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Abstract 

Climate change is regarded as the greatest threat to the World’s ecosystem and hence to the 

sustainability of human life. Because anthropogenic emissions of greenhouse gasses are held 

largely responsible for the enhanced greenhouse effect, the international community has 

committed to reduce emissions, and in particular, to replace fossil fuels with low carbon 

renewable sources (COP 21 Paris agreement, 2015). Biofuel is a candidate technology, and the 

concept of growing energy crops represents significant opportunities. 

This project aimed to examine the risk that climate change pose to the value of growing energy 

crops. The concern is that climate change could reduce yield sufficiently for the crop to give 

less energy than expected, and possibly less energy than was put into growing it, further 

increasing the carbon footprint. Clearly, this situation is unacceptable. In order to assess the 

overall energy balance and carbon footprint, farm practices; fertilizer application and tillage 

management were accounted in the overall life cycle assessment. Thus, this thesis reports the 

first fully integrated framework for the assessment of the impact of climate change on growing 

biofuels under various farm management practices. 

Climate change impacts on yield varied depending on future GHG scenario pathway and 

timeline. The LCA results indicate that synthetic fertiliser application contributed the greatest 

percentage to the total GHG emission, averaging 57.7% of the total GHG emissions, of which 

53.4% came from direct and indirect N2O emissions and 4.3% from CO2 emissions as a result 

of urea application. The remaining 42.3% of emissions came from input production (37.8%) 

and field operation (4.4%). Although increasing fertiliser application contributes to yield 

increase, the overuse of chemical fertilisers has a greater negative impact on the environment 

as the results indicate. In particular, the rate of fertiliser application is optimal at 160 kg per 
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hectare, and generally, this project has determined that yield is more sensitive to fertiliser than 

to climate change, whilst climate change is the causal driver for the increase in net energy and 

carbon footprint at most locations. 

The integrated framework developed for this project has been validated and tested using maize, 

but can be applied to other biofuel crops provided that the proposed location has historical 

weather data, information about soil type and farm management details of the proposed crop 

type. Given the absolute importance of reducing carbon emissions. 
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Chapter 1 

1 INTRODUCTION 

1.1  Background of study 

Climate change has exacerbated the frequency of extreme weather events (Islam et al. 2012, 

IPCC 2014a, OECD 2015, Lopes and Machado 2018). Research shows that depending on the 

future path of World emissions, climate change will continue to have an increasingly negative 

impact on sustainable development (IPCC 2014). This impact will be felt to varying degrees 

around the World, but will be particularly important to food production and food security, 

especially evident within the managed ecosystems of food production, which are a pressing 

concern (OECD 2015, FAO 2016a).  

The Intergovernmental Panel for Climate Change’s (IPCC 2014) Fifth Assessment Report 

(AR5) averred that an increase in global greenhouse gas (GHG) emissions, with specific 

reference to the rapid increase observed between 2000 and 2010, has been largely 

anthropogenic; borne as a result of increased fossil fuel combustion, land use change (for 

example development of paddy fields with associated methane emissions), deforestation, 

agricultural practices (for example application of fertilisers) and cement production (IPCC 

2014b, Tian et al. 2015, Houghton and Nassikas 2017). According to the IPCC (2014) report, 

global GHG emissions recorded between 1970 and 2010 displayed an increase of above 70%, 

with an annual emission growth rate increase of 1.0 GtCO2eq (2.2% increase) from 2000 to 

2010 compared to 0.04 GtCO2eq (1.3%) per annum between 1970 to 2000. Global GHG 

emissions in 2017 was reported to be 40% higher than in 2000 (Olivier and Peters 2018). 
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Carbon dioxide (CO2) from fossil fuel combustion and industrial processes is the largest 

contributing GHG (78%) and accounted for 76% (49 GtCO2eq) of the total anthropogenic GHG 

emissions in 2010 (IPCC 2014c). In 2017, CO2 remains the major GHG accounting for 73% of 

total anthropogenic GHG emissions (Olivier and Peters 2018). The IEA (2011) reported CO2 

emissions increased by 1.4% in 2011, reaching a record 31.6 GTCO2 yr-1. In 2017, energy-

related CO2 emissions reached 32.5 GTCO2, which, according to the IEA (2018) is the highest 

increase, recorded in history. 

Carbon dioxide emissions associated with energy production (predominantly in developed 

countries) dominate GHG emissions, followed by agricultural GHG emissions estimated at 

11% of total global emissions per year (IPCC 2014c, Tubiello et al. 2015). Agricultural 

emissions are expected to rise the fastest in developing countries driven by expanding 

economies and total agricultural outputs (Wollenberg et al. 2016, FAO 2016a). An evaluation 

of global agricultural emissions data averaged over 2000-2010, revealed that 70% of total 

agricultural emissions from synthetic fertilisers came from developing countries (Tubiello et 

al. 2013). The FAO (2014) estimated that 13% of agricultural emissions in 2011 was from 

fertiliser application. 

As the impact of climate change varies across regions and continents, there remains a level of 

uncertainty as to how future climates will respond to ever-increasing GHG emissions. Increase 

in climate variance have already been observed, and a radical shift outside of the historical 

bounds of climate variability is projected for tropical regions if nothing is done to curb 

emissions (Mora et al. 2013, IPCC 2007, 2014d, Harrington et al. 2016). To illustrate this, 

Mora et al. (2013) developed an index to determine the timing of climate shifts from the range 

of historical bounds using two model projection pathways (RCP 4.5 and 8.5). According to the 

Mora index, estimations showed that for near surface air temperature, climate departure - using 
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current projections - will occur by 2047 under RCP 8.5 (Mora et al. 2013). With concerted 

rapid CO2 mitigation however, climate departure would later occur by 2069 under RCP 4.5 

(Mora et al. 2013). As a result of projections like these, the perceived threats of climate change 

to global stability continue to be sources of scientific and political concern, which should create 

a consensus to develop a mitigation strategy, which could prevent further global warming 

(UNFCCC 2016, IEA and IRENA 2017, Ricke et al. 2017).  

Energy is essential for social, economic and environmental developments (Elum et al. 2017). 

Furthermore, fossil energy is finite and contributes to atmospheric pollution through the release 

of GHGs, which in turn promotes global warming. Aside from agricultural emissions, the IPCC 

estimated that in 2010, 14% (37.2 GTCO2eq) of the total CO2 emissions came from the 

transport sector and that 27% of the total global energy was used within this period (IPCC 

2014c, Dick 2014). Interestingly, global demand for fossil energy is still projected to increase 

throughout the next century (IPCC 2014).  

Earlier mention was made of the fact that developing countries contribute to climate change 

through agricultural practice however, in an attempt to accelerate economic development these 

countries are adopting a more carbon intensive mode (Malik et al. 2016). Thus increasing 

demand for non-renewable fossil fuels despite concerns over climate change, unstable oil 

prices, depletion of fossil reserves and energy insecurity giving rise to a global discussion on 

how to offset the deficit (Garba 2014, Dutta et al. 2014). Essentially, this demand could be 

partially offset by harnessing and developing renewable energy resources, a key route to 

achieving global temperature stabilisation (Viana and Perez 2013). In support of this, it is 

important to note that the International Energy Agency (IEA) reported that low-carbon energy 

technologies such as solar, wind and bioenergy have received much research and policy support 

in recent years (IEA 2017). This is exemplified by the fact that the work undertaken thus far is 
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gaining momentum as the potential solution for future energy systems (IEA 2017). For 

example, renewables for the first time accounted for more than half of all new electricity 

generating capacity installed worldwide in 2015 (IEA 2017).  

Bioenergy is a type of renewable energy derived from natural, biological materials (biomass) 

such as trees, plants, manure and municipal waste (Adams 2011). Using various conversion 

technologies such as combustion, gasification, or pyrolysis, the biomass is either transformed 

into biofuel for transportation, bio-heat or bioelectricity (Falano 2012). As a carbon-neutral 

renewable energy feedstock, if sourced sustainably, biomass is referenced as the fourth largest 

energy source after non-renewable coal, oil and natural gas (Ladanai and Vinterbäck 2009). 

Biofuel represents the only renewable energy source that can provide approximately 27% of 

the world’s transport fuels (Souza et al. 2017). Because of this, bioenergy development is 

important from the perspective of climate change mitigation, energy security and rural 

economic development strategy (Hsu et al. 2010, Smith et al. 2014, Creutzig et al. 2015, 

UNFCCC 2016). It also offers the potential for reducing fossil fuel demand. For example, the 

replacement of conventional transport fossil fuels with biofuels has the capacity to reduce 

environmental pollution and mitigate CO2 emissions (Elum et al. 2017).  

However, on closer inspection there are sustainability issues that need addressing. For example, 

Warner et al. (2013) highlights that meeting the demands of approximately 25% of global 

transportation fuel with the sole use of biofuels by 2050 will require more than double the land 

used to meet food demands - assuming a 40% increase in food demand per capita. Also, 

bioenergy deployment can trigger the displacement of people, crops, pastures or forests and 

the clearing of more pristine land to replace displaced crops therefore causing a run on effect 

in terms of any environmental impact (Creutzig et al. 2015, Russo et al. 2016). Other concerns 

include resource competition e.g. water, food price hikes, the loss of biodiversity and increased 
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GHG emission from intense land use, in addition to human rights abuses, concentration of 

ownership and potential civil unrest.  

Interest in biomass production for biofuels has increased over the last two decades and the 

focus has shifted towards sustainable feedstock development (Smith 2013, Dutta et al. 2014, 

Okoro et al. 2018). Biofuel is considered carbon neutral only if the production generates a net 

reduction in emissions (Creutzig et al. 2015). To determine the sustainability of the product, 

every aspect of its life cycle has to be considered. Nevertheless, according to Souza et al. 

(2017), there is growing evidence that bioenergy can be managed and produced sustainably. 

Souza et al. (2017) and Haus (2018) suggested factors that can significantly reduce GHG 

emissions from forest biomass production and use to include; adopting approaches such as 

agro-ecological zoning, best management practices, and the use of eco-hydrology and 

biodiversity-friendly agricultural management techniques at field, watershed and landscape 

scales are also suggested.  

Fundamentally, there is a global scientific consensus that climate change will have an immense 

effect on agriculture (Alexander et al. 2018). This is because climate change alters weather 

conditions, and consequentially crop production becomes influenced by changes in 

atmospheric CO2 concentrations, increased temperature and precipitation variability (Long et 

al. 2015, Atay 2015, Wang, J. et al. 2018). This subsequently has an impact on the timing and 

length of growing seasons, transpiration rates, water use efficiency, soil carbon and nitrogen 

biochemical transformations which ultimately results in biomass production disparities (Wang 

et al. 2014, FAO 2016a, He et al. 2018). The direct biophysical effects of the impact of climate 

variability on agricultural productivity is significant (Ventrella et al. 2012, Rosenzweig et al. 

2014, FAO 2016a). The IPCC Fifth Assessment Report (AR5) on future projections post 2030 

suggest that climate change will have an impact on crop yield which will become increasingly 
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negative and severe in all regions (FAO 2016a, Alexander et al. 2018). Thus, assessing the 

ultimate consequences of these effects will require an integrated assessment approach (Nelson 

et al. 2014).  

In terms of assessment approaches, many studies have documented the GHG mitigation 

potential of bioenergy systems using life-cycle assessments (Dale et al. 2013). For example, 

using this method, the total GHG emissions calculated from cassava-based ethanol production 

was 58.4 gCO2 MJ-1 of the product compared to gasoline (94.0 gCO2 MJ-1) in Vietnam (Pirelli 

et al. 2018). The relevance of an LCA is evidenced by the fact that it is the scientific evaluation 

method of choice used to measure the net environmental burdens associated with producing 

products such as biofuel (Carus 2017). Haus (2018) utilised a life cycle perspective to analyse 

climate impact of the production and use of biomass for biofuel.  

Crop yield responses to climate change have been and can be analysed using different 

approaches such as coupling climate to crop models (Wang et al. 2014, He et al. 2018), 

coupling crop-climate models to economic models (Nelson et al. 2014, Atay 2015, Okoro et 

al. 2017) and coupling crop-climate to economic and environmental models (Zimmermann et 

al. 2017). According to Nelson et al. (2014), a major criticism and the implication of a stand-

alone crop-climate model assessment is that it may underestimate the capacity to respond to 

climate impacts. Although Nelson et al. (2014) advocate that the assessment of climate change 

impacts should include use of integrated assessment models such as climate, crop, and 

economic models, studies have also featured environmental impact models within the 

framework (Garba 2014, Nelson et al. 2014, Zimmermann et al. 2017, Arvesen et al. 2018).  

Further to an integrated approach to assessment, Zimmermann et al. (2017) quantified climate 

change impact on crop yield, using an integrated assessment modelling (IAM) framework, 

coupling three disciplinary models (crop, economic and environmental) by linking model 
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outputs. In support of this, Arvesen et al. (2018) describes the benefits of integrating LCA 

results in impact assessment modelling as accounting for direct and indirect emissions of 

technology and scenario alternatives. This is exemplified further in the work undertaken by 

Garba (2014) who also utilised integrated modelling to study the impact of climate change on 

GHG emissions of biofuels. However, although the analysis compared GHG emissions from 

beginning to end, the main weakness of the study was the failure to address why farm level 

GHG emissions were estimated using generic eco-invent data and synthetic climate change 

scenarios, instead of more plausible GCM downscaled data. In addition to this, none of the 

studies reviewed conducted a statistical comparison of the environmental impact against 

climate change scenarios and varying farm technologies. In contrast, Nelson et al. (2014) 

statistically quantified the contributions of several sources of variations for each environmental 

and economic response variable, while Zimmermann et al. (2017) did not attribute the 

environmental changes to the effect of climate change or any assumptions about crop 

management during their study. This shows a serious limitation in terms of previous studies.  

From the foregoing discussion, there is a knowledge and information gap in terms of integrated 

assessment analyses that evaluate a holistic combination of factors influencing key 

environmental impact variables. Understanding environmental impact holistic responses to 

future climate change and farm management techniques, and the significance of each 

contributing variable, is key to providing factual and robust support when strategic decision 

making. With regards to this and due to lack of systematic quantification with the contribution 

of different factors (e.g. climate change and farm management) to the variability of yield and 

environmental impact, within the context of assessing climate change and the impact on 

bioenergy systems; this study will help to address this gap in knowledge. More specifically, 

this study proposes coupling a regression model with an impact chain, to quantify the effects 

of climate change and farm management on yield, and environmental variables using a 
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modified integrated impact assessment framework.  

1.2 Research Rationale 

It is expected that farmers’ response to reduced yield due to climate change will be through 

intensive farming practices, such as increased application of fertilisers, will further increase 

GHG emissions and the carbon footprint of bioenergy at the cultivation phase (Zimmermann 

et al. 2017, Maharjan et al. 2018). For biofuel to be certified as ethical, sustainable 

intensification of the farming process should be adopted to produce higher yields with lower 

environmental costs (Smith 2013, Smith et al. 2014).  

The process of growing feedstock for biofuels contributes to climate change by producing 

GHGs such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) (Hanaki and 

Portugal-Pereira 2018, Pirelli et al. 2018). In turn, climate change can directly or indirectly 

influence these GHG emissions from agriculture, thus compounding the sustainability 

assessment (Ekpenyong and Ogbuagu 2015, Zimmermann et al. 2017). The majority of the life 

cycle impact assessment on bioenergy crops, assuming current or historical climate timelines, 

while critical information regarding the dynamic pattern of a life cycle environmental impact 

response to exogenous factors, such as climate change, is limited. Aside from climate change, 

other factors such as farm technologies, energy input and transportation can also contribute to 

agricultural GHG emissions. Therefore, it is imperative to quantify the effects of climate 

change and farm management practices on future agricultural emissions using an integrated 

approach. 
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1.3 Research aim and objectives 

The overall aim of the study is to propose an integrated framework for assessing energy crop 

sustainable production under climate change. By applying an integrated framework, it is 

possible to extrapolate GHG emissions from farming trends under future climate scenarios and 

assess any significant contributions to the environmental impacts. 

In view of the stated aim, the objectives listed below will be considered in addressing the aim 

and research questions: 

 To generate long-term synthetic time-series from observed climate data and to construct 

future climate scenarios from an ensemble of Global Climate Models (GCM) 

downscaled for site-specific crop-climate impact analysis. 

 To model and assess the future impact of climate change on maize feedstock yield under 

varying farm management strategies by considering two RCP scenarios. 

 To use LCA to evaluate the environmental impact: GHG emissions, net energy use 

(including energy use efficiency) and carbon footprint of producing maize feedstock 

under future climate and farm management scenarios. 

 To incorporate a regression model to examine the relationships (correlations) between 

variables and LCA outputs and identify any significant contribution to yield and 

environmental impacts. 

 To develop an integrated framework consisting of climate-crop models, life cycle 

assessment (LCA) methods and a regression model coupled with LCA that will 

holistically assess the sustainability of bioenergy cropping systems. In order to validate 

the integrated framework, it was applied to the study of maize feedstock. 
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1.4 Research questions and hypothesis 

This study postulates that GHG emission and carbon footprint of bioenergy crop production 

will increase significantly due to climate change and intensive farm practices for example 

increased fertiliser application. This study aims to explore the following research questions: 

 What is the potential impact of climate change on maize feedstock yield using site-

specific downscaled future climate scenarios? 

 Under different farm management and climate change scenarios, what are the effects 

on GHG emission, net energy use and the carbon footprint of maize feedstock? 

 What is the correlation between input variables, yield and environmental impact 

responses; and what factors influence yield and environmental impact the most?   

1.5 Research significance and contribution to knowledge 

Recent studies to measure maize feedstock sustainable production lack a holistic approach by 

not assessing changes to environmental responses due to future climate change impacts and 

farm practices (Oriola and Oyeniyi 2017, Arrieta et al. 2018, Corbeels et al. 2018). Therefore, 

comprehensive long-term Government policies and farm planning are needed to improve maize 

feedstock production and management practices under climate change. 

The main areas of research in this thesis are: 

 A generic integrated framework to assess the sustainability of bio-feedstock production 

using climate scenarios as indicators of future climate change. 

 The integration of a regression model with LCA outputs. 
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1.6 Thesis Structure 

This thesis consists of six chapters.  

Chapter 1 presents the research background and the research aims and objectives.  

Chapter 2 reviews literature on climate change and adaptations; climate change mitigation, the 

potential of biofuels, policies for rapid development and the projection of future climate 

impacts on bioenergy sector. In this chapter, a comprehensive report is presented on climate-

crop model uncertainty and applications on a local scale. A life cycle impact assessment of 

bioenergy feedstock production is also included in the report.  

In Chapter 3, the Crop Sustainability Assessment Framework (CSAF), which forms the 

framework applied in the research, is introduced. The development of the climate-crop model 

simulation and LCA-linear regression modelling approach are explained in detail in this 

chapter.   

Chapter 4 is divided into two sections and report the results of the climate-crop model 

simulation and LCA-linear regression modelling data. In the first part of this chapter, 

downscaled GCM projections for two representative concentration pathways (RCPs 6.0 and 

8.5) are evaluated followed by crop yield (kg ha-1) to estimate the impact of farm management 

scenarios and climate change. In the second section of this chapter, the preliminary analysis of 

the GHG emission, carbon footprint (CF) and net energy (NE) assessed from LCA is presented, 

as well as regression modelling results of different factors on the LCA outputs is analysed. 

Chapter 5 is used to discuss the results obtained from previous chapter. Here, the results are 

compared with outputs from similar studies and the implications of the results on future 

sustainability of bioenergy crop production are evaluated in detail.  
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Finally, Chapter 6 is used to draw conclusions on the research findings, and hence make 

recommendations for biofuel strategies and farm management practices and then to suggest 

directions for future research.  

 

 



13 

 

Chapter 2 

2 Literature Review 

2.1 Introduction 

According to IPCC warnings on climate change, issued against the backdrop of global extreme 

climate events (IPCC 2014b, Lopes and Machado 2018), the level of accumulated heat energy 

over the Earth’s surface plays a key role in observed and unprecedented changes in terms of 

climate trends. Based on IPCC (2014b) data, global climate temperature is predicted to undergo 

an increase of up to more than 2°C over pre-industrial levels in the coming decades. As the 

changes in global warming will not be uniform across regions (IPCC 2014b, 2014d), some 

continents and regions will experience greater global warming thus becoming more vulnerable 

to the impacts of climate change than others. With reference to this, the most recent report, 

known as the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate 

Change (IPCC 2014) gives a robust insight into observed climate variability and change, with 

representation using climate models and future projections (Van den Hurk et al. 2014, IPCC 

2014b). These effects are evidenced by thermal expansion of the Earth’s surface waters, 

melting of glaciers causing rising sea level, flooding, drought, land loss, acidification of water 

bodies due to CO2 emissions, saltwater intrusion and the destruction of agricultural lands as a 

few of the impacting factors (Houghton 2011, Atay 2015, Elum et al. 2017, Lopes and Machado 

2018). Because of this, there is increasing concern that climate change poses a threat to global 

sustainable development.  

The agricultural sector is significantly affected by climate change and extreme weather events 

with the impact varying widely by region (Ventrella et al. 2012, Rosenzweig et al. 2014, Nelson 
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et al. 2014, FAO 2016a). According to Lesk et al. (2016), about one-quarter of climate related 

damage and crop losses have occurred in developing countries. Further to this, a study by the 

FAO (2016a) estimated that between 2003 and 2013, about 25% share of the economic impact 

of climate-related disasters within developing countries were felt in agriculture. As a result, a 

significant number of studies have documented that the impacts of climate change, especially 

increasing temperature, have had a largely negative as opposed to positive effect on crops such 

as wheat, rice and maize amongst others across regions (Ringler et al. 2010, Asseng et al. 2011, 

Lobell et al. 2011, Rosenzweig et al. 2014, FAO 2016a, Chen et al. 2018). In addition, studies 

show that climate change could potentially cause a shift in crop suitability to occur, as the 

climate gets warmer (Rippke et al. 2016). Therefore, urgent adaptive measures such as mixed 

farming, irrigation to prolong suitability and planting of alternative viable substitutes in many 

locations are needed in order to mitigate the impact of further climate change on crop 

productivity. 

This review of literature seeks to focus on climate change and its potential impact on 

agriculture, as well as the assessment of sustainable bioenergy crop production through a life 

cycle assessment framework. Specifically, a review of historical climate and future climate 

change projections for Africa and the impact on crop production is presented in sections 2.2 to 

2.4. Section 2.5 highlights strategies for climate change mitigation, while sections 2.6 to 2.7 

discusses critical issues affecting biofuel sustainability and bio-feedstock availability in 

Nigeria. Section 2.8 describes the various methods used for assessing climate change impact 

on crop yield, and the review of an integrated assessment approach. Specific emphasis on life 

cycle assessment as an important tool is reviewed in sections 2.9 to 2.10. Finally, previous 

approaches that have attempted to integrate LCA with regression are discussed in section 2.11 

and the review outcome and knowledge gaps are summarised in section 2.12.  
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2.2 Historical impacts of climate change on the sub-Saharan region 

Climate change poses the greatest risk to the economies of developing countries that are largely 

driven by rain-fed agriculture (Atay 2015, FAO 2016a, Magugu 2016, Girvetz et al. 2019). 

This is particularly important because many studies including the IPCC (2014b) indicate that 

surface warming in Africa is highly likely to be larger than mean warming globally (Knox et 

al. 2012, Achike and Onoja 2014). With reference to this, the latest climate projections from 

the IPCC Fifth Assessment report (AR5) predict a delayed monsoon rain, especially in the 

western part of the Sahel, with increased adverse warming that will further compound the issue 

of the global warming impacts within this region of Africa (IPCC 2014d, Sylla et al. 2016). 

The impact of climate change on such regions as those that are located in as close proximity to 

the equator will be more significant and could increase in magnitude if no action is taken to 

reduce global GHG emissions (Singh et al. 2018).  

According to Turco et al. (2015) and Welborn (2018) this is particularly so within the Sahel 

and sub-Saharan African region which have both been identified as hotspots for climate 

change. These regions have witnessed extreme weather-related incidents, including severe 

droughts, flooding and rising temperatures which have increased as a result of the direct 

influence of higher levels of anthropogenic greenhouse gases in the atmosphere, affecting the 

region’s agricultural productivity and raising food security risks (Sheelanere and Kulshreshtha 

2013, Dick 2014, IEA 2017, Masipa 2017). Due to the variability in annual monsoon rain, the 

frequency of extreme precipitation has resulted in increased ocean storminess (severe storm 

waves), a rise in sea levels and an increase in soil salinity around coastal areas; making 

farmland in such areas unproductive (Fitzmaurice 2014, Singh et al. 2018).    
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The uncertainties associated with regional climate change are challenging in terms of the 

production of reliable scenarios for the adaptive planning of future agricultural production 

(Sultan et al. 2014). Previous assessment of historical and future climate change over the West 

Africa region including the Sudanian and Sahelian regions have also shown this (Biasutti 2013, 

Monerie et al. 2013, Sultan et al. 2013, Alemaw and Simalenga 2015, Sylla et al. 2016, 

Ekwezuo et al. 2018).  

In 2016, Sylla et al. examined both historical temperature and precipitation change over West 

Africa from 1983 through 2010. This systematic report considered two of three observed 

datasets, which had the similar grid resolution of 0.5° × 0.5° (University of Delaware (UDEL) 

and the Climatic Research Unit Anglia (CRU) of the University of East Anglia). The remaining 

grid resolution for the third dataset, as per the African Rainfall Climatology (ARC), had a 

resolution of 0.1° × 0.1°. The dataset presented in Figures 2.1 and 2.2 represents these seasonal 

averages from May to September and shows historical temperature from UDEL and CRU with 

a clear warming trend within the range of 0.2 °C to more than 0.5 °C per decade; a trend of 

great significant for countries around the west Sahel and Gulf of Guinea.  

Furthermore, similar warming trends have been reported by the IPCC (2014) and are consistent 

in terms of aligning with observations of 0.5 °C  and 0.8 °C for west Africa and the Sahel 

between 1970 and 2010 (Niang et al. 2014). This shows that overall, temperatures have risen 

considerably over the last 50 years (Niang et al. 2014); and Girvetz et al. (2019) highlighting 

the fact that 19 out of the past 20 years have been hotter than any previous year on record in 

Africa. As a direct result of this, increasing temperatures have resulted in higher rates of 

evapotranspiration. So, for example, data from 2001 to 2017 shows a consistent increase in 

evaporative stress in Zambia between the years 2001 to 2017 (Girvetz et al. 2019). Put simply, 

hotter temperatures are gradually becoming the new normal and there is strong evidence of 
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anthropogenic signals associated with the increase in temperature across the continent (Niang 

et al. 2014). 

 

 

As shown in Figure 2.2, a tendency for increasing precipitation of approximately 0.2–

1.0mm/day per decade was observed for countries along the Sahel band, with the exception of 

the orographic regions and part of the Gulf of Guinea; which displayed negative trends. 

Nevertheless, the precipitation pattern for all three data sources is similar (UDEL, CRU and 

ARC), making the positive precipitation signal a robust one (Sylla et al. 2016). The positive 

trend observed is consistent with other observations of rainfall increase since drought episodes, 

such as those which occurred during the late 1960s to mid-1980s – a period marked by a steep 

precipitation decline (Birkel and Mayewski 2015, Niang et al. 2014).  

 

 

Figure 2.1: Average seasonal temperature trends (May– September) over West Africa climate for the 

period 1983–2010. Area where the trend is statistically significant at the 90 % level are shaded. (a) 

UDEL; (b) CRU. (Source: Sylla et al. 2016) 
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Although wetter conditions have been reported as a sign that the Sahel region is recovering 

from its worst ever drought (Druyan 2011), some reports state otherwise. Nicholson et al. 

(2018) reported on the longest rainfall series (from 1854 to 2014) for thirteen African regions 

and their analysis revealed that rainfall recovery has been minimal; above the long-term mean 

from 1968 to 1993. The result also showed an average standardised departure of -0.08 for the 

years 1993 to 2014 suggesting the region has not fully recovered from the rainfall regime that 

prevailed during the late 1960s in Sahel prior to its pre-drought conditions. 

In 2019, Girvetz et al. published a paper in which they observed that changes in precipitation 

across Africa vary significantly. They discussed the fact that Zambia and Zimbabwe showed a 

Figure 2.2: Average seasonal precipitation trends (May– September) over West Africa climate for the 

period 1983–2010. Area where the trend is statistically significant at the 90 % level are shaded. (a) 

UDEL; (b) CRU (c) ARC. (Source: Sylla et al. 2016) 
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significant decrease in precipitation, in contrast to an increase in rainfall across South Africa 

and some parts of East and North Africa. Further to this, Agumagu (2016) observed that the 

West African Sahel region was characterised by a trend of dryness during the 20th century and 

then subsequently by multi-decadal dry and wet influences in more recent times. This is 

exemplified in the work undertaken surrounding this trend as obtained from a synthesis of 100 

years of climatology (1910–2009) based on observed climate data from Global Precipitation 

Climate Centre (GPCC) and Climate Research Unit (CRU) dataset (Agumagu 2016). From the 

data, a high annual and decadal rainfall variability was observed and Agumagu (2016) noted 

that the change over the region could be viewed as a characterisation of the weather dynamics 

of the Sahel region.  

Some of the issues preventing a thorough understanding of current climate trends, and as a 

consequence impede climate change strategic planning include the quality and availability of 

observed data, the variability in data sources and the imprecise nature of observational records 

(Niang et al. 2014, Sylla et al. 2016, Agumagu 2016).  

2.3 Future climate change projections on the sub-Saharan region 

In climate change assessment, scenarios are used to explore alternative futures based on model 

representation of historical patterns. Climate scenarios can be defined as a plausible 

representation of future climates constructed from the assumptions of climate system responses 

to GHG-induced warming (Moss et al. 2010, Kirtman et al. 2013, Snover et al. 2013). Climate 

scenarios are used to create presumptive emission levels of GHG concentrations and land use 

change scenarios; which are highly unpredictable largely due to human activity. Climate 

scenarios can be generated using different methods, such as an analogue or synthetic approach 
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(McAfee et al. 2017), but using outputs from GCMs make climate impact studies more 

plausible (Vano et al. 2015).  

The IPCC developed a series of climate scenarios known as representative concentration 

pathways (RCPs), quantified according to changes in radiative forcing over time (van Vuuren 

et al. 2011). The scenarios are designed to support research on impacts and potential policy 

responses to climate change. Due to this, they were used for the IPCC Fifth Assessment Report 

(AR5) and the Fifth Climate Model Intercomparison Project (CMIP5) (Riahi et al. 2011, Taylor 

et al. 2012). In terms of the process of model specification, radiative forcing measures the 

imbalance between incoming and outgoing radiation to the atmosphere caused by changes in 

atmospheric greenhouse gases (Moss et al. 2010, Haus 2018). This means that RCP 2.6 is 

consistent with the goal of reducing GHG emissions (mitigation scenario) and keeping global 

warming at less than 2 °C above preindustrial levels (FAO 2016a). In the RCP 2.6 scenario 

(~490ppm CO2eq), radiative forcing peaks at ~3 W/m2 and declines thereafter to 2.6 W/m2 by 

2100, as GHG emissions are reduced substantially (Wollenberg et al. 2016).  

The RCP 4.5 and RCP 6.0 scenarios are two medium stabilisation scenarios with concentration 

of ~650ppm and ~850ppm CO2-equivalent respectively. In the RCP 4.5 scenario, radiative 

forcing stabilises at 4.5 W/m2 shortly after 2100, without overshooting the value. This scenario 

assumes that climate policies are implemented to attain emission reduction and radiative 

forcing (Thomson et al. 2011). In the RCP 6.0 scenario, radiative forcing stabilises without an 

overshoot pathway at 6 W/m2 by 2100 (van Vuuren et al. 2011).  

According to Riahi et al. (2011), RCP 8.5 is the mid-21st century scenario, which corresponds 

to the pathway with the highest GHG emissions. Otherwise known as the ‘baseline scenario,’ 

the radiative forcing rises to 8.5 W/m2 by 2100, as GHG emissions continue to increase with 
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no effective mitigation put in place to change current emission trajectory (Li, Y. et al. 2015, 

Haus 2018). It is projected that this pathway will in the long-term lead to higher energy demand 

and GHG concentration (a concentration of more than 1,370 ppm CO2eq). Adeniyi (2016) 

reported that the direction of projected precipitation changes across five regional domains of 

West Africa under RCP 4.5 (medium) and RCP 8.5 (high) scenarios are almost the same. 

The complex interaction between the ocean-atmosphere-sea and ice-land-surface relationships 

are represented in global climate models (GCMs) and simulated based on a three-dimensional 

grid over the globe (Lapp et al. 2009). The accuracy with which GCMs reproduce historical 

climate features and climate changes have increased the confidence of its use to make 

projections for the future (Taylor et al. 2012). In terms of a study based on this, Ramirez-

Villegas et al. (2013) assessed regional differences in seasonal GCM skills. What was noted 

was that outputs from GCMs cannot be applied directly to impact models at a regional and 

local scale, due to the coarse resolution and inherent systematic errors (bias), producing 

inaccurate reproduction of weather statistics including extreme events (Iizumi et al. 2012). 

Another source of climate impact uncertainty arose from large variations in simulation results 

amongst multiple GCMs, or the same GCM with different radiative forces (Li and Ye 2011). 

Thus although climate information from a combination of model ensembles gives a plausible 

range of eventualities, model selection based on performance is usually constrained due to the 

large spread of projections from GCMs, and by factors such as the availability of data from 

models or limited resources for in-depth strategic selection (McSweeney and Jones 2016).  

The Coupled Model Inter-comparison Project (CMIP) has, over the years, been the source of 

key model simulations that have been used in most studies for future climate projections (White 

et al. 2011, Taylor et al. 2012, Ramirez-Villegas et al. 2013). Its validity is evidenced as the 
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latest release of the CMIP5 (phase 5) GCM model ensemble was adopted for the IPPC Fifth 

Assessment Report (AR5). Further to this, recent studies have used the Coupled Model Inter-

comparison Project Phase 5 (CMIP5) multi-model simulations to determine temperature and 

precipitation projections over different parts of West and Central Africa (Giannini et al. 2013, 

Laprise et al. 2013, Roehrig et al. 2013, Biasutti 2013, Mehran et al. 2014, Dike et al. 2015, 

Adeniyi 2016, Klutse et al. 2018, Diedhiou et al. 2018, Girvetz et al. 2019). 

Researchers such as Diedhiou et al. (2018) and Klutse et al. (2018) have examined the effects 

of changes in regional temperatures and precipitation extremes, based on a 1.5 °C and 2.0 °C 

global mean temperature change. Diedhiou et al. (2018) confirmed a linear increase of regional 

temperature with a global mean temperature increase. Diedhiou et al. (2018) also confirmed 

that larger regional warming is predicted to be highly likely. For example, GCM projections of 

global warming of 1.5 °C (2.0 °C) induced a regional temperature increase of 1.7 °C (2.3 °C). 

This is almost consistent with additional regional warming of 0.4 °C and 0.8 °C induced by 2.0 

°C global warming as reported by Klutse et al. (2018). In addition, Diedhiou et al. (2018) stated 

that extreme annual temperature of maximum and minimum daily temperature is projected to 

increase at higher magnitudes. Similarly, Niang et al. (2014) noted that the expected increase 

in near surface temperature is projected to rise faster in West Africa: one to two decades earlier 

than the global average. According to Girvetz et al. (2019), the CMIP5 multi-model simulations 

based on the RCP 8.5 temperature trajectory for Africa would be 1.7 °C by the 2030s, 2.7 °C 

by the 2050s and 4.5 °C by the 2080s above pre-industrial levels. Niang et al. (2014) also earlier 

reported projections of 3 °C and 6°C under RCP 4.5 and RCP 8.5 scenarios for West Africa by 

the end of the 21st century. 
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There is a consensus among research undertaken that precipitation change is more difficult to 

model, compared to temperature change (Giannini et al. 2013, Ramirez-Villegas et al. 2013, 

Sylla et al. 2016, Girvetz et al. 2019). Klutse et al. (2018) examined the regional risks for West 

Africa if global warming increases of up to 1.5 °C and 2.0 °C from the RCP 8.5 climate scenario 

were measured. Compared to a control period between 1971–2000, they evaluated the response 

of extreme rainfall characteristics such as consecutive dry days (CDD) and consecutive wet 

days (CWD), to impacts of warming levels and reported an increase in CDD over the Guinea 

Coast; alongside a decrease in CWD (up to 4 days), at both levels of warming. Klutse et al. 

(2018) observed that the CDD distribution was similar at 1.5 °C and 2.0 °C global warming 

levels. Furthermore, Adeniyi (2016) evaluated the performance of an ensemble of 30 CMIP5 

models in simulating precipitation from the Sahel to the Guinea coast of West Africa. The 

result show that the ensemble mean of CMIP5 models best captures the lower percentiles of 

precipitation distribution; compared to an observed dataset except over the eastern Sahel. This 

finding was similar to the findings of researchers Mehran et al. (2014).  

With reference to the baseline climate (1985–2004), Adeniyi (2016) reported that both RCP 

4.5 and 8.5 scenarios projected an increase in precipitation from 2035 to the end of the 21st 

century. However, the rate of change and intensity increase differed across the region. The only 

seasonal reduction in precipitation (-2.6 to -17 %) projected from 2035–2065 was in JFM 

(January, February and March); which according to Adeniyi (2016), would potentially delay 

the onset of rain and lead to crop failure.  

Dike et al. (2015) presented a single GCM projection of future climate changes (2073–2098). 

The reported temperature change varied from 3 °C to 7 °C (a smaller magnitude for RCP 2.6 

and higher warming for RCP 8.5), and a precipitation increase across Africa (with the exception 

of western Sahel). In addition, the study projected a wetter summer over five cities in Nigeria 
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under the RCP 8.5 scenario. Although Dike et al. (2015) hinted that the HadGEM2-ES model 

output for precipitation and temperature was close to the CMIP5 multi-model ensemble mean 

in a comparative study, several factors could still create possible bias in terms of the results. 

For example, the projection was carried out using a single GCM (HadGEM2-ES) model with 

very low resolution, hence it was unsuitable for high resolution regional and country specific 

projections. Furthermore, the performance of the model in reproducing observation data (1901–

2002) was evaluated for five cities in Nigeria: Kano, Ilorin, Uyo, Lagos and Owerri. The 

HadGEM2-ES-model underestimated the annual cycles of mean precipitation for Kano but had 

similar trends; the correlation coefficient for Ilorin and Lagos were below average (0.46 and 

0.44); while the precipitation annual cycles in Owerri and Uyo were well represented by the 

model. The reanalysis dataset, which the model overestimated, may also have introduced bias 

(Dike et al. (2015). 

Figure 2.3 below depicts the projected changes in total annual precipitation and temperature 

change for countries in Africa based on an ensemble of CMIP5 models (33 GCM models) 

guided by the RCP 8.5 scenario for 2050 (Girvetz et al. 2019). The chart shows that annual 

precipitation is projected to increase mostly across eastern and central Africa, and decrease 

across parts of southern, western and northern Africa.  

Girvetz et al. (2019) acknowledged that GCM outputs resolution are coarse and needs to be 

bias-corrected by downscaling, hence the projections must be considered with caution.  

Similar to the projections presented by Girvetz et al. (2019), Giannini et al. (2013) has also 

presented multi-model ensembles of CMIP5 projections for Burkina Faso, Niger and Senegal. 

There are a number of similarities between both studies as all projections point towards the 

possibility of a wetter trend for the Sahel. This signals the influence of greenhouse gas-induced 

warming (Giannini et al. 2013). 
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Although model agreement for the projections of precipitation varied and model bias still 

exists, the latest CMIP5 multi-model ensembles and projections confirm the expectations for 

the rest of the 21st century. All studies above used different climate models of varying 

resolutions at the regional scale: hence, the robustness of the simulations in terms of model 

agreements differed. For example, Klutse et al. (2018) reported 80% of model agreement, 

Figure 2.3: Average change in annual total precipitation (%) and mean temperature (°C), by country 

for the African continent (Source: Girvetz et al. 2019). 
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Diedhiou et al. (2018) observed a large model spread of precipitation and temperature whilst 

Adeniyi (2016) noted medium to high consensus amongst models. As indicated earlier, the use 

of single models as used in Dike et al. (2015) could be a source of uncertainty. The work of  

Klutse et al. (2018), shows it is better to downscale global climate model (GCM) outputs with 

regional climate models (RCM) in order to enhance the spatial and temporal information 

required at regional and local-scale level (Laprise et al. 2013). Laprise et al. (2013), Sylla et al. 

(2016) and Klutse et al. (2018) used downscaled RCMs from the Coordinated Regional 

Downscaling Experiment (CORDEX) for the West African domain. 

2.4 Projected impact of climate change on crop yield 

The IPCC fifth assessment report (AR5) estimated that over the last 30 years, global 

agricultural production has reduced by 1%–5% per decade of total production due to climate 

change (IPCC 2014b, Ramirez-Villegas and Thornton 2015). To investigate this, Lobell et al. 

(2011) used historical crop-trial dataset of 20,000 maize trials in Africa to understand climate 

impacts on yield. As a result, they observed that for every 1°C of warming (above 30°C), maize 

yield declined by 1%–1.7% under optimal rain-fed and drought conditions. In similar research, 

Schlenker and Lobell (2010) provided evidence on the relationship between climate variability 

and crop yield through statistical evaluation of historical crop production and climate data for 

sub-Saharan Africa. The report highlighted that all models predicted negative impacts of global 

warming for maize, sorghum, millet, groundnut and cassava. Leng and Huang (2017) however 

pointed that statistical approaches used in Schlenker and Lobell (2010): that assumed year-to-

year distribution of crop is constant over time, could bias the result. By considering crop spatial 

distribution changes, Leng and Huang (2017) reported that the predicted decline of corn yield 

under climate change (20%~40%) was 6% to 12% less compared to results assuming a fixed 
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cropping system thus obviating the previous study’s limitation. Other studies have noted that 

the impact of climate variability on crop productivity is significant and the principal source of 

fluctuations in yield variability (Ventrella et al. 2012, Rosenzweig et al. 2014, FAO 2016a). 

Diedhiou et al. (2018) and Klutse et al. (2018) have shown that a global mean temperature 

change of 1.5 °C and 2 °C could induce more regional warming across Africa, which will have 

significant long-term negative impact on crop yield. Recent studies based on the updated IPCC 

Fifth Assessment Report (AR5) have evaluated yield response to climate change, for the near 

future and towards the end of the century for Africa, guided by RCP scenarios (Knox et al. 

2012, Tripathi et al. 2016, Parkes et al. 2018, Girvetz et al. 2019). As explained in Challinor et 

al. (2014), these studies (AR5) showed a greater risk of yield reductions at moderate warming 

compared to the Fourth Assessment Report of the IPCC (AR4). The studies evaluated below 

used different methods, scenarios and crop models to evaluate crop response.  

Knox et al. (2012) carried out a meta-analysis of 52 studies that projected climate change 

impact on staple crops in Africa and Asia at a regional level. Their approach followed a 

systematic literature review that considered climate change projections up to the 2080s using 

GCMs. The aggregated dataset was categorised into sub-regional findings, and the mean yield 

result for West Africa (-12.5%) was close to previous findings. Maize yield change was 

estimated at -5% across Africa and a general conclusion was that yield productivity decreased 

with time as the climate signal (changes in the state of the climate system) increases.  

The response of maize, millet and sorghum yield to climate change in West Africa is a major 

area of interest for Parkes et al. (2018). As an investigation, an ensemble of GCMs and RCMs 

were used that represent a 1.5 °C temperature change above pre-industrial levels, and four crop 

models to simulate yield under RCP 8.5 scenario. The adaptation measures implemented 
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included using heat stress resistant varieties and rainwater harvesting. Results from the analysis 

showed that yield response was uncertain under 1.5°C temperature change, and the variation 

in crop models and farm inputs influenced the results. Further findings revealed that certain 

projected yields responded to CO2 fertilisation effect. Parkes et al. (2018) further observed 

potential increase in yield and yield variability in Côte d’Ivoire and Nigeria, and concluded 

that rainwater harvesting was less effective as an adaptation method compared to using heat 

stress resistant varieties. This is because projected higher rainfall in future climates reduces the 

likelihood of water limiting crop growth. Wang et al. (2018) and Girvetz et al. (2019) suggested 

the improvement of cultivars such as drought tolerant and heat resistant varieties to mitigate 

climate change.   

Tripathi et al. (2016) assessed the potential impact of climate change on some major crops such 

as maize, wheat, and rice via literature review, and presented the detailed physiological, 

biochemical, and phenological effects of climate change on crop growth and development. 

Similar to previous findings by Schlenker and Lobell (2010), the review concluded that climate 

change is affecting various aspects of the life cycle of crops and increasing temperature is 

negating CO2 fertilisation effects on crop yield such as wheat. Tripathi et al. (2016) further 

reported that maize crop yields are more impacted compared to wheat and rice. From the 

foregoing discussion, there is a consensus that changes in temperature and precipitation will 

have implications for crop yield across Africa. Further research is needed to account for the 

projected yield reductions amongst studies. According to Dinesh et al. (2015), major crop 

productivity and climatically suitable areas in Africa are projected to decline by the 2050s 

under RCP 8.5 projection if no effective mitigation is put in place. For example, as shown in 

Figure 2.4, areas of suitability for the production of beans and maize could decline by 12%-

40% relative to the period 1970-2000. Furthermore, Western Africa could experience a 
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significant reduction (>10%) in suitable land area for crops such as maize, sorghum, banana, 

finger millet (Figure 2.4). Dinesh et al. (2015) and Challinor et al. (2014) added that adaptation 

is expected to be helpful in dealing with climate change through exploring autonomous 

measures such as cultivar substitution and a change in planting dates, to systemic and 

transformational changes that include climate-smart agriculture.  

 

2.5 Strategies for climate change mitigation  

In order to tackle global warming, the United Nations Framework Convention on Climate 

Figure 2.4: Median changes in climatically suitable areas projected for 2050s under the RCP 8.5 

scenario, and relative to 1970-2000 historic data (Source: Dinesh et al. 2015). 
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Change (UNFCCC) highlights two fundamental response strategies to reduce the impacts of 

climate change: mitigation and adaptation. The IPCC (2014a) defines mitigation as the process 

aimed at reducing emissions of GHGs and increasing carbon sequestration opportunities (IPCC 

2014a, Locatelli et al. 2015). Adaptation aims to reduce or reverse the adverse effects of climate 

change; through a range of changes to human actions, or natural systems (IPCC 2014a). Both 

mitigation and adaptation are complimentary, and equally necessary strategies for managing 

the risks of climate change (Kongsager 2018). In addition, large-scale deployment of renewable 

energy, most especially bioenergy can also be viewed as a robust mitigation strategy (Bauer et 

al. 2018). According to the IPCC, limiting climate change would require a substantial reduction 

in GHG emissions through reduced energy use, decarbonised energy supply, sustainable 

technology development and enhanced carbon sinks in land-based sectors. The following sub-

sections considers international collaboration and mitigation measures for reducing carbon 

emissions. 

2.5.1 Paris Agreement to keep global warming below 2°C 

Through the United Nations Framework Convention on Climate Change (UNFCCC) Paris 

Agreement (COP 21) which came into force on November 2016, the international community 

agreed to keep the average global temperature rise well below 2°C and pursue efforts to limit 

this to 1.5°C above pre-industrial levels by the end of this century (UNFCCC 2016, IEA and 

IRENA 2017). To meet this target, significant GHG emissions abatement continues to be 

required (Mani et al. 2018). The International Energy Agency (IEA) projects (with a 66% 

probability) that the share of fossil fuel in primary energy demand would need to halve by 2050 

and the deployment of renewable energy technology such as solar, wind and bioenergy for 

example would require acceleration in order to achieve the “well below 2°C” limit goals (IEA 

2017). 
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 The responsibility is now on the 165 Governments that acted as signatories to the Paris 2016 

agreement (the Paris Agreement) to review existing national frameworks and enact rules, 

regulations and policies that will accelerate energy transition and collective reduction strategies 

of energy related CO2 emissions by 2.6% per year (IEA and IRENA 2017).  

Unlike the Kyoto protocol, that sets binding targets for industrialised countries; under the 2016 

Paris agreement, developed and developing countries were to put together nationally 

appropriate mitigation actions via the Intended Nationally Determined Contributions (INDC). 

This document was submitted to the UNFCCC and sets out quantitative targets to reduce GHG 

emissions (Mani et al. 2018, IEA and IRENA 2017, UNFCCC 2016). The reduction of 

agricultural GHG emission featured in most of the INDCs and some sub-Saharan African 

countries specifically pledged to promote, low-carbon strategy and adopt climate-smart 

agriculture (CSA) to reduce GHG emissions (FAO 2016b, UNFCCC 2016, Zheng and Han 

2018, Girvetz et al. 2019). In summary, Stirling (2018) gave an overview of the UNFCCC 

reporting process for national GHG emission reporting of direct nitrous oxide (N2O) emissions. 

The debate about emission mitigation gained prominence with Wollenberg et al. (2016) arguing 

that it is unclear how much emission mitigation is required and how feasible it is for agriculture 

to meet the proposed global target of limiting warming by 2°C. To counter this, Wollenberg et 

al. (2016) proposed a global target emission of 1 GtCO2e yr-1 by 2030, to achieve the 2°C 

warming limit in 2100 under the RCP 2.6 scenario pathway. They noted that the consequences 

of excluding agricultural emissions from mitigation targets and plans could reduce the 

feasibility of meeting the 2°C limit and may increase the cost of mitigation in other sectors. 

Therefore, to meet the 1.5°C or 2°C targets, countries will need to be ambitious in pursuing 

agricultural emission reductions through technology development and transfer (Richards et al. 

2018). 
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2.5.2 Renewable energy development 

Endorsement of the Paris Agreement charts a course for addressing both mitigation of GHG 

emissions and adaptation to climate change impacts (WEC 2016). It is an important step 

towards a truly global emission reduction strategy that will stabilise GHG emissions and 

provide an essential framework for any future international agreement on climate change (Mani 

et al. 2018). It also has implications for the energy sector, which is the single largest net 

contributor of GHGs due to the burning of fossil fuels. Hence, the energy sector is at the core 

of efforts to combat climate change (IEA and IRENA 2017).  

Energy plays a central role in the economy because it drives all the other elements of the 

system: the industrial, agricultural, commercial and government sectors, including private life. 

It has been estimated that by mid-century, global energy demand could rise by 50% (WEC 

2016). Worryingly, developing countries are adopting a more carbon-intensive standard of 

living increasing the demand for non-renewable fossil fuels (Garba 2014, Dutta et al. 2014). 

However, this demand could be partially offset by harnessing and developing renewable energy 

resources. A key route for achieving national binding emission targets would be less 

dependence on fossil energy and intensification of the production of cleaner forms of low-

carbon renewable energy. Many studies have established the climatic and economic benefits 

of renewable energy technologies in terms of sustainable development (Viana and Perez 2013, 

IRENA 2016, Souza et al. 2017, Mani et al. 2018). Any increase in the use of energy from 

renewable sources is an important measure to offset climate change, reduce GHG emissions 

and promote the security of energy supplies (Pang et al. 2014).  

The International Energy Agency (IEA) reported that low-carbon energy technologies such as 

solar, wind and bioenergy, have received much research and policy support in gaining 
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momentum for future energy systems (IEA 2017). The International Renewable Energy 

Agency (IRENA) reports that about 90% of the required carbon emission reductions can be 

achieved by 2050 through accelerated deployment of renewable energy and energy efficiency 

measures and the remaining reduction obtained by fossil fuel switching and carbon capture and 

storage (CCS) (IEA and IRENA 2017). Equally, projections from the EIA’s International 

Energy Outlook (2017) shows that renewable energy is expected to increase by 2.8% per year 

through 2040 as technological improvements and government incentives increase, however, 

projections still show that global consumption of fossil fuel will remain dominant; leading to 

higher GHG emissions (EIA 2017, Tabatabaie 2017, Nordin and Sek 2018). To achieve these 

targets and the Paris agreement goals, renewable energy deployment must be accelerated to 

limit global temperature rise to 2 °C (Mani et al. 2018).  

The World Energy Council (WEC) reported that out of the 18% renewables in the primary 

energy supply mix, bioenergy makes up around 14%, making it the largest available renewable 

energy source; additionally, bioenergy contributes 10% of global energy supply (WEC 2016).  

Bioenergy deployment has been identified in many studies as a potential substitute for fossil 

fuels; but it is also crucial in achieving ambitious targets to reduce GHG emissions (Creutzig 

et al. 2015). Bauer et al. (2018) explored sustainability of large-scale deployment of bioenergy 

for achieving long-run climate goals. The exploratory assessment include eleven integrated 

assessment models (IAMs) to determine future bioenergy use under harmonised scenarios of 

future climate policies, availability of bioenergy technologies and limitations on biomass 

supply. The models indicate that imposing stringent carbon budgets progressively is a major 

driver of bioenergy use (Bauer et al. 2018). According to WEC (2016), effective policies such 

as carbon taxes, blending mandates and increased investment in biofuel development are key 
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instruments in transforming economies. For example, Brazil is becoming an oil independent 

country as a result of increasing its blending of biofuels in the transportation sector.   

