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High-order Lorenz systems with five, six, eight, nine, and eleven equations are derived by choos-
ing different numbers of Fourier modes upon truncation. For the original Lorenz system and 
for the five high-order Lorenz systems, solutions are numerically computed, and periodicity dia-
grams are plotted on (σ, r) parameter planes with σ, r ∈ [0, 1000], and b = 8/3. Dramatic shifts 
of patterns are observed among periodicity diagrams of different systems, including the appear-
ance of expansive areas of period 2 in the fifth-, eighth-, ninth-, and 11th-order systems and 
the disappearance of the onion-like structure beyond order 5. Bifurcation diagrams along with 
phase portraits offer a closer look at the two phenomena. 

Keywords : High-order Lorenz systems; periodicity; chaos; nonlinear dynamics. 

1. Introduction 

In 1963, Lorenz [1963] discovered the chaotic behav-
ior associated with the numerical solutions of the 
following system of three ordinary differential equa-
tions describing a simplified model of Rayleigh– 
Bénard convection: 

Ẋ1 −σX1 + σY1, (1) 

Ẏ1 −X1Z1 + rX1 − Y1, (2) 

Ż1 X1Y1 − bZ1, (3) 

where X1, Y1, and Z1 are the variables, and the dot 
denotes the derivative with respect to time t. There  
are three parameters here: namely, σ, r, and  b. σ 
ν/κ is the Prandtl number defined as the ratio of the 
kinematic viscosity ν to the thermal diffusivity κ. 
The normalized Rayleigh number, r = Ra/Rac, is  
the ratio of the Rayleigh number Ra to the critical 

Rayleigh number Rac. Finally, b = 4π2/(π2 + k2) is  
the geometric parameter, where k is the horizontal 
wavenumber. The three equations, now called the 
Lorenz equations, have since spurred the develop-
ment of the theory of chaos. Today, chaos theory 
finds its importance not only in a purely mathe-
matical sense but also through its applications. For 
instance, the behavior of Earth’s atmosphere is con-
sidered to exhibit chaotic [Palmer, 1993] and sub-
harmonic behavior [Feingold et al., 2010] and due 
to this qualitative resemblance, Lorenz-like equa-
tions have been proposed as models for a variety of 
atmospheric phenomena [Vallis, 1986; Stenflo, 1996; 
Lorenz, 2005; Roberts et al., 2016; Koren et al., 
2017]. Chaos theory is also used by some meteo-
rologists in evaluating predictability of weather and 
climate models [Palmer, 1993; Shukla, 1998; Yang 
et al., 2006]. 

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the 
Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original 
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Despite its potential usefulness, directly tak-
ing the third-order Lorenz system as the model 
equations for a natural convection requires caution 
because much information is lost through the sim-
plification processes involved in obtaining the ordi-
nary differential equations. Of particular interest is 
the way in which Lorenz [1963] chose to truncate 
Fourier expansions of the streamfunction ψ and the 
temperature perturbation θ. Our primary motiva-
tion is to see what happens if we loosen the severity 
of this simplification by including additional Fourier 
modes upon truncation. The present study aims to 
investigate qualitatively how this change in trunca-
tion influences the complexity of the system, espe-
cially in the context of patterns made by possible 
chaotic and periodic regions in parameter spaces. 
The underlying assumption is that the more Fourier 
modes are included, the closer the system gets to 
the original governing equation system for Rayelgh– 
Bénard convection. 

Choosing additional modes from Fourier series 
expansions of ψ and θ allows for a formulation of 
systems with varying numbers of equations. We 
hereinafter refer to these extensions of the original 
Lorenz system as high-order Lorenz systems. For 
instance, in the late 1970s, Curry [1978] jumped 
straight  to a system  of  14 equations  because 14 was  
the largest number of equations that his machine 
could handle. Although a system of a very high 
order is an interesting subject in its own right, we 
are more interested, as was Shen [2014, 2015], in 
the changes in behavior of the systems with respect 
to an increasing order. For any given order n, there  
is by no means a unique set of equations that can 
be called the Lorenz system of order n; depend-
ing on the choice of Fourier modes, one may some-
times be able to form many different systems of the 
same order. Roy and Musielak [2007a, 2007b, 2007c] 
derived and compared Lorenz systems of different 
orders by taking into account physical viability. The 
fifth- and the sixth-order Lorenz systems selected 
in this way were further analyzed by Shen [2014, 
2015]. In particular, Shen [2014, 2015] looked for 
critical r values beyond which chaos would ensue. 
It was decided that the fifth- and the sixth-order 
systems possess similar critical r values, both of 
which are greater than the critical r value of the 
original Lorenz system. Critical r values, however, 
also depend on the choice of values of other param-
eters in the system such as σ and b; therefore, 
the behavior of high-order Lorenz systems may be 

