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ABSTRACT

The Lorenz system is a simpli�ed model of Rayleigh-Bénard convection, a thermally driven �uid convection between two parallel plates.
Two additional physical ingredients are considered in the governing equations, namely, rotation of the model frame and the presence of a
density-a�ecting scalar in the �uid, in order to derive a six-dimensional nonlinear ordinary di�erential equation system. Since the new system
is an extension of the original three-dimensional Lorenz system, the behavior of the new system is compared with that of the old system.
Clear shifts of notable bifurcation points in the thermal Rayleigh parameter space are seen in association with the extension of the Lorenz
system, and the range of thermal Rayleigh parameters within which chaotic, periodic, and intermittent solutions appear gets elongated under
a greater in�uence of the newly introduced parameters. When considered separately, the e�ects of scalar and rotation manifest di�erently in
the numerical solutions; while an increase in the rotational parameter sharply neutralizes chaos and instability, an increase in a scalar-related
parameter leads to the rise of a new type of chaotic attractor. The new six-dimensional system is found to self-synchronize, and surprisingly,
the transfer of solutions to only one of the variables is needed for self-synchronization to occur.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5095466

Rayleigh-Bénard convection is a thermally driven�uid convection
with a variety of examples seen throughout nature. The Lorenz
system is a simpli�edmodel ofRayleigh-Bénard convectionwhose
importance lies not only in understanding the �uid convection
problem but also in the context of the modern development of
chaos theory. The present study extends the original Lorenz sys-
tem by considering two additional physical ingredients, namely,
a density-a�ecting scalar and rotation of the model frame. Pre-
sented in this report are a physically extended Lorenz system and
the analysis of the new system including its self-synchronization.
This study contributes to the mathematical �eld of nonlinear
dynamics and chaos theory and is an important step toward bring-
ing the existing Lorenz models closer to reality.

I. INTRODUCTION

Seven decades after Henri Poincaré’s initial glimpse at chaos
in the three-body problem in 1893,1 Edward Lorenz discovered a
strange attractor in the numerical solutions to a deceptively sim-
ple set of three ordinary di�erential equations (ODEs), which was
initially conceived to examine the problem of weather forecasting.2

Its derivation is based on a model of Rayleigh-Bénard convection.3,4

By considering only two-dimensional rolls, the governing partial
di�erential equations (PDEs) can be transformed into an ODE sys-
tem via truncation of the Fourier series expansions of the stream
function and temperature perturbation.5 Taking only the �rst mode
of the Fourier series then yields the three-dimensional Lorenz
system.2The Lorenz systembelatedly triggered the explosion of inter-
est in nonlinear dynamics and chaos theory since the 1980s6 and led
to some of the landmark results including the proof of the existence
of the Lorenz attractor.7

The governing equations from which the Lorenz system was
originally derived describe the thermally driven convection of a
�uid.5 Geophysical �uids in nature are, however, rarely without
impurities such as particulate matter in the atmosphere or salt par-
ticles dissolved in seawater. These particles can be incorporated
into the model as a density-a�ecting scalar in the governing equa-
tions, from which a �ve-dimensional ODE system can be derived.8

Like the three-dimensional Lorenz system it encompasses, the �ve-
dimensional system exhibits chaos through heteroclinic explosion.9

Another important factor to consider in the context of geo-
physical �uid convection is planetary rotation. Additional terms that
take into account the Earth’s rotation, or more generally, rotation
of the model frame, can be added to the governing equations.10 Via
the same truncation method, a system of four ordinary di�erential
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equations can be obtained,11,12 which is again an extension of
the three-dimensional Lorenz system. Coincidentally, the four-
dimensional system is identical to the Lorenz-Sten�o equations orig-
inally designed to model acoustic-gravity waves in the atmosphere.13

The Lorenz-Sten�o system is found to exhibit interesting behav-
ior such as closure of the chaotic parameter region within periodic
regimes.14

The Lorenz-Maas system is also an extension of the three-
dimensional Lorenz system applicable to ocean circulation. Its gov-
erning equations take into account both the e�ects of solutes in
the ocean water and rotation of the Earth.15 This three-dimensional
system happens to be identical to the conceptual model for the gen-
eral atmospheric circulation proposed a decade earlier by Lorenz
himself.15,16 The derivation of the Lorenz-Maas system, however,
takes a di�erent approach from the aforementioned systems in that
the simpli�cation of the governing equations is done based on density
gradients and angular momentum rather than truncation of Fourier
series expansions. Furthermore, at various stages of the derivation,
ocean-speci�c assumptions were made to a�x some of the parame-
ters to the related variables,15 resulting in fewer equations and param-
eters as part of the system than what is expected from a system with
two additional ingredients; therefore, it still remains to be seen how
these additional e�ects can be incorporated into a system whose
derivation closely follows the classical method of Lorenz.2

The present study aims to derive rigorously and investigate a
high-dimensional Lorenz system that includes the e�ects of rotation
of the model frame and density-a�ecting scalar. The resulting sys-
tem is a new six-dimensional nonlinear ODE system. It is both an
extension of previously derived Lorenz systems and a generalization
of the Lorenz-Maas system. The six parameters controlling this sys-
tem include three additional parameters associated with rotation and
density-a�ecting scalar. To see the e�ects of these additional param-
eters, the subsequent discussion centers around various parameter
spaces.

