
Abstract

Since the financial crisis, risk management has been of growing interest to investors and the

approach of Value-at-Risk has gained wide acceptance. Investing in Cryptocurrencies brings

not only huge rewards but also huge risks. For this purpose, this paper investigates whether

Cryptocurrencies investors’ decisions can rely on the pragmatic and parsimonious approaches for

Value-at-Risk forecasting. Specifically, we suggest a parsimonious reflected gamma specification

under the GAS framework, consider other GAS special cases and the Exponential Weights

driven nonparametric methods, which fall into the same modelling category as the well-known

and widely recognised original RiskMetrics
TM

approach. We focus on the returns for BTC, LTC

and ETH and find that progress upon RiskMetricks
TM

may provide valuable gains in exposure

modelling of Cryptocurrencies under the rough and primary backtesting conditions, though

not all of the considered approaches demonstrate consistency at the selected risk confidence

levels. In our setting, Laplace GAS specification, which controls for time-variation both in scale

(volatility) and skewness (asymmetric responses to positive and negative volatility) parameters,

performs the best at the most of the levels. We also find that controlling for time-variation in

the degrees of freedom (tails) of the Student’s t may be a worthwhile consideration, though such

approach may still yield more conservative investors’ strategies than its Laplace asymmetric

alternative. Reflected gamma and Extreme Value Theory linked Double Pareto specifications

also demonstrate a modest performance, but likely suffer from the lack of asymmetry in their

parameters, as our Reflected Gamma parametrisation accounts for time-variation in the tails,

unlike Pareto specifications and does not outperform asymmetric Laplace specification. Data-

driven nonparametric methods seem to struggle the most in approximating downside tail risks

due to the sharp corrections in Cryptocurrencies’ value.

Keywords: RiskMetrics, Exponential smoothing, Generalized autoregressive score models, Kernel

density estimation, Time-varying quantiles, Value-at-Risk, Cryptocurrencies
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1 Introduction and Motivation

Investing in Cryptocurrencies has not only a benefit for excess returns (e.g. Cheah & Fry, 2015;

Gregoriou, 2019) but also huge risks (e.g. Corbet, Lucey, & Yarovaya, 2018) due to unique properties

of these emerging financial assets (e.g. Phillip et al., 2018). Corbet et al. (2019) document great

interest in these financial assets from academics, financial regulators and various investors groups,

while we also note an emerging trend in the literature aiming to assess the performance of various

approaches for Value-at-Risk (VaR) and/or Expected Shortfall forecasting in this volatile market

environment (e.g. Gkillas & Katsiampa, 2018; Peng et al., 2018; Caporale & Zekokh, 2019; Trućıos,

2019). Indeed, assessing Cryptocurrencies exposure is vital. Cryptocurrencies can serve as a

hedging tool against financial markets uncertainty (e.g. Demir et al., 2018; Fang et al., 2019) or

global geopolitical risks (e.g. Aysan et al., 2019). Moreover, Klein et al. (2018) argue that Bitcoin

and Gold are financial assets demonstrating unique relationships with international stock markets.

Besides, Corbet, Meegan, et al. (2018), Beneki et al. (2019) and Ji et al. (2019) document that

the connectedness among Cryptocurrencies is not stable and begins to critically fluctuate after the

late 2016 price peaks. Therefore, we aim to empirically test if investors in Cryptocurrencies may

rely on the parsimonious schemes for their risk exposure evaluations and contribute to the growing

empirical literature on the properties of these assets.

J.P. Morgan’s (1996) RiskMetrics
TM

(RM) is the most recognised and basic benchmark model

in financial research for VaR estimation (e.g. Boucher et al., 2014; Nieto & Ruiz, 2016). Its

original form of the exponentially weighted moving average (EWMA) conditional variance for

Gaussian distributed returns has been critically reviewed (e.g. Guermat & Harris, 2002), but its

intrinsic simplicity and pragmatism is still appealing to practitioners (e.g. Zumbach, 2007) as well

as academics (e.g. Gerlach et al., 2013; Dupuis et al., 2014; Lucas & Zhang, 2016) to introduce

necessary upgrades and keep it attractive for applied financial practices such as VaR estimations

(e.g. Pafka & Kondor, 2001; Taylor, 2007; McMillan & Kambouroudis, 2009; Boucher et al., 2014).

Therefore in this paper, we compile together some of the up-to-date EWMA VaR methods and

question whether this widely familiar to the financial audiences weighting scheme can be still valid

for risk measurement of emerging and high volatile financial assets under the basic and easy to

interpret VaR backtesting framework.
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To achieve our research objective, we mostly focus on the methods under or related to the Generalized

Autoregressive Score (GAS) time series framework. This includes Student’s t (t-GAS) based

EWMA VaR of Lucas & Zhang (2016), GAS parametrizations of the “robust” Laplace scheme

(L-GAS) of Guermat & Harris (2002), its skewed GAS (L-GAS(p)) extension of Gerlach et al.

(2013) and the special case GAS EWMA VaR “bias robust” double Generalized Pareto (D-GAS)

model of Dupuis et al. (2014). To complement our GAS EWMA VaR analysis, we also suggest

a reflected gamma distribution (G-GAS) EWMA specification. Unlike other Laplace distribution

based special cases in Dupuis et al.’s (2014), it allows for time-varying scale and tail parameters

as well as is parsimonious at the implementation stage. We also consider nonparametric EWMA

kernel (kCDF) based alternative to RM of A. Harvey & Oryshchenko (2012) and its EWMA VaR

empirical distribution function (eCDF) version similar to Taylor (2007). These approaches form a

comprehensive set of EWMA models and ensure a fruitful investigation with valuable insights for

various groups of finance academics and practitioners.

For backtesting our EWMA VaR forecasts we use quantile tests of Kupiec (1995), Christoffersen

(1998) and Engle & Manganelli (2004) and Model Confidence Set (MCS) procedure of Hansen

et al. (2011). There are several interesting findings from the results and analysis we conducted.

First, we find that L-GAS(p) specification of Gerlach et al. (2013), if controlling for time-variation

both in scale (volatility) and skewness (asymmetric responses to positive and negative volatility),

consistently performs the best at most of the VaR levels. Second, while we expect parametric

specifications to outperform their nonparametric alternatives at more extreme levels, we find

that considered nonparametric EWMA specifications struggle approximating VaR in lower tail

domains of Cryptocurrencies. On the other hand, we find that RM approximates LTC downside

risk relatively well. Gkillas & Katsiampa (2018) also conclude that LTC is not the riskiest

Cryptocurrency; however, our results demonstrate that it can be modelled with the standard

RM approach rather than with more elaborate Extreme Value Theory. In the rapidly evolving

Cryptocurrencies market, where new empirical findings reported monthly (Corbet et al., 2019), we

conclude that our LTC RM results should be considered as an exception, similar to the well-known

GARCH (1,1) case of Hansen & Lunde (2005). Overall, our results shall be insightful to perform

comparisons to other currencies, commodities and other financial securities, while practitioners may

successfully employ L-GAS(p) specification of Gerlach et al. (2013) in their applied daily analysis
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of Cryptocurrencies.

Our work is organised as follows: Section 2 briefly introduces GAS EWMA framework and t-GAS,

L-GAS, L-GAS(p), D-GAS, G-GAS, kCDF and eCDF EWMA specifications. Section 3 describes

selected Cryptocurrencies data and provides general estimation details of our VaR forecasts. Section

4 formally specifies VaR and illustrates how VaR forecasts can be obtained with our G-GAS

specifications. Section 5 describes first stage of our backtesting exercise with tests of Kupiec (1995),

Christoffersen (1998) and Engle & Manganelli (2004), while Section 6 analyses these tests results.

Section 7 introduces the MCS procedure and provides a final stage of our VaR analysis. Section 8

concludes our EWMA VaR forecasts of Cryptocurrencies investigation.

