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Abstract 

Autonomous vehicles are fast becoming one of the major areas of research for 

automotive engineering. When the vehicle is fully in control of its actions, this raises 

questions concerning automotive safety, such as what an autonomous vehicle will do 

when faced with an imminent collision. Assuming that autonomous vehicles cannot 

crash is a dangerous over-estimation, and so systems need to be in place to limit the 

potential risks to vehicle occupants. 

 The aim of this research is to develop a control strategy for an autonomous 

vehicle, called the Host Vehicle, to avoid or mitigate collisions on longitudinal multiple 

carriageway roads. These multiple carriageway roads are arterial roads, called 

motorways. The potential collisions must be assessed from the perspectives of all 

vehicles involved in the impact, to prevent a selfish decision being made by the Host 

Vehicle. The main scenario of this thesis is of an autonomous vehicle driving on a 

three-lane motorway, with potential collisions in each lane. Therefore, each lane is a 

possible choice for the autonomous vehicle to select. This thesis proposes a system 

that selects the safest possible crash for an autonomous vehicle when faced with 

multiple possible collisions. This system aims to avoid or mitigate potential collisions.  

 This system requires expertise from several different areas. Autonomous 

highway platooning systems have been developed and tested to demonstrate that 

autonomous vehicles can crash. If a potential lane-change manoeuvre is required to 

avoid or mitigate a collision, the manoeuvre must be planned and assessed to 

ensure the risk to the autonomous vehicle safety is not increased. The potential 

collisions must be assessed for severity, requiring modelling of these collisions to 

produce metrics for a decision-making process. The severity of a collision is greatly 

influenced by the impact velocity, which therefore requires the impact velocity of the 

potential collisions to be simulated. Two simulators are developed for the case when 

Vehicle-to-Vehicle communication is available, and the case when this 

communication is not available. These two cases influence the available parameters 

for calculating the severity of the collision. Once all the required outputs from the 

simulators and modelling are produced, describing the potential collision severity of 

each available lane, these are used to select the lane with the least severe collision 

scenario. Multi-Attribute Decision Making (MADM) is used to assess the outputs from 

the simulators, and make the decision of which lane the autonomous vehicle should 



 Abstract 
 

II 
 

drive into. MADM has not been applied to this type of problem before. The MADM 

methods which are investigated for this research problem are the Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS), the Analytical Hierarchy 

Process (AHP), and the Analytical Network Process (ANP). 

 The novelty of the proposed system includes the application of Multi-Attribute 

Decision Making to select the least severe collisions for the Host Vehicle to take, 

therefore an autonomous decision is made to improve the safety and survivability of 

vehicle occupants. This system is supported by the development of a new two stage 

collision modelling to describe the severity of multiple vehicle collisions. These two 

stages are two separate rear-end collisions, the Host Vehicle collides into a vehicle 

ahead, and a vehicle behind collides into the Host Vehicle. A steering and braking 

trajectory planner is developed to give the Host Vehicle multiple actions to select 

from.   

 The proposed simulation methods are tested and evaluated with respect to 

the decisions they make. This includes simulating several scenarios in which the 

simulated vehicles vary their behaviours. The result is a recommended lane choice, 

so the car decides on the safest collisions to have. The scenarios vary the input 

parameters such as initial velocity, available headway distance and braking of 

vehicles. Each scenario is tested, and the lane selection is presented. The 

parameters are varied in a sensitivity analysis to demonstrate how the lane selection 

can change based on the inputted scenario. The TOPSIS and AHP methods 

generated good decisions in line with the decisions made by the subject expert. The 

ANP method would require further parameter tuning. The proposed system is 

intended to be an evolution of the current Adaptive Cruise Control and Collision 

Avoidance/Warning systems including Automatic Emergency Braking.  
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Introduction  

 

 

 Introduction 

Automotive engineering is an ever-developing industry, researching new 

technologies to further the capabilities of transport in the modern world. For decades, 

one of the main research areas has been safety. Moving vehicles at high speeds 

increases the risks to those around, and so safety technologies have developed to 

reduce the risks to human life.  

One of the newest research areas is autonomous vehicles, with automotive 

manufacturers, research groups, universities and governments investing in the 

developing methodologies that will result in self-driving cars. This thesis concerns an 

autonomous vehicle development which supports the continual need to improve 

automotive safety. Allowing the vehicle to drive itself, in theory means that human 

error can be eliminated as a cause of automotive collisions. However, humans have 
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intuition, a natural behaviour that acts when facing an imminent danger. If an 

autonomous vehicle is facing an imminent collision, what should it do? The idea of 

this research and that of the industrial collaborator is to consider the risk to all 

vehicles involved in potential collisions, and not just itself. 

 

 Motivation for Research 

Existing collision avoidance technologies focus on braking control, to reduce the 

vehicle’s velocity to either avoid or mitigate a collision (Moon, Moon, and Yi, 2009). 

There is an existing research which evaluates steering as an option to avoid a 

collision, and even employ steering and braking to slow a vehicle’s velocity whilst 

also steering around a hazard. However, these steering avoidance systems will only 

steer the vehicle if an avoidance is possible. Existing research from Anderson et al. 

(2010) and Hayashi et al. (2012) focuses on collision avoidance, but what if all 

actions the autonomous vehicle can take will result in a collision? 

 This thesis asks a question which is related to the trolley problem, which 

theorizes only two possible lanes for a trolley to take, both resulting in collision. If 

there are separate unavoidable collisions ahead, which should be selected? Bleske-

Rechek et al. (2010) surveyed people’s responses to the ethical thought experiment 

of the trolley problem, and personal factors that may influence the decision. Nyholm 

and Smids (2016) use the trolley problem to demonstrate the ethical decisions that 

autonomous vehicles will need to make, which may result in harming people involved 

in one collision over another. This thesis addresses the question of which collision 

will be the safer to have. An evaluation is also needed to determine the severity of 

possible secondary collisions, in case the actions of the autonomous vehicle move it 

into the path of a vehicle behind itself. This calls for a development of an autonomous 

collision mitigation system. 

 

 Preliminary Background Information 

The research conducted in this thesis draws from the science of vehicle dynamics, 

which can describe the vehicle’s ability to perform the intended manoeuvres. This is 

informed by the works of Milliken and Milliken (1995) to calculate the Ackermann 

steering angle, Blundell and Harty (2004) to calculate the yaw capabilities of a 
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vehicle, and Rajamani (2011) to calculate a lateral acceleration used to determine a 

safe braking value that won’t result in tyre over-saturation during a steering 

manoeuvre. If there are avoiding or mitigating actions for the Host Vehicle to select 

from, then there are different manoeuvres which must be planned and evaluated. 

Vehicle dynamics is critical in determining the safety of any actions the Host Vehicle 

can or cannot take. 

 The different options the Host Vehicle can take may result in a need to 

mitigate collisions. The assessment of the severity of a collision is informed by the 

modelling technique introduced by Kamal (1970), by using a lumped-mass model to 

simulate the collision. Pickering et al. (2018) have further developed this modelling 

technique for simulating collisions between two vehicles. It is adapted by this thesis.  

Whilst this research area will require further development, it is intended that the 

develop system be able to work in real-time for future applications.  

 A decision must be made with these different potential collisions and they will 

be described by parameters. Different parameters can be used to measure the 

severity of the collision such as impact velocity between the autonomous vehicle and 

vehicle ahead or the required braking for the vehicle behind to avoid a collision with 

the autonomous vehicle. These parameters can also be in conflict with one another, 

such as the impact velocity ahead in one lane may be a very low value whilst the 

required braking behind in the same lane is very high. A mathematical decision 

making method is employed to make an unbiased decision. For this Multi-Attribute 

Decision Making (MADM) methods are investigated, and in particular the methods 

AHP (Saaty, 1980), TOPSIS (Hwang and Yoon, 1981), and ANP (Saaty, 1996). The 

problem is that an autonomous vehicle is following another vehicle which comes to a 

sudden stop. The MADM methods are employed to assess the proposed collisions, 

and determine the best lane for the Host Vehicle to drive into, effectively selecting the 

safest collision. A MADM method has not yet been applied to this type of problem. 

 This research problem is described under collision avoidance. Existing 

collision avoidance technologies such as Ammoun and Nashashibi (2009) aim to 

avoid a collision. Hayashi et al. (2012) and Anderson et al. (2010) even proposed 

methods to introduce steering to avoid a collision. However, there is a need for 

improvement when addressing what an autonomous vehicle should do when 

avoidance is not available.  
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 Research Objectives 

The overall aim of this research is to develop a control strategy for an autonomous 

vehicle, the Host Vehicle, to avoid or mitigate collisions on longitudinal multiple 

carriageway roads (motorways). The potential collisions must be assessed from the 

perspectives of all vehicles involved in the impact, to prevent a selfish decision being 

made by the Host Vehicle. A selfish decision will only assess the simulation results 

which describe the severity of the collision for the Host Vehicle, but this may also 

conflict with the severity for the other motorway vehicles. Simulation results 

describing the collision severity for the other vehicles on the motorway will need to be 

considered by the Host Vehicle. The Host Vehicle will then decide on the safest 

collision. 

 This aim is supported by the following objectives: 

 Analyse the current developments in the area of mitigating collisions. 

 Investigate the potential that autonomous vehicles can collide. 

 Develop a simulator to evaluate the impact of a collision. 

 Develop a decision-making method to decide on the best action that the 

autonomous vehicle should take in order to mitigate a possible collision. 

 

This research programme aims to develop a decision making system for an 

autonomous vehicle to select the least severe collision on a motorway. This aim 

requires addressing several issues. First, highway platooning will demonstrate that 

an autonomous system can be made unstable, resulting in collision. The aim of this 

is to demonstrate that there is a need for autonomous vehicles to have a system 

which will make a decision on mitigating collisions, as it cannot be assumed that 

collisions are always avoidable. The models will further develop the exiting research 

on highway platooning, and further developments will be undertaken to analyse the 

impact of vehicle spacing on the platoon performance. The developed models will 

also be tested with vehicle speeds which more closely represent UK motorway 

speeds, and the platooning itself will be stressed to observe at what point the platoon 

becomes unstable, and results in collisions. The platoons will be further stressed by 

introducing time delays, to slow the reactions of the vehicles, and the platoon size will 

be increased. 
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 The autonomous vehicle may need to perform a lane-change manoeuvre, 

requiring this manoeuvre to be planned and assessed. A lane-change trajectory 

planner must be developed and tested. The steering controller aims to demonstrate 

that the trajectory planned can be implemented by a steering controller. In order to 

accomplish the aim of performing a steering manoeuvre into an adjacent lane whilst 

also slowing the vehicle down, a sinusoidal wave will be used as a trajectory plan. A 

tyre saturation model will be used. A kinematic model will be used to demonstrate the 

manoeuvre, but is the trajectory and braking planner which is important for later parts 

of the thesis.  

 Collision modelling which can simulate the zero lateral offset collisions 

described in the scope of this thesis needs to be developed. The aim of this research 

is to develop an accurate and useable model which can produce results describing 

the collisions, and which can be used to assess severity of the collisions. The 

modelling technique does need tuning, to best reproduce available FEA data. A 

tuning method will be developed based on Euclidean geometry, as to optimise the 

key properties. The modelling will consider one vehicle impacting another at the rear. 

This modelling will be further developed to simulate a second collision stage, by 

considering three cars colliding in one lane. 

The proposed scenario of a 3 lane motorway and multiple potential collisions 

must be simulated by motorway simulators. The aim of this objective is to develop 

simulators which can reliably and accurately produce results describing the severity 

of multiple possible collisions. Multi-Attribute Decision Making (MADM) methods will 

be investigated to support decision making on selecting the best lane for the 

autonomous vehicle to drive into. The simulators will need to use developments from 

earlier sections in the thesis. This intends to simulate the impact velocities of multiple 

collisions in multiple lanes, but also calculate if a manoeuvre into any given lane is 

viable or not. If not, then this manoeuvre, and so this lane, will be disqualified from 

the decision process. The simulators must ensure that any action taken will result in 

a safer outcome for all involved, and must not increase the danger to the vehicle 

occupants.  

 The proposed system will need to be tested to demonstrate that the main aim 

of an autonomous vehicle selecting the least severe collision can be achieved. The 

sensitivity analyses to be carried out will demonstrate the impact of the decisions 

made, and will determine what parameters can affect this lane selection. Limitations 

in the developed simulators and decision making processes will be identified. 
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 Scope 

Autonomous vehicle safety is a research problem that will be in continuous 

development for decades to come. Therefore, it is critical to limit the scope of this 

research programme, aiming to give a meaningful contribution to one defined area, 

as opposed to accomplishing very little in the larger research area.  