The behavior of the three-dimensional Lorenz system in param-
eter spaces has already been extensively studied in the context of
bifurcation and route to chaos. In acknowledgement of the Lorenz
system’s �uid dynamical origin, early studies focused on �nding crit-
ical Rayleigh parameters, beyond which the system experiences an
onset of preturbulence17 or chaos.2,18 Similar discoveries are reported
in the studies that explore the Prandtl number space (or σ -space).19

Many studies are also devoted to the behavior of the original Lorenz
system in the planes of two parameter pairs.20–22A detailed treatment
of the bifurcation structure of the three-dimensional Lorenz system
is found in a recent study.23 In our paper, the new six-dimensional
system will be examined through linear stability analysis, periodicity
diagram, Lyapunov exponents, and numerically computed trajecto-
ries in various parameter spaces, encompassing the parameters both
old and new.

Finally, this study will show that the new six-dimensional sys-
tem self-synchronizes in the same way the three-dimensional Lorenz
system does. Self-synchronization in the context of a nonlinear sys-
tem generally refers to the merging of numerical solutions over
time between the nonlinear system, the driver, and a slightly mod-
i�ed system (hence the pre�x, “self-” in self-synchronization), the
receiver, usually with some parts of the original equations replaced
by solutions received from the driver.6 It is well known that for

self-synchronization of the three-dimensional Lorenz system to
occur, only the solution for one of the variables from the driver
needs to be passed onto the receiver.24 Synchronization of the
three-dimensional Lorenz system inspired various potential applica-
tions ranging from exchanging secret messages25 to modeling major
climate shifts.26 While self-synchronization in high-dimensional
Lorenz systems would be useful at least in enhancing certain aspects
of the applications of this phenomenon,27 it is not immediately clear
whether a given high-dimensional Lorenz system self-synchronizes
due to having additional variables nonlinearly interacting with each
other.28 For this reason, when a new system such as our new six-
dimensional ODE system emerges, it is worthwhile to clarify whether
self-synchronization occurs in the new system and if so, how much
information from the driver is needed.

II. DERIVATION

Consider the following set of governing equations in a resting
reference state under the Boussinesq approximation:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 2�v = −

1

ρ0

∂p

∂x
+ νm∇2u, (1)

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
+ 2�u = νm∇2v, (2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −

1

ρ0

∂p

∂z
+ νm∇2w + g(αT ′ − βS′), (3)

∂u

∂x
+
∂w

∂z
= 0, (4)

∂T ′

∂t
+ u

∂T ′

∂x
+ w

∂T ′

∂z
= νT∇2T ′, (5)

∂S′

∂t
+ u

∂S′

∂x
+ w

∂S′

∂z
= νS∇2S′. (6)

In the governing equations, partial derivatives with respect to
y are omitted because only two-dimensional rolls are considered.
Equations (1)–(3) are the momentum equations in the x, y, and
z directions, respectively, and Eq. (4) is the continuity equation.
Equation (5) is the thermodynamic energy equation, and Eq. (6) is
the scalar advection-di�usion equation. In the above equations, u,
v, and w are, respectively, the velocity components in the x, y, and
z directions, and p denotes the departure from the reference pres-
sure. The stream function ψ is de�ned such that u = −∂ψ/∂z and
w = ∂ψ/∂x. Note that T ′ is the departure from the reference temper-
ature and S′ the departure from the reference scalar concentration. In
the above equations, � is the angular velocity of the rotating frame,
ρ0 is the reference density, g is the gravitational acceleration, and νm,
νT, and νS are the kinematic viscosity, the thermal di�usivity, and the
scalar di�usivity, respectively. The basic state temperature and scalar
concentration decrease linearly with height. Let 1T = Tb − Tt and
1S = Sb − St , where Tb, Tt , Sb, and St are the temperature at the
bottom boundary, the temperature at the top boundary, the scalar
concentration at the bottom boundary, and the scalar concentration
at the top boundary, respectively. The thermal expansion coe�cient
and the scalar contraction coe�cient are denoted by α and β , respec-
tively. In this study, we only consider the case when β > 0 so that the
scalar negatively a�ects buoyancy.
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Similar to Saltzman,5 de�ne

θ = T ′ − [Tb − z1T/H] , (7)

where H is the distance between the top and bottom boundaries.
Analogously, de�ne

ς = S′ − [Sb − z1S/H] . (8)

We impose boundary conditions ∂u/∂z = ψ = θ = ς = 0 at z = 0
and z = H. For nondimensionalization, the following substitutions
are introduced:

x = Hx∗, z = Hz∗, t = (H2/νT)t
∗, (9)

∇2 = (1/H2)(∇∗)
2, ψ = νTψ

∗, v =
νT

H
v∗, (10)