2.6 Critical issues affecting biofuel sustainability 

The demand for biomass energy, especially biofuels on a global scale is growing rapidly. Two 

factors driving this growth are the anticipation that bioenergy deployment has a key role to play 

in climate change mitigation, and energy insecurity that stems from the instability in global oil 

prices and depleting crude oil reserves (Duvenage 2013, Mohammed et al. 2014, Ben-Iwo et 

al. 2016, Bhutto et al. 2016). Biofuels derived from energy crops, lignocellulosic materials, 

agricultural waste and industrial waste have been extensively studied and their potential 

environmental impacts documented (Hsu et al. 2010, Koçar and Civaş 2013, Jeswani et al. 

2015, Ohimain 2015, Elum et al. 2017, Dutta et al. 2014). Although the sustainable production 

of first-generation liquid biofuel from energy crops is a major topical debate (Russo et al. 

2016), energy crops continue to be regarded as important resource materials for biofuels 

(Hammond and Seth 2013, Mohammad et al. 2018).  

This is certainly true in the case of Brazil and the United States which are both major producers 

of sugarcane and corn respectively for bioethanol, and Indonesia which grows palm oil for 

biodiesel (Enciso et al. 2016, Okoro et al. 2018). This indicates that the potential for agricultural 

sector to produce energy crops for biofuel in Nigeria is huge, for example out of the 91 million 

ha of available land area, agriculture covers 71 million ha (FAO 2016c); and validates the many 

studies that have evaluated this potential (Ben-Iwo et al. 2016, Elum et al. 2017). Biofuel 

combustion has been taken to be carbon-neutral because the carbon released on combustion 

had been sequestrated during the growth phase (Cherubini et al. 2011); therefore, its use does 

not contribute to a build-up of CO2 in the atmosphere (McKendry 2002, Cannell 2003, Creutzig 
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et al. 2015).  However, this assumption is challenged in many studies for disregarding the time 

lag between CO2 release, the time it spends in the atmosphere before its uptake by new plants 

(Cherubini et al. 2011, Haus 2018).  

In recent years, there has been an increasing interest in the sustainable production, harvesting 

and an effective feedstock supply chain to complement and replace fossil fuels. Many 

researchers have argued that the sustainable sourcing of biomass feedstock and careful 

management of available resources will provide a clear advantage to biofuel systems over 

traditional fossil-based fuels and thus can contribute to mitigating climate change through GHG 

emission savings (Davis et al. 2013, Manning et al. 2015, Carus 2017). For example, Davis et 

al. (2013) analysed the potential for resource management practices to aid in enhancing GHG 

mitigation. By reviewing viable traits of different biomass species, Davis et al. (2013) 

implemented the “management swing potential” which represented management choices 

tailored to specific energy crops. The resultant GHG mitigation potential from growing 

Miscanthus in the UK, palm oil in Indonesia and corn in the USA, amongst others, proved that 

resource management was more important compared to crop type in determining 

environmental impacts. Carus (2017) supports the idea of regional sourcing of bio-based 

feedstock and suggested that sourcing for alternative biomass feedstock from local agriculture 

as against importation, could help resolve the issues of transport GHG emissions and reduce 

the risk of supply failure. However, Carus (2017) agreed that this move could further enhance 

emissions from land-use change and related emissions.    

As more countries in the developing world pursue access to affordable and reliable energy 

through bioenergy development, the debate centred on bioenergy sustainability is ongoing and 

controversial; still seeking consensus due to the contrasting expert opinions that have been 
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presented on biofuels sustainability (Bauer et al. 2018). Strong expert views have been 

expressed stressing that biofuel development competes with food and food resources, and the 

production does produce negative energy value (Balogun and Salami 2016). For example, 

Teweldemedhin and Mwewa (2014) reported that biofuel production diverted land and labour 

meant for food production to the cultivation of Jathropa in Zambia. The findings were however 

based on a survey of 65 contract farmers (out of 8,000 recruited); whom despite owning large 

hectares of farmland, used approximately 50% for Jathropa production.  

Kline et al. (2017) suggested that by focusing only on the negative impacts of biofuels, debaters 

are obscuring the main drivers of local food insecurity, ignoring opportunities for biofuels to 

contribute to the solution. It was discussed that an understanding the nexus of food security, 

bioenergy sustainability and resource management could facilitate the goal to end hunger and 

ensure sustainable energy for all to meet the targets of the 2030 Sustainable Development Goals 

(SDG) and the United Nations Paris agreement on climate change (Kline et al. 2017).  

On the contrary, some experts, view biofuel development as providing opportunities for rural 

infrastructural development in ways that may enhance future food security (Omer 2010, Carus 

2017, Souza et al. 2017). For example, Mudombi et al. (2018) used a poverty index to 

determine local multi-dimensional poverty effects of growing biofuels in Malawi, Swaziland 

and Mozambique. Evaluation of sugarcane production workers when compared to Jathropa 

counterparts using a regression analysis method to estimate poverty effects around biofuel 

projects, revealed that groups involved in biofuel value chains had lower poverty than the 

control group. Similarly, Herrmann et al. (2018) used econometrics to assess the implications 

of expanding biofuel feedstock production on food production. Although food availability for 

households participating in sugarcane outgrower schemes in Dwangwa, Malawi were not 

significantly affected and they earned significant higher incomes, the study further revealed 
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that expansion of sugarcane plantations for biofuel and food crop expansion by outgrowers 

might affect food crop production of other households not involved in the scheme through land 

competition or labour resources. Furthermore, Herrmann et al. (2018) noted that the scheme 

provided higher carbon sequestration, but it is a direct driver of land-use change, contributing 

to ecosystem loss.   

Although differences of opinion do exist, there appears to be some agreement from Carus 

(2017) that local production of bio-based feedstock would be beneficial for the socio-economic 

development of rural areas. Furthermore, many argue that if bioenergy feedstock is sustainably 

produced, farmers will in turn, become resilient, and adapt better to climate change (Carus, 

2017, Kline et al. 2017). Although there are still concerns over the economic and social viability 

of biofuels, it remains unclear how sustainable future production will be maintained under 

climate change. This is because the sustainability of biofuel feedstock sources largely depends 

on land availability, and despite the huge expanse of available land in Africa, the World Energy 

Council (WEC 2016) reported that in 2014, the nominal share of biofuel production in Africa 

was measured at 1% compared to North America (44%), Europe (16.5%) and Asia (10.5%) as 

shown in Figure 2.5. However, others have highlighted the relevance of biofuel projects that 

are well into implementation in some developing countries such as Malaysia, Kenya, South 

Africa, Ghana and Nigeria, using feedstock such as palm oil, sugarcane, sorghum, maize 

amongst others as for biofuel. Production is ongoing despite the environmental consequences 

of land use change, impact on ecosystem, biodiversity from high deployment of land-intensive 

bioenergy feedstock (Creutzig et al. 2015, Okoro et al. 2018). 
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Table 2.1: Production of liquid biofuels by region (Adapted from the World Energy Council (WEC 

2016). 

Region Percentage 
 

1993 2003 2013 2014 
     

Asia Pacific 
 

3.3% 9.5% 10.5% 

Africa 
   

1.0% 

Middle East 
    

Europe & Eurasia 1.1% 11.1% 17.1% 16.5% 

South & Central America 71.4% 49.2% 28.5% 28.7% 

North America 27.4% 36.4% 44.8% 44.1% 

 

2.7 Biofuel feedstock production in Nigeria 

Nigeria is committed to the renewable energy targets set out in the INDC report to reduce 

climate change (Federal Ministry of Environment 2015). Other motivating factors to promote 

renewable energy development include the potential of supporting rural development, boosting 

the agricultural sector and creating huge financial benefits to local farmers, businesses and jobs. 

Through the national biofuel policy, the government seeks to create an enabling environment 

for biofuel production investment, utilisation and market orientation (Mohammed et al. 2014, 

Aliyu et al. 2017). The study by Shaaban and Petinrin (2014), and Aliyu et al. (2015), showed 

that the renewable energy potential in Nigeria is 1.5 times that of fossil energy, and the 

available 28.2 million hectares of arable land has the potential to produce up to 0.256 million 

tons mix of crops per day. The generalisability of much published research on this issue is 

problematic and (Oyedepo 2014) also notes that renewable development in Nigeria has been 

sporadic with no consistent national policy in place. 
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With reference to the debate of sustainable bioenergy development in Nigeria, many studies 

have reviewed government renewable energy development policy (Ohimain 2013a, 2013b, 

Shaaban and Petinrin 2014, Aliyu et al. 2017, Elum and Momodu 2017); resource availability 

(Udoakah and Umoh 2014, Shaaban and Petinrin 2014, Mohammed et al. 2014, Aliyu et al. 

2015, Ben-Iwo et al. 2016, Akuru et al. 2017); benefits and cost (Oyedepo 2014, Ohimain 2015, 

Edomah 2016, Aliyu et al. 2017, Okoro et al. 2018). 

More literature has emerged from Edomah (2016) and Elum and Momodu (2017) that 

highlights the challenges of sustainable bioenergy development in Nigeria; including high 

investment costs, legal and regulatory barriers. Through the Nigerian Biofuel Policy incentive, 

bio-refining industries using first generation biomass feedstock are exempt from taxation (Ben-

Iwo et al. 2016), however, Edomah (2016) advised on the removal of petrol subsidies to 

encourage market competition. Furthermore, Akuru et al. (2017) evaluated the availability of 

biomass resources within the country with respect to its conversion to electricity rather than as 

a biofuel, while Udoakah and Umoh (2014) suggested that municipal waste in addition to 

agricultural residue could be a viable alternative to generate electricity and biofuel for 

automobiles. In addition to this, Oyedepo (2014) is of the opinion that the Nigerian government 

could consider extending biomass residues into power generation, as the feedstock is widely 

available and renewable. This review is supported by Mohammed et al. (2014) and Elum et al. 

(2017), who agree with the idea of substituting agricultural biomass residues as feedstock, 

because (1) use of biomass residue for energy has little effect on food security (2) modern 

bioelectric power generation methods using bio-residues are efficient and can minimise energy 

losses and minimise emissions. 
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In a follow-up report, Elum et al. (2017) reported on utilising bioenergy to address issues of 

socioeconomic and environmental concerns in Nigeria. Growing certain energy crops 

dedicated solely to biofuel production was recommended, as this would create a strong synergy 

between the energy and agricultural sectors. Amongst the challenges identified to constrain the 

development of bioenergy in Nigeria, Elum et al. (2017) did not include the impending threat 

of climate change on the production of energy crops. 

Dick (2014) estimated the supply capacity of biofuel feedstock, bioethanol production and the 

potential and likely impacts of feedstock demand on national energy and food supplies. 

Findings from the sectoral Energy-Food Model (EFM) suggests that bioethanol from crops will 

not affect domestic food supply or increase commodity prices due to substantial acreage of 

fertile lands. Dick (2014) also emphasised that Nigeria has the potential to produce sufficient 

feedstock to meet domestic bioethanol requirements and an annual production of 5.14 billion 

litres of ethanol is feasible from all regions.  

 In addition, Nigeria has an enormous land resource for biofuel feedstock production, and 

cassava, sugarcane, maize and sorghum are viable energy crops that can be grown on marginal 

or degraded agricultural land for biofuel (Mohammed et al. 2014, Ben-Iwo et al. 2016). Current 

investments in sugarcane and cassava feedstock plantations in Nigeria are over $3.86 billion, 

with up to 10,000 units of mini refineries and 19 ethanol bio-refineries built according to Aliyu 

et al. (2017). According to Okoro et al. (2018), public support for bioenergy development in 

Nigeria is still debateable, but there is a consensus that bioenergy as a substitution to fossil-

fuel energy could benefit the environment in terms of GHG emission reductions and provide 

an element of energy security. Balogun and Salami (2016) reviewed responses from local 

stakeholders on the effects of the development of biofuel production in regions where 

production has been established in Nigeria. Across all three ecological zones, the perception 
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was that feedstock planting translated to economic gains for rural farmers and improved rural 

infrastructure. It also showed high employment opportunities as were observed for women and 

youths. However, the effects on deforestation, water availability on the general environment 

was significant especially in the North-Western zone of Nigeria. Ohimain (2015) argued that 

the food versus fuel conflict might not be as severe in other areas of Nigeria since there is no 

constraint of arable land and most of the first-generation biofuel projects have feedstock 

plantations. 

In addition to resource availability and use as discussed above, other key issues highlighted 

with regards to biofuel production within the context of sustainability include food versus fuel 

trade-offs, GHG accounting and land use change (Araújo et al. 2017, Oláh et al. 2017, Okoro 

2018). For example, Oláh et al. (2017) examined the link between an increase in food prices 

and biofuel policies during the period of 2003–2016. The main driver for food price fluctuation 

was mainly due to the oil price shock, which is similar to findings by De Gorter et al. (2015). 

In addition to higher oil prices, Araújo et al. (2017) added that biofuel production, weather 

conditions and investor speculation were factors that stimulated food price fluctuation.  

The studies evaluated have considered biofuel sustainability relating to policy, resource 

availability, use and economic benefits. Though others have argued on the potential impacts 

on food prices and resource competition, it can however be suggested that, a more holistic 

approach to the debate should include the environmental impacts of agricultural activities due 

to the production of biofuel feedstock and the resulting land use change. Aliyu et al. (2017) 

identified that current biofuel development policy in Nigeria lacks strategies to boost yield of 

feedstock through improved farm practices. This pre-empted a call for vigorous research in 

biotechnology and precision agricultural techniques. Scepticism about biofuel sustainability 



42 

 

with reference to environmental impacts have equally grown over the years. For example, 

Achike and Onoja (2014) investigated the increase in agricultural CO2 emissions in Nigeria. A 

positive correlation between agricultural land expansion due to policies on bioenergy and 

increase in fossil fuel demand was then reported. Furthermore, Achike and Onoja (2014) 

showed the significant increase in agricultural land area under cultivation also confirms FAO's 

(2011) report that agricultural expansion by foreign investors in Africa due to policies on 

bioenergy will increase land grab. 

Okoro (2018) modelled the environmental and social impacts of cultivating palm oil for 

bioenergy in Niger Delta region of Nigeria. By using an integrated assessment modelling 

approach, their study addressed land use change emissions with respect to oil palm cultivation 

and sustainable development issues. Okoro (2018) reported that climate change impacts on oil 

palm yield was small and the net impact was positive. Furthermore, the proposed model 

highlights the effect of bioenergy policies on land use change and reveal that use of emission 

tax (e.g., carbon tax) is an appropriate instrument in future land–use emission reduction. What 

is not yet clear is the impact of policies aimed at incentivising landowners to keep land-use 

areas such as grassland and shrubland due to the challenge of proper measurement of below-

ground biomass emissions. This indicates a need for further research.  

2.8 Assessing climate change impact of biofuel feedstock production 

The impact of climate change on agriculture has been widely studied using different approaches 

such as field experiments (Chen et al. 2017), artificial climate chamber experiments (Ottman 

et al. 2012), analysing aggregated data from database and archives of crop yield records (Lobell 

et al. 2011, Tao et al. 2014, 2015), using statistical approaches. According to Adnan et al. 
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(2017) and Jiang et al. (2017), field experiments can be expensive, repetitive over long periods 

to capture seasonal weather variations and may not be representative of site conditions due to 

spatial heterogeneity. Although computer solutions are not a substitute for field experiments, 

the use of agricultural and climate models has dominated scientific literature in evaluating the 

risks of climate change and adaptation assessments (Fealy 2013, Asseng et al. 2015, Zhai et al. 

2017, Chen et al. 2018). Over the last decade, there has been an increase in the use of crop-

climate models to estimate crop productivity and develop adaptation options, given the growing 

interest in both the implications of climate change and the uncertainty surrounding future 

predictions (Challinor et al. 2018).  

Crop models are useful tools for assessing the sensitivity of crop growth and yield formation 

processes to climatic factors. Crop models bring together the best available knowledge on plant 

physiology, agronomy, soil science and agro-meteorology to predict plant growth under 

specific environmental conditions (Timsina and Humphreys 2010, White et al. 2011, Asseng 

et al. 2015). Nevertheless, the strategy has not escaped criticism from researchers and 

academics. According to Challinor et al. (2013) and Lobell (2013), crop models are simplified 

representations of reality (therefore will contain inevitable errors) and are therefore tools from 

which information can be retrieved rather than viewed as such which can compete with reality.   

There are various categories in which the application of crop models can be grouped but the 

main goal of most applications is to predict final yield. In essence, crop models can be applied 

as strategic, tactical and forecasting management tools (van Keulen 2013, Robert et al. 2016, 

Han et al. 2017). Under strategic and tactical applications, the models are run prior to planting 

of a crop to compare alternative crop management scenarios or evaluate various management 

options with respect to one or more management decisions incorporating historical or generated 

weather data. Apart from its broad application as an agronomic research tool, areas of specific 
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interest in some cases include the determination of resource use and the environmental impacts 

of land-use change or associated variables. The most common application of crop models in 

agricultural production systems however, is to simulate the effects of climate change such as 

elevated carbon dioxide, changes in temperature and rainfall on crop yield and water use 

requirements and to identify potential adaptation strategies (Hoogenboom et al. 2012b, 

Rosenzweig et al. 2014, Challinor et al. 2018).   

Most crop models operate at daily time steps which start at planting and end at the prediction 

of harvest or physiological maturity depending on the crop (White and Hoogenboom 2009). 

When using crop models to predict crop growth, initial field conditions such as the soil nutrient 

and water status, the planting date and density are specified. Other crop information such as 

cultivar characteristics, planting arrangement, irrigation, fertilizer application, tillage events, 

pest, diseases and other factors may be considered (Hoogenboom et al. 2012b). Most important 

for modelling crop yield at any particular location is the availability of daily weather data and 

CO2 concentration data corresponding with the historic, current or future scenarios of interest 

(White et al. 2011). It is important to note that crop models are not without limitations. 

According to Kasampalis et al. (2018), complex models are difficult to use and should be 

evaluated against the objectives of the study. Availability of sufficient soil profile 

characteristics, input data quality and extensive growth parameter data for model calibration, 

have all been identified as input limitations in terms of large area yield projection. 

Misrepresentation of natural field occurrences within model, model modifications, and over 

simplification of interactive effects have also been linked to model uncertainty (Palosuo et al. 

2011, Lobell 2013). 

2.8.1 Types of crop models and model components 
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Crop models calculate the causal relationships between the various plant functions and the 

environment, or they apply a statistical approach, using correlative relations between all 

processes. Crop models can be deterministic in that they make an exact calculation or 

prediction of the yield or dependent variable; or probabilistic or stochastic, which provide a 

different output for each calculation along with probabilities (Boote et al. 2013, Lobell 2013, 

Hoogenboom et al. 2012b, 2015, Islam et al. 2016, Liu et al. 2016).  

2.8.1.1  Process-based crop models 

Process-based models are computer-based mathematical representations of one or several 

physiological and physical processes characterising the agroecosystems (Buck-Sorlin 2013). 

Process-based models are extensively used in crop-climate modelling studies and have been 

tested against experimental datasets in different environments (Semenov et al. 2012, Asseng et 

al. 2015, Reynolds et al. 2018). The models can be data intensive as the processes are defined 

at a fine scale and calibration can be difficult due to the large number of uncertain parameters 

(Lobell and Burke 2010, Islam et al. 2016, Jiang et al. 2017). However, process-models are 

powerful tools designed to assist farmers with crop management decisions, and based on their 

high geographic resolution and combination of climate and soil data, can facilitate detailed and 

dynamic weather, soil and farm crop management analysis (van Keulen 2013, Islam et al. 2016, 

Jones et al. 2017).  

The number of process-based models has increased over the last four decades and their 

applications vary in terms of differences in approaches, parameterisation, assumptions and 

structures (Challinor et al. 2018). Rosenzweig et al. (2014) grouped seven crop models based 

on their purpose, structure and processes to determine the source of the variations in model 

results. The models were categorised into site-based models, which were developed to simulate 
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processes at the field scale (EPIC), agro-ecosystem models which were utilised to simulate 

carbon and nitrogen dynamics, surface energy balance and soil water balance, and the agro-

ecological zone models developed to assess agricultural resources and potential at regional and 

global scales. The model responses to climate change varied considerably and Rosenzweig et 

al. (2014) acknowledged that further research is required to ascertain their use for certain 

assessment studies.  

For easy comparison of energy crop models, Jiang et al. (2017) categorised several processed-

based models into radiation models, water-controlled crop models and integrated models as 

shown in Table 2.2. From the 23 energy crop models reviewed, the models grouped into 

radiation models were concluded to be over simplified as the modelling is based on the 

radiation use efficiency (RUE) approach. This assumed that radiation use is constant whilst in 

reality, it varies in range. The typical water-controlled crop models (AquaCrop model) were 

limited because of a dependence on crop water use and soil water balance in the root zone. 

Jiang et al. (2017) further argued that in addition to using different sets of parameters to 

calibrate the model for different crops, under water stress conditions, the water-crop model 

simulation of biomass yield would not be satisfactory. The integrated models were further 

categorised into models that utilised biochemical approaches and others that utilised 

photosynthesis and respiration approaches. The review shows that integrated models were the 

most versatile, and the models’ strengths lies in their individual design structure and principles 

(Jiang et al. 2017). 
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Process-based models have become more useful with the incorporation of Decision Support 

Systems (DSSs) which create an interface that integrates climate, crop and economic models 

to aid risk assessment and economic analysis of management strategies (Palosuo et al. 2011, 

Mubeen et al. 2016). In order to integrate a process-based model to seasonal climate forecast 

information, Han et al. (2017) developed a decision support system (DSS) that could effectively 

translate probabilistic seasonal climate forecasts (SCFs) to crop responses. The Agriculture-

Table 2.2:  Categories of energy crop models (Source: Jiang et al. 2017) 
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Modelling and Decision Tool (CAMDT) developed links from SCFs to DSSAT-CSM-Rice 

model and constituted of a user interface where users could create “what-if” scenarios. The tool 

also possessed a unique feature in which it transforms crop model outputs into economic terms 

(Han et al. 2017). Model validity of the developed DSS tool was however not presented in the 

report. One of the most commonly used integrated model is DSSAT (Decision Support System 

for Agro-technology Transfer) (Jones et al. 2003, Hoogenboom et al. 2015, Dias et al. 2016). 

DSSAT system is a collection of independent modules for many field crops using a single soil 

model. This type of Cropping System Model (CSM) is process oriented and predicts daily 

biomass production and partition to various plant organs that grow in a given period (Liu et al. 

2011, Jiang et al. 2017). 

In a comparative study of eight widely used process-based crop models, Palosuo et al. (2011) 

reported that DAISY and DSSAT models performed best in yield estimation compared to 

observed values while other models underestimated and overestimated crop yield. 

The Crop Environment Resource Synthesis group (CERES) are process-based plant growth 

modules embedded in DSSAT and run on a daily time step driven by daily weather elements 

(Wang et al. 2011, Ventrella et al. 2012, Msongaleli et al. 2014, Van Wart et al. 2015). The 

model simulates plant responses to environmental conditions such as soil, weather, water stress 

and management. To calibrate CERES-maize, site-specific input parameters are required to 

calculate growth development and partitioning processes from planting to predicted harvest 

maturity. Like most crop models, plant phonological development in CERES-maize is sensitive 

to cultivar type, water deficit, temperature, photoperiod and nitrogen stresses, expressed as 

physiological days per calendar day (PD/day) (Mera et al. 2006).  

Li et al. (2015) evaluated the performance of CERES-Maize and CERES-Wheat module of 

DSSAT-CSM by comparing yield simulation output with long-term experiment data and soil 
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nitrogen data. The simulated grain yields matched the measured values but the model 

overestimated soil nitrogen, which according to Jones et al. (2012), reflects inadequate model 

representation of the degraded soil profile. Liu et al. (2017) compared the simulation of a long-

term wheat-maize rotation experiment (19 years) using DSSAT model coupled to the 

CENTURY-based soil C and N module in DSSAT v4.6. DSSAT was found to simulate grain 

yield with reasonable accuracy (R2 = 0.72) under no fertiliser treatment in comparison to higher 

fertiliser rate (R2 = 0.45). Due to the poor model performance under no fertiliser treatment, 

both studies noted that DSSAT-CSM model was sensitive to N stress than to real crop growth 

(Li et al. 2015, Liu et al. 2017). However, DSSAT-CSM model can still indicate the influence 

of some management practices and used to select optimum N management practices.   

2.8.1.2 Statistical crop models 

Statistical crop models (also known as empirical models) require the use of historical crop and 

climate datasets for model calibration (Lobell 2013, Liu et al. 2016, Lobell and Asseng 2017, 

Tebaldi and Lobell 2018). Most often, statistical models are used to predict values of the 

dependent variables by generating the prediction equation and are also used to understand the 

relationships between two or more variables (Ostertagová 2012, Leng and Huang 2017). To 

date, various methods have been developed but the statistical method is usually preferred to 

process-based models as the latter requires extensive data input which is sometimes not 

available, especially in developing countries. However, this method of analysis has a number 

of limitations thus according to Liu et al. (2016), processes inherent to crop growth are not 

directly considered in statistical models. That being said however, the indirect effects of 

climatic variability, are not well captured by process-based models but can be included in 

statistical models such as those related to pests and diseases. In addition to the above, statistical 
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models provide transparent quantification of uncertainties by using standard statistical 

techniques such as bootstrap resampling (Lobell 2013, Leng and Huang, 2017). 

 Some studies have analysed the effect of weather variables such as rainfall (Ifabiyi and 

Omoyosoye 2011, Adamgbe and Ujoh 2013) and temperature (Peprah 2014), using statistical 

regression models to investigate the effects of climate change on crop yield and to predict crop 

response to farm input technologies (Zhai et al. 2017, Sitienei et al. 2017).  

Furthermore, Tebaldi and Lobell (2018) modelled the statistical relationship between projected 

climate scenarios and yields as a linear regression. This method was found to be flexible for 

estimating crop responses to temperature exposure at critical thresholds during crop growing 

season, which, according to Tebaldi and Lobell (2018) is a known shortcoming in yield impact 

models. However, by extrapolating empirical relationships, the model displayed a limitation in 

accounting for: (1) the effects of transformative adaptation measures and most importantly, (2) 

the non-linear response of crops to warming above 2–3 °C (Tebaldi and Lobell 2018). As a 

result, Leng and Huang (2017) state that this method was not always suitable at all locations 

due to its inability to establish significant relationships in some crop-state combinations. 

Semenov et al. (2012) warned that using simple statistical models to construct response 

functions such as yield to relate risk metrics such as climate could be misleading, as the model 

may not reflect the complexity of yield response to factors other than climate factors. This 

highlights the fact that although statistical models can efficiently reproduce historical climate-

induced yield variations at regional or farm-scale level (Hawkins et al. 2013), they are not as 

useful for determining the causes of yield variation (Lobell et al. 2013, Watson et al. 2015). 

Semenov et al. (2012) further suggest that process-based model provide the possibility to model 
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the complexity of crop responses by including knowledge of crop physiology and responses to 

environmental factors into process-based models.   

In an effort to estimate the relative importance of heat stress, precipitation and technology on 

yield forecast, Hawkins et al. (2013) fitted a statistical model to historical maize yield and 

climate. To make the model projection more robust, they included the interaction effects of 

temperature and precipitation and reported that historically, precipitation variability was the 

dominant contributor to yield variability nevertheless noting that in recent decades, heat stress 

variability had become an ever-important factor with precipitation variability. In addition, 

Hawkins et al. (2013) attempted to reduce climate model bias for future climate projection by 

calibrating the model using bias correction and change factors. The average number of hot days 

(above 32 °C) over France was projected to increase further to about 10 to 15 days per summer 

in the period 2016–2035. Although Semenov et al. (2012) criticised the use of simple empirical 

relationships between climate and crop yield to infer changes in future yields, Hawkins et al. 

(2013) fitted the model to encompass nonlinear technology trends and interaction between 

temperature and precipitation in order to give a more robust maize yield projection.  

Statistical models can be subject to the problem of co-linearity between predictor variables. 

However, according to Lobell (2013), this limitation can be minimised by using large panel 

time series from multiple locations. In addition, datasets with large correlations among 

variables should be avoided. With respect to this, most statistical models use aggregate 

measures of weather such as monthly or growing season averages, however, several sources of 

error become apparent if important timing of aspects important for crop development and 

growth transpire as missed (Lobell, 2013). Therefore, a limitation of statistical models is the 

assumption of stationarity and low signal to noise ratios in yield.  
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Another assumption in statistical analysis is that data measurement is perfect, even though in 

reality, errors can exist in yield and weather measurements. As an example, Lobell (2013) 

estimated the potential bias introduced by measurement error on yield predictions by using 

statistical crop models. The result suggested large errors with precipitation measurements (up 

to 30%) significantly biased crop yield output, while the measurement error for temperature 

was contrastingly small, and therefore yield response changed slightly. 

When compared to process-based models, statistical models can test for relatively simple 

relationships, but can come under the direct influence of climate variability (Tebaldi and Lobell 

2018). To evidence this, Roberts et al. (2017) compared climate change predictions of a simple 

process-based and statistical crop model to actual maize yields. Interestingly, the result show 

that the statistical model predicted greater impact of climate change on yield compared to the 

process-based model. A combination of both models gave significantly better results than 

predictions from either model independently. Roberts et al. (2017) however stressed that 

because of the simplicity of the models used, a wider set of models should be employed in 

future using the same framework in order to yield more optimum results (Liu et al. 2016). 

2.8.1.3 Crop model uncertainties 

Challinor et al. (2013) defined model uncertainty as a lack of predictive precision due to the 

inherent limitations to predictability. For example, in literature, a lack of predictive skills is 

associated with errors in model design. Due to this, Corbeels et al. (2018) and Knox et al. 

(2012) advised that some level of caution was needed when interpreting crop model outputs in 

any climate impact assessment given the large uncertainties associated with model predictions. 

The uncertainty in crop model outputs have been analysed and many impact modellers have 

presented sources of data errors that should be of concern. According to Rotter et al. (2011), 
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Rosenzweig et al. (2013) and Watson et al. (2015), the assessment protocols adopted by many 

analysts could significantly bias the projected response of crops to climate variability and 

change. Challinor et al. (2014) who carried out a meta-analysis of more than 1,700 published 

simulations, to evaluate climate change impacts and the quantitative effectiveness of adaptation 

using local mean temperature as a metric of change identified that firstly, the differences in 

experimental design and methods were the main causes of projection differences; and secondly, 

among other discrepancies in model simulations, they observed a large variation in structural, 

parameter and bias correction uncertainty in crop and climate models.   

He (2008) and Watson et al. (2015) further categorised uncertainties into model parameter 

uncertainty, model structure uncertainty and scenario uncertainty. Uncertainty in model outputs 

can be ascribed to a number of factors such as incomplete agronomic management data, crop, 

soil data and weather data inputs required to run the model. In order to clarify, He (2008) 

identified weather variability as the dominant uncertainty contributor to model yield and 

nitrogen leaching outputs. Tao et al. (2018) quantified the contributions from crop model 

structure, climate projections and crop model parameters to the uncertainty in climate impact 

assessment. Based on the yield outputs from seven crop models, and eight different downscaled 

climate projections for the 2050s, Tao et al. (2018) reported that crop model structure 

contributed the most to the total variance of ensemble output followed by climate projections 

from GCMs and crop model parameters. In addition to structural differences and weather 

inputs, Watson et al. (2015) also included input calibration uncertainty in their assessment by 

comparing a process-based and statistical crop modelling systems. Effort was made to examine 

interactions between the three sources of uncertainty and how different model types can be 

influenced by input calibration uncertainty. Watson et al. (2015) pointed out that irrespective 

of model choice, errors in input data characteristics and climate errors affected model response. 
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One of the limitations with this explanation is that it does not explain why and to what degree 

such errors are relevant to each model. 

Most impact assessment tended to reduce model uncertainty by employing an ensemble of crop 

or climate models in simulations (otherwise known as model ensembles). To mention a few, 

Asseng et al. (2015) evaluated the effects of temperature variability on wheat yield by 

comparing yield outputs from an ensemble of crop models against field experiments. Tebaldi 

and Lobell (2018) used an ensemble of climate models to estimate future climate change under 

the RCP 4.5 and RCP 8.5 scenarios in order to account for model uncertainties. Chen et al. 

(2018) used an ensemble of GCM datasets to address uncertainties in projected 1.5 and 2.0°C 

temperature change scenarios. In addition to using a crop model calibrated and validated for 

the region under study, Chen et al. (2018) used multiple sets of parameters to account for the 

uncertainties in cultivars and management. Similarly, Leng and Huang (2017) used 97 climate 

model projections for under four emission scenarios to estimate uncertainty sources in 

statistical crop models.  

The aforementioned studies did address the uncertainties from scenario differences with respect 

to different initial boundary conditions, however, the uncertainty due to different climate model 

structure was not accounted for. With the exception of Asseng et al. (2015), uncertainties from 

crop model type, parameterisation and cultivar type were not addressed. Although using 

ensembles of multi-models produces robust simulations of crop yield projections and 

minimises crop model uncertainties, Yin et al. (2017) argued that the detailed response of 

individual models could be hidden when using the mean or median results of the multi-model 

ensembles thereby making it difficult to assess the accuracy of each model.    
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2.9 Integrated Assessment Modelling (IAM) approach for energy crop 

sustainability 

Agricultural response to climate change has been widely represented in many studies using 

different crop modelling approaches. As earlier reviewed in section 2.6, previous assessment 

studies coupled climate and crop models to assess how crop yield responded to climate change 

(Asseng et al. 2015, Liu et al. 2016). However, the consideration of the impact of climate 

change on crop yield alone is not sufficient to estimate the broader implications of climate 

change for agricultural, economic and environmental responses. In light of this, more studies 

are beginning to consider varied integrated assessment approaches for agricultural impact 

assessment (Purola et al. 2018). To date, various studies incorporated GIS within their farm 

assessment framework by coupling crop model output into a GIS model to create spatial maps. 

Rupnik et al. (2018) as an example developed a cloud-based decision support system that can 

be integrated with existing farm management information systems.  

Other studies integrated economic models to climate and crop models (Atay 2015, Okoro et al. 

2017) to study the impact of climate change on global crop commodity prices and poverty 

outcomes (Hertel et al. 2010) in addition to global food systems (Nelson et al. 2014). Islam et 

al. (2016) used a similar structural framework that integrated climate models to DSSAT crop 

models combined with the IMPACT global economic model. By including cultivars with 

drought and heat tolerance traits, they simulated yield response under an extremely dry climate 

scenario using RCP 8.5. Both exogenous (independent of market effects) and endogenous 

(dependent on market effects) yields outputs were compared and from the results, drought and 

heat tolerant crop varieties had the potential to reduce the negative yield impacts due to climate 

change. In addition, market effects could also dampen the positive impacts as price signals 
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influence incentives to adjust farm management. In order to optimise resource allocation 

planning in crop models, Vilvert et al. (2018) used the outputs as inputs in bio-economic farm 

models to estimate production cost and farm income. Further to this, they applied the outputs 

from crop models in order to simulate supply and market demand to determine prices and trade 

volumes.  

Furthermore, other studies have linked the outputs from climate-crop-economic models to 

environmental impact models within the IAM framework with the aim of: (1) deriving changes 

in farm input management, (2) estimating the agricultural GHG emissions to the air, and water 

(Wolf et al. 2015, Zimmermann et al. 2017, Purola et al. 2018). As evidence of this, Wolf et 

al. (2015) used combined model analysis to evaluate farming systems. To do so, they integrated 

four models to estimate future farming systems in Europe considering climate change, price 

and technology changes. In their approach, yield output from SIMPLACE crop model was 

linked to (1) a CAPRI model that simulates global product prices (2) a FSSIM model that 

calculates farm level changes in cropping patterns and net income and (3) yield output which 

was linked to an INTEGRATOR environmental model to estimate the environmental impacts. 

Generally, crop yield increases towards 2050 were mainly attributed to higher atmospheric 

CO2.  

Zimmermann et al. (2017) carried out a sensitivity assessment of climate change impact on 

different impact variables such as crop yields, land use, production and environmental variables 

to three crop management adaptations. Similar to Wolf et al. (2015), the crop model was 

integrated with an economic model (with the exception of a model that calculated farm level 

changes in cropping patterns and net income) and used an environmental model to evaluate the 

environmental impacts from nitrogen fertiliser input. The report showed that across Europe, 
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yield sensitivity to sowing dates and crop cultivars was more pronounced under climate change 

compared to the other variables. Therefore, under the three adaptation measures considered, 

changes to sowing dates and cultivar improved yield but had less impact on economic and 

environmental outcomes. Zimmermann et al. (2017) further added that technical progress had 

more impact on yield compared to climate change, and the reduced sensitivity to management 

assumptions is indicative that economic and environmental variables were somehow 

influenced by the physical and economic adjustments along the model chain.  

Although van Vuuren and Carter (2014) indicated that very little difference existed between 

the SRES and the recent RCP scenarios, both Wolf et al. (2015) and Zimmermann et al. (2017) 

did not compare the SRES scenarios result (published in 2000 by the IPCC) with the current 

RCP scenarios published by the IPCC (2014). Furthermore, another limitation was that both 

studies considered fertiliser and manure application as the only changing farm management 

practice affected by climate change and therefore reported on ammonia (NH3) and nitrous oxide 

(N2O) emission to air and nitrate leaching. Both studies acknowledged the methodological 

challenges in conducting an integrated assessment especially the iteration of nitrogen use under 

climate change and maintaining consistent values of nitrogen inputs between models.  

Zimmermann et al. (2017) however noted that in addition to model structure and parameter 

uncertainty, feedbacks between models should be accounted for in subsequent studies. Purola 

et al. (2018) added that if the expectation of low crop yield potential and farm income could be 

mitigated under climate change following the adaptation measures such as sowing dates and 

crop cultivars as suggested in Zimmermann et al. (2017), this may trigger an increase in yield 

determining inputs such as fertiliser. Purola et al. (2018) therefore suggested that more studies 

should focus on farm management changes on either land use change or use of agricultural 
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inputs, in including crop yield changes. Based on farm level land use, inputs, production and 

far income, Purola et al. (2018) estimated changes for future scenarios (2042–2070) using a 

dynamic economic model (DEMCROP) which also estimates the effects of changed farm 

management (production, land use and input use) on GHG emissions. However, since the 

biophysical soil changes, due to climate change were not accounted for in the model, the 

emission output should be considered as indicative only (Purola et al. 2018).  

2.10 Assessing the sustainability of biofuel feedstock production 

The cultivation of biomass for biofuel production can bring about the release of atmospheric 

GHG emissions as well as biodiversity loss, soil degradation and low carbon storage from 

intensive cropping system. The environmental impact largely depends on the condition of land 

use change, materials and energy inputs such as fertilisers, pesticides, conventional fuels for 

transportation and wastes generated. From a life cycle perspective, biofuel production needs to 

fulfil certain sustainability criterion such as GHG emissions, biodiversity loss, positive energy 

balance, and impact on food security amongst others before it can be widely adopted  

(Gasparatos et al. 2013). The development of effective environmental policies and strategies 

requires the use of techniques to attain the environmental goal of sustainable development and 

LCA is a recommendable framework for all environmental studies (Bala et al. 2010, Garba 

2014, Morero et al. 2015, Lazarevic and Martin 2016). In addition to the array of integrated 

assessment models employed for the sustainability assessment of bioenergy systems, other 

environmental assessment tools have been characterised (Finnveden and Moberg 2005, 

Buytaert et al. 2011, Morero et al. 2015). Buytaert et al. (2011) points out that all environmental 

tools have their advantages and disadvantages and that the choice of tool depends on the 

specific objectives of the assessment in addition to which sustainability issues are to be 
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addressed. Morero et al. (2015) found that LCA was a complimentary tool to use in 

environmental impact assessment (EIA).   

Sustainable crop productivity involves a high-yield cropping system that could manage the 

unprecedented impact of climate, while simultaneously reducing GHG emissions and 

managing material inputs. The so-called “climate smart agriculture” is an approach that seeks 

to address these unprecedented challenges. Sustainability assessment has increasingly become 

associated with the family of impact assessment tools such as LCA, ecological footprint, and 

strategic environmental impact assessment.  

2.10.1 Life Cycle Assessment (LCA) 

Life cycle assessment (LCA) is a widely recognised methodology used to analyse the 

performance of products, processes and services from an environmental perspective (Bacenetti 

et al. 2014). LCA is conducted in order to supply information for the benefit of policy makers 

and stakeholders in terms of managing resource use and providing alternative production 

scenarios that will reduce emissions and environmental impacts throughout the life cycle of 

products, services and systems (Carus 2017). LCA uses a bottom-up approach often referred 

to as or ‘cradle to gate’ or ‘cradle to grave’ in attributing impacts that occur in a complex 

production system to one product (Carus 2017, Arvesen et al. 2018). The general framework 

for performing LCA follows the ISO 14040/44 guidelines, which involves a phased approach 

consisting of four interrelated components as shown in Figure 2.5. 
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LCA strives to cover all activities related to production, use and waste of products, including 

coverage of types of environmental impacts to the ecosystem, resource use and depletion. 

However, the most important limitation lies in the fact that LCA cannot offer useful 

information on the absolute magnitude of effects or the timing of effects (Arvesen et al. 2018, 

Haus, 2018). Although LCA can attribute effects occurring in different stages to a specific 

product, the system does not take into account social and economic variable and does not 

capture other types of product consequences such as land use change emissions (Morero et al. 

2015). McKone et al. (2011) warned that decision makers should not see LCA as “truth 

generating machine” but rather LCA can provide valuable insight to decision making as well 

as providing a basis for adaptive planning.  

According to Bala et al. (2010), LCA could be subjective to some degree, following decisions 

Figure 2.5: Life cycle assessment scheme ( Source: Gangaiah et al. 2015) 
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on whether certain stages of a product’s life cycle should be included in the life cycle inventory 

(LCI) or not. This stems from the reality that it is never possible to access fully the required 

inventory data, thus introducing uncertainty to the LCA results (Bala et al. 2010). A number of 

studies have noted that data quality, sources of data, system boundary, choice of allocation and 

emission factors amongst others vary and constitute a major source of uncertainty in many 

LCA results (Cherubini and Strømman 2011, Brandão et al. 2012, Hanaki and Portugal-Pereira 

2018). Kim et al. (2014) observed that fuel input data in LCA studies obtained from external 

databases such as Ecoinvent, or from literature and by simple estimation varied extensively. 

Bacenetti et al. (2014) partly estimated farm input data including fuel use from questionnaires, 

field surveys and from Ecoinvent’s own database. This was obtained whilst on-farm emission 

estimations were carried out using different model estimations. Bacenetti et al. (2014) however 

noted that because of the significant influence of fertiliser input on different impact categories, 

it remains imperative to perform the analysis using site-specific models to reduce uncertainty.  

Furthermore, geographical boundaries in LCA studies vary and the level of input information 

could range from state to national averages. In some cases field-level information is used (Kim 

et al. 2009, Kim et al. 2014). System boundaries set within LCA studies signify which life 

cycle stages, unit processes, activity type and elementary flows to include or omit from the 

modelled system and this type of qualitative definition sets the functional unit of the system 

(Saraiva 2017). System boundary in biofuel LCA can be extended to include the production of 

biofuel (well-to-tank) or combustion of biofuel in a car (well-to-wheel or cradle-to-grave) 

(Ndong et al. 2009, Orsi et al. 2016). In addition, some studies have been reported to expand 

the system boundaries by including the life cycle of co-products, by-products, and residues 

(Czyrnek-Delêtre et al. 2017). In the biofuel production chain, the first essential step for the 

whole life cycle assessment is the biomass production phase (cradle-to-gate) which according 
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to Bacenetti et al. (2014), is worth more attention. However, the different use of functional 

units and lack of standardised sets of criterion does not allow for strict comparison with other 

LCA studies (Brandão et al. 2012, Bacenetti et al. 2014, Czyrnek-Delêtre et al. 2017).  

Many studies have used LCA to report on the sustainability of biofuels, however, the results 

published for similar products or technology vary and this is largely dependent on different 

methodological approaches and factors that make each LCA study unique (Cherubini and 

Strømman 2011, Brandão et al. 2012, Czyrnek-Delêtre et al. 2017). According to Brandão et 

al. (2012), the increasing use of meta-analysis to synthesise previous LCA results could further 

strengthen LCA as a decision support tool. Gasparatos et al. (2013) and Brandão et al. (2012), 

have argued for a consistent conceptual framework that is informed by the needs of the 

decision-makers and stakeholders to facilitate biofuel policymaking.  

Kim et al. (2014) carried out a meta-analysis of twenty-six published LCA studies on energy 

requirement and GHG emissions of maize production system in the USA. They found large 

variation in non-renewable energy consumption from cradle-to-farm-gate in the range of 1.44 

to 3.50 MJ/kg of maize. The studies with larger energy consumption took into account energy 

used in farm machinery production, whilst energy associated with maize seed production, and 

application rates of lime and insecticides increased the overall values. Some studies have 

estimated that capital goods such as farm machinery required to produce agricultural products 

can contribute substantially to the non-renewable energy consumption in farm LCA 

(Frischknecht et al. 2007, Grassini and Cassman 2012, Eickelkamp 2013, Kim et al. 2014). 

Kim et al. (2014) further noted that important factors such as crop rotation and tillage practices 

that could change the dynamics of soil organic carbon (SOC) were not accounted for, as many 

LCA studies assumed current tillage practices by default. Three studies (out of 26) estimated 
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GHG emission credits by using the no-tillage practice that increased SOC levels and net soil 

carbon sequestration. Lu and Liao (2017) estimated that zero-tillage increased SOC 

sequestration and released less carbon emissions compared to conventional tillage. Zheng and 

Han (2018) argued that by neglecting changes in soil organic carbon (which represents the net 

sink fluxes of atmospheric CO2) in the quantification of GHG footprints estimation, some 

studies may have biased the footprint results leading to an overestimation or underestimation 

in many cases.  

Bacenetti et al. (2014) evaluated the environmental performance of a single cropping system 

(involving maize cultivation only) and double cropping system (wheat cultivation followed by 

maize) to produce biomass for biomethane production using LCA. The field operations 

encompassed soil tillage, crop growth, harvesting and transport and biomass ensilage and the 

functional unit (FU) was one normal cubic metre (1 m3
N) of potential methane. This is in 

contrast to input-based FU of mass of biomass, per hectare of cultivated land (Moghaddam et 

al. 2016) or output-based FU based on MJ of energy generated or kilogram of produced fuel 

used in many LCA studies (Czyrnek-Delêtre et al. 2017). Bacenetti et al. (2014) however 

explained that the FU adopted was more representative of the final use of the energy crops 

cultivated compared to the using mass of biomass adopted in many LCA studies. As expected, 

the double cropping systems produced a greater amount of biomass (silage) for biomethane 

production but had the worst environmental performance compared to the single cropping 

system of maize cultivation. Bacenetti et al. (2014) attributed the higher environmental cost to 

larger quantity of inputs required for the double crop system.  

Carbon, energy and GHG emissions are the most prevalent impact categories mentioned in 

many LCA studies (Cherubini and Strømman 2011, Muench and Guenther 2013, Lazarevic 
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and Martin 2016, Czyrnek-Delêtre et al. 2017). According to Cherubini and Strømman (2011) 

the scope of many LCA studies on biofuel production have been limited to the assessment of 

GHG and energy balances primarily because climate change mitigation and reduction of fossil 

fuel consumption are the main driving factors for biofuel development. GHG accounting has 

become the focus of many environmental policies and has therefore become popular amongst 

researchers, industries, authorities and stakeholders (Laurent et al. 2012).  

Out of 39 peer-reviewed LCA studies of biofuels sampled by Czyrnek-Delêtre et al. (2017), 

about 49% reported on GHG emissions and energy use, while 26% reported on other impact 

categories. In 2007, von Blottnitz and Curran reviewed 47 previous LCA studies that compared 

bioethanol systems to conventional fuel across North America, Australia, Asia, Africa and 

Europe. Only seven studies out of the 47 LCA studies evaluated other environmental impact 

categories aside net energy and GHGs. Lazarevic and Martin (2016) maintained that GHG 

related emissions and impacts reported in Sweden was by far the most common impact 

category considered by most biofuel LCA studies.  

The overall concern in focusing only on carbon footprint (kg CO2eq) as a metric of climate 

change impact is the risk of problem shifting, which could increase negative impacts in other 

categories (Laurent et al. 2012). For example, some LCA studies found that while GHG 

emissions were reduced in bioenergy systems, other impact categories such as acidification, 

human toxicity and ecological toxicity where unfavourable (von Blottnitz and Curran 2007, 

Laurent et al. 2012). 

Bessou et al. (2013) used a full-blown attributional LCA to compare first-generation ethanol 

from sugar beet with gasoline. The estimated result show that sugar beet ethanol had lower 

impacts than gasoline under the global warming, ozone layer depletion, abiotic depletion and 
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photochemical oxidation impact categories. However, due to losses of reactive nitrogen, the 

impact for acidification and eutrophication categories was higher when compared to gasoline. 

 Although generating extensive input data for life cycle inventory has been identified as a 

limitation to conducting full LCA to provide a comprehensive measure of environmental 

impact (Laurent et al. 2012), Muench and Guenther (2013), stressed that the insufficient 

consideration of all impact categories constituted a research gap. A full LCA covers a broad 

range of impact categories, such as stratospheric ozone depletion, acidification, eutrophication, 

human toxicity and ecotoxicity, land use, water use and depletion of both renewable and non-

renewable resources in addition to global warming potential otherwise known as climate 

change ( Laurent et al. 2012, Simmons et al. 2015).  

In addition to tracking of all material flows into the cropping system, the life cycle inventory 

(LCI) phase of LCA also consisted of detailed estimation of emissions to air, water and land, 

which could prove to be extremely complex. Field emissions often occur from complex 

biogeochemical processes that are strongly site-specific and dependent on soil, climatic and 

management factors (Bessou et al. 2013). Studies have addressed this uncertainty on 

agricultural field emissions by using diverse methods. For example, GHG emissions can be 

estimated from field experiments by direct flux measurements (Lebender et al. 2014, Li et al. 

2016, Lu and Liao 2017) or by using a controlled experiment facility (Niero et al. 2015). Agro-

ecosystem models e.g. APSIM, DNDC, DAYCENT and CERES-EGC models have also been 

employed to simulate emissions including N emissions to air (as NH3, N2 and N2O) and water 

(NO3
-) but with some limitations (Kim et al. 2009, Thorburn et al. 2010, Bessou et al. 2013, 

Zhang et al. 2015, Mielenz et al. 2016, Deng et al. 2016). Li et al. (2016) compared outputs of 

APSIM eco-system model with field experiment data in a maize-wheat rotation system. The 
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model captured daily N2O fluxes under different nitrogen fertiliser treatment very well but 

underestimated peak N2O fluxes. Li et al. (2016) further hinted that this was a common issue 

as other studies have reported similar pattern with other agro-ecosystem models such as DNDC 

(Zhang et al. 2015) and CERES-EGC (Bessou et al. 2013). According to Li et al. (2016) and 

Zhang et al. (2015), under different environmental conditions, the number of microbes and 

their activity during the process of nitrification and denitrification will differ and these 

dynamics are not well represented within most models. This uncovers the knowledge gap that 

still exist with regards to the complex interactions between soil moisture, organic matter 

decomposition and soil nitrogen availability (Li et al. 2016).  

Alternatively, in the absence of measured or modelled field emissions, GHG emissions can be 

estimated by using the default IPCC tier 1 emission factors (EFs) that is based on a simple 

linear inventory /accounting modelling system (De Klein et al. 2006). Although the estimated 

EFs is based on a robust methodology (over 900 observation experiments used), in particular, 

its use for analysis proves problematic. This is because it has been noted that if conditions at 

the site differ from conditions under which the coefficient was determined, the EF can 

introduce significant bias into estimated N2O results (Rochette et al. 2008, Adewale et al. 

2018). Therefore, simple models such as the IPCC tier 1 model is more useful only at national 

scale than at higher resolution scales such as field, farm and territory (Liao et al. 2015, 

Nitschelm et al. 2018). Another source of uncertainty is connected to the non-representation of 

the spatial variability of climate and soil on a local and regional level as per (Gabrielle et al. 

2006). Bessou et al. (2013) compared modelled field emissions using the dynamic CERES-

EGC model with emissions calculated using IPCC tier 1 coefficients. Modelled emissions were 

within the same order of magnitude as field emissions, however, soil N2O emissions were 

slightly underestimated using CERES-EGC model. The overwhelming agreement from most 
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studies on estimating field emission using models is the complexity of model parameterisation 

using field flux measurement (Uzoma et al. 2015, Wu et al. 2015). 

To quantify the carbon footprint in the life cycle of wheat production, Ho (2011) used a 

spreadsheet that follows the IPCC tier 1 methodology consisting of data and emission factors, 

to calculate total farm emission on per hectare basis. The calculated direct and indirect N2O 

emissions and total GHG emissions were compared to the Agriculture and Agri-food Canada 

(AAFC) GHG calculator. The total GHG emissions estimated from the spreadsheet (2,963.1 

Mg CO2eq ha-1) was slightly lower to the emissions of the GHG calculator (3,960.2 Mg CO2eq 

ha-1). The slight difference was attributed to the lack of data for the manufacture of machinery 

(e.g. tractors), which was omitted from the spreadsheet. In the same vein, Ali et al. (2017) used 

similar methodology (IPCC tier 1) to estimate the GHG emissions from wheat production. As 

demonstrated in Brock et al. (2012), the farm emission inventory can be determined following 

the IPCC tier method or EFs from field trials. 

Zheng and Han (2018) presented a simple generic framework to quantify the GHG footprint of 

a cropping system. The life cycle assessment framework consists of detailed equations that 

accounts for all direct and indirect GHG contributors including changes in soil organic carbon 

which many studies (Grassini and Cassman 2012, Wu et al. 2014, Wang et al. 2015, Ali et al. 