 The project will be focusing on motorways. These are multiple carriageway 

roads, sometimes referred to as arterial roads. Although slower urban roads have 

statistically more collisions, the higher speeds operating on motorways are more 

likely to result in severe injury or fatal accidents. The most severe collisions occur on 

rural roads, as given in accident statistics by the House of Commons (2013), but this 

is not included in the scope of this research problem. The monotonous driving on 

motorways is a key assumption for autonomous vehicles, as is demonstrated by the 

already existing Adaptive Cruise Control technologies, and highway platooning 

technologies in development to form convoys of automated vehicles driving closely 

together. 

 The project will only be addressing potential impacts with cars. Collisions with 

pedestrians, cyclists, motorbikes and larger heavy vehicles such as lorries and buses 

will not be included. The focus on motorways also allows for the assumption of 

straight roads. In reality, even motorways are not completely straight, but will be 

assumed to be so. This is agreed with the industrial support for this research 

problem. Calculating the velocities and displacements of the vehicles on a curved 

road increases the complexity of the simulators to be used in the decision making 

processes. This is a development to be considered in the future. This thesis focuses 

on the decision making of the autonomous vehicle on the straight motorways. This 

thesis aims to present a control strategy concept, which could be further developed 

at a later stage to include other potential collision scenarios and in different 

environments. 

 Allowing an autonomous vehicle to take control of the vehicle’s safety raises 

ethical questions. This is a considerably large debate, which will not be addressed in 

this thesis. This thesis assumes that it is the ethical responsibility of the autonomous 

vehicle to minimise the risks to its occupants as much as possible, whilst also limiting 

the potential risks to others. If the autonomous vehicle chooses to change lanes, it is 

also effectively choosing other victims with which to have the crash. If the overall risk 

in one lane is lower than another, then the autonomous vehicle is ethically 
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responsible to select the lowest overall risk. In this way it gives an overall benefit to 

all vehicles involved, even those which will not be involved in the selected collisions. 

The proposed control strategies will only be simulating vehicles, and not the 

occupant inside, but the collision severity for a vehicle is assumed to directly 

influence the severity for the vehicle’s occupants.  

 

 Research Methodology 

Existing models are the inspiration for further development into highway platooning. 

The platooning analysed involves a single lead vehicle with 5 following vehicles. The 

models of the lead vehicle and following vehicles will be constructed in 

MATLAB/Simulink. Improving the performance of the existing platooning model will 

be investigated by introducing PI control for platoon stability. The model will be 

further tested by introducing time delays, and increasing the size of the platoon. 

 To assess the viability of a steering manoeuvre into an adjacent lane, a 

steering and braking trajectory planner is to be developed, also using 

MATLAB/Simulink. This model needs to plan a steering trajectory and calculate an 

available braking value to slow the vehicle without oversaturating the tyres. The 

steering and braking manoeuvre will use a kinematic model to demonstrate its 

performance.  

 Collision modelling is to be developed to assess the severity of zero lateral 

offset rear-end collisions between two or more vehicles. A mass-spring system is the 

initial inspiration for a new modelling technique to measure the deformation and 

acceleration of a defined mass. This mass-spring model is to be adapted into a 

bilinear lumped mass model. It will be constructed in MATLAB/Simulink. The bilinear 

model aims to reproduce collision data from a vehicle model, and will use a 

Euclidean optimization to geometrically tune the bilinear parameters by comparing 

the model’s simulation results with the collision data. 

 As there are multiple lanes, and therefore multiple vehicles for the Host 

Vehicle to collide with, a motorway simulator needs to be developed. This will 

calculate the positions and velocities of multiple vehicles on a multiple lane road. 

These lanes and their vehicles will be simulated in MATLAB/Simulink, to calculate 

the potential impact velocity of the Host Vehicle and any of these potential vehicles. 

Each lane will have a vehicle ahead of the Host Vehicle, and a vehicle behind. This 
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means that in any of the 3 lanes, there are potentially 2 collisions, therefore 6 

potential collisions must be simulated in total. The MADM methods which assess 

these simulation results are to be selected and applied in the problem. They will 

recommend which of the 3 possible lanes is the most appropriate for the Host 

Vehicle to drive into.  The MADM methods will be developed in MATLAB/Simulink.  

 The developed simulator and decision making processes will need testing, 

and so sensitivity analyses will be performed, after benchmark scenarios are set. As 

one parameter will be varied in each sensitivity analysis, it will be observed how that 

one parameter will influence the simulation results, and the decision made. A number 

of different parameters will need varying, to evaluate which of the parameters has the 

influence on the decision. The decision is the lane into which the Host Vehicle will 

drive into, to avoid or mitigate collisions. 

 

 Outline of Thesis 

The research objective of selecting the safest collision, is a complex problem 

requiring research and development in several areas. To begin, a literature review is 

conducted in Chapter 2. This gives an overview of the existing research on which this 

thesis employs to develop the contributions in this field. Chapter 3 reviews the MADM 

methods which will be appropriate for the research problem. 

 Chapter 4 demonstrates that even autonomous vehicles can still crash, and 

therefore demonstrates a need for a safety control system. In this chapter highway 

platooning models are created, influenced by the works of Cook (2007). Highway 

platooning is a system that is intended for use on motorways, which is the same 

environment considered in this thesis. Chapter 4 demonstrates that the autonomous 

system can become unstable, and therefore can result in collisions. Highway 

platooning inspired the format of the motorway adapted in this research. This 

research considers 3 lanes of a motorway. 

 Chapter 5 addresses the need for a lane-change manoeuvre. This thesis is 

looking at selecting the safest lane for the Host Vehicle to drive into, whether this 

results in collision avoidance or mitigation. If a different lane other than its current 

lane is selected, the Host Vehicle will need to perform a lane-change manoeuvre. 

This manoeuvre may not be safe to complete, and therefore, Chapter 5 develops a 

lane-change trajectory planner and evaluates whether the manoeuvre can be 
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completed safely.  A steering controller is developed to evaluate whether the 

proposed trajectory can be completed. The steering controllers also employ braking 

to achieve the slowest speed possible at the end of the manoeuvre, in case a 

collision avoidance is not possible. 

 Chapter 6 adapts existing modelling techniques to determine the severity of 

collisions. A collision avoidance may not be possible and whichever lane is selected 

may still result in an impact. Due to a car’s crash structure being designed to absorb 

as much of the collision energy as possible, and deforming in the process, a collision 

is not a simple evaluation of impact velocity. The collisions need to be modelled and 

Chapter 6 develops the models which can describe the severity of the collisions. 

Using Finite Element Analysis (FEA) data to tune the models, an accurate 

approximation is reproduced to simulate collisions. These models are used to 

evaluate a car in a rear-end collision. 

 Chapter 7 develops the simulators which calculate potential impact speeds. 

The behaviours of the Host Vehicle and all other vehicles on the motorway, including 

the vehicles ahead and behind in the 3 simulated lanes are calculated. Two separate 

simulators are developed, one which will not depend on Vehicle-To-Vehicle (V2V) 

data, and the second which will depend on V2V data, such as vehicle mass and 

dynamic braking parameters. The V2V simulator will have more available parameters 

to perform more complex calculations on vehicle braking and collision modelling. The 

simulator without V2V data does not have these data sets available, and so will need 

to make its decisions based on simpler calculations. 

 Chapter 8 applied MADM methods which use the outputs from the simulators 

described in Chapter 7, and make a decision on which lane the Host Vehicle should 

drive into. These methods use mathematical algorithms which rank preferences, i.e. 

lanes in which the Host Vehicle can be. These decisions can be influenced by 

inputted criteria weights, so some of the outputs from the simulators can be deemed 

more important for the decision than others. The criteria on which the decision is 

based are different for the two simulators. The Non-V2V simulator uses impact 

velocity ahead, required braking of the vehicles behind, and a maximum deceleration 

describing the severity of the manoeuvre. The V2V simulator uses the collision 

accelerations of the impacts as well as manoeuvre acceleration and Time-To-

Collision (TTC). 

 Chapter 9 tests the amalgamation of Chapters 5 to 8. The developments and 

findings from these chapters are used to make the whole control strategy by 
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simulating and assessing the simulated problem. Chapter 9 presents the simulation 

results, demonstrating the decision made for a range of different scenarios. First, 

benchmark scenarios are defined for both the V2V and Non-V2V simulators. Then 

the one parameter will be varied incrementally in a sensitivity analysis to observe 

whether a decision changes on which lane is preferred. The limits of the simulators 

and decision making processes are evaluated, and demonstrates how one parameter 

can affect the decision made.  

 Chapter 10 discusses the conclusions of this thesis by reviewing the findings 

of each chapter. This also includes the further work that this thesis could introduce. 

 

 Research Contribution 

This thesis develops and applies different modelling techniques to develop a control 

strategy for a new application, such as collision mitigation for autonomous vehicles. 

Public attention is often attracted when autonomous vehicles are discussed, 

especially regarding safety. This thesis contributes in this area which will need further 

development before it can be employed, as the majority of the findings demonstrated 

here are simulation based. However, the findings are encouraging, as it is 

demonstrated that a control system can simulate potential collisions, and select the 

safest collision to have with the aim of reducing the risks to vehicle occupants. 

Therefore, the control strategy proposed could have a very dramatic effect on saving 

the lives of roads users.  

 Automotive safety devices such as seat belts, airbags, and crumple zones are 

common devices now. And even active safety systems such as Automatic 

Emergency Braking (AEB) or Collision Warning systems are increasing in popularity. 

The proposed control strategy is an evolution of these technologies, giving AEB 

systems further versatility by allowing for more options to be available for the vehicle. 

Current technologies focus on reducing impact speed as much as possible, but as 

this research demonstrates, selecting the safest collision can also be a possibility. 

 The research included in this thesis will put forward novelties for achieving the 

aim of selecting the least severe collision. Highway platooning will develop on from 

an existing platooning model. The new developments will include introducing PI 

control to better maintain the vehicle spacing. This system will be further tested by 

introducing time delays, increasing the lead vehicle input speed to that representing a 
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UK motorway, and increasing the size of the platoon. This all contributes to finding 

the limits of this platooning system, and demonstrating that autonomous vehicles can 

still collide. 

 A novel steering and braking trajectory planner will be developed, which will 

use a sinusoidal wave as an initial starting point, from which an appropriate braking 

value can be calculated using a ‘)-)’ vehicle acceleration model. Determining the 

steering trajectory before the braking ensures that a lane-change manoeuvre can be 

completed without oversaturating the tyres. This will also prevent the controlled Host 

Vehicle from colliding into multiple vehicles ahead.  

 A new bilinear lumped mass modelling technique is to be developed to 

simulate vehicle collisions. The modelling will reproduce FEA data results quickly and 

with satisfactory accuracy. The collision modelling will be developed with a Euclidean 

tuning method to best capture the FEA results. 

Two motorway simulators will be developed which are to be used to provide 

the results as inputs to the decision making processes. Two simulators will be 

developed for when Vehicle-to-Vehicle (V2V) communication is available, and when 

it is not available. Without V2V to communicate vehicle parameters, it will not be 

possible to perform certain calculations. Therefore, a Non-V2V simulator will perform 

simulations, relying more on assumptions. These are novel simulators, as they will 

allow for the motorway simulations to be adjusted quickly, making them suitable for 

sensitivity analyses. The second of these two simulators will work with the collision 

modelling developed in this thesis. 

 The application of MADM to a decision process involving real-time 

autonomous vehicles is novel. Using the results from the simulators, there will be 

metrics describing the severity of multiple potential collisions. Several different 

MADM methods will be investigated for use with the developed simulators. These 

MADM methods will be demonstrated to be a suitable decision making method, to 

select a lane for the Host Vehicle to drive into. 
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Vehicle Dynamics and 

Collision Research - 

Literature Review 

 

 

 Introduction 

The research problem under consideration will require understandings from several 

different disciplines. A literature review of some of these disciplines is contained in 

Chapter 2. Firstly, a review of Advanced Driver-Assistance Systems (ADAS) will 

evaluate technologies available for current vehicles that are related to the research 



 Vehicle Dynamics and Collision Research - Literature Review 
 

14 
 

problem. Vehicle Dynamics is important for verifying whether an autonomous vehicle 

can maintain control through driving manoeuvres, and so an evaluation of vehicle 

dynamics and vehicle dynamic systems will be included. This is followed by vehicle 

models used to represent the car. 