2 RiskMetrics, GAS and Some Nonparametric Approaches

For the Probability Density Function (PDF)

f(xt | Ft−1; ft, θ) =
1√

2πσ2t
e
−
x2t
2σ2t , (1)

where xt denotes daily Cryptocurrency logarithmic returns, Ft−1 is the information set available at

time t− 1, ft and θ are vectors of time-varying and static parameters respectively; setting ft = σ2t

produces J.P. Morgan’s (1996) RiskMetrics
TM

which parametrises volatility as the weighted sum of

the past squared observations given by the following recursive form

σ2t+1 = ω · σ2t + (1− ω) · x2t , 0 < ω < 1; (2)

equivalently expressed as

σ2t+1 = (1− ω)

t∑
i=1

ωix2t−i (3)

or by

σ2t+1 =
1− ω
1− ωt

t∑
i=1

ωix2t−i (4)

which ensures weights always sum to 1 over i = 1, · · · , t and is a zero intercept particular case

of Bollerslev’s (1986) Integrated GARCH (1,1) (IGARCH) model. The more general form of the
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IGARCH model is

σ2t+1 = c+A · x2t +B · σ2t = c+A · (x2t − σ2t ) + (A+B) · σ2t (5)

and the special case occurs when c = 0, B = ω and A = 1 − B (see Bollerslev et al., 1994, for

details).

For the Gaussian PDF in (1) and under the GAS framework

ft+1 = c+A · st +B · ft (6)

where st = St ·
∂Lt
∂ft

for St = S(ft,Ft−1; θ) and Lt = log f(xt|Ft−1; ft, θ) with Lt(·) denoting the

logarithm of the conditional PDF and St(·) a scaling function, which as in Lucas & Zhang (2016)

is the inverse diagonal of the Fisher information matrix (see Creal et al., 2013; A. Harvey, 2013,

for more details or other scaling options), setting c = 0 and B = 1 Creal et al. (2013) show that

the Integrated GAS (IGAS) reduces to

ft+1 = A · st + ft (7)

and is identical to the IGARCH in (5) if A = 1− ω.

For the Student’s t PDF

f(xt | Ft−1; ft, θ) =

Γ

(
νt + 1

2

)
Γ
(νt

2

)√
(νt − 2)πσ2t

(
1 +

x2t
(νt − 2)σ2t

)−νt + 1

2
(8)

and with σ2t = f1,t and νt = 2 + exp(f2,t) Lucas & Zhang (2016) provide closed form recursions for

the t-GAS form of RiskMetrics. The recursions are outlined by

f1,t+1 = f1,t +Aσ2
t
· (1 + 3ν−1t ) ·

(
νt + 1

νt − 2 + x2t /f1,t
· x2t − f1,t

)
(9)
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for σ2t+1 and 1

f2,t+1 = f2,t −Aνt ·
2

νt − 2
·
(
γ′′
(
νt + 1

2

)
− γ′′

(νt
2

)
+

2(νt + 4)(νt − 3)

(νt + 1)(νt + 3)(νt − 2)2

)−1
·
(
γ′
(
νt + 1

2

)
−

γ′
(νt

2

)
− 1

νt − 2
− log

(
1 +

x2t
(νt − 2)f1,t

)
+

νt + 1

νt − 2
· x2t

(νt − 2)f1,t + x2t

)
, (10)

where Γ(y) =
∫∞
0 zy−1exp(−z)dz, γ′(·) and γ′′(·) are the first and second order derivatives of

γ(·) = log Γ(·), for νt+1 under Aι > 0 restriction for both (9) and (10).

On the other hand, a less involved alternative to recursions in (9) and (10) is presented by Guermat

& Harris (2002) under the functional form of Laplace distribution. Laplace PDF for estimations is

given by

f(xt | Ft−1; ft, θ) =
1√
2σt

e
−

√
2|xt|
σt , (11)

while its IGAS dynamics are specified as

f3,t+1 = c+ 2A ·
√

2|xt|σt + (B − 2A) · f3,t, (12)

which under c = 0, A =
1− ω

2
and B = 1 takes the “robust” form of Guermat & Harris (2002),

given by

σ2t+1 = ω · σ2t + (1− ω) ·
√

2|xt|σt, (13)

as shown by Lucas & Zhang (2016) for L-GAS EWMA parametrisation.

Further, to introduce the functionality of asymmetric responses to “negative” and “positive”

volatility in (11), Gerlach et al. (2013) consider a skewed Laplace PDF given by

f(xt | Ft−1; ft, θ) =
kt
σt

exp

(
−
[

1

1− pt
I{xt>0} +

1

pt
I{xt<0}

]
kt|xt|
σt

)
, (14)

1Note that setting ω = A · (1 + 3ν−1
t ) in (9) provides a recursive form similar to (2), see Lucas & Zhang (2016)

for details.
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where kt =
√
p2t + (1− pt)2 and with f4,t = σ2t yielding the following GAS recursions:

σ2t+1 = ω1 · σ2t + (1− ω1) · σt · |xt|·
(

kt
1− pt

I{xt>0} +
kt
pt
I{xt<0}

)
, (15)

ut+1 = ω2 · ut + (1− ω2) · |xt|·I{xt>0},

vt+1 = ω3 · vt + (1− ω3) · |xt|·I{xt<0},

pt+1 =
1

1 +
√

ut+1

vt+1

.

On the other hand, Dupuis et al. (2014) concerned with limited tails functionality of the Laplace

distribution, suggest employing a more flexible, but still parsimonious, double Generalised Pareto

distribution model. Its PDF for estimations is given by

f(xt | Ft−1; ft, θ) =
1

2σt

(
1 +

ξ|xt|
σt

)−1/ξ−1
, (16)

while f5,t+1 = σt+1 and is obtained iteratively by solving

t∑
i=1

(1− ω)ωt−i

1− ωt

(
1

1 + ξ|xi|/σt
− 1

1 + ξ

)
= 0, (17)

where ξ can be set at

ξ = ξ
bt0.05c
Hill =

1

bt0.05c

bt0.05c∑
j=1

log

(
xj,t

xbt0.05c,t

)
for x1,t ≤ · · ·xj,t of |xi|, i = 1, · · · , t and bt0.05c denoting integer of x for 5% of the largest

absolute returns on the estimation time t, as per rule-of-thumb suggestion of Dupuis et al. (2014).

Asymmetric volatility responses for D-GAS can also be allowed. To implement this, Dupuis et al.

(2014) consider a double Pareto PDF of the following form:

f(xt | Ft−1; ft, θ) =


1−p
σ−
t

(
1− ξxt

σ−
t

)−1/ξ−1
for xt < 0

p

σ+
t

(
1 + ξxt

σ+
t

)−1/ξ−1
for xt > 0

, (18)
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where f6,t+1 = σ+t+1 and f7,t+1 = σ−t+1 are obtained by solving:

t∑
i=1

(1− ω1)ω
t−i
1

1− ωt1
· I{xi>0} ·

 1 + ξ

ξ +
σ+
t
xi

− 1

 = 0 (19)

and
t∑
i=1

(1− ω2)ω
t−i
2

1− ωt2
· I{xi<0} ·

 1 + ξ

ξ − σ−
t
xi

− 1

 = 0 (20)

respectively.