2017) often neglect. Wang et al. (2015) analysed the carbon footprint per unit yield of maize 

in China using LCA by first estimating the total GHG emission per hectare. The results show 

a strong correlation (r = 0.95) between nitrogen consumption and carbon emissions although 

the rate of yield increase reduced with increasing nitrogen fertiliser. Wang et al. (2015) 

projected the carbon footprint (CF) of maize production from 2014–2020 by using the grey 

system model calibrated with historical carbon emission. The result showed an increasing trend 
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in carbon emission from maize production. This evidence suggest that the emission trend will 

continue based on current farming practice.   

The life cycle inventory (LCI) analysis is followed by a life cycle impact assessment (LCIA) 

which defines the impact categories and as earlier discussed, different LCA studies cover a 

broad range of impact categories, with global warming potential (GWP), energy, acidification, 

eutrophication and land use change, the most commonly assessed in agricultural LCA 

(Czyrnek-Delêtre et al. 2017). According to Czyrnek-Delêtre et al. (2017), there is no set list 

of recommended impact categories within the ISO methodology framework but rather, impact 

categories are chosen in line with the goals and scope of each individual study. In contrast to 

the above however, Adewale et al (2018) argues that the implementation of a framework on 

impact categories for biofuels assessment should be supported. 

A wide range of models can be used to link the product or process to impact categories. 

SimaPro (Brock et al. 2012, Onabanjo and Di Lorenzo 2015, Rivera et al. 2017), Gabi 

(Herrmann and Moltesen 2015, Caldeira-Pires et al. 2018), Biograce excel tool (Czyrnek-

Delêtre et al. 2017) amongst others exist and integrated with a number of databases such as 

Ecoinvent that contains several processes and systems that is customisable. Brock et al. (2012) 

conducted a “single issue” LCA to determine the GHG emissions (kg CO2eq) associated with 

the production of a tonne of wheat. The system boundary was limited to pre-farm and on-farm 

emissions and the impact assessment was conducted using the SimaPro software, which was 

linked to the Australian LCI database and Ecoinvent database. Brock et al. (2012) termed the 

assessment as a “single issue” LCA because the impact assessment focus on GHG emissions 

only. Similar to Simmons et al. (2015) the production and use of fertiliser was the major 

contributor to GHG emissions from the direct and indirect N2O emissions. According to 

Simmons et al. (2015), eutrophication, human toxicity and ecological toxicity impact 
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categories were negatively influenced by inorganic fertiliser input but had a positive impact on 

land use as yield responded positively. As a result, Simmons et al. (2015) suggested precision 

fertiliser application and other strategies such as use of nitrification inhibitors and inclusion of 

N fixing legumes in rotations amongst others to mitigate impacts.  

 Kim et al. (2009) conducted a life cycle analysis on corn grain and stover production using the 

DAYCENT model to simulate soil organic carbon and nitrogen dynamics at county level for 

eight locations. The results showed that corn stover production (consist of the above ground 

parts of the corn except grain) had a lower impact on fossil energy use, GHG emissions, 

acidification and eutrophication compared to corn grain production. The sustainability and 

environmental impact interpretation or evaluation of farm processes is usually quantified in 

terms of the carbon footprint intensity of the product or process. This is because the carbon 

footprint is the environmental indicator estimated from the total balance of GHG emissions and 

sinks from a product or system across its life cycle (Adewale et al. 2018). More recently, Zhang 

et al. (2018) generated a plot of carbon footprint versus yield to determine the relationship 

between the two and to distinguish the effects farm management in an intensive maize farming 

system.   

2.11 Quantification of impact assessment using LCA-Regression analysis 

To quantify eco-indicators of the biofuel production impact, LCA has been used to first 

estimate all steps of the farm process life cycle: the agricultural field operations, seeds, fuel, 

fertilisers, and pesticides production and the associated GHG emissions. However, a major 

source of uncertainty arises from the fact that very little analysis has been carried out in order 

to characterise the effects of factors on variations of the LCA environmental responses. 
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Estimating the significance of each contributing variable is key to providing factual and robust 

support when decision-making. 

 Previous studies that have attempted to statistically explain the variations in GHG emissions 

of biofuels, used harmonised results from previous literature (by constituting a meta-database) 

that systematically differ in methodological choices, geographical location and different 

datasets used. Factors found to be influencing such emissions have been explored by Menten 

et al. (2013) who used a meta-regression analysis (MRA) to quantify and characterise the 

effects of factors influencing the mean Global Warming impact indicator, expressed in grams 

of CO2 equivalent per MJ of biofuel. Through statistical evaluation, Menten et al. (2013) 

retrieved the main parameters (independent variables) influencing the dependent variable of 

interest (GHG emissions per MJ of biofuel) from a set of published LCA results. Results show 

that factors such as geographical location, type of biomass feed, technology type, co-product 

accounting and LCA methodology (attributional or consequential LCA) all influenced GHG 

emission results. The limitation of this study resides in the fact that the consideration of second 

and third generation biofuels greenhouse gas (GHG) emissions only, and energy balance was 

not included as a dependent variable. Most importantly, weather variability was not identified 

as a factor that could potentially have had an effect on the variations of GHG emission 

estimates.  

 

A number of studies have used various approaches such as the meta-analytic procedure called 

“harmonisation” to estimate the reliability of LCA results with the aim to reduce the variability 

in calculated outcomes (Heath and Mann 2012, Burkhardt et al. 2012, Heath et al. 2014). 

Bureau et al. (2010) assessed the main factors responsible for the variability in energy balance 

of biofuels in many studies. Based on descriptive statistics and variance assessment, Bureau et 
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al. (2010) identified potential sources of variations such as type of feedstock or nitrogen and 

labour consumption levels assumed in agricultural production. Large differences were 

observed in the explanatory variables used in many LCA studies and the energy balance of 

biofuel produced from the same feedstock varied as well. It should be noted however, that 

meta-analysis could in many ways be limited by the variability of studies selected for the 

analysis or the lack of study of certain technologies. According to Heath and Mann (2012), 

meta-analytic harmonisation is not an assessment tool for life cycle GHG emissions and 

certainly not a predictive tool.    

Linear regression methods have been used in several studies as a prediction tool for crop yield 

forecasting, providing a quantitative estimation of expected future yield using historical 

statistical information on climate and yield (Mansouri et al. 2015, Sitienei et al. 2017, Najafi 

et al. 2018). Linear regression has been used to determine the relationships between climate, 

growing seasons and yield (Najafi et al. 2018) on both global and regional scales. In addition 

they have also been used to determine effects of technology improvement on future yield 

change by regressing historical yield trend (Mansouri et al. 2015).  

Lehmann (2011) assessed the impact of climate change on wheat yield by applying the 

simulated climate change data on the developed regression model. Moreover, many researchers 

have successfully used linear regression models as a simplified tool to predict LCA outcomes 

based on streamlined LCI datasets (Bala et al. 2010, Padey et al. 2012, Hanes et al. 2013, Duan 

et al. 2015, Pascual-González et al. 2015). Ekpenyong and Ogbuagu (2015) used the 

autoregressive distributed lag model (ARDL) method to conclude that climate change impact 

will negatively affect agricultural productivity in Nigeria in the long-term. Using similar 

regression analysis, Edoja et al. (2016) found there was no long run relationship between 
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carbon emissions, agricultural productivity and food supply in Nigeria, however it was 

observed that in the short run, climate variables did have a negative and significant effect. 

Arrieta et al. (2018) used the multivariate Redundancy Analysis (RDA) approach to determine 

factors that may have affected yield, GHG and energy efficiencies. Climate was identified as 

the most important variable compared to crop input variables such as fertilisers, agro-chemicals 

and fuel (Arrieta et al. 2018).  

Although some studies have sought to quantify the effect of factors on global warming impact 

indicators and yield, an objective of this thesis was to approach this quantification from a 

different standpoint. This was executed by using multiple regression to estimate the main 

determinants (or combination of factors) influencing key environmental impact variables 

including GHG emissions, carbon footprint, net energy and crop yield.  

2.12 Summary 

A large body of literature exists on the environmental impacts of producing biofuel feedstock 

however; an integrated assessment of producing biofuel feedstock under climate change in 

developing countries is limited. So far, existing studies in Nigeria seem to focus on using LCA 

to quantify the environmental impacts of energy crops such as sorghum and sugarcane (Nasidi 

et al. 2010, 2013), Jathropa  (Onabanjo and Di Lorenzo 2015, Somorin et al. 2017) and palm 

oil (Okoro 2018). Somorin et al. (2017) confirmed that the benefits of developing biofuel in 

Nigeria depend on plant yield, the system of cultivation and energy efficiency, however, there 

is less detail regarding environmental responses. Whereas, Ekpenyong and Ogbuagu (2015), 

Edoja et al. (2016), Zimmermann et al. (2017), Somorin et al. (2017), Jalota et al. (2018), 

reported on the impact of climate change on issues ranging from food security, agricultural 

productivity to presenting the environmental burdens from producing energy crops; these 
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studies have not taken into account the changes in environmental impact response as a direct 

impact of climate change and farm practices.  

  

The economies of developing countries in the sub-Saharan region rely on rain-fed agriculture 

and particularly vulnerable to climate change. Projections show warming of this region and 

climate change could reduce crop production and exacerbate environmental impacts. In 

response to this, previous studies have considered mitigating climate change impacts on crop 

yield through intense application of agricultural inputs which also has the potential to create a 

negative environmental impact and may affect long-term biofuel policy. However, there seems 

to be some ambiguity on the influence of climate change on environmental impact responses 

in relation to the assessment of the sustainability of energy crop production in developing 

countries. This calls for further assessment of future adaptation measures for best-scenario 

options to complement climate change risk assessment. This could offer insights on how policy 

makers can adapt future cultivation of energy crop like maize towards a more sustainable 

production, based on a quantitative assessment of potential environmental impacts. 

  

Furthermore, there seems to be a consensus on an integrated LCA methodology as a holistic 

approach to assessing the environmental impacts of farm management scenarios across varying 

agro-ecological zones. However, authors who adopted this approach have not considered 

important factors (e.g. climate change or fertiliser input) influencing key environmental impact 

responses such as GHG emissions. To address this research gap, the present study proposes a 

new ‘Crop Sustainability Assessment Framework (CSAF) to serve as a guide for researchers 

and policy makers to adopt a more integrated approach in assessing the sustainability of 

growing energy crops for biofuels under climate change. The unique integration of regression 

analysis to the framework is to identify and quantify which factors among (i) climate change 
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(ii) fertiliser input rate and (iii) changes in tillage method have an impact on variations of the 

GHG emissions, carbon footprint, net energy and yield estimates. This framework highlights 

the main determinants of the variability of crop yield and environmental responses of biofuel 

feedstock production.  

The next chapter explains the rationale for the approach used, selected study sites and tools, 

and further outlines the overall methodology adopted for this research 
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Chapter 3:  

3 Research Methodology 

3.1 Introduction 

This chapter describes the Crop Sustainability Assessment Framework (CSAF) required to 

achieve the research aim and objectives stated in chapter one. For this study, the choice of 

integrated framework largely depended on the objective of study and data availability 

(Tonnang et al. 2017). As shown in Figure 3.1, the methodology, which develops an integrated 

life cycle approach; a coupled climate-crop model linked to a life cycle assessment (LCA); and 

a regression model, aims to illustrate the holistic assessment for production sustainability of 

maize as an energy crop for bioenergy systems.  

 

This methodology, which uniquely links the influence of climate change and its consequential 

environmental impacts on the farming phase correlates yield, embodied energy, GHG emission 

and carbon footprint, provides a quantitative output for comparison with current baseline 

impacts. This can be seen as an approach strongly divergent from the research of Dyer et al. 

(2011) where an environmental impact assessment (EIA) approach was utilised, which is 

Figure 3.1: A simple outline of the Crop Sustainability Assessment Framework (CSAF) under climate 

change. 
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qualitative and does not quantify energy and carbon footprint when determining the 

sustainability of producing biofuel feedstock crops. Many other researches have also used a 

stand-alone scenario-led climate change approach (Fealy 2013, Asseng et al. 2015, Zhai et al. 

2017, Chen et al. 2018), and it can be noted that some researchers have indeed integrated an 

environmental LCA into their framework (Garba 2014, Nelson et al. 2014, Zimmermann et al. 

2017, Arvesen et al. 2018). To determine the GHG footprint of a crop cultivation system, Zheng 

and Han (2018) described a simple generic LCA framework that includes quantifying both crop 

production and total GHG emission.  

This study however, differs from previous studies because it incorporates a statistical 

comparison of the environmental impacts against climate change scenarios and varying farm 

management practices.  

3.2 Integrated modelling framework 

The major aim of this study is to develop an integrated framework to assess the impact of 

climate change and farming strategies on the embodied energy in maize production, taking into 

account the environmental impacts. In order to meet this objective, a statistical assessment of 

the correlation between farm net energy demand, GHG emission, carbon footprint (CF), 

climate change, fertiliser application rate and tillage technology was performed.  

The methodological approach taken in this study is a mixed methodology based on the four 

main components of research: Firstly, in order to construct climate change scenarios, site-

specific climate data was obtained, and the time series extended using a weather generator. 

Climate change scenarios were constructed from downscaled GCM models and the data was 

coupled with a crop model in order to simulate crop yield under different farm management 

practices.  
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Secondly, research was undertaken in order to investigate the combined effects of climate 

change and farm management strategies on maize grain yield. Maize was selected as the test 

crop due to availability of substantial historical climate from four sites, representing two 

agricultural zones in Nigeria.   

Thirdly, a lifecycle impact assessment (LCIA) of GHG emissions, net energy and carbon 

footprints according to the ISO 14044 framework (Haus 2018) were quantified using life cycle 

inventory data from crop model inputs and outputs as well as data from secondary sources. In 

addition, energy and materials input per hectare following common farm practice were 

assumed. Furthermore, the LCA assumed a ‘cradle to gate’ system boundary, encompassing 

feedstock cultivation only and excluding the transportation of finished product and operation 

of the bio-refinery and used stages of the fuel.  

Fourthly, the output was then analysed using a regression analysis to identify correlations and 

the significant effects of inputs on said outputs. The resulting data led to conclusions on the 

sustainability of the system under climate change compared to baseline scenarios. From this, 

recommendations could be made.  

This study contributes to this growing area of research by mainly analysing primary climate 

data and secondary farm management data from Nigeria. However, the methodology is generic 

and because of this, can be applied across a variety of crop and geographical contexts. 

Throughout this work, the focus crop referred to will be Maize. The main reason for choosing 

Maize (Zea mays L.), a C4 plant, as the main plant-based focus of this research is because it is 

considered to be an optimal first generation biofuel feedstock (Xu et al. 2017). In addition, it 

is commonly cultivated in Nigeria due to its ability to adapt to different agro-climatic 

conditions in the country (Oluwaranti and Ajani 2016). The rest of this chapter describes each 
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stage of the methodology in detail and the flowchart that summarises the different studies 

carried out is presented in Figure 3.2. 

 

 

 

Figure 3.2: Flow diagram showing the core concept of the Crop Sustainability Assessment 

Framework (CSAF) for climate change impact assessment on bioenergy crop production. 
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3.3 Site area and climate description 

Meteorological data for four sites (Table 3.1) was obtained from the Nigerian Meteorological 

Agency (NiMet). The locations were of diverse agricultural climates, within the Derived 

Savannah Agro-ecological zones (AEZs) of Nigeria (Figure 3.3) and were representative of 

areas where maize crop were typically produced. These representative areas are important to 

note in particular because Nigeria’s latitudinal extent is relatively large and covers virtually all 

of the climatic belts of West Africa (Odekunle 2006). By way of illustration of Nigeria’s 

latitudinal extent, a closer look at some of the country’s varied locations are presented below.  

Ilorin is in Kwara State, which is in the Southern Guinea Savannah, and lies within a tropical 

hinterland (Ifabiyi and Omoyosoye 2011). The average annual temperature ranges between 

30°C and 35°C with an average relative humidity of 60%. Annual rainfall ranges from 

1,000mm to 1,500mm, with the rain starting around March and ending in October. The dry 

season lasts from November until early March (Ifabiyi and Omoyosoye 2011). Ibadan lies 

within the forest grassland boundary of south-western Nigeria and the occurrence of dry 

(November to February) and wet (March to October) seasons is greatly influenced by its 

latitudinal location (Ogolo and Adeyemi 2009, Egbinola and Amobichukwu 2013, Eguaroje et 

al. 2015). Average daily air temperature range between 23.6°C and 33.2°C (Aderemi et al. 

2018) and annual rainfall is about 1,205mm with two rainfall peaks in June and September 

(Egbinola and Amobichukwu 2013).  

Enugu has a tropical wet and dry climate, with the rainy season lasting from April to October. 

The dry season typically occurs from November to March. The average annual precipitation is 

between 1600-1800 mm with an average temperature of 28°C (Enete 2014). Jos has a wet and 

dry climate classified as tropical rainy ‘Aw’ according to the Koppen climate classification 
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(Eludoyin et al. 2014). The mean annual rainfall is 1,290 mm (1,050–1,403 mm), peaking 

between July and August. Average temperature is approximately 22°C, but monthly 

temperatures vary between 19.4°C and 24.5°C. December is usually the coolest month as the 

area comes under the influence of the cool and dry desiccating north-easterly tropical 

continental air mass (harmattan). April is the hottest month of the year (Olowolafe 2002, 

Eludoyin et al. 2014).  

 

Table 3.1: NIMET synoptic weather stations. Fifteen-year average meteorological details of study 

sites (Source: NIMET 2013, Bala 2016). 

Station 

name 

Latitude 

(°N) 

Longitude 

(°E) 

Agro-ecological 

zone 

Potential 

Bioenergy 

Feedstock 

Total 

Annual 

Rainfall 

(mm) 

Tmax 

(°C) 

Tmin 

(°C) 

SRad 

(MJ/m2) 

Ibadan 7°26′ N 3°54′ E Derived Savannah Maize 1,358 32 23 18 

Jos 9°52′ N 8° 54′ E 

Derived 

Savannah/Souther

n Guinea Savannah 

Maize/ 

sorghum 
1,290 28 17 24 

Enugu 6°28′ N 7° 33′ E Derived Savannah Maize 1,924 32 23 19 

Ilorin 8°29′ N 4° 35′ E 

Derived 

Savannah/Souther

n Guinea Savannah 

Maize/ 

sorghum 
1,234 32 22 21 
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3.4 Data collection 

3.4.1 Historical weather data 

Historical data; 15 years of daily weather data (1998 to 2012) was obtained from four weather 

stations managed by the Nigerian Meteorological Agency (NiMet). Weather parameters 

included maximum and minimum temperature, rainfall and solar radiation. A source of error 

in terms of the data collection was that almost all of the weather stations had incomplete data 

for the entire period, missing a significant number of records for rainfall and solar radiation. 

Due to a lack of station metadata, it was difficult to establish if the value of zero recorded, 

especially for daily rainfall, represented the absence of rainfall, failure of equipment or lack of 

Figure 3.3: Solar insolation in Nigeria showing the location of the selected sites ( Source: 

Ohunakin et al. 2014). 
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recording. Because of this, it was not possible to investigate the significant relationships 

between metadata and actual rainfall further. The presence of metadata with details of station 

history documentation could give more insight into the reasons for periods of missing data, 

such as solar radiation data. Further evaluation of the datasets highlighted the presence of 

outliers and repetitions.  

In order to mitigate incomplete data sets, Rivington et al. (2006) suggests that after vetting the 

homogeneity of the observed data, blank spaces can be filled by creating a reference series 

from alternative digital sources of climate data for the same or adjacent weather stations using 

weather coordinates. By way of illustration, Qian et al. (2011) filled missing data by temporal 

and spatial interpolation. In order to mitigate missing climate data, a complete set of data from 

the Global Yield Gap Atlas (GYGA), which consists of propagated data and crude NASA 

datasets for Nigeria was assessed (Bala 2016). This is because the GYGA website contains 

generated site-specific data from reference weather stations (RWS). In addition, the site 

specific-data complements the database with propagated daily weather data or alternative proxy 

data, such as crude NASA data, which is consequently utilised when no data exists for the site 

(Grassini et al. 2015, Van Wart et al. 2015). In the same manner, this dataset (GYGA) was used 

in Bala (2016) to evaluate crop yield in Nigeria.  

3.4.2 Generating long-term synthetic climate data 

Climate variability is an important factor that affects crop growth and yield, so the limited 

availability of long-term continuous climate data hampers climate assessments (Antle 2015, 

Mehan et al. 2017). This meant that in particular, the analysis of climate variability and its 

impact became problematic because, in order to capture annual fluctuations in weather patterns, 

long-term daily weather data is required to estimate crop yield and its inter-annual variability 
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(Mourice et al. 2015). For this, a weather generator is most often used to synthesise long-term 

climate data. This is important to note because, the synthetisation of long-term climate data can 

be utilised in particular if available historical data is insufficient or the dataset is incomplete 

(Mehan et al. 2017). Ultimately, weather generators are not predictive weather tools, but rather 

employed to generate long-term time series that are, as much as possible, statistically identical 

to the observed (Chisanga et al. 2017).  

The approaches used in this study were selected in order to generate long-term daily climate 

data for the purpose of evaluating the long-term effects of climate variability on crop yield 

(Tingem et al. 2008, 2009). The Long Ashton Research Station Weather Generator (LARS-

WG v. 4.7) (Semenov and Barrow 2002) was used to produce daily climate reports to 

supplement the 1998-2012 Nimet data, creating 30 years of climate data for each location. 

Doing so showed that any desired length of synthetic data could be produced, but that longer 

time series are more advantageous in terms of estimating statistics more accurately (Qian et al. 

2011). However, regardless of the length of the time series, there are limitations. The generated 

weather data will only reflect the climate of the observed historical data and not the climate 

that might be observed, e.g. in the next 30 years (Qian et al. 2011).  

In generating synthetic weather data, there were three steps involved (Mehan et al. 2017). The 

first step was to calibrate information as per Lars-WG, using observed daily weather data 

obtained from the Nigerian Meteorological Agency (NiMet) for the 15-year period (1998-

2012). The second step was to use the synthetic weather generated to evaluate the data against 

observations in order to identify any statistical differences. The final step consisted of the 

creation of a parameter file (Mehan et al. 2017). With reference to the generation of synthetic 

weather data, the generator uses the SITE ANALYSIS option to create a parameter file. The 
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parameter file, which contains semi-empirical distributions of length for dry and wet series; 

wet and dry series for precipitation; minimum and maximum temperature and solar radiation 

including their correlation and auto-correlation coefficients, ensures that all aspects are 

calculated separately. Statistics of the observed and generated data are then calculated to 

include monthly means and standard deviation, daily maxima, daily minima and percentiles of 

climate variables. To evaluate model performance at a significant level of p<0.05, the two-

sample Kolmogorov (K-S) tests to check for differences in daily distributions derived from the 

generated and observed data, a t-test and a F-test were used to compare the monthly means and 

variances (Semenov and Stratonovitch 2010).  

 Many studies have evaluated and validated the performance of LARS-WG under diverse 

climates (Qian et al. 2004, Ventrella et al. 2012, Reddy et al. 2014, Sarkar and Chicholikar 

2016, Gitau et al. 2018). To conclude, the justification for the consideration of a weather 

generator for this study is that it could potentially be applied at a single site to generate synthetic 

data based on as little as a single year of observed climate data, which proved advantageous 

(Chisanga et al. 2017). 

3.5 Future climate projection – using DSSAT-Perturb software 

Future climate scenarios based on two greenhouse gas concentration trajectories (RCP 6.0 and 

RCP 8.5) were considered for this study (Basso et al. 2016). These two representative 

concentration pathway (RCP) scenarios were chosen because they represented both moderate 

and severe paths for future climate change reported in the latest IPCC Fifth Assessment Report 

(IPCC 2014). Those identified were due to having the highest probability of occurrence given 

current emissions trends (Cubasch et al. 2013, Magugu 2016, Basso et al. 2016, Magugu et al. 

2018). Daily climate change data for the years of analysis (2020, 2050 and 2080) were also 
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derived from an ensemble of 40 GCMs as shown in Appendix A (Table 3.1), using DSSAT-

Perturb (version 1.0) downscaling software (Yin et al. 2013). The software was optimal 

because it follows the IPCC Fifth Assessment Report (AR5) and uses the latest Coupled-

Model-Intercomparison-Project phase 5 (CMIP5) datasets with different emission scenarios 

(Basso et al. 2016, Magugu et al. 2018). The GCM data (obtained from the Earth System Grid 

(ESG) data portal for CMIP5) within DSSAT-Perturb (version 1.0), was downscaled using a 

pattern-scaling method (discussed in Chapter 2). The generated climate change factors were 

used to perturb regional or site-specific historical weather files, using them to explore projected 

climate change for the specific study areas (Yin et al. 2013, Osborn et al. 2016, Basso et al. 

2016).  

For this study, the historical climate file presented for perturbation was the synthetic climate 

data (30 years) generated prior to this step. This does not display the actual time series of 1998 

to 2027, rather a statistical representation of the original climate data (1998-2012) simulated 

by the weather generator (see previous section). Therefore, the synthetic time series over a 

period of 30 years was perturbed using climate change factors from 40 GCM models (to capture 

the variability between the GCMs) for three specific scenario timelines (2020, 2050, 2080) and 

RCP 6.0 and RCP 8.5 GHG concentration pathways. Both climate data hereafter known as the 

baseline scenario (generated climate data) and future climate scenarios (perturbed climate data) 

were used for crop simulation. 

DSSAT-Perturb software is the preferred downscaling tool developed by CLIMsystems for 

DSSAT users (http://www.climsystems.com/dssat-perturb/) and provided easy access to create 

an ensemble of models (Yin et al. 2013, Magugu 2016, Basso et al. 2016). According to IPCC 

(2014), uncertainties in predictions tend to decrease with the increasing number of model 

ensembles, which introduces a wider potential range of climate behaviours in the subset. It is, 

http://www.climsystems.com/dssat-perturb/
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therefore, good practice to include the use of multi-model ensembles in detection and 

attribution studies (Knutti et al. 2010). Furthermore, the perturbed weather files were 

compatible with the DSSAT crop model daily weather format discussed in the following 

section and readily imported directly into the DSSAT crop model. The GCM downscaled 

weather parameters for each location including minimum and maximum temperature, solar 

radiation and rainfall values were obtained by utilising site-specific coordinates.  

3.6 DSSAT Crop Model Description 

Maize (Zea mays L.) yield responses to climate change under varying hypothetical farm 

management strategies were simulated for each site using the DSSAT-CSM crop model. Crop 

models have long been used to explore crop responses to agronomic and climate changes 

(Wang et al. 2011, Ahmed et al. 2017). The Crop-Environment-Resource-Synthesis group 

(CERES) are process-based plant growth modules embedded in the Decision Support System 

for Agrotechnology Transfer (DSSAT) crop simulation models (Jones et al. 2003, 

Hoogenboom et al. 2012a, 2017). They run on a daily time step, driven by daily weather 

elements (Wang et al. 2011, Ventrella et al. 2012, Msongaleli et al. 2014, Van Wart et al. 2015). 

The DSSAT-CSM agronomic cropping system model is a software application program that 

simulates over 28 crop varieties (Christ 2016) using a combination of crop modules with soil 

and weather databases and other crop management application programs. The program also 

includes tools that can facilitate the management of experimental data, soil profile files and 

weather data files (Jones et al. 2003, White et al. 2011, Hoogenboom et al. 2012b, White et al. 

2013).  

The model simulates plant responses to environmental conditions such as soil, weather, water 

stress and management (Ahmed et al. 2017). Site-specific input parameters are required to 
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calibrate the model and calculate growth development and partitioning processes from planting 

to predicted harvest maturity. Like most crop models, plant phonological development within 

CERES-maize model (Jones and Kiniry 1986, Tsuji 1998) is sensitive to cultivar type, water 

deficiency, temperature (growing degree-days: GDD), photoperiod and nitrogen stresses, that 

are expressed as physiological days per calendar day (PD/day) (Mera et al. 2006). Daily crop 

growth is calculated by converting intercepted light (Incident Photosynthetically Active 

Radiation, IPAR, MJ plant-1 d-1) into crop dry matter with a crop specific radiation use 

efficiency (RUE, g MJ-1) parameter (Garba, 2014). 

 DSSAT-CSM v4.7 software (Hoogenboom et al. 2015) was selected for this study because of 

its popularity and extensive use in a wide range of settings for studying crop response to climate 

change (Mourice et al. 2017). DSSAT-CSM has been successfully validated in over 100 

different countries worldwide (Jones et al. 2003, Jones et al. 2012, White et al. 2011, 

Hoogenboom et al. 2012b, White et al. 2013). It has also been validated in recent years using 

results from long-term field experiments (Musinguzi et al. 2014, Li et al. 2015, Corbeels et al. 

2016, Liu et al. 2017), and across different climate and soil conditions and for different varieties 

of crops, specifically in many sub-Saharan locations (Mourice et al. 2014, 2015, Mtongori et 

al. 2015, Ahmed et al. 2017, Adnan et al. 2017a, 2017b). The minimum dataset requirement 

for model operation, as prescribed by the International Benchmark Sites Network for 

Agrotechnology Transfer (IBSNAT) (1982-1993), must include a balanced set of information 

on the site where the model is to be applied. Daily weather during growing cycles, soil 

characteristics including soil initial conditions at the start of the growing cycle, crop 

management and cultivar type are also to be included (Hunt and Boote 1998, Mourice et al. 

2014, Garba 2014). For this study, three input files – weather, soil and experimental data were 

created to run the DSSAT model (see Appendix B). 
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3.6.1 Weather, Soil and Farm Input Data 

3.6.1.1 Creating daily weather file 

Weather constitutes part of the natural system that is considered a non-controlled input 

parameter for crop growth and yield estimation. This meant that there was a need for daily 

weather data to be available beginning from the day of planting, through to harvesting (Dias et 

al. 2016). In light of this, the 30-year synthetic and perturbed weather files – as discussed earlier 

- representing baseline and future climate scenarios were incorporated into DSSAT via the 

Weatherman utility tool. Each of the weather files contained data on daily maximum and 

minimum temperatures, daily solar radiation and daily rainfall. Weather data files were 

converted into DSSAT format and exported; ready for use by the CERES-Maize model. 

3.6.1.2 Soil data preparation 

Soil type at any specific locality can vary, each having a different capacity to support crop 

growth (Adejuwon 2006). For example, differing soil types such as the Iwo series, Osun series 

and Apomu series can be found in Ibadan. They are all different in several respects because of 

having different physical and chemical properties (Adejuwon 2006, Olatunji and Ewetola 

2015). As a result, crop yield can vary for each soil type; therefore, it is imperative that the soil 

data collected represents diverse properties of soil types for each location (Olatunji and Ewetola 

2015).  

Areas where significant differences have been found according to USDA Taxonomy, include 

the fact that soils in Ibadan are classed as Alfisols whilst Enugu soil is classed as a coarse 

textured sandy loam with low organic matter nutrients (Unagwu 2014, Nikejah et al. 2014, 

Edeh et al. 2015, Ezeaku et al. 2015). Enugu soil belongs to the orders of Ultisols and Vertisols 

(Edeh et al. 2015). In addition, the soil moisture regime in Jos is ustic and the soil temperature 
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regime is inferred as isohyperthermic (Olowolafe 2002), whilst Ilorin soil is ferruginous 

tropical (Ifabiyi and Omoyosoye 2011, Daramola et al. 2015). Olaniyan et al. (2018) analysed 

soil properties (physical and chemical) in Ilorin by classifying the soils according to their 

respective pedogenic horizon. Overall, the International Institute of Tropical Agriculture 

(IITA) recommends any well-drained sandy or loamy soil for maize cultivation in Nigeria 

(Ajeigbe et al. 2010).  

CERES-Maize model uses field-specific soil profiles which defines the physical and chemical 

properties of the soil (Yang 2008). For each location, soil databases were created using the 

SBuild tool in DSSAT V4.7, which was utilised for crop simulation purposes. The soil module 

was parameterised with measured experimental data obtained from various literature sources 

including; soil surface information, soil physical, chemical and morphological properties such 

as the percentage of nitrogen, the percentage of organic carbon, available phosphate (mg kg-1), 

exchangeable potassium (cmol kg-1), CEC (cmol kg-1), pH, the percentage of clay, gravel, silt, 

bulk density and soil water balance, including the saturated upper limit (SAT), lower limit 

holding capacity (LL) and drained upper limit (DUL) (see Appendix C to F for each location). 

3.6.1.3 Crop model calibration using farm input data 

Further to this, cultivar estimation is an important step in crop modelling in order to attain 

accurate predictions and good model-based decisions (He 2008, Christ 2016). Crop models are 

calibrated by estimating or adjusting various parameters and functions to ensure model 

predictions are the same, or at the very least, close to field experiment data. To do this involves 

making initial estimates of the genetic coefficient for a given cultivar and calibrating the model 

with various crop growth in addition to development and grain formation parameters, such as 
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the silking date, physiological maturity date, number of grains per square meter, leaf area index 

(LAI) and grain weight (He 2008, Tao et al. 2018).  

In terms of this particular study, to establish such coefficients would require conducting field 

trials which can be both time consuming and expensive (He 2008, Qian et al. 2011, Adnan et 

al. 2017). This is why, for this study, there were no field-controlled experiments carried out. 

Hence, the default genetic cultivar coefficients in the CERES-Maize model of DSSAT were 

adopted without any adjustments, as the objective was to evaluate crop response to climate 

variability, rather than to predict crop growth. Oba super 2 is a yellow coloured hybrid maize 

cultivar with a relative maturity of between 90 to 113 days from planting to physiological 

maturity. The genetic coefficients data of the cultivar pre-existed within the CERES-Maize 

model and were used due to its popularity and potentials within Nigeria (Iyanda et al. 2014). 

Further information about this cultivar shows that it belongs to the late/intermediate cultivar 

varieties developed by the IITA and is known for its high yield, adaptability to the climatic 

zone and resistance to pests (Undie et al. 2012). Furthermore, Bello et al (2012) have illustrated 

an advantage of this maize cultivar. A yield evaluation experiment by (Bello et al. 2012) on 

early and late/intermediate maize varieties reported that most of the late/intermediate maturing 

varieties like Oba super 2 out-yielded the early maturing varieties analysed. Abayomi et al. 

(2012) have also evaluated drought tolerance capacity between extra early and early maize 

genotypes at Ilorin. 

CERES-maize model was calibrated with other essential data for crop model operation. This 

essential data included planting methods, planting dates, plant density, row spacing; and the 

amount of fertilizer application undertaken was based on common practices and experimental 

data from previously published literature for the various locations (Lal 1997, Kolawole et al. 
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2004, Bello et al. 2012, Anjorin 2013, Bello et al. 2014, Iyanda et al. 2014, Amali and Namo 

2015, Bala 2016, Imoloame 2017). Planting date information was based on the FAO crop 

calendar, literature sources and the IITA guidelines for maize cultivation in Nigeria. This is 

because this approach is representative of common practice. The recommended periods for 

planting maize in most parts of Nigeria is during the early rainfall season, so approximately 

March to June depending on the rainfall conditions of the year. As a result of this information, 

the plantation date of March 5th was set for all sites, regardless of the differential climate 

scenarios. All plant populations was set at 6.6 plants m-2, with a row spacing set at 75cm and 

planting depth of 4cm. The initial surface residue from previous harvests (assumed to be maize) 

remained on the field and was set at 1000 Kg ha-1 in X-build. The reason for this amount is that 

it represented the conservative residue cover typically left during reduced tillage methods to 

prevent loss of soil fertility (Ozturk et al. 2006). To ensure that the soil contained a sufficient 

supply of growth nutrients, additional soil nutrient requirement was introduced via inorganic 

fertiliser application pull down menu.  

Other farm management strategies created included four fertiliser application rates and three 

hypothetical soil tillage operations. Required nutrient sources in the form of nitrogen (N) 

obtained from urea fertiliser, Potassium (K2O) from potassium chloride fertiliser and Phosphate 

(P2O5) from Single Super Phosphate fertiliser were selected (Adnan et al. 2017). Fertiliser were 

applied as per the treatment combinations: 80N+40P+40K; 160N+40P+40K; 200N+40P+40K; 

250N+40P+40K, all in Kg ha-1. Amali and Namo (2015) suggested fertiliser application should 

be attempted at planting and two weeks after planting to influence growth and grain yield. The 

fertilisers were split applied, with 50% at planting and 50% two weeks after planting. The same 

level of treatment was applied for all sites and the application method assumed was by 

broadcast and later incorporated into the soil. 
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 Pesticide spraying is a common practice to control pest, weeds and fungus infestation in farms. 

DSSAT-CSM has a menu option to include pesticide application as a management strategy, 

however, one of the main weakness of this approach according to Anderson et al. (2018), is 

that the model does not predict yield on the basis of pest hazards. Another problem with this 

approach is that it fails to take into account the fact that pesticide application carries negative 

environmental impacts. Therefore, the inclusion of this as a rationale is instrumental for this 

study. Furthermore, according to Kamara et al. (2009), Kamara (2013) and Imoloame (2017), 

parasitic weed infestation such as Striga has contributed to the decline in maize yield across 

the sub-Saharan region, potentially causing yield loss from 10% to 100%. In response, the IITA 

recommendation for best agronomic practice includes judicious use of herbicides for weed 

management to address these constraints. For this simulation, 2kg ha-1 of fungicide and 2kg 

ha-1 Atrazine herbicide (Kamara, 2013, Bello et al. 2014) were included as a management 

strategy to control any hypothetical pest and weed infestation under climate change (Biber-

Freudenberger et al. 2016, Tonnang et al. 2017).  

Soil tillage is a primary field operation (Lovarelli et al. 2017) and represented in DSSAT-CSM 

by tillage date, tillage implement (type) and tillage depth. In 2018, Maharjan et al. reviewed 

the effects of tillage implements on soil properties using various agro-ecosystem models 

including DSSAT. For farm-level tillage simulations however, DSSAT-CSM cannot be used 

to account for field working capacity and energy requirement. Nevertheless, by assuming 

various tillage type implementations within the crop model, using this method of review can 

help to achieve the objective of accounting for various farm energy budgets and CO2 emissions 

as calculated in section 3.7.  

According to Lovarelli et al. (2017), soil variability, implement selection and field shape can 

significantly contribute to the environmental impact assessment of farm operations. Other 
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models that have the capacity to simulate mechanics of field operations include the ‘Farm 

Fieldwork and Fossil Fuel Energy and Emissions’ (F4E2) model (Dyer and Desjardins 2003, 

2005), and farm-based web computational tools (Sopegno et al. 2016, Busato et al. 2017). In 

addition, tillage operations modelling framework (Hameed et al. 2012, Sørensen et al. 2014) 

can also be applied in order to produce an estimation of various field energy requirements.  

For this study, three tillage management strategies were considered:  

1. Conventional tillage (CT) employing ploughing with a mouldboard plough at 30cm tillage 

depth. 

2. Reduced tillage (RT) assuming a chisel plough at 30cm tillage depth.  

3. No tillage (NT), assuming maize was planted by seed drill without any land preparatory 

tillage (West and Marland 2002, Soldevilla-Martinez et al. 2013, Ali et al. 2013, Šarauskis et 

al. 2014, Lu et al. 2018). 

Within the XBuild file, 48 treatment levels were created under the seasonal utility mode in 

DSSAT (see Appendix B). Simulations were performed for each treatment level using baseline 

climate and six future climate scenarios (RCP 6.0 and RCP 8.5 for the 2020s, 2050s and 2080s). 

Current CO2 concentration levels with measurements taken from the Mauna Loa centre in 

Hawaii (based on the Keeling curve) were used for all scenarios. This study takes the view that 

not considering the projected CO2 atmospheric concentration for future scenarios helps to 

eliminate any fertilisation effect from additional CO2 emitted during the projected periods.  

Simulations were run under nutrient-limiting and water-limiting conditions. Running the 

simulation under rain-fed conditions was also used to examine the effects of future climate 

change scenarios on crop yield as both excess and inadequate soil moisture could be 

detrimental to optimal yield. Also, irrigation application is not a common practice in maize 
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cultivation in some regions of Nigeria (Iyanda et al. 2014, Akinmutimi 2015). This is because, 

following a study by Folberth et al. (2013) and Iyanda et al. (2014), extended irrigation 

produced little effect on maize yields for tropical regions in sub-Saharan Africa and some agro-

ecological zones in Nigeria. 

In addition to the above, the seasonal analysis components in DSSAT were also used to 

examine year-to-year variation in crop productivity due to changes in weather and the 

performance of treatment effects on crop yield. The biophysical analysis component was used 

to determine the maximum and minimum range of yields, and level of variance within yields 

for each treatment. The model output was further subjected to a means test for significance at 

p = 0.05 level, and coefficient of variance analysis using the SPSS statistical program. Figure 

3.4 illustrates the modelled processes and treatment levels created. 

 

Figure 3.4: Simulation flow process created in CERES-Maize Model in DSSAT-CSM. 
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3.7 Life Cycle Assessment Modelling 

Environmental life cycle assessment (LCA) is the scientific evaluation method used to measure 

the net environmental burdens associated with producing products such as biofuel (Carus, 

2017). ISO 14040-44 provides the general framework and guidelines for conducting a LCA of 

a material or service using four stages: Goal and Scope, Inventory Analysis, Impact assessment 

and Interpretation (Russo et al. 2016, Haus 2018). Depending on the boundary definition, LCA 

assessment may cover all activities from raw material production through to harvesting (cradle-

to-gate) or a full cradle-to-grave assessment (this is “up to use of biofuel” phase) (Arunrat et 

al. 2016, Russo et al. 2016, Czyrnek-Delêtre et al. 2017, Rahman et al. 2019).  

In this section, energy consumption and CO2 emissions for the cultivation of maize energy crop 

suitable for biofuel feedstock were analysed, keeping in mind that it was in competition with 

food production. This was followed by an evaluation of the carbon footprint per maize grain 

yield. Calculations and estimations in this section were carried out by using Microsoft Excel 

software and SPSS software programs. 

3.7.1 Goal and Scope 

The main goal of the current study was to determine and evaluate the potential environmental 

impacts and carbon footprint of the mechanisation of maize production for biofuel by linking 

the total GHG emissions to grain yield obtained under differing future climate change 

scenarios. The key question addressed by this was ‘Which management option under climate 

change results has the most reduced energy use, GHG emissions and carbon footprint?’ 

When quantifying input and output data in the inventory analysis, a functional unit is to be used 

as a reference (Wang et al. 2015). For this study, a single functional unit of 1kg ha-1 of dry 
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matter maize grain produced was selected. Using a cradle-to-gate life cycle approach was 

chosen in order to set the system boundary around the farming phase and included all direct 

energy consumption and emissions (fuel for fieldwork), indirect energy inputs and emissions 

from production and use of materials, direct and indirect N2O emissions from soil due to N 

fertiliser application and CO2 emissions from the hydrolysis of urea fertiliser after application. 

The system boundary (Figure 3.5) for this study was defined to include production of raw 

materials and farming inputs such as fertiliser, crop protection products, application and energy 

use for machinery. Farm equipment production, harvesting, bailing and transportation of 

product were all outside of the scope of the life cycle inventory (LCI) as the GHG emission is 

negligible on a per hectare basis. 
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3.7.2 Life cycle inventory (LCI) 

To estimate net energy use, total GHG emissions and the C footprint, farm inputs, embodied 

energy of farm inputs, and grain yield data were required. Farm and energy inputs were 

obtained from literature, and grain yield data from the simulation run in section 3.6. As the 

three main farm operations for maize production are tillage, planting and harvesting, three 

Figure 3.5: Production processes considered within the system boundary of a cradle-to-gate life cycle 

approach of this study. 
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tillage management strategies was considered because of their widespread use and advantage 

in different agro-ecological zones. These were as follows: 

1. Conventional tillage (CT) employing ploughing with a mouldboard plough at 30cm tillage 

depth. 

2. Reduced tillage (RT) assuming a chisel plough at 30cm tillage depth.  

3. No tillage (NT), assuming maize was planted by seed drill without any land preparatory 

tillage (West and Marland 2002, Soldevilla-Martinez et al. 2013, Šarauskis et al. 2014, Ali et 

al. 2013).  

Online inventory databases such as Ecoinvent contain generic farm tillage operations, which 

according to Lovarelli et al. (2017), do not consider actual local conditions (soil texture, field 

shape ratio and size) and working time. To counter this and because agricultural field 

production processes are complex, Lovarelli et al. (2017) recommended using primary or 

secondary process data that represented local conditions for LCA analysis compared to using 

data from common databases such as Ecoinvent.  

In terms of this study, data for the three tillage operations and their energy input was obtained 

from varying secondary sources with detailed farm machinery operations from field 

experiments (Adekiya et al. 2009, Yohanna et al. 2014, Igon and Ayotamuno 2016, Zhang, Y. 

et al. 2018). Energy input data per hectare for different tillage systems, number of hours 

measured, machinery power and farm size, varied across different pieces of literature 

depending on the boundary system set (Stubbs 2013, Gemtos et al. 2013). 
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3.7.2.1 On-farm tillage operations and machines 

The extent of agricultural machinery usage and choices is mostly influenced by internal and 

external factors and characteristics attributed to particular regions (Stubbs 2013). These factors 

range from land availability to climate, policies and labour cost. For example, Government 

policies and equipment cost have affected agricultural mechanisation and in particular, tractor 

use in Nigeria (Takeshima et al. 2015). Therefore, the efficiency and productivity of farm 

machinery used was outside of the scope of this study but has nevertheless been analysed in 

many previous research studies (Stubs 2013, Gemtos et al. 2013), where the extent of use was 

considered. Essentially, most mechanised farming carried out in Nigeria uses conventional 

tractor-drawn implements for soil preparation, seed planting, fertilising, weed control and 

harvesting (Yohanna et al. 2014). Although tillage operations are considered to create a 

reduction in drudgery and labour time, the disadvantage of this approach is the degradation of 

the soil’s physical, chemical and biological qualities over time, making the soil prone to erosion 

(Lal 1997, Oni 2011).  

Manzone and Calvo (2016) described various tillage operations and implement types used in 

maize cultivation as similar to those reported in Šarauskis et al. (2014). Because of this, the 

same tillage operations and implement types for maize cultivation were adopted and modified 

for this study. The management strategies defined by (West and Marland 2002, Ozturk et al. 

2006, Lu et al. 2018) include a conventional tillage (CT) that leaves less than 15%  residue 

cover after planting, reduced tillage (RT) and no tillage (NT) methods that leave 15-30% and 

above 30% residue cover respectively. For the conventional tillage method, ploughing was the 

primary operation and stubble cultivation, or seedbed preparation was the secondary operation 

(West and Marland 2002, Košutić et al. 2006). Stubble cultivation is essential for mulch sowing 

and preparing the ground after ploughing. With reference to optimal cultivation, incorporating 
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straw back into the soil makes this operation generally more useful in regions vulnerable to 

erosion (Lu et al. 2018). In terms of implement type, Koller (2003) suggests that this operation 

can be carried out efficiently with a combination of chisels that have forerunning disks and 

rotary spade harrows. Further to this, Ali et al. (2017) included a sub-soiler in their analysis in 

combination with a mouldboard plough (as primary tillage) followed by disc harrowing 

(secondary tillage). Memon et al. (2013) also reported that the sub-soiler consumed the highest 

fuel (24.14 l/ha) followed by the mouldboard plough (21.25 l/ha) and the disc harrow (7.66 

l/ha).  

Moitzi et al. (2014) evaluated fuel consumption and working time requirements for CT, RT 

and NT operations. The results of their study indicated that the number of implements used for 

each system analysed influenced fuel consumption. In the CT system, the mouldboard plough 

consumed more fuel in litres per hectare than the power harrow, the seeding machine and the 

heavy cultivator for stubble field skimming (Moitzi et al. 2014). They further replaced the 

plough with a heavy cultivator and a seeding machine for stubble field skimming in the RT 

system. The NT only consisted of a seeding machine, but consumed the least amount of fuel 

(Moitzi et al. 2014).  

Implement types and farm machinery use data of the three soil tillage systems included in 

DSSAT-CSM simulation were estimated by Ali et al. (2017) and Šarauskis et al. (2014). In this 

study, for soil preparation, the mouldboard (CT) and chisel (RT) plough system at 30cm tillage 

depth were used (primary tillage). For mulching and seedbed preparation (secondary tillage), 

disc harrow was the soil cultivator assumed at 30cm tillage depth, and a planter for secondary 

tillage. A chisel plough, soil cultivator and a planter were assumed for the reduced conventional 

tillage system (Lu et al. 2018). In their experiment, Košutić et al. (2006) replaced the 

mouldboard plough with a chisel plough and multitiller (excluding the disc harrow and without 
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seedbed implementation) and reported an energy saving of 37.5% in comparison to the CT 

system. Overall, the tillage treatments considered in Olaoye (2002) showed that the highest 

grain yield was obtained with disc harrowing and no-till treatments.  

A tractor (56KW) equipped with a 3-disc furrow 150cm disc plough was assumed to operate 

the tillage implements for all sites. The performance evaluation of this machinery was reported 

in Yohanna et al. (2014). Direct energy input from manual labour, embodied energy from 

manufacture of machinery, indirect energy inputs from lubricants, repair and maintenance, 

buildings and transport vehicles were difficult to estimate from available resources and were 

therefore not considered. This difficulty was also acknowledged by Shapouri et al. (2003), 

Persson et al. (2009), and Gemtos et al. (2013). There is a general consensus that energy from 

these sources account for only a small proportion of the total indirect energy input. For 

example, Arrieta et al. (2018) found that the GHG emissions and energy embodied in the 

manufacture, transport, repair, service and maintenance of farming machinery, was less than 

0.5% of the overall results. In addition, embodied energy for the manufacture of the tractor and 

other machinery in terms of agricultural machinery is a long-term consumable and will pay 

back over more than one planting season.  

3.7.2.2 Net energy analysis procedures 

To calculate energy flows during maize production for this particular study, input energy was 

first specified and then transformed into the appropriate energy term using the equivalent 

factors for inputs and outputs (Tables 3.2 and 3.3). Energy equivalent coefficients for all farm 

inputs were taken from available resources to provide an estimate for total energy embodied in 

farm inputs. Material input for yield simulation included: urea fertiliser (80, 160, 200 and 250 

kg N ha-1), Phosphorus (P2O5) and Potassium (K2O) (40 kg ha-1 each), plant protection products 



102 

 

(2 kg ha-1 pesticide and 2 kg ha-1 herbicides) and maize seedling (20 kg ha-1). As earlier 

indicated, irrigation scheduling was not included in the simulation, hence energy input from 

irrigation was not considered. Output materials included maize grain only, as the stalk/residue 

was assumed to be re-invested within the field system. Fertilization application passes (twice), 

and pesticide application (once) were assumed to be the same for all tillage methods.  

For direct energy input, fuel consumption (L h-1) in various field operations for maize 

production and the working time required to perform the operation were estimated from field 

measurements published by Ali et al. (2017) and Šarauskis et al. (2014) (Table 3.3). Fuel 

consumption was then converted to energy by using the energy equivalent of diesel as 

recommended by previous researchers (Tzilivakis et al. 2005, Mobtaker et al. 2010, Jekayinfa 

et al. 2012, Rahman and Rahman 2013, Gemtos et al. 2013, Lawal et al. 2014). Indirect energy 

inputs for farm machinery, fertiliser, protection products, and seeds were also obtained by 

multiplying the individual input rates by their corresponding energy equivalents (Table 3.2).  

Direct and indirect energy input was estimated according to the equation (1): 

Energy input = Input quantity x Energy equivalent                                                (Equation 1) 

Total energy input and output was calculated per hectare and used to determine four energy 

indices that were proposed in most research (Tzilivakis et al. 2005, Mobtaker et al. 2010, 

Jekayinfa et al. 2012, Goglio et al. 2012, Rahman and Rahman 2013, Gemtos et al. 2013, Lawal 

et al. 2014, Chaudhary et al. 2017, Yadav et al. 2018) based on the equations (2) to (6). 

Energy use efficiency = Energy output (MJ ha-1) / Energy input (MJ ha-1)          (Equation 2) 

Energy productivity = Yield output (kg ha-1) / Energy input (MJ ha-1)                 (Equation 3) 

Specific energy = Energy input (MJ ha-1) / Yield output (MJ kg-1)                       (Equation 4) 

 Net energy = Energy output (MJ ha-1) - Energy input (MJ ha-1)                         (Equation 5) 
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Energy use efficiency also known as energy efficiency coefficient is calculated as the output-

input energy ratio, which gives an indication of how much energy was produced per unit of 

energy used (Mobtaker et al. 2010, Gemtos et al. 2013). Energy productivity (MJ kg -1) gave 

quantitative information on the maize yield obtained per unit of input energy. Specific energy 

(energy intensity) is an index which represents energy used to produce one unit of the product 

(Chaudhary et al. 2017). Net energy was calculated from the difference between the gross 

energy output produced per hectare and the total energy used in the production measured in MJ 

ha-1. 

Table 3.2: Energy coefficients of inputs and outputs used for maize cultivation. 