 Collision Avoidance technologies are evaluated for their current capabilities, 

and how they can be improved upon. This will also investigate Collision Mitigation 

technologies. The literature review will be completed by a review of Automotive 

Collision Research to describe why this research programme is important. A review 

of automotive collision statistics will show the importance of introducing autonomous 

systems to automotive safety, and assessing the vehicle itself will show how the 

vehicle performs during a crash. 

 A conclusion of the literature review will define the current capabilities of cars 

and why the development of automotive safety technologies must continue. The 

literature review will demonstrate areas to improve upon, and discuss the 

improvements that this thesis aims to achieve. 

 

 Current Advanced Driver Assistance 

Systems and Autonomous Safety Systems 

Advanced Driver Assistance Systems (ADAS) are becoming more and more popular 

on road vehicles. A review of some of these technologies which are relevant to the 

research problem is included. These technologies are the currently available features 

on cars which this research problem may either work with or improve upon. An 

overview of levels of automation is also included. 

 

 Adaptive Cruise Control 

The car maintains a speed determined by the driver, and the driver can take over at 

any point, as is the basis for cruise control systems. Adaptive cruise control (ACC) 

maintains a set distance to the vehicle ahead by using sensors to detect the position 

and velocity of vehicles in front. It can then control the car speed to match the vehicle 

in front (Bosch 2014).   



 Vehicle Dynamics and Collision Research - Literature Review 
 

15 
 

 The ACC controls engine and transmission in order to control the vehicle 

speed and the Electronic Stability Programme (ESP). The ESP controls the brakes, 

so if the car detects that a vehicle in front is slowing or detects an obstacle that will 

not move out of the car’s path, the brakes will be applied. To detect obstacles in front 

many cars use radar, Lidar, light detection and cameras.  

 The control of the vehicle can usually be divided into 3 main control modules 

(Bosch 2014). Cruise control algorithm controls vehicle speed if radar has not 

detected obstacles or traffic in front. Tracking control algorithm maintains a time gap 

from a vehicle in front when the radar sensor has sensed a moving vehicle in the field 

of vision of the car. Cornering control algorithm is essential when the car turns a 

corner. Radar has a limited range of vision, and the vehicle in front can move out of 

this range. Until that vehicle is detected again, or the standard cruise control is 

activated, the cornering control algorithm needs to keep a constant lateral 

acceleration. 

 

 Automatic Parking 

Obstacles around the car are detected using ultrasonic parking sensors. The sensors 

have a detection range of 20 – 450:�. Firstly the parking space needs to be 

measured to ensure the vehicle can fit safely without damaging itself. The driver will 

be informed if the space is large enough, and then a confirmation from the driver is 

required so that the parking procedure can take place. 

 For a system where the driver still parks, space geometry is mapped, and a 

trajectory is displayed to the driver as instructions. This trajectory is re-calculated 

constantly. Signals from the steer-angle sensor are required to measure if the driver 

is following the suggested trajectory. 

 For automatic systems the steering system must be electrically activated 

power steering. Once the car has measured the space, the driver just needs to 

engage reverse gear and then let go of the steering wheel. The driver can slow the 

vehicle by still controlling the brake, but the system will take control of the steering 

action and accelerator function (Bosch 2014). 
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 Night Vision and Blind Spot Detection 

The average low-beam headlamp has a range of 40 to 50�, which is increased with 

high-beam headlamps to 120 to 150�. Zhang et al (2016) note that at night the 

driver’s field of vision becomes narrower with decreasing recognition capability of 

objects. Dangers increase as high or full-beam light from the headlights of oncoming 

cars dazzle drivers. Night vision systems have improved visibility and safety, with two 

main systems described by Bosch (2014), which are Far-infrared and Near-infrared 

systems. 

A thermal-imaging camera detects thermal radiation in a range of 

wavelengths from 7 to 12P�. Far-infrared systems are passive, not needing 

additional sources of radiation to illuminate objects. The camera is pyroelectric 

thermal. The camera image is then transferred to an Electronic Control Unit (ECU), 

which is then displayed for the driver to see. The image is unusual for the observer, 

as images do not represent a normal reflected image. Hot objects are shown as light 

contours against dark. The more of a contrast displayed the more of a temperature 

difference. 

Near-infrared systems are based on the technology used for far-infrared 

systems, but are based near the visible light spectrum, hence the name near-

infrared. Radiation is not emitted by objects at this wavelength, so the vision area is 

illuminated by infrared headlamps, meaning that the near-infrared systems are 

active. The scene is recorded by an infrared-sensitive camera and transferred to the 

ECU. The ECU processes that image, displaying it for the driver to see. 

 Illuminating the scene with infrared radiation can be easily done by halogen 

lamps, which have a high infrared content. Because of this, the halogen bulbs are 

usually integrated into the headlamp module. 3804� to 1,1004� is the wavelength 

range that the road scene is illuminated with. The most useful wavelengths for 

infrared cameras are between 900 and 1,0004�. This provides a useful signal that 

the imager of the camera can detect, as the visible light spectrum for humans is 

3804� to 7004�.  

 Near-infrared systems provide a higher image quality that can identify 

pedestrians, and an image that is easier for the driver to understand. For this reason, 

near-infrared systems are furthering video-based assistance, and involved in other 

safety systems such as automatic braking. 
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 There are areas around a vehicle which cannot be viewed by the driver 

directly or in the mirrors. These are the blind spots, into which another vehicle can 

move, causing a potential hazard. Blind spot detection uses either an electronic 

electromagnetic wave (radar) sensor, or computer processed vision images to detect 

a car. When another vehicle is detected, an audible warning sounds, or flashing light 

in the driver’s peripheral vision will alert the driver to the blind spot hazard. More 

advanced systems will even engage lane departure to steer the vehicle within the 

highway lanes, away from the hazardous vehicle. 

 

 Automatic Braking 

Automatic braking is an active predictive system which monitors a vehicle path and 

any obstacles in front that will cause a collision. The basic system is an audio or 

visual alert that tells the driver to apply the brakes, called predictive collision warning. 

Emergency brake assist arms the brakes, boosting the brake pressure so that when 

the brake pedal is pressed, the full braking force is applied meaning that the time is 

not lost when pushing the pedal to the floor. The driver can also be alerted by a 

“braking jerk” when the car applies the brakes for split seconds. More advanced 

systems apply the brakes automatically.  

Automatic Emergency Braking (AEB) performs predictive collision warning 

and brake assist, but when the driver fails to act on these alerts (including a braking 

jerk) partial braking is applied giving the driver more time to react. Partial braking is 

increased if the driver does not react or if it is only the accelerator pedal that has 

been released. When the radar sensors detect that a collision is unavoidable full 

braking is applied to mitigate the crash. 

The vehicle can be brought to a standstill before the crash, or at least reduce 

the speed of the crash, reducing the impact speed. This provides a major benefit to 

crash safety (Bosch, 2014). 

 

 Collision Avoidance Systems 

Collision avoidance systems are built on the existing sensors at the front of the car 

for ADAS systems such as adaptive cruise control. The collision avoidance system 

performs calculations to detect whether there are potential obstructions ahead. If the 
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system calculates that the speed differential between the vehicle and potential 

hazards is too great, the system engages the avoidance measures. 

 The most basic method is an audible warning alerting the driver into making 

an emergency manoeuvre. The car could also pre-charge the brakes, in order to 

provide optimal braking force immediately when the brake pedal is pressed. More 

advanced systems activate the brakes automatically, even engaging the Anti-lock 

Braking System (ABS) and Electronic Stability Control (ESC) to maintain vehicle 

control. 

 

 Levels of Automation 

To determine the level of automation, several organisations have set out definitions 

of autonomous capabilities. BASt is the German Federal Highway Research Institute 

which has defined 5 levels of automation. The following definitions are quoted from 

Gassner and Westhoff (2012). 

 0 – “Driver Only: Human driver executes the driving task manually” 

 1 – “Driver Assistance: The driver permanently controls either longitudinal or 

lateral control. The other task can be automated to a certain extent by the assistance 

system.” 

 2 – “Partial Automation: The system takes over longitudinal and lateral 

control, the driver shall permanently monitor the system and shall be prepared to 

take over control at any time.” 

 3 – “High Automation: The system takes over longitudinal and lateral control; 

the driver is no longer required to permanently monitor the system. In case of a take-

over request, the driver must take-over control within a lead time.” 

 4 – “Full Automation: The system takes over longitudinal and lateral control 

completely and permanently. In case of a take-over request the driver does not 

respond to, the system will return to the minimal risk condition by itself.” 
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 Control Engineering for Vehicle Dynamics 

Vehicle dynamics is described by Schramm, Hiller and Bardini (2014) as a branch of 

vehicle mechanics which deals with the necessary motional actions of moving road 

vehicles and resulting forces under the considerations of the natural laws. Vehicle 

dynamics references are found in many development areas of automotive vehicles, 

vehicle systems and components. 

 Vehicle dynamics is becoming more influenced by Control Engineering. This 

is because of more active systems being used in the vehicle architecture. The 

science is expanding into electronic steering, brake by wire, torque vectoring and 

even autonomous vehicle control. It is therefore important to analyse the relationship 

between vehicle dynamics and control engineering. 

 

 Tyre Saturation 

It is important to understand what the tyres are capable of in an emergency situation. 

For this tyre saturation needs to be analysed. 

Friction circles are models that illustrate the forces on the car, Longitudinal 

(Acceleration and Braking) and Lateral (turning left or right). Figure 2-1 shows how a 

friction circle works. They represent the dynamic relationship between the tyres of a 

vehicle with the road surface.  

 

 

 

 

 

 

 

 

The three bold arrows show the direction of the forces, although some friction 

circles will reverse the driving and braking forces. Figure 2-1 demonstrates that when 

Figure 2-1 - Friction Circle - Haney (2003) 
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there is a combination of forces such as accelerating whilst turning or braking whilst 

turning, neither of the maximum forces are available, i.e. the driving or braking force 

and the lateral force. The combined longitudinal (driving or braking) and lateral 

(turning) forces create a vector, and the maximum length of that vector should not 

exceed the limits of the tyre forces, as represented by the friction circle. The example 

of Figure 2-1 shows how adding a longitudinal force such as driving force to the tyre 

whilst turning will reduce the lateral force of the tyre. This example represents driving 

out of a slow corner when driving force will be increasing. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 is an example of an actual Friction Circle for a race car driving 

around a race track. The first observation shows that the car is far more effective at 

braking than it is as accelerating, but this can be said of almost all ground vehicles. 

  Figure 2-2 demonstrates the largest lateral and braking forces occur when 

there are no other forces acting on the vehicle. When there is a combination of forces 

there are limited values for both forces acting on the vehicle. It is also called a ‘)-)’ 

diagram when the principle is used to measure accelerations. 

 The tyre becomes saturated with the forces it must act on the road, and once 

this limit is met there will be a negative effect on tyre grip, as the tyre cannot maintain 

grip with the road when these forces exceed the limits of the tyre. When the 

Figure 2-2 - Friction Circle Data Collection - Trackpedia (2010) 
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autonomous vehicle performs an emergency manoeuvre whether to avoid a crash or 

mitigate it, it must have full control of the car’s tyres. The capabilities of the tyre must 

be respected, specifically the tyre saturation. 

 

 Vehicle Stability 

A car’s stability can be described in terms of Oversteer and Understeer. The meaning 

of these terms is often unclear as they have different meanings for different 

researchers. Blundell and Harty (2004) describe these terms with great use to control 

engineering. It is the relationship between the tyres of the front and rear axles and 

the dynamics of Yaw Rate Gain (YRG) and Lateral Acceleration Gain (AyG) for each 

tyre. 

The images of Figure 2-3 are summarized as: 

(a) YRG reduces further than AyG 

(b) AyG and YRG reduce proportionally 

(c) AyG reduces further than YRG 

 

Starting with image (b) of Figure 2-3, YRG reduces proportionally to AyG, 

allowing the car to maintain along its driver controlled intended path. This is called 

Neutral Steer. At the limit of adhesion there is reduced stability and control. The 

response of the steering will be satisfactory to enthusiastic drivers and vehicle speed 

can influence path radius, without losing driver confidence. The car will experience 

Figure 2-3 - Departures from Linearity Possibilities - Blundell and Harty (2004) 
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progressive departure which is unsafe for less experienced and inattentive drivers. 