better understood if pairs of parameters are con-
sidered instead of r alone. To this end, some mea-
sure of chaos and periodicity corresponding to each 
pair of two parameters can be plotted on a two-
dimensional parameter plane. Rech [2016] used the 
Lyapunov exponent for this purpose regarding a 
related system called Lorenz–Stenflo equations. We 
instead adopt periodicity diagrams following Dullin 
and Schmidt [2007], Park et al. [2015] and Park 
et al. [2016b]. 

In this paper, we consider the original Lorenz 
system and five high-order Lorenz systems, ranging 
from order 3 to order 11. We begin our discussion by 
introducing the equations in the next section. These 
equations are obtained by raising the number of 
modes in Fourier expansions of ψ and θ in an alter-
nating order. The numerically computed measure of 
chaos for each system is plotted on the (σ, r) param-
eter plane in Sec. 3, followed by a more detailed look 
at some of the patterns that appear in the period-
icity diagrams. 

2. High-Order Lorenz Systems 

Following Saltzman [1962], we write the following 
nondimensionalized form of the governing equations 
describing Rayleigh–Bénard convection in the x z 
plane: 

  
 t 
∇2ψ 

 ψ 
 z 

 ∇2ψ 
 x 

− 
 ψ 
 x 

 ∇2ψ 
 z 

+ σ 
 θ 
 x 

+ σ∇4ψ, (4) 

 θ 
 t 

 ψ 
 z 

 θ 
 x 
− 

 ψ 
 x 

 θ 
 z 

+ Ra
 ψ 
 x 

+ ∇2θ, (5) 

where ∇2  2/ x2 +  2/ z2 and ∇4  4/ x4 + 
 4/ z4 + 2 4/ x2 z2. Let  a = 1/ 

√ 
2 be a number.  

Applying Fourier series expansions to the stream-
function ψ and the temperature perturbation θ 
yields 

ψ ≈ 
1 +  a2 

a 

N 

n=1 

Xn 

√ 
2 sin  πax sin(2n − 1)πz, 

(6) 

θ ≈ 
π3(1 + a2)3 

a2 

M 

m=1 

(Ym 

√ 
2 cos  πax sin(2m − 1)πz 

− Zm sin 2mπz), (7) 
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from which we construct systems of (N +2M) ordi-
nary differential equations by selecting appropriate 
positive integers for M and N with the condition 
that 0 ≤ M − N ≤ 1. For example, upon 
simplification, taking M N = 1  yields  the  origi-
nal third-order Lorenz system. The choice of N and 
M in (6) and (7) can be arbitrary at this stage. 
As  mentioned in [Roy  &  Musielak, 2007a], there 
are many ways to choose different pairs of Fourier 
modes; however, since we are more interested in 
incremental changes as M and N are raised one 
at a time, the condition 0 ≤ M − N ≤ 1 is  imposed.  
The order of the system obtained in this way is 
(N + 2M) because there are two terms in each 
summand involving M and only one term in each 
summand involving N . Note that the same method 
does not produce desired ordinary differential equa-
tions without sinusoidal terms when N >  M . For  
instance, forcing N = 2  and  M = 1 in an attempt 
to obtain a fourth-order system does not yield an 
ordinary differential equation system in the same 
way that the other high-order systems are obtained. 
Usually, some terms in (6) get paired up with terms 
in (7) in order to eliminate all of the sinusoidal 
elements using trigonometric identies. In this case, 
however, the extra sinusoidal terms in (6) due to 
having N >  M  have no counterpart in (7) and 
some multiples of sines and cosines remain in the 
equations. The fifth- and the sixth-order systems 
are in agreement with Shen [2014, 2015], and he, 
likewise, jumps from the third-order system to the 
fifth order [Shen, 2014]. The order can be raised 
indefinitely, but we focus on five additional systems 
of 5, 6, 8, 9, and 11 ordinary differential equations. 
In all of the following equations, parameters dn are 
defined by 

dn 
(2n − 1)2 + a2 

1 +  a2 . (8) 