As an alternative to the RiskMetrics approach outlined by Dupuis et al. (2014), we suggest

approximating data generating process of returns by employing a reflected gamma PDF as discussed

in Nadarajah (2004) and given by

f(xt | Ft−1; ft, θ) =
1

2σtΓ(νt)
·

∣∣∣∣∣xtσt
∣∣∣∣∣
νt−1

exp

{
−

∣∣∣∣∣xtσt
∣∣∣∣∣
}
, (21)

where σt > 0 and νt > 0. It is straightforward to see that if νt = 1, PDF in (21) takes a form of

the Laplace distribution similar to the robust symmetric EWMA in Gerlach et al. (2013) and to

what is shown by Nadarajah et al. (2013) for the PDF in (16) if ξ = 0. Now, if log σt = f8,t and

log νt = f9,t for PDF in (21) under dynamics in (6) it can be shown that

f8,t+1 = f8,t +Aσt ·
(
|xt|
σt · νt

− 1

)
(22)

and

f9,t+1 = f9,t +Aνt · I{xt 6=0} ·
(

log|xt|−f8,t − γ′(νt)
νt · γ′′(νt)

)
(23)

respectively. Recursions in (22) and (23) are notably more straightforward at the implementation

stage than those outlined by Lucas & Zhang (2016) for t-GAS RiskMetrics, but most important,

they allow time-variation in the shape of the tails, unlike D-GAS specifications.2

Another pragmatic strategy under RiskMetrics type weightings may result from removing any

particular form of the distributional parametrisations. From A. Harvey & Oryshchenko (2012),

a time-varying CDF of financial returns for dynamic quantiles and VaR mining can be estimated

2We provide empirical illustrations on the reflected gamma, its EWMA GAS parameters and VaR in Section 4.
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using a kernel in the form of CDF and is given by

F1,t+1(x) =
1− ω
1− ωt

t∑
i=1

W

(
x− xi
β

)
ωi, (24)

where W (x) =
1√
2π

∫ x
−∞ e

−z2/2dz, x ∈ R and β is the CDF optimal bandwidth parameter.3

Moreover, the latter form may be further simplified to

F2,t+1(x) =
1− ω
1− ωt

t∑
i=1

I{xi≤x}ω
i, (25)

following the guidelines of Taylor (2007) for nonparametric quantile regressions with exponentially

declining weights.

3 Data

For our VaR estimations, we employ daily USD exchange rates for Bitcoin (BTC), Litecoin (LTC)

and Ethereum (ETH) from Kraken Cryptocurrency exchange.4 BTC, LTC and ETH are on the

list of the top five most highly capitalised Cryptocurrencies (as of coinmarketcap.com data on

the 25th of February, 2019) and are often subjects for investigation in the relevant literature

(e.g. Katsiampa (2019); Caporale & Zekokh (2019)). Therefore, they formulate a small set of

representative Cryptocurrencies for our investigation.

We obtain returns for computations as follows:

xt = log

(
Pt
Pt−1

)
· 100

and describe some of their properties in Table 1. Obtained returns are illustrated in Figure 1.

[Table 1 and Figure 1 around here.]

3Semeyutin & O’Neill (2019) empirically show that kernel functional form is not the most important component
of forecasting with these estimators. Therefore, we employ most commonly used Gaussian kernel in our estimations.

4BTC data prior to 06.10.2013 was obtained from coindesk.com and was no longer publicly available at the moment
of producing this work. It is available upon request from the corresponding author.
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We split each series in “training” and “testing” subsamples as reported in Table 1. For BTC and

LTC, we then perform 1000 observations rolling window parameters updates for our one-day-ahead

VaR forecasts similar to Laporta et al. (2018) among others. For ETH, to insure that VaR

testing period covers the “boom and bust” of Cryptocurrencies, parameters for one-day-ahead

forecasts are first obtained by recursively adding daily data from the testing subsample, and when

ETH estimation sample reaches 1000 observations, parameters are updated using a rolling window

approach similar to BTC and LTC. Please see Ardia & Hoogerheide (2014) for relevant and thorough

discussion of the parameters estimation strategies and their impact on VaR forecasts.

Parameters for (1), (8), (11), (14), (16) and (18) are obtained employing maximum likelihood as

prescribed by Creal et al. (2013) and for (24) and (25) with accordingly modified least-squares

routine of Bowman et al. (1998) as discussed in Semeyutin & O’Neill (2019) for nonparametric

estimators of A. Harvey & Oryshchenko (2012).5 Note that for stable evaluations with (17), (19),

(20), (24) and (25) more observations may be necessary at the initial recursive iterations. Therefore,

recursions for these parameters are initialised at the 250th observation, however still employing all

preceding observations.

4 Value-at-Risk and Reflected Gamma Quantile Function

Our daily out-of-sample VaR forecasts are performed assuming “long” position in the selected

Cryptocurrencies for 95%, 97.5%, 99% and 99.5% risk confidence levels and are backtested employing

unconditional coverage test of Kupiec (1995), conditional coverage test of Christoffersen (1998),

dynamic quantiles test of Engle & Manganelli (2004) and MCS procedure of Hansen et al. (2011).

We describe tests of Kupiec (1995), Christoffersen (1998) and Engle & Manganelli (2004) in Section

5, while the procedure of Hansen et al. (2011) in Section 7. Overall, our VaR backtesting framework

can be described as the most standard (e.g. see Nieto & Ruiz, 2016, for comprehensive VaR

review) and should be familiar to the various financial audiences interested in forecasting VaR of

Cryptocurrencies (e.g. Trućıos, 2019) or other commodities (e.g. Laporta et al., 2018).

5We actually perform computations of parameters for nonparametric methods using accordingly modified binned
estimators to speed up our evaluations of the unknowns as per binning details discussed in Semeyutin & O’Neill
(2019).

10



We define EWMA VaR forecasts as

ˆVaRı,t+1,α = F̂−1t+1(1− α), for α ∈ (0, 1).

For example, for reflected gamma in (21), one-step-ahead VaR forecasts are therefore outlined by

ˆVaRt+1,α = F̂−1t+1(1− α | Ft−1; ft, θ) =


−σ̂t+1 ·Q−1(ν̂t+1, 2[1− α]) if α ≤ 0.5

σ̂t+1 ·Q−1(ν̂t+1, 2α) if α > 0.5

, (26)

where Q(α, ν̂t+1) =
∫∞
α zν̂t+1−1exp(−z)dz/Γ(ν̂t+1). Other quantile functions for VaR estimation

with specifications listed in Section 2 can be found in the relevant EWMA literature. For instance,

to obtain nonparametric EWMA VaR forecasts, we employ the empiric algorithm described in

A. Harvey & Oryshchenko (2012) and do not describe it for brevity reasons.

[Figures 2, 3, and 4 around here.]

We illustrate some of the possible shapes for reflected gamma PDF and also perform its shapes

comparisons with Student’s t PDF in Figure 2. Though we do not categorise G-GAS as a direct

competitor to t-GAS EWMA specification, our goal here is to demonstrate that reflected gamma

can take varied PDF forms and that dynamics of its scale and tails shape parameters can be

found similar to the t-GAS(νt). From Figure 2, setting ν = 1 with reflected gamma we obtain the

shape of Laplace distribution, while with ν = 1.5 we can easily observe two reflected gamma PDFs

combination forming our joint distribution for estimations. If we compare it to Student’s t shapes

in Figure 2, it is easy to note that reflected gamma PDF approximates body domain of the data

generating process differently. However in the context of VaR, we are mostly interested in the tails

approximation and it is easy to pick up that reflected gamma offers a range of tail decays within the

functionality of its shape parameter (e.g. also see Chen & Gerlach, 2013, employing more elaborate

two-sided Weibull distribution in the GARCH setting for VaR).

Employing reflected gamma may have a very straightforward rationale. Laplace EWMA schemes

as in Guermat & Harris (2002) are usually expected to provide conservative estimates (e.g. Lucas &
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Zhang, 2016) due to limited tail functionality. Double GPD as in Nadarajah et al. (2013) also allows

for different tails, has Laplace as a special case and may offer attractive Extreme Value Theory

links; however, its EWMA extension of Dupuis et al. (2014) is restricted to ξ > 0 assumption6 and

implies heavier than Laplace tails for estimations. This restriction is still valid for VaR modelling

of Cryptocurrencies as we may well expect financial returns to be heavy-tailed. On the other hand,

unlike Dupuis et al.’s (2014) specifications, our G-GAS EWMA setting also allows for time-varying

tails and does not require an iterative solution for its time-varying scale parameter. Therefore,

it can be argued as more straightforward at the implementation stage. RiskMetrics type models

are commonly expected to be parsimonious and easy to implement, since the more technically or

computationally involved the forecasting scheme becomes, the less it is reasonable to restrict one’s

portfolio of methods to the exponential decay weighting given other more elaborate and effective

methods for modelling VaR of Cryptocurrencies (e.g. Peng et al., 2018).