This vehicle behaviour poorly reacts to road disturbances. 

Image (a) shows YRG reducing more than AyG, meaning the car cannot 

achieve the intended path instructed by the driver, needing a new wider line. This is 

called Understeer. The limit of adhesion control is reduced, but this system is 

inherently stable. The stability of understeer is demonstrated when the driving inputs 

of driving force and steering input are too great for the vehicle to respond as 

instructed. Control is re-gained by reducing these inputs, i.e. when the car takes a 

wider line the response of the driver is to reduce speed and steer more. Many road 

cars are setup for understeer as it is considered safe. Understeer is considered safe, 

as this increases the probability of a frontal collision, should a collision occur. This 

results in the front crash structure performing its intended purpose of deforming and 

protecting the passenger cell. Haney (2003) gives another definition for understeer 

when a higher slip angle is achieved by the front tyres than the rear tyres. 

Image (c) shows AyG reducing more than YRG, meaning the car rotates 

more than it turns. Even though the car will take an objectively understeer path 

departure from the neutral line, this is Oversteer causing the car to drive a wider line 

than the neutral steer line. The system is unstable requiring more speed and steering 

input to maintain control once the limit of adhesion is passed. Oversteer is 

considered unsafe for most drivers but preferred by more enthusiastic drivers as 

vehicles which can preserve their yaw rate gain when loosing linearity are generally 

regarded to be fun and sporty to drive. Haney (2003) gives another definition for 

oversteer when a higher slip angle is achieved by the rear tyres than the front tyres. 

 

 Control of Vehicle Dynamics 

The science of vehicle dynamics is expanding to include control systems to improve 

vehicle performance behaviours. An understanding of these systems is vital, as they 

will possibly be used to provide better control over autonomous vehicles in driving 

situations. 

Electronic Stability Programme (ESP) monitors vehicle and driver behaviour, 

comparing this with target states. Braking and drivetrain systems are developed to 

intervene, stabilising vehicle motion. Assistant Braking Systems and Traction Control 

brake individual wheels and control engine torque (Bosch 2014).  
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 Braking individual wheels, considers rear inside wheel when understeering 

through bends, or front outside wheel when oversteering through bends. Tyre slip 

influences intrinsic vehicle motions (longitudinal and lateral), and steering angle 

determines braking force as precisely as possible.  

At the vehicle's limits, the control of handling characteristics intends to 

maintain the three degrees of freedom for the vehicle in the plane of the road. Linear 

velocity =�, lateral velocity =	, and yaw rate S@  about the vertical axis are the degrees 

of freedom to be maintained within the limits of control. Dynamic vehicular response 

is translated from operator inputs, which is adapted to the road characteristics in an 

optimization process designed to ensure maximum safety. 

Active steering stabilization adds an additional steering angle to the driver’s 

steering angle, with use of an override gearbox. Yaw rate is automatically controlled 

with steering intervention, maintaining set point values in oversteer manoeuvres. Yaw 

motion is compensated for on roads with differing grip factors for braking. Active 

steering stabilization reduces Electronic Stability Programme (ESP) workload, as yaw 

compensation is automatic and significantly faster than a typical driver’s steering 

operation, which reduces the yaw-moment build-up delay of ESP. This also helps to 

reduce braking distances (Bosch 2014). 

Pioneered by McLaren in the development of Formula 1, the inside rear wheel 

brakes assisting the car’s steering input to maintain turning trajectory. 

Cars.mclaren.com (2015) state that speed and steering angle are factored to work 

out the perfect cornering trajectory by the system. An exact amount of braking force 

required is applied to the inside rear wheel when cornering, which effectively allows 

the car to pivot around the desired path. Traction is managed by the innovative brake 

steer technology, whilst minimising mid-corner understeer and, when at speed, 

controls oversteer. 

 The system operates at relative states of understeer maintaining trajectory. 

Supercars.net (2010) inform that brake steer prevents 'wash out' tendencies 

maintaining car’s direction. When accelerating out of corners, rear inside wheels tend 

to spin which is combated by braking that inside wheel, causing the rate of yaw to 

increase, allowing a quicker application of power. This performs the same task as 

limited slip differentials, removing the need for heavy components and saving weight.  

 In a conversation for Motorsport Magazine October 2006, Adrian Newey 

states that “The biggest effect on set-up was that you could run the car more 
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`understeery', more stable, so that you were less likely to have entry oversteer 

problems. And you could have better traction because you'd set the car up more 

towards understeer [less roll stiffness at the rear]."  

 This technology may work with ESP, maintaining high speed vehicle direction, 

when factors such as tyre saturation make control difficult. Rear wheels affecting 

steering reduces loads on the front.  

As analysed in Bosch (2014), drive torque distributes between the front and 

rear axles to increase or reduce understeer tendencies. Agility of lateral dynamics 

can increase without inducing oversteer. Drive torque distributes between left and 

right wheels of an axle, improving agility.  

For understeer, outside wheel drive torque increases through turns, and 

reduces for inside wheel. An additional yaw moment acts on the vehicle though the 

turn, reducing understeer. For accelerating on roads with differing grip factors, drive 

torque distributes to wheel with greatest grip factor. This reduces the need for 

traction control brake interventions on wheels with low grip factors. For oversteer, 

wheel torque shifts partly reduce needs for brake interventions reducing speed loss.  

For torque distribution without braking force, a differential allows one wheel 

on an axis to rotate at a different speed to the other. Torque vectoring systems are 

greatly effective on Front Wheel Drive, Rear Wheel Drive and 4 Wheel Drive 

vehicles, all able to utilise active differentials. 

 The Electric Dynamic Control (eDC2) differential described by patents of 

Pinto, Aldworth, Franco-Jorge, and Watkinson (2015a and 2015b), give torque 

vectoring control by using electric motors to independently control the torque applied 

to different wheels from the powertrain. This technology developed by Horiba Mira is 

intended for use with electric and hybrid powertrains. This system is able to improve 

the handling responses of a vehicle increase agility and reduce understeer by 

assessing the yaw rate and yaw rate error of the vehicle. The overall benefit is 

improved handling control. This is an example of how control engineering is applied 

for this purpose, and is already considered for application with autonomous vehicles 

in the patent of Kentley (2017). 

In 2015, both Porsche and Ferrari unveiled cars utilising 4-Wheel-Steering 

(4WS) with the 911 GT3 and F12 Berlinetta respectively. The system described by 

Porche.com (2015) turns the rear wheels in the opposite direction to that of the front 

wheels at speeds up to 50��/ℎ. This effectively shortens the wheelbase, as it 
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reduces the turning circle which makes steering into corners more dynamic and 

parking manoeuvres are noticeably easier. For speeds of 80��/ℎ and greater, the 

rear wheels are steered in the same direction by the system as the front wheels. This 

has the effect of increasing the wheelbase length as well as increasing stability, for 

manoeuvres such as on high-speed motorways. For speeds between 50��/ℎ and 

80��/ℎ the driving conditions dictate a constantly changing steering direction for the 

rear wheels. 

 Due to the stabilising properties of rear-axle steering, the front axle’s steering 

ratio has been made more direct around the central position. This gives the 

advantage of greater agility without losing stability at high speeds. There is no 

contradiction between stability and agility of the rear-wheel steering system, as there 

can be without the system. The result of the rear-wheel steering system is improved 

manoeuvrability in day-to-day driving, and a noticeable increase in the maximum 

performance, i.e. speed and stability in extreme driving manoeuvres. 

 

 Vehicle Dynamics and Control in Car Handling 

Abe (1999) evaluated chassis controls with the aim of improving a vehicle’s handling 

performance and with that active safety. 4WS uses tyre lateral force which is 

proportional to the control command of steer angle, in a range where lateral 

acceleration is small. 4WS is a chassis control system relating to improving handling 

performance. However, when working with high lateral acceleration, the lateral force 

that is achieved is not necessarily proportional to the steer angle. This is due to the 

saturation property in respect to the slip angle. The control law is sensitive to 

environmental conditions and vehicle motion, as lateral force is strongly dependant 

on tyre longitudinal force and vertical load. 

 Direct yaw moment control (DYC) is a promising method of chassis control. 

The distribution of the longitudinal tyre forces actively generates a yaw moment 

which controls vehicle motion. DYC has a major advantage as long as tyre 

longitudinal force is within the tyre capacity limit with respect to the vertical load. It 

has no feedback from vehicle lateral motion. 

In the non-linear range of tyre characteristics and vehicle dynamics it has 

been emphasized by Abe (1999) that DYC is more effective for vehicle motion 

control, and that its control law should be introduced in the non-linear dynamics 
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assumption. Overall, a higher vehicle handling limit performance is achieved with the 

integration and coordination of 4WS and DYC control systems.  

 It is also clear that control laws are used to great effect in vehicle handling 

performance. One of the models used by Abe (1999) was a 2 DoF bicycle model, 

which was deemed sufficient to derive a control law for DYC. Using a relatively 

simple mathematical model to directly affect vehicle handling for the better is 

encouraging for developing a vehicle model that can essentially drive the car itself. 

An adaptive integrated chassis control for a vehicle with rear-wheel drive is 

proposed by Bianchi et al. (2010), with the use of Rear Torque Vectoring (RTV) and 

Active Front Steering (AFS) available, when there are uncertainties in the 

parameters. An additional steering angle is applied over the one defined by the driver 

by the AFS. Torque applied to left or right wheels on the rear axle is applied 

asymmetrically by the RTV. The lateral tyre stiffness provides the parameter 

uncertainties. 

 A linearization control utilising adaptive feedback for the vehicle dynamics is 

designed by Bianchi et al. (2010). This control is then used as a reference to the 

actuators, by using a classical control scheme. This will impose the linearizing control 

actively. This gives the advantages that it is less complex to implement by using a 

control scheme respecting a linearizing of the dynamics as a whole (vehicle and 

actuator). This will prevent over-parameterisation, resulting in a control structure 

which is easier to use. It is unnecessary for the driver-imposed wheel angle to be 

measured or evaluated.  

 Combining AFS with the RTV with the aim of improving stability of the vehicle 

throughout various situations is another goal of this investigation. This means 

situations that not only include deviation from nominal values for vehicle parameters, 

but also rapid variations of road conditions, weather conditions including dry, wet or 

icy. An adaptive feedback linearization technique accomplishes this, where 

cancelling nonlinear terms robustly uses parameter adaptation. 

Kritayakirana and Gerdes (2012) use racing drivers to develop a driving style 

for autonomous vehicles at the limits of handling. Racing drivers keep control of the 

vehicle at the limits of friction without losing control. When designing controllers, they 

prove to be ideal models and their behaviour should be mimicked.  

Racing drivers maximise tyre force, whilst following the racing line governed 

by friction between the road surface and tyres, sometimes referred to as ‘grip’. To 
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display maximising of tyre forces in a mathematical model a ‘)-)’ diagram is used as 

illustrated in Figure 2-1. The circle represents the friction limit, and the driver’s 

responsibility is to operate the car within this limit, preferably very close to the limit. 

The tyres have limits, therefore applying the maximum braking or acceleration whilst 

also applying maximum steering will exceed the tyre friction limits, and control will be 

lost. Braking can be maximized without cornering, and vice versa. Or a combination 

of longitudinal and lateral forces which generate maximum tyre forces can be utilised, 

as concluded by Kritayakirana and Gerdes (2012). 

The driver modulates inputs of steering, braking and throttle within the limits of the 

friction circle. Before the corner entry, the maximum braking is applied, and no lateral 

force as the car is not yet turning. Longitudinal forces are not applied through the 

pure cornering aspect of the apex, so tyre forces are maximised by applying lateral 

cornering forces. The maximum acceleration is applied at corner exit, when lateral 

forces are not required.  The challenging driving components are the transitions 

between corner entry and corner exit, where steering and longitudinal inputs must be 

coordinated using techniques such as trail-braking or throttle-on-exit (Kritayakirana 

and Gerdes, 2012). Trail-braking is the transition phase where the driver slowly 

decreases braking input whilst increasing the steering input. Throttle-on-exit is the 

opposite, steering input is reduced whilst throttle input increases. The challenge of 

these driving behaviours is described by the friction circles of Figure 2-1 and Figure 

2-2, where driving and steering forces must be balanced, as not to over-saturate the 

tyres. 

 This balance between lateral and longitudinal forces is vital. Controlling 

braking before the corner greatly affects steering input that can be introduced. 