Energy inputs 
Energy equivalent 
/index (MJ) 

Units Reference 

Diesel fuel 35.5 MJ/L Staffell 2011, Ferreira et al. 2018 

Agricultural 
machinery 

69.83 MJ/kg 
 

Mobtaker et al. 2010, Jekayinfa et al. 2012, Lawal et al. 2014 

Maize Seed  18.71 MJ/kg 

 

Singh and Mittal 1992, Mobtaker et al. 2010, Rahman and 
Rahman 2013, Memon et al. 2015 

Nitrogen 74 MJ/kg 

 

Singh and Mittal 1992, Jekayinfa et al. 2012, Sadiq and Isah 
2015 

Phosphorus (P2O5) 12.56 MJ/kg 
Pellizzi 1992, Pimentel and Pimentel 1996, MBockari-Gevao 
et al. 2005, Memon et al. 2015 

Potassium (K2O) 6.7 MJ/kg 

 

Pelizzi, 1992, Pimentel and Pimentel 1996, Singh and Mittal, 
1992, Memon et al. 2015, Jekayinfa et al. 2012, Lawal et al. 
2014, Sadiq and Isah, 2015 

Herbicide 254.57 MJ/L Jekayinfa et al. 2012, Lu et al. 2018 

Pesticide 188 MJ/L Pimentel 1980 
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Table 3.3: Estimated average working time (hours per hectare) and fuel consumption for various 

farming operations (Source: Šarauskis et al. 2014) 

See Šarauskis et al. (2014) for detailed machines technical characteristics 

 

Mechanical operations Working time (h/ha) Fuel consumption (l/ha) 

Conventional tillage (CT)     

Stubble cultivation 0.71 10.7 

Mouldboard ploughing 1.92 24.5 

Pre-sowing cultivation 0.77 4.6 

Fertilisation 0.05 0.5 

Conventional drilling 0.42 2.3 

Spraying (Boom Sprayer) 0.15 0.9 

Fertilisation 0.05 0.5 

Harvesting 0.8 23.2 

    

Reduced tillage (RT)     

Stubble cultivation 0.71 10.7 

Chiselling 1.47 16.5 

Pre-sowing cultivation 0.77 4.6 

Fertilisation 0.05 0.5 

Conventional drilling 0.42 2.3 

Spraying (Boom Sprayer) 0.15 0.9 

Fertilisation 0.05 0.5 

Harvesting 0.8 23.2 

    

No tillage (NT)     

Spraying (Boom Sprayer) 0.15 0.9 

Fertilisation 0.05 0.5 

Direct drilling 0.45 6.9 

Spraying (Boom Sprayer) 0.15 0.9 

Fertilisation 0.05 0.5 

Harvesting 0.8 23.2 
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3.7.3 Life Cycle Impact Assessment 

3.7.3.1 Estimation of GHG emissions  

Synthetic fertiliser contributes directly and indirectly to N2O emissions and to the overall 

carbon footprint of maize feedstock production. Because of this, Ma et al. (2012) assessed the 

sustainability of maize production using various synthetic nitrogen application rates. From their 

assessment, Ma et al. (2012) reported that increasing N rates affected GHG emissions and the 

C footprint for all the rotation systems considered. Nitrous oxide (N2O-N) is a gaseous 

intermediate in the reaction sequence of denitrification and nitrification of ammonium nitrate 

as influenced by soil temperature, soil water content, soil compaction, substrate availability 

and microbial potentials (Bessou et al. 2013). Therefore, the spatial distribution of N2O in the 

soil is also influenced by precipitation, evapotranspiration, drainage and slope position 

(Rochette et al. 2008). This is important because N2O greenhouse gas is reported to be the third 

most important and most abundantly emitted ozone-depleting substance and its emissions are 

also affected by climate change (Kanter et al. 2016).  

It is suggested that the future increase in CO2 concentrations may increase N uptake (due to the 

CO2 fertilisation effect) and decrease soil N losses and hence reduce the emission of N2O 

(Leakey et al. 2009, Stocker et al. 2013, Myers et al. 2014). As a result, Kanter et al. (2016) 

tested this hypothesis based on future climate change scenarios. Their findings reported that 

the CO2 fertilisation effect does in fact enhance plant N uptake, but their results showed a 

moderate change in N2O emissions using future projections (24% to 31% from 42 % to 44%). 

This shows a significant difference, compared to previously published studies that projected 

emissions of 38% to 75% (Kanter et al. 2016).  
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The United Nations Framework Convention on Climate Change (UNFCCC 2016) and the 

Kyoto Protocol mandated that countries should calculate their GHG emissions and create 

national inventories of GHG emissions. With links to this, the revised IPCC standard 

methodology to estimate fertiliser-induced N2O emissions from agricultural soils includes 

using the Tier 1 default emission factor (0.01 kg N2O -N kg -1), which according to the IPCC 

(2006a) is based on more than 900 observations and is therefore robust. It was noted, however, 

that this emission factor can introduce significant bias into the estimated N2O results if 

conditions at the site are different from the conditions under which the coefficients were 

determined (Rochette et al. 2008). Therefore, as advised by the IPCC, an alternative method 

should be put in place in order to estimate emissions using country-specific emission factors 

(EF) where sufficient data is available (IPCC 2006, ADP.org 2010, Lee et al. 2012).  

A number of studies have developed country-specific methodologies in order to measure N2O 

fluxes and to estimate N2O emission factors. In addition, country-specific methodologies could 

also be used in order to measure the fraction of leachable nitrogen. Rochette et al. (2008) 

developed a Tier II methodology for the inventory of N2O emissions from agricultural soils in 

Canada. Li et al. (2016) also used the APSIM model in order to simulate yield and estimate 

N2O emissions from soil using factors specific to China.   

The main purpose of this section of the study is to address the third objective. This objective 

aims to estimate GHG emissions and the C footprint associated with maize production as 

feedstock for biofuel. The conventional IPCC Tier 1 default emission factors was adopted for 

this assessment due to lack of data on country-specific and site-specific emission factors 

(Rivera et al. 2017, Arrieta et al. 2018). This is because this approach ensures consistency with 

previous global and regional estimates and published studies (Tubiello et al. 2013, Wang et al. 



107 

 

2016, Ali et al. 2017). The determination of GHG emissions and the C footprint includes 

estimating CO2 equivalent emissions from: 

1. Production, storage, transportation and application of N fertilisers 

2. Herbicide production and application 

3. Seeding production and planting 

4. Conventional and no-till operations and harvesting.  

Emissions associated with the construction of farm machinery and maintenance were not 

included as these were taken to be negligible. Total GHG emissions were compiled using 

estimated GHG values calculated from each agricultural input listed above using (equation 6) 

as suggested by Wang et al. (2017): 

 

(Equation 6) 

                                                     

 

To expound; Ali represents individual inputs such as fertiliser, herbicides, pesticides, diesel 

fuel and field operations, whilst EFi is the emission factor used to calculate the specific 

emission rates for each input (represented by the value n) including production, storage, 

transportation and application. EN2O is the total N2O emissions (direct and indirect) from the 

application of synthetic fertiliser. The functional unit for expressing energy use and GHG 

emissions was referred to per hectare of maize grain produced. Specific emission values and 

emission factors for various farm operations and inputs are shown in Table 3.4. 
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Table 3.4: Estimated emission factors (EF) for various farming inputs and sources 

Inputs Emission item Emission factor Reference 

Diesel fuel 

 

GHG emissions from production, 

transportation and combustion 

3.22 kg CO2eq −1 Ali et al. 2017 

 

Urea (world 

average) 

 

GHG emissions from urea production 

(cradle to gate) 

3.97 kg CO2eq kg−1 N Nasidi et al. (2010) 

 

Direct N2O 

emissions from 

soil 

(EF1) N2O emissions from N 

fertilizer application 

0.016 kg N2ON kg−1 N 

input 

 

IPCC 2006, Liska 

et al. (2009), Wang 

et al. 2017, Ali et al. 

2017 

 

 

Indirect N2O 

emissions from 

soil 

(EF2) N2O emission from 

volatilization 

0.01 kg N2O N /  

[kg NH3N + NOX –N 

volatilized] 

IPCC 2006, Liska 

et al. (2009), Ma et al. 

2017, Ali et al. 2017 

 

 (EF3) N2O emission from leaching 
0.0075 Kg N2O N/kg N 

leaching/runoff 

IPCC 2006, Liska 

et al. (2009), Ma et al. 

2017, Ali et al. 2017 

 

Phosphorus 

(P2O5) 

CO2 emission for the production, 

packaging, storage and transportation 

of Phosphorus (P2O5) 

0.73 kg CO2eq kg−1 Lal (2004)  

 

Potassium 

(K2O) 

 

 

CO2 emission for the production, 

packaging, storage and transportation 

of Potassium (K2O) 

0.55 kg CO2eq kg−1 Lal (2004) 

 

Herbicide 

CO2 emission for the production,  

 

packaging, storage and transportation 

of herbicides 

 

 

23.1 kg CO2eq kg−1 of 

a.i. (active ingredient) 

 

Lal (2004) 

 

Pesticide 

CO2 emission for the production,  

 

packaging, storage and transportation 

of Pesticide 

 

25.1 kg CO2eq kg−1 

 

Liska et al. (2009) 

 

Maize seeds 

GHG emission from maize seeds  

 

cultivation and transportation to farm 

gate 

 

4.5 kg CO2eq kg−1 

 

Wang et al. (2015) 

Machinery 

usage 

 

CO2 emissions from farm machinery 

usage differ for each kind of field 

operation 

  

 Mouldboard ploughing 55.7 kg CO2eq ha−1  Lal (2004) 
 Chiselling 29.0 kg CO2eq ha−1  Lal (2004) 
 Stubble cultivation (disc harrowing) 21.3 kg CO2eq ha−1  Lal (2004) 
 Pre-sowing cultivation 14.7 kg CO2eq ha−1   

 Conventional drilling (CT & RT 

planting method) 
11.7 kg CO2eq ha−1  Lal (2004) 

 Direct drilling (NT planting method) 13.7 kg CO2eq ha−1  Lal (2004) 

 Herbicide and fungicide spraying 

(Boom Sprayer) 
5.1 kg CO2eq ha−1  Lal (2004) 

 Fertilisation 3.3 kg CO2eq ha−1  Lal (2004) 
 Harvesting (combine) 36.7 kg CO2eq ha−1  Lal (2004) 
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3.7.3.1.1 Estimating CO2 emissions from fertiliser production 

According to many farm tillage studies, intensive mechanised farming causes significant 

impairment to soil, contributes to soil nutrient loss, hence the increased need to apply more 

synthetic fertilisers to boost yield. In accordance with this, Wang et al. (2017) calculated GHG 

emissions from specific fertilisers by dividing their specific emission factor (EF) by the nutrient 

content. From that, they reported that ammonium hydroxide with EF of 5.23 kg CO2 eq kg -1 

had the highest GHG emissions (32.70 kg CO2 eq kg -1) compared to urea with EF of 2.30 kg 

CO2 eq kg -1 (5.00 kg CO2 eq kg -1). For P and K fertilisers, calcium magnesium phosphate and 

potassium carbonate produced the highest emission values. From their calculation, it can be 

seen that varying EF clearly affects the amount of emissions that each fertiliser directly or 

indirectly produced. Therefore, applying fertilisers with the lowest emission factors will reduce 

GHG emissions from fertilisers.  

According to Maraseni et al. (2010), N, P and K based fertilisers require more energy for their 

production. The production of urea, phosphorus (P2O5) and potassium (K2O) fertilisers were 

estimated using the emission factors in Table 3.4. In addition, Liska et al. (2009) used 2.55 kg 

CO2eq kg−1 N for N, 1.56 kg CO2eq kg−1 and 0.69 kg CO2eq kg−1 for phosphorus and 

potassium. Values were considered from Lal (2004) for phosphorus (0.73 kg CO2eq kg−1) and 

potassium (0.55 kg CO2eq kg−1) fertiliser and 3.97 kg CO2eq kg−1 N for urea production 

obtained from Nasidi et al. (2010). Equation (7) was used to estimate CO2 emissions from 

fertiliser production.  

𝐶𝑂2𝑒𝑞 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔 𝐶𝑂2) = 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑘𝑔) × 𝐸𝐹(𝑘𝑔 𝐶𝑂2𝑘𝑔−1)   (Equation 7) 
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3.7.3.1.2 Estimating N2O emissions from N fertiliser application 

It has been reported that the amount of synthetic N applied to the soil is correlated with the 

amount of direct and indirect N2O emissions (Ma et al. 2012). The total N2O emissions (EN2O), 

including direct and indirect N2O emissions from N application, were estimated using the 

modified IPCC (2006) Tier 1 methodology (equation 8 - 12) similar to the studies of Ali et al. 

(2017) and Wang et al. (2016). Emissions of N2O occur through both a direct pathway from 

anthropogenic N input and two indirect pathways: (i) from the volatilisation of NH3 and NOx 

from soils and fossil fuel combustion; and (ii) from leaching and run-off of N, mainly as NO3
-. 

It is important that the modified approach only accounted for emissions of N2O from synthetic 

fertiliser application without considering N2O emissions from crop residue and N-fixing crops. 

The full description of the generic methodologies for nitrous oxide emissions from managed 

soils, including indirect emissions, can be seen in the IPCC (2006) guidelines for national GHG 

inventories.  

Total emissions from N fertiliser application were calculated according to the equations below:                                                                                  

𝑇𝑜𝑡𝑎𝑙 𝐸𝑁2𝑂(𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1) 

= 𝐷𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1) + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1)(Equation 8) 

 

The direct and indirect N2O emissions from N fertiliser application were then calculated:  

𝐷𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1) = 𝐹𝑆𝑁 × 𝐸𝐹1 ×
44

28
× 𝐺𝑊𝑃𝑁2𝑂                            (Equation 9)  

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑁2𝑂 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1) = 

𝑁2𝑂(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑠𝑒𝑑)(𝑘𝑔 𝑁2𝑂 − 𝑁ℎ𝑎−1) + 𝑁2𝑂(𝑙𝑒𝑎𝑐ℎ𝑒𝑑)(𝑘𝑔𝑁2𝑂 − 𝑁ℎ𝑎−1) ×
44

28
× 𝐺𝑊𝑃𝑁2𝑂  (Equation 10)  

                                                                                                         

Where: 

1. 𝑁2𝑂(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑠𝑒𝑑)(𝑘𝑔 𝑁2𝑂 − 𝑁 ℎ𝑎−1) = 𝐹𝑆𝑁 × 𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝐹 × 𝐸𝐹2         (Equation 11)  

2. 𝑁2𝑂(𝑙𝑒𝑎𝑐ℎ𝑒𝑑)(𝑘𝑔 𝑁2𝑂 − 𝑁ℎ𝑎−1) = 𝐹𝑆𝑁 × 𝐹𝑟𝑎𝑐𝐿𝐸𝐴𝐶𝐻𝐸𝐷 × 𝐸𝐹3            (Equation 12)  
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Direct N2O emission source is from N fertiliser application; 𝑁2𝑂(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑠𝑒𝑑)–N is the indirect 

N2O emissions from cropping as a result of the atmospheric deposition of volatilised N; and 

𝑁2𝑂(𝑙𝑒𝑎𝑐ℎ𝑒𝑑)–N is representative of leaching and run-off. 𝐹𝑆𝑁 refers to the annual amount of 

synthetic fertiliser applied. This value is estimated from the total amount of synthetic fertiliser 

consumed annually. 𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝐹 refers to the fraction of synthetic fertiliser N that volatilises as 

NH3 and NOx (𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝐹= 0.1). 𝐹𝑟𝑎𝑐𝐿𝐸𝐴𝐶𝐻𝐸𝐷 is the fraction of all N added that is lost through 

leaching and run-off (𝐹𝑟𝑎𝑐𝐿𝐸𝐴𝐶𝐻𝐸𝐷= 0.3). Finally, 𝐸𝐹1 is the emission factor of N2O direct 

emissions from N fertiliser application. 

 According to the IPCC (2006), the default for the emission factor (𝐸𝐹1) is 1 percent of the N 

applied as fertiliser to soils or released through mineralisation. Therefore, in this case, 𝐸𝐹2 and 

𝐸𝐹3 are default emission factors for volatilisation and leaching respectively. The conversion 

factor that acts to convert N2 to N2O is 44/28 and the global warming potential (𝐺𝑊𝑃𝑁2𝑂) 

conversion parameter of 298 was used to convert N2O to CO2eq over 100 years (IPCC 2006). 

The calculated emissions were then multiplied by these parameters to express the results in 

CO2 equivalent. The uncertainties in estimates from direct N2O emissions relate to the emission 

factors used, as well as a lack of information on specific on-farm practices (IPCC 2006).  

3.7.3.1.3 Estimating CO2 emissions from urea application 

After applying urea fertiliser to the soil, a small amount of CO2 is released (IPCC 2006, Ma et 

al. 2017). The amount released is fixed in terms of the industrial production and the occurrence 

takes place during the process of hydrolysis in the soil when urea (CO(NH2)2) is converted into 

ammonium (NH4
+) hydroxyl ion (OH-), and bicarbonate (HCO3

-), due to the presence of water 
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and urease enzymes (IPCC 2006, Ma et al. 2017). The bicarbonate formed evolves into CO2 

and water, according to the following equation (IPCC 2006, Kim et al., 2016).  

(𝑁𝐻2)2𝐶𝑂 + 3𝐻2𝑂 → 2𝑁𝐻4
+ + 𝐻𝐶𝑂3

− + 𝑂𝐻− 

𝐻2𝐶𝑂3 ↔ 𝐶𝑂2 + 𝐻2𝑂 

The method used in estimating CO2 emissions associated with urea fertiliser use is included in 

the IPCC (2006) guidelines. Therefore, for this study, CO2 from urea-based N fertiliser was 

estimated using the IPCC (2006) Tier 1 method and a default emission factor (0.20) that 

represents the fraction of C in urea according to equation (13): 

𝐶𝑂2 − 𝐶 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑀 × 𝐸𝐹 ×
44

12
                                                                       (Equation 13) 

Where: 

𝐶𝑂2 − 𝐶 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = annual C emissions from urea application, tonnes C yr-1 

𝑀 = annual amount of urea fertilisation, tonnes urea yr-1 

𝐸𝐹 = emission factor, tonne of C (tonne of urea)-1 

The emission factor of 0.20 (IPCC, 2006) for urea was adopted, which is equivalent to the 

carbon content of urea on an atomic weight basis (20 percent for CO(NH2)2). In addition, the 

conversion factor of 3.667 (44/12) was used to convert C to CO2eq (IPCC 2006). 

3.7.3.1.4 Estimating emissions from production, transportation, storage and transfer of 

agrochemical inputs 

The production of plant protection pesticides such as herbicides, insecticides and fungicides is 

an energy-intensive process. As a consequence of this, it appears that the estimation of 

emissions from agrochemical inputs in turn can prove complex (FAO 2015). This is because 
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the energy type and amount used during production varies (FAO 2015). GHG emissions can 

be estimated either through the energy used in production, packaging, transportation and 

application or by using the global warming potential of each agrochemical (Maraseni et al. 

2010).  

Various emission factors have been used to calculate emissions for pesticides based on the 

amount of active ingredients. For example, Maraseni et al. (2010) used emission factors of 22.8 

kg CO2eq kg-1 a.i. (active ingredient) and 24.5 CO2eq kg-1 a.i. respectively for herbicide and 

pesticide GHG emissions. Liska et al. (2009) used 24.2 kg CO2eq kg-1 a.i. and 25.1 kg CO2eq 

kg-1 a.i. for herbicide and insecticide respectively. Lal (2004) estimated 14.3 kg CO2eq kg-1 

a.i., 18.7 kg CO2eq kg-1 a.i. and 23.1 kg CO2eq kg-1 a.i. for fungicides, insecticides and 

herbicides respectively, based on the active ingredient. Ali et al. (2017) used 23.1 kg CO2eq 

kg-1 of a.i. for herbicide adopted from Lal (2004). For this study, average emission factors of 

23.1 kg CO2eq kg-1 a.i. for herbicide (Lal 2004) and 25.1 kg CO2eq kg-1 for pesticide (Liska et 

al., 2009) were used (see Table 3.4). The equation (14) below was used to estimate emissions 

from herbicide and pesticide: 

𝐶𝑂2𝑒𝑞 𝑒𝑚𝑖𝑠𝑠𝑜𝑛(𝑘𝑔 𝐶𝑂2ℎ𝑎−1) = 𝐸𝐹𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑠 × 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒                                       (Equation 14) 

Where 𝐸𝐹𝑝𝑒𝑠𝑡𝑖𝑐𝑖𝑑𝑒𝑠 is the emission factor for the production of pesticides, kg CO2eq kg-1 a.i. 

and the input rate is the amount of pesticides, kg a.i. ha-1 (a.i. – active ingredient).   

3.7.3.1.5 Estimating emissions from production and combustion of diesel fuel 

Various studies have estimated GHG conversion coefficients associated with the production, 

transport and combustion of diesel fuel (per litre). For instance, Beer et al. (2002) reported that 

0.45 kg and 2.59 kg of CO2 is produced for each litre of diesel during production and 
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combustion. AGO (2002) reported 0.46 and 2.69 kg, whilst Nussey (2005) estimated 2.66 kg 

CO2 for diesel combustion. In addition, Nasidi et al. (2004) used the IPCC (2006) default values 

of 0.0741 kg CO2 MJ-1 for the fuel combustion emission factor. Further to this, Maraseni et al. 

(2010) calculated the average total coefficient combined values from both Beer et al. (2002), 

AGO (2001) and Nussey (2005). The results obtained from this calculation gave a value of 

3.35 kg CO2eq L
-1, which was close to that estimated by DEFRA (2010) at 3.18 kg CO2eq L

-1, 

Lal (2004) at 3.48 CO2eq kg-1 and at 3.22 kg CO2eq L
-1 by Ali et al. (2017). However, Maraseni 

et al. (2010) noted that the GHG emissions from transportation of fuels based on distance from 

petrol station to the farm was considered negligible and not included in the calculation.  

The amount of fuel consumed for each farm process has been estimated in section 3.7.2.2., 

therefore, to determine the GHG emissions from the production, transport and combustion of 

diesel fuel (per litre), an emission factor of 3.22 kg CO2eq L
-1 was adopted (Ali et al. 2017). 

Thus, the total amount of GHG emissions from fuel use was obtained by multiplying the total 

amount of fuel consumption for each tillage system by the emission factor as per Table 3.4.  

3.7.3.1.6 Estimating emissions from farm machinery 

Emissions from farm machinery use during field operations was estimated based on the fraction 

of time the machine was used, and the average diesel consumption per hectare for each farming 

activity estimated from Šarauskis et al. (2014). Various farm operation data that represent both 

direct and indirect emissions arising from fuel use were derived by adopting a modified 

equation (15) as per Ali et al. (2017).  

(𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑘𝑔 𝐶𝑂2ℎ𝑎−1)

= 𝐸𝐹 (𝑘𝑔 𝐶𝑂2𝑙−1) × 𝐹𝐶 (𝑙 ℎ𝑎−1) × 𝑂𝑇𝑃 × 𝑓𝑢𝑒𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

                                                                                                                                                            (Equation 15) 
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For clarification purposes, 𝐸𝐹 refers to the emission factor for the various field operations 

adopted from Lal (2004) and presented in Table 3.4. FC refers to the fuel consumption for each 

field operation, and OTP refers to the number of times a single operation was performed. The 

Fuel production ratio is assumed as 1.24 and is demonstrative of the ratio of the energy content 

in fuel to the energy used to extract, refine and transport the fuel to the farm (Ali et al. 2017).  

3.7.3.2  Estimation of Maize Carbon Footprint  

Carbon footprint (CF) expresses the GHG intensity that is produced per unit yield of crop (Ali 

et al. 2017, Zheng and Han 2018). To determine the CF per kg of maize production, the total 

GHG emissions obtained are divided by maize yield produced per hectare per year, as shown 

in equation (16). 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡, (𝑘𝑔 𝐶𝑂2𝑒𝑞 𝑘𝑔−1 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑) =  
𝑇𝑜𝑡𝑎𝑙 𝐺𝐻𝐺 (𝑘𝑔 𝐶𝑂2𝑒𝑞 ℎ𝑎−1

𝑌𝑖𝑒𝑙𝑑 (𝑘𝑔 ℎ𝑎−1)
       (Equation 16) 

 

3.8 Regression model 

The fifth objective of this study aimed to incorporate a regression model. The objective was 

put in place to examine the relationships (correlations) between input variables and LCA 

outputs and identify any significant contribution to yield and environmental impacts.  

Essentially regression relies on historical data to apply the model. So, for this analysis, a design 

of experiment (DOE) based on a full factorial design was used to compute different 

combinations of the treatment levels (Collins et al. 2014). DOE helps to compute data in the 

most efficient way and using the DOE procedure helps to ensure the factors are truly 

independent of one another. It demonstrates how factors affect response and can establish a 
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true cause and effect in order to quantify with clarity how much effect there was. Furthermore, 

a regression is performed on this data to determine the transfer function. 

To initiate this approach, data for maize yield (kg ha-1), GHG emission (kg CO2 eq ha -1), 

Carbon Footprint (kg CO2 eq kg -1 grain yield) and Net Energy (MJ ha-1) was extracted from 

the crop model analysis and environmental impact analysis as discussed in previous sections. 

This data covers all four sites simulated using future climate scenarios and varying farm 

management technologies. 

The following sequential approach was used in this section: 

1. Create a full factorial design of experiment in Minitab software.  

2. Generate a multiple linear regression model using MATLAB tool, and analyse the 

effects of independent variables on dependent variables through a regression analysis. 

3. Use a simple linear model to determine if a correlation exists between the dominant 

independent variable and the dependent variable, followed by some significance 

testing.  

3.8.1 Design of experiment 

A full-factorial experiment based on 41 x 31 x 61 factor design was created and used to compute 

data combinations. This meant that there were 3 factors in total (sum of the exponents) and 

each factor had 4 levels, 3 levels, and 6 levels respectively. Therefore, for each site, a database 

that consisted of 72 experimental runs was created (4*3*6). 
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3.8.2 Multi-linear Regression analysis 

Using the outcome of each experiment specified in previous sections to create multi-level 

factorial designs, multiple regression models according to equation (17) was built in Matlab. 

The reason for building such models was in order to use them for making inferences about the 

effect and relationship of climate change scenarios, tillage options and fertiliser application 

(predictor variable) on yield, GHG, CF and Net energy (response variables). This method in 

particular was selected because it is one that is commonly used when there is more than one 

independent variable (Sitienei et al. 2017). The regression was carried out using MATLAB 

statistical software (Version 2018.0.1), with the continuous variables used to denote the 

coefficients of the regression models. As a result, four multiple linear regression equation with 

coefficients that best represent the relationship between the variables were generated. The 

regression model was computed as: 

𝑌 =  𝛽1  ×  𝑋1  +  𝛽2  ×  𝑋2  +  𝛽3  ×  𝑋3 +. … … +  𝛽𝑛 𝑋𝑛  + 𝐾           (Equation 17) 

Where; 

Y= value of the dependent variable – maize yield, GHG, CF and Net Energy  

𝛽1, 𝛽2, 𝛽3 … … . . 𝛽𝑛 = regression coefficient where each 𝛽 represents the amount of change in 

the dependent variable (y) for one unit of change in the corresponding X-value when other X 

values are held constant.  

𝑋1 𝑋2 𝑋3………𝑋𝑛 = the independent variables – climate change scenarios, tillage and 

fertiliser; and 𝐾 = the error estimate or residuals of the regression and it is a constant. 

In addition to the above, the coefficient of multiple determination (R2) and the RMSE were 

used to test the viability of the regression fit. The percentage effect of each predictor was 
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determined and the relationship between the response and the predictor with the highest effect 

was analysed.  

A simple linear regression model is similar to a multiple regression model based on the 

assumptions of error distribution. Because of this, the relationship between the responses (Y) 

to a predictor with the most significant effect was further developed using a simple linear 

equation.  
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Chapter 4 

4 Results 

4.1 Introduction 

This chapter presents the main empirical findings of the research as follows: Firstly, the 

analysis of temperature and rainfall across four agro-ecological zones in Nigeria and the 

validation of weather generator synthetic data is presented in section 4.2. This is followed by 

the presentation of results of downscaled site-specific climate change scenarios in section 4.3. 

As explained in chapter 3, climate change scenarios was prepared by perturbing generated data 

using the DSSAT-Perturb software. The 40 GCMs selected contains projections for two climate 

change pathways: RCP 6.0 and RCP 8.5. 

 Next, the results of the impact of climate change analysis on yield of maize feedstock for 

biofuel production are discussed in section 4.4. The analysed result also includes maize yield 

response to farm management fertiliser application and tillage methods adopted for all of the 

scenarios and compared to yield output using baseline climate data.  

Life cycle assessment (LCA) of the farm phase for biofuel feedstock production is presented 

is section 4.5 and includes the empirical results obtained for potential GHG emissions, energy 

use and the carbon footprint calculated per yield.  

Lastly, the regression model results on the effect and relationship between factors and 

responses are presented in section 4.6, based on the factorial design given in chapter 3.  
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4.2 Analysis of observed and synthetic climate data 

4.2.1 Climate data  

Figures 4.1 to 4.4 reveal the variability of the average daily historical climate data (1998-2012) 

of rainfall, minimum and maximum temperature and solar radiation for all four sites. From 

Figure 4.1, the mean cumulative annual rainfall was 1,207.0mm in Jos (9°52′ N: 8° 54′ E), with 

the highest value (1,582.7mm) recorded in 2002, and the lowest value (879.5mm) in 2010. 

Mean minimum temperature (Tmin) ranged between 4.7°C and 16.2°C. The highest Tmin 

values were between 19.0°C and 22.0°C, and lowest Tmin ranged from 1.0°C to 8.0°C. Mean 

maximum temperature (Tmax) ranged between 27.5°C and 28.8°C. Extreme Tmax values 

ranged between 34.0°C and 35.0°C and minimum Tmax values ranged between 19.0°C and 

20.0°C. The findings of the current study are consistent with those of Yusuf et al (2017) who 

similarly, observed mean Tmin value within the range (10.2°C) given above. However, a higher 

maximum temperature was reported with an average of 36.3°C based on climate data from 

2008 to 2011. Mean annual solar radiation values ranged from 15.9 (MJ/m2/day) to the highest 

value between 38.2 (MJ/m2/day) and 41.8 (MJ/m2/day).  

Figure 4.2 presents weather trend for Ibadan (7°26′ N: 3°54′ E). Mean Tmax was recorded as 

31°C. The highest recorded Tmax ranged from 37.0°C to 40.0°C, whilst the lowest Tmax 

values ranged from 24°C to 25°C. Some missing data in the year 2000 reduced the mean daily 

Tmax values between the 32nd and 60th days of the year, causing a slight dip on the graph. Mean 

Tmin value was recorded as 23.0°C, and the highest values were recorded as 26.0°C to 27.0°C. 

The lowest values ranged between 17.5°C and 20.0°C. Cumulative mean rainfall was measured 

as 1,392.2mm. The highest recorded value was 1,745.8mm, recorded in 2008, and the lowest 

value was 920.6mm, recorded in 1998. A limitation of this study was that the range of solar 
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radiation was varied and inconsistent due to a lack of consistent data measurements. 

Nevertheless, mean solar radiation was valued at 14.0 (MJ/m2/day) whist maximum values 

based on the data presented ranged from 34.2 to 40.7 (MJ/m2/day).  

In Enugu (6°28′ N: 7° 33′ E), the highest and lowest Tmax values ranged from 37.0°C to 

39.0°C, and 24.0°C to 26.0°C respectively (Figure 4.3). Mean Tmin value was measured as 

approximately 21.0°C. The highest and lowest Tmin values ranged from 26.0°C to 28.0°C and 

15.0°C to 17.0°C respectively. It should be noted however, that a significant amount of data 

(2002 – 2008) was missing which limits results. Nevertheless, the rainfall cumulative daily 

mean was measured at 1,709.4mm. The highest amount of rainfall was recorded in 2006 

measuring 2,084.3mm, with the lowest recorded in 2012, measuring 1,049.6mm. Solar 

radiation maximum values ranged between 37.4 and 46.1 (MJ/m2/day) and the mean range 

values ranged from 18.4 to 20.0 (MJ/m2/day). 

Figure 4.4 shows the climate trend of Ilorin (8°29′ N: 4° 35′ E). The mean Tmax recorded for 

this site was 30.9°C. The lowest Tmax values were within the range of 19.0°C to 26.0°C, while 

the highest Tmax values ranged between 36.0°C and 40.0°C. The observed climate data also 

shows the mean Tmin was recorded as 21.0°C at this site. The highest recorded Tmin 

temperatures were within the range of 26.0°C and 27.0°C, while the lowest Tmin values ranged 

from 12.0°C to 15.0°C. The highest rainfall was recorded in 2008 as 1,574.1mm, whilst 2001 

had the lowest recorded rainfall 697.7mm. The mean was calculated to be 1,152.5mm. The 

findings of the current study are consistent with those of Ifabiyi and Omoyosoye (2011) who 

estimated similar rainfall statistics for Ilorin. Limitations were attributed to the fact that there 

was no observed data recorded in 2012 for rainfall and the solar radiation dataset for this site 

was very sparse. The mean daily solar radiation was recorded as 11.3 (MJ/m2/day), and the 

highest range of solar radiation values ranged between 32.8 and 43.2 (MJ/m2/day). 
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Figure 4.1: Average values of climatic variables computed from the 15-year observation data obtained 

for Jos location.  

Figure 4.2: Average values of climatic variables computed from the 15-year observation data obtained 

for Ibadan location. 
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Figure 4.3: Average values of climatic variables computed from the 15-year observation data obtained 

for Enugu location. 

 

Figure 4.4: Average values of climatic variables computed from the 15-year observation data obtained 

for Ilorin location. 

 

 

 

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

R
ai

n
fa

ll 
(m

m
)

Tm
ax

(o
C

) 
, T

m
in

 (
o
C

) 
an

d
 S

o
la

r 
ra

d
ia

ti
o

n
 (

M
J/

m
2
)

Day of year (DOY)

Enugu

Tmax Tmin SRad Rainfall

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

R
ai

n
fa

ll 
(m

m
)

Tm
ax

(o
C

) 
, T

m
in

 (
o
C

) 
an

d
 S

o
la

r 
ra

d
ia

ti
o

n
 

(M
J/

m
2
)

Day oy year (DOY)

Ilorin

Tmax Tmin SRad Rainfall



124 

 

4.2.2 Validation of LARS-WG results 

Figures 4.5 to 4.8 show the calculated monthly means of minimum and maximum temperature, 

total rainfall and solar radiation data for each location. Each chart shows a combination of 

weather variables and compares monthly mean observed data for a 15-year period (1998 to 

2012), with 30-year generated synthetic data using the weather generator (LARS-WG). The 

rainfall season starts as early as March for all sites, except in Jos, where it begins in April. 

Maximum temperatures occur during March-August. The temperature during planting seasons 

range between 32°C and 28°C for Jos; 35°C and 32°C for Ibadan; 35°C and 32°C for Enugu; 

and 36°C and 32°C for Ilorin.  

The effectiveness of Lars-WG in reproducing essential characteristics of the observed data at 

the four weather stations was analysed. As shown in Figures 4.5 to 4.8, generated monthly 

means for minimum and maximum temperature as well as solar radiation align closely with the 

mean observations for each location and imply similar climatological characteristics. In 

contrast, the monthly rainfall generated shows the most repeated discrepancy. According to 

Figures 4.5 to 4.8, rainfall was sometimes either overestimated or underestimated. 

Nevertheless, this result was consistent with findings in Gitau et al. (2018) and Mehan et al. 

(2017) from which the WG exhibited similar tendencies. 

As highlighted in the previous section, the quality of observed rainfall data was characterised 

by missing data over a long period. This limitation may have created a monthly misfit of the 

generated data observed for the sites.  
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Figure 4.5: Comparison of the mean monthly rainfall, minimum and maximum temperature and solar 

radiation of observed 15-year climate data and Lars-WG generated 30-year climate data in Jos 

station. 

Figure 4.6: Comparison of the mean monthly rainfall, minimum and maximum temperature and solar 

radiation of observed 15-year climate data and Lars-WG generated 30-year climate data in Ibadan 

station. 
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Figure 4.7: Comparison of the mean monthly rainfall, minimum and maximum temperature and solar 

radiation of observed 15-year climate data and Lars-WG generated 30-year climate data in Enugu 

station. 

  

Figure 4.8: Comparison of the mean monthly rainfall, minimum and maximum temperature and solar 

radiation of observed 15-year climate data and Lars-WG generated 30-year climate data in Ilorin 

station. 

  

In addition to graphical presentation, statistical significance testing was also used to compare 

synthetic and observed data (Gitau et al. 2017, Chisanga et al. 2017). Gitau et al. (2018) 
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explained that the choice of statistical characteristics used to evaluate model effectiveness 

should be based on the intended requirement of the simulated data. Hence, for crop-climate 

impact assessment, the generated data should accurately represent the mean of the observed as 

well as extreme properties of temperature (frost and heat spells) and precipitation (length 

wet/dry spell). Model performance was evaluated at a significant level of p<0.05, using the 

two-sample Kolmogorov (K-S) tests, a t-test and F-test to compare the monthly means and 

variances. 

From the goodness of fit test (K-S test), results presented in Appendix G show that the two 

samples come from the same distribution, as each monthly p-value was higher than the 

acceptable level of significance (<0.05). LARS-WG performance in simulating daily rainfall 

distributions was faultless for all sites except for during November in Jos and December in 

Enugu. Rainfall data at the observed stations was sparse and therefore may have affected the 

distribution series in the weather generator (Chisanga et al. 2017). For all four sites, daily 

distributions of both minimum temperature, maximum temperature and solar radiation matched 

accurately, with the exception of February and August in Jos; February and May in Ilorin for 

solar radiation. Similarly, the model performed well in terms of fitting the length of wet and 

dry spells for December-January-February (DJF), March-April-May (MAM), June-July-

August (JJA) and September-October-November (SON) for all four locations with the 

exception of Ilorin where the model performed poorly in fitting the DJF (wet) season as shown 

in Tables 4.1 to 4.4. These results show that Lars-WG has the ability to reproduce the seasonal 

and daily rainfall distributions quite well. Therefore, the null hypothesis that the two samples 

(observed and generated data) have the same probability distribution using the two-sample 

Kolmogorov-Smirnov test was not rejected at the 0.05 significance level for the extreme 

climate indices compared.  
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Extremely hot temperatures known as heat spells were defined as periods where maximum 

daily temperature reached 30°C or above. Extremely cold temperatures known as frost spells 

were defined as periods where minimum daily temperature fell below 0°C. The seasonal 

distribution of wet and dry spells and the length of occurrences of extremely hot or cold 

temperatures were often similar between observed and generated data. These are important 

climate indices for extreme temperature events when studying climate impact studies on crop 

yield. As shown in Tables 4.1 to 4.4, the performance of Lars-WG in simulating correctly the 

observed heat spells varied for each location. For example, the model failed to predict heat 

spells around “JJA” for Jos; as well as “DJF” for Ilorin and Enugu. This could be due to a 

number of reasons, such as errors in the observed data, random monthly variations in observed 

data and climate anomalies. A re-run to minimise errors as suggested in the manual was done 

and the model re-evaluated for each station (Semenov and Barrow 2002, Ababaei et al. 2010). 

Other than the prediction of heat spells, it should be noted that there was no p-value 

measurement for frost spells as none were likely to occur at the study sites.  

More results on model performance for daily distributions, a t-test for means and f-test for 

variances are also presented for all the sites in Appendix H. The results show no significant 

difference (at p = 0.05 significance level) in terms of the monthly means of minimum and 

maximum temperature, solar radiation and total rainfall compared with observed values.  
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Table 4.1: K-S test: The quarterly probability distributions for the length of wet and dry series and 

length of frost spells (minimum temperature < 0°C) and heat spells (maximum temperature >30°C) 

Jos 

  

Seasonal wet/dry 

SERIES distributions 

    

Seasonal frost/heat 

SPELLS 

distributions 
   

K-S 

statistic  

p-value 

    

K-S 

statistic  

p-value 

DJF wet 12 0.131 0.982 

 

DJF No frost spells 

  

DJF dry 12 0.261 0.359 

 

DJF heat 12 0.255 0.388 

MAM wet 12 0.03 1.000 

 

MAM No frost spells 

  

MAM dry 12 0.073 1.000 

 

MAM heat 12 0.076 1.000 

JJA wet 12 0.088 1.000 

 

JJA frost 12 1.000 0.000 

JJA dry 12 0.13 0.984 

 

JJA heat 12 0.478 0.006 

SON wet 12 0.144 0.957 

 

SON No frost spells 

  

SON dry 12 0.291 0.238 

 

SON heat 12 0.044 1.000 

  

Table 4.2: K-S test: The quarterly probability distributions for the length of wet and dry series and 

length of frost spells (minimum temperature < 0°C) and heat spells (maximum temperature >30°C) 

Ilorin 
  

Seasonal wet/dry 

SERIES distributions 

    
Seasonal frost/heat 

SPELLS distributions 
   

K-S 

statistic  

p-value 

    

K-S 

statistic  

p-value 

DJF wet 12 0.913 0.000 

 

DJF No frost spells 

  

DJF dry 12 0.165 0.884 

 

DJF heat 12 0.436 0.017 

MAM wet 12 0.091 1.000 

 

MAM No frost spells 

  

MAM dry 12 0.038 1.000 

 

MAM heat 12 0.136 0.974 

JJA wet 12 0.212 0.625 

 

JJA No frost spells 

  

JJA dry 12 0.272 0.311 

 

JJA heat 12 0.108 0.999 

SON wet 12 0.205 0.667 

 

SON No frost spells 

  

SON dry 12 0.05 1.000 

 

SON heat 12 0.061 1.000 
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Table 4.3: K-S test: The quarterly probability distributions for the length of wet and dry series and 

length of frost spells (minimum temperature < 0°C) and heat spells (maximum temperature >30°C) 

Ibadan 

  

Seasonal wet/dry 

SERIES distributions 

    

Seasonal frost/heat 

SPELLS 

distributions 
   

  K-S    

statistic  

p-value 

    

K-S 

statistic  

p-value 

DJF wet 12 0.089 1.000 

 

DJF No frost spells 

  

DJF dry 12 0.094 1.000 

 

DJF heat 12 0.382 0.0512 

MAM wet 12 0.106 0.999 

 

MAM No frost spells 

  

MAM dry 12 0.080 1.000 

 

MAM heat 12 0.139 0.9685 

JJA wet 12 0.096 1.000 

 

JJA No frost spells 

  

JJA dry 12 0.104 0.999 

 

JJA heat 12 0.216 0.6013 

SON wet 12 0.030 1.000 

 

SON No frost spells 

  

SON dry 12 0.188 0.767 

 

SON heat 12 0.166 0.8795 

  

 

Table 4.4: K-S test: The quarterly probability distributions for the length of wet and dry series and 

length of frost spells (minimum temperature < 0°C) and heat spells (maximum temperature >30°C) 

Enugu 
  

Seasonal wet/dry 

SERIES distributions 

    
Seasonal frost/heat 

SPELLS 

distributions 

   
    K-S 

statistic  

   p-value 
    

   K-S 

statistic  

p-value 

DJF wet 12 
0.014 1.000 

 
DJF No frost spells 

  

DJF dry 12 
0.086 1.000 

 
DJF heat 12 

0.609 0.0002 

MAM wet 12 
0.057 1.000 

 
MAM No frost spells 

  

MAM dry 12 
0.079 1.000 

 
MAM heat 12 

0.154 0.9271 

JJA wet 12 
0.082 1.000 

 
JJA No frost spells 

  

JJA dry 12 
0.080 1.000 

 
JJA heat 12 

0.22 0.5777 

SON wet 12 
0.289 0.245 

 
SON No frost spells 

  

SON dry 12 
0.100 1.000 

 
SON heat 12 

0.2 0.6967 

 



131 

 

 

Overall, LARS-WG performed well in terms of the monthly means of each variable. These 

findings are supported by the fact that there are similarities between the consistency of these 

simulation results and those of Gitau et al. (2018), Mehan et al. (2017), and (Chisanga et al. 

2017). In addition, the variance value, which measures inter-annual variability in monthly 

means, is an important parameter in agricultural application. According to Qian et al. (2011), 

crop responses to climate are non-linear, therefore inter-seasonal and inter-annual variability 

of weather sequences should be incorporated for climate change impact assessment. Based on 

the performance of the weather generator in simulating the statistical characteristics of the 

observed, the utilisation of synthetic data proved suitable as a baseline for climate-crop impact 

analysis. Taking everything into account, the null hypothesis that the means from two samples 

(observed and generated data) are equal was not rejected at the 0.05 significance level in t-test 

for all comparisons. 

4.3 Analysis of projected climate change  

Results reported in this section are in regard to the climate change scenario data obtained from 

an ensemble of 40 GCMs (see list in Appendix A) and downscaled with DSSAT-perturb tool. 

The variables perturbed for each local site are rainfall, minimum and maximum radiation and 

solar radiation. Based on the site-specific scatter plot presented in Figure 4.9 and 4.10, 

predicted rainfall changes increased under RCP 8.5 compared to RCP 6.0 and tended to be 

more variable across all sites. Jos had the smallest increase of rainfall; by 0.2% to 0.7% under 

RCP 6.0, and 0.3% to 1.1% under RCP 8.5. Across both scenarios, the relative increase in 

rainfall on average was 0.5% and 0.6% for 2020, 2050 and 2080. Similarly, Ibadan showed an 

increase in rainfall (1.4% to 4.6% RCP 6.0; 1.6% to 6.8% for RCP 8.5) and the projected 

average from 2020 to 2080 was set at 3% and 3.7% for RCP 6.0 and 8.5 respectively.  
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Figure 4.10: Scatter plot used to visualise the spread of future changes in rainfall (%) and mean 

temperature (°C) change with respect to baseline under RCP6.0 scenario pathway. Each scenario 

year is colour coded (green – 2020; blue – 2050; red – 2080). 
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Figure 4.9:  Scatter plot used to visualise the spread of future changes in rainfall (%) and mean 

temperature (°C) change with respect to baseline under RCP 8.5 scenario pathway. Each scenario 

year is colour coded (green – 2020; blue – 2050; red – 2080). 
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However, the data showed that Ibadan will experience about 7% more rain by 2080.  Ilorin and 

Enugu showed similar characteristics in terms of rainfall change values. For both sites, rainfall 

is predicted to increase on average by approximately 3.5% in 2050 under RCP 6.0, and by 

approximately 5% in 2080 compared to baseline climate. For an RCP 8.5 scenario, the 

projected average rainfall increase by 2080 is projected as approximately 8%.  

Predicted changes in temperature present as warmer under RCP 8.5 compared to RCP 6.0 from 

2020 to 2050 and 2080. In addition to this, temperature change projected for Jos is shown as in 

contrast to the very low rainfall increase earlier presented. Minimum and maximum 

temperature increase is the highest for the Jos site as compared to the other three sites. Mean 

temperature increase is projected from 0.9°C to 3.1°C for RCP 6.0, and 1.1°C to 4.5°C under 

RCP 8.5 for 2020, 2050 and 2080 respectively. Projected data shows that under the RCP 8.5 

scenario, Jos will experience an increase in mean temperature with a change of 2.7°C compared 

to 1.9°C under an RCP 6.0 scenario between 2020 and 2080. Furthermore, the mean 

temperature change in 2080 will increase by between 3.0°C and 5.0°C on average under RCP 

6.0 and 8.5 projections. Mean temperature change at Ibadan will increase by 0.8°C, 1.3°C and 

2.7°C for RCP 6.0, and 0.9°C, 1.7°C and 3.6°C under the RCP 8.5 scenario pathway by 2020, 

2050 and 2080 respectively. The minimum and maximum temperature values prove to be 

similar for each scenario pathway, giving average values of 1.9°C (RCP 6.0) and 2.2°C (RCP 

8.5). The expected temperature rise is highest by 2080, showing between a 3.0°C and 4.0 °C 

increase on average. 

Projected changes for Ilorin and Enugu are similar for each site but differ significantly between 

scenarios for 2080. For example, the result shows a 2.8°C mean temperature change for RCP 

6.0 for both sites in 2080, compared to a 4.1°C projection for the RCP 8.5 scenario. These 

findings are supported by the fact that a similar range of projections in average change in 
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precipitation and temperature for 2050 was reported by Girvetz et al. (2019) for various 

different countries in Africa including Nigeria (see Figure 2.1 in Chapter 2). Furthermore, 

Figure 4.11 shows the average minimum and maximum temperature change values and percent 

change in rainfall relative to baseline climate. 

 

 

Figure 4.11: Representative climate change scenarios showing relative change in rainfall and absolute 

changes in average minimum and maximum temperature for RCP 6.0 and RCP 8.5 scenarios. Values are 

relative to baseline climate data. 
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4.4 Climate change impact on maize grain yield 

Results presented in this section outline the following three topics: 1. Baseline yield results. 2. 

Simulation results on the impact of climate change scenarios on yield compared to baseline. 3. 

Effect of nitrogen treatment on yield. 

4.4.1 Baseline yield results 

Maize yield was simulated using 30-years of climate data synthesised from observed weather 

station data (1998 – 2012). Figure 4.12 presents the results of the annual variability of baseline 

yield, stabilised using a 5-year moving average. The unexplained variations in yields between 

the years could be attributed to varying physiochemical characteristics of the soil, texture type 

and soil water–storage capacity, which are different for each site. This should be noted in 

addition to crop response to climatic variability since the planting date (15th March), and other 

farm management parameters which were fixed, and therefore the same for each location. From 

all of the sites, Ibadan produced the highest yield (3,971 kg ha-1), followed by Ilorin (2,147 kg 

ha-1) and Jos (1,960 kg ha-1). The least yield was obtained for Enugu (1,691 kg ha-1). Evaluation 

of the planting season climate (March-April-May) shows that Jos had highest rainfall of 

1,304mm and solar radiation (24 MJ/m2/day) but the lowest maximum and minimum 

temperatures (28°C and 16°C).  
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Figure 4.12: Simulated yield trends for 30 years baseline climate data. Annual (triangles) and 

5-year moving average (red line) yields. 
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An evaluation of the observed climate data used for baseline simulation shows high variability 

in temperature, and lower average temperature values in Jos when compared to Ibadan. Thus, 

variability in weather temperature may have contributed to low yield at Jos site, despite the 

increase in rainfall. Further data showed that Enugu also had high total rainfall (504mm) which 

varied during the growing season compared to Ibadan (364mm), and Ilorin (319mm). 

Temperatures and solar radiation were at similar levels at all sites except Ilorin, which had 

slightly higher solar radiation (22 MJ/m2/day). Therefore, in addition to the effect of observed 

climatic variation, soil type and soil water capacity could be a modifying factor, as other factors 

are constant during simulation. 

Inter-annual variability of yield is an important parameter compared to the mean when 

simulating crop yield (Qian et al. 2011). Using single-factor ANOVA, the statistical description 

of baseline yield data including mean, standard deviation and coefficient of variation are listed 

in Table 4.5. From this, it can be see that the variability in annual yield was smaller for Ibadan 

compared to other sites, and the highest variability occurred in Jos yield. This implies that the 

simulated yield data was more homogeneous at Ibadan as compared to Jos. The difference in 

mean yields is statistically different for Ibadan and Enugu but not significant at p < 0.05 for 

Jos and Ilorin when compared to published national average of about 2,000 kg ha-1 (Shehu et 

al. 2018)  .  
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Table 4.5: Descriptive statistics of maize yield (kg ha-1) simulated under baseline climate (estimate of 

30-year data) 

Study 

location 

Mean (kg ha-1) Std. Dev Min Max CV (%) 

Ibadan 3,971** 726.18 2,185 5,262 18.3 

Jos 1,960 3,072.96 1,124 7,296 156.8 

Enugu 1,691** 976.07 666 3,192 34.4 

Ilorin 2,147 803.03 740 3,918 37.4 

Mean values (**statistically significant p ≤ 0.05 confidence level) are based on an average of the 30 years 

simulated for baseline. (Min and Max – minimum and maximum values; St.Dev – standard deviation; CV- 
Coefficient of variation) 

 

4.4.2  Impact of climate change scenarios on yield 

Average Maize yields varied for each site, reflecting differences in their response to climate 

change. From Figures 4.13 and 4.14, yield generally declined from year 2020 to 2080. On 

closer inspection, it was noted that the decline was larger in 2080 under the high emission 

scenario RCP 8.5 except for in Enugu where yield improved slightly under this scenario. 

Although the highest rainfall was projected to increase under RCP 8.5 scenario, mean yield 

decreased largely under this scenario between 2050 and 2080. This suggests a greater negative 

influence due to warmer climate. This result is consistent with the projections of Corbeels et 

al. (2018) who found average maize yield would significantly decline in Southern Africa under 

the RCP 8.5 scenario.  
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Figure 4.13: Chart of simulated maize yield output for baseline and RCP 6.0 scenarios for 

the period 2020–2080 at four study sites. 

Figure 4.14: Chart of simulated maize yield output for baseline and RCP 8.5 scenarios for 

the period 2020–2080 at four study sites 
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Table 4.6: Coefficient of variation (CV %) of simulated maize grain yield under two scenarios RCP 

6.0 and RCP 8.5. 