Figure 3 illustrates BTC in-sample volatility and time-varying tails parameters for t-GAS(νt)

EWMA and similar parameters for G-GAS(νt) EWMA. It is straightforward to note that volatility

and scale dynamics of these specifications are not identical but have a similar pattern and common

trends. For BTC, t-GAS(νt) produces tails parameter often close to 2, its lower tail bound limit

keeping variance of the Student’s t defined, while G-GAS(νt) tail parameter fluctuates around 1,

its special Laplace distribution case. This evidence highlights our key G-GAS EWMA motivations;

it is straightforward to implement, can take robust Laplace form as well as offers a range of shapes

to avoid potential conservatism of the Laplace EWMA based specification. We also visualise BTC

in-sample G-GAS(νt) VaR estimates and their violations in Figure 4 for EWMA parameters in

Figure 3. Figure 4 illustrates that this scheme provides adequate tail quantiles evaluation and is

valuable for our Cryptocurrencies competition of RiskMetrics type models. Now we proceed to our

next section, where we begin describing tests we use to backtest our one-step-ahead Cryptocurrencies

VaR forecasts.

6Otherwise its EWMA driven scale/volatility is undefined and is no longer robust as highlighted by Dupuis et al.
(2014).

12



5 Value-at-Risk Backtesting Framework

For the out-of-sample VaR violations denoted with N =
∑T

t=1 It, where It is an indicator function

taking the value of 1 every time there is a larger realised loss than the VaR forecasts for the period

T , Kupiec (1995) suggests employing the following Likelihood Ratio (LR) test for VaR backtesting:

LRucd(α) = 2

(
log

[(
N

T

)N
·
(

1− N

T

)T−N]
− log

[
(1− α)T−N · αN

])
. (27)

The statistic in (27) is a χ2(1) distributed, quantifies how well VaR exceedances’ rate matches

expectations and is commonly known as the unconditional coverage LR (LRuc) test. On the other

hand, Christoffersen (1998) builds upon LRuc test idea and suggests a more inclusive LR procedure

outlined by:

LRccd(α) = LRucd(α)− LRind(α), (28)

where LRucd is computed LRuc test distance in (27), and LRind is independence LR test distance

outlined by:

LRind(α) = 2
(

log
[
πT0000 π

T01
01 π

T10
10 π

T11
11

]
− log

[
(1− α)T01+T11 · αT00+T10

])
, (29)

where πij = P (It = j | It−1 = i) =
Tij

Ti0 + Ti1
for the first-order Markov chain transition matrix:

∇ =

π00 π01

π10 π11


with Tij accounting for transitions from states i and j. LRin statistic in (29) is a χ2(1) distributed

and in combination with (27) forms the conditional coverage LR (LRcc) test in (28). Therefore,

LRcc test follows χ2(2) distribution and jointly tests the first-order Markov independence of VaR

violations and how their number matches our expectations hypothesis.

As pointed out by Berkowitz et al. (2011), Engle & Manganelli (2004) construct a more powerfull

and simple test (DQ) for evaluating VaR forecasts. If our VaR violations are i-th order independent

and match our expected number of occurrences, for a demeaned VaR violations function λt = It−α,
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all coefficients in the below regression setting:

λt = β0 +
π∑
i

βiλt−i +

g∑
j

βπ+jZj,t + εt (30)

should be zero. Wald test based VaR violations statistic for the setting in (30) is χ2(π + g + 1)

distributed, while it is common to set π = 4 and Zj=1,t = ˆVaRı,t,α (e.g. Novales & Garcia-Jorcano,

2019).

For the quantile tests outlined by (27), (28) and (30), a typical significance threshold is set up at

the 5% level (e.g. Laporta et al., 2018) as it is in our next section, where we provide backtesting

results and VaR analysis for BTC, LTC and ETH with these tests.

6 Value-at-Risk Backtesting Results and Discussion

Results for the backtesting procedure described in Section 5 are provided in Tables 2, 3, 4 and 5,

while we comply actual VaR forecasts with different EWMA VaR methods for the considered

Cryptocurrencies into box-plots in Figure 5. Compiling our VaR one-step-ahead forecasts by

different EWMA specifications into box-plots allows us to analyse relative consistency of the

obtained estimations and evaluate their degree of conservatism. This evidence not only provides a

compact presentation but is also valuable for comprehensive and insightful analysis with quantile

results reported in Tables 2, 3, 4 and 5.

[Tables 2, 3, 4, 5 and Figure 5 around here.]

We begin with analysing 99.5% VaR confidence level results in Table 2. First, the only EWMA

specification passing all three tests in Table 2 at the 5% significance level is L-GAS(pt). Moreover, it

is the only appraoch comfortably passing DQ test for BTC and ETH. For LTC, D-GAS, D-GAS(w),

G-GAS(ν) and G-GAS(νt) also pass all tests at the 5% significance level. However, it is notable that

for LTC RM and kCDF approaches pass LRuc and LRcc tests. Though kCDF may be expected to

struggle at this VaR confidence level, it yields a slightly better outlook than RM for BTC and ETH

when evaluating AE ratios of these models. AE ratios for kCDF are closer to one than those of RM
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but are still above the expected level. This evidence highlights the insufficiency of RM Gaussian

assumptions for Cryptocurrencies. t-GAS specifications provide a modest performance similar to

our reflected gamma and Dupuis et al.’s (2014) Pareto approaches. However, it is worthwhile to

highlight that t-GAS(νt) AE ratios are notably below one. GAS based applied recommendation

of Zumbach (2007) provides the worst performance. Evaluating box-plots for this VaR level in

Figure 5, it may be noted that D-GAS of Dupuis et al. (2014) yields the most conservative VaR

projections. This is the most notable for LTC and can be explained by the time-invariant shape

parameter of this approach. Accounting for positive and negative volatility with D-GAS(w) provides

improvements similar to our G-GAS(νt) specification; however, for reflected gamma we achieve

these results by varying the shape parameter over time. Despite its low AE ratio in Table 2, we

observe that t-GAS(νt) does not yield the most conservative estimates. This evidence may be a

valuable observation on t-GAS(νt) fit for Cryptocurrencies and we may expect a positively different

outlook for this specification with the MCS procedure. To clarify, MCS is typically based on the

VaR violations function of González-Rivera et al. (2004) and is designed to not only account for

frequency of the losses but also for their magnitude.

Now we proceed to analyse 99% VaR confidence level results in Table 3. Again, the only EWMA

specification passing all three tests for this risk level is L-GAS(pt). It is also the only specification

passing all three tests for BTC. For the methods passing all three tests for ETH, it is now joined

by D-GAS, D-GAS(w), G-GAS(ν) and G-GAS(νt). It is worthwhile to highlight that D-GAS,

D-GAS(w), G-GAS(ν) and G-GAS(νt) are the specifications also passing LRuc and LRcc tests for

BTC at this level. These results suggest that these approaches meet expectations on the number

of violations for Cryptocurrencies consistently, which are also the first-order independent; however,

fail ensuring higher order independence levels for BTC. For LTC, we generally observe that most of

the EWMA specifications meet all our quantile expectations with RM providing quite an appealing

outlook for this Cryptocurrency at the 99% level. It outperforms both kCDF and eCDF approaches

when taking DQ results for LTC into consideration. However, for ETH and BTC, we observe a

generally more expected performance outlook for kCDF and RM. t-GAS specifications provide a

very similar performance outlook to 99.5% level, while results in Figure 5 again point out the

drawbacks of D-GAS in our estimation setting and the context of Cryptocurrencies. This is the

most notable when evaluating box-plots for LTC at this level.
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Analysing 97.5% VaR level results in Table 4, we again observe that L-GAS(pt) continues to provide

the most appealing VaR backtesting results. It is the only specification which passes all tests at this

level. D-GAS, D-GAS(w), G-GAS(ν) and G-GAS(νt) provide similar performances to each other

without a leading specification in the group. However, only G-GAS approaches consistently meet

our expected number of violations and first-order independence criteria. 97.5% risk level is a domain

where we may begin to expect the dominance of the nonparametric approaches. In Table 4, we

observe that kCDF improves its previous performances at higher risk confidence levels. However,

LRuc for BTC and DQ for BTC and ETH results are still notably behind the best performing

specification of Gerlach et al. (2013).