θ = (νTνm/gαH
3)θ∗, ς = (νSνm/gβH

3)ς∗, (11)

along with parameters de�ned as follows:

R1 =
gαH31T

νTνm
, R2 =

gβH31S

νSνm
, (12)

Ta =
4�2H4

ν2m
, σ =

νm

νT
, Le =

νT

νS
, (13)

where R1 and R2 denote the Rayleigh numbers associated with tem-
perature and scalar concentration gradients, respectively, Ta is a
rotational parameter called the Taylor number, σ is the Prandtl num-
ber, and Le is the Lewis number. Then, the following nondimensional
equations can be obtained:

∂

∂t
∇2ψ −

∂ψ

∂z

∂

∂x
∇2ψ +

∂ψ

∂x

∂

∂z
∇2ψ + σ

√
Ta
∂v

∂z
= σ∇4ψ

+ σ
∂θ

∂x
− σLe−1 ∂ς

∂x
, (14)

∂v

∂t
−
∂ψ

∂z

∂v

∂x
+
∂ψ

∂x

∂v

∂z
− σ

√
Ta
∂ψ

∂z
= σ∇2v, (15)

∂θ

∂t
−
∂ψ

∂z

∂θ

∂x
+
∂ψ

∂x

∂θ

∂z
− R1

∂ψ

∂x
= ∇2θ , (16)

∂ς

∂t
−
∂ψ

∂z

∂ς

∂x
+
∂ψ

∂x

∂ς

∂z
− R2

∂ψ

∂x
= Le−1∇2ς . (17)

The superscripts ∗s are dropped in Eqs. (14)–(17) for notational
convenience.

To transform the PDE system to an ODE system, the sinu-
soidal series expansions of ψ , v, θ , and ς in terms of ODE variables
X,Y ,Z,V ,W, and U are truncated to the �rst mode as follows:

ψ = C1X(t) sin(kxx) sin(kzz), (18)

v = C2V(t) sin(kxx) cos(kzz), (19)

θ = C3Y(t) cos(kxx) sin(kzz)− C4Z(t) sin(2kzz), (20)

ς = C5W(t) cos(kxx) sin(kzz)− C6U(t) sin(2kzz), (21)

where kx and kz are the scales for wavenumbers in the x and z direc-
tions, respectively, such that k2 = k2x + k2z . The coe�cients in Eqs.

(18)–(21) are given by C1 =
√
2k2/kxkz , C2 = −

√
2σ

√
Ta/kx, C3 =

C5 =
√
2k6/k2xkz , and C4 = C6 = C3/

√
2. Plugging Eqs. (18)–(21)

into Eqs. (14)–(17) and applying the scaled parameters,

rT =
k2x
k6
R1, rC =

k2x
k6
R2, b =

4k2z
k2

, s =
k2z
k6
σ 2Ta, (22)

yield the six-dimensional ODE system,

Ẋ = σ(Y − X)− σLe−1W + sV , (23)

Ẏ = −XZ + rTX − Y , (24)

Ż = XY − bZ, (25)

V̇ = −X − σV , (26)

Ẇ = −XU + rCX − Le−1W, (27)

U̇ = XW − Le−1bU, (28)

where the dots indicate the derivatives with respect to the scaled
nondimensional time τ = k2t.

III. SYSTEM PROPERTIES

Equations (23)–(28) contain six parameters and six variables
including three new variables, V , W, and U, not in the three-
dimensional Lorenz system. For parameters rT, σ , and b, the canoni-
cal values originally used by Lorenz are 28, 10, and 8/3, respectively.2

Parameter rC is the normalized Rayleigh number for scalar concen-
tration, and parameter s is associated with rotation of the model
frame.While these parameters have physical implications in the con-
text of �uid convection, here we focus instead on nonlinear dynam-
ical aspects of the new system, viewing it as an extension of the
three-dimensional Lorenz system.

A. Fixed points and stability

Setting the derivatives in Eqs. (23)–(28) to zero allows the non-
trivial �xed points to be expressed in terms of X0, which satis�es the
quartic equation, f (X0) = 0, as follows:

(
σ +

s

σ

) (
1

Le−2b2

)

︸ ︷︷ ︸
=A

X4
0

=B︷ ︸︸ ︷
−

[
σ rT

Le−2b
−

(
σ +

s

σ

)(
Le−2 + 1

Le−2b

)
−
σ rC

b

]
X2
0

−σ(rT − rC)+
(
σ +

s

σ

)

︸ ︷︷ ︸
=C

= 0, (29)

where A and B denote the coe�cients of X4
0 and X

2
0 , respectively, and

C is the constant term in Eq. (29). The four roots of Eq. (29),

X±,∓
0 = ±

√
−B ∓

√
B2 − 4AC

2A
, (30)

lead to four nontrivial �xed points X±,∓
0 as 6-tuples. For linear

stability analysis, these �xed points are then plugged into the lin-
earized equations obtained from applying in�nitesimal perturbations
X′ = (X′,Y ′,Z′,V ′,W ′,U ′) to the �xed points X0 = (X0,Y0,Z0,V0,