2.1. A Lorenz system of order 5 

To obtain a system of five equations out of the gov-
erning equations, we take M = 2  and  N = 1  in  (6)  
and (7). After plugging the approximations for ψ 
and θ back into (4) and (5) and applying trigono-
metric identities, we obtain 

Ẋ1 −d1σX1 + 
σ 
d1 

Y1, (9) 

Ẏ1 −X1Z1 + rX1 − Y1, (10) 

Ż1 X1Y1 − bZ1 − X1Y2, (11) 

Ẏ2 X1Z1 − 2X1Z2 − d2Y2, (12) 

Ż2 = 2X1Y2 − 4bZ2. (13) 

2.2. A Lorenz system of order 6 

Since we raised M by 1 going from order 3 to order 
5, we now raise N by 1 in turn to obtain a sixth-
order system: 

Ẋ1 −d1σX1 + 
σ 
d1 
Y1, (14) 

Ẏ1 −X1Z1 + rX1 − Y1 + X2Z1 − 2X2Z2, (15) 

Ż1 X1Y1 − bZ1 − X1Y2 − X2Y1, (16) 

Ẋ2 −d2σX2 + 
σ 
d2 
Y2, (17) 

Ẏ2 X1Z1 − 2X1Z2 − d2Y2 + rX2, (18) 

Ż2 = 2X1Y2 − 4bZ2 + 2X2Y1. (19) 

Note that the fifth- and the sixth-order systems here 
are identical to those derived by Shen [2014, 2015]. 

2.3. A Lorenz system of order 8 

We raise M to 3 in the Fourier series while keep-
ing N = 2 as in the case of the sixth-order system 
above. This gives rise to a system with two more 
equations as follows:  

Ẋ1 −d1σX1 + 
σ 
d1 

Y1, (20) 

Ẏ1 −X1Z1 + rX1 − Y1 + X2Z1 − 2X2Z2, (21) 

Ż1 X1Y1 − bZ1 − X1Y2 − X2Y1 − X2Y3, (22) 

Ẋ2 −d2σX2 + 
σ 
d2 

Y2, (23) 

Ẏ2 X1Z1 − 2X1Z2 − d2Y2 + rX2 

− 3X2Z3, (24) 

Ż2 = 2X1Y2 − 4bZ2 + 2X2Y1 − 2X1Y3, (25) 

Ẏ3 = 2X1Z2 − 3X1Z3 + X2Z1 − d3Y3, (26) 

Ż3 = 3X1Y3 + 3X2Y2 − 9bZ3. (27) 

2.4. A Lorenz system of order 9 

Take M = 3  and  N = 3 to obtain a system of nine 
equations, namely, 

Ẋ1 −d1σX1 + 
σ 
d1 
Y1, (28) 
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S. Moon et al. 

Ẏ1 −X1Z1 + rX1 − Y1 + X2Z1 − 2X2Z2 

+ 2X3Z2 − 3X3Z3, (29) 

Ż1 X1Y1 − bZ1 −X1Y2 −X2Y1 

−X2Y3 −X3Y2, (30) 

Ẋ2 −d2σX2 + 
σ 
d2 
Y2, (31) 

Ẏ2 X1Z1 − 2X1Z2 − d2Y2 + rX2 

− 3X2Z3 + X3Z1, (32) 

Ż2 = 2X1Y2 − 4bZ2 + 2X2Y1 − 2X1Y3 

− 2X3Y1, (33) 

Ẋ3 −d3σX3 + 
σ 
d3 
Y3, (34) 

Ẏ3 = 2X1Z2 − 3X1Z3 + X2Z1 

− d3Y3 + rX3, (35) 

Ż3 = 3X1Y3 + 3X2Y2 − 9bZ3 + 3X3Y1. (36) 

2.5. A Lorenz system of order 11 

Finally, we derive an 11th-order system by setting 
M = 4  and  N = 3:  