Finally, we expect nonparametric EWMA specifications to take the key role at the 95% VaR

confidence level in Table 5. However, both approaches struggle to provide first and higher-order

independence of VaR violations for BTC and do not pass the DQ test for ETH and LTC. Moreover,

kCDF and eCDF do not provide improved performances over their previous risk level results. On

the other hand, based on the eCDF VaR backtest results we point out empirical evidence on the

modelling value of kernel functional form and bandwidth parameters for the VaR of Cryptocurrencies

estimations. It is not straightforward to select the best performing model for this risk confidence

level. L-GAS(pt) struggles to outperform RM consistently and only both G-GAS specifications

ensure that number of VaR violations match expectations and are also at least first-order independent

for all considered Cryptocurrencies.

7 Model Confidence Set

From the VaR backtesting in the previous section, L-GAS(pt) repeatedly passes the 5% significance

threshold at most of our VaR levels. However, tests we consider in Section 6 do not allow directly

discriminating among the models which jointly pass our selected significance level and only target

testing the frequency of VaR violations. Therefore to complement our analysis in Section 6, we

also describe and apply the MCS procedure of Hansen et al. (2011) to our VaR forecasts. MCS is

designed to construct a “superior set of models” (SSM) and allows explicitly ranking forecasting

performances of our RiskMetrics variations for each sample at the specified VaR level. MCS

backtesting results are bootstrap based, robust, relatively straightforward to interpret and therefore,
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are valuable for practitioners in the applied context of our RiskMetrics estimations.

To yield an SSM, M̂?
1−δ at a confidence level 1−δ, we consider an asymmetric quantile loss function

of González-Rivera et al. (2004)

L
(
xt; ˆVaRι,t,α

)
=


(α− 1) ·

(
xt − ˆVaRι,t,α

)
if xt < ˆVaRι,t,α

α · xt − α · ˆVaRι,t,α if xt ≥ ˆVaRι,t,α

, (31)

designed to heavily penalise extreme exceedances of the VaR forecasts. Further, for the loss function

in (31), we construct an Equal Predictive Ability (EPA) test. EPA test can be based on the loss

differentials dij,t between model i and model j,

dij,t = Li,t − Lj,t,

and the average loss differential di·,t between model i and any other competing model in the generic

set of models M , so that i, j ∈M and

di·,t =
1

m− 1

∑
j∈M

dij,t,

where m denotes the dimensions of the initial participating models set M0. Null and alternative

hypotheses for the EPA test are typically outlined by:

H0 : E[di·,t] = 0, for all i ∈M

H1 : E[di·,t] 6= 0, for some i ∈M (32)

and are constructed upon the “if a model i is preferred to the alternative model j when dij,t < 0”

testing rationale. For the hypotheses in (32), Hansen et al. (2011) suggest the following statistic:

ti,· =
d̄i,·√
ˆvar(d̄i,·)

, for all i ∈M, (33)

where d̄i,· =
1

m− 1

∑
j∈M d̄ij and d̄ij =

1

n

∑T
t=1 dij,t, while ˆvar(d̄i,·) is the bootstrapped variance

estimate of d̄i,· similar to the well-known tests for comparing two forecasts by Diebold & Mariano
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(1995) and D. Harvey et al. (1997) among others. Finally, a coherent model elimination rule is

required for the MCS procedure with (33) and is typically given by:

εM = argmax
i∈M

ti,·. (34)

Elimination rule we set up in (34) concentrates on the standardised VaR exceedances relative to the

computed average across other participating models since the greater are the computed statistic

values in (33), the more distant are the actual realisations from the model’s forecasts. Overall,

the MCS procedure begins with EPA test on some initial set of models. If the null is accepted at

the first iteration, it reports ranked models in the initial set with a statistic in (33). On the other

hand, if the null is rejected, a model with the highest computed statistic is eliminated, and the

procedure is repeated until the null in (32) is accepted at the δ significance level, yielding an SSM.

Similar to Laporta et al. (2018) and Caporale & Zekokh (2019) in our MCS estimations we aim

to construct 5000 bootstrap samples for each VaR level and set δ = 0.2. We report the computed

SSM for Cryptocurrencies at each VaR level in Table 6.

[Table 6 around here.]

In Table 6, each entry indicates the ranking of EWMA specifications within M̂?
1−δ, while no ranking

implies that the model was eliminated at the chosen VaR confidence level. From Table 6, it

is straightforward to observe that L-GAS(pt) EWMA specification receives the highest ranking

consistently at 99.5%, 99% and 97.5% VaR levels. At the 95% level it also provides an attractive

performance; however, gets eliminated for LTC forecasts. These results are in line with our analysis

and conclusions in Section 6 for L-GAS(pt). The only remaining model for LTC forecasts in the

SSM at the 95% level is t-GAS(νt) specification. Overall from Table 6, t-GAS(νt) EWMA can

be classified as the second-best performing model in our setting for other Cryptocurrencies and

VaR levels. It gets eliminated from the SSM only three times, second-lowest after L-GAS(pt),

and typically receives good ranking among remaining models. Though in Section 6, it struggles

to meet the expected frequency of violations, when we account for the magnitude of the losses, it
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provides a more appealing performance. On the other hand, it is also worthwhile to acknowledge

the standard RM scheme performance. As may be expected from the analysis conducted in Section

6, it provides relatively good results for LTC at 99.5%, 99% and 97.5% VaR levels. Moreover,

from Table 6, it is found superior to t-GAS(ν) specification and GAS version of the Zumbach’s

(2007) applied recommendation for t-GAS(5). These results highlight the importance of tails time

variation for Cryptocurrencies.

In Table 6, RM also receives a higher ranking than L-GAS and outperforms D-GAS and D-GAS(w)

specifications of Dupuis et al. (2014) at 99% and 97.5% VaR levels. Moreover, it outperforms

G-GAS(ν) and G-GAS(νt) at 97.5% level as well as provides quite competing ranking to our

gamma based models at the higher VaR confidence levels. These results for RM, L-GAS, D-GAS,

D-GAS(w), G-GAS(ν) and G-GAS(νt) EWMA specifications highlight that considering special

cases of the Laplace distribution with a shape parameter provide little modelling gains for VaR of

Cryptocurrencies than special cases relying on the skewness parameter as in Gerlach et al. (2013).

Therefore, we can conclude that for modelling VaR of Cryptocurrencies time-varying skewness

parametrisation is more valuable than time-varying shape under the exponential weighting scheme.

Finally, we also note less expected results for the nonparametric EWMA specifications we consider.