Chaos 29, 063129 (2019); doi: 10.1063/1.5095466 29, 063129-3

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Neutral stability curves (a) in the rT-σ space for s = 0, 500, 1000, and 1500 with rC = 20, b = 8/3, and Le−1 = 0.1 and (b) in the rC-s space for rT = 28, 36,

44, and 52 with σ = 10, b = 8/3, and Le−1 = 0.1. Illustrations of the curve f(X0) taken as the left-hand-side of Eq. (29) with nontrivial fixed points X
+,+
0 (magenta, ∗),

X+,−
0 (red, •), X−,+

0 (cyan, ×), and X−,−
0 (green, •) when (c) B2 − 4AC < 0, (d) −B ±

√
B2 − 4AC < 0, (e) −B ±

√
B2 − 4AC > 0, and (f) −B −

√
B2 − 4AC < 0 <

−B +
√
B2 − 4AC.
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FIG. 2. (a) Periodicity diagram on the rT-σ space with rC = 28, b = 8/3, Le−1 = 0.1, and s = 1 with the initial condition (X , Y , Z, V ,W ,U) = (1, 0, 0, 0, 0, 0). Period
number is color-coded as indicated by the colorbar. (b) Trajectory projected on the X -Y space at (rT, σ) = (320, 164), where the solution is 3-periodic. (c) Trajectory
projected on the X -Y space at (rT, σ) = (295, 164), where the solution is chaotic.

W0,U0), yielding

d

dτ
X′ =




−σ σ 0 s −σLe−1 0
rT − Z0 −1 −X0 0 0 0

Y0 X0 −b 0 0 0
−1 0 0 −σ 0 0

rC − U0 0 0 0 −Le−1 −X0

W0 0 0 0 X0 −Le−1b



X′

= MX′. (31)

The real parts of the eigenvalues of matrix M are used to plot
neutral stability curves in Fig. 1 corresponding to given parameter
combinations. In Fig. 1(a), the solid curve for s = 0 going across the
parameter space diagonally divides the rT-σ space into two based on
the stability criterion; the system is unstable if the (rT, σ) parame-
ter pair belongs to the region on the right-hand side of the curve. In
other words, if σ is too small or if rT is too large, the system loses
its stability and exhibits unstable trajectories such as limit cycles or
chaotic attractors. Figure 1(b) shows neutral stability curves in the
rC-s parameter space for di�erent values of rT. The system is unstable
in the region under the curve and stabilizes when rC or s goes over
the threshold. Raising rT seems to expand this unstable region in the
parameter space.

Like the three-dimensional Lorenz system, the new system is
symmetric in the sense that its solutions remain invariant under
a mapping (X,Y ,V ,W) 7→ (−X,−Y ,−V ,−W). Furthermore, each
of the nontrivial �xed points X±,∓

0 derived from the four roots of
Eq. (29) has a symmetric counterpart with respect toX = 0 or Y = 0
if it exists in the real space. The existence of real-valued �xed points
in relation to f (X0) of Eq. (29) is illustrated in Figs. 1(c)–1(f). The
four nontrivial �xed points produce at most two stability curves, one

for each symmetric pair, and a neutral stability curve marks where
the system becomes unstable around all, trivial and nontrivial, �xed
points. Within the bounds of the parameter spaces given in Fig. 1,
however, the �xed pointsX+,−

0 andX−,−
0 do not change stability, leav-

ing only one neutral stability curve to mark where the conjugate
pair of eigenvalues corresponding to either X+,+

0 or X−,+
0 cross the

imaginary axis in the complex plane, indicative of a Hopf bifurcation
there.

It is clear from Fig. 1 that the stability of the system around the
�xed point is a�ected by changes in parameter values. The diago-
nal neutral stability curves shift to the right with increasing s. Since
the analogous destabilization of the nontrivial �xed points via a Hopf
bifurcation in the original Lorenz system is closely preceded by the
heteroclinic bifurcation ushering the onset of chaos,29 the observed
shifts in the neutral stability curve raise the possibility that given a
larger s, a higher critical rT is needed for the onset of chaos in the new
system, which is con�rmed to be the case in the subsequent analyses
of numerical solutions.

B. Periodicity in the rT-σ space

The periodicity diagram is a useful tool in visualizing the
numerically computed solutions’ behavior on parameter spaces.22,30

One can also plot Lyapunov exponent spectra to indirectly make
inferences about the periodicity structure in parameter spaces.20,31

For direct computation of periodicity at each parameter pair (rT, σ)
in the range rT, σ ∈ [0, 500] with resolutions 1rT = 1σ = 1, the
fourth-order Runge-Kutta method with time resolution 1τ = 10−4

is employed to compute numerical solutions with �xed parame-
ters given by rC = 28, b = 8/3, Le−1 = 0.1, and s = 1. We focus
on the solutions for variable Z and consider any two solutions to
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FIG. 3. Lyapunov exponent spectra and Z-peak bifurcation diagrams with resolution 1rT = 1 on rT ∈ [0, 500] with (a) and (b) rC = s = Le−1 = 0; (c) and (d) rC = 20,

s = 10, and Le−1 = 0.1; (e) and (f) rC = 60, s = 40, and Le−1 = 0.1. The Z-peak bifurcation diagrams with resolution 1rT = 0.1 near the onset of chaos with (g)

rC = s = Le−1 = 0 and with (h) rC = 60, s = 40, and Le−1 = 0.1. For all subfigures, b = 8/3 and σ = 10.