Study 

location 

RCP 

6.0_2020 

RCP 

6.0_2050 

RCP 

6.0_2080 

RCP 

8.5_2020 

RCP 

8.5_2050 

RCP 

8.5_2080 

Jos 71.1 70.1 74.0 71.2 72.7 84.6 

Ibadan 18.9 21.1 23.2 18.9 24.9 25.6 

Enugu 39.4 41.0 54.8 39.7 42.3 53.0 

Ilorin 44.5 45.4 52.1 43.7 49.2 57.1 

 

Similar to changes obtained for mean yields, future projections show an increase of the year-

to-year variability of maize yields for each site as shown by the coefficient of variation 

estimated in Table 4.6. Data suggests that the magnitude of change in yield variation will be 

positive for all sites over time, under two climate scenarios and illustrated by predictions dated 

from 2020 to 2080. Between the years 2020 and 2080 (under RCP 6.0), variation in yield at 

Enugu will increase by 15% compared to a 13% increase under RCP 8.5 within the same 

timeline. For Jos, climate change under RCP 8.5 will increase yield variation by 13% compared 

to 3% increase under RCP 6.0. Similarly, yield variation will increase by 13% in Ilorin under 

RCP 8.5 compared to 7% under RCP 6.0 (changes from 2020 to 2080). It should be noted that 

the CV at Ibadan was small compared to the other sites, reflecting a slight rise (4.3% and 6.7%) 

for RCP 6.0 and RCP 8.5 respectively. However, this result is consistent with the results 

obtained by Parkes et al. (2018) for northern and southern Nigeria. In further support of the 

findings of this study, Parkes et al. (2018) also reported an increase in maize yield variability 

in response to future climate change using crop-climate model simulations. This variability 

represents the risk of crop failure and loss in some locations.  
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Yield deviation from the baseline for Ibadan, shows a more pronounced reduction in maize 

yield with an average difference in the mean of between -1,348 Kg ha-1 and -1,763 Kg ha-1 

across all three time-periods under RCP 6.0 and 8.5 scenarios according to Figure 4.15. This 

represents yield loss of -34% and -44% on average for both scenario paths. The most affected 

scenario years with yield loss above -30% was 2050 (-33%) and 2080 (-52%) under RCP 6.0, 

while for RCP 8.5, yield declined by -43% and -71% for 2050 and 2080 respectively. By 

contrast, maize yield increased above baseline values at Jos for 2020, 2050 and 2080 by an 

average of 2,136 Kg ha-1 (109%) and 1,690 Kg ha-1 (86%) under RCP 6.0 and 8.5 scenarios 

respectively. However, as shown in Figure 4.16, yield gained will further reduce from 2020 to 

2050, with a significant decrease obtained in 2080.  

The average maize yield in Enugu also increased by 2,005 Kg ha-1 (115%) and 1,704 Kg ha-1 

(98%) in year 2020 and 2050 but decreased by an average of 506 Kg ha-1 (-29%) in year 2080 

under both scenarios as shown in Figure 4.17. Interestingly, a similar trend to Enugu was 

obtained for Ilorin however; the difference in the means compared to baseline was not 

statistically significant for 2050 and 2080 in RCP 6.0 and 2050 in RCP 8.5. The negative 

deviation from the baseline only occurred in 2080 by -13% and -44% under both scenarios as 

shown in Figure 4.18. The significance of the difference in average yield for each climate 

scenario compared to baseline yield was determined using standard Student’s t-test (see result 

in Appendix I). The projected changes in maize yield for Ibadan and Enugu (with exception of 

RCP 8.5 2080 for Enugu and Jos) were statistically significant for all climate change scenarios 

at 0.05 significance level, therefore the null hypothesis of no difference in the mean yield was 

rejected as there was a difference. At Jos, there was significant difference between the baseline 

yield and RCP 6.0 in 2080, RCP 8.5 in 2050 and 2080 respectively. The difference in yield 
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under RCP 6.0 (2050 and 2080), and RCP 8.5 (2050) for Ilorin was not significant compared 

to the baseline, therefore the null hypothesis of no difference was not rejected in that case.    
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Figure 4.15: Effect of climate change on relative changes (%) in mean crop yield for 

Ibadan. 
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Figure 4.16: Effect of climate change on relative changes (%) in mean crop yield for Jos. 
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Figure 4.18: Effect of climate change on relative changes (%) in mean crop yield for 

Enugu. 

Figure 4.17: Effect of climate change on relative changes (%) in mean crop yield for 

Ilorin. 
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4.4.3 Effect of fertiliser treatment on yield 

Figures 4.19 to 4.22 show that the relationship between fertiliser rates (kg N ha-1) and yield (kg 

ha-1) was linear, and that yield increased significantly at 160 kg N ha-1 application rate. The 

trend line plot for Jos in Figures 4.19, shows that on average, 80 kg N ha-1 fertiliser rate 

increased yield by 14% and 13% under RCP 6.0 and RCP 8.5 scenarios between 2020 and 

2080. Similar to the baseline, yield improved significantly as the fertiliser application rate 

increased to 160 kg N ha-1 from 80kg N ha-1 for both RCP scenarios but, the difference on 

average compared to the baseline was marginal in terms of increase or decrease (from +1% to 

-6%). At 200 kg N ha-1, yield difference from 160 kg N ha-1 was not statistically significant at 

p < 0.05 level under RCP 8.5 (2080). Similarly, yield declined by -9% and -17% under 

maximum rate of 250 kg N ha-1 for both RCP scenarios by 2080 but the difference in means is 

not significant and therefore the null hypothesis is not rejected as there is no difference between 

the means of the group. Fertiliser increase at Jos did not give significant increase in yield 

compared to baseline and overall yield slightly dipped for both scenarios towards 2080 despite 

increasing fertiliser rate to 250 kg N ha-1. 

Raising the fertiliser rate from 80 kg N ha-1 to 160 kg N ha-1 increased maize yield by 45% 

under the baseline scenario at Ibadan. The yield difference is significant for 80 kg N ha-1 to 160 

kg N ha-1. Higher application rates (200 kg N ha-1 and 250 kg N ha-1) only improved yield by 

+4% and +1% respectively. As shown in Figure 4.20, yield declined significantly from the 

baseline despite fertiliser increase. For instance, during 2050 and 2080, yield declined by -12% 

and -26% at 80 kg N ha-1, for both scenarios. Despite increasing the rate from 160 kg N ha-1 to 

250 kg N ha-1, further decline in yield was observed ranging from -37%, -39% and -40% in 

2080 under RCP 8.5. The difference in yield between 160 kg N ha-1, 200 kg N ha-1 and 250 kg 

N ha-1 was not significant for all scenarios including the baseline.   
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Figure 4.21 shows the yield response per hectare with respect to applied N fertiliser rate for the 

Enugu site. In contrast to other locations, the highest increase was obtained at this location 

under all climate scenarios (except RCP 6.0 in 2080). Yield increased with increase in N rates, 

and showed significant yield increase at rates from 80 kg N ha-1 to 250 kg N ha-1, compared to 

baseline. At 80 kg N ha-1, yield difference from baseline was 192% and 140% for RCP 6.0 and 

8.5 scenarios on average and statistically significant. Yield gap further increased significantly 

at 160 kg N ha-1 from the baseline but, the difference at 200 kg N ha-1 and 250 kg N ha-1 was 

not significantly different when compared to 160 kg N ha-1. Yield difference from all 

application rates were not statistically significant for RCP 8.5 in 2080. 

Figure 4.22 shows results for Ilorin, with an increase in maize yield under all scenarios and 

years compared to baseline. Difference in yield obtained between 80 kg N ha-1 and 160 kg N 

ha-1 application rate was in the range of 18% to 40% for all scenarios including baseline. The 

difference in yield was statistically significant for the above-mentioned rates and scenarios 

except under RCP 8.5 in 2080, where the yield output for all treatment combinations was not 

significant. The difference at 200 kg N ha-1 and 250 kg N ha-1 was not significantly different 

when compared to 160 kg N ha-1.   
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Figure 4.19: Results of average maize yield for baseline and six climate scenarios under varying N 

applications at Jos. 
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Figure 4.20: Results of average maize yield for baseline and six climate scenarios under varying N 

applications at Ibadan. 
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Figure 4.21: Results of average maize yield for baseline and six climate scenarios under varying N 

applications at Enugu. 
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Figure 4.22: Results of average maize yield for baseline and six climate scenarios under varying N 

applications at Ilorin. 
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4.5 Farm energy use, GHG emissions, Carbon footprint  

Total energy inputs and the resultant energy outputs based on maize yield, are presented in this 

section. The energy equivalents and results of energy indices (energy use efficiency, energy 

productivity, specific energy and net energy) used to establish system efficiency are described 

in this section. The farm phase life cycle assessment results of GHG emissions and the carbon 

footprint per maize grain are also presented in this section. 

4.5.1 Energy input results and analysis 

Material inputs and the related energy budgets estimated for maize production per hectare are 

presented in Tables 4.7 and 4.8. Average fuel consumption across all scenarios was 53.1 L ha-1. 

The estimated working time and energy coefficients presented in Chapter 3 (see section 3.7.2.2; 

Table 3.2 and 3.3) was used to determine the amount of diesel required for the three type of 

tillage method, and Figure 4.23 shows the aggregated fuel values for each field operation per 

hectare. Fuel consumption varied according to intensity of mechanisation for the three type of 

tillage systems.  

As examples, conventional tillage (CT) and reduced tillage (RT) were responsible for 42% and 

37% of all fuel consumed in order to carry out farming operations, whilst the no tillage method 

(NT) consumed only 21% of the total fuel. For soil preparation (primary tillage), use of a 

mouldboard plough in CT and chisel plough in RT at 30cm tillage depth, consumed 24.5 L 

ha-1, and 16.5 L ha-1 respectively or 36% and 28% of the total diesel used. In both CT and RT, 

stubble cultivation (secondary tillage) consumed 10.7 L ha-1 and was responsible for 16% and 

18% of the total diesel fuel used in both systems respectively. Direct seed drilling operation in 

NT system consumed 21% diesel, which remains less compared to the amount of diesel used 
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for primary and secondary tillage operations as well as pre-sowing cultivation in CT, and RT 

combined. However, harvesting operation was responsible for the biggest contribution of 71% 

under the NT system, compared to 35% and 39% for CT and RT systems respectively.  

 

  

The total input energy (MJ ha-1) for each farm implement (CT, RT and NT) and other material 

inputs for maize cultivation based on four N fertiliser rates are shown in Table 4.8. The amount 

of energy consumed in descending order was nitrogen > diesel > phosphorus (P2O5) > 

insecticide > machinery > maize seed > potassium (K2O) > herbicide. The average total energy 

input of 14,096 MJ ha-1 was obtained in a range between a minimum of 7,648 MJ ha-1 to a 

maximum of 19,370 MJ ha-1 (Table 4.8). CT had the highest total energy input of 14,673 MJ 

ha-1 followed by RT with 14,361 MJ ha-1 and NT had the lowest energy input of 13, 254 MJ 

Figure 4.23: Different field operations and aggregated diesel fuel used on a per hectare basis of 

maize production. 
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ha-1. Figure 4.24 shows the relative energy contribution of each input materials to the total 

energy input. It shows a higher proportion of input energy was attributed to nitrogen fertiliser 

and diesel fuel in all 12 management scenarios, with averages of 71% and 14% respectively. 

At relatively low levels, average energy inputs of machinery were 1.7%; maize seed 2.3%, 

phosphorus 4%, potassium 2.1%, herbicide 7.4% and insecticide 2.9%. Table 4.8 shows that a 

linear relation exists between nitrogen rate and total energy input. Energy input for each tillage 

systems increased considerably due to the intensity of each tillage operation system. Average 

percentage of tillage varied and measured at 18%, 16% and 10% in CT, RT and NT 

respectively.  Overall, adoption of NT saved 1,419 MJ ha-1 energy (~ 10%) over that used under 

CT and 1,107 MJ ha-1 energy (~8%) over RT method.  
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Table 4.7: Amount of different inputs for maize production under different farm management scenarios 

 

 

 

Parameters Unit Conventional tillage Reduced  tillage No tillage 
  

80 kg 160kg 200kg 250kg 80 kg 160kg 200kg 250kg 80 kg 160kg 200kg 250kg 

Diesel fuel L ha-1 67.2 67.2 67.2 67.2 59.2 59.2 59.2 59.2 32.9 32.9 32.9 32.9 

Machinery h ha-1 4.87 4.87 4.87 4.87 4.42 4.42 4.42 4.42 1.65 1.65 1.65 1.65 

Maize Seed Kg ha-1 20 20 20 20 20 20 20 20 20 20 20 20 

Nitrogen Kg ha-1 80 160 200 250 80 160 200 250 80 160 200 250 

Phosphorus (P2O5) Kg ha-1 40 40 40 40 40 40 40 40 40 40 40 40 

Potassium (K2O) Kg ha-1 40 40 40 40 40 40 40 40 40 40 40 40 

Herbicide Kg ha-1 2 2 2 2 2 2 2 2 2 2 2 2 

Insecticide Kg ha-1 2 2 2 2 2 2 2 2 2 2 2 2 



154 

 

Table 4.8: Total input energy equivalent (MJ ha-1) under different farm management scenarios 

Parameters Unit Conventional tillage Reduced  tillage No tillage 

  
80 kg 160kg 200kg 250kg 80 kg 160kg 200kg 250kg 80 kg 160kg 200kg 250kg 

Diesel fuel L ha-1 2,385.6 2,385.6 2,385.6 2,385.6 2,101.6 2,101.6 2,101.6 2,101.6 1,168.0 1,168.0 1,168.0 1,168.0 

Machinery h ha-1 305.3 305.3 305.3 305.3 277.1 277.1 277.1 277.1 103.5 103.5 103.5 103.5 

Maize Seed Kg ha-1 294 294 294 294 294 294 294 294 294 294 294 294 

Nitrogen Kg ha-1 4,848.0 9,009.6 12,120.0 15,150.0 4,848.0 9,696.0 12,120.0 15,150.0 4,848.0 9,696.0 12,120.0 15,150.0 

Phosphorus (P2O5) Kg ha-1 502.4 502.4 502.4 502.4 502.4 502.4 502.4 502.4 502.4 502.4 502.4 502.4 

Potassium (K2O) Kg ha-1 268 268 268 268 268 268 268 268 268 268 268 268 

Herbicide Kg ha-1 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 

Insecticide Kg ha-1 369.4 369.4 369.4 369.4 369.4 369.4 369.4 369.4 369.4 369.4 369.4 369.4 

Total input energy  MJ ha-1 9,068 13,230 16,340 19,370 8,756 13,604 16,028 19,058 7,648 12,496 14,920 17,950 
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 Figure 4.24:  % contribution of different parameters to the total input energy under three different farm tillage and fertiliser management scenarios. 

Conventional tillage (CT); Reduced tillage (RT); No-tillage (NT). Nitrogen fertiliser rates are – 80 kg N, 160 kg N, 200 kg N and 250 kg N 
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4.5.2 Total energy output under climate change and farm management 

scenarios  

The energy equivalent of maize grain produced was calculated for both baseline and projected 

maize yield outputs, multiplied by the grain energy index of 14.7 MJ kg-1. As shown in Table 

4.9, energy output was positive for each scenario which indicates energy gain overall. When 

compared to the baseline climate, energy gain (MJ ha-1) will reduce for maize produced under 

RCP 6.0 and 8.5 scenarios from 2020, 2050 to 2080. Figure 4.25 represents significant 

deviations from the baseline for the maximum fertiliser rate of 250 kg N ha-1. The highest 

decline in energy output (-26,241 MJ ha-1 and -45,767 MJ ha-1) was at Ibadan for 2080 under 

RCP 6.0 and 8.5 scenarios. The lowest was Ilorin (-11,685 MJ ha-1 and -22,577 MJ ha-1). 

 As shown in Table 4.9, energy output trend under three tillage systems varied for each location. 

CT method produced the highest energy output compared to RT and NT at Ibadan. However, 

the NT method gave the highest energy output in Jos and Ilorin, whilst the highest output in 

Enugu was under the RT method. According to the deviation chart presented in Figure 4.25, 

the effect of tillage practices under possible climate scenarios will reduce maize energy output 

from 2020 to 2080 for both RCPs. However, the mean difference is not statistically significant 

at p < 0.05.   
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Figure 4.25: Energy output (MJ ha-1) deviations of RCP 6.0 and 8.5 scenarios from baseline 

at Ibadan, Jos, Ilorin and Enugu sites. Results are based on 250 kg N ha-1 rate.  

CT- (Conventional tillage); RT – (Reduced tillage); NT – (No tillage). 
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Table 4.9: Total energy output (MJ ha-1) for each site for baseline, climate change scenarios and twelve 

farm management scenarios. CT – (Conventional tillage); RT – (Reduced tillage; NT – (No tillage) 

  CT RT NT 

  80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 

  Ibadan 

Baseline 84,437 122,251 126,787 127,659 81,216 121,018 126,127 127,123 80,885 120,516 125,713 126,816 

RCP 6.0_2020 88,411 121,338 124,366 125,177 84,794 120,087 123,468 124,419 84,481 119,526 122,897 123,811 

RCP 6.0_2050 83,716 113,964 116,013 116,536 80,540 112,882 115,098 115,617 80,150 112,307 114,444 115,131 

RCP 6.0_2080 74,386 98,925 99,229 99,310 71,418 97,955 98,370 98,451 70,890 97,350 97,723 97,889 

RCP 8.5_2020 87,953 121,028 123,795 124,383 84,362 119,698 122,749 123,615 84,078 119,171 122,186 122,935 

RCP 8.5_2050 80,003 107,466 108,433 108,690 76,807 106,256 107,525 107,880 76,432 105,584 106,832 107,302 

RCP 8.5_2080 62,896 76,840 76,748 76,844 60,728 75,793 75,722 75,885 60,448 75,222 75,139 75,313 

 Jos 

Baseline 88,914 160,072 175,740 192,761 86,516 155,362 170,357 186,786 89,742 160,627 176,038 193,032 

RCP 6.0_2020 87,457 156,568 170,955 185,426 86,123 152,605 166,609 181,101 88,384 157,000 171,431 185,769 

RCP 6.0_2050 85,345 150,299 162,866 175,217 82,194 145,107 157,309 169,398 86,401 150,669 163,216 175,811 

RCP 6.0_2080 83,299 144,372 155,352 164,467 80,590 139,668 150,434 159,553 84,568 144,732 155,975 164,980 

RCP 8.5_2020 87,851 156,640 171,087 185,185 86,465 152,755 166,895 180,846 88,845 157,136 171,657 185,500 

RCP 8.5_2050 84,774 147,733 159,764 171,382 81,840 142,976 154,388 165,648 85,833 148,217 160,208 171,789 

RCP 8.5_2080 77,827 138,527 147,528 152,235 76,191 135,333 144,207 148,002 79,750 139,192 148,154 152,566 

 Enugu 

Baseline 37,870 57,860 63,045 67,002 38,330 58,362 63,584 67,702 37,939 57,719 62,937 66,716 

RCP 6.0_2020 30,320 50,388 55,023 58,564 36,123 55,702 59,559 62,751 35,821 55,225 59,036 62,104 

RCP 6.0_2050 25,672 42,562 46,919 50,227 30,739 47,832 51,883 54,941 30,496 47,322 51,386 54,356 

RCP 6.0_2080 22,834 37,366 40,594 42,654 28,195 43,812 46,710 49,027 27,910 43,465 46,388 48,706 

RCP 8.5_2020 30,121 50,113 54,612 58,064 35,842 55,508 59,296 62,582 35,529 54,898 58,760 61,894 

RCP 8.5_2050 23,815 39,341 43,006 45,483 29,007 45,644 48,875 51,345 28,740 45,181 48,435 50,845 

RCP 8.5_2080 17,142 26,307 27,864 30,246 20,914 29,740 31,107 32,286 20,661 29,532 30,977 32,065 

 Ilorin 

Baseline 43,144 61,185 65,387 68,133 42,734 60,942 65,157 68,052 43,846 61,677 65,599 68,287 

RCP 6.0_2020 36,374 57,404 61,941 65,076 42,188 60,420 64,164 66,697 43,476 61,168 64,587 67,022 

RCP 6.0_2050 35,151 55,139 59,473 62,063 40,898 58,314 61,526 63,625 42,090 58,954 61,876 63,824 

RCP 6.0_2080 30,818 48,359 51,306 53,139 36,108 50,906 52,915 54,327 37,169 51,348 53,178 54,355 

RCP 8.5_2020 36,983 58,681 62,925 66,202 42,971 61,752 65,360 67,795 44,315 62,342 65,731 68,049 

RCP 8.5_2050 32,725 51,463 54,669 56,583 38,157 53,961 56,229 57,821 39,344 54,372 56,445 58,001 

RCP 8.5_2080 25,037 37,752 39,296 40,462 28,737 39,350 40,542 41,153 29,529 39,533 40,650 41,176 
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4.5.3 Energy indices in maize production assessment 

Energy indices such as energy use efficiency (EUE), energy productivity (EP), specific 

energy (SE) and net energy (NE) were calculated for baseline climate, climate change and 

farm management scenarios, shown in the appendices (Appendix J).  

The EUE illustrated in Table 4.10 outlines only high EUE values obtained for varying 

fertiliser rate (marked with an asterisk) and tillage scenarios. For each location, there is a 

declining trend in efficiency as the climate scenario changed from 2020 to 2080, with the 

RCP 8.5 scenario pathway recording the lowest EUE values. In addition, the highest 

efficiency values were obtained in Jos. This was followed by Ibadan, with the lowest value 

obtained in Enugu. This indicates that maize farming could be more sustainable in the 

aforementioned locations in the future. The average efficiency ratios for both RCP 6.0 and 

RCP 8.5 scenarios were calculated as 8.1 for Ibadan, 10.4 for Jos, 4.0 for Ilorin and 3.2 for 

Enugu. At Ibadan, the combination of 80kg N fertiliser and NT method was more efficient 

under future climate scenarios. Data showed 160kg N and NT for Jos, in addition to 80kg 

N and NT for Ilorin and Enugu respectively was more efficient. Although, across the 

scenarios, better efficiency was obtained for CT and RT methods combined with 160kg N. 

The best combination, showing the effective use of inputs was NT combined with 80 kg 

N, although this treatment combination did not boost maize yield under future climate 

scenarios. To support this, it should be noted that Sarauskis et al. (2014) reported energy 

ratios for maize cultivation that ranged on average from 5.4 to 19.7 using a range of tillage 

methods.  
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Energy productivity (EP) shows similar trends to EUE in terms of efficient tillage methods 

(NT) and fertiliser rate (80 and 160 kg N) that produce the highest EP. The average EP of 

maize was 0.6 kg MJ-1 (Jos), 0.5 kg MJ-1 (Ibadan) and 0.2 kg MJ-1 (Ilorin and Enugu) 

respectively. The lower index implies that lower units of yield outputs was obtained for 

Enugu and Ilorin when compared to Ibadan and Jos. 

The specific energy (SE) which represents energy input (MJ ha-1) per maize grain output 

(kg ha-1), registered increasing trend under the worst climate scenarios as grain yield 

reduced in 2080 for both RCPs. For all locations, with the exception of Jos, high fertiliser 

input of 250 kg N increased SE irrespective of the tillage method. Enugu had the highest 

SE (9.2 to 10.1 MJ kg-1) followed by Ilorin (6.7 to 7.1 MJ kg-1) under RCP 8.5 scenario in 

2080 as shown in Table 4.10. These high values indicate poor energy output per kg of 

maize produced. Jos however, had the lowest SE overall, but under certain scenarios, a 

combination of 80 kg N and tillage gave higher SE values. The net energy (NE) calculated 

was positive which represents energy gain for all sites across the scenarios (see Table 4.11). 

When compared to baseline, a high NE gain was obtained by adopting the NT method for 

all climate scenarios. This occurred with the exception of Ibadan, where using CT method 

with 160 kg N gave a higher NE in 2080 (RCP 6.0 and 8.5).  Jos and Enugu had similar 

trends and high NE for NT (250 kg N).  

 



161 

 

Table 4.10: Calculated energy indices for each site under baseline, climate change scenarios and 

twelve farm management scenarios. CT – (Conventional tillage); RT – (Reduced tillage; NT – 

(No tillage) 

  Energy use efficiency (EUE) Energy productivity (EP) Specific energy (SE) 

Location Scenario CT RT NT CT RT NT CT RT NT 

Ibadan Baseline 8.4** 8.2** 9.7** 0.6** 0.6** 0.7** 2.4**** 2.3**** 2.2**** 

 RCP 6.0_2020 8.4* 8.5* 10.1* 0.6* 0.6* 0.7* 2.4**** 2.4**** 2.2**** 

 RCP 6.0_2050 8.0* 8.1* 9.6* 0.5* 0.5* 0.7* 2.6**** 2.6**** 2.2**** 

 RCP 6.0_2080 7.1* 7.2* 8.5* 0.5* 0.5* 0.6* 3.1**** 3.0**** 2.8**** 

 RCP 8.5_2020 8.4* 8.4* 10.1* 0.6* 0.6* 0.7* 2.5**** 2.4**** 2.2**** 

 RCP 8.5_2050 7.6* 7.7* 9.2* 0.5* 0.5* 0.6* 2.8**** 2.8**** 2.6**** 

 RCP 8.5_2080 6.0* 6.1* 7.3* 0.5* 0.4* 0.5* 4.0**** 3.9**** 3.6**** 

           

Jos Baseline 10.9** 10.5** 12.2** 0.7** 0.7** 0.8** 1.7* 1.7* 1.4* 

 RCP 6.0_2020 10.7** 10.3** 11.9** 0.7** 0.7** 0.8** 1.8* 1.7* 1.5**** 

 RCP 6.0_2050 10.3** 9.8** 11.4** 0.7** 0.7** 0.8** 1.7**** 1.8* 1.6**** 

 RCP 6.0_2080 9.9** 9.4** 11.0** 0.7** 0.6** 0.7** 1.9**** 1.9**** 1.7**** 

 RCP 8.5_2020 10.7** 10.3** 11.9** 0.7** 0.7** 0.8** 1.8* 1.7* 1.5**** 

 RCP 8.5_2050 10.1** 9.6** 11.2** 0.7** 0.7** 0.8** 1.8* 1.8* 1.6**** 

 RCP 8.5_2080 9.5** 9.1** 10.6** 0.6** 0.6** 0.7** 2.0* 2.0**** 1.8**** 
           

Ilorin Baseline 4.2* 4.3* 5.3* 0.3* 0.3* 0.4* 4.5**** 4.4**** 4.0**** 

 RCP 6.0_2020 3.9* 4.2* 5.2* 0.3* 0.3* 0.4* 4.7**** 4.5**** 4.1**** 

 RCP 6.0_2050 3.8* 4.1* 5.1* 0.3* 0.3* 0.3* 4.9**** 4.7**** 4.3**** 

 RCP 6.0_2080 3.3* 3.6* 4.5* 0.2* 0.2* 0.3* 5.7**** 5.5**** 5.0**** 

 RCP 8.5_2020 4.0* 4.3* 5.3* 0.3* 0.3* 0.4* 4.6**** 4.4**** 4.0**** 

 RCP 8.5_2050 3.5* 3.8* 4.7* 0.2* 0.3* 0.3* 5.4**** 5.2**** 4.7**** 

 RCP 8.5_2080 2.6* 2.9* 3.5* 0.2* 0.2* 0.2* 7.5**** 7.2**** 6.7**** 

           

Enugu Baseline 4.0* 3.9* 4.6** 0.3** 0.3** 0.3** 4.6**** 4.4**** 4.1**** 

 RCP 6.0_2020 3.4* 3.8* 4.3** 0.2** 0.3** 0.3** 5.2**** 4.8**** 4.4**** 

 RCP 6.0_2050 2.9* 3.2* 3.7** 0.2** 0.2** 0.3** 6.1**** 5.4**** 5.0**** 

 RCP 6.0_2080 2.6* 3.0* 3.3** 0.2** 0.2** 0.2** 7.2**** 6.1**** 5.6**** 

 RCP 8.5_2020 3.4* 3.7* 4.3** 0.2** 0.3** 0.3** 5.3**** 4.8**** 4.4**** 

 RCP 8.5_2050 2.7* 3.1* 3.4** 0.2** 0.2** 0.3** 6.7**** 5.8**** 5.4**** 

 RCP 8.5_2080 1.8* 2.1** 2.5** 0.1** 0.1** 0.2** 10.1**** 9.2**** 8.5**** 

 

Values with (* ), (**), (***) and (****) represents efficiency at  80 kg N, 160 kg N, 200 kg N, and 250 kg N per 
hectare. 
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Table 4.11: High net energy values calculated for each site under baseline, climate change 

scenarios and twelve farm management scenarios. CT – (Conventional tillage); RT – (Reduced 

tillage; NT – (No tillage) 

  
                         Net energy (NE) 

Location  Scenario CT RT NT 

 
 

Baseline 109,048.8*** 108,867.3*** 110,108.3*** 

Ibadan  RCP 6.0_2020 106,709.8** 106,208.1*** 107,291.8*** 

  RCP 6.0_2050 99,335.7** 98,046.0** 99,125.9** 

  RCP 6.0_2080 84,296.7** 83,119.7** 84,169.2** 

  RCP 8.5_2020 106,400.0** 105,489.3**** 106,580.9**** 

  RCP 8.5_2050 92,837.8** 91,420.8**** 92,402.7**** 

  RCP 8.5_2080 62,212.3** 60,957.1**** 62,041.3**** 
      

  Baseline 171,992.8**** 166,495.9**** 174,393.5**** 

Jos  RCP 6.0_2020 164,657.5**** 160,810.9**** 167,131.2**** 

  RCP 6.0_2050 154,448.4**** 149,108.2**** 157,172.9**** 

  RCP 6.0_2080 143,698.7**** 139,263.1**** 146,341.9**** 

  RCP 8.5_2020 164,416.4**** 160,556.0**** 166,862.2**** 

  RCP 8.5_2050 150,614.1**** 145,358.7**** 153,151.0**** 

  RCP 8.5_2080 131,466.8**** 127,711.8**** 133,928.3**** 
      

  Baseline 47,648.3*** 47,897.6*** 49,993.7*** 

Ilorin  RCP 6.0_2020 44,307.6**** 46,903.9*** 48,981.8*** 

  RCP 6.0_2050 41,734.5*** 44,266.7*** 46,271.2*** 

  RCP 6.0_2080 33,730.6** 36,070.4** 38,166.4** 

  RCP 8.5_2020 45,433.6**** 48,099.9*** 50,125.5*** 

  RCP 8.5_2050 36,930.6*** 39,125.1** 41,191.3** 

  RCP 8.5_2080 23,124.1** 24,514.7** 26,352.1** 

      

  Baseline 46,233.3**** 47,412.6**** 48,077.4**** 

Enugu  RCP 6.0_2020 37,796.1**** 42,461.2**** 43,466.0**** 

  RCP 6.0_2050 29,458.2**** 34,651.6**** 35,781.2*** 

  RCP 6.0_2080 22,856.2*** 29,450.6*** 30,782.7*** 

  RCP 8.5_2020 37,295.2**** 42,292.2**** 43,255.8**** 

  RCP 8.5_2050 25,268.02*** 31,615.3*** 32,829.5*** 

  RCP 8.5_2080 11,678.7** 14,904.3** 16,350.8** 

Values with (*), (**), (***) and (****) represents efficiency at 80 kg N, 160 kg N, 200 kg N, and 250 kg N per hectare 
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4.5.4 GHG emissions from fertiliser production and application  

Fertilisers are required to increase soil nutrients, and to improve crop growth and yield. 

During the process of fertiliser production and application, emission of greenhouse gases 

such as CO2, N2O and CH4 occur in the atmosphere and groundwater, causing varying 

degrees of environmental problems and inducing climate change. In this section, emissions 

of CO2 and N2O from fertiliser production and application were calculated. According to 

the IPCC Tier 1 guidelines, direct and indirect emissions of N2O from agricultural soils 

was first estimated, followed by the emission of CO2 from urea hydrolysis in the soil. 

4.5.4.1 CO2 emissions from fertiliser production 

Calculated CO2eq ha-1 emissions from fertiliser production (urea, phosphorus and 

potassium) varied as the application rate per hectare increased as shown in Figure. 4.26. 

Within the pre-farming category (production of input materials), urea production was the 

most CO2-intense process, followed by diesel production and maize seed production. 

Estimated emissions from urea production were 318 kg CO2eq ha-1, 635 kg CO2eq ha-1, 

794 kg CO2eq ha-1 and 993 kg CO2eq ha-1 in relation to fertiliser application rates of 80 kg 

N ha-1, 160 kg N ha-1, 200 kg N ha-1  and 250 kg N ha-1  respectively. Emissions from 

phosphorus (P2O5) and potassium (K2O) production were 22.9 kg CO2eq ha-1 and 22 kg 

CO2eq ha-1 based on the application rates of 40 kg ha-1 (Figure. 4.26). The average emission 

value of 684.8 kg CO2eq ha-1 contributed to the total GHG emissions by 23.4% for urea, 

and 1.0 % and 0.8 % for phosphorus (P2O5) and potassium oxide (K2O) respectively. 

Therefore, CO2 emissions from fertiliser production was calculated at 25.2% of the total 

GHG emissions (kg CO2eq ha-1).  
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Figure 4.26: Estimated emissions of CO2 from production of urea, phosphorus and potassium per 

hectare. 

4.5.4.2 N2O emissions from fertiliser application (direct and indirect emissions) 

Figure 4.27 shows a linear increase of the direct and indirect N2O soil emissions with 

increasing fertiliser rate. Direct N2Odirect (kg N2O–N ha -1) emissions results were 

equivalent to 599.4 kg CO2eq ha-1, 1,198.8 kg CO2eq ha-1, 1,498.5 kg CO2eq ha-1 and 

1,873.1 kg CO2eq ha-1 GHG emissions from fertiliser rates at 80 kg N ha-1, 160 kg N ha-1, 

200 kg N ha-1 and 250 kg N ha-1 respectively (Figure 4.28). The average contribution of 

direct N2O emission to the total N2O emission was 83% (1,292.5 kg CO2eq ha-1). Indirect 

soil N2O emissions from leaching and volatilisation from fertiliser application were found 

to be relatively small (average of 0.4 kg N2O–N ha -1 and 0.2 kg N2O–N ha -1). Leaching 

was the dominant source of indirect emissions with an average CO2 equivalents of 181.8 

kg CO2eq ha-1 (12%) compared to 80.8 kg CO2eq ha-1 (5%) for volatilisation. The total 

indirect N2O emissions (leaching + volatilisation) represented on average, 262.5 kg CO2eq 

ha -1 and the average contribution of indirect N2O emission to the total N2O emission was 

17%. The contribution of direct and indirect N2O emissions to the GHG emissions was 
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44.1% and 9.3% respectively, therefore bringing the total N2O emissions from fertiliser 

application to 53.4% of the total GHG emissions from maize production per hectare. 

 

Figure 4.27: Direct and indirect N2O emissions (kg N2O–N ha -1) 
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Figure 4.28: Direct and indirect GHG emissions (kg CO2eq ha-1) from soil for three fertiliser 

application rates (80, 160, 200, 250 kg N ha-1) for three tillage systems (Conventional tillage – CT; 

Reduced tillage – RT; No tillage – NT). 
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4.5.4.3 CO2 emissions from urea application 

The amount of CO2 emissions from urea application was estimated at 58.7 kg CO2eq ha -1, 

117.3 kg CO2eq ha -1, 146.7 kg CO2eq ha -1, and 183.4 kg CO2eq ha -1 as shown in Table 4.12 

for the four fertiliser application rates and three tillage methods. This represents the amount 

of CO2 released during soil hydrolysis. The contribution of CO2 emissions from urea 

application was 4.3% to the total GHG emissions. 

4.5.4.4 CO2 emissions from diesel fuel production and combustion 

CO2 emissions resulting from diesel production, transport and combustion per litre of diesel 

fuel were estimated using the relevant emission factor. As shown in Table 4.13, total diesel 

consumption of 67.2 l ha-1, 59.2 l ha-1 and 32.9 l ha-1 for each tillage process produced CO2 

emissions of 216.4 kg CO2eq ha-1, 190.6 kg CO2eq ha-1 and 105.9 kg CO2eq ha-1 

respectively. The result indicates that NT emitted 110.5 kg and 84.7 kg less CO2 emissions 

per hectare from diesel than those emitted under CT and RT and the differential was due 

to the difference in the quantity of diesel consumed. The highest emitter of CO2 emission 

under the CT method was the mouldboard ploughing process (78.9 kg CO2eq ha-1). 

Particularly, harvesting operations required a higher volume of diesel that significantly 

affected CO2 emissions regardless of the tillage method. For instance, at the rate of 23.2 l 

ha-1 of diesel fuel, the equivalent CO2 emission during harvesting was 35%, 39% and 71% 

for CT RT and NT respectively. Chisel ploughing in RT consumed less diesel fuel (16.5 l 

ha-1) compared to mouldboard ploughing (24.5 l ha-1), thereby contributing about 28% to 

GHG emissions from diesel fuel according to Table 4.13. 
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Across all tillage systems, the average GHG emissions from diesel fuel production, 

transport and combustion were 171.0 kg CO2eq ha-1, which shows the second most 

emission-intense process under input production (5.8%) after urea according to Table 4.14 

(input production). The NT system produced less GHG emissions because of saving fuel 

by avoiding any form of soil disturbance. The direct drilling method under the NT system 

consumed more fuel and emitted more GHG (21%) compared to the conventional drilling 

method used in CT and RT (3-4 %). In addition, for NT, more herbicides were required 

(two spray passes), thereby using more fuel and contributing more (5 %) to the GHG 

emissions compared to the other two systems.   
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Table 4.12: N2O and CO2 emissions from fertiliser application (direct and indirect emissions) 

 Conventional tillage Reduced  tillage No tillage 

 80 kg 
N ha-1 

160kg  
N ha-1 

200kg  
N ha-1 

250kg  
N ha-1 

80 kg  
N ha-1 

160kg 
N ha-1 

200kg 
N ha-1 

250kg 
N ha-1 

80 kg 
N ha-1 

160kg 
N ha-1 

200kg 
N ha-1 

250kg 
N ha-1 

 
 

 

1.3 2.6 3.2 4.0 1.3 2.6 3.2 4.0 1.3 2.6 3.2 4.0 

 
 

 

0.1 0.2 0.2 0.3 0.1 0.2 0.2 0.3 0.1 0.2 0.2 0.3 

 
 

 

0.2 0.4 0.5 0.6 0.2 0.4 0.5 0.6 0.2 0.4 0.5 0.6 

 
 

 

599.4 1,198.8 1,498.5 1,873.1 599.4 1,198.8 1,498.5 1,873.1 599.4 1,198.8 1,498.5 1,873.1 

 

 

 

121.8 243.5 304.4 380.5 121.8 243.5 304.4 380.5 121.8 243.5 304.4 380.5 

 

 

 

721.2 1,442.3 1,802.9 2,299.3 721.2 1,442.3 1,802.9 2,299.3 721.2 1,442.3 1,802.9 2,299.3 

CO2 emission (kg CO2 eq ha-1) 58.7 117.3 146.7 183.4 58.7 117.3 146.7 183.4 58.7 117.3 146.7 183.4 
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Table 4.13: GHG emissions from diesel fuel production and combustion used for various field operations and tillage systems for maize 

production. 
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4.5.4.5 CO2 emissions from Machinery usage 

Table 4.14 shows the estimated average GHG emissions from farm machinery use (field 

operation), based on emission factors for various farm operations, data for working time (h 

ha-1) and fuel consumed for each operation. Across all treatments, GHG emissions 

associated with field operations in maize cultivation accounted for 4.4% of the total 

emissions (129.6 kg CO2eq ha-1). Regardless of the fertiliser application rate, it was clear 

that soil tillage activity (CT and RT) influenced emissions the most. For all field operations, 

the total emissions of 209.7 kg CO2eq ha-1, 131.0 kg CO2eq ha-1, and 48.2 kg CO2eq ha-1 

were credited to CT, RT and NT. Maraseni et al. (2010) calculated total GHG emissions 

of CO2e (kg ha-1) from use of machinery in maize cropping per annum as 46.72 kg CO2eq 

ha-1, but their result included weight of machine and fraction of lifespan not considered in 

this study. 

Figure 4.29 shows the percent contribution of each field operation to the total GHG 

emissions. On average, carbon emissions for mouldboard ploughing were 132.6 kg CO2eq 

ha-1, having the highest average share of 1.5% for field operations. Chiselling emissions 

were 53.9 kg CO2eq ha-1, contributing less (0.6%) compared to harvesting, which emitted 

an average of 36.4 kg CO2eq ha-1 and contributed 1.2%. Stubble cultivation was 18.8 kg 

CO2eq ha-1 (0.4%) and the lowest carbon-intensive processes were fertilisation and 

chemical spraying, with both contributing average GHG emissions of 0.1%. Between the 

three tillage systems, the differences in emissions were mainly due to the number of field 

operations carried out. CT and RT had seven field operations undertaken hence higher 

emission values compared to NT, which had only four operations. The exclusion of tillage 
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and soil cultivation operations in the NT system reduced emissions from field operations 

by a higher percentage (77% and 63% in CT and RT, respectively) and reduced total 

emissions by 6%.  

Fertiliser application was split applied within the farm management option in DSSAT-

CSM, with 50% during planting and 50% two weeks after planting. Therefore, fertilisation 

calculation was based on two passes hence, the amount of GHG emissions calculated from 

fertilisation doubled to 0.8 kg CO2eq ha-1 on average for all tillage methods. Herbicides 

were assumed to be sprayed once for CT and RT and twice for NT, which increased CO2 

emissions to 2.5 kg CO2eq ha-1 for NT, compared to 0.9 kg CO2eq ha-1 for CT and RT. The 

conventional drilling method used in the CT and RT systems emitted less (6.1 kg CO2eq 

ha-1) compared to the direct drilling (8.5 kg CO2eq ha-1) used in the NT system.              

 

 

Figure 4.29: Pie chart displaying percentage contribution of various field operations to the total 

GHG emissions. Fertilisation** - two passes; Spraying (Boom sprayer) *** - herbicide spraying 

was done twice for NT system. 
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Table 4.14: Calculated GHG emissions from the production of farm inputs and emissions from various field tillage operations. Table includes the 

percentage contribution to the total GHG emissions for different management systems. 
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4.5.4.6 CO2 emissions from Herbicides, Pesticides and Maize seeds 

Emissions of CO2 from herbicides (2kg ha-1), pesticides (2kg ha-1) and maize seed 

production (20kg ha-1) were 61.6 kg CO2eq ha-1, 50.2 kg CO2eq ha-1 and 90 kg CO2eq ha-

1 respectively. As shown in Figure 4.30, these inputs contributed on average small emission 

amounts (2.1%, 1.7% and 3.1%) to the total GHG emissions, compared to other parameters 

such as diesel and urea. The average amount of CO2 emissions for maize seed production 

reported by Wang et al. (2015) was 111.8 kg CO2eq ha-1 from 25 kg, which makes a 0.5% 

contribution. When the CO2 emissions were compared for the three crop management 

practices, a higher emission value of 92.4 kg CO2eq ha-1 for herbicide production was 

estimated in the NT treatment system. This was due to applying double the amount of 

herbicide (4 kg ha-1) for weed control, as the NT system required less mechanical agitation 

of the soil compared to the CT and RT systems (2kg ha-1). Therefore, CO2 emissions from 

herbicides, pesticides and maize seed production was 6.9% of the total GHG emissions (kg 

CO2eq ha-1).  

 

 

 

 

 

 

 Figure 4.30: Percentage contribution of various inputs to the total GHG emissions. 
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4.5.4.7 Total GHG Emissions per hectare of maize production  

This section presents the estimated total GHG emissions for each proposed farm 

management scenario. Overall average GHG emissions were 2,931.4 kg CO2eq ha-1 which 

varied across all twelve management scenarios, within the range of 1,535.4 kg CO2eq ha-1 

to 4138.8 kg CO2eq ha-1. Each tillage system produced an average of 3,041.4 kg CO2eq ha-

1, 2,937.0 kg CO2eq ha-1, and 2,815.7 kg CO2eq ha-1 respectively for CT, RT and NT tillage 

scenarios. As shown in Figure 4.31, CT produced the highest net emissions under the high 

fertiliser input system, while the lowest emissions came from the NT under the low 

fertiliser input system. From Figure 4.32, results show that soil emissions (NO2 and CO2) 

represent the largest proportion of emissions (57.8%) based on the fertiliser input rate. This 

is followed by farm input production (37.8%). Under this category, urea production was 

responsible for 684.8 kg CO2eq ha-1 (23.4%), followed by diesel production (5.8%). For 

on-farm soil emission, direct N2O emission was responsible for the highest contribution to 

the total GHG emission (44.1%), while indirect N2O emissions produced through leaching 

and volatilisation contributed only 9.3%. In addition to this, CO2 emission from urea 

application contributed 4.3%. During field operations, the effect of tillage type on total 

GHG emission varied. The CT scenario produced an average of 209.7 kg CO2eq ha-1 

followed by RT with 131.0 kg CO2eq ha-1 and NT producing GHG emission savings of 

48.2 kg CO2eq ha-1. Although the calculated emissions from diesel production accounted 

for 5.8% under the input production category, its use in farm machinery accounted for 4.4% 

thereby producing a net contribution of 10.2% towards the total GHG emissions. 
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Conventional tillage 1,761.1 2,858.5 3,407.2 4,138.8

Reduced  tillage 1,656.6 2,754.1 3,302.8 4,034.4

No tillage 1,535.4 2,632.8 3,181.5 3,913.2
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Figure 4.31: Total GHGs emission summary for the twelve farm management scenarios. 

Figure 4.32: Proportions of different inputs to the total GHG emissions. 
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4.5.4.8 Carbon footprint per yield of maize production 

Maize grain yield (kg ha-1) is the functional unit used to express carbon footprint (CF). The 

results varied considerably among sites and climate scenarios due to yield value, input 

quantities, farm management options, and associated GHG emissions per unit area. The 

range of CF recorded was 0.271 kg CO2eq kg-1 to 0.344 kg CO2eq kg-1 for Jos, 0.357 kg 

CO2eq kg-1 to 0.601 kg CO2eq kg-1 for Ibadan; 0.672 kg CO2eq kg-1 to 1.231 kg CO2eq kg-1 

for Ilorin and Enugu had the highest range values between 0.718 kg CO2eq kg-1 to 1.729 kg 

CO2eq kg-1. 

For all study sites, with the exception of Ibadan, the lowest carbon footprint was obtained 

using 80 kg N ha-1 fertiliser for all climate scenarios including baseline as shown in Figures 

4.33 to 4.34. For Ibadan, the fertiliser rate with the lowest CF was 160 kg N ha-1. With 

regards to tillage, the lowest emission intensity was found using the NT method, with an 

average carbon intensity of 0.287 kg CO2eq kg-1 for Jos, 0.923 kg CO2eq kg-1 for Enugu and 

1.073 kg CO2eq kg-1 for Ilorin.  

The high CF obtained in Enugu and Ilorin under CT and RT systems, are a testament to the 

projected decline in future yield under the two studied RCP climate scenarios. Higher N 

fertiliser rate for example 250 kg N ha-1 caused higher GHG emissions and therefore, a 

higher impact per kg of maize grain was observed for all sites. Further examples show that 

for instance, at 250 kg N ha-1 rate, a high CF of 1.426 kg CO2eq kg-1 and 2.012 kg CO2eq 

kg-1 was recorded at Enugu under RCP 6.0 and 8.5 for the 2080 scenario year compared to 

baseline CF of 0.908 kg CO2eq kg-1.
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Figure 4.33 Carbon footprint (kg CO2eq kg-1 yield) of maize grain production under baseline and two RCP climate scenarios: Jos (a) RCP 6.0 and 

(b) RCP 8.5; Ibadan (c) RCP 6.0 and (d) RCP 8.5. 
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Figure 4.34; Carbon footprint (kg CO2eq kg-1 yield) of maize grain production under baseline and two RCP climate scenarios: Enugu (a) RCP 6.0 

and (b) RCP 8.5; Ilorin (c) RCP 6.0 and (d) RCP 8.5. 
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4.6 Regression model analysis 

This section describes multiple and simple linear regression models developed using results 

obtained in previous sections for grain yield, net energy, GHG and carbon footprint. The 

models tested the effects of multiple variables on yield and LCA responses as well as the 

interrelationships between the variables. For each location, the regression models were 

developed using three predictor variables: climate change, tillage and fertiliser. The dataset 

used to ‘train’ the models for all response variables was yield data (from climate-crop model 

simulation experiment), estimated net energy data, and life cycle impact assessment data (for 

GHG and CF). 

 

4.6.1 Design of experiment 

Table 4.15 and 4.16 shows the coded format created for the factorial combination between 

factors and responses. Table 4.17 gives an overview of 72 possible data combination generated 

for each site and imported to MATLAB. 

Table 4.15: Generated codes used to create the experiment design. 

Factors and Levels Code 

  

Climate  Ai 

RCP 6.0_2020 1 

RCP 6.0_2050 2 

RCP 6.0_2080 3 

RCP 8.5_2020 4 

RCP 8.5_2050 5 

RCP 8.5_2080 6   
Tillage Bi 

CT 1 

RT 2 

NT 3 
  

Fertiliser (kg ha-1) Ci 

80 1 

160 2 

200 3 

250 4 



180 

 

 

Table 4.16: Database created in Minitab showing design matrix for the statistical analysis. 

 

 

                 Factors      Response 

 Experiment 

no 

Climate 

(i1) 

Tillage 

(i2) 

Fertilizer 

(i3) 

Yield 

(kg ha-1) 

NE 

(MJ ha-1) 
GHG 

(kg CO2eq kg-1) 
CF 

(kg CO2eq ha-1) 

Level 

1 Ai(1) x x 5,949 164,657.5 1,761 0.296 

2 Ai(2) x x 5,806 154,448.4 1,761 0.303 

3 Ai(3) x x 5,667 143,698.7 1,761 0.311 

4 Ai(4) x x 5,976 164,416.4 1,761 0.295 

5 Ai(5) x x 5,767 150,614.1 1,761 0.305 

6 Ai(6) x x 5,294 131,466.8 1,761 0.333 
         

Level 

7 x Bi(2) x 5,949 164,657.5 1,761 0.296 

8 x Bi(2) x 5,859 160,810.9 1,657 0.283 

9 x Bi(2) x 6,013 167,131.2 1,535 0.255 
         

Level 

10 x x Ci(3) 5,949 76,990.91 1,761 0.296 

11 x x Ci(3) 10,651 141,940.23 2,859 0.268 

12 x x Ci(3) 11,630 153,216.38 3,407 0.293 

13 x x Ci(3) 12,614 164,657.50 4,139 0.328 

Table 4.17: An extract of the experimental design exported to MATLAB software for training the models. 
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4.7 Jos location 

4.7.1 Multiple regression analysis 

 

Table 4.18: Estimated coefficients of the multiple regression for Jos. 

Responses Climate Change Tillage Fertiliser  Intercept RMSE R2 

Yield -420.4** 17.541 2138.8**  5726.6** 1105.30 0.7939 

GHG 1.37 x 10-13 -112.85** 768.2**  1236.6** 125.79 0.9795 

CF 0.0064** -0.0133** 0.0197**  0.2521** 125.79 0.6307 

Net Energy -3071.5** 1294.4 24597.2**  75466.3** 15862 0.7597 

 **Significant at 5% level 

 

Table 4.18 shows the estimated coefficients of the multiple regression model describing the 

magnitude of the effect each factor has on model responses. This is important because positive 

or negative coefficients determine direction of the effect. A positive coefficient implies an 

increase in the dependent variable based on a per unit increase of the independent variable, 

while a negative coefficient implies a decrease in the dependent variable per unit increase of 

the independent variable. As shown from the results, all of the derived coefficients are 

statistically significant at 5% confidence level except the coefficient of climate change for 

GHG and coefficient of tillage for NE.  

The intercept represents the predicted response value a dependent can have when all the 

independent variables are equal to zero. The RMSE is an absolute measure of fit and estimates 
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the standard deviation of the random component of the data (smaller RMSE means better model 

performance). R2 is the coefficient of determination and represents how much variance of the 

data the model explains (relative measure of fit). If the value is close to 1, this shows a close 

correlation between the modelling and the data. 

The next section presents the constant terms of the independent variables expressed as 

equations to predict the effect on each model response (equations 1 to 4). 

 

𝑌𝑖𝑒𝑙𝑑 =  −420.4 × 𝑋1  +  17.541 ×  𝑋2  +  2138.8 × 𝑋3  + 5726.6         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

 

 

 

The model coefficient for fertiliser (𝑋3) is positive and predicts that maize grain yield will 

increase by 2,138.8 kg ha-1 following a unit increase of fertiliser (equation 1). The coefficient 

for climate change is negative(𝑋1), depicting a negative effect on yield.  

The model predicts that fertiliser had more effect (83%) on yield, followed by climate change 

scenarios (16.3%) with tillage only having an effect of 0.7% which is essentially statistically 

insignificant (p value > 0.05). The amount of variance (R2) explained by the model is 0.7939 

which means that all three independent variables explained 79% of the variations in yield. This 

suggests that other factors not considered could account for the remaining 21% of the variation 

in yield. 

RMSE 1.11 x 103 

R2 0.7939 

Effects (%) 

Climate Change      𝑋1 16.3% 

Tillage                    𝑋2 0.7% 

Fertiliser                𝑋3 83% 
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𝐺𝐻𝐺 =  1.37 × 10−13 × 𝑋1  + (−112.85) ×  𝑋2  +  768.2 × 𝑋3  + 1236.6  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

 

  

RMSE 125.79 

R2 0.9795 

Effects (%) 

Climate Change      𝑋1 0% 

Tillage                    𝑋2 9.7% 

Fertiliser                𝑋3 90.3% 

Equation 2 shows that the fertiliser effect was positive and will increase GHG for the linear 

terms. In addition, the estimated negative coefficients for tillage (𝑋2) will decrease GHG 

emissions by 112.85 kg CO2eq ha-1.  The climate change impact coefficient (𝑋1) is also positive 

but not statistically significant at p<0.05 level. Fertiliser mostly affected GHG emissions as 

deduced from the model (90.3%), and climate change had no statistically significant effect on 

GHG. The coefficient determination (R2) of 0.9795 shows that the independent variables 

collectively explain the variation in GHG of more than 97%.  