Ẋ1 −d1σX1 + 
σ 
d1 

Y1, (37) 

Ẏ1 −X1Z1 + rX1 − Y1 + X2Z1 

− 2X2Z2 + 2X3Z2 − 3X3Z3, (38) 

Ż1 X1Y1 − bZ1 −X1Y2 −X2Y1 

−X2Y3 −X3Y2 −X3Y4, (39) 

Ẋ2 −d2σX2 + 
σ 
d2 

Y2, (40) 

Ẏ2 X1Z1 − 2X1Z2 − d2Y2 + rX2 

− 3X2Z3 + X3Z1 − 4X3Z4, (41) 

Ż2 = 2X1Y2 − 4bZ2 + 2X2Y1 − 2X1Y3 

− 2X3Y1 − 2X2Y4, (42) 

Ẋ3 −d3σX3 + 
σ 
d3 

Y3, (43) 

Ẏ3 = 2X1Z2 − 3X1Z3 + X2Z1 − d3Y3 

+ rX3 − 4X2Z4, (44) 

Ż3 = 3X1Y3 + 3X2Y2 − 9bZ3 

+ 3X3Y1 − 3X1Y4, (45) 

Ẏ4 −4X1Z4 + 2X2Z2 + 3X1Z3 

+X3Z1 − d4Y4, (46) 

Ż4 = 4X1Y4 + 4X2Y3 + 4X3Y2 − 16bZ4. (47) 

2.6. Some properties of high-order 
Lorenz systems 

Following the discussion in [Strogatz, 2015], we 
examine whether the high-order systems listed 
above also possess some of the properties belonging 
to the original Lorenz system such as nonlinearity, 
volume contraction, and  symmetry. 

The first property, nonlinearity, clearly holds 
for our systems. In addition to having the nonlin-
ear terms inherited from the original Lorenz system, 
our high-order systems also include new nonlinear 
terms. Since it is thought that chaotic behavior 
arises from the inclusion of nonlinear terms [Shen, 
2014], the important question regarding high-order 
systems is whether the combined effect of new and 
old nonlinear terms generally results in chaos. The 
conclusion made by Shen [2014, 2015] is that chaotic 
solutions do appear in the fifth- and the sixth-order 
systems, but the onset of chaos may require a dif-
ferent set of values of parameters r, σ, and b [Shen, 
2014]. This conclusion will be verified for higher-
order systems in the next section. 

By volume contraction, we mean the dissipative 
nature of our systems. Given any system Ẋ f(X), 
the system is dissipative if it has a negative diver-
gence: i.e. 

∇ · f < 0. (48) 

For instance, Lorenz [1963] had shown that the orig-
inal Lorenz system satisfies this condition as 

  Ẋ1 

 X1 
+ 

  Ẏ1 

 Y1 
+ 

  Ż1 

 Z1 
−(σ + b + d1) < 0. (49) 

That all our systems satisfy (48) is easily verified. In 
addition, we find that the magnitude of the diver-
gence increases with order. For example, the diver-
gence of the ninth-order system is given by 

3 

j=1 

  Ẋj 

 Xj 
+ 

  Ẏj 

 Yj 
+ 

  Żj 

 Zj 
− 

3 

j=1 

[dj σ + j2b + dj ], 

(50) 
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which is less than the divergence in (49). Since each 
of the parameters in the above equation is a positive 
number, it follows that the result in (50) is less than 
the divergences computed for each of the systems of 
orders less than nine. In this sense, we can say that 
the greater the order of our system is, the faster the 
volume contraction occurs. 

Finally, the original Lorenz system is thought 
to be symmetric due to its invariance under the 
transformation (X,Y )   (−X,−Y ). Likewise, our 
high-order Lorenz systems remain invariant under 
(Xi, Yi)   (−Xi,−Yi) for all i = 1, 2, . . . .  

3. Numerical Results 

3.1. Methodology 

The fourth-order Runge–Kutta method is employed 
to perform numerical integrations of each system 
with ∆t = 10−4 . For all our numerical computa-
tions, the initial conditions are set to 0 for all vari-
ables except for X1 which is set to 1. 