Critically, a higher cornering force is required by higher vehicle speeds, which results 

in reducing the available braking force. Therefore, as the radius of curvature of the 

corner becomes smaller, when the vehicle travels at excessive speed it will 

prematurely use all of the friction capability and become unable to track the desired 

racing line. Braking points and steering inputs must be controlled perfectly by the 

controller to achieve the optimal racing line, as stated by Kritayakirana and Gerdes 

(2012).  

 The controller developed by Kritayakirana and Gerdes (2012) separates path 

generation from path tracking at the limits. Vehicle limits are described by a ‘)-)’ 

diagram friction limit circle, imitating the driver’s racing line. The controller uses priori 
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knowledge of friction relying on variations of track surface handled by the controller’s 

robustness. Aligning moment or tyre slip could estimate real-time friction estimations. 

 

  Steering Controllers 

In this section existing research on steering controllers is reviewed, focusing on 

kinematic controllers, their capabilities and limitations. Kinematic steering models 

describe the geometric motion of the vehicle without consideration of the forces 

acting on it. Kinematic models use velocity as an input to the system, as with 

Rajamani (2011). Dynamic steering models evaluate the forces and moments which 

cause the vehicle movement. 

Ahmed and Yüksel (2013) used forward velocity and angular acceleration as 

control inputs to develop a proportional input-scaling feedback controller which 

follows a desired path. Kinematic simulation results are stored in a look-up table and 

applied to a programmable vehicle, capable of replicating the simulation. The realistic 

simulations proved the simulation results to be accurate for a double lane change at 

2.8�/�, stating that “the controller is robust and converges giving good performance 

provided that the car starts sufficiently close to the desired path.” 

 Snider (2009) discussed the use of a bicycle model, described in Section 

2.3.6. The author claims that a simple kinematic bicycle model used for the vehicle 

system is a common approximation used in motion planning for robots, simple 

vehicle analysis and deriving control laws for geometric methods. Snider developed 

and simulated several steering controllers, concluding that a kinematic model was 

sufficient for slow driving or parking manoeuvres. The author also concludes that for 

highway driving at moderate speeds a simple dynamic model will suffice. The 

kinematic model used by the author was stable up to 15�/�, and used a path 

tracking controller. A kinematic controller was capable of accurately directing a 

vehicle up to a certain velocity.  

 The collision avoidance steering controller developed by Shah et al. (2015) 

generated reference values, namely yaw rate. It used a PI feedback controller to 

better track the planned path. This controller was tested in simulation and with a real 

vehicle. The results demonstrated the possibilities of applying it in real world 

applications. The controller itself used a polynomial-based path planning method with 
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real-time evaluation of the path constraints. The controller developed was tested at 

speeds up to 70��/ℎ. 

 Kong et al. (2015) compared the use of kinematic and dynamic bicycle 

models for autonomous driving. They concluded that a discretized kinematic model at 

200�� has similar performance as a dynamic model discretized at 100��. The 

kinematic model even forecasted errors better than the dynamic model. Due to the 

kinematic model not including tyre and road interaction calculations, less 

computational power was required, and could be operational at a wide range of 

speeds. The authors shared the conclusion that at higher speeds the use of a tyre 

model reduced the reference errors. To provide better performance, the authors 

suggested limiting the reference velocity, so that the lateral acceleration could not 

exceed a certain value. 

 Kong et al. (2015) discuss a disadvantage of dynamic steering models, which 

is the computational effort required and that tyre models become singular when 

vehicle speed is low. A tyre slip angle estimation term is used for tyre models, which 

has vehicle velocity in the denominator. The use of the same control design for stop-

and-go scenarios is therefore prohibited, which is a common scenario in urban 

driving. A method for slip angle estimation was proposed by Lee et al. (2013). This 

method provided reliable slip angles for use with vehicle stability control. This method 

used measured yaw rate and lateral acceleration from the vehicle as it was 

performing manoeuvres. The proposed slip angle estimator is derived from a 

kinematic bicycle model. It was not to rely on dynamic tyre modelling. 

 Nam et al. (2013) also developed a slip angle estimator. However, this model 

relied on measurements from lateral tyre force sensors. Whilst the use of a Kalman 

filter did provide reliable estimations, the authors do state that this model is based on 

linear tyre dynamic models, and so errors may occur with severe manoeuvres on low 

friction roads.  
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 Bicycle Model 

Abe (1999) used a bicycle model to implement a DYC, as discussed in Section 2.3.4. 

The bicycle model is a simplified kinematic model of a four wheeled vehicle. It 

combines the two front wheels and two rear wheels in assuming they behave 

identically. Figure 2-4 demonstrates this simplification given in Takacs and Stepan 

(2013).  

 

where � and < denotes the centre points of the front and rear axles repectively, 
 

denotes the Centre of Mass (CoM), / denotes the wheelbase length divided by 2, 0 

denotes the position of the CoM from the half wheelbase length, B and E denote the 

longitudinal and lateral directions the vehicle is travelling, C' and U' denote the 

Cartesian coordinates of the B and E positions of the CoM, = denotes the vehicle 

velocity in the vehicle’s longitudinal direction, also denoted by =V�, =' is the velocity in 

direction of travel, L denotes the steering angle, and S denotes the yaw angle.  

 Figure 2-4(a) shows how the two wheels on each axle of a 4 wheeled vehicle 

are represented by a single wheel, and Figure 2-4(b) is the simplified bicycle model. 

The bicycle model has been adapted to numerous applications including Kong et al. 

(2015) developing both kinematic and dynamic bicycle models for an autonomous 

steering, braking and acceleration model. 

 The bicycle model is described by Blundell and Harty (2004) as a 2 degree-

of-freedom model with lateral acceleration and yaw rate as the degrees-of-freedom. 

the equations which govern the bicycle model are given as: 

Figure 2-4 - Bicycle Model - Takacs and Stepan (2013)  
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 W7, = +,S@  (2-1) 

 W�	 = 7X=@	 Y  =�SZ (2-2) 

where the yaw rate S@  multiplied by the yaw inertia of the vehicle +, gives the applied 

yaw moment 7,. The applied lateral forces �	 is given by the lateral acceleration =@	 

and the longitudinal acceleration =� multiplied by the yaw angle, all multiplied by the 

vehicle mass 7. 

 

 Highway Platooning 

Highway platooning is a control strategy which could be applied to motorway driving 

situations, with the aim of improving traffic flow and safety, and also reduce 

aerodynamic resistance of the platooning vehicles. It is a method of grouping 

vehicles together in single file, effectively forming a train. The vehicles are driven with 

small spacing distances between them, meaning the control of these vehicles must 

be automated, as a human driven vehicle will not be able to react quickly enough to 

avoid collisions between the vehicles. Bergenhem et al. (2012) reviewed five highway 

platooning systems. The systems reviewed by Bergenhem et al. (2012) demonstrate 

the popularity of this system, and the importance of introducing it to highways. 

These platooning systems include SARTRE from Sartre-project.eu (2012) 

which was a European Commission co-funded project which sought a change in 

transport utilization. The intention of this project was to develop and integrate 

solutions which allowed vehicles to drive in platoons on public motorways without the 

need to modify the infrastructure, such as creating dedicated lanes. PATH (Michael 

et al., 1998) was a project that looked into increasing highway capacity whilst 

requiring minimum infrastructure modification. PATH concludes that platoons of up to 

10 cars could result in a highway capacity increase of factor two or three. 

 The Grand Cooperative Driving Challenge (GCDC.net, 2016) challenged 

researchers to improve traffic throughput by reducing the spacing distances between 

vehicles, and investigated multiple vehicle types, i.e. passenger cars and heavy 

goods vehicles.  

Energy ITS was a project of the Japanese Ministry of Economy, Trade and 

Industry from Tsugawa, Kato, and Aoki (2011) which aimed to improve the energy 

saving of truck platoons and mitigating the impact of unskilled drivers. Energy 
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reductions were observed and a reduction in emitted CO2 when a three-truck platoon 

was driven at 80km/h.  

SCANIA-Platooning is a collaboration between Scania and KTH (The Royal 

Institute of Technology) from Sweden, investigating the operation of a single vehicle 

in a platoon without compromising safety. 

 

 Motorway Simulation Methods 

Motorway simulation methods calculate a vehicle’s future position, by assessing the 

vehicle’s current behaviour. The simulation methods described in this section focus 

on collision prediction and collision avoidance research. Anderson et al. (2010) 

proposed a framework for planning vehicle trajectory and assessing threats for a 

vehicle with semi-autonomous control to avoid hazards. The framework planed a 

trajectory with the limitations set by a dynamic vehicle model. This model focuses on 

the vehicle’s performance. It is based on an iterative method which assesses the 

hazards and adjusts the vehicle control accordingly. The controller calculated a best-

case trajectory for a lane-change manoeuvre to avoid a hazard ahead. The method 

developed must calculate the best action before any action is taken. This framework 

was semi-autonomous, because it was designed to work with the human driver, to 

avoid a hazard in the vehicle’s path.  

 Ammoun and Nashashibi (2009) present an estimation of vehicular collision 

risk by calculating collisions and their “dangerousness”. The vehicles are modelled to 

predict collisions at a crossroad junction. The authors described the methods by 

which the vehicle trajectories can be modelled. First, they describe a geometric 

approach. The advantage of a shape-based trajectory generation is the reduced time 

of estimation assured by the low computational effort required. It can also predict 

some of the trajectory before the manoeuvre has begun. The approach taken by 

these authors is dynamic. Collisions are detected by modelling an elliptical shape 

constructed from 4 circles around each vehicle, which accounts for uncertainty of the 

vehicle dimensions and position. In this model a collision was detected if one of the 

circles of the vehicle intersected at least one of the other vehicles circles. A Time-To-

Collision (TTC) is calculated as the time period between the current time and the 

instant of the first impact between the vehicles. It is assumed that the respective 

vehicles are keeping their current speed. As a collision is unavoidable, a decisive 

action needs to be taken autonomously.  
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 Eidehall et al. (2007) present an automotive safety system Emergency Lane 

Assist (ELA). ELA included a threat assessment module in a conventional lane 

guidance system that tried to activate the lane guidance interventions according to 

the actual lane departure risk level. The goal was to prevent dangerous lane 

departure manoeuvres only. Vehicle Position was described by Cartesian 

Coordinates and used to calculate the vehicle states. Positions of Host and Target 

Vehicles were simulated, which then required a decision on whether a dangerous 

situation would result from a lane-change manoeuvre. The simulation evaluates 

traffic around the vehicle and define lane markings which are used to assess whether 

a manoeuvre is dangerous. The decision process follows steps which evaluate the 

possibility of a collision, including Times to cross the defined lane markings, and 

identifying objects in the intended lane. This system is appropriate as a preventative 

control strategy which prevents dangerous lane change manoeuvres. It simulates 

vehicle positions using a Cartesian coordinate system and assess other lanes for 

traffic. However, the ELA system is a preventative method, and does not assess 

imminent collisions. 

 Hayashi et al. (2012) proposed a collision avoidance system which utilized 

not only braking, but also steering. A constant deceleration was assumed to 

determine velocity. A vehicle trajectory is plotted geometrically by generating two 

circular radii. This has the benefit of creating a trajectory that can maintain vehicle 

speed and steering input closer to the limits of yaw. However, the steering trajectory 

must be limited by the vehicle’s yaw rate, but this model did not consider it. 

 The collision avoidance system instructs full braking to be applied through the 

steering manoeuvre, but this may not be possible and result in oversaturation of the 

tyres. When the system calculated that a collision is unavoidable, the vehicle is 

instructed to only apply the maximum braking, no steering input. The avoidance 

strategy proposed was tested for whether a braking only or steering manoeuvre 

would be the best course of action. The results are promising but do demonstrate 

areas which should be improved. This is an avoidance only system. The mitigation 

control is limited, as it appears to be the case in many existing avoidance systems.  

Future autonomous vehicles computational architecture is a developing 

research area. Liu, Tang, Zhang, and Gaudiot (2017) discussed the future 

requirements of processing large data sets for autonomous vehicles and the costs of 

employing current computer systems. The authors conclude that the processing of all 

necessary data for an autonomous vehicle to function will require considerable 
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computational effort. This conclusion is supported by the advantages stated by 

Ammoun and Nashashibi (2009) regarding the geometric approach.  

 

 Vehicle Collisions 

A number of technologies currently work towards collision avoidance. Many new cars 

are equipped with automatic braking, which uses front facing radar to detect a 

potential hazard, and either alert the driver or apply the brakes automatically. These 

are the beginnings of technologies applied to autonomous safety. 