be the same if the di�erence between them is less than 5 × 10−3.
If the solution is periodic, there will be a �nite number of peaks
or local maxima before the pattern repeats itself in its time series.
The �nite number of peaks counted in this way, say n, indicates

that the solution is n-periodic. Since chaotic solutions would have
in�nite peaks with no patterns being repeated, the greater the num-
ber of peaks, the more likely the solution is chaotic. For example,
Fig. 2(b) is the trajectory of numerical solutions from τ = 200 to

Chaos 29, 063129 (2019); doi: 10.1063/1.5095466 29, 063129-6

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Evolving trajectories with initial conditions near the fixed points X+,+
0 (magenta, solid), X−,+

0 (cyan, solid), and 0 the trivial fixed point (blue, dashed) with relatively
small scalar- and rotation-related parameters, rC = 20, s = 10, as rT changes from (a) rT = 16 to (b) rT = 20 and to (c) rT = 30. Trajectories from initial conditions near
X+,+
0 , X−,+

0 , and 0 with relatively large scalar- and rotation-related parameters, rC = 60, s = 40, as rT changes from (d) rT = 18 to (e) rT = 29 and to (f) rT = 35. The other

parameters are given by Le−1 = 0.1, σ = 10, and b = 8/3. Note that the latter portion of each trajectory has a color matching the color of the fixed point it started near.
The other fixed points X+,−

0 and X−,−
0 are marked as red and green dots, respectively.

τ = 600, corresponding to a point in the rT-σ parameter space. Based
on the periodicity diagram [Fig. 2(a)], the solution is 3-periodic at
(rT, σ) = (320, 164), which translates to a three-looped trajectory
[Fig. 2(b)]. Where the solution is likely to be chaotic based on the
periodicity diagram, such as at (rT, σ) = (295, 164), the correspond-
ing trajectory from τ = 200 to τ = 600 in Fig. 2(c) does not return
to its starting point. Moreover, the trajectory even adds a �ap to
its side, with the solution in the X-Y space unpredictably alternat-
ing between two round �aps that are slightly twisted in between
about the Z-axis. This twisting might resemble the turning of the
unstable manifold of the attractor for large rT in the original Lorenz
system.23

Like in the periodicity diagram for the three-dimensional sys-
tem, the so-called “onionlike structure”22 appears in our system,
which refers to the alternating appearance of chaos and periodicity
within the unstable region of the rT-σ space. The boundary mark-
ing the transition from stable (0-periodic) to unstable (n-periodic,
n > 0) solutions in the periodicity diagramclosely follows the neutral
stability curve. Given what we have observed from Fig. 1, we expect
the stable-unstable boundary in Fig. 2(a) to retreat northeastward
if s is further increased. Compared to our new six-dimensional sys-
tem [Fig. 2(a)], the stable-unstable boundary for the original Lorenz

system is steeper, thereby having enough room in the unstable region
to accommodate more bands of the onionlike structure within the
500 × 500 parameter space window compared to what is visible in
Fig. 2(a). This is in line with the behavior of the mathematically
extended six-dimensional Lorenz system from an earlier study;30

however, one notable feature in the periodicity diagram for that
system30 is having several discrete batches of regions with di�er-
ent period numbers lined up parallel to the σ -axis at rT ∼ 390.
This feature is clearly not observed in the new physically extended
six-dimensional system.

The apparent instability at low rT values visible as a thin white
vertical band in Fig. 2(a) coincides with where the trivial �xed point
0 = (0, 0, 0, 0, 0, 0) is stable and no other �xed points exist in the
real space [see Figs. 1(c) and 1(d)]. Under the particular parame-
ter values σ = 10, b = 8/3, rC = 28, s = 1, and Le−1 = 0.1, we have
B2 − 4AC < 0 if rT . 2.338 and the trivial �xed point is stable when
rT . 5. This region is reminiscent of the rT range between 0 and 1
in the original Lorenz system, beyond which a pitchfork bifurcation
occurs. The behavior of the system there should be deemed stable, but
under certain initial conditions, transient or partially erratic behav-
ior is detected by the periodicity algorithm, possibly due to having
complex �xed points.32 Accordingly, more research is needed to fully
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FIG. 5. Three largest Lyapunov exponents on (a) rC ∈ [0, 500],1rC = 1 with s = 10 and (b) s ∈ [0, 500],1s = 1 with rC = 20. All other parameters are given by rT = 28,

σ = 10, b = 8/3, and Le−1 = 0.1. Details corresponding to the highlighted domains above are plotted in (c) with resolution1rC = 0.1 and in (d) with resolution1s = 0.1
under the same parameter configurations as (a) and (b), respectively.

characterize the behavior of the new six-dimensional system when
rT is small.