Both eCDF and kCDF EWMA models get eliminated at 95% risk confidence and receive far

from the highest ranking at the 97.5% VaR level in Table 6. Usually, we expect nonparametric

specifications to capture relatively data abundant domains quite well, while from the results in

Section 6 and here, these specifications struggle to provide an appealing modelling outlook at

these levels. On the other hand, nonparametric EWMAs provide very attractive box-plots in

Figure 5; however, unlike for t-GAS(νt), their AE ratios reported in Tables 2, 3, 4 and 5 are

typically above one. Therefore, the results we observe in Table 6 for these specifications shall

be expected. Generally, this may be rationalised by the sharp and unprecedented fluctuations in

Cryptocurrencies’ value and corresponding bouts of extreme volatility due to the unique issues

in the Cryptocurrencies market as discussed and summarised by Corbet et al. (2019) and Eross

et al. (2019) among others. Therefore, specifications relying on the parametric assumptions may

still outperform entirely data-driven nonparametric methods at the lower risk confidence levels as

Cryptocurrencies’ market is not mature yet. On the other hand, one may increase the size of the

rolling window for better forecasting outcomes with nonparametric specifications; however, at the
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current stage of Cryptocurrencies’ market development, this may be still problematic due to the

relatively small/reduced sample sizes of Cryptocurrencies for backtesting.

8 Concluding Remarks

In this work, we empirically tested whether VaR of Cryptocurrencies can be forecasted with

EWMA models similar to the well-known RM approach of J.P. Morgan (1996) for the downside

risk evaluations. To achieve our aim, we compiled approaches that are built upon J.P. Morgan’s

(1996) RM criticism (e.g. McMillan & Kambouroudis, 2009; Lucas & Zhang, 2016) as well as

suggested our specification under this scheme. Employing LRuc, LRcc and DQ tests as well as

MCS procedure, we identify that VaR of Cryptocurrencies can be successfully forecasted with

parsimonious EWMA models. We also find that L-GAS(pt) of Gerlach et al. (2013) performs the

best at most of the considered VaR levels and is a valuable addition to the portfolio of methods used

for Cryptocurrencies’ VaR forecasting as in Peng et al. (2018). Besides, similar to Trućıos (2019)

our EWMA results highlight good general performance of GAS framework in the Cryptocurrencies

setting. The framework allows every parameter behind the data generating process to contribute

to the conditional volatility estimates for our VaR modelling and therefore, also provides good

forecasts with simple exponential weights. For example, with our MCS results, we observe this

for t-GAS(νt) EWMA of Lucas & Zhang’s (2016). Our G-GAS specifications do not achieve as

positive outlook in the MCS procedure as t-GAS(νt); however, they provide modest and competing

performance to other models with LRuc, LRcc and DQ results. On the other hand, our reflected

gamma and GAS based specifications cannot be regarded as the exhaustive contribution. We aimed

to enhance common Laplace distribution with a time-varying shape parameter similar to Lucas &

Zhang’s (2016) approach and complement our VaR investigation. With overall G-GAS results for

Cryptocurrencies, we conclude that in the Laplace related specifications, time-varying skewness

asymmetric volatility responses may be preferred over the responses driven by the time-varying

symmetric tails parameter.

Extreme Value Theory linked double Pareto EWMA specifications of Dupuis et al. (2014) also

provide a competing performance at LRuc, LRcc and DQ backtesting stage and can be worthwhile

considering; however, if not accounted for positive and negative volatility, D-GAS tends to provide
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an excessive conservative outlook in our estimations setting. This evidence does not necessarily

mean that conservative estimates are not valid for applied use. Pérignon et al. (2008) point out that

the six largest commercial banks in Canada prefer to overestimate their exposure to avoid additional

financial penalties (e.g. see McMillan & Kambouroudis, 2009; McAleer et al., 2013, for examples

of the number of violations and capital penalties under the Basel II and III standards) and thus,

indicate that conservative exposure strategies may be valid for practitioners. On the other hand,

similar to Gkillas & Katsiampa (2018), we also find that LTC is not the riskiest Cryptocurrency,

however from our results, it is shown with the most basic J.P. Morgan’s (1996) RM rather than

more elaborate Extreme Value Theory setting.

Future researches are encouraged to replicate our results as more observations for BTC, LTC and

ETH become available or consider a wider pool of Cryptocurrencies to challenge our findings on

the EWMA schemes. Indeed, it is also worthwhile to consider a more comprehensive portfolio

of methods for VaR estimations similar to Caporale & Zekokh (2019). In addition, Laporta et al.

(2018) find that quantile regressions outperform several common GARCH and GAS specifications in

the setting of energy commodities and therefore, parametric and nonparametric quantile regressions

may be an excellent addition to the set of models used for our estimations. EWMA based

nonparametric quantile regressions as in Taylor (2007) are of particular interest, since in our

setting their direct nonparametric competitors for entire distribution modelling as in A. Harvey &

Oryshchenko (2012), struggle at the comfortable domains for nonparametric specifications. Other

future investigations may also add a skewness parameter to our reflected gamma model and perform

comparisons to the skewed Student’s t version of Lucas & Zhang’s (2016) EWMA specification.

We scripted all computations for producing this work and performed them in R version 3.5 by

R Core Team (2013). For all replication scripts and data-related questions, one can contact the

corresponding author. We have no conflict of interest to disclose and would like to thank the

Editor, the Associate Editor, and the referee for careful reading, and for their comments, which

greatly improved the paper. We also would like thank participants of the Cryptocurrency Research

Conference 2019 at the University of Southampton for their helpful comments and suggestions on

the earlier version of the work.
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Table 1: Descriptive Statistics for the Specified Log-returns.

sample date log-returns T Mean St.Dev. Skew. Kurt. LB(12) LB2(12) AH(12)

training

18.07.2010-13.04.2013 BTC/USD 1000 0.6941 7.6671 -0.4954 11.7097 0.0205 0.0000 0.0000
24.10.2013-20.07.2016 LTC/USD 1000 0.0322 11.9282 0.4896 34.0967 0.0000 0.0000 0.0000
07.08.2015-19.12.2016 ETH/USD 550 0.2435 9.0502 -1.7315 24.0564 0.0033 0.0349 0.0000

testing

14.04.2013-31.01.2019 BTC/USD 2119 0.1706 4.5922 -0.0195 10.3352 0.0000 0.0000 0.0000
21.07.2016-31.01.2019 LTC/USD 925 0.2209 6.4906 1.5119 13.4090 0.0107 0.0000 0.0000
20.12.2016-31.01.2019 ETH/USD 723 0.3116 6.4064 0.2657 4.9713 0.1034 0.0000 0.0000

Notes: LB(12) and LB2(12) are the 12th order Ljung-Box no serial correlation probabilities
in log-returns and squared demeaned log-returns respectively; AH(12) is 12th order Lagrange
Multiplier no autocorrelation, normality, and homoscedasticity probabilities.
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Figure 1: BTC/USD, LTC/USD and ETH/USD Exchange Rates and Corresponding Log-returns.

Notes: Log-returns from the beginning of 2017 are highlighted in red.

Figure 2: Reflected Gamma and Student’s t PDFs Illustration for Different Shape Parameters.

Notes from left to right: reflected gamma PDF with ν = 0.5, 1, 1.5; Student’s t PDF with ν = 2, 30;
reflected gamma PDF and Student’s t PDF together.
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Figure 3: In-sample Time-varying Parameters of Reflected Gamma and Student’s t Distributions for BTC.

Notes: dashed horizontal lines indicate ν = 2 for Student’s t and ν = 1 for reflected gamma respectively.
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Figure 4: Reflected Gamma In-sample VaR Estimates.

Notes: 99% VaR in-sample violations are highlighted in red.
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Table 2: VaR Backtesting Results: 99.5% Level.