 Autonomous cars will be equipped to avoid crashes occurring. However 

current technologies to limit hazards of unavoidable collisions are still in their infancy. 

Assuming autonomous cars will prevent all collisions is a dangerous over-estimation. 

The car needs to know how to behave in imminent collisions. Currently, the best 

strategy is to apply the brakes, assuming that it will be enough. However, the vehicle 

dynamics and collision situation may not result in collision avoidance if only full 

braking is applied. 

 

 Collision Avoidance 

The current trend of autonomous vehicles is to avoid collisions from happening. This 

requires planning ahead. Wang et al. (2012) proposed an avoidance strategy at 

roundabouts. The car protects itself by creating an imaginary force field, into which 

nothing can travel. To describe the collision area, the rectangle and coordinate 

system are introduced. The dimensions of the rectangle are determined by the size 

of the collision area. The rectangle’s centre is the merging point for the target 

trajectory. The rectangular collision area is dependent on the length and speed of the 

vehicle.  

When autonomous vehicles at the same time enter a conflict area along their 

trajectories, a collision may occur. The collision area and the distance between the 

vehicles are modelled by probability concepts. For the collision avoidance process 

using the rectangle conflict area, a force field function is implemented. To achieve 

collision avoidance a concept of force-fields and warning functions are introduced. 

When a vehicle is close to the rectangle conflict area (the force-field) of another 
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vehicle and a warning signal is received, autonomous vehicles would adjust their 

speed to move away from the conflict area. 

Moon, Moon, and Yi (2009) outlined the development of adaptive cruise 

control with a collision avoidance system. The control system is designed to avoid 

rear-end collisions completely when following another vehicle. The system operates 

by dividing driving situations into 3 groups named safe, warning, and dangerous. 

Moon, Moon, and Yi (2009) note that little work has been published on integrating an 

ACC system with collision avoidance.  

 For the vehicle to track a desired deceleration, the controller has to 

manipulate the throttle and brake actuator. Reverse dynamics is the basis for the 

control principles of throttle or brake, with feed-forward Proportional-Integral-

Derivative (PID) control principle being utilised (Moon, Moon, and Yi, 2009). 

 Many of the existing avoidance systems manipulate longitudinal control to 

slow the vehicle into avoiding a collision such as the technologies discussed by 

(Moon, Moon, and Yi, 2009) and Wang et al. (2012). A more advanced system would 

introduce lateral control, steering away from collisions such as the developments of 

Eidehall et al. (2007) and Hayashi et al. (2012). 

 

 Collision Mitigation 

When a collision is unavoidable by an action taken by the driver it calls to reduce the 

Collison speed by braking. This is the aim of the system named Collision Mitigation 

by Braking (CMbB). Non-probabilistic decision criterion were the first commercial 

systems used for CMbB. Jansson and Gustafsson (2008) incorporate CMbB into 

their collision avoidance system.  

 Radar, LIDAR, and a dSpace Autobox running with a Kalman filter for 

Gaussian motion discrete time linear model and conflict function are equipped on the 

demonstrator vehicle used by Jansson and Gustafsson (2008). Relative longitudinal, 

lateral and orientation are provided by Gaussian posterior distribution with Kalman 

filter. A more complex model includes brake and steering dynamics model for 

prediction. Evasive braking and steering manoeuvres were used to calculate a 

collision probability for each instant by simulation. 

 The system developed by Jansson and Gustafsson (2008) aims to reduce the 

impact speed of a head-on collision, and achieves a collisions speed reduction in all 



 Vehicle Dynamics and Collision Research - Literature Review 
 

36 
 

cases of between 10��/ℎ to 15��/ℎ. Using accident statistics and Bayesian 

analysis, motivated by Jansson (2005), this system has the capability of reducing the 

number of head-on accidents that are fatal by 15%. This paper demonstrates a 

collision avoidance and collision mitigation system using Monte Carlo simulation. 

Here the mitigation and avoidance system only control the brakes. This will of course 

be useful as it has proven to reduce the impact speed when a collision is 

unavoidable, but there are still improvements to be made as this system is still highly 

reliant of the driver being in control of steering, especially for the avoidance 

manoeuvre. 

 

 Steering Control to Avoid Collision 

One method for collision avoidance is to introduce a steering input. This is best 

described by a lane-change manoeuvre, investigated by Best (2012). The author 

considers a high-speed emergency lateral manoeuvre to avoid a collision, controlled 

by an autonomous vehicle controller. It investigates whether vehicles can 

autonomously change from one lane of a motorway to another. While other 

autonomous crash research studied a little bit about the handling characteristics of 

the vehicle, instead assuming that all control commands will be executed perfectly 

without considering limitations of the vehicle’s handling capabilities, this investigation 

explores the optimal behaviour of the vehicle to avoid a crash. This is done by 

optimising the lateral characteristics of the vehicle’s handling balance rather than the 

longitudinal, as discussed with the tyre saturation in Section 2.3.1. 

 Generalised Optimal Control (GOC) is an iterative simulation-based method 

which will achieve optimality of the collision avoidance (Best, 2012). This method 

allows simultaneous optimisation of time-varying control of braking, acceleration and 

steering with fixed model parameters. The avoidance manoeuvre does not use a 

reference path, instead the optimal path evolves as the simulation calculates a 

vehicle position, cost functions on the obstacle, and final stable vehicle position and 

orientation. Unfortunately, this system is not appropriate for real vehicle applications 

as this technique is very expensive computationally, and is not suitable for real-time 

applications. 

 An aggressive manoeuvre with high ) is the optimal rapid lane-change which 

destabilises the vehicle. Much of the effort of the control is placed for the 

destabilisation after the initial steer, generating a high yaw moment and reducing the 
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speed. Adding braking or acceleration control results in a small decrease in 

headway. Combining braking and steering control will reduce the speed by a 

noticeable amount, but the difficulty is in the reliability of a controller that can control 

both steering and braking in the critical first seconds of the manoeuvre.  

 Best (2012) states that coupling the destabilising step-steer open-loop inputs 

would be an appropriate route to design a practical real-time controller, which would 

probably be scaled according to road friction estimations. Vehicle stability in the safe 

lane would be recovered by a suitable closed-loop yaw controller. 

 

 Automotive Collision Testing 

The dangers of automotive collisions are assessed in this section, focusing on 

collisions occurring on roads which are defined in the scope of this project. These are 

limited to dual carriageways and motorways, where the traffic travels in the same 

direction, and the speed is around a constant 70�9ℎ (112�9ℎ). A rear-end collision 

refers to the situation when the front of a vehicle collides with the rear of a vehicle in 

front. 

The Insurance Institute for Highway Safety (IIHS) is a research organisation, 

working with the Highway Loss Data Institute (HLDI) which studies insurance data. 

IIHS-HLDI (2017) publish collision test information, useful in describing the 

importance to potential autonomous systems. 

 IIHS test 2 main types of frontal collisions at 40�9ℎ: 1. a moderate overlap 

collision where 40% of the front of a vehicle impacts with a deformable barrier, and 2. 

a small overlap collision where 25% of the front of the vehicle impacts with the rigid 

barrier. IIHS-HLDI states that the forces of these tests are similar to 2 vehicles of the 

same weight colliding head-on at just under 40�9ℎ impact speed. Whilst a head-on 

collision will have a greater impact speed than a rear-end collision, the vehicle crash 

structure at the rear of the vehicle behaves in the same way as the front, a 

deformable structure designed to dissipate energy from the collision. 

 The design of modern cars have safety cages which encapsulate the 

passenger cell (Marzbanrad and Ebrahimi, 2011). These are built to protect the 

passenger cell from head-on and moderate overlap collisions by reducing the 

deformation of a crash. Crash structures manage the energy of a collision reducing 

the forces which reach the passenger cell. The design of the vehicle means the main 
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crash structures are located in the middle 50% of the front crash structure. The 

passenger cell is protected from intrusion due to these structures. Passenger are 

further protected with safety belts and airbags. 

 A small overlap collision behaves differently, as the front crash structure often 

does not cover the full width of the vehicle. Areas that are not well protected by the 

front crash structures are vulnerable to small overlap collisions which can impact the 

front wheel and suspensions as well as the firewall. Some vehicles even allow the 

front wheel to intrude into the passenger cell’s footwell causing serious injury to legs 

and feet.  

 IIHS-HLDI note that offset crashes only utilise one side of the vehicle’s front-

end crash structure, not the full width as the vehicle impacts the barrier. Due to this, a 

smaller section of the crash structure is all that is available to manage the crash 

energy, with a more likely intrusion into the passenger cell. Offset testing is more 

demanding on the vehicle’s crash structure than full-width testing. However, due to 

the reduced crushing of the vehicle structure resulting in greater decelerations of the 

full-width test, additional restraints such as safety belts and airbags are in greater 

demand. 

 

  Collision Testing Results 

Definitive conclusions to collision testing cannot always be possible. This is due to 

the difference in vehicle types and performance. However, by analysing the collision 

results of 3 separate vehicles in IIHS.org (2017) general observations can be made.  

The 3 vehicles are a 2017 Audi Q7 Large Sports Utility Vehicle (SUV), a 2015 

Subaru Legacy Midsize Car, and a 2014 Mini Cooper Minicar. They are all different 

sizes and masses and were selected due to all being awarded a 2017 Top Safety 

Pick+ by IIHS and all vehicles achieved a Good rating for crashworthiness (small 

overlap front, moderate overlap front, side, roof strength and head restraints & 

seats). The following observations are made based on the size of the vehicle by the 

author of this thesis: 

 Larger vehicles experience less intrusion to safety cell. 

 The three tested vehicles have similar driver injury test measurements in 

areas such as neck tension and chest compression. 
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 The larger the vehicle the less force exerted on feet and tibia for the moderate 

overlap test. 

 For small overlap the midsize vehicle does experience less forces exerted on 

the driver, but largest vehicle experiences the maximum force. 

 The largest vehicle does experience the largest HIC-15 values, which 

suggests they are more likely to result in Head Injury. Midsize vehicle result is 

best for both tests. HIC-15 is the Head Injury Criterion measurement stating 

the likelihood of injury in 15�� between the peaks of the accelerations of the 

head in a collision (Bertocci et al., 2003). 

The following observations are made based on the differences between collision 

types: 

 Generally greater forces are exerted on driver in femur and tibia in small 

overlap test, possibility of intrusion to safety cell as suggested by notes from 

IIHS-HLDI (2017). 

 Moderate overlap test will result in a larger maximum chest compression, 

which suggests more reliance on the seat belt also suggested by IIHS-HLDI 

(2017). 

 Similar forces are exerted on the driver's necks between both tests and for all 

vehicles, but the small overlap test does have a higher HIC-15 value, 

especially for the large SUV. 

 More intrusion to passenger cell is recorded with a small overlap test. 

 

  Rear-End Collisions 

Rear-end collisions are a common collision type on motorways, and so the control 

strategies developed in this thesis will focus on mitigating these impacts. The 

National Transportation Safety Board (2015) stated that FOR 2012 in the USA “more 

than 1.7 million rear-end crashes occurred on our nation’s highways, resulting in 

more than 1,700 fatalities and 500,000 injured people. Many of these crashes could 

have been mitigated, or possibly even prevented, had rear-end collision avoidance 

technologies been in place.” The study also included 2011 where it is stated that 

rear-end collisions rarely result in fatality, approximately 1 in every 100, but the 

potential for injury is high the data from the study for the last two available years, 
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2011 and 2012, states that 3,491 people were killed in rear-end crashes and more 

than 1 million others were injured. 

 The IIHS.org (2016) provide statistics on the types of collisions that resulted 

in fatality in 2015 in USA. For rear-end collisions, the number of automotive collisions 

that resulted in fatality was 1,044, which accounted for 9% of all highway deaths in 

2015. In comparison, frontal impacts accounted for 56%, and side impacts accounted 

for 33% of fatalities on the roads in the USA. These statistics suggests that limiting 

potential collisions to rear-end collisions only would prove beneficial. The 

autonomous control must not allow side impacts or frontal collisions. The study also 

reports that passengers in lighter vehicles are more at risk when colliding with 

heavier vehicles, and in multiple-vehicle collisions heavier vehicles will better protect 

their occupants with fewer fatalities.  