C. Effects of rC and s

By adjusting the parameters rC, Le, and s, the e�ects of rC and
s, loosely interpreted as the e�ects of scalar gradient and rotation,
respectively, can be compared against the well-known behavior of
the three-dimensional Lorenz system. We focus on the two impor-
tant points in the rT space, in particular. First, the three-dimensional
Lorenz system is known to undergo the heteroclinic bifurcation2,18

as the thermal Rayleigh parameter, rT, is raised beyond the critical
number rT,c ∼ 24 with σ = 10 and b = 8/3. The existence of crit-
ical rT in our six-dimensional system can already be inferred from
the visible shifts of the neutral stability curves in Fig. 1(a). Second,
increasing rT > rT,c even further leads to alternating phases of chaos
and periodicity22 until the last bifurcation18,33 before its return to sta-
bility takes place at rT = rT,d ∼ 313. Our goal in this subsection is to
investigate how rC and s change these two points in our new system.

To get a fuller picture of how the newly introduced parame-
ters a�ect the system, we plot the Lyapunov exponent spectra and
bifurcation diagrams on rT ∈ [0, 500] with a resolution of 1rT = 1

for di�erent choices of rC and s parameter pairs as shown in Fig. 3.
For Figs. 3(a) and 3(b), the parameter values rC = s = Le−1 = 0 are
chosen along with the canonical b = 8/3 and σ = 10 to examine the
behavior of the six-dimensional system without the e�ects of rota-
tion and density-a�ecting scalar. The parameter values are raised to
rC = 20 and s = 10 in Figs. 3(c) and 3(d), and then they are further
increased to rC = 60 and s = 40 in Figs. 3(e) and 3(f).

For each parameter choice, six Lyapunov exponents are com-
puted based on the continuous Gram-Schmidt orthonormalization
method.34,35 For this, numerical solutions corresponding to 50 ran-
domly selected initial conditions are computed using the fourth-
order Runge-Kutta method from τ = 0 to τ = 400 with a time reso-
lution of1τ = 10−3. The initial data up to τ = 150 are truncated out
before computing the Lyapunov exponents. The obtained exponents
are then ordered so that λ1 > λ2 > · · · > λ6. The bifurcation dia-
grams in Figs. 3(b), 3(d), and 3(f) are plotted using the local maxima
of the numerical solutions of Z, referred to as Z-peaks, obtained for
the time period τ ∈ [200, 250] using the fourth-order Runge-Kutta
methodwith a time resolution of1τ = 10−4 and the initial condition
(X,Y ,Z,V ,W,U) = (1, 0, 0, 0, 0, 0).

While the precise de�nition of chaos still remains to be agreed
upon,36 it is frequently argued that if the solution is indeed chaotic,
the largest Lyapunov exponent λ1 is expected to be positive.37 Some
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FIG. 6. Trajectories representing the attractor that appears under the chaotic regime in rC ∈ [251, 288] with parameters rC = 280, rT = 28, σ = 10, b = 8/3, s = 10, and

Le−1 = 0.1 from various initial conditions near each of the fixed points computed (a) over τ ∈ [100, 150] projected on the X -Z plane and (b) over τ ∈ [205, 210] projected
on the X -Y plane. (c) The trajectory over τ ∈ [100, 200] projected on the U-V-W three-dimensional space with the initial condition (X , Y , Z, V ,W ,U) = (1, 0, 0, 0, 0, 0) and
the same parameters as (a) and (b). (d) Trajectories representing the attractor that initially appears at relatively low rC values with parameters rC = 100, rT = 28, σ = 10,

b = 8/3, s = 10, and Le−1 = 0.1 from various initial conditions near the fixed points computed over τ ∈ [100, 150] projected on the X -Z plane. For (a), (b), and (d), the
latter portions of the trajectories are color-coded, each matching the fixed point it started near, and the dashed curves are reserved for the trajectories starting near the trivial
fixed point. For (c), the latter portion of the trajectory is colored blue.

call a solution with two or more positive Lyapunov exponents
hyperchaotic;38 however, as is the case in the Lorenz-Sten�o
systems,31,39 no such signs of hyperchaos in our six-dimensional
system are found within the fairly extensive parameter ranges con-
sidered by this study. In bifurcation diagrams, the signature of chaos
looks like a thick blob of concentrated points as opposed to points
forming a �nite number of, say, n clearly distinguished lines for
n-periodic orbits.