VaR level Approach
BTC LTC ETH

LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE

99.5%

t-GAS(5) 42.6153 0.0000 44.3787 0.0000 129.1057 0.0000 3.5866 10.1967 0.0014 10.5678 0.0051 37.6194 0.0000 2.8108 7.6367 0.0057 10.0236 0.0067 58.7092 0.0000 2.7663
t-GAS(ν) 1.6292 0.2018 4.4358 0.1088 35.6611 0.0000 1.4158 0.0890 0.7655 0.1238 0.9400 4.3328 0.7407 0.8649 1.3179 0.2510 5.7370 0.0568 45.2161 0.0000 1.6598
t-GAS(νt) 0.6981 0.4034 6.0039 0.0497 51.8777 0.0000 0.7551 4.2013 0.0404 4.2035 0.1222 3.4347 0.8421 0.2162 0.4761 0.4902 0.5459 0.7611 27.1461 0.0003 1.3831
L-GAS 15.9840 0.0001 16.9430 0.0002 57.3190 0.0000 2.4540 3.2543 0.0712 3.4313 0.1798 16.1188 0.0241 1.9459 2.4974 0.1140 2.6345 0.2679 23.5661 0.0014 1.9364
L-GAS(p) 32.7373 0.0000 33.0524 0.0000 84.9182 0.0000 3.2091 3.2543 0.0712 3.4313 0.1798 16.0896 0.0243 1.9459 3.9664 0.0464 4.1457 0.1258 30.0041 0.0001 2.2130
L-GAS(pt) 0.0154 0.9013 0.1302 0.9370 0.2867 0.9999 1.0382 0.0890 0.7655 0.1238 0.9400 4.0199 0.7775 0.8649 0.0398 0.8418 0.0844 0.9587 2.0712 0.9558 1.1065

RM 53.3523 0.0000 53.3851 0.0000 130.4122 0.0000 3.9641 3.2543 0.0712 3.4313 0.1798 18.2734 0.0108 1.9459 12.1237 0.0005 12.5293 0.0019 59.0638 0.0000 3.3195
D-GAS 1.6292 0.2018 1.8432 0.3979 23.9153 0.0012 1.4158 0.0298 0.8630 0.0842 0.9588 5.2619 0.6280 1.0811 1.3179 0.2510 1.4185 0.4920 15.3020 0.0323 1.6598
D-GAS (w) 0.1795 0.6718 0.3163 0.8537 15.1539 0.0341 1.1326 0.6557 0.4181 0.6752 0.7135 5.4624 0.6037 0.6486 3.9664 0.0464 4.1457 0.1258 27.1988 0.0003 2.2130
G-GAS(ν) 3.2857 0.0699 3.5608 0.1686 27.6175 0.0003 1.6045 1.0582 0.3036 1.1651 0.5585 9.6376 0.2101 1.5135 2.4974 0.1140 2.6345 0.2679 21.8796 0.0027 1.9364
G-GAS(νt) 5.4177 0.0199 5.7617 0.0561 31.6495 0.0000 1.7933 2.0298 0.1542 2.1696 0.3380 12.6240 0.0818 1.7297 1.3179 0.2510 1.4185 0.4920 15.5801 0.0292 1.6598
kCDF 25.9516 0.0000 26.4594 0.0000 86.9111 0.0000 2.9259 3.2543 0.0712 3.4313 0.1798 20.2179 0.0051 1.9459 3.9664 0.0464 4.1457 0.1258 25.3632 0.0007 2.2130

Notes: LRucd, LRucp, LRccd and LRccp are likelihood ratio statistic and probabilities for Kupiec (1995) and Christoffersen (1998)
tests respectively, while DQd and DQp outline associated regression output of Engle & Manganelli’s (2004) test. AE outlines standard
actual/expected number of violations ratio. Tests’ probabilities exceeding standard 5% backtesting confidence threshold are highlighted
in grey.

Table 3: VaR Backtesting Results: 99% Level.

VaR level Approach
BTC LTC ETH

LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE

99%

t-GAS(5) 35.9250 0.0000 39.4803 0.0000 121.9983 0.0000 2.5484 4.0848 0.0433 5.2741 0.0716 24.5046 0.0009 1.7297 5.0271 0.0250 6.2574 0.0438 35.6679 0.0000 1.9364
t-GAS(ν) 3.2771 0.0703 6.4949 0.0389 54.5064 0.0000 1.4158 0.0598 0.8067 0.2787 0.8699 9.3982 0.2253 1.0811 0.9577 0.3278 3.3445 0.1878 25.9731 0.0005 1.3831
t-GAS(νt) 1.4027 0.2363 9.3344 0.0094 32.1818 0.0000 0.7551 3.8234 0.0505 3.8582 0.1453 3.7423 0.8089 0.4324 0.2244 0.6357 4.6434 0.0981 35.9044 0.0000 0.8299
L-GAS 17.4672 0.0000 18.5906 0.0001 53.5391 0.0000 2.0293 0.7551 0.3849 1.0709 0.5854 8.7970 0.2676 1.2973 1.7123 0.1907 3.7523 0.1532 27.1497 0.0003 1.5214
L-GAS(p) 25.2206 0.0000 25.8682 0.0000 73.2828 0.0000 2.2652 0.7551 0.3849 1.0709 0.5854 8.8721 0.2620 1.2973 3.7611 0.0525 5.2281 0.0732 36.8344 0.0000 1.7981
L-GAS(pt) 0.8976 0.3434 1.1727 0.5563 1.3698 0.9865 0.8023 0.0069 0.9339 0.1839 0.9121 2.4085 0.9338 0.9730 0.7789 0.3775 0.8487 0.6542 1.4990 0.9823 0.6916

RM 26.9028 0.0000 26.9200 0.0000 61.0309 0.0000 2.3124 0.3153 0.5744 0.5804 0.7481 8.2100 0.3144 1.1892 9.6631 0.0019 10.4830 0.0053 47.2609 0.0000 2.3513
D-GAS 0.3609 0.5480 0.9111 0.6341 14.3079 0.0460 1.1326 0.6035 0.4372 0.7104 0.7010 3.3766 0.8481 0.7568 0.4061 0.5239 0.6333 0.7286 13.0473 0.0710 1.2448
D-GAS (w) 0.6542 0.4186 1.7262 0.4218 26.3462 0.0004 1.1798 2.3678 0.1239 2.4222 0.2979 4.9428 0.6669 0.5405 0.0801 0.7772 0.2593 0.8784 11.1420 0.1325 1.1065
G-GAS(ν) 1.0285 0.3105 1.6748 0.4328 18.1186 0.0114 1.2270 0.0069 0.9339 0.1839 0.9121 5.4229 0.6085 0.9730 0.4061 0.5239 0.6333 0.7286 12.7644 0.0781 1.2448
G-GAS(νt) 0.3609 0.5480 0.9111 0.6341 15.5639 0.0294 1.1326 0.0598 0.8067 0.2787 0.8699 7.6388 0.3655 1.0811 0.4061 0.5239 0.6333 0.7286 12.5996 0.0825 1.2448
kCDF 18.9270 0.0000 18.9352 0.0001 49.9084 0.0000 2.0765 2.1288 0.1446 2.5596 0.2781 19.7606 0.0061 1.5135 3.7611 0.0525 4.2379 0.1202 23.3552 0.0015 1.7981
eCDF 23.5810 0.0000 26.1772 0.0000 71.9639 0.0000 2.2180 3.0390 0.0813 3.5341 0.1708 25.8975 0.0005 1.6216 6.4390 0.0112 7.0755 0.0291 36.9904 0.0000 2.0747
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Table 4: VaR Backtesting Results: 97.5% Level.