 

  Zero-Lateral Offset Collisions 

Jula, Kosmatopoulos, and Ioannou (2000) model lane-change manoeuvres and 

assess the risks of collisions of other vehicles on the road using a time-to-collision 

analysis. Three types of collision may occur during the lane-change manoeuvre, 

including rear-end, angle or side-swipe. A side swipe collision, also called “T-bone” 

collision, is the collision where one vehicle impacts the left or right-hand side of 

another vehicle. This is a serious collision due to the lack of crash safety structures. 

An angle collision is similar to a head-on or rear-end collision, but the vehicle behind 

impacts the vehicle ahead at an angle, and possibly at one side of the vehicle. A car 

crash will not be an elastic collision, as the crash structures are designed to dissipate 

the kinetic energy of the collision.  

A two-dimensional analysis of an inelastic collision between two vehicles 

evaluates the resultant velocity and direction. These equations are given by 

Stanbrough (2006): 

 =� =  �K=K� Y ��=��  �K Y  ��                     =	 =  �K=K	 Y ��=�	  7K Y  7�  
(2-3) 

 = =  [=�� Y  =	� 
(2-4) 

 O =  tanJK _=	=�` 
(2-5) 
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where � denotes Vehicle Mass, = is velocity, =� and =	 are the B and E components 

of the velocity respectively, and O is the angle of velocity vector with the B axis. 

Subscripts 1 and 2 identify the vehicle.  

The danger of a side-swipe or angle collision is that the vehicles may be 

pushed into another lane. This would introduce a risk of another collision with another 

vehicle in that lane. A rear-end collision with zero-lateral offset and no =	 component 

at the point of impact will have the minimum risk of this occurring. Due to this 

undesirable after-effect, any collision that cannot limit the impact to one lane must be 

prevented. A rear-end collision lends itself better to predictability, as it can be 

described as a one-dimensional collision. This means fewer variables can influence 

the modelling such as angle of impact. 

 

 Crash Statistics 

The following statistics are relevant to dual carriageway and motorway collisions in 

the UK, providing an insight into the need for autonomous systems. Many of the 

statistics are provided by the Department for Transport, developed by information 

reported to police forces across the country. These figures are incomplete of all 

accidents and casualties, however the fatalities are widely recognised to be robust. 

The Department of Transport (2012) states that the number of road deaths 

reported to police decreased from 1,901 in 2011 to 1,754 in 2012, this is an 8% fall of 

147. All severities reduced for motorway casualties (killed and seriously injury were 

down 17% and 12% respectively). This is in respective of an increase of 0.4% in 

traffic. Slightly injured casualties also decreased by 5%. In 2012 5,615 motorway 

accidents were reported to police, which is a 4% reduction than 2011. 

The Department for Transport (2014) reports 96 fatalities on motorways, 4 less 

than in 2013. However, casualties described as seriously injured on motorways 

increased by 8.8% to 718. Slightly injured casualties also increased by 5.3%. It is 

noted that even though motorways are responsible for 21% of traffic, they are only 

responsible for 5.4% of fatalities, and 4.7% of injured causalities.  

Accident statistics provided by the House of Commons (2013) show that in 2012 

the number of road deaths is one-third that of in 1990, that is a 66% reduction. A 

similar conclusion is given for serious injuries, which has decreased 62%, and slight 
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injuries is down by 38%. Higher speed limits have a higher risk of accidents being 

fatal, 1.0% of casualties on motorways (up to 70�9ℎ) in 2012 resulted in a fatality. 

This is compared with 0.6% on built up roads (30 to 40�9ℎ) and 1.9% on rural roads. 

Motorways do have safer casualty rates, as only 5% of casualties in 2012 occurred 

on motorways. 

The House of Commons report (2013) does provide insight into the severity of 

motorway collisions. A 30�9ℎ road accident will have a probability of only 0.6% of it 

resulting in a fatality. Rural 60�9ℎ roads have a 2.8% fatality rate, and 70�9ℎ 

motorways have a 2.0% fatality rate. 

The United Kingdom is amongst the safest driving countries in the world as 

demonstrated by statistics provided by the House of Commons (2013). Across the 

UK, Northern Ireland is the safest with 26 deaths per million population. England has 

28 per million, Wales has 30 per million and Scotland has 32 per million. The UK 

records an average of 28 deaths per million population. The only EU country with a 

lower rate is Malta at 22 per million. The United States fatality rate is approximately 4 

times higher, at 108 per million. Comparing with two EU countries that also have 

extensive road networks, France has a death rate of 56 per million, and Germany 44 

per million. 

The Think Road Safety Annual Survey Gov.UK (2013) states that 60% of the 

survey participants reported that they “know people who drive at 90mph on the 

motorway with no traffic”. Whilst 37% of drivers (cars, vans and lorries) admitted to 

driving when too tired. Smart Driving (2008) provide two statistics highlighting the 

importance of a driver error. Firstly, 90% of motorway accidents are due to driver 

error, only 10% being due to mechanical failure. Secondly, it takes over half a second 

for most drivers to react before they press the brake pedal. 

It can be observed that with an increase in traffic levels, there follows an increase 

in road accidents. Between 2013 and 2014 the Department for Transport (2015) 

noted an increase of 2.4% in vehicle traffic levels. The Department for Transport 

(2014) reports that in the year ending in June 2014, there was an increase of 1.7% of 

motor vehicle traffic compared to that time 1 year previously. The Department for 

Transport (2015) reports that over the last ten years motorway traffic has grown 27% 

faster than any other road type. Furthermore, there were also 1,775 road deaths in 

2014, a 4% increase compared to 2013.  
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 Optimising the Collision 

Stigson, Kullgren and Rosen (2012) describe the factors which influence the severity 

of the crash for vehicle occupants. Factors such as the relative velocity between the 

vehicles, impact angle, the structure and mass of the vehicles, and the crash 

situation all affect the severity for the human inside the vehicles. Crash tests with 

volunteers, animals, dummies and numerical models are amongst the approaches 

undertaken before to estimate the response from the occupants. Unfortunately, there 

is still limited knowledge on human tolerance. Human injury risk is influenced by, and 

can differ depending on parameters such as age, gender, crash type, restraint 

system type and road user groups. Analysing real world crashes has increased the 

understanding of crash severity and how it correlates with factors such as impact 

speed, injury outcome and the type of object being impacted with. This demonstrates 

the difficulty of determining an exact assessment for crash severity, but assumptions 

could be made to simplify the assessment by assuming all vehicle occupants will 

behave the same way. The use of numerical models is encouraging to simulate the 

severity of a collision. It also demonstrates the importance of factors influencing the 

collision other than impact velocity, such as vehicle masses and crash structures. 

If a collision is to occur, there are preparations to make the impact as safe as 

possible for the occupants of the vehicle. Mitigating a collision can be done in 

different ways, usually by reducing vehicle velocity as much as possible as 

investigated by Jansson (2005). Autonomous vehicles will have the ability to better 

optimise the use of their crash structures by deciding on which collision to have. 

Crash structures are part of a vehicle’s chassis designed to deform, 

dissipating energy before it reaches occupants. Xu et al. (2010) evaluated the 

crashworthiness of a frontal crash structure stating that the most important members 

in frontal collisions are the frontal rails. Approximately 50% of the crash energy is 

absorbed by the frontal rails during the crash process. 

 Huang and Dong (2015) investigate the effects of using all of the vehicle 

frontal area versus only 40% of the frontal area in a collision. They evaluated FRB 

(100% Front Rigid Barrier) impacts and OBD (40% Offset Deformable Barrier) 

impacts. In FRB impacts the whole front of the car body participates, which results in 

high passenger cell accelerations, but relatively smaller body deformations. The main 

factor which causes harm is the strong impacts on the occupant head and chest 

caused by the huge impact inertia force. Only one side of the vehicle is involved in 
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OBD impacts, which results in large deformations which can cause invasions into the 

passenger compartment. This means that the main factor which results in harm to 

vehicle occupants is external components intruding into the passenger compartment 

for OBD impacts. 

 

Figure 2-5 demonstrates the need to optimise crash. For occupant safety, it is 

better to maximise the use of frontal crash structures in frontal impacts. More of the 

structure can dissipate more of the impact energy. The Insurance Institute for 

Highway Safety (IIHS) investigated what happens when a small area of the crash 

structure is used. Figure 2-5 shows the effects of a 40% offset collision (40% of 

vehicle frontal area impact) against a 25% offset collision (25% of vehicle frontal area 

impact), with two similar vehicles.  

Whilst not utilising all of the crash structure, the 40% collision uses its crash 

structure to absorb impact energy. The vehicle has stopped quickly, the barrier with 

which the car impacted has not reached the occupancy cell. The 25% offset collision 

is very different. The crash structure has not dissipated the impact energy as well, 

the vehicle has travelled so that the barrier is much closer to the occupancy cell. 

Autonomous vehicles will need to decide on the safest collision to have, 

which may involve the car aiming to have a 100% frontal impact to better optimise 

the use of the crash structure. 

Figure 2-5 - 40% Offset vs. 25% Offset - Safety.TRW.com (2013) 
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ConsumerReports.org (2013) reports a study conducted by the University of 

Buffalo highlighting the importance of crash compatibility, where vehicles of similar 

mass and crash structure collide. The laws of physics dictate that when mismatched 

vehicles collide, the lighter vehicle will suffer greater deformations and accelerations. 

This study demonstrates the real dangers. In car vs. SUV head-on collisions, the 

study concluded that the probability of death for the car’s driver were 7.6 times 

greater than for the SUV driver. In collisions with cars that had a better front-crash 

test rating than the SUV, the car did fare slightly better than before, but the 

probability of death was still four and a half times greater for the car driver than the 

SUV driver. 

 

 Literature Review Conclusions 

The literature review demonstrates the different disciplines upon which the research 

problem will rely. Firstly, a review of ADAS shows the technologies currently 

available for vehicles. The research problem aims to avoid or mitigate collisions on 

high-speed motorways, and an understanding of vehicle dynamics demonstrates the 

importance of the autonomous vehicle maintaining control through emergency 

manoeuvres. Building on from the vehicle dynamics, the vehicle will need to be 

modelled, and the bicycle model discussed in Section 2.3.6 will be the starting point.  

 Highway platooning methods are reviewed as an example of autonomous 

driving systems on motorways. There are also examples of motorway simulators to 

review if any methods can be adapted for this thesis. A review of collision avoidance 

and mitigation technologies highlights the limitations of these systems, with little 

research focused on mitigating unavoidable collisions.  

Collision avoidance and mitigation technologies were discussed, but also 

demonstrated that research for a decision process for an autonomous vehicle to 

decide on the best action to take is certainly in its infancy. There is a clear novelty to 

the aims of this thesis to construct a decision process to support collision mitigation.  

Adaptive Cruise Control is capable of bringing a car to a complete stop, and 

Automatic Emergency Braking can stop the car if an imminent collision is ahead. But 

these systems have only one objective which is to slow the car as much as possible, 

aiming to avoid or mitigate a collision directly ahead. These systems could be 

improved upon by introducing steering as another factor in either avoiding or 
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mitigating imminent collisions. Steering manoeuvres to avoid collisions have been 

addressed in the literature, but this does not address the possibility that whatever 

action is taken will still result in collision. The literature review was completed with an 

overview of automotive collision research to demonstrate the importance of the 

research to be completed in this thesis. 

 This research programme aims to evolve from these technologies and 

develop a simulator and decision-making method that can select the best action for 

an autonomous vehicle to take, with the aim of improving safety on high-speed 

motorways.  
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Multi-Attribute Decision 

Making - Literature 

Review 

 

 

 Introduction 

The autonomous vehicle will need to make a decision based on available information 

about imminent collisions. Generally, this decision can be made based on different 

types of information. The application of Multi-Attribute Decision Making (MADM) 

methods is discussed, due to the suitability of MADM to the research problem. 

MADM selects the best alternative by assessing results from defined criteria. The 
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severity of a collision will be described by the criteria, whilst the available lanes are 

the alternatives. MADM methods are mathematical processes which rank the 

alternatives. These decision making methods will work with simulators which produce 

the attribute values, with the aim of selecting the least severe collisions when faced 

with multiple potential imminent collisions. 

  

 Multi Attribute Decision Making (MADM) 

MADM problems are associated with a decision problem of the choice or ranking of 

existing alternatives. MADM is described by Kahraman (2008) as a general class of 

operation research models dealing with decision problems with the consideration of a 

number of decision criteria. MADM requires that the selection be made among 

decision alternatives which are described by their individual attributes. MADM 

methods are suited to decisions with a limited number of decision alternatives. 

