2018). Most often, statistical models are used to predict values of the 

dependent variables by generating the prediction equation and are also used to understand the 

relationships between two or more variables (Ostertagová 2012, Leng and Huang 2017). To 

date, various methods have been developed but the statistical method is usually preferred to 

process-based models as the latter requires extensive data input which is sometimes not 

available, especially in developing countries. However, this method of analysis has a number 

of limitations thus according to Liu et al. (2016), processes inherent to crop growth are not 

directly considered in statistical models. That being said however, the indirect effects of 

climatic variability, are not well captured by process-based models but can be included in 

statistical models such as those related to pests and diseases. In addition to the above, statistical 
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Another assumption in statistical analysis is that data measurement is perfect, even though in 

reality, errors can exist in yield and weather measurements. As an example, Lobell (2013) 

estimated the potential bias introduced by measurement error on yield predictions by using 

statistical crop models. The result suggested large errors with precipitation measurements (up 

to 30%) significantly biased crop yield output, while the measurement error for temperature 

was contrastingly small, and therefore yield response changed slightly. 

When compared to process-based models, statistical models can test for relatively simple 

relationships, but can come under the direct influence of climate variability (Tebaldi and Lobell 

2018). To evidence this, Roberts et al. (2017) compared climate change predictions of a simple 

process-based and statistical crop model to actual maize yields. Interestingly, the result show 

that the statistical model predicted greater impact of climate change on yield compared to the 

process-based model. A combination of both models gave significantly better results than 

predictions from either model independently. Roberts et al. (2017) however stressed that 

because of the simplicity of the models used, a wider set of models should be employed in 

future using the same framework in order to yield more optimum results (Liu et al. 2016). 

2.8.1.3 Crop model uncertainties 

Challinor et al. (2013) defined model uncertainty as a lack of predictive precision due to the 

inherent limitations to predictability. For example, in literature, a lack of predictive skills is 

associated with errors in model design. Due to this, Corbeels et al. (2018) and Knox et al. 

(2012) advised that some level of caution was needed when interpreting crop model outputs in 

any climate impact assessment given the large uncertainties associated with model predictions. 

The uncertainty in crop model outputs have been analysed and many impact modellers have 

presented sources of data errors that should be of concern. According to Rotter et al. (2011), 
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Rosenzweig et al. (2013) and Watson et al. (2015), the assessment protocols adopted by many 

analysts could significantly bias the projected response of crops to climate variability and 

change. Challinor et al. (2014) who carried out a meta-analysis of more than 1,700 published 

simulations, to evaluate climate change impacts and the quantitative effectiveness of adaptation 

using local mean temperature as a metric of change identified that firstly, the differences in 

experimental design and methods were the main causes of projection differences; and secondly, 

among other discrepancies in model simulations, they observed a large variation in structural, 

parameter and bias correction uncertainty in crop and climate models.   

He (2008) and Watson et al. (2015) further categorised uncertainties into model parameter 

uncertainty, model structure uncertainty and scenario uncertainty. Uncertainty in model outputs 

can be ascribed to a number of factors such as incomplete agronomic management data, crop, 

soil data and weather data inputs required to run the model. In order to clarify, He (2008) 

identified weather variability as the dominant uncertainty contributor to model yield and 

nitrogen leaching outputs. Tao et al. (2018) quantified the contributions from crop model 

structure, climate projections and crop model parameters to the uncertainty in climate impact 

assessment. Based on the yield outputs from seven crop models, and eight different downscaled 

climate projections for the 2050s, Tao et al. (2018) reported that crop model structure 

contributed the most to the total variance of ensemble output followed by climate projections 

from GCMs and crop model parameters. In addition to structural differences and weather 

inputs, Watson et al. (2015) also included input calibration uncertainty in their assessment by 

comparing a process-based and statistical crop modelling systems. Effort was made to examine 

interactions between the three sources of uncertainty and how different model types can be 

influenced by input calibration uncertainty. Watson et al. (2015) pointed out that irrespective 

of model choice, errors in input data characteristics and climate errors affected model response. 
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One of the limitations with this explanation is that it does not explain why and to what degree 

such errors are relevant to each model. 

Most impact assessment tended to reduce model uncertainty by employing an ensemble of crop 

or climate models in simulations (otherwise known as model ensembles). To mention a few, 

Asseng et al. (2015) evaluated the effects of temperature variability on wheat yield by 

comparing yield outputs from an ensemble of crop models against field experiments. Tebaldi 

and Lobell (2018) used an ensemble of climate models to estimate future climate change under 

the RCP 4.5 and RCP 8.5 scenarios in order to account for model uncertainties. Chen et al. 

(2018) used an ensemble of GCM datasets to address uncertainties in projected 1.5 and 2.0°C 

temperature change scenarios. In addition to using a crop model calibrated and validated for 

the region under study, Chen et al. (2018) used multiple sets of parameters to account for the 

uncertainties in cultivars and management. Similarly, Leng and Huang (2017) used 97 climate 

model projections for under four emission scenarios to estimate uncertainty sources in 

statistical crop models.  