Figure 1 shows the time series of the variable 
Z1 for all six cases on t ∈ [0, 40] with the parameter 

values given by Lorenz [1963]: r = 28, σ  = 10, and 
b = 8/3. In Fig. 1, chaotic behavior is visible only in 
the third-order case. This is expected since the onset 
of chaos requires r values greater than 28 in high-
order systems [Shen, 2014]. Notice that the amount 
of time it takes for the solution to converge to a fixed 
point is shorter for the 11th-order system [Fig. 1(f)] 
than it takes for the fifth-order system [Fig. 1(b)]; 
nevertheless, such a decrease in the time of con-
vergence is not monotonic with respect to increas-
ing the order. An analogous observation for chaotic 
solutions would be measuring how fast a slight per-
turbation in the initial condition gets amplified. 
Two solutions with slightly different initial condi-
tions would start deviating from one another signif-
icantly if they are chaotic, and yet again numerical 
experiments show no monotonic relations between 
the order of a system and how quickly such a devi-
ation occurs. 

The aforementioned issues dictate that any 
comparison between Lorenz systems with different 
orders must be made based on their behavior after 
all such convergences or deviations take place; thus, 

10 

30 

50 

Z
1 

0  20  40  

time 
0  20  40  

time 

10 

30 

50 

time 
0  20  40  

10 

30 

50 

(a) (b) (c) 

time 

10 

30 

Z
1 

0  20  40  
time 

0  20  40  

10 

30 

time 
0  20  40  

30 

10 

(d) (e) (f) 

Fig. 1. Time series plots of Z1 with r = 28, σ  10, and b = 8/3 from  t = 0  to  t 40; from left to right, the top row 
consists of the plots for the systems of three, five, and six variables and the bottom row consists of those of eight, nine, and 
11 variables. 
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Z

1 

212 210 

200 

300 

400 

time time 
212 210 

200 

300 

400 

time 
212 210 

200 

300 

400 

(a) (b) (c) 

time 

Z
1 

212 210 

200 

300 

400 

time 
212 210 

200 

300 

400 

time 
212 210 

100 

200 

300 

400 

500 

(d) (e) (f) 

Fig. 2. Time series plots of Z1 with r 300, σ 20, and b = 8/3 on the time interval t ∈ [210, 212], (a)–(f) correspond to 
systems of orders 3, 5, 6, 8, 9, and 11, respectively. Notice that (d) and (e) illustrate periodicity with six peaks while the rest 
illustrate chaos. 

from now on, we limit our observations to some time 
domain I such that I ⊂ [200,∞). We assume that 
after the t 200 mark, the time series are repre-
sentative of the behavior of solutions as t ∞. 

Plots in Fig. 2 are the time series of Z1 on 
t ∈ [210, 212] with parameter values r 300, 
σ = 20, and b = 8/3. Once time series plots such as 
Figs. 1 and 2 are obtained, the solutions are identi-
fied as chaotic, periodic, or convergent. A solution 
is convergent if there exists a constant p such that 
limt→∞ Z1(t) =  p. From a numerical point of view, 
however, the above limit is taken with t 200. 

Any nonconvergent time series of Z1 would then 
consist of some combination of peaks and troughs. 
Intuitively, a periodic solution would exhibit a 
repeating pattern of peaks and troughs while no 
such repetition of patterns would be found in 
chaotic solutions. These ideas are made more pre-
cise and fit for our numerical computations with the 
following definitions. Given the ith peak in a time 
series, where i = 1, 2, 3, . . . ,  define Zmax,i to refer 
to the local maximum value of Z1 corresponding to 
the ith peak. To account for numerical errors, we 

consider the ith and the jth peaks to be equivalent 
if |Zmax,i −Zmax,j| ≤ Zmax,i/1000; that is, two peaks 
are equivalent if the difference between peak heights 
of the two is less than or equal to 0.1% of the first 
peak. If, in a time series of a nonconvergent solu-
tion, the nth peak is followed by a peak equivalent 
to the first peak of the series, then this n is said 
to be the solution’s peak number. A solution with 
peak number greater than 16 is considered chaotic 
and any nonconvergent solution with peak number 
≤ 16 is considered periodic. A periodic solution with 
peak number n is said to be of period n. 