𝐶𝐹 =  0.0064 × 𝑋1  + (−0.0133) × 𝑋2  +  0.0197 ×  𝑋3  + 0.2521  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

RMSE 125.79 

R2 0.6307 

Effects (%) 

Climate Change      𝑋1 28.2% 

Tillage                    𝑋2 23.8% 

Fertiliser                𝑋3 48% 
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According to the linear terms expressed in equation 3, tillage has a negative coefficient and 

therefore CF will decrease by 0.0133 kg CO2eq kg-1 grain per unit of tillage increase. The 

positive coefficients for fertiliser (𝑋3) and climate change (𝑋1) indicate CF will increase by 

0.0197 and 0.0064 kg CO2eq kg-1 grain (relative to the range of the response variables), for 

every unit increase of model predictors. The model predicts that fertiliser has the highest effect 

(48%) on CF followed by climate change and tillage as per equation 3. The R2 of 0.6307 and a 

large RMSE value of 125.79 suggest a relationship between the dependent and independent 

variables but the linear model explained only 63% of the variance in CF. The remaining 36.9% 

of the variations in CF can be attributed to other unexplained factors not included in the 

analysis. Further data collection would be required to establish exactly what those determiners 

could be.  

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −3071.5 ×  𝑋1  + 1294 × 𝑋2 + 24597.2 × 𝑋3 + 75466.3  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

RMSE 1.59 x 104 

R2 0.7597 

Effects (%) 

Climate Change      𝑋1 17.7% 

Tillage                    𝑋2 3.1% 

Fertiliser                𝑋3 79.2% 

 

Equation 4 shows the estimated model coefficient for fertiliser (𝑋3) and tillage (𝑋2) were 

positive. Per unit increase of fertiliser, NE will increase by 24,597 MJ ha-1 and 1,294 MJ ha-1 

respectively. This model also predicts a decrease in NE by 3,071.5 MJ ha-1 following a unit 
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increase of climate change. Fertiliser had the most effect on NE (79.2%) Fertiliser and tillage 

have a modest effect of 31.5% and 17.2% respectively according to equation 4. Using the R2 

of 0.7597, the model explains about 76% of the variance in NE.  

4.7.2 Simple linear regression analysis 

The previous section has shown the predicted effect of factors on model responses using 

multiple linear regression. In order to assess the linearity of the relationship between the 

dominant predictor and model responses, a simple linear regression analysis was subsequently 

conducted. Table 4.19 outlines the coefficients obtained for the simple linear regression, and 

the main effects are positive and statistically significant. The model results indicate that 

fertiliser accounts for high variation in yield, GHG, CF and NE. Equation 5 to equation 8 

outline the linear models, whilst a scatter plot shows the regression line of the linear model 

(shown in Figure 4.35). A straight positive regression line shows that a positive relationship 

exists and a falling regression line denotes a negative relationship. 

Table 4.19: Estimated coefficients of the simple linear regression for Jos 

Responses Fertiliser  Intercept RMSE R2 

Yield 1901.59**  4933.5** 1170.96 0.7687 

GHG 768.2**  1010.9** 155.35 0.9687 

CF  0.0197**  0.2513** 0.0269 0.3977 

NE  24597.19**  65768.96** 168889.9 0.7276 

      **Significant at 5% level 
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𝑌𝑖𝑒𝑙𝑑 = 1901.6 ×  𝑋3   + 4.933 × 103                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

𝐺𝐻𝐺 = 768.20 ×  𝑋3   + 1.01 ×  103                                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

 

𝐶𝐹 = 0.0197 × 𝑋3   + 0.2513                                                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7) 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = 2.459 ×  104 × 𝑋3   + 6.577 ×  104                    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8) 

From equation 5, the model reveals that a linear relationship exists between fertiliser and yield. 

Therefore, for every unit increase of fertiliser input, yield increases by 1,901.59 kg ha-1 and 

based on the R2 value (0.7687), fertiliser explains 77% of the variance in yield. GHG also 

responds positively to fertiliser, increasing by 768.2 kg CO2eq ha-1 per unit increase of fertiliser 

(equation 6). A high R2 (0.9687) indicate fertiliser explains the variation in GHG by more than 

97%. CF and NE will also increase by their positive terms per unit of fertiliser increase 

(equation 7 and 8). For NE, the coefficient of determination (R2 = 0.7276) shows that fertiliser 

explains approximately 73% of the variation but only about 40% of the variance in CF could 

be explained from fertiliser input in this study. 

According to the regression trend line in Figure 4.35, all model responses show a positive 

response to fertiliser input which confirms linearity of the regression model. 
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Figure 4.35: Relationship evaluation between input (fertiliser rate) and response variables (yield GHG 

emissions, carbon footprint and Net energy). 
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4.8 Ibadan location 

4.8.1 Multiple linear regression analysis 

Table 4.20: Estimated coefficients of the Regression Analysis for Ibadan 

Responses Climate Change Tillage Fertiliser  Intercept RMSE R2 

Yield -715.52 ** -56.29 761.29**  6778.9** 905.54 0.565 

GHG 1.81 x 10-13 -112.85** 768.2**  1236.6** 125.79 0.9795 

CF 0.0260** -0.0127 0.0780**  0.1521** 125.79 0.7569 

Net Energy -5528.1** -627.82 6112.8**  94942.0** 12949.0 0.4963 

 **Significant at 5% level 

 

Table 4.20 shows the estimated coefficients for Ibadan. Fertiliser coefficients are positive and 

statistically significant (p<0.05). The climate change coefficient is negative for GHG and the 

coefficient is not significant. The derived coefficients for tillage are negative and not significant 

for yield, CF and NE, but significant for GHG. Equations 9 to 12 show the multiple linear 

model based on three independent predictors. 

 

 

 

 

 

 

𝑌𝑖𝑒𝑙𝑑 =  −715.52 ×  𝑋1  +  −56.29 × 𝑋2  +  761.29 × 𝑋3  + 6778.9         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9) 

RMSE 905.54 

R2 0.565 

Effects (%) 

Climate Change      𝑋1 46.7% 

Tillage                    𝑋2 3.7% 

Fertiliser                𝑋3 49.7% 
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Based on the negative coefficient value generated by the model (equation 9), climate change 

scenarios (𝑋1) and tillage (𝑋2) negatively affected yield with the exception of fertiliser (𝑋3). 

The variable that has more effect on yield is fertiliser (49.7%) but nevertheless, climate change 

has a considerable share of effect (46.7%) as compared to fertiliser. From the model coefficient, 

yield will increase by 761.29 kg ha-1 per unit increase of fertiliser input; furthermore, yield will 

decrease by 715.52 kg ha-1 per unit change in climate change. The effect of tillage is not 

statistically significant as it remained at the 0.05 significant level. The model explains 

approximately 56% of the variation in yield; therefore, approximately 44% of yield variance is 

unexplained.   

𝐺𝐻𝐺 = 1.81 × 10−13 × 𝑋1 + (−112.85) × 𝑋2 + 768.2 ×  𝑋3  + 1236.6   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10) 

 

RMSE 125.79 

R2 0.9795 

Effects (%) 

Climate Change      𝑋1 0% 

Tillage                    𝑋2 9.7% 

Fertiliser                𝑋3 90.3% 

 

The coefficient value obtained for climate change (𝑋1) is very low and not statistically 

significant (equation 10). The fertiliser effect (𝑋3) is positive indicating an increase in GHG 

emission per unit increase of fertiliser. On the contrary, the tillage coefficient value (𝑋2) is 

negative and statistically significant. This is because GHG emissions will decrease based on 

an increase in tillage. It is possible to interpret the model results to mean that by reducing soil 

tillage intensity, GHG emissions will reduce. To exemplify, GHG emissions are mostly 
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affected by fertiliser input (90.3%) and climate change has no effect as earlier stated. The model 

explains approximately 98% of the variation in GHG. 

𝐶𝐹 =  0.0260 × 𝑋1  + (−0.0127) × 𝑋2  +  0.0780 ×  𝑋3  + 0.1521  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11) 

RMSE 125.79 

R2 0.7569 

Effects (%) 

Climate Change      𝑋1 34.8% 

Tillage                    𝑋2 7% 

Fertiliser                𝑋3 58.3% 

From equation 11, climate change (𝑋1) and fertiliser (𝑋3) both have positive coefficients and 

the values are statistically significant. Results indicate an increase in CF by 0.0780 kg CO2eq 

kg-1 grain for an increase in fertiliser unit and 0.0260 Kg CO2eq kg-1 grain for a unit change in 

climate scenarios. The tillage coefficient (𝑋2) is negative, indicating that a decrease in tillage 

intensity will decrease CF, and this effect is not statistically significant as shown in Table 4.6. 

The fertiliser effect on CF is dominant (58.3%) when compared with climate change having a 

moderate effect (34.8%). The model explains 75% of the variation in CF, therefore 25% 

variation can be attributed to other factors not considered in this analysis. 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −5528.1 × 𝑋1  + −627.8 ×  𝑋2  +  6112.8 × 𝑋3  + 94942  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12) 

 

 



191 

 

 

 

 

 

Equation 12 is the regression model for NE, and the climate change coefficient (𝑋1) is large 

compared with the other two independent variables. Due to this, the effect on NE is negative. 

This means that climate change variability will negatively affect NE by 5528.1 MJ ha-1 per unit 

change. Fertiliser coefficient (𝑋3) is positive, increasing NE by 6112.8 761.29 kg ha-1 per unit 

increase in fertiliser. Tillage has a negative coefficient value that is not statistically significant. 

Climate change has a 60% effect on NE compared with fertiliser effect of 37%. The model was 

able to explain only 49% of the variation in NE. This means that other factors could account 

for 51% of NE variance.    

4.8.2 Simple linear regression analysis 

Table 4.21 shows the coefficients derived for each dominant variable predicted from the 

multiple linear regression analysis. Fertiliser was the dominant predictor in the yield, GHG and 

CF models, while climate change was the dominant predictor in the NE model.  

A scatter plot in Figure 4.36 visually represents the linearity of the models expressed in 

equations 13 to 17 below. 

RMSE 1.29 x 104 

R2 0.4963 

Effects (%) 

Climate Change      𝑋1 60.1% 

Tillage                    𝑋2 2.8% 

Fertiliser                𝑋3 37.1% 
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Table 4.21: Estimated coefficients of the simple linear regression for Ibadan 

 Responses  Climate Change Fertiliser  Intercept RMSE R2 

Yield   679.85**  5219.4** 1149.53 0.299 

GHG   768.2**  1010.9** 155.35 0.9687 

CF    0.0781**  0.2307** 0.0785 0.5532 

NE  (RCP 6.0) -5325.11   107821.8** 12936.0 0.081 

 (RCP 8.5) 4054.6   66167.6** 13578.0 0.0315 

                                                                            **Significant at 5% level 

 

𝑌𝑖𝑒𝑙𝑑 = 676.9 × 𝑋3   + 5.22 × 103                                               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 13) 

 

𝐺𝐻𝐺 = 768.2 × 𝑋3   + 1.01 × 103                                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 14) 

 

𝐶𝐹 = 0.0780 × 𝑋3   + 0.2307                                                    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 15) 

 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −5325.1 ×  𝑋1   + 1.0782 × 105  (RCP 6.0 scenario)     (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 16) 

 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = 4054.6 ×  𝑋1   + 6.6168 ×  104 (RCP 8.5 scenario)      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 17) 

Positive coefficient values were obtained for fertiliser in the regressed models for yield, GHG 

and CF (equation 13 to 15). According to model coefficients, yield increases by 676.9 kg ha-1, 

GHG increases by 768.2 kg CO2eq ha-1 and CF increase by 0.0780 kg CO2eq kg-1 grain 

respectively per unit increase of fertiliser. The model R2 value for yield was 0.299, which 

suggest that fertiliser only accounts for about 30% of variation in yield. Therefore, 70% of the 
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disparity or changes observed were due to other factors. The model for GHG shows that 97% 

of the variation was due to fertiliser and fertiliser explains 55% variation in CF.  

From equations 16 and 17, it can be interpreted that climate change scenarios have opposite 

relationship with NE. For example, the coefficient for RCP 6.0 climate scenario denotes a 

negative relationship moving from the years 2020 to 2080 whilst RCP 8.5 scenario has a 

positive coefficient. This implies that NE will decrease by 5325.1 MJ ha-1 per change in a 

climate scenario timeline (under RCP 6.0). It also implies that NE will increase by 4054.6 MJ 

ha-1 per change in a RCP 8.5 climate scenario timeline. From Table 4.21, the coefficient of 

determination of R2 = 0.081 for RCP 6.0 and R2 = 0.0315 for RCP 8.5 means that approximately 

92% and 97% of the variance cannot be explained by the model. This type of result could 

indicate a limitation in that other important variables influencing the results are missing from 

the model. 

Figure 4.36 is a graphical representation of the linear model showing how yield, GHG and CF 

vary with different fertiliser input rates. This further confirms that a linear relationship exists 

between fertiliser and the variables. The linear slopes for NE show a negative correlation 

between climate change timelines (2020, 2050 and 2080) under RCP 6.0 and a positive 

correlation between the timeline for RCP 8.5 scenarios.  
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Figure 4.36: Relationship evaluation between input (fertiliser rate, climate change scenarios) and response 

variables (yield GHG emissions, carbon footprint and Net energy) for Ibadan. 



195 

 

4.9 Enugu location 

4.9.1 Multiple linear regression analysis 

Table 4.22: Estimated coefficients of the multiple linear regression for Enugu 

Responses Climate Change Tillage Fertiliser  Intercept RMSE R2 

Yield -492.73** 109.79** 558.45**  2513.9** 490.53 0.6987 

GHG 1.81 x 10-13 -112.85** 768.2**  1236.6** 125.79 0.9795 

CF 0.0955** -0.0952** 0.1084**  0.5354** 125.79 0.6389 

Net Energy -3600.0** 2945.2** 3942.5**  28240** 6924.3 0.6139 

 **Significant at 5% level 

 

Table 4.22 shows the estimated coefficients of the multiple regression model describing the 

magnitude of the effect each factor has on model responses. Positive or negative coefficients 

determine direction of the effect. A positive coefficient implies an increase in the dependent 

variable based on a per unit increase of the independent variable, whilst a negative coefficient 

implies a decrease in the dependent variable per unit increase of the independent variable. As 

shown from the results, all the derived coefficients are statistically significant at 5% confidence 

levels except climate change. The intercept represents the predicted response value a dependent 

can have when all the independent variables are equal to zero. The RMSE estimates the 

standard deviation of the random component of the data and R2 is the coefficient of 

determination and represents how much variance of the data the model explains. Using the 

constant terms of the independent variables shown in Table 4.22, equations 18 to 21 express 
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the multiple linear regression to predict the effects of each independent variable on the model 

response.  

 

 

 

 

 

 

 

Equation 18 predicts that an increase in fertiliser and tillage will result in an increase in maize 

grain yield. Note that the coefficient associated with the climate change is negative. This 

reflects that a change in future climate scenario will decrease the value of maize yield by 492.73 

kg ha-1. Per unit increase of fertiliser and a change in tillage system, will increase yield by 

558.45 and 109.79 kg ha-1 respectively. The model predicts that fertiliser had more effect 

(48.1%) on yield followed by climate change scenarios (42.4%) with a modest effect of 9.5% 

from tillage.  

The results gave a coefficient of multiple determination (R2) of 0.6987, computed to be 69.9%. 

This means that the three independent variables can jointly explain 69.9% of the variations in 

maize yield. The remaining 30.1% of the variations in the yield can be attributed to other 

unexplained factors not accounted for in the analysis.  

𝑌𝑖𝑒𝑙𝑑 =  −492.73 × 𝑋1  +  109.79 ×  𝑋2  +  558.45 ×  𝑋3  + 2513.9       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18) 

RMSE 490.53 

R2 0.6987 

Effects (%) 

Climate Change      𝑋1 42.4% 

Tillage                    𝑋2 9.5% 

Fertiliser                𝑋3 48.1% 
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𝐺𝐻𝐺 = 1.81 × 10−13 × 𝑋1 + (−112.85) × 𝑋2 + 768.2 ×  𝑋3 + 1236.6   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 19) 

RMSE 125.79 

R2 0.9795 

Effects (%) 

Climate Change      𝑋1 0% 

Tillage                    𝑋2 9.7% 

Fertiliser                𝑋3 90.3% 

 

Equation 19 shows that an increase in fertiliser will increase GHG emissions by 768.2 kg 

CO2eq ha-1, whereas a unit change in tillage system will decrease GHG emissions by 112.85 

kg CO2eq ha-1. Although the coefficients associated with climate change scenarios are positive, 

the changes are not statistically significant at p<0.05 level. From model prediction, fertiliser 

have the highest effect on GHG emissions (90.3%), followed by tillage methods (9.7%), while 

climate change scenarios have no effect on GHG emissions.  The R2 of 0.9795 shows that the 

independent variables collectively explain the variation in GHG by more than 97%. 

𝐶𝐹 =  0.0955 × 𝑋1  + (−0.0952) × 𝑋2  +  0.1084 ×  𝑋3  + 0.5354    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 20) 

 

 

 

RMSE 125.79 

R2 0.6389 

Effects (%) 

Climate Change      𝑋1 49% 

Tillage                    𝑋2 20% 

Fertiliser                𝑋3 31% 
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Similarly, equation 20 shows that an increase in fertiliser and climate change scenario will 

increase the carbon footprint of maize by 0.1084 kg CO2eq kg-1 grain, whilst a change in tillage 

system will decrease CF by 0.0952 kg CO2eq kg-1 grain. In contrast to prior model predictions, 

climate change scenarios affected CF the most (49%) followed by fertiliser input (31%) and 

tillage (20%). The R2 value of 0.6389 means that 63.9% of the variance in CF was due to the 

combined impact of climate change, tillage and fertiliser input. 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −3600.0 ×  𝑋1 + 2945.2 × 𝑋2 + 3942.5 ×  𝑋3 + 28240  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 21) 

RMSE 6.924 x 103 

R2 0.6139 

Effects (%) 

Climate Change      𝑋1 51.4% 

Tillage                    𝑋2 17.2% 

Fertiliser                𝑋3 31.5% 

 

Equation 21 shows the estimated model coefficient for fertiliser and tillage were positive but 

climate change had a negative coefficient. This means that a unit increase in climate change 

will decrease NE by 3,600MJ. Similar to CF, the model predicts that climate change scenarios 

had the most effect on NE (51.4%). Fertiliser and tillage have a modest effect of 31.5% and 

17.2% respectively according to equation 21. Using the R2 of 0.7549, the model explains about 

75.5% of the variance in NE. 
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4.9.2 Simple linear regression analysis 

Table 4.23 displays the coefficients of each dominant predictor variable in the model. 

Significant coefficients are marked with signs explained at the bottom of the table. Using 

coefficients values from results in Table 4.23, a simple linear equation model based on one 

dominant predictor variable is used to test if a relationship exists between the dominant 

predictor and independent variable as shown in equations 22 to 27. A visual assessment of the 

regression line using a scatter plot graph further confirms the linearity of the regression model 

(see Figure 4.37).  

Table 4.23: Estimated coefficients of the simple linear regression for Enugu 

Responses  Climate Change Fertiliser  Intercept RMSE R2 

Yield   496.51**  1801.7** 701.92 0.3831 

GHG   768.2**  1010.9** 155.35 0.9687 

CF  (RCP 6.0) 0.1043**   0.6318** 0.1205 0.3267 

 (RCP 8.5) -0.0239   1.0920** 0.1890 0.0111 

NE  (RCP 6.0) -6060.4**   47861.4** 7472.6 0.2948 

 (RCP 8.5) 919.0   24554.9** 8460.1 0.0083 

                                                                            **Significant at 5% level 

 

𝑌𝑖𝑒𝑙𝑑 = 496.5 × 𝑋3   + 1.801 ×  103                                                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 22) 

𝐺𝐻𝐺 = 768.2 × 𝑋3   + 1.01 × 103                                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 23) 

 

𝐶𝐹 = 0.1043 × 𝑋1   + 0.6318    (RCP 6.0 scenario)                                      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 24) 

𝐶𝐹 = −0.0239 ×  𝑋1   + 1.092           (RCP 8.5 scenario)                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 25) 
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𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −6030.4 ×  𝑋1   + 4.7861 × 104   (RCP 6.0 scenario)         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 26)  

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = 919.02 ×  𝑋1   + 2.4554 ×  104       (RCP 8.5 scenario)        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 27) 

 

Equation 22 and 23 both have positive coefficient values that are statistically significant at 

0.05% confidence level. Results indicate that a unit increase in fertiliser will increase maize 

yield by 496.5 kg ha-1 and GHG emissions will increase by 768.2 kg CO2eq ha-1. From the R2 

values (Table 4.23), the model only explained 38% of the variance in yield. This means that 

62% of the variance is controlled by factors other than fertiliser. The model explains 97% of 

the variance in GHG emissions.  

Climate change scenarios affected CF and NE, and the linear model show the impact is both 

positive and negative depending on the climate scenario pathway (equations 24 to 27). 

Interestingly, CF will increase under the RCP 6.0 scenario and decrease under the RCP 8.5 

scenario, but the negative impact is not statistically significant. NE response to the RCP 8.5 

climate scenario is not statistically significant but results indicate that NE will increase by 

919.02 MJ ha-1 for every unit of increase in that scenario category. On the contrary, for every 

unit increase under RCP 6.0 category, there is a statistically significant decrease in NE by 

6,030.4 MJ ha-1.   

Figure 4.37 shows the regression line that represents the linear relationship between the 

independent and dependent variables. A straight positive regression line shows a positive 

relationship exists. It is clear from the data that fertiliser input has a direct positive correlation 

with maize yield and GHG emissions according to the linear slopes obtained in Figure 4.37. A 

falling regression line denotes a negative relationship, therefore it is evident that the correlation 

between CF and climate change scenario RCP 8.5 is negative. Similarly, NE and climate 

change scenario RCP 6.0 also have a negative relationship.   
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How well the linear model explains the response variable variation is further evaluated using 

the R2 values in Table 4.23. For GHG response model, fertiliser input explains 97% of the 

variation (R2 = 0.9687) indicating a good fit, while only 38% of the variation in yield response 

can be explained by fertiliser (R2 = 0.3831). Very low R2 values obtained for climate change 

RCP 8.5 for both CF and NE indicate a weakened relationship between the model and response 

variables. Predictions from the multiple linear regression implied climate change mostly affect 

CF and NE (equations 24 and 27). However, the simple linear model could not explain the 

variances in the response variables, indicative that other factors other than climate scenarios 

(RCP 8.5) which could be responsible.   



202 

 

 

 

Figure 4.37: Relationship evaluation between input (fertiliser rate, climate change scenarios) and 

response variables (yield GHG emissions, carbon footprint and Net energy) for Enugu. 
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4.10 Ilorin location 

4.10.1 Multiple linear regression analysis 

Table 4.24 outlines the estimated coefficients of the multiple regression model for Ilorin. With 

the exception of tillage and climate change coefficient values estimated for yield and GHG 

response variables, the derived coefficients are statistically significant at a 0.05% confidence 

level. 

Table 4.24: Estimated coefficients of the multiple linear regression for Ilorin 

Responses Climate Change Tillage Fertiliser  Intercept RMSE R2 

Yield -380.51** 80.897 526.15**  2951.4** 460.57 0.6647 

GHG 1.81 x 10-13 -112.85** 768.2**  1236.6** 125.79 0.9795 

CF 0.0522** -0.0585** 0.1186**  0.4388** 125.79 0.7192 

Net Energy -2780.1** 2428.2** 3520.3**  34671** 6485.3 0.5402 

 **Significant at 5% level 

 

Equations 28 to 31 expresses the multiple linear regression to predict the effect of each 

independent variable.  

𝑌𝑖𝑒𝑙𝑑 =  −380.51 × 𝑋1  +  80.897 ×  𝑋2  +  526.15 ×  𝑋3  + 2951.4   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 28) 
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According to equation 28, positive coefficients obtained for fertiliser and tillage suggest maize 

yield will increase by 526.15 kg ha-1 and 80.9 kg ha-1 per unit of increased independent variable. 

The coefficient determined for tillage is however not statistically significant. As shown in 

equation 28, a unit change in future climate scenarios will decrease yield by 380.51 kg ha-1 

because of the negative coefficient value estimated. Model predictions on the effect of 

independent variables on yield show that fertiliser influenced yield the most (53.3%) compared 

to climate change scenarios (38.5%) and tillage (8.2%). The coefficient of determination (R2) 

is 0.6647. This means that the three independent variables that collectively explain 66% of the 

variance in yield. Further data collection would be required to ascertain the other factors not 

considered in this particular study to explain the remaining 34%.  

 

𝐺𝐻𝐺 = 1.81 ×  10−13 × 𝑋1 + (−112.85)  × 𝑋2 +  768.2 ×   𝑋3  + 1236.6 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 29) 

 

 

 

 

RMSE 460.57 

R2 0.6647 

Effects (%) 

Climate Change      𝑋1 38.5% 

Tillage                    𝑋2 8.2% 

Fertiliser                𝑋3 53.3% 
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RMSE 125.79 

R2 0.9795 

Effects (%) 

Climate Change      𝑋1 0% 

Tillage                    𝑋2 9.7% 

Fertiliser                𝑋3 90.3% 

 

From equation 29, the coefficient value for climate change (𝑋1) is small and not significant. 

Fertiliser has a much larger coefficient that is significant and as a result, GHG emissions will 

increase by 768.2 kg CO2eq ha-1 per unit increase of fertiliser. Due to the negative coefficient 

obtained for tillage, GHG emissions will decrease by 112.85 kg CO2eq ha-1 per unit change in 

tillage system. Fertiliser had the highest effect on GHG emissions (90.3%), followed by tillage 

methods (9.7%), while climate change scenarios had no effect on GHG.  The R2 of 0.9795 

shows that the independent variables collectively explain the variation in GHG of more than 

97%. 

 

𝐶𝐹 =  0.0522 × 𝑋1  + (−0.0585) × 𝑋2  +  0.1186 ×  𝑋3  + 0.4388  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 30) 

RMSE 125.79 

R2 0.7192 

Effects (%) 

Climate Change      𝑋1 36.6% 

Tillage                    𝑋2 16.8% 

Fertiliser                𝑋3 46.6% 
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From equation 30, a positive coefficient was obtained for fertiliser and climate change. For 

example, based on fertiliser increase, CF will also increase by 0.1186 kg CO2eq kg-1 grain.  

Tillage has a negative coefficient therefore CF will decrease by 0.0585 kg CO2eq kg-1 grain per 

unit change in tillage system. Fertiliser input affected CF the most (46.6%) followed by climate 

change scenarios (36.6%) while tillage has a modest effect of 20% on CF. The coefficient of 

determination (R2 = 0.7192) indicate that 71.9% of the variance in CF is due to the combined 

impact of climate change, tillage and fertiliser input. 

 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 =  −2780.1 ×  𝑋1  +  2428.2 × 𝑋2  +  3520.3 ×  𝑋3  + 34671   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 31) 

RMSE 6.485 x 103 

R2 0.5402 

Effects (%) 

Climate Change      𝑋1 48.4% 

Tillage                    𝑋2 17.3% 

Fertiliser                𝑋3 34.3% 

 

Equation 31 shows that the estimated model coefficient for fertiliser and tillage was positive 

but climate change has a negative coefficient. This means that a unit increase in climate change 

will decrease NE by 2,780.1MJ. The model predicts that climate change scenarios had the most 

effect on NE (48.4%). Fertiliser and tillage had a modest effect of 34.3% and 17.3% 

respectively according to equation 31. The R2 of 0.5402 means that the model explains 

approximately 54% of the variance in NE.  
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4.10.2 Simple linear regression analysis 

For the simple linear regression, Table 4.25 displays the coefficients of each dominant predictor 

variable (fertiliser and climate change). Significant coefficients are marked with signs 

explained at the bottom of the table. Equation 32 to equation 36 outlines the linear models, 

whilst a scatter plot graph depicting the linearity of the regression model was assessed (Figure 

4.38).  

Table 4.25: Estimated coefficients of the simple linear regression for Ilorin 

Responses  Climate Change Fertiliser  Intercept RMSE R2 

Yield   467.79**  2391.9** 600.11 0.4307 

GHG   768.2**  1010.9** 155.35 0.9687 

CF    0.1186**  0.5305** 0.1587 0.4101 

NE  (RCP 6.0) -2133.69   46556.3** 6801.72 0.038 

 (RCP 8.5) 1493.4   29800.1** 7602.3 0.0265 

                                                                            **Significant at 5% level 

 

𝑌𝑖𝑒𝑙𝑑 = 467.79 ×  𝑋3   + 2.392 × 103                                                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 32) 

𝐺𝐻𝐺 = 768.20 ×  𝑋3   + 1.01 ×  103                                                         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 33) 

 

𝐶𝐹 = 0.1186 × 𝑋3   + 0.5305                                                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 34) 
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𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = −2133.7 ×  𝑋1   + 4.6556 × 104  (RCP 6.0 scenario)     (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 35) 

𝑁𝑒𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 = 1493.4 ×  𝑋1   + 2.9800 × 104     (RCP 8.5 scenario)      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 36) 

 

For simple linear models for yield, GHG and CF (equation 32 to 34), fertiliser is the only 

predictor variable regressed. Based on the data, the coefficient of fertiliser was 467.79, 768.20 

and 0.1186 for yield, GHG and CF response models respectively, with a constant term of 2.392 

x 103, 1.01 x 103 and 0.5305. This means that the dependent variables will increase by the 

coefficients values per unit increase of the independent variables. Equation 35 and 36 shows 

the relationship model between NE and climate change. The coefficient is both positive and 

negative for RCP 6.0 and RCP 8.5 climate scenarios, and not statistically significant. Results 

indicate that NE will decrease by 2133.7 MJ ha-1 for every increase in RCP 6.0 scenario 

category whilst units under RCP 8.5 scenarios will increase NE by 1493.4 MJ ha-1.  

Figure 4.38 depict scatter plots for the linear regression models described above. As observed, 

the independent variables show a linear relationship with all response variables for example, 

yield, GHG and CF were positively correlated with fertiliser. The negative trend for NE implies 

a decline as the climate change timeline under RCP 6.0 changes. NE and climate change 

scenario RCP 8.5 however shows a positive relationship.   

In addition, based on the coefficient of determination obtained, the linear regression equation 

for GHG provided a model that accounted for 97% of the variability in the estimation of GHG 

response (R2 = 0.9687). The model explains on average 42% of the data variation in yield and 

CF (R2 = 0.4307 and 0.4101).  Whilst in terms of the limitations of the study, the model was 

unable to explain the variability in NE (R2 = 0.038 and 0.027). 
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Figure 4.38: Relationship evaluation between input (fertiliser rate, climate change scenarios) and 

response variables (yield GHG emissions, carbon footprint and Net energy). 
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Chapter 5 

5 Discussion 

5.1 Introduction 

With widespread recognition of the grave importance and irreversible impact of climate change 

(COP21), there has been several aspects, which have rightly received attention. One of those 

aspects is energy - largely because of the preeminence of fossil fuels from the industrial 

revolution to date. Replacing fossil fuels has been significantly challenging for technical, 

social, political and economic reasons, nevertheless, the pressure to find alternative energy 

sources has slowly led to the greater use of renewables. As a result of this, the advantages of 

limitless supply and low carbon emissions are now broadly accepted, however, there remains 

an argument for examining and/or developing renewable technical solutions which are 

sustainable in a social, political and economic sense. 

This study was designed to support the examination of the feasibility of utilising biofuel. In 

doing so, this study has addressed the impact of a changing climate, induced by global warming 

on the production and efficacy of maize as a biofuel feedstock. Under the present conditions 

maize could, on average, yield 2,442 kg ha-1 and then be employed as a biofuel with a net 

energy contribution of 94,014.1 MJ ha-1 whilst emitting the equivalent of 2,931 kg CO2eq ha-1. 

Whilst a number of studies have estimated variations to farm yield when future climates are 

changed in terms of temperature, rainfall and CO2 levels etc., these studies have only 

considered the LCA of the production system for current climates. This study however, not 

only models future climates for the target regions, but also considers other factors which might 

have a significant influence on crop yield, GHG, CF, net energy yield, and hence the 
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environmental gearing of adopting renewable solutions such as biofuels. The integrated 

framework (CSAF) developed for this study is therefore its unique key strength. Furthermore, 

the framework is detailed and thus can be applied to specific areas, rather than to a broad 

geographical area. This is notable because broader application is the case for most similar 

modeling framework, which in turn leads to a more generalised outcome. This study target 

areas are all in Nigeria, but specifically represents four different agro-ecological zones. For 

each zone, a substantial body of historical climatic records was available. 

5.2 Climate data 

 

Climate data analysis shows how the climate varied for each location. For example, the highest 

maximum temperature in Jos was approximately 5 °C lower, compared to Ibadan, Enugu and 

Ilorin. A minimum temperature as low as 1 °C was recorded at Jos, and attributed to the high 

altitude of the location (Adejuwon 2006, Ezeaku et al. 2014, Yusuf et al. 2017). The observed 

mean daily temperature ranged from 25 °C and 37 °C across all sites. 

The seasons were distinctly rainy from March to October and followed a reverse of this from 

November to February due to the tropical nature of the climate in Nigeria (Ezeaku et al. 2014). 

Ayinde et al. (2011) also reported large inter-annual variation for rainfall and temperature 

across the country and recently observed changes showing evidence of climate change (Danladi 

et al. 2017). The Nigerian Meteorological Agency in 2012 reported severe temporal and spatial 

shifts in weather variability and change (NIMET 2013). The range of mean values for 

maximum and minimum temperature for each location was similar to values reported by Amadi 

et al. (2014), Ezeaku et al. (2014) and Yusuf et al. (2017) for Ibadan, Jos, Enugu and Ilorin.  
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5.3 Validation of LARS-WG results 

 

In order to model future climates, arbitrary incremental scenarios can either be used to predict 

change i.e. temperature +2.5 °C, rainfall -20% (Garba 2014) or a weather generator can be 

calibrated using historical data for the chosen site and then used to generate long synthetic 

weather scenarios for further downscaling of GCM outputs. The use of weather generators in 

simulating climate data is becoming popular and LARS-WG is one of the most commonly used 

weather generators because it is open, free and validated for many sites globally (Mehan et al. 

2017, Gitau et al. 2017, Chisanga et al. 2017). LARS-WG performed fairly well for this study, 

in representing the statistical characteristics of the site-specific observed daily rainfall, 

minimum and maximum daily air temperatures and solar radiation values. The number of tests 

with p-value of less than 0.05 (significant result at the 95% confidence level) was small and 

the differences in variances were not statistically significant. The only shortcoming found with 

using LARS-WG was an over-estimation and under-estimation of the monthly mean rainfall 

compared to the observed data (Chisanga et al. 2017).  

Underestimation of inter-annual variability is a common issue with most weather generators 

according to Qian et al. (2011) and Smith et al. (2013). Therefore, further evaluation is required 

concerning the inter-annual variability assessment, as the accuracy of the generated data is an 

important factor for climate impact assessment. The trend line graphs in section 4.2.2 of 

observed versus simulated data in this study produced a good match overall, with the exception 

for rainfall. Fundamentally, this study supports the findings of other scientific conclusions in 

that weather generators can reproduce statistical representations of site-specific observed 

climate data, and reliable synthetic data applied in crop modelling experiments in the absence 

of long-term observed data. 
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5.4 Analysis of projected climate change 

An ensemble of 40 GCMs were used to project climate change for the years 2020, 2050 and 

2080. Average projected temperature change was +2.4 and +3.3°C under RCP 6.0 and RCP 

8.5 scenarios - similar to typical rates of warming projected by Mereu et al. (2018) for Nigeria. 

The IPCC AR5 report (2014) on annual temperature change indicated that the West African 

region is getting warmer, although the degree of predicted warming was quite variable. The 

projections from this study are also consistent with findings from Hartley et al. (2015) who 

reported mean annual temperature increases of between 2.5 and 5.5°C as well as a change in 

precipitation of between -60% and +50% in West African countries by the end of the century 

relative to a 1971-2000 baseline. Chen et al. (2018) used global warming scenarios of 1.5°C 

and 2.0°C to estimate impacts of climate change on major crop productivity including maize 

in China. Their findings are based on data projected from four GCMs, and the temperature 

changes of +1.5°C and +2.0°C used in their analysis were weighted between RCP 2.6 and RCP 

4.5 scenarios, compared to the projected output based on the RCP 6.0 and RCP 8.5 scenarios 

in this study.                     

According to Magugu (2016), local physiographic and atmospheric effects makes future 

rainfall projections less certain compared with temperature projections. Ekwezuo et al. (2018) 

examined the possible effects of increasing greenhouse forcing on seasonal-mean precipitation 

over West Africa using the Norwegian Earth system (NorESM1-M) model. Although Ekwezuo 

et al. (2018) used a single GCM model in their projections, the pattern of projected RCP 

scenario changes in seasonal-mean precipitation over West Africa varied, and they observed 

that there is little sensitivity of West African precipitation to GHG forcing. This is illustrated 

by the fact that in the mid-twenty first century, intensified GHG forcing seems to have very 
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little effect on seasonal precipitation especially if prevailing conditions based on RCP 8.5 were 

realised.  

Furthermore, climate projections for the maize growing regions of sub-Saharan Africa suggest 

increased temperatures, evapotranspiration, lower soil moisture levels and frequency of 

droughts, will adversely impact the sustainable production of maize and other cereals (IPCC 

2007, Cairns et al. 2013). Lobell et al. (2011) reported that maize yield would decline by 65% 

in Africa following every 1°C warming increase under non-drought conditions.  

For this study, projected changes in annual rainfall for each location generally followed an 

increasing trend however, the change values were negligible increases. The results were in 

alignment with Ekwezuo et al. (2017) and Klutse et al. (2018) who projected a similar future 

rainfall pattern over West Africa. In addition, they reported that projected changes in mean 

rainfall would increase over the Guinea coast and decrease inland. Projected increase in rainfall 

amount and variability for the locations, though in smaller amounts could compound the 

problem of significant yield loss, erosion and plant nutrient loss due to leaching (Gbangou et 

al. 2018). Magugu (2016) also obtained a negligible rise in precipitation from GCM projections 

under climate change scenarios in Arkansas. 

Based on evidence from the latest IPCC Report (AR5), global warming in Africa is likely to 

become larger than global annual average warming (Niang et al. 2014, Hartley et al. 2015). 

The impact of climate change on yields of major cereal crops in sub-Saharan Africa will be 

negative overall, with strong regional variation in terms of the degree of reduction (Niang et 

al. 2014, Ezeaku et al. 2014, Parkes et al. 2018). Although different GCMs tend not to agree 

with predictions of the average amount of rainfall for the region, there is a consensus that the 

inter-annual variability of the amount of rainfall will increase (Traore 2014).  
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Many studies have examined the degree of correlation between seasonal weather variability 

and maize yield anomalies using archival data (Adamgbe and Ujoh 2013). Traore (2014) 

analysed historical long-term trends in climate variability and its effect on yield, using data 

from archives and the coefficient of variation used to describe the relationships. Both Adamgbe 

and Ujoh (2013) and Traore (2014) reported a positive correlation between rainfall and maize 

yield but, Magugu (2016) observed that temperature based indicators were more strongly 

correlated to crop yields than precipitation indicators. Based on the projected GCM results, 

which are indicative of gradual site-specific warming, it is highly likely that climate change 

will have profound effect on maize crop productivity in the agro-ecological zones studied. 

Hartley et al. (2015) advised that robust resilience should be put into place based on the 

uncertainty of future projections, especially due to precipitation variability.  

5.5 Analysis of climate change impact on maize yield 

The impact of climate change on yield was evaluated (using the CERES-maize crop model) by 

comparing yields simulated using historical climate data and future climate predictions under 

six farm management scenarios, (including a no treatment scenario) for all four locations. 

Without considering any farm adaptation strategy, results show yield increase for some 

locations as well as decline in yield depending on the GHG scenario pathway and timeline. To 

be clear, the baseline climate of all four sites is different, spatially variable and inconsistent 

therefore, climate-induced impact on yield is consequently spatially dependent as well. 

In Ibadan, climate change reduced yield under all scenarios. In contrast, yield increased in Jos, 

Enugu and Ilorin for both projected scenarios (RCP 6.0 and 8.5) and declined as the timeline 

shifted from 2020 to 2050, further declining below baseline levels by 2080. Although this trend 

is consistent with the projections made by Adejuwon (2006) for similar AEZs; both Mereu et 
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al. (2015) and Mereu et al. (2018) reported a decline in yield for all locations within the derived 

savanna AEZ (Ilorin, Ibadan and Enugu) using the same CERES-maize crop model. When 

compared to the results of this study, the difference in GCM model projections are clearly 

responsible for the different projections obtained for similar AEZs. For instance, Mereu et al. 

(2018) used GCM models based on A1B SRES GHG emission scenarios, developed in 2000 

by the IPCC. When compared to the RCP scenarios, SRES scenarios represent possible futures 

from a socio-economic perspective. This is in direct contrast to the former, which calculates 

basic climatic outcomes based on specific radiative forcing projections developed in 2014, thus 

superseding the SRES (see Chapter 2).  

Similarly, Ezeaku et al. (2014) used SRES scenarios and reported a decline in yield within the 

derived savanna AEZ of Nigeria. This occurred as a result of using GCM change values 

arbitrarily. As already mentioned however, the pattern of maize response reported in Adejuwon 

(2006) was similar to this studies’ results for Jos and Ilorin despite using different IPCC 

scenarios. For example, the lowest yield for Jos was recorded during the baseline climate, 

whilst yield increased continually until the end of the century. Interestingly, Adejuwon (2006) 

however, attributed this increase in part to a CO2 fertiliser effect (assumed 1% increase in 

atmospheric CO2 per annum) in addition to the decline in water and temperature stress 

compared to that of the baseline at Jos. 

According to Mereu et al. (2015), higher maize yield reduction in the Southern Guinea savanna 

of Nigeria (Ilorin) was due to a projected temperature increase of above 2°C, projected under 

the A1B emission scenario. This is consistent with the declining yield outcome obtained in this 

study for 2080 (under RCP 6.0 and 8.5 scenarios), also with projected temperature increase 

above 2°C (2.8°C and 4.1°C). In contrast, climate change did not present as a limiting factor 

but rather produced positive yield results at Ilorin and Enugu under projected temperatures of 



217 

 

below 2°C during 2020 and 2050 under RCP 6.0 and 8.5 scenarios. Bassu et al. (2014)  reported 

a 10% decline in yield under 2°C increase in temperature and 20% reduction in precipitation 

in Tanzania. In addition, Msowoya et al. (2016) projected maize yield decline in Malawi by 

13% and 33% by mid and end of the century respectively.  

The effect of climate change is positive in Ilorin and Enugu (except in the 2080s) despite low 

maize yield recorded under baseline climates. This suggests the positive effect of warmer 

temperature, which can influence maize phenology (flowering and grain-filling period). In 

contrast however, several studies have identified temperature increase and heat stress 

accumulation as a threat for maize crop production (Boote et al. 2005, Hatfield et al. 2011, 

Oluwaranti and Ajani 2016, Lizaso et al. 2018). This is because as temperature rises above 

optimum levels, yield first reduces by a shortening of seed-filling phase along with lesser 

assimilation. As the temperature increases further, pollination and fertility increasingly fail and 

seed growth rate reduces to the point where grain yield, harvest index, and seed number 

becomes zero (Oluwaranti and Ajani 2016). Therefore, identifying temperature thresholds for 

maize crop and quantifying the probability of exceeding temperature thresholds is important to 

crop system modelling and the use of risk assessment with regards to climate change 

(Oluwaranti et al. 2015, Luo 2011).  

As an example of the above discussed, Hatfield et al. (2011) estimated the optimum 

temperature range for maximum (grain) maize yield as 18°C to 25°C. The failure point 

temperature remained at 35°C (ceiling temperature at which grain yield falls to zero yield). 

Interestingly, this correlation relates to other studies which have also found that temperatures 

of above 35°C become lethal to maize pollen viability (Luo 2011, Sánchez et al. 2014, Lizaso 

et al. 2018). In addition to this, changes in maximum and minimum temperatures projected for 
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the study sites ranged between 0.9°C and 4.0°C. Assuming the temperature accumulation in 

terms of degree-day upper bound temperature for maize is 34°C, it would follow that maximum 

air temperatures would increase for Jos (32°C), Enugu (36°C) and Ilorin (36°C) using upper 

levels of the projection. 

Maize is a C4 plant and research has shown that exposure to higher temperatures at current CO2 

levels will reduce yield (Garba 2014). However, it should be noted that maize does have lower 

sensitivity to high levels of CO2 concentration compared to C3 crops (Meza and Silva 2009) . 

According to the results of experiments in which the concentration of CO2  was doubled, a 

combination of higher CO2 and a mean temperature increase of above 2°C will progressively 

reduce yield (Hatfield et al. 2011, Ko et al. 2012, Ezeaku et al. 2014, Mereu et al. 2015, Parkes 

et al. 2018). However, in contrast to the aforementioned authors, the evidence presented by He et 

al. (2018) reports no notable impact on maize yields under increased CO2.  

Unlike previous research that analysed the effect of CO2 fertilisation on future maize yield 

(Garba 2014, Chen et al. 2018, He et al. 2018), this study assessed the impact of projected 

changes in temperature and precipitation and did not consider scenarios for CO2 change effect. 

This is because Chen et al. (2018) found that the results between simulated maize yields with 

CO2 fertilisation were quite similar to those without CO2 fertilisation effects. They also 

reported that maize yield declined by around 10% to 15% under 1.5°C and 2.0°C warming 

without considering CO2 fertilisation effects. They explained that the parts of China that 

experienced yield increase (due to fertilization effects of elevated atmospheric CO2
 

concentration) would have up to 10% decrease in the future, when the global temperature rises 

above 2.0°C.  
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5.6 Effect of N fertiliser treatment on yield 

There is ample evidence that as climate change affects agricultural systems, farmers will adopt 

different management practices such as increasing synthetic fertiliser to boost yield (Meza and 

Silva 2009, Mahama and Maharjan 2017). For example, a field survey from Ghana reveals that 

93.9% of farmers respond to climate change by arbitrarily increasing fertiliser input (Mahama 

and Maharjan 2017). To support this statement, Kikoyo and Nobert (2016) also reported on 

adaptation to climate change through optimal fertiliser application. Nasim et al. (2016) 

however stressed that in addition to inorganic fertiliser use, adding mulching and surface water 

management would be more beneficial in the event of climate change.  

The role of fertiliser in maintaining soil fertility and hence increasing` crop yields is 

undisputed; however, excessive fertiliser use increases nitrous oxide emissions to the air as 

well as nitrate leaching which correlates with excessive rainfall (or irrigation) and run-off (He 

2008). According to Aina (2011) and Abayomi et al. (2012), climate change and the demand 

for high agricultural output is responsible for a decline in soil fertility and can further damage 

the ecosystem causing major economic and ecological constraints. Liverpool-Tasie et al. 

(2017) suggested that with management choosing to increase fertiliser use in maize production, 

there should be an awareness around other factors for consideration such as cost and the 

environmental effect of fertiliser use. Suggestions made by Blessing et al. (2017) to adopt 

effective techniques such as micro-dosing of inorganic fertiliser can improve nutrient use 

efficiency by crops, benefit farmers economically and contribute to sustainable agricultural 

development, especially when integrated with organic amendments.  

For this study, intensification of nitrogen fertiliser use (from 80 kg N ha-1 to 250 kg N ha-1) to 

determine yield responses under climate change scenarios was simulated. In Jos, yield 
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increased by almost 100% using the highest fertiliser rate of 250 kg N ha-1 (compared to 80 kg 

N ha-1) under RCP 6.0 and 8.5 scenarios, for the years 2020 and 2050. By 2080 however, the 

most significant yield output was produced as a result of applying 200 kg N ha-1 fertiliser. For 

the other sites, the effect of increasing N rates above 160 kg N ha-1 on maize yield was not 

significant for all climate scenarios, except for Enugu where yield improved by 83% using 250 

kg N ha-1 under RCP 6.0 in 2080.  

Overall, this study is the first to present a projected optimum fertiliser treatment combination 

under climate change as 160 kg N ha-1 + 40 kg P ha-1 + 40 kg K ha-1 except for in the Jos 

location which required higher levels of fertiliser. Field studies by Onasanya et al. (2009) and 

Anjorin (2013) for similar locations confirmed optimal application rates of between 100 kg N 

ha-1 and 120 kg N ha-1 + 40 kg P ha-1 as the best combination to significantly enhance grain 

yield. Both studies reported that maize varieties responded differently to inorganic nitrogen 

fertilisation and as a further example, hybrid maize cultivars required high fertiliser rates for 

optimum yield. This is evidenced via the work of Takim et al. (2017) who used 80 kg N ha-1 + 

60 kg P ha-1 + 60 kg K ha-1 application rate to analyse the best producing maize cultivar under 

drought conditions in Nigeria.  

One of the limitations with the abovementioned studies is that they only considered local 

current climate conditions. Therefore, further evaluation of cultivar responses to the rates 

applied in this study under future climate conditions give a much better indication of optimum 

fertiliser rate for sustainable maize yield increase under climate change. For example, further 

evaluation of the recommended maize genotypes reported in Takim et al. (2017) and Anjorin 

(2013) is required to determine yield response to optimal fertiliser rates as suggested in this 

study under climate change.  
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Crop models such as CERES-Maize model, designed to evaluate crop-climate environments 

are useful management tools for not only simulating yield and nitrate movement through soil 

profiles, but also yield response to future weather changes. When incorporated into a decision 

support system (e.g. DSSAT-CSM), crop models can evaluate the best management strategy 

in which fertiliser application can be undertaken under site-specific weather conditions to 

maintain balanced soil nutrients and avoid excessive leaching of nitrates. Basso et al. (2016) 

reviewed studies that have validated crop models, such as CERES-maize and CERES-wheat 

models, on soil nitrogen content and nitrate leaching predictions. Tetteh and Nurudeen (2015) 

in addition to Gungula et al. (2003) evaluated the CERES-maize model for its response to 

fertiliser treatments. They reported that the model was sensitive to low fertiliser treatments, 

adding that the model underestimated yields at a low nitrogen level. Therefore, nitrogen stress 

factors should be incorporated into CERES-maize model, to use the model in low-nitrogen 

tropical soils (Tetteh and Nurudeen 2015). The model can however, be reliably used for 

predicting maize phenology under non-limiting nitrogen conditions. To evidence this, it should 

be highlighted that Adnan et al. (2017) used the CERES-Maize model to determine the fertiliser 

requirement of maize in Nigeria.   

5.7 LCA analysis of energy use, GHG and Carbon footprint 

The environmental impact assessment of a farming system using the LCA framework is very 

common. This is because its holistic approach makes it possible to identify hot spots for 

environmental pollution, but also to avoid pollution trade-offs across the life-cycle stages 

(Bessou et al. 2013). Many studies have used averages of regional/country management data 

as input data for the life-cycle inventory instead of generated site-specific data, which can lead 

to different results consequently, affecting the reliability of the LCA study (Notarnicola et al. 
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2017, Corrado et al. 2018). Due to the variation in specific characteristics in many LCA studies, 

such as differences in cropping system used, production region, feedstock type, energy sources 

and crop yields, comparison of LCA results is very uncertain (Ndong et al. 2009). Since this 

study focused specifically on a maize feedstock production system within the biofuel 

production network, a streamlined method accounted for the effects of local factors including 

climatic factors within the farm-to-gate system boundary. The results discussed below 

therefore represent LCA outputs based on the functional unit of 1 kg ha-1 maize grain using 

site-specific input data simulated by a process-based model and other inventory sources to 

reduce much of the uncertainty associated with emissions from agricultural fields.  

5.7.1 Energy use assessment 

Energy parameters are important for comparing the environmental effects of agricultural 

practices (Lu et al. 2018). Energy efficiency in maize production was estimated by varying 

both farm management and equipment use energy input. Results show that climate change 

affected all energy indicators used to assess the efficiency of maize production but at varying 

degrees for each location studied, and dependent on the tillage method and fertiliser application 

rate adopted. In all farm management scenarios, the highest energy consumption corresponded 

with the application of fertilisers and diesel fuel consumption during land cultivation similar to 

the findings in Lu et al. (2018).  

The farm tillage method that registered the highest amount of diesel use was the conventional 

tillage method (CT). This was as a result of increased working time and fuel use per hectare. 

Estimated input energy from fuel was within a similar range to the energy required per hectare 

(2,168 MJ ha-1 – 2,732 MJ ha-1) in order to cultivate maize in Zambia (Stubbs 2013). However, 

when compared to soybean cultivation, Stubbs (2013) reported that maize cultivation required 
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less input energy. According to Grassini and Cassman (2012) and Bilalis et al. (2013), generally 

energy inputs tend to vary with different farm management practices.  

 In a similar fashion to higher fuel consumption through mouldboard ploughing under the CT 

system, harvest operation was the second most fuel intensive process irrespective of the tillage 

method. Memon et al. (2013) in addition to Manzone and Calvo (2016) both reported a higher 

value for ploughing followed by harvesting operations in their studies. The no-tillage system 

(NT) decreased energy input by 51% based on the results of this study, which can be attributed 

to the elimination of soil tillage practices. In support of this, Grassini and Cassman (2012) also 

reported that conservative tillage practices and efficient production of agricultural inputs have 

contributed to the rising maize grain yield in the US Corn Belt area, without increasing fertiliser 

and irrigation input. 