VaR level Approach
BTC LTC ETH

LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE

97.5%

t-GAS(5) 18.8328 0.0000 27.5977 0.0000 70.2020 0.0000 1.6423 1.9195 0.1659 2.8201 0.2441 17.0593 0.0170 1.2973 6.7529 0.0094 6.8096 0.0332 42.6748 0.0000 1.6598
t-GAS(ν) 2.2090 0.1372 4.0321 0.1332 36.7795 0.0000 1.2081 0.4535 0.5007 3.7017 0.1571 19.1895 0.0076 0.8649 1.8091 0.1786 1.8601 0.3945 34.2983 0.0000 1.3278
t-GAS(νt) 1.2966 0.2548 4.2646 0.1186 20.4879 0.0046 0.8495 8.0659 0.0045 8.3309 0.0155 8.4554 0.2942 0.4757 1.6174 0.2035 3.0844 0.2139 13.3249 0.0646 0.7192
L-GAS 3.0505 0.0807 6.3269 0.0423 21.2816 0.0034 1.2459 0.4535 0.5007 1.0274 0.5983 9.0903 0.2462 0.8649 0.4618 0.4968 0.6846 0.7101 18.7388 0.0090 1.1618
L-GAS(p) 9.8242 0.0017 14.7481 0.0006 31.7607 0.0000 1.4535 0.0570 0.8112 0.4194 0.8108 7.4732 0.3813 0.9514 3.1449 0.0762 3.1495 0.2071 28.3277 0.0002 1.4385
L-GAS(pt) 0.7180 0.3968 0.7199 0.6977 4.5958 0.7092 0.8872 3.3371 0.0677 4.7289 0.0940 6.1790 0.5190 0.6486 1.6174 0.2035 3.0844 0.2139 4.8037 0.6839 0.7192

RM 11.4204 0.0007 15.8754 0.0004 31.6099 0.0000 1.4913 0.4535 0.5007 1.0274 0.5983 5.3239 0.6205 0.8649 6.7529 0.0094 8.7384 0.0127 37.3707 0.0000 1.6598
D-GAS 0.0202 0.8869 0.2824 0.8683 10.6150 0.1563 1.0193 2.5197 0.1124 3.0836 0.2140 8.7016 0.2748 0.6919 0.0478 0.8270 0.4617 0.7939 18.3742 0.0104 1.0512
D-GAS (w) 0.0784 0.7794 1.4823 0.4766 15.9231 0.0258 1.0382 4.2900 0.0383 4.7208 0.0944 11.3911 0.1224 0.6054 0.4618 0.4968 0.6846 0.7101 12.5775 0.0831 1.1618
G-GAS(ν) 0.0765 0.7822 0.1238 0.9400 13.4682 0.0615 0.9627 0.4535 0.5007 1.0274 0.5983 9.0450 0.2494 0.8649 0.0669 0.7959 0.8868 0.6418 14.2830 0.0464 0.9405
G-GAS(νt) 0.0000 0.9972 0.0920 0.9551 12.2984 0.0912 1.0005 0.4535 0.5007 1.0274 0.5983 9.3417 0.2290 0.8649 0.0003 0.9857 0.9209 0.6310 15.5535 0.0295 0.9959
kCDF 4.0170 0.0450 5.3304 0.0696 31.4882 0.0001 1.2836 0.9887 0.3201 1.0159 0.6017 7.2598 0.4023 1.2108 3.1449 0.0762 3.1495 0.2071 14.6842 0.0403 1.4385
eCDF 8.3358 0.0039 11.7473 0.0028 42.5498 0.0000 1.4158 0.9887 0.3201 1.0159 0.6017 8.0664 0.3268 1.2108 5.7406 0.0166 5.7671 0.0559 20.4051 0.0048 1.6044

Table 5: VaR Backtesting Results: 95% Level.

VaR level Approach
BTC LTC ETH

LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE LRucd LRucp LRccd LRccp DQd DQp AE

95%

t-GAS(5) 11.7217 0.0006 17.3663 0.0002 34.9348 0.0000 1.3403 0.7247 0.3946 0.7267 0.6953 11.6392 0.1131 1.1243 7.2740 0.0070 7.6164 0.0222 28.1210 0.0002 1.4661
t-GAS(ν) 5.3759 0.0204 12.7111 0.0017 32.6440 0.0000 1.2270 0.4236 0.5151 2.3863 0.3033 14.0784 0.0498 0.9081 6.4796 0.0109 6.9280 0.0313 32.8349 0.0000 1.4385
t-GAS(νt) 6.1591 0.0131 14.1651 0.0008 31.1613 0.0001 0.7739 13.5703 0.0002 13.7746 0.0010 13.1274 0.0691 0.5189 0.0209 0.8851 0.5801 0.7482 10.3622 0.1690 1.0235
L-GAS 2.4454 0.1179 12.3101 0.0021 28.0000 0.0002 1.1515 2.5800 0.1082 4.0998 0.1287 8.2594 0.3103 0.7784 3.1445 0.0762 4.3553 0.1133 24.9369 0.0008 1.3001
L-GAS(p) 8.8031 0.0030 15.7688 0.0004 35.1157 0.0000 1.2931 0.6512 0.4197 1.3643 0.5055 9.4892 0.2194 0.8865 5.0158 0.0251 5.7216 0.0572 23.3858 0.0015 1.3831
L-GAS(pt) 3.7895 0.0516 8.3188 0.0156 19.6083 0.0065 0.8211 4.4202 0.0355 6.5997 0.0369 7.2038 0.4080 0.7135 0.5208 0.4705 0.7549 0.6856 5.7920 0.5642 0.8852
RM 0.0415 0.8386 8.5401 0.0140 21.2523 0.0034 1.0193 1.6451 0.1996 2.8009 0.2465 6.5857 0.4733 0.8216 2.1232 0.1451 3.7541 0.1530 20.6964 0.0042 1.2448
D-GAS 0.4838 0.4867 7.4744 0.0238 22.2333 0.0023 1.0665 5.9585 0.0146 8.6614 0.0132 15.7068 0.0279 0.6703 0.6577 0.4174 0.8594 0.6507 23.2937 0.0015 1.1342
D-GAS (w) 0.6289 0.4277 7.3387 0.0255 40.2225 0.0000 1.0760 1.2607 0.2615 2.2556 0.3237 10.9283 0.1418 0.8432 0.0007 0.9796 0.4583 0.7952 15.1663 0.0339 0.9959
G-GAS(ν) 0.0380 0.8454 4.1970 0.1226 18.1159 0.0115 0.9816 3.7463 0.0529 5.6899 0.0581 8.9274 0.2579 0.7351 0.0209 0.8851 0.0271 0.9865 21.7389 0.0028 1.0235

G-GAS(νt) 0.0380 0.8454 4.1970 0.1226 15.1080 0.0346 0.9816 3.7463 0.0529 5.6899 0.0581 9.0044 0.2523 0.7351 0.0209 0.8851 0.0271 0.9865 21.7652 0.0028 1.0235
kCDF 0.0109 0.9168 11.0032 0.0041 25.8269 0.0005 1.0099 0.6512 0.4197 0.6703 0.7152 23.7487 0.0013 0.8865 1.6832 0.1945 1.7247 0.4222 12.0083 0.1003 1.2172
eCDF 1.1751 0.2784 8.8257 0.0121 25.3553 0.0007 1.1043 0.0359 0.8498 0.0549 0.9729 23.0638 0.0017 0.9730 3.7239 0.0536 4.7501 0.0930 24.5046 0.0009 1.3278
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Table 6: Superior Set of Models and Their Ranks as Provided by the MCS Procedure.

99.5% confidence panel 99% confidence panel 97.5% confidence panel 95% confidence panel
Approach BTC LTC ETH BTC LTC ETH BTC LTC ETH BTC LTC ETH

t-GAS(5) 11 8 8 - 9 8 - 5 7 - - -
t-GAS(ν) 7 - - - - - - - 9 - - -
t-GAS(νt) 2 6 3 2 3 4 - 2 2 - 1 -
L-GAS 5 3 7 7 7 9 - 8 8 - - -
L-GAS(p) 9 2 6 8 5 7 - 4 6 - - -
L-GAS(pt) 1 1 1 1 1 1 1 1 1 1 - 1
RM 12 5 5 5 2 5 - 3 3 - - -
D-GAS 8 - - 10 - - - - - - - -
D-GAS(w) 10 - 2 6 - 6 - - 10 - - -
G-GAS(ν) 4 4 - 4 8 - - - - - - -
G-GAS(νt) 3 9 - 3 10 - - - - - - -
kCDF 6 7 4 9 4 2 - 7 4 - - -
eCDF - - - - 6 3 - 6 5 - - -
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Figure 5: BTC, LTC and ETH VaR Forecasts Spreads at the Specified Confidence Levels.
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