With rC, s, and Le−1 set to 0 in Figs. 3(a) and 3(b), the par-
tial system consisting of variables X, Y , and Z decouples from the
rest, becoming identical to the three-dimensional Lorenz system and,
therefore, the same rT,c and rT,d are expected. Indeed, the solution
loses its stability in Fig. 3(a) as λ1 soars above 0 at rT ∼ 24, the same
critical rT found in the three-dimensional Lorenz system. The bifur-
cation diagram in Figs. 3(b) and 3(g) supports the location of this
rT,c around 24. All else being equal, if we raise rC and s to 20 and 10,
respectively, rT,c slightly increases from ∼24.0 to ∼24.2. If rC and s
are further raised to 60 and 40, respectively, there is a greater shift

in rT,c to ∼30 as shown in Figs. 3(e), 3(f), and 3(h). The changing
trajectories in Fig. 4 con�rm that the system transitions over to chaos
as rT passes through the critical rT in each case. This increase in rT,c
implies that the system’s stability becomesmore resistant to the desta-
bilizing e�ects of raising the thermal Rayleigh parameter under the
in�uence of bottom-heavy vertical distribution of scalar concentra-
tion in a rotatingmodel frame. This does not, however, imply that the
system generally becomesmore stable under the in�uence of rotation
and density-a�ecting scalar as will be shown below.

The other notable point rT,d in the three-dimensional Lorenz
system marks the transition from 2-periodic orbits to symmetric 1-
periodic orbits,30 shown by merging of two curves around rT ∼ 315
in Fig. 3(b). In Lyapunov spectra such as Fig. 3(a), one of the Lya-
punov exponents drops below 0 at rT ∼ 315. When rC and s are set
to nonzero values, this bifurcation occurs at a higher rT; in Figs. 3(c)
and 3(d), rT,d ∼ 365 for rC = 20 and s = 10. When the parameters
are further raised to rC = 60 and s = 40 in Figs. 3(e) and 3(f), the
last bifurcation occurs at rT,d ∼ 500. It follows that while the onset of
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FIG. 7. Evolution of trajectories of the numerical solutions projected on the three-dimensional space in X , Y , and Z as rC is raised from 250 to 290. All other fixed parameters

are given by rT = 28, σ = 10, b = 8/3, s = 10, and Le−1 = 0.1, the same as in Fig. 5(a). The color of the trajectories gets darker with integration time τ . Note that in (f),
X , Y , and Z axes are scaled as indicated.

chaos is delayed with nonzero rC and s, the instability itself persists
until a greater rT,d is reached. Therefore, it seems that the window of
instability, the rT interval where the system undergoes chaotic, peri-
odic, and intermittent phases, becomes elongated with increasing rC
and s.

In order to see individual e�ects of rC and s, Lyapunov exponent
spectra are plotted in Figs. 5(a) and 5(b) for intervals rC, s ∈ [0, 500]
with 1rC = 1s = 1 while keeping all other parameters constant.
This setup is equivalent to cutting across the rC-s parameter space in
Fig. 1(b) horizontally at s = 10 and vertically at rC = 20, respectively.
For a detailed look, the three largest Lyapunov exponents have been
recomputed with a higher resolution, 1rC = 1s = 0.1, as shown in
Figs. 5(c) and 5(d). If s & 40, the largest Lyapunov exponent dives
below zero following a narrow window of intermittency [Fig. 5(d)].
Beyond that threshold s, all Lyapunov exponents become negative,
indicating stability. The Lyapunov spectra on the rC in Figs. 5(a)
and 5(c) show a di�erent picture. While there appears to be a dip
from the initial chaos toward periodicity or stability around rC ∼ 121
in Fig. 5(a), the Lyapunov exponents do not immediately make a
fully committed dive signi�cantly below zero as seen in Fig. 5(c). In
fact, there appears a second onset of chaos at rC ∼ 251 which lasts
until rC ∼ 288 before settling down to a steady-state solution. For
the chaotic regime that appears in rC ∈ [251, 288], there emerges an
attractor, shown in Figs. 6(a)–6(c) and 7, which seems qualitatively
distinct from the classic Lorenz attractor.

The trajectories calculated with �ve initial conditions, one near
0 and four near the nontrivial �xed points, are given in Figs. 6(a),
6(b), and 6(d). The trajectories for the �rst onset of chaos in rC space
resembles the Lorenz attractor as shown in Fig. 6(d); despite hav-
ing di�erent initial conditions, di�erent trajectories quickly organize
themselves into a nearly two-dimensional shape. In Figs. 6(a) and
6(b), on the other hand, the trajectories corresponding to the sec-
ond onset of chaos wander about independently of each other for
a much longer period of time than the trajectories for the Lorenz
attractor, sometimes tracing an elaborate structure [for example, the
black portion of the trajectory in Fig. 6(c)] before the wings of
chaotic motions emerge [e.g., the blue portion of Fig. 6(c)]. Even
after locking into the chaotic motions, the trajectories for the sec-
ond chaotic regimemaintain the distinctive disheveled appearance as
shown in the chaotic trajectories in Fig. 7. It would, therefore, seem
that self-synchronization, a process throughwhich solutionswith dif-
ferent initial conditions ultimately end up with precisely the same
trajectories, is less e�ective in the second chaotic regime, requiring
procurement of more information from the driver compared to the
original Lorenz system; nevertheless, our analysis in Subsection III D
shows that this is not so.