Although the above criterion for distinguishing 
between chaos and periodicity may seem somewhat 
arbitrary, the underlying assumption here is that it 
is not likely for 17 or more distinct peaks to reap-
pear in exactly the same order. Strictly speaking, 
the peak number for any chaotic solution would nec-
essarily be ∞ and any finite peak number would 
imply a periodic solution. In this sense, the higher 
its peak number, the closer to chaos a solution 
gets. Peak numbers, therefore, function as a mea-
sure of chaos and thus as an alternative to Lyapunov 
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Periodicity and Chaos of High-Order Lorenz Systems 

exponents that were used for this purpose in [Rech, 
2016]. 

3.2. Periodicity diagrams 

Figure 3 shows the periodicity diagrams for our 
Lorenz systems. We focus on parameters σ and r with 
σ, r ∈ [0, 1000]. Peak numbers are plotted on (σ, r) 

parameter planes by considering all possible integer 
pairs within the parameter domains. In each dia-
gram, the numerically computed peak numbers are 
assigned different colors following the color scheme 
similar to that of Park et al. [2015] and Park et al. 
[2016a]. 

The periodicity diagrams in Fig. 3 change 
unpredictably from one system to next. For

 17 0  1  2  3  4  5  6  7  8  9 - 16  

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

r 

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

r 

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

r 

r
r

r 

0 200 400 600 800 1000 

200 

400 

600 

800 

1000 

(e) (f) 

(c) (d) 

(a) (b) 

Fig. 3. Periodicity diagrams of the systems of orders (a) 3, (b) 5, (c) 6, (d) 8, (e) 9, and (f) 11. Peak numbers are plotted 
on the 1000 × 1000 (σ, r) parameter planes with parameter b fixed as 8/3. The peak numbers are assigned different colors up 
to period 8, beyond which different colors do not make any visible difference until period 16. Regions of period 17 and above 
are colored white, representing chaos. Black indicates convergent solutions. 
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instance, the shapes and sizes of the period 1 regions 
vary widely depending on the order of the system, 
although it seems that overall there is an enlarge-
ment of the period 1 region associated with the 
increase in order. The periodicity diagram for the 
sixth-order system in Fig. 3(c) particularly stands 
out from the rest in that it exhibits a spectrum 
of different peak numbers along the horizontal line 
r ∼ 390, where σ ranges from 150 to 600. Because 
of such dramatic differences in periodic diagrams 
of systems of different orders, it is entirely possible 
even with a fixed value pair of (σ, r) that the  solu-
tions take on chaos, periodicity, and convergence 
depending on the order of the system. Such a devel-
opment is also seen in Fig. 2, where the solutions 
are deemed chaotic in systems of orders 3, 5, 6, and 
11, but periodicity is observed in systems of orders 
8 and  9.  

As in [Dullin & Schmidt, 2007], the periodicity 
diagram of the original Lorenz system in Fig. 3(a) 
exhibits the onion-like structure resulting from the 
alternations between chaos and periodicity. Such 
a structure persists in the fifth-order case as well. 
One of the most notable changes going from order 
5 to higher orders in Fig. 3 is the disappearance 
of the onion-like structure. This disappearance of 

white chaotic bands in systems of orders greater 
than 5 results in red isolated windows of period 
1 in the lower left areas of Figs. 3(d)–3(f), where 
σ is between 50 and 150 and r ranges from 50 to 
850. Disconnected from other regions of period 1, 
these red windows of period 1 are bounded by either 
chaotic regions or periodic regions of greater peak 
numbers. 

Another notable feature in the periodicity dia-
grams is the appearance of relatively wide orange 
regions of period 2 in the systems of orders 5, 8, 9, 
and 11. Note that compared to the orange regions in 
Figs. 3(b) and 3(d)–3(f), the regions of period 2 in 
Fig. 3(a) appear merely as thin orange bands along-
side the white chaotic bands that form the onion-
like structure. For the fifth-order system in Fig. 3(b) 
in particular, the periodicity diagram exhibits both 
the widened orange regions and the onion-like struc-
ture consisting of chaotic bands. 