The aforementioned studies did address the uncertainties from scenario differences with respect 

to different initial boundary conditions, however, the uncertainty due to different climate model 

structure was not accounted for. With the exception of Asseng et al. (2015), uncertainties from 

crop model type, parameterisation and cultivar type were not addressed. Although using 

ensembles of multi-models produces robust simulations of crop yield projections and 

minimises crop model uncertainties, Yin et al. (2017) argued that the detailed response of 

individual models could be hidden when using the mean or median results of the multi-model 

ensembles thereby making it difficult to assess the accuracy of each model.    
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2.9 Integrated Assessment Modelling (IAM) approach for energy crop 

sustainability 

Agricultural response to climate change has been widely represented in many studies using 

different crop modelling approaches. As earlier reviewed in section 2.6, previous assessment 

studies coupled climate and crop models to assess how crop yield responded to climate change 

(Asseng et al. 2015, Liu et al. 2016). However, the consideration of the impact of climate 

change on crop yield alone is not sufficient to estimate the broader implications of climate 

change for agricultural, economic and environmental responses. In light of this, more studies 

are beginning to consider varied integrated assessment approaches for agricultural impact 

assessment (Purola et al. 2018). To date, various studies incorporated GIS within their farm 

assessment framework by coupling crop model output into a GIS model to create spatial maps. 

Rupnik et al. (2018) as an example developed a cloud-based decision support system that can 

be integrated with existing farm management information systems.  

Other studies integrated economic models to climate and crop models (Atay 2015, Okoro et al. 

2017) to study the impact of climate change on global crop commodity prices and poverty 

outcomes (Hertel et al. 2010) in addition to global food systems (Nelson et al. 2014). Islam et 

al. (2016) used a similar structural framework that integrated climate models to DSSAT crop 

models combined with the IMPACT global economic model. By including cultivars with 

drought and heat tolerance traits, they simulated yield response under an extremely dry climate 

scenario using RCP 8.5. Both exogenous (independent of market effects) and endogenous 

(dependent on market effects) yields outputs were compared and from the results, drought and 

heat tolerant crop varieties had the potential to reduce the negative yield impacts due to climate 

change. In addition, market effects could also dampen the positive impacts as price signals 
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influence incentives to adjust farm management. In order to optimise resource allocation 

planning in crop models, Vilvert et al. (2018) used the outputs as inputs in bio-economic farm 

models to estimate production cost and farm income. Further to this, they applied the outputs 

from crop models in order to simulate supply and market demand to determine prices and trade 

volumes.  

Furthermore, other studies have linked the outputs from climate-crop-economic models to 

environmental impact models within the IAM framework with the aim of: (1) deriving changes 

in farm input management, (2) estimating the agricultural GHG emissions to the air, and water 

(Wolf et al. 2015, Zimmermann et al. 2017, Purola et al. 2018). As evidence of this, Wolf et 

al. (2015) used combined model analysis to evaluate farming systems. To do so, they integrated 

four models to estimate future farming systems in Europe considering climate change, price 

and technology changes. In their approach, yield output from SIMPLACE crop model was 

linked to (1) a CAPRI model that simulates global product prices (2) a FSSIM model that 

calculates farm level changes in cropping patterns and net income and (3) yield output which 

was linked to an INTEGRATOR environmental model to estimate the environmental impacts. 

Generally, crop yield increases towards 2050 were mainly attributed to higher atmospheric 

CO2.  

Zimmermann et al. (2017) carried out a sensitivity assessment of climate change impact on 

different impact variables such as crop yields, land use, production and environmental variables 

to three crop management adaptations. Similar to Wolf et al. (2015), the crop model was 

integrated with an economic model (with the exception of a model that calculated farm level 

changes in cropping patterns and net income) and used an environmental model to evaluate the 

environmental impacts from nitrogen fertiliser input. The report showed that across Europe, 
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yield sensitivity to sowing dates and crop cultivars was more pronounced under climate change 

compared to the other variables. Therefore, under the three adaptation measures considered, 

changes to sowing dates and cultivar improved yield but had less impact on economic and 

environmental outcomes. Zimmermann et al. (2017) further added that technical progress had 

more impact on yield compared to climate change, and the reduced sensitivity to management 

assumptions is indicative that economic and environmental variables were somehow 

influenced by the physical and economic adjustments along the model chain.  

Although van Vuuren and Carter (2014) indicated that very little difference existed between 

the SRES and the recent RCP scenarios, both Wolf et al. (2015) and Zimmermann et al. (2017) 

did not compare the SRES scenarios result (published in 2000 by the IPCC) with the current 

RCP scenarios published by the IPCC (2014). Furthermore, another limitation was that both 

studies considered fertiliser and manure application as the only changing farm management 

practice affected by climate change and therefore reported on ammonia (NH3) and nitrous oxide 

(N2O) emission to air and nitrate leaching. Both studies acknowledged the methodological 

challenges in conducting an integrated assessment especially the iteration of nitrogen use under 

climate change and maintaining consistent values of nitrogen inputs between models.  

Zimmermann et al. (2017) however noted that in addition to model structure and parameter 

uncertainty, feedbacks between models should be accounted for in subsequent studies. Purola 

et al. (2018) added that if the expectation of low crop yield potential and farm income could be 

mitigated under climate change following the adaptation measures such as sowing dates and 

crop cultivars as suggested in Zimmermann et al. (2017), this may trigger an increase in yield 

determining inputs such as fertiliser. Purola et al. (2018) therefore suggested that more studies 

should focus on farm management changes on either land use change or use of agricultural 
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