Figure 7 presents the trajectories of solutions from τ = 200
to τ = 1600 corresponding to di�erent rC values under the same
condition as Fig. 5(a) in the snapshot style to showcase in detail the
appearance and disappearance of chaos during the “second onset”
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FIG. 8. (a) Time series of numerical solutions for Z in the driver system (black) and the receiver system (red) of synchronized chaos. (b) The absolute difference
∣∣∣Z − Z̃

∣∣∣
in the numerical solutions of Z between the driver and receiver systems. (c) The trajectories of numerical solutions for τ ∈ [200, 205] of the driver and receiver systems
projected on the Y -Z plane.

as rC is raised. Note that the intermittency of solutions inherent in
our systemmeans that there can be regime changes amongst chaotic,
periodic, and steady-state solutions interspersed throughout the rC
range. The color of the trajectories gets darker with τ so that for non-
chaotic trajectories such as Figs. 7(a), 7(b), and 7(f), the portions
of trajectories with dark colors indicate where the trajectories sink
toward as τ → ∞.

D. Self-synchronization

In this subsection, we now present self-synchronization proper-
ties of the six-dimensional system. The self-synchronization in the
three-dimensional Lorenz system requires one-third of the infor-
mation from the driver, namely, the driver’s solution to variable
X. In a nonlinear system with increased complexity, it is reason-
able to think that more information is needed from the driver for
the receiver to replicate the driver’s solution. For example, it was
shown that for high-dimensional systems that exhibit hyperchaos,
self-synchronization is attained by transmitting a linear combination
of the variable signals.27 For a de�nite proof of self-synchronization
in a given system, a Lyapunov function of the error system can
be found,40 so that the error system is globally asymptotically sta-
ble at 0. If analytically constructing an appropriate Lyapunov func-
tion is not readily available, as it seems to be the case for some
high-dimensional Lorenz systems,30 numerical experiments can be
performed for demonstration. Both approaches are explored here.

Given our new six-dimensional system as the driver, the receiver
system that only receives X from the driver is

X̃ = X, (32)

˙̃Y = −X̃Z̃ + rTX̃ − Ỹ , (33)

˙̃Z = X̃Ỹ − bZ̃, (34)

˙̃V = −X̃ − σ Ṽ , (35)

˙̃W = −X̃Ũ + rCX̃ − Le−1W̃, (36)

˙̃U = X̃W̃ − Le−1bŨ, (37)

where the tilde indicates the receiver counterpart of each variable.
The error e(τ ) at time τ is e(τ ) = (e1, e2, . . . , e6) = (X − X̃,Y −
Ỹ , . . . ,U − Ũ). Then, it can be shown that the function E de�ned
by

E(e, τ) =
1

2

(
e21 + e22 + e23 +

1

σ
e24 + Le(e25 + e26)

)
(38)

is a Lyapunov function so that the error e approaches 0 as τ →
∞. Therefore, the receiver’s solution catches up with the driver’s,
regardless of the respective initial conditions.

The self-synchronization of the six-dimensional system is
numerically tested in Fig. 8 with parameters that produce the attrac-
tor illustrated in Fig. 7(d): rT = 28, b = 8/3, σ = 10, rC = 280,
s = 10, and Le−1 = 0.1. The numerical solutions of the driver is com-
puted using the fourth-order Runge-Kutta method with 1τ = 10−4

and the initial condition (X,Y ,Z,V ,W,U) = (1, 0, 0, 0, 0, 0). At
τ = 200, when the system comfortably exhibits chaos after some
phases of transient behavior, the receiver is deployed to start out with
the initial condition (X̃, Ỹ , Z̃, Ṽ , W̃, Ũ) = (50, 50, 50, 50, 50, 50).
Figure 8(a) juxtaposes the time series of Z from the driver (black)
with the time series of Z̃ from the receiver (red). The receiver’s solu-
tion quickly catches up with the driver’s, enough for the errors to go
below2 × 10−2 at τ = 205 in the time series of the absolute di�erence
between the two in Fig. 8(b). Figure 8(c) shows how the trajectory of
the receiver in red merges with the trajectory of the driver in black,
which, when left evolving, produces the attractor shown in Fig. 7(d).

IV. CONCLUSION

In this study, we derived a new six-dimensional ODE system
by adding the density-a�ecting scalar and rotational e�ects in the
equations governing thermal convection and analyzed the system.
Although the Lorenz systems are not precisemodels of real �uid con-
vection, some conceptual insights can still be gained from studying
our new ODE system. For example, it may seem that the inclusion of
scalar and rotational e�ects stabilizes the system based on the greater
critical Rayleigh parameters; however, as evidenced by Fig. 3, the
increase in rT,c is also accompanied by elongated phase of chaos, peri-
odicity, and intermittency in the rT space. For this reason, it would
not be surprising if one �nds partial connections between newly
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observed behavior of this system and some unexplored �uid phe-
nomena observed in the Earth’s atmosphere and oceans or laboratory
experiments. It is also of mathematical interest to explore di�er-
ent kinds of attractors exhibited by this system. The mathematical
extensions of this system to higher-dimensional systems can also be
investigated, which can be a source of new discoveries as precedented
by previous attempts to generalize the original Lorenz system28,30,41

and the Lorenz-Sten�o system.31,42
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