The estimated result also shows that increasing fertiliser rates increased total energy input with 

a consequent reduction in energy use efficiency. Bilalis et al. (2013) similarly reported that 

fertiliser consumed the bulk energy input in conventional maize production under 

Mediterranean conditions, while Rathke and Diepenbrock (2006) reported between 20% and 

51% in fertiliser contributions to the total energy in winter oilseed cropping systems. According 

to Sadiq and Isah (2015), 85.2% of input energy was contributed by agrochemical input for 

maize production in Niger state, Nigeria. Ibrahim et al. (2014) found that the average value for 

fertiliser use was a huge range of between 3.093 kg N ha-1 to 743.93 kg N ha-1 from a survey 

of three agro-ecological zones in Nigeria.  

Increasing non-renewable fossil fuel energy input in agricultural production is a direct response 

to increased cropping intensity that requires more fertiliser and crop protection products in 

modern farming (Pimentel 2009, Kazemi et al. 2018). Crop yield produced per hectare has been 

increasing and thus, energy output per unit area and per unit of input have also increased 
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(Tzilivakis et al. 2005). The direct environmental effects as a result of the release of CO2 and 

other GHG emissions, as well as the excessive use of natural resources are global concerns that 

must be addressed through efficient use of material inputs. The NT technology system and a 

low fertiliser input of 80 kg N ha-1 (160 kg N ha-1 for maximum yield output) show a potential 

to reduce total energy input by a significant amount and could translate to reduced operational 

costs for farmers. These combinations should seriously be considered for future maize 

cultivation systems.    

Energy assessment of future maize production under climate change was determined using 

energy indicators such as energy use efficiency (EUE), energy productivity (EP), specific 

energy (SE) and net energy (NE) values (see Appendix J). Energy assessment is particularly 

crucial because empirical studies that measure the effect of future climate change variation on 

the efficiency of maize production in Nigeria are almost non-existent. For instance, the only 

study found to have addressed the effect of climate variation on the technical efficiency of 

maize production in Nigeria was based on historical climate and farm level data obtained from 

maize farmers cross different agro-ecological zones (Ibrahim et al. 2014).  

For each future climate scenario considered in this study, EUE declined towards 2080 from the 

baseline. This suggests that climate change has an effect on the EUE. However, each location 

responded differently to the combination of climate and farm management strategies, so for 

example, the highest EUE obtained in Jos was an average of 10.4, which proved high compared 

to other sites, which were typically lower under future scenarios (ratios of 3.2 to 8.1). This 

result was due to the combination of using the NT method and 160 kg N ha-1 to boost maximum 

yield. These results were nevertheless, consistent with the findings of other researchers. As an 

example, the EUE values for NT were similar to estimates made by (Sørensen et al. 2014). 
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Sarauskis et al. (2014) also reported a higher EUE within the range of 10.4 to 18.6 for maize 

production under the NT tillage system compared to other conventional tillage methods. As 

per both reports, a higher EUE was attributed to favourable weather conditions during the 

studied years and good maize yield. However, contrast must be noted. More recently, Lu et al. 

(2018) attributed EUE observed under the NT system mainly to low energy input. In support, 

Kazemi et al. (2018) also suggested that unsuitable climate and infertile soils affected energy 

use efficiency in cotton production systems. Interestingly, this trend was also observed for this 

study. This is because as climate change got worse (increasing mean temperature) towards the 

end of the century (year 2080 under both RCP 6.0 and 8.5 scenarios), the EUE declined. This 

denoted that lower values of EUE indicated inefficiency in energy use.  

Lawal et al. (2014) calculated lower EUE (3.5) compared to the average of 8.1 calculated for 

the Ibadan baseline in this study. Their study revealed that maize farmers were inefficient in 

the use of all energy inputs, especially chemical fertilisers, diesel and labour, contributing more 

to the total energy input. For example, farmers on average applied up to 200 kg N ha-1 of 

nitrogen fertiliser (Lawal et al. 2014), compared to the baseline rate of 160 kg N ha-1  

application rate for this study. This was in addition 80 kg N ha-1 application rate for future 

projections which produced better EUE for Ibadan. As shown in Table 4.9, energy efficiency 

significantly reduced in locations such as Ilorin and Enugu, which may indicate a higher energy 

footprint in terms of the production system (Khan et al. 2009). The results on EUE therefore 

align with many studies that reported an increase in EUE when soil tillage practices are 

reduced.  
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5.7.2 GHG emission evaluation 

The findings of this farm LCA is that emissions from soil due to fertiliser application adversely 

influenced the total GHG emissions, and carbon footprint increased per kg of maize produced. 

The impact of N fertiliser is therefore significant and underlines the importance of efficient N 

management.  

On average, total GHG emissions under farm management scenarios (fertiliser rate x tillage 

methods) was 2,931.4 kg CO2eq ha-1. These findings align with those of Ma et al. (2012) who 

reported a similar GHG emission range from a maize farm experiment based on three rotation 

systems. Direct and indirect soil N2O emissions associated with the application of urea fertiliser 

were the main emitters (53.4%) followed by GHG emissions from the production of farm input 

materials (37.8%). Within this category, CO2 emissions from fertiliser production was the 

highest. CO2 emissions from field machinery operation and from urea application (emission 

due to soil hydrolysis) contributed small shares to the total GHG emission (4.4% and 4.3%).  

According to Silalertruksa and Kawasaki (2015), differences in the production of bioenergy 

crops, management technologies and assumptions made during calculation, will vary GHG 

emission results. Energy and GHG emission coefficients used are major factors causing 

variability in many published results (Camargo et al. 2013). Similar to other research, this study 

modified the IPCC (2006) Tier 1 methodology, excluding emissions from carbon stock changes 

caused by land-use, and land clearance before cultivation. In addition, GHG emissions caused 

by transportation of raw materials and harvested products, as well as energy used in the drying 

of grain were not calculated.  
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5.7.2.1 CO2 emissions from fertiliser production 

Some studies were explicit in their report that pre-farm emissions from the production of 

farming inputs, dominated total GHG emissions (Brock et al. 2012). As evidence of this, Lu 

and Liao (2017) reported an average contribution of 60% to total C emissions from farm inputs 

for the four tillage systems analysed. This study shows that the production of farm input was 

the second most dominant contributor (37.8%) to total GHG emissions. Within the pre-farm 

category, urea production produced the highest CO2 emissions (23%), followed by diesel 

production and maize seed production. This is consistent with emissions from a 19-year maize 

experiment reported by Ma et al. (2012), in which the average contribution was 25%. Ali et al. 

(2017) and Brock et al. (2012) reported an average of 15.2 % and 16% of CO2 emission 

contribution from urea production. In these studies, the embodied emissions (cradle to gate) 

associated with fertiliser production were not only affected by the quantity applied, but also 

the emission factor used for estimation. Further to this, Nasidi et al. (2010) used an emission 

factor of 3.97 kg CO2eq kg−1 N based on average GHG emissions from urea production for 

Nigeria. Ali et al. (2017) adopted an average value of 5 kg CO2eq kg−1 N based on World 

average; Ma et al. (2012) used 4.8 kg CO2eq kg−1 N adapted from Lal (2004) for Canada. Lu 

and Liao (2017) adopted 3.1 kg CO2eq kg−1 N from a study carried out by West and Marland 

(2002) for the US; and finally, Jayasundara et al. (2014) used 2.8 kg CO2eq kg−1 N for Canada. 

 Selecting fertilisers with the lowest GHG emission coefficients can significantly reduce CO2 

emissions from mineral fertilisers. Wang et al. (2017) analysed GHG emissions from different 

inorganic fertilisers based on their respective emission factors. Nitrogen fertilisers with the 

lowest emission factor such as ammonium bicarbonate (EF 0.65) had the lowest carbon 

emissions compared to urea (EF 2.30) and ammonium hydroxide (EF 5.23). Using fertilisers 

with the lowest EFs such as ammonium bicarbonate, calcium superphosphate and potassium 
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chloride, reduced GHG emissions by 88.34 %, 94.25 % and 93.92 % respectively when 

compared with NPK fertilisers with higher EF values (Wang et al. 2017).  

Based on the results, and in line with common views, CO2 emissions from fertiliser production 

is significant and increases linearly with fertiliser application rates. Hence, fertiliser input and 

EFs of mineral N fertiliser are key factors to consider in GHG emission savings from the pre-

farm input category in maize cultivation.   

5.7.2.2  N2O emissions from fertiliser application 

The application of mineral nitrogen (N) fertilisers to agricultural soils contributes significantly 

to global GHG emissions (Gao et al. 2011, Uzoma et al. 2015, Li et al. 2016, Parihar et al. 

2018). Particularly, the emission of anthropogenic nitrous oxide (N2O), a gas with a large 

global warming potential (GWP) of 298 (Del Grosso et al. 2009, Bessou et al. 2013).  

Results from this study showed that N2O emissions increased linearly with fertiliser application 

rate, an assumption based on the global 1% default emission factor (EF) suggested in the 

Intergovernmental Panel on Climate Change Tier methodologies (Stirling 2018). Previous 

studies support the assumption of a linear relationship between N application rates and N2O 

emissions (Lebender et al. 2014, Hinton et al. 2015, Li et al. 2016, Ma et al. 2016, Ali et al. 

2017). However, there are publications that have established that a non-linear relation unlike 

the IPCC tier 1 model is common at different scales (Van Groenigen et al. 2010, Vyn et al. 

2016, Wang et al. 2018). For example, Shcherbak et al. (2014) found that from a meta-analysis, 

nonlinear responses in global N2O emissions were possible as a result of adding N fertiliser to 

an already excessively fertilised system (exceeding crop N demand). In addition, several 

authors maintained that in addition to N uptake, crop type, N fertiliser type, soil organic carbon, 
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soil temperature and soil pH are factors that contribute to the non-linearity observed (Shcherbak 

et al. 2014, Regaert et al. 2015). Shcherbak et al. (2014) further suggested that the global 1% 

default emission factor was too conservative for high N-input rates. However, Stirling (2018) 

recently cautioned that comparing the IPCC 1% EF with EFs at scales less than the global mean 

is not appropriate. Some studies have experimentally linked the non-linearity to surplus N not 

taken up by the crop (Bouwman et al. 2002, Grant et al. 2006, Van Groenigen et al. 2010), 

while Freibauer (2003) measured a much smaller correlation of 0.4%. Therefore, to minimise 

N2O emissions per crop yield, efficient application of fertiliser such as using the split 

application method to match crop demand and the use of enhanced efficiency fertilisers (EEFs) 

to improve the N-use efficiency of crops would be a straightforward option (Uchida and Rein 

2018, Van Groenigen et al. 2010, Regaert et al. 2015, Chen et al. 2018, Rein and Uchida 2018). 

For this study, a split application approach in fertiliser application was used (Chapter 3); 

however, Uchida and Rein (2018) as well as Chen et al. (2018) suggest the use of EEFs, which 

prove more promising in maximising N-use efficiency and the reduction of N2O emissions.  

In this study, denitrification of the N fertiliser applied was responsible for direct N2O emissions 

contributing a large portion (83%) of the total N2O emissions. This occured in the absence of 

crop residue, which also contributes directly and indirectly to N2O emissions (Ma et al. 2012). 

As previously mentioned, the equation (see section 3.7.3.1.2) used to calculate direct N2O 

emissions from fertiliser application was modified to exclude N2O emissions from crop residue 

and N-fixing crops. Brock et al. (2012) reported that N2O emissions from crop residue 

contributed about 9% to the total C footprint; in support, Ma et al. (2012) also noted that crop 

residue represented only a small portion of total GHG emissions for maize cultivation. Both 

Ali et al. (2017) and Ma et al. (2012) however reported different values for direct N2O 

emissions compared to the results of this study because emissions from the decomposition of 
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crop residues were included in their respective studies. Ali et al. (2017) reported N fertiliser 

application affected direct field emissions by 62.5%, while plant residue decomposition 

contributed 37.5% of direct emissions to total N2O emissions. Similarly, Ma et al. (2012) found 

that higher N fertiliser rates influenced emissions from crop residue, which in turn, also 

affected the total N content in crop residue.  

The relationship between farm management systems and N2O emissions is more than just a 

consideration of N fertiliser input only (Van Groenigen et al. 2010, Li et al. 2016). A more 

robust approach, such as the adoption of tier 2 and tier 3 methodologies for estimating EFs 

(Adewale et al. 2018), is required in order to estimate further factors controlling N2O emissions 

such as climate, soil type, soil water content, soil temperature, soil pH and type of mineral 

fertiliser (Gao et al. 2011). Several studies have reported that fertilisers such as anhydrous 

ammonia (NH3), urea [CO(NH2)2; 46 % N] or ammonium nitrate (CAN: NH4NO3; 27% N) can 

potentially enable nitrification and denitrification to occur in the soil (Brentrup et al. 2000, 

Smith et al. 2012, Hinton et al. 2015). For example, from a field experiment on wheat, Lebender 

et al. (2014) reported that different forms of mineral fertiliser induced N2O emissions at 

different rates. Further to this, when compared to ammonium nitrate, urea fertiliser produced 

higher N2O emissions (Lebender et al. 2014). Similarly, Tierling and Kuhlmann (2018) 

reported higher cumulative N2O emission rates from urea compared to ammonium sulphate.  

Indirect emissions resulting from leaching and volatilisation (using only N fertiliser rates), were 

found to contribute 17% to total N2O emissions, increasing average CO2 emissions by 426.1 

kg CO2eq ha -1. This evidences the fact that several factors such as N rates, tillage, crop category 

and climatic conditions affect emissions from leaching and volatilisation (Ali et al., 2017). 

Nitrate leaching is strongly affected by soil texture and is significant in areas of high rainfall 
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(Del Grosso et al. 2009). According to Brock et al. (2012), limitations come from the fact that 

many studies do not account for indirect N2O emissions from leaching and run-off, especially 

for dryland cropping regions such as Australia where the ratio of evapotranspiration to rainfall 

is between 0.8 and 1.0. The fraction of N lost by leaching and run-off, currently estimated at 

0.3% by the IPCC (2006) as a default value could be as low as 0.05% for regions where rainfall 

is much lower than potential evapotranspiration (Rochette et al. 2008). In response, Brock et 

al. (2012) found that by adopting EF of 0.45% from field research increased soil emission by 

about 7% compared to using the default value. For this study, the default IPPC EF of 0.3% was 

used, however, it is recognised that this may lead to a considerable under or over estimation of 

soil N2O. 

According to Parihar et al. (2018), apart from soil attributes, tillage practices affect several soil 

variables, thus contributing to N2O emissions. This statement comes as many researchers claim 

that some studies maintain that ploughing in conventional tillage affects N2O emissions 

compared to no tillage practices. For example, He et al. (2018) found that conventional tillage 

methods used in maize cultivation increased N2O emissions by 10.7% and 9.5% under the RCP 

4.5 and RCP 8.5 respectively. Janzen et al. (2006) and Rochette et al. (2008) however reported 

that the effect of tillage on N2O emissions was not consistent, arguing that emission varied for 

different experiments and was sensitive to the local environment; mainly the type of soil. 

Further to this, Uzoma et al. (2015) also found that the magnitude of N2O emissions was similar 

between both intensive and minimum tillage methods. Thus the contribution of tillage to N2O 

emissions will require the measurement of N2O fluxes based on initial soil physical and 

chemical properties using a coefficient or ratio factor (He et al. 2018). In the absence of 

measured field data, this study did not consider the effect of soil tillage on N2O emissions. 
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Many studies have revealed that climate change will have significant effects on soil N2O 

emissions from maize production, based on model predictions (Smith et al. 2013, He et al. 

2018). As a result, climate change effect on soil N2O emissions could be estimated using agro-

climatic models. This however, would involve the complexity of model parameterisation using 

field flux measurement (Wu et al. 2015, Uzoma et al. 2015). Due to the lack of available soil 

emission fluxes to calibrate a model, this study estimated soil N2O emissions using the IPCC 

tier 1 coefficients and fertiliser application rates.  

Bessou et al. (2013) obtained field N2O fluxes using the modified agro-ecosystem model 

CERES-EGC and compared the emission data with observed data and outputs from calculated 

IPCC tier 1 coefficients. Firstly, they reported that simulated soil N2O emissions were 

underestimated; and secondly, they found that modelled emissions were within the same order 

of magnitude as the calculated emissions using IPCC tier 1 coefficients, albeit, slightly lower. 

As a result of their findings, Bessou et al. (2013) also emphasised the sensitivity of impact 

categories to climatic conditions. For example, simulated drier years resulted in lower direct 

and indirect N2O emissions, leading to reduced eutrophication and acidification impacts, 

however, this reduced both biomass and ethanol yields.  

Notwithstanding resource availability, future evaluation should seek to apply processed based 

models such as DNDC or DAYCENT calibrated for each study location to explore the impacts 

of climate change and management strategies on soil N2O emissions. By doing so future 

researchers could compare the results based on IPCC tier 1 methodology used in this study. 

Uzoma et al. (2015) and Del Grosso et al. (2009) explained the difficulties, advantages and 

disadvantages of model use in soil N2O emission analysis. For this study, total N2O emission 

from fertiliser application was greatly influenced by direct soil N2O emission from fertiliser 

application, contributing significantly to the overall GHG emissions (44.1%). This was 
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compared to indirect N2O emissions from leaching and volatilisation (9.3%). Consequently 

making the application of fertiliser the most emission-intense process contributing to 

production in maize cultivation.  

 

5.7.2.3 Emissions from machinery use and diesel input 

In addition to emissions from fertiliser production and application, emissions from machinery 

used for cultivating the land and diesel input also contributed to the total GHG emissions. 

Results showed that field operations contributed a small percent to the total GHG emissions 

from maize production. In addition, frequent machinery used with intense farming under the 

CT method resulted in more diesel use and hence increased GHG emissions. Therefore, a no-

tillage practice can significantly reduce GHG emissions, since it uses less fuel than both 

conventional and reduced tillage methods.  

The estimated values closely agree with most reports on machinery use, tillage intensities, fuel 

use and the associated GHG emissions (West and Marland, 2002, Maraseni et al. 2010, 

Jayasundara et al. 2014, Ali et al. 2017, Lu and Liao 2017). Furthermore, Rivera et al. (2017) 

reported that harrowing and ploughing contributed generally (33 % and 24 % respectively) to 

the field operation stage, which affected all diesel-related environmental impacts, with 

fertilising and harvesting contributing less (15% and 17 %). West and Marland (2002) 

previously reported higher CO2 emission for CT, primarily due to fuel use in mouldboard 

plough operations. In addition, average net C flux from three cropping systems (corn, soybean, 

and wheat) were reduced in no-tillage system (-200 kg C ha-1 per year) compared to 

conventional tillage (+168 kg C ha-1 per year) per year (West and Marland 2002).  
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This analysis suggests that a change from the CT system that uses mouldboard ploughing to a 

RT or NT system could result in CO2 emission savings of approximately 25.8 kg CO2eq ha-1 

and 110.4 kg CO2eq ha-1 for each system. Across all treatments, GHG emissions associated 

with field operations in maize cultivation accounted for 9.2% of the total emissions (129.6 kg 

CO2eq ha-1). In support of these findings, Jayasundara et al. (2014) reported that fieldwork at 

county-level contributed a similar value of 9% to total GHG emission from corn production in 

Ontario, Canada. In addition, Ali et al. (2017) reported an 11.4 % contribution from field 

operations. 

 Regardless of the fertiliser application rate, it was clear that soil tillage activity influenced 

GHG emissions the most. Therefore, reducing tillage activity by changing implements and 

adopting a NT conservative method had the potential to contribute to GHG emission savings 

for maize production. An example of this is evidenced by Lu and Liao (2017) who achieved 

12.3% C emission reduction using either rotary tillage (RT) or chisel plough tillage (STS) 

instead of mouldboard ploughing for conventional (CT) tillage. Ali et al. (2017) also found that 

by moving from CT to NT systems, they achieved an average reduction in GHG emissions of 

43%. Similarly, Sørensen et al. (2014) evaluated the influence of tillage methods on the total 

emission of GHG from four different crop productions. They reported a larger reduction in 

GHG emission per kg of product by adopting the RT method and that the NT method did not 

reduce GHG emission further. On the contrary, West and Marland (2002) did not observe a 

significant difference in CO2 emissions from agricultural inputs and machinery combined in 

CT and NT for corn production (228 and 225 kg C ha-1 yr-1 respectively). 
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5.7.2.4 Analysis of CO2 emissions from Herbicides, Pesticides and Maize seeds 

Results show that maize seeds for sowing accounted for 6.3% of the total GHG emissions. 

Other farm consumables such as pesticides and herbicides contributed approximately 4.3% and 

3.5% respectively to the total GHG emissions. Similar to other farm inputs as discussed, this 

study used emission factors weighted by the proportion of each product applied, to calculate 

the relative CO2 emission contributions to the total GHG emission. This is similar to the 

calculation process used by both Ali et al. (2017) and Wang et al. (2015).  

Using similar emission factors but different application rates, Ali et al. (2017) and Wang et al. 

(2015) reported a similar share of 2.6% and 3% contribution from spraying herbicides. In 

addition to this, Godard et al. (2012) used the dynamic model Pest-LCI to estimate the fate of 

pesticides and their emissions from soils and crop leaves. They reported that emissions from 

pesticides dominated (67%) in the ecotoxicity impact category compared to climate change 

(global warming category) and that this emission was mainly as a result of pesticide production 

and in-field emissions after application (Godard et al. 2012). The flexibility of this approach 

began with the possibility to couple the Pest-LCI model with a crop simulation model, 

parameterised with site-specific farm management data. Parajuli et al. (2017) also evaluated 

the risks of pesticides leaching to freshwater ecosystems as well as emission distributions of 

the active ingredients to air. They opined that the characterisation factors of pesticide types and 

application rate affected the emissions on the freshwater ecotoxicity impact category.  

The GHG emissions contribution as per Jayasundara et al. (2014), from combined agronomic 

inputs in maize production was 4%. Further to this, Gan et al. (2011) reported an average of 

36.3 kg CO2eq ha-1 from pesticides in the production of durum wheat. They maintained that 

because the carbon footprint from pesticides used in agriculture is small, the relative values of 
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the carbon footprint for the various cropping systems analysed would be reasonable. It is 

important to note however, that under the NT tillage system, more herbicide was used (for two 

spray passes) therefore a higher emission value of 92.4 kg CO2eq ha-1 for herbicide production 

was estimated compared to 46.2 kg CO2eq ha-1 estimated for CT and RT systems (one spray 

pass each). Nevertheless, all the agronomic inputs (maize seed, pesticide and herbicides) 

together represented only a small proportion (6.9%) of the total GHG emission overall. 

Therefore, it can be established that any modification of these agronomic inputs have no 

appreciable influence in reducing/improving the total GHG emission from maize production.  

5.7.2.5 Total GHG Emissions from maize production systems 

Total GHG emissions varied under each farm management scenario (fertiliser rates + tillage 

method) and thus, the average total GHG emissions per hectare ranged from 1,535.4 kg CO2eq 

ha-1 to 4,138.8 kg CO2eq ha-1. The total GHG emissions estimated for maize production are 

consistent with emissions from other resources. For example, Zhang et al. (2018) and Qi et al. 

(2018) reported average GHG emission of 3,820 kg CO2eq ha-1 and 3,798.8 kg CO2eq ha-1 for 

rain-fed maize production in China. Camargo et al. (2013) reported net GHG emission of 3,283 

kg CO2eq ha-1 per year for corn silage production using an energy analysis tool. Similarly, in 

Iran, Mohammadi et al. (2014) estimated GHG emissions of corn silage at 2,288 kg CO2eq ha-

1 attributing the main source of CO2 emission to electricity (for irrigation) and diesel fuel.  

In terms of this study, the estimates were generally lower than the emission value (7,910 kg 

CO2eq ha-1) presented by Felten et al. (2013) for maize produced in Western Germany over 16 

years. This may be because their system boundary accounted for methane emissions as well as 

emissions from transport, engine oils and lubricants for machinery not accounted for in this 

study. Manzone and Calvo (2016) in Italy also reported a much higher emission rate in maize 
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production (26,370 kg CO2eq ha-1). They determined that mineral fertilisation (31.1%), top 

dressing (31.2%) and biomass harvesting and transport (31.2%) contributing the most whilst 

lower values were obtained for planting/seeding operations (0.4%), ploughing and harrowing 

was 1.2% and 0.5% respectively. It should be noted that their system boundary however, 

included irrigation in addition to higher amount of herbicides and fertiliser usage (500 kg ha-1 

of NPK and 87 kg ha-1 of Urea).  

As already mentioned, the life cycle analysis carried out excluded emissions induced by land 

use change (LUC), transportation of harvested grain and emissions accompanying grain 

storage. According to Tubiello et al. (2015) in addition to Castanheira and Freire (2013), land 

use change is one of the major contributors to climate change. Because of this, tillage methods 

greatly affect soil organic carbon dynamics. Kim et al (2009) further explains that variables 

such as sustainable cropping management practices i.e. no-tillage and no-tillage plus cover 

crops are key factors in estimating GHG emissions associated with LUC. A bioenergy 

evaluation in Nigeria suggests that intensive land use and the transformation of forest and 

grassland areas to cropland for biofuel feedstock production will increase by 2050 (Okoro et 

al. 2018). Similarly, Hartley et al. (2015) reported that increased human LUC could have large 

negative impact on the projected increase of carbon stored in the tropical parts of West Africa 

under the effects of climate change. For example, from their projections, land use scenarios in 

Southern Nigeria will increase, hence the importance of protecting existing stands of tropical 

forest in the area. Therefore, a life cycle GHG balance of energy crop production such as maize 

should include an awareness of carbon emissions from direct LUC.  

Castanheira and Freire (2013) highlight the criticality of alternative LUC scenarios, farm 

management practices and transportation systems in terms of GHG emission evaluation and 

results. Qin et al. (2018) applied the concept of land management change (LMC) into the LCA 



238 

 

framework instead of the conventional LUC, as the former accounted for emissions from corn 

stover removal, organic matter additions and tillage methods. They explained that land 

management practices incorporating cover crop planting or manure application under a no-

tillage system could mitigate GHG emissions from residue removal; such as corn stover, from 

the farm. This practice system reduced GHG emissions from corn stover ethanol by 26% and 

98% under RT and NT systems respectively compared with CT. Soil organic carbon loss also 

reduced significantly (Qin et al. 2018). 

Ma et al. (2012) reported that higher N rates in the soil influenced crop residue contribution to 

GHG emissions. However, the environmental impacts resulting from complete removal of 

annual crop residue are concerning. This is specifically because in addition to maintaining the 

level of soil nitrogen required for crop uptake and improving soil organic carbon (SOC), crop 

residue can potentially reduce off-site environmental impacts such as leaching (Adler et al. 

2015, Yadav et al. 2018).  

For this study, it was estimated that synthetic fertiliser application contributed the greatest 

percentage to the total GHG emission, averaging 57.7%of the total GHG emissions, of which 

53.4% came from direct and indirect N2O emissions and 4.3% from CO2 emissions as a result 

of urea application. The remaining 42.3% of emissions came from input production (37.8%) 

and field operation (4.4%). Similar to these results, Sørensen et al. (2014) also reported that 

CO2 and N2O from soil emissions contributed the most (50-60%) followed by emissions from 

fertiliser production (28-33%). In addition, Godard et al. (2012) found that nitrogen fertilisation 

in potato production affected not only the climate change (CC) impact category, but also 

terrestrial acidification (TA) and marine eutrophication (ME) impact categories.  

Overall, maize production highlights better environmental results through improvements in 

fertiliser input efficiency. On average, GHG emission savings of 2377.8 kg CO2 eq ha-1 and 
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1,280.3 kg CO2 eq ha-1 could be achieved if 80 kg N ha-1 and 160 kg N ha-1 were used compared 

to 250 kg N ha-1. This is because the emissions associated with applying 250 kg N ha-1 were 

2.4 times the emissions of applying 80 kg N ha-1 and 1.5 times more than applying 160 kg N 

ha-1. Although increasing fertiliser application contributes to yield increase, the overuse of 

chemical fertilisers has a greater negative impact on the environment as the results indicate. 

Worryingly though, previous studies revealed that farmers’ perception typically resides with 

applying more fertiliser to increase yield (Wang et al. 2015). It is important to note, as shown 

in this study, that excess nitrogen fertiliser application does not always translate to significant 

yield increase, especially at higher yield levels. Therefore, in addition to crop-specific 

recommended application rates, educating farmers and stakeholders of the need to determine 

soil nutrient status first, before any application takes place is paramount. This is because it 

could prevent over fertilisation, which further results in yield decrease once crop N intake limits 

reach their optimum level.  

Total GHG emissions across the tillage system decreased from CT to NT suggesting the 

potential to reduce emissions overall by adopting the NT method. Lu and Liao (2017) estimated 

that different tillage practices affected net C flux in a winter wheat-summer maize rotation 

system. They noted that C sequestration was highest in the NT system compared to the CT 

system; hence, the net C flux for the CT system was positive and negative for NT. Similarly, 

Kim et al. (2009) quantified the effects of CT compared to NT on the environmental 

performance of corn grain and the corn stover system in the Corn Belt region of the US. Using 

a simulation model (DAYCENT), higher reduction in diesel fuel (12% to 44%) and reduced 

GHG emissions (53% and 45%) due to increased soil organic carbon and less N2O emissions 

was achievable by using the NT method. This concept is supported by the findings for this 

study as the CT system gave the highest emission rate compared to both RT and NT methods. 
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Goglio et al. (2018) compared measured emissions from a specific location to GHG emission 

calculated based on the IPCC tier I methodology and other commonly used methods. All five 

methods gave varying output for cereals and the report highlighted the issue of 

misrepresentation of local conditions as a result of using default global emission factors. 

According to Goglio et al. (2018), use of a simple model in combination with IPCC tier II or 

use of DNDC agroecosystem model gave similar results to observed emissions. However, in 

reality, the difficulty and technicality of model parameterisation and availability of data to 

calibrate the models, still makes the simple IPCC tier I method a more attractive option albeit 

with some uncertainty in the results.  

5.7.2.6 Carbon footprint of maize production 

According to Grassini and Cassman (2012), LCA assessment of maize production that is 

weighted on GHG emissions in relation to grain yield level, rather than emissions on a per 

hectare basis shows more relevancy and helps to relate global warming potential to crop yield. 

For this study, carbon footprint (CF) was estimated based on the total GHG emissions from 

input production, field operation, soil emission, and the localised climate change impact on 

yield under farm management scenarios. Positive values of emissions expressed as CO2 

equivalents per kg of maize grain produced, indicate a net source of GHGs to the atmosphere. 

Negative values indicate net sinks of GHG to the soil (Ma et al. 2013). The CF indicator 

estimates the amount of CO2 emissions directly produced per kilogram of maize grain and to 

date, very few LCA studies have made a distinction between the contribution of yield changes 

due to future climate change, N rate and tillage method when calculating the CF of maize.  

Ma et al. (2012), Yang et al. (2014) and Qi et al (2018) for example, quantified the correlation 

of CF and grain yield for various rotation systems and farming patterns based on experiments 
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that estimated annual GHG emission fluxes. Their research assessed the effects of rotation 

systems, N inputs on the annual CF of maize per kg of grain yield, while this study has gone 

one-step further in terms of correlating the effect of future climate change on CF of maize grain 

production. Li et al. (2016) also produced a limited study; only considering the influence of 

historical climate variations and management practices on aggregated GHG emissions and CF 

on a wheat-maize rotation system. Moreover, Jebari et al. (2018) only simulated soil carbon 

response to climate change and farm management scenarios, whilst Zhang et al. (2013) did not 

include soil emissions within their CF evaluation citing strong fluctuations in N2O emissions. 

As previously discussed, emissions due to land-use change were not included in the footprint 

of this study as is consistent with some methodologies such as the PAS-2050 methodology 

(British Standards Institute 2011). The main focus of this study centres on emissions per kg of 

maize grain produced (farm to gate LCA) and therefore, the CF of transportation of produce 

was not accounted for. 

Across all locations, CF increased from 2020 to 2080 under both RCP 6.0 and 8.5 climate 

scenarios. The highest CF was associated climatically with the highest temperature increase 

scenario (RCP 8.5) in 2080, irrespective of the fertiliser rate or tillage system. This reflects the 

impact of harsher climate change on crop productivity compared to baseline. It indicates that 

generally, as grain yield declines under climate change, CF per kg of maize grain increases as 

expected, although with some exceptions. As an example, when considering CF response to 

fertiliser rates, results show that irrespective of the climate scenario, CF as well as yield 

increased as the amount of fertiliser increased. This was due to the higher GHG emissions (soil 

emissions) from higher fertiliser rate. Therefore, it did not matter if yield increased at any 

location, essentially, higher fertiliser rates affected CF (Qi et al 2018).  
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However, the generalisation/generalisability of these results are subject to certain limitations. 

For instance, this trend was not consistent at the Enugu site where CF under 160 kg N ha-1 

decreased compared to 80 kg N ha-1. In addition, despite increased yield observed under higher 

N rates, CF were higher. The highest CF obtained under the RCP 8.5 scenario during 2080 

timeline were 0.400, 0.792, 2.012 and 1.504 kg CO2eq kg-1 of grain for Jos, Ibadan, Enugu and 

Ilorin respectively. Fertiliser rate above 160 kg N ha-1 led to no beneficial effect on maize yields 

but contributed significantly to increased carbon footprints. Wang et al. (2016) estimated that 

180 kg N ha-1 was the best application rate to achieve a low carbon footprint for the winter 

wheat system.  

In general, CF under NT decreased with either increasing or decreasing yield for all scenarios. 

The findings of the current study are consistent with those of Jebari et al. (2018) who states 

that under NT soil management, the rate of soil carbon sequestration quadrupled under a high 

temperature scenario. These results certainly confirm that NT will be beneficial in reducing CF 

under climate change. Of interest was the observation at Ilorin, which displayed yield increase 

as well as CF decrease under NT technology. 

Zhang et al. (2013) reported no significant difference between CT and NT, but, NT still 

produced the lowest carbon productivity. On account of this, they arrived at a similar 

conclusion on the adoption of NT technology to reduce GHG emissions in China. These results 

are consistent with those of other studies and suggest that NT enhances soil organic carbon 

(SOC) sequestration, which had a strong effect on CF. For example, CF changed to a negative 

value under NT when SOC was included (Sainju et al. 2014, Zhang et al. 2016). Elsewhere, 

contrasting results showing CT system improved yield and reduced CF compared to NT system 

have been reported (Wang et al. 2016). This result was limited as it essentially considered one 
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single management practice at a time, not considering the effects of any interaction between 

management systems.  

Overall, the estimated CF values were similar to published values except that of Ilorin and 

Enugu which were on the high end of the estimated CF emission range especially under RCP 

8.5 climate scenarios in 2080. To further illustrate, Kim et al. (2009) estimated CF of 0.25-0.82 

kg CO2eq kg -1 corn produced in the United States. In China, Liu et al. (2015), Cheng et al. 

(2015) and Yan et al. (2015) reported the average CF of maize as 0.230 kg CO2eq kg-1, 0.44 kg 

CO2eq kg-1, and 0.33 kg CO2eq kg-1 respectively. Xue et al. (2018) maintained that by excluding 

soil organic carbon storage, CF ranged from 0.44 kg CO2eq kg-1, to 0.59 kg CO2eq kg-1, but when 

soil organic carbon (SOC) was considered, CF decreased within range of 0.27 kg CO2eq kg-1, 

to 0.36 kg CO2eq kg-1. This result is similar to 0.48 to 0.64 kg CO2eq kg-1 estimated in Qi et al. 

(2018). Xue et al. (2018) attributed the varying CF results to differences in the calculation 

method, regional scale, and emission factors considered. They explained that the extent of 

inventory data collected for the LCA assessment and emission factor could result in larger 

GHG emissions. A significant factor influencing CF estimation is the difference in maize yield 

gap at varying locations due to climate variability and farm management practices.  

This is the first study to contribute to the understanding of the carbon and energy footprint of 

maize production in several agronomic zones in Nigeria. Increasing the awareness of climate 

change impact has spurred the current investigation to include assessment of the combined 

effect of various farm management scenarios on CF at yield scale. The results give a clear 

indication that in order to maintain or reduce the C footprint of maize under climate change, 

efficient N application and tillage method are key factors to consider (Grassini and Cassman 

2012). Chen et al. (2014) suggest that reduction in GHG emission per unit yield production is 
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achievable by utilising an integrated soil–crop management system. Although Chen et al. 

(2014) obtained higher yields, and GHG emissions reduced substantially under the integrated 

management system from historical field experiments, their analysis did not consider future 

climate variability due to climate change. Therefore, the GHG emission intensity per grain 

yield would need to be determined for future production systems using the integrated soil–crop 

system management suggested by Chen et al. (2014) under projected climate change scenarios. 

It is clear however, that the significant differences found in the productive efficiencies question 

the environmental viability of expanding the agricultural frontier to less suitable locations for 

maize crop production under climate change.  

5.8 Regression analysis 

As was mentioned in previous sections, the impacts of climate change and farm management 

scenarios on maize yield and life cycle analysis (LCA) were evaluated in order to determine 

the environmental impact, particularly in relation to Greenhouse Gas emissions (GHG), energy 

use and carbon footprint. In addition to gaining knowledge of the level of impacts associated 

with producing maize as biofuel feedstock, it is imperative to know whether the likelihood of 

increasing the environmental impacts is influenced by factors such as fertiliser, climate change 

or tillage systems. Hence, the objective of this section was to estimate the variation and 

response of yield and LCA outputs to each input variable using multiple regression analysis.  

Regression analysis is an important tool in environmental impact assessment and climate 

impact analysis. As a result of its advantageousness, various studies have used regression 

analysis to predict yield, LCA outcomes, and to determine the combined effect of climate 

change and farm management on yield (Lobell and Burke 2010, Pascual-González et al. 2015, 

Duan et al. 2015, Mansouri et al. 2015, Sitienei et al. 2017, Najafi et al. 2018). However, the 
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generalisability of much published research on this issue is problematic. This is because none 

of these studies have taken into account the combined effects of wide-ranging predictor 

variables on the response of LCA outcomes hence, this study aims to close the knowledge gap 

in this area.  

Other studies have considered the relationship between LCA and regression thus for example, 

DeVierno et al. (2012) adopted this concept to modify significant design characteristics in order 

to reduce product environmental impacts. Padey et al. (2012) also developed a regression using 

LCA results to quantify the GHG performance of a wind turbine system. The present study 

adopted a similar strategy albeit in a different context by combining life cycle assessment 

(LCA) and regression modelling in order to determine the significant effects of predictors such 

as climate change, fertiliser use and tillage on GHG, CF, NE and yield responses. This study 

is possibly the first to combine both methods to evaluate the effect of climate change scenarios 

and input factors on LCA outcomes. By including the analysis of maize yield, based on climate 

change projections, and the environmental impact assessment outputs (e.g. GHG, net energy 

and carbon footprint), this study extends existing knowledge on the sustainability of energy 

crop production.  

The multiple regression model predicted the effects of each factor on model responses and 

results show that some predictor variables had more influence on the response variables than 

others. In Nigeria, Oriola and Oyeniyi (2017) used similar regression analysis to determine the 

contribution of climatic elements on yield. They calculated that 87% of the variation in maize 

yield could be due to other factors outside of climatic elements. From this study, the results, by 

implication, show that fertiliser rate has a positive and significant effect on yield, GHG 

emissions and CF at all sites with the exception for the CF response at Enugu. Similarly, 

fertiliser had the highest effect on NE at Jos and Enugu only, while climate change affected 



246 

 

NE response at Ibadan and Ilorin. This means that climate change scenarios, not fertiliser or 

tillage, mostly influenced CF at Enugu, NE at Ibadan and Ilorin locations. A positive coefficient 

obtained for fertiliser for all models indicate that an increase in fertiliser would cause an 

increase in all response variables. It is important to note that in Ibadan and Enugu, fertiliser 

and climate change had almost equal effects on yield, and climate change would have the 

potential to put yield at risk due to the negative coefficient obtained. 

In order to design well-targeted adaptation measures to mitigate climate change impact on 

energy crop production including maize, it is important to identify the causal drivers of the 

increase in net energy and carbon footprint. Net energy (MJ ha-1) is an important energy 

footprint indicator in LCA, and a high NE reflects greater energy-input use efficiencies 

(Grassini and Cassman 2012). According to the FAO (2016), energy demand in crop 

production has a direct link to climate change and farm management practices such as soil 

tillage technologies and fertiliser application rates; therefore, the need to understand the 

relationship between NE and climate change and further promote climate-smart agricultural 

activities through informed policies is even greater.  

Previous research to validate these findings for location-specific CF and NE response to climate 

change scenarios is almost non-existent. While many studies across Nigeria have used 

statistical approaches to link the effect of climate change on yield variation, the effect on other 

response variables such as CF and NE have rarely been addressed. Eregha et al. (2014), 

Ekpenyong and Ogbuagu (2015), and Edoja et al. (2016) developed frameworks by building 

regression models that accounted for the effect of historical climate variability and CO2 

emissions on yield. For example, Eregha et al. (2014) estimated that as temperature and CO2 

emissions increased, maize yield would decrease. The inclusion of future climate scenarios in 

this study, accounted for future changes in CO2 concentration based on the RCP 6.0 and RCP 
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8.5 scenario pathways. Estimating accurately the relationship between GHG, CF and NE of 

energy crops and climate change is an important step in determining the environmental shifts 

to climate change response.  

There are similarities between the approaches described in this study and those utilised by 

Arrieta et al. (2018). In the case of Arrieta et al. (2018), multivariate redundancy analysis 

statistics were used to determine the effect of climate and no-tillage technology on maize and 

soybeans yield, GHG and energy intensities for 18 agronomic regions in Argentina. 

Bioclimatic variables from historical archive were also used while this study utilised climate 

change scenarios, and farm input variables varied including fertiliser input, diesel, and 

pesticides. They reported that climate, particularly mean annual precipitation, explained the 

variation in yield, GHG and energy efficiencies.  

Similarly, by using a factorial decomposition procedure to determine the effects of climate 

emission scenarios (RCP 2.6 and 8.5), cropping year and fertiliser management on maize 

yields, Corbeels et al. (2018) reported that the variation in yields was mostly due to climate 

change variability and not fertiliser for all sites except one. Their study did not consider the 

environmental life cycle assessment from the production system; however, they attributed their 

findings to large uncertainties in terms of different GCM outputs and limited capability of crop 

models in simulating nutrient-limited yield (Corbeels et al. 2018). Likewise, Najafi et al. (2018) 

built a regression model to predict the effect of climate systems and technology improvement 

on crop yields in 160 countries. The study however, did not account for future climatic changes, 

but nevertheless, the model captures past impacts of climate predictors that explained more 

than 70% of the residual variance for crops. Although extensive research has been carried out 

on regression, none of the three recent studies discussed accounted for the combined effect of 

the factors identified in this study, especially with regards to the effect on NE and CF.  
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Concerning the relationship between fertiliser use and the response variables, coefficients from 

the simple linear regression have shown that positive relationships exist between fertiliser 

increase and increase in yield, GHG emissions, CF and NE. For locations where climate change 

had a greater effect on CF and NE, depending on the climate scenario pathway, the relationship 

was either negative or positive. Specifically, the correlation between NE and climate change 

RCP 8.5 scenario (Ibadan), NE and climate change RCP 6.0 scenario (Ilorin), CF and climate 

change RCP 8.5 scenario (Enugu) was negative. This implies that climate change has a negative 

effect on NE and CF.  

A previous study undertaken by Zhai et al. (2017) used the ARDL regression model 

(autoregressive distributed lag) to test short and long-term relationships between historical 

wheat yield, climate change and farm technology. Their results demonstrated that climate 

change had a weak effect on yield but fertiliser and farm machinery use also jointly affected 

yield in the long-term. Zhai et al. (2017) acknowledged the difficulty in separating one factor’s 

influence on yield from other factors influence. In terms of this study, what is evident is the 

possibility of determining the variation in yield, GHG emissions, carbon footprint and net 

energy by predicting the effect of climate change scenarios, tillage and fertiliser use for maize 

production and evaluating the linearity that could exist between variables. Further research is 

required to assess the relative importance of each predictor and compare each contribution 

made. Further to this, metrics other than coefficients could be used to interpret model results 

(Nimon and Oswald 2013). This could help identify inter-correlations or co-linearity between 

predictors and determine the relative importance of the predictors within the model (Lobell and 

Burke 2010, Nimon and Oswald 2013).  

More research is required to determine if the results obtained are a characteristic of this study, 

the locations or if they can be reproduced within and across varied and wide-ranging contexts. 
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It would be beneficial to establish a validation system (or measure model performance) to test 

robustness of the LCA-regression system and whether, based on the validity of the results, the 

model could be used as a reference for making decisions and also as comparison within specific 

climate change assessments. If more prognoses such as the ones obtained from this study 

become available to environmental professionals and bioenergy policy makers, then extended 

information on changes within the environmental impacts and yield of future maize production 

would be available for appropriate/adequate mitigation and adaptive planning. This would 

consequently reduce environmental impacts due to climate change. Nonetheless, in future 

modelling, the model performance could be enhanced by considering a wider range of 

environmental data and LCA impact categories other than GHG and CF over a broader range 

of locations.  

Estimating model validity and usefulness could be done through comparison with literature 

surveys (Padey et al. 2012). However, this strategy may not be explicit in terms of result 

interpretation because many studies have used methods based on different objectives and 

scopes thus resulting in different outputs. In comparison to some study examples mentioned 

above, this study focused attention on the effect of predictors on variations in CF and NE. It is 

also important to note the possibility that the conclusions drawn from this study would vary 

when locations are changed. Najafi et al. (2018) and Dimobe et al. (2018) used the split 

sampling technique to validate a Bayesian model and RF regression model respectively but this 

process in itself has limitations. According to Oredein et al. (2011), data splitting could be 

inconsistently done, resulting in different validated results and the technique requires a 

significantly larger sample otherwise the results are likely to vary. The LCA-regression method 

is adaptable to other regions and crops. Therefore, similar model development is feasible for 

other biofuel energy crops in different agro-ecological zones.  
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In summary, the present study, developed to exploit weather prediction techniques together 

with an LCA-regression method, has the potential for wide application in the biomass arena. It 

has been applied to maize growth in four agro-ecological zones in Nigeria, where different 

conditions obtained, but where a sufficiently long weather record existed in order to permit the 

calibration of the weather model. The outcome of the study of these four sites clearly points to 

future climate as a major influence, but there still remains an emphasis on the fact that maize 

yield, net energy and carbon footprint are extremely sensitive to the application of fertilizer. 

Indeed, beyond a modest application rate, it can be argued categorically that increased fertilizer 

use progressively reduces NE and increases CF.  

These results are similar to those of Khoshnevisan et al. (2013), but inconsistent with previous 

studies exemplified by Arrieta et al. (2018) and Corbeels et al. (2018) who suggested that 

climate change mostly explained the variation of maize yield as compared to fertiliser. 

Although tillage was not the dominant factor in GHG and CF responses, tillage coefficient 

values were negative and statistically significant suggesting that an application of no-tillage 

method could diminish some of the impacts from diesel use. Findings from analysis also 

suggests that climate change scenarios was the critical factor in explaining the variation in NE 

and CF responses at some sites (Ibadan, Enugu and Ilorin) and that the relationship is linear 

with both positive and negative impacts. Further research however, is necessary to support this 

conclusion. Overall, the model presented in this thesis can be used to assess future 

agricultural/bio-energy strategies and guide towards lowering the current and future CF and 

NE of maize in keeping with the objectives of IPCC to reduce GHG emissions from agricultural 

practices. 
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Chapter 6 

6 Conclusion and recommendations 

6.1 Conclusion  

There are indications that demand for energy crops will continue to rise with the increase in 

biofuel consumption (Beckman and Nigatu 2017). This is partly due to the enactment of 

policies put in place in order to curb the use of fossil fuels, thus mitigating climate change and 

energy insecurity; which stems from the instability in global oil prices and depleting crude oil 

reserves (Liu et al. 2017). Presently, many emerging economies including Nigeria, are 

beginning to invest in biofuel production. These investments, which take place alongside those 

of large biofuel economies (such as the US, Brazil and China), possess the underlying aim of 

decarbonising the economy, a trend that currently adds to the demand in biofuel feedstock 

cultivation at a significant level (Aliyu et al. 2017). Thus, in 2016, bioethanol production in the 

USA, using domestic grown maize as primary feedstock, was estimated at 57.7 billion litres 

(Jones et al. 2017, Beckman and Nigatu 2017). This was followed closely by Brazil, with an 

estimated production of 30.4 billion litres of bioethanol from sugarcane in 2016 (USDA 2016).   

Further to the above, crop yield and cropping area (production per hectare) are two major 

factors that impact on biofuel feedstock supply. Therefore, meeting the increasing demand for 

biofuel feedstock requires an increase in either one or both of these factors. In Nigeria for 

example, maize (Zea mays) has been identified, as a viable feedstock for bioethanol production 

because of its high sugar content, high productivity per unit of land, and high yield output. In 

addition, this energy crop type has the capacity to grow on both marginal and degraded 

agricultural land (Ben-Iwo et al. 2016).  
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In addition to the increasing demand for biofuel feedstock comes increasing concern with 

regards to competition with food production. Several studies suggest that maize grown 

specifically for biofuel has the potential to increase land grabbing, possibly resulting in direct 

or indirect land use change (Okoro et al. 2018). Maize is grown in temperate climates and 

regions with high amounts of annual precipitation. However, in recent times, new varieties of 

maize with shorter growing periods (early and extra early maturing) and varieties that can adapt 

to low precipitation and high temperatures have been developed, thereby improving yields and 

expanding the potential cropping area for maize cultivation. A clear benefit of this move 

towards more adaptable maize varieties according to Ben-Iwo et al. (2016), is that bioethanol 

from maize has the potential to reduce GHG emissions by 40%. 

In common with many crops, climate change can significantly exacerbate the risk of crop 

failure in the future; based on projected temperature increases and erratic rainfall patterns. 

Therefore, sustainable management of maize production is important, in order to mitigate 

significant impacts on biofuel feedstock supply. In light of the challenges of climate change 

impact on yield productivity, it is also imperative to consider the impact of climate change on 

the potential environmental response of producing maize. Consequently, many studies have 

taken the direct and indirect contributors to GHG emissions from maize production systems in 

to account (e.g. He et al. 2018, Corbeels et al. 2018, Anderson et al. 2018, Jebari et al. 2018, 

Garba 2014 and Zhang et al. 2018). But even amongst these, few studies such as Ma et al. 

(2012), Jayasundara et al. (2014), Cheroennet and Suwanmanee (2017), and Nitschelm et al. 

(2018) have addressed the local effect of climate change on the carbon footprint of maize 

feedstock produced for biofuel. 
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Clearly, it is imperative that the impact of climate change on maize production is incorporated 

into its cultivation; consequently, this study set out to holistically determine the impact of 

climate change and farm technology on yield, and to evaluate the environmental response based 

on a life cycle assessment (LCA).  

For the purposes of achieving the aforementioned aim, a generic framework (CSAF) was 

developed that integrated climate change projections and cropping system modelling coupled 

to life cycle assessment and linear regression analysis. The rationale for doing so was to 

improve the evaluation process, by considering the individual effects of climatic and agronomic 

factors on the environmental footprint of maize feedstock. This study has applied a linear 

regression to assess the relative influence of predictors on LCA outputs such as GHG 

emissions, net energy and carbon footprint linked to climate change.    

To answer the first research question, site-specific downscaled climate scenarios were used to 

project future maize yield change. Based on climate projections under the representative 

concentration pathways (RCP) 6.0 and 8.5 future scenarios, the results show that average 

projected temperature will increase by 2.4 °C and 3.3 °C towards the year 2080 relative to a 

2010 climate baseline. Likewise, rainfall will increase slightly (±0.3 to ±8 %) across the 

locations studied: Ibadan, Jos, Enugu and Ilorin. Hence, adequate adaptation measures will be 

required to overcome the effects of these climatic changes on crop yield.  

Climate change will significantly affect yield by 2080, when compared to the results obtained 

for 2020 and 2050 under both RCP climate scenarios. The research found that yield response 

varied across locations and that Jos was the location that produced the highest yield under 

climate change. In contrast, yield declined significantly in Ibadan when compared to baseline 

yield. By estimating the impact of climate change using a crop model, the results gave an 
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insight into yield response under fertiliser and tillage treatment combinations. Equally, the crop 

model made it possible to consider local factors in the life cycle inventory stage. 

To answer the second and third research question, a quantitative farm life cycle assessment of 

maize production was conducted. The LCA and crop model outputs were regressed to estimate 

the effects of input factors and the correlation between input variables.   

 The evaluation of maize yield response to each input variable, using a linear regression 

approach provided much-needed evidence as to the factors that significantly affected yield 

response. Using the same approach on LCA outputs, this study contributes to creating an 

understanding of carbon footprint and net energy responses to predictors such as climate 

change scenarios, fertiliser and tillage methods. 

The three contributing factors affecting the observed variation in yield, GHG, CF and NE are 

climate change, fertiliser and tillage method. These independent variables were statistically 

evaluated for significant effects and the regression model confirms the following:  

1. Fertiliser had a dominant effect on all response variables at Jos, while climate change 

had a dominant effect on NE at Ibadan, Enugu and Ilorin; the effect of tillage was not 

significant on yield and NE at Jos, Ibadan and Ilorin and negatively correlated with 

GHG and CF across all sites. The statistical model did not show any interaction effect 

of tillage systems and climate change on yield. For example, tillage use in controlling 

weeds, incorporating residues into the soil, aerating the soil and further aiding crop 

growth, can influence soil temperature, moisture and length of growing season in 

response to climate change, which in turn, could lead to decline in yield. 