3.3. Bifurcation diagrams and 
phase portraits 

The difference between the wide orange areas and 
the thin orange bands is also visible in bifurca-
tion diagrams. Each bifurcation diagram in Fig. 4 

(a) (b) (c) 

(d) (e) (f) 

Fig. 4. Bifurcation diagrams with σ ∈ [0, 200], r 400, and b = 8/3 for systems with three, five, six, eight, nine, and 11 
variables labeled as (a)–(f), respectively. 
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consists of all local maxima of Z1 on the parameter 
domains r 400 and σ ∈ [0, 200]. In each bifur-
cation diagram, the initial onset of chaos is indi-
cated by dense scatters at lower σ values. These 
concentrations of scatters correspond to the left-
most chaotic bands appearing in all six periodicity 
diagrams in Fig. 3. The subsequent concentrations 
of chaotic scatters to the right, on the other hand, 
appear to split into two similar but distinct blobs 
in Figs. 4(b), 4(d) and 4(e), followed by two nearly 
parallel lines signaling solutions of period 2. This 
separation occurs around σ = 140 for the system of 
order 5 [Fig. 4(b)] and around σ = 110 for systems 
of orders 8 and 9 [Figs. 4(d) and 4(e)]. The 11th-
order system behaves similarly to the eighth- and 
the ninth-order systems in that such a split is also 
visible in Fig. 4(f), but in this case, parallel lines 
also appear to the right of the initial chaotic scatter 

around σ = 70. The separated chaotic blobs for the 
11th-order system appear briefly around σ 100 
followed by again a pair of nearly parallel lines. The 
thin orange bands of period 2 in Fig. 3(a) seem to 
be, then, of fundamentally different nature from the 
expanded orange regions of period 2 in Figs. 3(b) 
and 3(d)–3(f). The quickly merging lines that fol-
low immediately after a chaotic scatter in bifurca-
tion diagrams correspond to the thin orange bands 
of period 2 in the periodicity diagram of the orig-
inal Lorenz system [Fig. 3(a)], whereas the nearly 
parallel lines that follow after two distinct blobs of 
chaotic scatter correspond to the widened orange 
areas of period 2 shown in Figs. 3(b) and 3(d)–3(f). 

Bifurcation diagrams, however, offer little 
insight regarding the onion-like structure of white 
bands in the third- and the fifth-order cases. To 
visualize the effects of the onion-like structure, we 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Fig. 5. Trajectories projected on the X1 Z1 plane for the third-order case in (a)–(d), where (σ, r) (100, 400), 
(151, 400), (160, 400), (170, 400), respectively, the fifth-order case in (e)–(h), where (σ, r) (140, 400), (150, 400), (160, 400), 
(200, 350), respectively, and the eighth-order case in (i)–(l), where (σ, r) =  (97, 400), (100, 400), (115, 400), (190, 400), respec-
tively. b is fixed as 8/3. These (σ, r) pairs are chosen so that the first column represents phase portraits for systems of period 1, 
the second column for chaotic systems, the third column for systems of period 2, and the last column for systems of period 1. 
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S. Moon et al. 

turn to phase portraits. Figure 5 shows trajecto-
ries projected on the X1 Z1 plane. Different pairs 
of σ and r values are picked so that each column of 
Fig. 5 would consist of representative phase por-
traits corresponding to regions of different peak 
numbers that border the orange regions in period-
icity diagrams. The top row of Fig. 5 corresponds 
to the third-order case and the middle row to the 
fifth-order case. Since the behavior of the systems 
of orders 8, 9, and 11 are similar, we only display 
trajectories of the eighth-order case in the bottom 
row of Fig. 5. 

Figures 5(d), 5(e), 5(l) show that if a trajectory 
forms a simple closed loop that has only one local 
maximum value of Z1 when projected on the X1 Z1 

plane, such a solution is of period 1. On the other 
hand, in Figs. 5(a), 5(h) and 5(i), it is the symme-
try of the trajectories that makes these solutions 
to be interpreted as period 1. It is, therefore, pos-
sible for some trajectories with different structures 
to be associated with the same peak number. It fol-
lows that a low peak number does not necessarily 
require a simple closed loop trajectory. 

Indeed, some transitions from period 2 to 
period 1 are represented by an untangling of trajec-
tories as we can see in the transitions [5(c)   5(d)], 
[5(g)   5(h)] and [5(k)   5(l)]. If a trajectory for 
period 2 is a simple doubly tangled loop resembling 
Fig. 5(c) or Fig. 5(k), its transition to period 1 
requires only one instance of untangling. On the 
contrary, a relatively complex trajectory such as 
Fig. 5(g) may need more than an untangling in 
order to transition into a simple closed loop. For 
example, in the fifth-order case, some loops do 
not get untangled entirely going from period 2 to 
period 1 as can be seen in the transition from 
Fig. 5(g) to Fig. 5(h). Despite having period 1, 
Fig. 5(h) is still more complicated than the sim-
ple closed loops of period 1 in other cases such as in 
Figs. 5(d) and 5(l). Whereas Figs. 5(c) and 5(k) are 
merely two different representations of the unknot, 
it is unclear whether the same holds for Figs. 5(g) 
and 5(h). In fact, when r is fixed as 400 in the fifth-
order system, simple closed loops start to emerge 
around σ 900. This is where the (σ, r) pairs  
belong to an outer layer of the onion-like structure. 
It seems that for systems exhibiting the onion-like 
periodicity diagrams, the periodic trajectory loops 
are simpler for the pairs in the outer layers of the 
onion-like structure, where the difference between 
the two parameters is relatively large. Deeper into 

the onion-like structure of the fifth-order system, 
even the trajectories associated with low peak num-
bers are relatively complex [Fig. 5(h)]. Such a devel-
opment of rather complicated periodic trajectories 
for parameter pairs deep in the onion-like structure 
is also seen in the third-order case. For instance, the 
trajectory of the solution of the third-order system 
at r = 600 and σ = 400 is similar to the trajectory 
shown in Fig. 5(h).  

4. Summary and Conclusion 

Starting with the original Lorenz system, the 
present study analyzed qualitatively the behavior 
of high-order Lorenz systems of orders 5, 6, 8, 9, 
and 11. Based on the time series plots of the numer-
ical solutions for the variable Z1, we concluded that 
the amount of time it takes for a solution to con-
verge to an equilibrium or for solutions with dif-
ferent initial conditions to start diverging follows 
no particular pattern. Focusing on different pairs 
of (σ, r) parameter values, we plotted periodicity 
diagrams for all six systems. Owing to the remark-
able diversity of the periodicity diagrams for our 
high-order Lorenz systems, it is possible for regimes 
of chaos, periodicity, and convergence to emerge 
in all six systems with appropriate parameter pair 
choices. Some characteristic changes observed in 
the periodicity diagrams include expanded regions 
of period 2 for systems of orders 5, 8, 9, and 11, 
and the disappearance of the onion-like structure of 
chaotic regions for systems of orders greater than 5. 
We utilized bifurcation diagrams to confirm that 
the widening of period 2 in the periodicity dia-
grams of high-order systems is a new phenomenon 
that is not observed in the original Lorenz sys-
tem. By comparing phase portraits, we found that 
the trajectories of the fifth-order system are rela-
tively complex when the parameter pairs are deeply 
embedded in the onion-like structure of its period-
icity diagram. The same holds for the onion-like 
structure seen in the periodicity diagram of the 
third-order system. The trajectories of the peri-
odic solutions of the third- and the fifth-order sys-
tems were contrasted with the trajectories associ-
ated with the periodic solutions of the systems of 
orders 8, 9, and 11, which form relatively simple 
representations of the unknot. 

Our results show that the behavioral patterns 
of high-order systems in periodicity diagrams dif-
fer from the original third-order Lorenz system and 
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from one another. Such behavioral changes are not 
monotonic with respect to the order of the system, 
and an increase in complexity of the equations does 
not necessarily lead to an increase in the system’s 
complexity. 

Although the present study considered Lorenz 
systems up to order 11, some of the new phenomena 
in high-order Lorenz systems may be studied with 
greater clarity if systems of even higher orders are 
considered. Derivations via Fourier mode trunca-
tion get quite cumbersome as the number of equa-
tions grows; thus, it may be of interest in future 
studies to fully generalize the Lorenz systems to 
systems of n equations derived from the governing 
equations (4) and (5), so that given any order n, cor-
responding Lorenz systems would be readily avail-
able. Furthermore, an expansion or a refinement of 
the parameter planes, or an investigation with some 
other pairs of parameters may also prove fruitful. 
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