2. From the linear regression model, it can be deduced that there are some effects of 

climate change on yield, but at slightly lower levels as compared to fertiliser. For 
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example, the combined effect of climate change scenarios (RCP 6.0 and 8.5) on yield 

at Ibadan, Enugu and Ilorin were 47%, 42% and 39% compared to 50%, 48% and 53% 

for fertiliser respectively. This shows that although fertiliser rate had more effect on 

yield, climate change is also responsible for a significant level of variance observed in 

yield.  

3. The carbon footprint of maize production had a positive relationship with fertiliser, 

which infers that as fertiliser rate increases, the CF of maize will also increase. In 

addition, no relationship existed between GHG and climate change scenarios however; 

the effect of climate change on agricultural GHG emissions cannot be underestimated. 

This was discussed in depth in Chapter 5. For example, studies based on model 

predictions have shown that climate change is one of the factors controlling soil N2O 

emissions, which is the dominant GHG from this study (Smith et al. 2013, Bessou et al. 

2013, Uzoma et al. 2015, He et al. 2018). The direct impact of climate change on soil 

N2O emissions was outside the scope of this study and therefore not considered. As a 

result, the linear model did not establish if a relationship between climate change and 

GHG emissions existed.  

A major finding of this study is the confirmation that across the agro-ecological zones studied 

in Nigeria, fertiliser application rate is a more important factor than climate change as was 

observed by previous studies. Furthermore, this is the first known study to report other impact 

categories such as net energy and carbon footprint that also responded to climate change at 

these locations. This indicated that climate change and not tillage or fertiliser application is the 

causal driver for the increase in net energy and carbon footprint. In addition, it was observed 

from the regression analysis that fertiliser rate, and not climate change had more effect on 

maize yield, contrary to conclusions drawn from previous studies that name climate change as 
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having an adverse effect on yield (Islam et al. 2012, Mereu et al. 2015, Ndawayo et al. 2017). 

These findings are presented with the exception of Enugu, where both fertiliser application and 

climate change impacted equally on yield 

Overall, the findings of this study point to a possible risk in that future climate change will 

make maize less valuable as a potential biofuel feedstock in net energy terms and GHG 

emission terms across the agro-ecological zones in Nigeria. As a result, the carbon footprint of 

maize will increase, as more energy and fertiliser inputs are required to mitigate the impact of 

future climate change, and improve optimal yield response. However, the literature review 

found that policy makers tend not to consider the environmental impact of biofuel feedstock 

production; caused by climate change, when designing policies to promote large-scale farm 

production at local or regional level (Bessou et al. 2011, Duvenage 2013).  

According to the FAO (2016), energy use efficiency, climate change and agriculture are 

intricately linked. Net energy is an important energy footprint indicator that relates the reliance 

of crop production to energy use; the intense usage of farm machinery for soil tillage and 

fertiliser application increases the use of energy. This further leads to increasing GHG 

emissions, which in turn, increases the carbon footprint per kg of crop produced under climate 

change. It is possible to improve yield and reduce C footprint of maize production through 

appropriate N application and efficient tillage operation; irrespective of the future climate 

scenario.  

This study shows that moderate fertilisation application rate of 160 kg N ha-1 produced the 

most significant yield increase and a relatively lower GHG emissions and lower C footprint 

compared to higher fertiliser rates of 200 kg N ha-1 and 250 kg N ha-1. Overall, total GHG 
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emissions of maize production were highly correlated with the amount of N fertiliser; while 

the carbon footprint was more correlated with climate change and tillage system. 

The application of a conservative no-tillage method (NT) has the potential to reduce GHG 

emission by 51% compared to the conventional method (CT). The best combination, which 

represents the effective use of farm resources was NT combined with 80 kg N ha-1, although 

this treatment combination did not boost maize yield under future climate scenarios. As 

expected, NT technology and lower fertiliser rate of 80kg N ha-1 had the highest NE, the lowest 

emission intensity per kg of yield under both RCP 6.0 and RCP 8.5 climate scenarios. Locations 

with low yield produced a higher carbon footprint, however, boosting yield under climate 

change by increasing fertiliser input increased GHG emissions and further increased carbon 

the footprint of maize per kg of yield. 

Although climate change impact can be mitigated through careful selection of farm 

management techniques, this study suggests that maize may not be a sustainable biofuel 

feedstock of choice for all locations studied, with the exception of Jos. Despite the huge 

potential for maize cultivation for biofuels, this may not be viable environmentally when 

climate change is factored in. Nonetheless, in order to ensure a successful strategic move 

towards a low carbon future, and sustainable implementation of biofuel policies, this study 

provides valuable information for the Nigerian government and policy makers on potential 

AEZs to cultivate maize under climate change.  Further research on the carbon footprint of 

alternative feedstocks to assess their environmental carbon footprint and net energy is strongly 

suggested. 

This study has presented evidence on the impact of climate change and farm technology on 

maize yield, and the environmental response of the farming system under climate change. Such 
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detailed insight is required in order to promote climate-smart agricultural practices in Nigeria. 

Alternatively, based on the findings of this study, well-targeted adaptation measures to mitigate 

climate change impact on maize production and reduce the carbon footprint of maize, should 

be sought.  

The integrated modelling framework adopted for this study is a structured procedure, 

incorporating multiple field-specific analytical methods and models, for specific applications 

and decision-making in a broad context. In terms of this study, however, it provides an 

improved approach for understanding the environmental response of energy crop to climate 

change. 

6.2 Research limitations 

Although the methodological approach and tools used were carefully considered, further 

reflection shows aspects of the study’s limitations.  

The geographical scope of the agricultural and LCA study was limited to specific agro-

ecological zones in Nigeria and, therefore, representative of future sensitivity of the carbon 

footprint of maize production to local climate change projections and management scenarios; 

which in itself limits the application of the results to other regions. On the other hand, the 

integrated framework can be widely applied subject to availability of historical weather data, 

soil data and other farm management data.  

The sustainability assessment of biofuel feedstock cultivation was assumed on existing 

cropland, hence, changes in emission intensity due to direct land transformation such as 

conversion of grasslands and tropical forest for energy crop production, under similar climate 

scenarios, was not included in this study. This is because, as suggested in many studies, land-

use impact assessment has proven difficult to quantify and emission results tend to vary greatly 
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(Czyrnek-Delêtre et al. 2016). Hence, the environmental impacts and carbon intensity result 

can only be interpreted for arable land scenarios and are not representative of emissions from 

direct LUC in the maize GHG balance.  

Furthermore, the Life Cycle Impact Assessment (LCIA) specifically focused on the global 

warming impact category, relating farm energy use and GHG emission intensity, in response 

to climate change agricultural management practices. However, agricultural activities are 

responsible for impacts on biodiversity, ecotoxicity, acidification and eutrophication of water 

bodies not categorised in this study. Therefore, including other non-GHG and energy related 

environmental impact factors such as acidification, eutrophication, human health, and toxicity, 

will present a complete picture of biofuel sustainability within a full-blown attributional LCA. 

Finally, a general limitation of the LCA methodology is that it does not quantify other social 

sustainability concerns related to biofuel feedstock production. Nevertheless, a general 

consensus is emerging as the environmental and social sustainability of biofuels production are 

key factors for the development of biofuel support policies and, as such, it would be a valuable 

research topic to integrate within a LCA framework. 

6.3 Recommendation for future research  

The crop sustainability assessment framework (CSAF) is adaptable to other regions and can 

also be applied to other types of biofuel feedstock. What is now needed are similar studies that 

could be carried out to further support the conclusion drawn from this study; as well as other 

statistical methods such as the split sampling technique, in order to validate the regression 

model. The main advantage of the multi-model approach, using multiple linear regression, is 

that the main effect of each predictor on LCA responses can be specified. Further expansion of 
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the regression model is encouraged to include evaluation of the interactive effect of multiple 

factors, to give a robust variable response.    

Due to the intense farm management practice adopted, increasing fertiliser rates theoretically 

had varying effects on N2O and CO2 emissions and these were considered as the main 

contributing GHGs to global warming impact categories. According to Besson et al. (2013), 

LCA results are widely sensitive to changes in fertiliser inputs; specifically affecting impact 

categories such as acidification and eutrophication. Further research is needed to determine the 

impacts of local climatic changes and farm management strategies on the aforementioned 

impact categories. In addition, if resources are available (e.g. field flux measurement), future 

evaluation should seek to apply processed based models such as DNDC or DAYCENT (Smith 

et al. 2013, He et al. 2018); calibrated for each study location, to explore the impacts of climate 

change, and compared to the IPCC tier 1 methodology used in this study.  

In order to extend this study, obtaining more information on long-term station-observed climate 

data and the downscaling of regional climate models (RCMs) that have been bias-corrected, 

instead of GCMs, would help to establish a greater degree of accuracy. The application of other 

emission pathways and different climate sensitivities, to cover a wide range of future 

possibilities; consideration of renewable energy use in the production of agrochemical to 

reduce CO2 emissions, and use of biodiesel in farm machinery also to reduce CO2 should also 

be considered. 
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Appendices 

Appendix A 

Table A-1: Ensemble of CMIP5 GCMs available in DSSAT-Perturb tool for downscaling site-specific future 

climate projections as discussed in Chapter 3 (Source: Yin et al. 2013). 

 
Model Country Spatial resolution for 

atmospheric variable 
(longitude*latitude) 

Spatial resolution for 
ocean variable 
(longitude*latitude) 

1 ACCESS1.3 Australia 192*145 360*300 

2 ACCESS1.0 Australia 192*145 360*300 

3 BCC-CSM1-1 China 128*64 360*232 

4 BCC-CSM1-1-m China 320*160 360*232 

5 BNU-ESM China 128*64 
 

6 CanESM2 Canada 128*64 256*192 

7 CCSM4 USA 288*192 320*384 

8 CESM1-BGC USA 288*192 320*384 

9 CESM1-CAM5 USA 288*192 320*384 

10 CMCC-CM Italy 480*240 182*149 

11 CMCC-CMS Italy 192*96 182*149 

12 CNRM-CM5 France 256*128 362*292 

13 CSIRO-Mk3-6-0 Australia 192*96 192*189 

14 EC-EARTH Netherlands 320*160 362*292 

15 FGOALS-g2 China 128*60 360*196 

16 FGOALS-s2 China 128*108 360*196 

17 GFDL-CM3 USA 144*90 360*200 

18 GFDL-ESM2G USA 144*90 360*210 

19 GFDL-ESM2M USA 144*90 360*200 

20 GISS-E2-H USA 144*90 144*90 

21 GISS-E2-H-CC USA 144*90 144*90 

22 GISS-E2-R USA 144*90 288*180 
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23 GISS-E2-R-CC USA 144*90 288*180 

24 HADCM3 UK 96*73 96*73 

25 HadGEM2-AO UK 192*145 360*216 

26 HadGEM2-CC UK 192*145 360*216 

27 HadGEM2-ES UK 192*145 360*216 

28 INMCM4 Russia 180*120 360*340 

29 IPSL-CM5A-LR France 96*96 182*149 

30 IPSL-CM5A-MR France 144*142 182*149 

31 IPSL-CM5B-LR France 96*96 182*149 

32 MIROC4H Japan 640*320 1280*912 

33 MIROC5 Japan 256*128 256*224 

34 MIROC-ESM Japan 128*64 256*192 

35 MIROC-ESM-CHEM Japan 128*64 256*192 

36 MPI-ESM-LR Germany 192*96 256*220 

37 MPI-ESM-MR Norway 192*96 802*404 

38 MRI-CGCM3 Japan 320*160 360*368 

39 NorESM1-M Norway 144*96 320*384 

40 NorESM1-ME Norway 144*96 320*384 
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Appendix B.  

Figure B-1: Screen shot of experiments created within the DSSAT v4.5 Cropping System Model (CSM) interface.  
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Figure B-2: Example of experimental treatments created within the DSSAT v4.5 X-build interface.  
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Appendix C 

Figure C-1: Soil profiles created in DSSAT for Ibadan 
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Appendix D  

Figure D-1: Soil profile for Jos 
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Appendix E  

Figure E-1: Soil profile for Enugu 
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Appendix F 

 Figure F-1: Soil profile for Ilorin 
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Appendix G 

Jos 

Table G-1: The probability distributions of daily precipitation, maximum and minimum temperature and 

radiation for each month are compared using K-S test  
  

daily RAIN 
distributions 

 

daily MIN 
distributions 

 

daily MAX 
distributions 

 

daily RAD 
distributions 

 

Effective 
N 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

J 

 

No precipitation  

 

0.106 0.999 

 

0.138 0.971 

 

0.087 1.000 

F 12 0.218 0.590 

 

0.158 0.913 

 

0.21 0.637 

 

0.392 0.042 

M 12 0.224 0.554 

 

0.106 0.999 

 

0.211 0.631 

 

0.087 1.000 

A 12 0.064 1.000 

 

0.316 0.163 

 

0.106 0.999 

 

0.044 1.000 

M 12 0.054 1.000 

 

0.106 0.999 

 

0.105 0.999 

 

0.261 0.359 

J 12 0.03 1.000 

 

0.105 0.999 

 

0.106 0.999 

 

0.218 0.590 

J 12 0.074 1.000 

 

0.106 0.999 

 

0.106 0.999 

 

0.261 0.359 

A 12 0.054 1.000 

 

0.053 1.000 

 

0.158 0.913 

 

0.392 0.042 

S 12 0.062 1.000 

 

0.106 0.999 

 

0.158 0.913 

 

0.087 1.000 

O 12 0.06 1.000 

 

0.106 0.999 

 

0.106 0.999 

 

0.174 0.842 

N 12 0.565 0.001 

 

0.105 0.999 

 

0.158 0.913 

 

0.174 0.842 

D 12 0 1.000 

 

0.158 0.913 

 

0.105 0.999 

 

0.218 0.590 
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Ilorin 

Table G-2: The probability distributions of daily precipitation, maximum and minimum temperature and 

radiation for each month are compared using K-S test. 
  

daily RAIN 
distributions 

 

daily MIN 
distributions 

 

daily MAX 
distributions 

 

daily RAD 
distributions 

 

Effective 
N 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

J 12 0.174 0.842 

 

0.105 0.999 

 

0.105 0.999 

 

0.087 1.000 

F 12 0.131 0.982 

 

0.210 0.637 

 

0.263 0.350 

 

0.392 0.042 

M 12 0.120 0.994 

 

0.211 0.631 

 

0.158 0.913 

 

0.348 0.096 

A 12 0.061 1.000 

 

0.106 0.999 

 

0.158 0.913 

 

0.044 1.000 

M 12 0.045 1.000 

 

0.106 0.999 

 

0.158 0.913 

 

0.392 0.042 

J 12 0.057 1.000 

 

0.106 0.999 

 

0.210 0.637 

 

0.261 0.359 

J 12 0.009 1.000 

 

0.210 0.637 

 

0.106 0.999 

 

0.174 0.842 

A 12 0.065 1.000 

 

0.158 0.913 

 

0.106 0.999 

 

0.305 0.193 

S 12 0.056 1.000 

 

0.316 0.163 

 

0.158 0.913 

 

0.218 0.590 

O 12 0.063 1.000 

 

0.211 0.631 

 

0.158 0.913 

 

0.087 1.000 

N 12 0.174 0.842 

 

0.263 0.350 

 

0.369 0.066 

 

0.087 1.000 

D 12 0.174 0.842 

 

0.158 0.913 

 

0.106 0.999 

 

0.087 1.000 
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Ibadan 

Table G-3: The probability distributions of daily precipitation, maximum and minimum temperature and 

radiation for each month are compared using K-S test. 
  

daily RAIN 
distributions 

 

daily MIN 
distributions 

 

daily MAX 
distributions 

 

daily RAD 
distributions 

 

Effective 
N 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

J 12 0.305 0.193 

 

0.158 0.913 

 

0.106 0.999 

 

0.087 1.000 

F 12 0.139 0.969 

 

0.316 0.163 

 

0.106 0.999 

 

0.044 1.000 

M 12 0.119 0.994 

 

0.158 0.913 

 

0.263 0.350 

 

0.131 0.982 

A 12 0.064 1.000 

 

0.105 0.999 

 

0.158 0.913 

 

0.044 1.000 

M 12 0.062 1.000 

 

0.106 0.999 

 

0.158 0.913 

 

0.044 1.000 

J 12 0.061 1.000 

 

0.106 0.999 

 

0.158 0.913 

 

0.044 1.000 

J 12 0.090 1.000 

 

0.158 0.913 

 

0.158 0.913 

 

0.044 1.000 

A 12 0.112 0.998 

 

0.106 0.999 

 

0.106 0.999 

 

0.044 1.000 

S 12 0.058 1.000 

 

0.211 0.631 

 

0.210 0.637 

 

0.087 1.000 

O 12 0.078 1.000 

 

0.158 0.913 

 

0.106 0.999 

 

0.087 1.000 

N 12 0.063 1.000 

 

0.158 0.913 

 

0.158 0.913 

 

0.044 1.000 

D 12 0.217 0.595 

 

0.106 0.999 

 

0.105 0.999 

 

0.131 0.982 
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Enugu 

Table G-4: The probability distributions of daily precipitation, maximum and minimum temperature and 

radiation for each month are compared using K-S test. 
  

daily RAIN 
distributions 

 

daily MIN 
distributions 

 

daily MAX 
distributions 

 

daily RAD 
distributions 

 

Effective 
N 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

 

K-S 
statistic  

p-value 

J 12 0.131 0.982 

 

0.158 0.913 

 

0.158 0.913 

 

0.087 1.000 

F 12 0.143 0.960 

 

0.211 0.631 

 

0.211 0.631 

 

0.087 1.000 

M 12 0.132 0.981 

 

0.105 0.999 

 

0.210 0.637 

 

0.044 1.000 

A 12 0.053 1.000 

 

0.105 0.999 

 

0.158 0.913 

 

0.044 1.000 

M 12 0.058 1.000 

 

0.158 0.913 

 

0.210 0.637 

 

0.087 1.000 

J 12 0.103 0.999 

 

0.158 0.913 

 

0.158 0.913 

 

0.087 1.000 

J 12 0.054 1.000 

 

0.158 0.913 

 

0.106 0.999 

 

0.087 1.000 

A 12 0.059 1.000 

 

0.158 0.913 

 

0.158 0.913 

 

0.044 1.000 

S 12 0.043 1.000 

 

0.158 0.913 

 

0.106 0.999 

 

0.087 1.000 

O 12 0.067 1.000 

 

0.315 0.165 

 

0.263 0.350 

 

0.131 0.982 

N 12 0.219 0.584 

 

0.210 0.637 

 

0.158 0.913 

 

0.131 0.982 

D 12 0.435 0.017 

 

0.211 0.631 

 

0.106 0.999 

 

0.174 0.842 
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Appendix H  

Table H-1: Results of the statistical test (at p = 0.05) showing the comparison of observed and simulated monthly means and 

variances for rainfall (mm), minimum and maximum temperature (°C) and solar radiation (MJ/m2). Obs, Observed; Gen, 

Generated. 

 

Jos Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rain - Monthly Mean 

Obs mean 0.00 3.6 10.61 114.84 199.11 202.22 229.43 224.63 163.75 58.23 0.17 0.52 

Obs variance 0.000 9.426 23.902 77.364 68.055 72.979 106.062 92.729 83.663 57.942 0.502 1.819 

Gen mean 0.00 7.25 13.49 99.47 214.66 188.16 201.74 245.59 189.49 58.32 0.32 1.05 

Gen Variance 0.000 12.349 21.617 84.607 71.794 58.674 60.675 70.784 35.065 44.99 0.717 2.388 

t-test 0.000 -1.006 -0.406 0.59 -0.696 0.698 1.117 -0.843 -1.46 -0.006 -0.688 -0.684 

p-value 1.000 0.32 0.686 0.558 0.49 0.489 0.27 0.404 0.152 0.995 0.496 0.498 

f-test 1.000 1.716 1.223 1.196 1.113 1.547 3.056 1.716 5.693 1.659 2.04 1.723 

p-value 1.000 0.287 0.624 0.744 0.862 0.312 0.011 0.214 0.000 0.243 0.192 0.342 

Tmin - Monthly Mean 

Obs mean 11.46 14.35 16.46 18.61 18.4 17.36 15.62 15.59 16.47 15.65 13.07 11.33 

Obs variance 1.562 1.816 1.105 0.529 0.452 0.442 4.935 4.688 1.178 1.753 1.005 0.69 

Gen mean 11.5 14.12 16.62 18.42 18.5 17.34 16.02 16.9 16.79 15.69 12.93 11.64 

Gen Variance 0.517 0.318 0.417 0.243 0.208 0.379 0.7 0.204 0.2 0.392 0.318 0.322 

t-test -0.117 0.671 -0.66 1.675 -0.956 0.179 -0.44 -1.552 -1.476 -0.105 0.677 -1.926 

p-value 0.907 0.506 0.513 0.102 0.345 0.859 0.662 0.128 0.148 0.917 0.502 0.061 

Tmax - Monthly Mean 

Obs mean 28.32 30.84 31.92 30.76 28.13 26.25 24.95 24.88 26.34 27.6 28.13 28.09 

Obs variance 1.088 1.415 0.724 1.634 1.161 0.647 1.227 1.663 0.942 0.855 0.568 0.55 

Gen mean 28.35 30.61 31.85 31.06 28.24 26.32 25 24.7 26.09 27.58 28.17 28.32 

Gen Variance 0.499 0.353 0.307 0.701 0.429 0.464 0.429 0.431 0.377 0.234 0.217 0.314 

t-test -0.119 0.84 0.464 -0.86 -0.455 -0.429 -0.182 0.553 1.259 0.115 -0.345 -1.675 

p-value 0.906 0.405 0.645 0.395 0.651 0.67 0.857 0.583 0.215 0.909 0.731 0.102 

SRAD - Monthly Mean 

Obs mean 20.41 17.1 17.21 14.83 15.13 12.62 10.45 9.67 15.95 17.6 21.73 19.99 

Obs variance 16.181 16.621 14.672 12.689 11.18 10.894 9.339 8.914 11.04 14.238 17.824 17.662 

Gen mean 21.05 18.13 16.7 16.49 15.5 12.72 9.65 9.83 14.61 19.59 20.87 19.84 

Gen Variance 3.448 3.647 2.275 2.461 2.513 2.644 2.365 2.171 2.955 3.522 3.131 3.17 

t-test -0.211 -0.327 0.189 -0.698 -0.173 -0.048 0.448 -0.096 0.625 -0.729 0.258 0.045 

p-value 0.834 0.745 0.851 0.489 0.864 0.962 0.657 0.924 0.535 0.47 0.798 0.964 
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Table H-2: Results of the statistical test (at p = 0.05) showing the comparison of observed and simulated monthly means and 

variances for rainfall (mm), minimum and maximum temperature (°C) and solar radiation (MJ/m2). Obs, Observed; Gen, 

Generated 

 

Ilorin Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rain - Monthly Mean 

Obs 
mean 3.72 4.75 32.95 95.76 148.13 217.09 167.91 160.86 253.89 136.72 6.99 3.29 

Obs 
variance 9.193 7.479 20.668 46.973 77.413 85.348 83.638 80.292 67.754 85.225 12.329 7.021 

Gen 
mean 2.78 6.27 38.04 74.83 148.58 225.63 199.53 195.62 249.93 170.92 9.26 3.14 

Gen 
Variance 7.985 10.884 23.449 49.745 80.185 80.890 106.734 83.966 84.131 97.270 18.178 6.538 

t-test 

0.353 -0.483 -0.713 1.322 -0.017 -0.320 -0.975 -1.296 0.154 -1.128 -0.424 0.068 

p-value 

0.726 0.631 0.480 0.193 0.986 0.750 0.335 0.202 0.878 0.266 0.674 0.946 

f-test 

1.325 2.118 1.287 1.122 1.073 1.113 1.629 1.094 1.542 1.303 2.174 1.153 

p-value 

0.504 0.140 0.632 0.859 0.931 0.775 0.355 0.900 0.413 0.629 0.140 0.719 

Tmin - Monthly Mean 

Obs 
mean 19.81 22.59 23.83 23.79 23.07 22.12 21.86 21.33 21.31 21.48 21.19 19.27 

Obs 
variance 1.527 1.421 0.62 0.56 0.384 0.467 0.254 0.949 1.072 0.677 1.161 1.522 

Gen 
mean 20.01 22.24 23.58 23.84 23.12 22.26 21.9 21.39 21.4 21.53 21.1 19.25 

Gen 
Variance 0.699 0.517 0.391 0.169 0.284 0.204 0.182 0.25 0.258 0.395 0.443 0.64 

t-test 

-0.609 1.22 1.688 -0.459 -0.457 -1.371 -0.454 -0.365 -0.458 -0.315 0.399 0.064 

p-value 

0.546 0.229 0.099 0.649 0.65 0.178 0.652 0.717 0.649 0.754 0.692 0.949 

Tmax - Monthly Mean 

Obs 
mean 34.06 36.16 36.51 34.56 32.73 30.88 29.37 28.63 29.81 31.71 34.19 34.46 

Obs 
variance 0.781 0.695 0.756 0.843 0.893 0.569 0.44 0.506 0.36 1.21 0.693 0.471 

Gen 
mean 34.15 35.87 36.29 34.57 32.62 30.92 29.45 28.81 29.67 31.52 34.03 34.52 

Gen 
Variance 0.316 0.314 0.317 0.365 0.363 0.292 0.28 0.304 0.251 0.331 0.242 0.267 

t-test 

-0.554 1.92 1.326 -0.06 0.538 -0.298 -0.773 -1.503 1.41 0.82 1.116 -0.514 

p-value 

0.583 0.062 0.192 0.953 0.594 0.767 0.444 0.14 0.166 0.417 0.271 0.610 

SRAD - Monthly Mean 

Obs 
mean 11.00 11.98 11.27 11.10 11.07 9.65 7.47 6.77 8.62 9.59 14.47 15.96 

Obs 
variance 12.716 13.407 12.645 13.336 13.275 11.585 9.012 7.564 9.02 11.612 15.045 15.438 

Gen 
mean 10.02 11.53 11.2 11.43 11.11 9.33 8.18 6.58 8.62 8.65 13.75 16.04 

Gen 
Variance 2.923 2.871 2.136 2.537 1.726 3.047 2.306 1.733 2.037 2.54 2.65 2.891 

t-test 

0.402 0.174 0.031 -0.133 -0.018 0.141 -0.409 0.137 -0.002 0.43 0.255 -0.026 

p-value 

0.69 0.863 0.975 0.895 0.986 0.888 0.685 0.892 0.999 0.669 0.8 0.979 
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Table H-3: Results of the statistical test (at p = 0.05) showing the comparison of observed and simulated monthly means and 

variances for rainfall (mm), minimum and maximum temperature (°C) and solar radiation (MJ/m2). Obs, Observed; Gen, 

Generated 

Ibadan Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rain - Monthly Mean 

Obs 
mean 6.41 36.12 76.51 110.50 164.28 201.87 195.31 165.91 242.69 162.05 27.90 3.38 

Obs 
variance 10.767 41.237 37.255 46.121 40.980 89.704 88.402 96.735 74.640 78.637 40.344 6.332 

Gen 
mean 12.43 33.33 61.71 108.82 177.54 180.02 195.69 168.31 267.10 155.78 35.10 4.01 

Gen 
Variance 13.096 39.500 49.031 53.290 67.466 62.875 87.216 81.682 114.150 87.354 36.719 7.275 

t-test 

-1.498 0.215 1.001 0.102 -0.677 0.934 -0.013 -0.086 -0.728 0.228 -0.588 -0.253 

p-value 

0.142 0.831 0.323 0.920 0.502 0.356 0.989 0.932 0.470 0.820 0.560 0.802 

f-test 

1.479 1.090 1.732 1.335 2.710 2.035 1.027 1.403 2.339 1.234 1.207 1.320 

p-value 

0.461 0.809 0.296 0.594 0.061 0.109 0.907 0.434 0.108 0.709 0.646 0.667 

Tmin - Monthly Mean 

Obs 
mean 22.48 23.98 24.41 23.95 23.31 22.65 22.22 21.85 22.17 22.59 23.4 23.11 

Obs 
variance 1.005 0.915 0.57 0.667 0.354 0.399 0.373 0.316 0.29 0.361 0.566 0.844 

Gen 
mean 22.19 23.87 24.31 24.18 23.42 22.72 22.25 21.87 22.21 22.57 23.35 23.25 

Gen 
Variance 0.451 0.388 0.239 0.276 0.248 0.232 0.166 0.132 0.147 0.239 0.229 0.433 

t-test 

1.322 0.579 0.809 -1.629 -1.181 -0.715 -0.31 -0.239 -0.687 0.263 0.437 -0.66 

p-value 

0.193 0.565 0.423 0.111 0.244 0.479 0.758 0.813 0.496 0.794 0.665 0.513 

Tmax - Monthly Mean 

Obs 
mean 33.51 35.21 35.04 33.37 31.91 30.28 28.7 28.14 29.46 30.99 32.9 33.45 

Obs 
variance 0.395 0.686 1.014 0.919 0.709 0.69 0.34 0.625 0.509 0.65 0.43 0.429 

Gen 
mean 33.46 35.22 34.77 33.55 31.98 30.4 28.73 28.1 29.42 31.11 32.83 33.43 

Gen 
Variance 0.245 0.258 0.299 0.33 0.303 0.331 0.353 0.331 0.29 0.201 0.19 0.184 

t-test 

0.495 -0.021 1.338 -0.937 -0.462 -0.798 -0.266 0.314 0.349 -0.993 0.744 0.2 

p-value 

0.623 0.983 0.188 0.354 0.646 0.429 0.792 0.755 0.729 0.326 0.461 0.842 

SRAD - Monthly Mean 

Obs 
mean 19.59 21.53 19.64 21.67 20.81 16.55 11.25 8 13.28 18.63 26.25 23.83 

Obs 
variance 2.291 2.848 4.53 2.996 2.839 4.22 2.17 2.094 2.505 3.114 2.368 2.126 

Gen 
mean 21.11 22.54 18.85 22.42 20.47 17.15 10.88 8.64 12.91 17.15 26.27 22.92 

Gen 
Variance 1.218 1.61 1.49 1.718 1.447 1.671 1.183 1.086 1.624 1.981 0.983 1.601 

t-test 

-2.474 -1.286 0.815 -0.9 0.476 -0.637 0.663 -1.233 0.519 1.708 -0.022 1.273 

p-value 

0.018 0.207 0.42 0.374 0.637 0.528 0.512 0.226 0.607 0.096 0.983 0.211 
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Table H-4: Results of the statistical test (at p = 0.05) showing the comparison of observed and simulated monthly means and 

variances for rainfall (mm), minimum and maximum temperature (°C) and solar radiation (MJ/m2). Obs, Observed; Gen, 

Generated 

Enugu Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rain - Monthly Mean 

Obs 
mean 12.37 14.05 46.97 147.71 279.00 262.09 246.61 234.78 306.12 193.44 12.58 4.74 

Obs 
variance 18.996 16.481 46.645 61.213 92.918 61.090 100.609 99.260 68.904 105.047 18.682 11.012 

Gen 
mean 12.16 15.86 39.31 132.20 300.51 242.71 269.89 234.90 307.74 230.66 16.91 8.49 

Gen 
Variance 15.885 22.962 38.170 95.554 102.190 84.463 88.897 78.877 93.641 87.984 25.589 10.761 

t-test 

0.040 -0.273 0.589 0.571 -0.685 0.790 -0.793 -0.004 -0.058 -1.228 -0.565 -0.981 

p-value 

0.969 0.787 0.559 0.571 0.497 0.434 0.432 0.997 0.954 0.226 0.575 0.333 

f-test 

1.430 1.941 1.493 2.437 1.210 1.912 1.281 1.584 1.847 1.425 1.876 1.047 

p-value 

0.403 0.191 0.351 0.081 0.727 0.201 0.554 0.295 0.243 0.414 0.231 0.863 

Tmin - Monthly Mean 

Obs 
mean 21.83 23.94 24.71 23.86 23.16 22.67 22.66 22.61 22.51 22.42 21.58 19.68 

Obs 
variance 2.03 1.709 0.718 1.069 0.947 0.651 0.65 0.57 0.547 1.104 1.717 2.226 

Gen 
mean 21.41 23.35 24.65 24.07 23.12 22.72 22.82 22.6 22.5 22.53 21.75 19.83 

Gen 
Variance 0.658 0.595 0.365 0.343 0.365 0.225 0.166 0.176 0.253 0.29 0.608 0.78 

t-test 

0.989 1.619 0.306 -0.971 0.173 -0.378 -1.237 0.042 0.057 -0.483 -0.434 -0.274 

p-value 

0.329 0.114 0.761 0.338 0.863 0.708 0.224 0.967 0.955 0.632 0.667 0.786 

Tmax - Monthly Mean 

Obs 
mean 34.29 35.33 35.63 33.46 31.95 30.73 30.05 29.79 30.36 31.76 33.73 34.00 

Obs 
variance 0.74 0.982 0.675 0.83 1.009 0.721 0.331 0.553 0.439 1.266 0.494 0.644 

Gen 
mean 34.2 35.1 35.6 33.73 31.83 30.85 30.09 29.81 30.39 31.54 33.86 33.73 

Gen 
Variance 0.241 0.326 0.27 0.281 0.388 0.284 0.302 0.249 0.312 0.377 0.209 0.264 

t-test 

0.576 1.172 0.222 -1.58 0.582 -0.828 -0.33 -0.15 -0.269 0.866 -1.216 1.819 

p-value 

0.568 0.248 0.825 0.122 0.564 0.412 0.743 0.881 0.789 0.392 0.232 0.078 

SRAD - Monthly Mean 

Obs 
mean 24.25 21.53 20.73 22.78 20.08 17.49 14.42 11.01 15.38 22.64 28.96 29.07 

Obs 
variance 2.557 3.273 2.93 2.839 3.577 3.526 1.943 2.011 1.93 4.402 2.927 4.328 

Gen 
mean 23.83 21.67 20.73 23.02 20.28 17.16 14.41 11.22 14.76 21.6 28.85 26.76 

Gen 
Variance 1.715 1.853 1.841 1.834 1.678 1.539 1.465 1.634 1.64 1.414 1.436 1.299 

t-test 

0.528 -0.159 0 -0.279 -0.236 0.399 0.008 -0.324 0.922 1.134 0.159 2.468 

p-value 

0.601 0.875 1 0.782 0.815 0.692 0.993 0.748 0.363 0.264 0.875 0.019 
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Appendix I 
 

Table I-1: Student’s t-test significance result of the mean yield, comparing baseline and climate scenarios for Ibadan and 

Enugu. 

 

 

 

 

Ibadan  

RCP6.0_2020 RCP6.0_2050 RCP6.0_2080 RCP8.5_2020 RCP8.5_2050 RCP8.5_2080 

 Mean Difference 684.3 1303.133 2055.9 725.1 1724.867 2838.733 

 Std. Error Difference 174.442 167.825 155.399 173.462 167.397 142.725 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 

 
t-test interpretation S S S S S S 

 F 2.087 
3.712 

9.086 2.485 3.306 24.732 

 t 3.923 
7.765 

13.23 4.18 10.304 19.89 

 p-value 0.154 0.059 0.004 0.12 0.74 0.000 

 

 

variance test 

interpretation NS NS S NS NS S 

 

 

 

S* Significant           NS* Not significant 

 

Enugu        

 

 RCP6.0_2020 RCP6.0_2050 RCP6.0_2080 RCP8.5_2020 RCP8.5_2050 RCP8.5_2080 

 

Mean Difference -2823.333 -1998.967 658.033 -2711.767 -1452.267 -109.167 

 

Std. Error Difference 181.184 172.668 126.459 181.958 165.534 157.706 

 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

 

t-test interpretation S S S S S S 

 

F 1.163 0.68 2.247 1.402 0.836 0.663 

 

t -15.583 -11.577 5.204 -14.903 -8.773 -0.692 

 

p-value 0.285 0.413 0.139 0.241 0.364 0.419 

 

variance test 

interpretation 
NS NS NS NS NS NS 
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Table I-2: Student’s t-test significance result of the mean yield, comparing baseline and climate scenarios for Ilorin and Jos. 

        

        

Ilorin  

RCP6.0_2020 RCP6.0_2050 RCP6.0_2080 RCP8.5_2020 RCP8.5_2050 RCP8.5_2080 

 

Mean Difference -900.067 -383.667 272.567 -826.5 -16.767 937.967 

 

Std. Error Difference 287.64 255.785 230.841 278.786 243.515 193.426 

 

p-value 0.003 0.139 0.243 0.004 0.945 0.000 

 

t-test interpretation S NS NS S NS S 

 

F 4.646 1.011 0.286 3.399 0.361 0.648 

 

t -3.129 -1.5 1.181 -2.965 -0.069 4.849 

 

p-value 0.035 0.319 0.595 0.070 0.550 0.424 

 

Variance test 

interpretation S NS NS NS NS NS 

 S* Significant           NS* Not significant 

 

Jos        

 
 

RCP6.0_2020 RCP6.0_2050 RCP6.0_2080 RCP8.5_2020 RCP8.5_2050 RCP8.5_2080 

 

Mean Difference 54 571.967 1192.3 254.067 904.367 2344.2 

 

Std. Error Difference 386.108 361.284 378.8 389.82 376.365 416.856 

 

p-value 0.889 0.119 0.003 0.517 0.019 0.000 

 

t-test interpretation NS NS S NS S S 

 

F 1.163 0.182 0.932 1.637 0.911 3.54 

 

t 0.14 1.583 3.148 0.652 2.403 5.624 

 

p-value 0.285 0.671 0.338 0.206 0.344 0.065 

 

variance test 

interpretation NS NS NS NS NS NS 
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Appendix J 

Table J-1: Energy indices calculated for Ibadan. 

  80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 

Baseline EUE 8.1 8.4 7.1 6.1 8.1 8.2 7.3 6.3 9.7 9.1 8.1 6.8 

 EP 0.5 0.6 0.5 0.4 0.6 0.6 0.5 0.4 0.7 0.6 0.5 0.5 

 SE 1.8 1.8 2.1 2.4 1.8 1.8 2.0 2.3 1.5 1.6 1.8 2.2 

 NE 107,622.6 107,622.6 109,048.8 106,890.5 71,227.9 106,182.1 108,867.3 106,833.0 72,552.2 107,335.4 110,108.3 108,177.8 

RCP 
6.0_2020 EUE 8.4 8.3 7.0 6.0 8.5 8.1 7.2 6.1 10.1 9.1 7.9 6.6 

 EP 0.6 0.6 0.5 0.4 0.6 0.6 0.5 0.4 0.7 0.6 0.5 0.5 

 SE 1.7 1.8 2.1 2.4 1.7 1.8 2.1 2.4 1.4 1.6 1.9 2.2 

 NE 77,944.4 106,709.8 106,627.7 104,408.5 74,806.8 105,251.5 106,208.1 104,129.6 76,147.8 106,345.0 107,291.8 105,172.7 

RCP 

6.0_2050 EUE 8.0 7.8 6.5 5.6 8.1 7.6 6.7 5.7 9.6 8.5 7.3 6.2 

 EP 0.5 0.5 0.4 0.4 0.5 0.5 0.5 0.4 0.7 0.6 0.5 0.4 

 SE 1.8 1.9 2.2 2.6 1.8 1.9 2.2 2.6 1.4 1.6 1.9 2.2 

 NE 73,249.8 99,335.7 98,275.1 95,767.4 70,552.1 98,046.0 97,837.9 95,326.8 71,816.7 99,125.9 98,838.8 96,493.3 
RCP 

6.0_2080 EUE 7.1 6.8 5.6 4.8 7.2 6.6 5.7 4.9 8.5 7.4 6.3 5.3 

 EP 0.5 0.5 0.4 0.3 0.5 0.4 0.4 0.3 0.6 0.5 0.4 0.4 

 SE 2.1 2.2 2.6 3.1 2.1 2.2 2.6 3.0 1.7 2.0 2.3 2.8 

 NE 63,920.1 84,296.7 81,490.7 78,542.0 61,430.3 83,119.7 81,110.8 78,161.6 62,557.2 84,169.2 82,117.6 79,251.1 

RCP 
8.5_2020 EUE 8.4 8.3 7.0 6.0 8.4 8.1 7.1 6.1 10.1 9.0 7.8 6.6 

 EP 0.6 0.6 0.5 0.4 0.6 0.5 0.5 0.4 0.7 0.6 0.5 0.4 

 SE 1.7 1.8 2.1 2.5 1.7 1.8 2.1 2.4 1.5 1.6 1.9 2.2 

 NE 77,486.3 106,400.0 106,056.3 103,614.7 74,374.6 104,862.4 105,489.3 103,325.5 75,744.6 105,989.9 106,580.9 104,296.5 

RCP 

8.5_2050 EUE 7.6 7.3 6.1 5.2 7.7 7.2 6.2 5.3 9.2 8.0 6.8 5.8 

 EP 0.5 0.5 0.4 0.4 0.5 0.5 0.4 0.4 0.6 0.5 0.5 0.4 

 SE 1.9 2.0 2.4 2.8 1.9 2.1 2.4 2.8 1.6 1.8 2.1 2.6 

 NE 69,536.5 92,837.8 90,694.3 87,922.0 66,819.4 91,420.8 90,264.9 87,590.2 68,098.5 92,402.7 91,227.2 88,663.5 
RCP 

8.5_2080 EUE 6.0 5.3 4.3 3.7 6.1 5.1 4.4 3.7 7.3 5.7 4.8 4.0 

 EP 0.4 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.5 0.4 0.3 0.3 

 SE 2.4 2.8 3.4 4.0 2.4 2.9 3.4 3.9 2.0 2.6 3.1 3.6 

 NE 52,429.6 62,212.3 59,009.4 56,075.5 50,740.5 60,957.1 58,461.9 55,595.1 52,114.8 62,041.3 59,534.4 56,674.4 

 

 

Energy use efficiency (EUE); Energy Productivity (EP); Specific Energy (SE); Net Energy (NE) 
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Table J-2: Energy indices calculated for Jos. 

  CT RT NT 

  80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 

Baseline EUE 8.5 10.9 9.9 9.3 8.7 10.5 9.9 9.2 10.8 12.2 11.3 10.4 

 EP 0.6 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.7 0.8 0.8 0.7 

 SE 1.7 1.3 1.5 1.6 1.7 1.4 1.5 1.6 1.4 1.2 1.3 1.4 

 NE 78,448.1 145,443.7 158,001.7 171,992.8 76,528.7 140,526.7 153,097.6 166,495.9 81,408.9 147,446.2 160,432.8 174,393.5 

RCP 

6.0_2020 EUE 8.4 10.7 9.6 8.9 8.6 10.3 9.7 8.9 10.6 11.9 11.0 10.0 

 EP 0.6 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.7 0.8 0.7 0.7 

 SE 1.8 1.4 1.5 1.6 1.7 1.4 1.5 1.6 1.4 1.2 1.3 1.5 

 NE 76,990.9 141,940.2 153,216.4 164,657.5 76,135.2 137,769.0 149,349.7 160,810.9 80,050.7 143,819.3 155,825.9 167,131.2 

RCP 

6.0_2050 EUE 8.2 10.3 9.2 8.4 8.2 9.8 9.1 8.3 10.4 11.4 10.5 9.4 

 EP 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.8 0.7 0.6 

 SE 1.8 1.4 1.6 1.7 1.8 1.5 1.6 1.8 1.4 1.3 1.4 1.6 

 NE 74,878.5 135,671.1 145,127.4 154,448.4 72,206.3 130,270.9 140,049.0 149,108.2 78,068.1 137,487.6 147,610.5 157,172.9 

RCP 

6.0_2080 EUE 8.0 9.9 8.8 7.9 8.1 9.4 8.7 7.9 10.1 11.0 10.0 8.9 

 EP 0.5 0.7 0.6 0.5 0.5 0.6 0.6 0.5 0.7 0.7 0.7 0.6 

 SE 1.8 1.5 1.7 1.9 1.8 1.6 1.7 1.9 1.4 1.3 1.5 1.7 

 NE 72,832.3 129,744.1 137,613.8 143,698.7 70,602.6 124,831.9 133,174.2 139,263.1 76,235.0 131,550.7 140,369.7 146,341.9 

RCP 

8.5_2020 EUE 8.4 10.7 9.6 8.9 8.7 10.3 9.7 8.9 10.7 11.9 11.0 10.0 

 EP 0.6 0.7 0.7 0.6 0.6 0.7 0.7 0.6 0.7 0.8 0.7 0.7 

 SE 1.8 1.4 1.5 1.6 1.7 1.4 1.5 1.6 1.4 1.2 1.3 1.5 

 NE 77,384.9 142,011.8 153,348.7 164,416.4 76,477.7 137,918.9 149,634.8 160,556.0 80,511.8 143,955.0 156,052.2 166,862.2 

RCP 

8.5_2050 EUE 8.1 10.1 9.0 8.3 8.2 9.6 8.9 8.2 10.3 11.2 10.3 9.2 

 EP 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.8 0.7 0.6 

 SE 1.8 1.5 1.6 1.8 1.8 1.5 1.6 1.8 1.4 1.3 1.4 1.6 

 NE 74,308.2 133,105.1 142,025.7 150,614.1 71,852.1 128,140.5 137,128.1 145,358.7 77,499.8 135,035.6 144,603.3 153,151.0 

RCP 

8.5_2080 EUE 7.4 9.5 8.3 7.3 7.6 9.1 8.4 7.3 9.6 10.6 9.5 8.2 

 EP 0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.7 0.7 0.6 0.6 

 SE 2.0 1.6 1.8 2.0 1.9 1.6 1.8 2.0 1.5 1.4 1.5 1.8 

 NE 67,360.4 123,899.4 129,789.4 131,466.8 66,203.4 120,496.9 126,947.3 127,711.8 71,417.3 126,010.7 132,548.4 133,928.3 

 

 

Energy use efficiency (EUE); Energy Productivity (EP); Specific Energy (SE); Net Energy (NE) 
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Table J-3: Energy indices calculated for Ilorin. 

 

 

  CT RT NT 

  80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 

Baseline EUE 4.1 4.2 3.7 3.3 4.3 4.1 3.8 3.4 5.3 4.7 4.2 3.7 

 EP 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.4 0.3 0.3 0.2 

 SE 3.6 3.5 4.0 4.5 3.4 3.6 3.9 4.4 2.8 3.1 3.5 4.0 

 NE 32,677.8 46,557.4 47,648.3 47,364.3 32,746.2 46,106.1 47,897.6 47,762.0 35,513.0 48,496.1 49,993.7 49,648.8 

RCP 
6.0_2020 EUE 3.5 3.9 3.5 3.1 4.2 4.1 3.7 3.3 5.2 4.6 4.1 3.6 

 EP 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.4 0.3 0.3 0.2 

 SE 4.2 3.7 4.2 4.7 3.5 3.6 4.0 4.5 2.8 3.2 3.6 4.1 

 NE 25,907.8 42,775.5 44,203.1 44,307.6 32,200.3 45,584.2 46,903.9 46,407.6 35,143.2 47,987.1 48,981.8 48,383.6 

RCP 

6.0_2050 EUE 3.4 3.8 3.4 3.0 4.1 3.9 3.6 3.1 5.1 4.5 4.0 3.4 

 EP 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.2 

 SE 4.4 3.9 4.4 4.9 3.6 3.7 4.1 4.7 2.9 3.3 3.7 4.3 

 NE 24,684.8 40,510.7 41,734.5 41,294.7 30,910.6 43,478.8 44,266.7 43,335.3 33,757.0 45,772.8 46,271.2 45,185.9 
RCP 

6.0_2080 EUE 2.9 3.3 2.9 2.6 3.6 3.4 3.1 2.7 4.5 3.9 3.4 2.9 

 EP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 

 SE 5.0 4.4 5.1 5.7 4.1 4.3 4.8 5.5 3.3 3.8 4.3 5.0 

 NE 20,351.8 33,730.6 33,568.1 32,370.7 26,119.9 36,070.4 35,654.9 34,037.1 28,836.3 38,166.4 37,573.2 35,717.1 

RCP 
8.5_2020 EUE 3.5 4.0 3.5 3.2 4.3 4.2 3.8 3.3 5.3 4.7 4.2 3.7 

 EP 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.4 0.3 0.3 0.2 

 SE 4.2 3.7 4.1 4.6 3.4 3.5 3.9 4.4 2.8 3.1 3.5 4.0 

 NE 26,517.0 44,053.4 45,187.0 45,433.6 32,983.3 46,916.5 48,099.9 47,505.2 35,981.5 49,161.2 50,125.5 49,411.1 

RCP 
8.5_2050 EUE 3.1 3.5 3.1 2.7 3.8 3.6 3.3 2.8 4.7 4.1 3.6 3.1 

 EP 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2 

 SE 4.7 4.2 4.8 5.4 3.8 4.0 4.5 5.2 3.1 3.6 4.1 4.7 

 NE 22,258.4 36,835.2 36,930.6 35,814.5 28,169.5 39,125.1 38,968.8 37,530.8 31,010.4 41,191.3 40,840.0 39,362.7 

RCP 

8.5_2080 EUE 2.4 2.6 2.2 1.9 2.9 2.7 2.3 2.0 3.5 3.0 2.6 2.2 

 EP 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 

 SE 6.1 5.7 6.6 7.5 5.1 5.5 6.3 7.2 4.1 4.9 5.6 6.7 

 NE 14,571.2 23,124.1 21,557.7 19,693.5 18,748.9 24,514.7 23,282.5 20,863.0 21,195.8 26,352.1 25,045.3 22,538.1 

 Energy use efficiency (EUE); Energy Productivity (EP); Specific Energy (SE); Net Energy (NE) 
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Table J-4: Energy indices calculated for Enugu. 

  CT RT NT 

  80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 80kg 160kg 200kg 250kg 

Baseline EUE 3.6 4.0 3.6 3.2 3.8 3.9 3.7 3.3 4.6 4.4 4.0 3.6 

 EP 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2 

 SE 4.1 3.7 4.1 4.6 3.8 3.7 4.0 4.4 3.2 3.4 3.6 4.1 

 NE 27,403.8 43,232.2 45,306.6 46,233.3 28,342.6 43,526.2 46,324.1 47,412.6 29,606.1 44,538.0 47,331.5 48,077.4 
RCP 

6.0_2020 EUE 2.9 3.4 3.1 2.8 3.6 3.8 3.5 3.1 4.3 4.2 3.8 3.3 

 EP 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 

 SE 5.1 4.3 4.7 5.2 4.1 3.9 4.3 4.8 3.4 3.5 3.9 4.4 

 NE 19,853.5 35,759.6 37,284.2 37,796.1 26,135.1 40,866.0 42,298.8 42,461.2 27,487.4 42,043.4 43,430.5 43,466.0 

RCP 
6.0_2050 EUE 2.5 2.9 2.6 2.4 3.1 3.2 3.0 2.7 3.7 3.6 3.3 2.9 

 EP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 SE 6.0 5.1 5.6 6.1 4.8 4.6 4.9 5.4 4.0 4.1 4.5 5.0 

 NE 15,205.3 27,934.4 29,180.7 29,458.2 20,751.5 32,996.6 34,623.5 34,651.6 22,162.5 34,141.1 35,781.2 35,717.6 

RCP 

6.0_2080 EUE 2.2 2.6 2.3 2.1 2.8 3.0 2.7 2.4 3.3 3.3 3.0 2.6 

 EP 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 SE 6.7 5.8 6.4 7.2 5.2 5.0 5.4 6.1 4.4 4.5 4.9 5.6 

 NE 12,367.7 22,737.9 22,856.2 21,885.7 18,207.3 28,976.2 29,450.6 28,737.3 19,576.8 30,283.4 30,782.7 30,067.9 
RCP 

8.5_2020 EUE 2.9 3.4 3.1 2.8 3.6 3.7 3.4 3.1 4.3 4.2 3.8 3.3 

 EP 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 

 SE 5.1 4.3 4.8 5.3 4.1 3.9 4.3 4.8 3.4 3.5 3.9 4.4 

 NE 19,654.4 35,485.3 36,873.7 37,295.2 25,854.3 40,671.9 42,036.1 42,292.2 27,196.4 41,716.5 43,155.2 43,255.8 
RCP 

8.5_2050 EUE 2.3 2.7 2.4 2.2 2.9 3.1 2.8 2.5 3.4 3.4 3.1 2.7 

 EP 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 SE 6.5 5.5 6.1 6.7 5.1 4.8 5.2 5.8 4.3 4.3 4.7 5.4 

 NE 13,349.2 24,712.6 25,268.0 24,714.5 19,019.4 30,808.2 31,615.3 31,054.9 20,407.3 31,999.8 32,829.5 32,207.3 

RCP 
8.5_2080 EUE 1.6 1.8 1.6 1.5 2.1 2.0 1.8 1.6 2.5 2.2 2.0 1.7 

 EP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 

 SE 9.0 8.2 9.4 10.1 7.0 7.3 8.2 9.2 5.9 6.6 7.4 8.5 

 NE 6,675.4 11,678.7 10,126.0 9,477.4 10,926.4 14,904.3 13,847.4 11,996.4 12,328.2 16,350.8 15,371.8 13,426.6 

 

 

Energy use efficiency (EUE); Energy Productivity (EP); Specific Energy (SE); Net Energy (NE) 
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