Sorting and ranking of alternatives is how a MADM problem is solved. A final ranking 

or selection of alternatives is determined by combining information from the 

problem’s decision matrix with additional information from the decision maker. 

Besides decision matrix, all but the simplest MADM techniques use additional 

information from the decision maker to calculate the final rankings or selection. This 

additional information is the criteria weights, meaning that certain criteria can be 

made more influential over the final decision. 

A discrete number of metrics on which to base the decision, called criteria, 

will need to be calculated. Also, the MADM methods considers a discrete number of 

possible decisions, i.e. alternatives. The discrete criteria and alternatives lends well 

to the capabilities of MADM. Kahraman (2008) concludes that discrete decision 

spaces are a necessity for MADM decision making processes, which focus on the 

selection or ranking of different predetermined alternatives. The alternatives and 

criteria must be determined before the decision process begins, as comparing the 

alternatives 1 and criteria c forms a matrix of size 1 by c. However, one or more 

alternatives can be disqualified from the decision process if required, by simply not 

including it with the decision process. Therefore, a MADM method would suit the 

problem of selecting a collision with the least severe impact, where a lane on which 

the autonomous vehicle should collide has to be selected considering a number of 

criteria. However, MADM refers to a range of decision making methods, not one 

specific technique. 
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There are many different MADM techniques, and each will be better suited to 

some situations over others. Chamblás and Pradenas (2018) use AHP, ELECTRE 

and TOPSIS to select the best method for desalinating seawater. In this example, all 

MADM methods showed the same preference with no major discrepancies in the 

results. 

The decision-making problem should apply a MADM method best suited to a 

situation. Drawing on the findings and experience of other authors help, as Thor, 

Ding, and Kamaruddin (2013) summarise the benefits and disadvantages of four 

popular MADM methods including AHP, TOPSIS, ELECTRE, and SAW. 

 

  MADM Methods  

 SAW 

SAW (Simple Additive Weighting) described by Yoon and Hwang (1995) is a 

commonly used MADM method which determines the best option by normalizing all 

alternative values, and weighting them for each criterion. The best alternative has the 

highest summed value of normalized and weighted attribute values. 

 Afshari, Yusuff, and Derayatifar (2012) use SAW with fuzzy logic to select the 

best candidate for a project manager job. The fuzzy logic is used to convert linguistic 

variables into numerical values, such as height can be described with fuzzy logic as 

very low, low, medium, high, very high. 

 

  ELECTRE 

ELECTRE ELimination Et Choix Traduisant la REalité (ELimination and Choice 

Expressing REality) is described by Yoon and Hwang (1995) as a method that 

establishes outranking relationships by the dichotomization of preferred alternatives 

and non-preferred ones. ELECTRE normalizes attribute values and determines 

normalized weight values. Then each alternative is compared against another 

alternative and allocated into two sets, concordance and discordance sets. When 

one alternative �" is preferred over another alternative �d, then �" is compiled into 
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the concordance set. The discordance set is composed of all alternative values 

whereby �" is not preferred over another alternative �d. 

 Concordance and discordance indexes are calculated as a measure of 

confidence of the pairwise judgements. The dominance of one alternative �" over 

alternative �d is stronger when there is a higher concordance index. An evaluation is 

made between each alternative’s concordance and discordance indexes in such a 

way as they are compared against the average concordance and discordance 

indexes. Each alternative is compared against all other alternatives pairwise for 

preference, the best alternative is selected with outranking relationships.  

 Wang and Triantaphyllou (2008) explain that partial pre-ordering only puts the 

alternatives in an order of preference, whereas a complete pre-order includes the 

rank value of each alternative. In order for ELECTRE to achieve a complete pre-

order with the rank value of alternatives, further analysis is required. The partial pre-

ordering will only state that one alternative is preferred over another, not giving 

specific values as to how much that alternative is preferred. 

Comaniţă et al (2015) use ELECTRE to select the best bioplastic material for 

packaging taking six criteria including economic and environmental factors into 

account for the decision. ELECTRE is also used by Shanian and Savadogo (2006) to 

select the most appropriate material for a particular application, in this example a 

loaded thermal conductor is the application needing a suitable material. The 

considered material are ranked after a criteria sensitivity analysis is performed to 

determine the optimal weights of the criteria. 

 

 TOPSIS  

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is set 

up similarly to AHP, where criteria are weighted according to their importance and 

the alternatives are ranked based on their similarity to the ideal solution. It is 

originally developed by Hwang and Yoon (1981). TOPSIS calculates the Ideal 

solution by selecting the best result for each criterion. It also calculates the Negative 

Ideal solution by selecting least desirable results for all criteria. These two solutions 

effectively form two artificial alternatives. Each alternative is then compared to these 

artificial alternatives for their geometric distances. The decision made by TOPSIS is 

the alternative which has the shortest geometric distance to the Ideal solution, and 
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the longest geometric distance to the Negative Ideal Solution. Finding the geometric 

distances relies on the attribute values to be standardised, by the following equation: 

 �%e =  B%e[∑ B%e��%gK ,     1 = 1, . . , �;     c = 1, . . , 4. 
(3-1) 

where B%e  is the attribute value, �%e is the standardised value of each attribute value, 1 
and c refer to the attribute that corresponds to alternative 1 and criterion c.  

One benefit of this method is that defining the optimisation of criteria is 

simple, as it is a simple case of selecting either the maximum or minimum attribute 

values for each criterion to create the artificial alternatives. 

 Behzadian et al (2012) review publications of TOPSIS applied to various 

problems. TOPSIS has been used in fields such as supply chain, management and 

logistics, business and marketing management, health, safety and environment 

management, and human resources management. The authors also review the 

applications of TOPSIS in design, engineering and manufacturing systems. 

 This review includes Zhang et al (2010) using TOPSIS as a method to 

determine the standard outputs of decision values. The paper actually develops a 

new method for evaluating vehicle performance using fuzzy logic to numerically 

represent the numerical value of a linguistic variable. TOPSIS is used as the method 

to compare all other methods with. The optimal decision method created by the 

authors is the one that most closely represents the results of TOPSIS.  

 Wang and Chang (2007) use TOPSIS to select the optimal aircraft for initial 

training at the Taiwan Air Force Academy. Fuzzy logic is also used to give numerical 

values to linguistic variables when describing the performance of the aircraft.  

Many TOPSIS methods use fuzzy logic to represent linguistic variables as 

numerical values, but that will not be necessary for this research application as the 

collisions will be described numerically. 

 

  Analytical Hierarchy Process 

The AHP method is a widely used decision making technique proposed by Saaty 

(1980). It uses a process of pairwise comparisons, both for the weighting of priorities 

and assessing the decision matrix. However, as the values for each alternative and 
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criteria are crisp numbers, pairwise comparison can be replaced by simply 

normalizing these matrices. The AHP method is similar to SAW (Section 3.3.1), but 

introduces pairwise comparisons. The pairwise comparison method allows for human 

made judgements to be objectively assessed for consistency. Vector normalization is 

a major component to structuring the decision process, and AHP uses the following 

equation: 

 Bi =  B∑ B (3-2) 

where Bi is the normalized attribute value, ∑ Bi is 1, and ∑B is the sum of all alternative 

values B. 

 Saaty (1996) describes consistency using an eigenvector evaluation of the 

judgements made in the pairwise matrices. Consistency is measured by comparing 

the matrix of judgements with the right eigenvector derived from that same matrix. It 

is only subjective assessments, which are the assessments made by a person that 

need to be assessed for consistency. 

 Harker (1989) describes the calculation of consistency as a measurement of 

the judgement errors made when completing the matrices. The author also states the 

benefit of adapting a normally human-made decision, by introducing a mathematical 

process. A decision made by a group instead of an individual can also be done using 

AHP, using the Delphi technique, which surveys the group to produce a statistically 

analysed preference.  

 Harker (1989) discusses the benefits of employing AHP, and gives examples 

of when it has been used. AHP was used in Finland in a parliamentary debate as to 

whether a new nuclear power-plant should be constructed, as discussed by 

Hämäläinen and Seppäläinen (1986). The AHP method was praised for removing the 

unimportant arguments which at the time fuelled debates, and was able to focus on 

the information that was important. 

 The nature of AHP is to structure a decision making problem into a 

mathematical process. This method is often applied to social problems such as 

Hämäläinen and Seppäläinen (1986), and Handfield et al. (2002) to introduce 

environmental factors to the decision made by purchasing managers. However, the 

AHP method has also been applied in engineering decision problems by 

Triantaphyllou and Mann (1995) to assess resource allocation for cloud computing, 

Omasa et al. (2004) to evaluate tissue engineering and regenerative medicine, 
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Pörtner et al. (2005) to evaluate and compare tissue engineering reactors, and Yang 

and Kuo (2003) to optimise the layout of a manufacturing or service industry system, 

by using a computer-aided-layout planning tool to generate many different layout 

alternatives. These layouts were then evaluated using AHP. 

 

  Analytical Network Process 

The Analytical Network Process (ANP) first published by Saaty (1996) is considered 

to be a more generalized form of the AHP method. Instead of making the decision 

based on a hierarchy structure, where each step leads onto the next, ANP introduces 

feedback. ANP is based upon AHP, and therefore, the first few steps are the same. 

Once the weighted ranks of the AHP are calculated, the network feedback process 

begins. This decision-making process makes use of a Supermatrix, where 

alternatives and criteria are assessed. 

 Assessing the importance of the alternatives does not itself introduce a 

feedback, this is included in the Supermatrix. The feedback is an assessment of how 

influential the criteria have been on each attribute value. It is the matrix power 

iteration, i.e., the raising of the matrix to power � that causes the matrix to converge, 

creating the Limit Supermatrix. The matrix convergence allows for the resulting 

eigenvector to be assessed for the rank of alternatives. 

 It is the power iteration method that allows for the weights of criteria to 

influence alternative values, and then the influence of alternative values on the 

decision made to influence the weights of criteria. It is noted that power iteration is a 

slow method to achieve convergence, hence why the value of k needs to be high. 

Instead of squaring the Supermatrix repeatedly until the matrix converges, it is faster 

to raise the Supermatrix to the power �, such as with Equation (3-3). 

 

 81�12 j.90���2�1B = kj.90���2�1Bl� (3-3) 

 

AHP is a hierarchy where the criterion weights determine the importance of 

alternatives. The feedback of ANP not only uses criteria weights to determine the 

alternative importance, but also the importance of alternatives to determine the 

importance of each criteria, (Saaty, 1996). It is the Supermatrix method that employs 

this feedback. 
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 Carlucci (2010) describes the advantage ANP has, noting that AHP is a top-

down decision process performed by judging the performance of the alternatives on 

the criteria. Decision making does not strictly fit this top-down idea, as the criteria are 

frequently dependent on the alternatives available to the decision making process. A 

form of iteration or feedback dependencies is called for among decision elements. 

Gencer and Gürpinar (2007) use ANP to select a supplier for an electronics 

company. The authors praise ANP for including the assessment of how the criteria 

affect the suppliers, but also what criteria are important for those suppliers. ANP was 

used by Cheng and Li (2005) to prioritise potential projects in construction. ANP was 

able to state which projects should be considered more important for developers.   

 

 Decision Making Conclusions 

The research problem included in this thesis is an engineering decision problem, one 

which will not benefit from a human opinion. Therefore, the objective and consistent 

mathematical method is suitable for the problem of selecting a motorway lane to 

optimise the outcomes for all involved. 

The autonomous vehicle will need to make a decision on the least severe 

collision. The review of MADM demonstrates the suitability of this approach. MADM 

is a general term for a type of decision making involving a finite number of 

alternatives available, and a finite number of criteria by which to assess the decision. 

This chapter includes a review of 5 MADM methods. The methods are described, 

and applications in existing research are discussed. 

 MADM is suitable for the research problem, due to the finite alternatives and 

criteria. The research problem is for an autonomous vehicle to select the least severe 

lane of a motorway to drive into, when facing multiple imminent collisions in all lanes. 

The lanes of the motorway are the alternatives available, and the metrics which 

describe the severity of the collisions in each lane are the criteria.  

 



 Highway Platooning 
 

55 
 

 

 

              

Highway Platooning 

 

 

 Introduction 

The overall objective of this investigation is to demonstrate that autonomously driven 

vehicles can still have collisions, and that there is a need for an autonomous collision 

mitigation control, to limit the dangers to the vehicle occupants. For the aim of 

developing an autonomous collision avoidance strategy, it is beneficial to 

demonstrate a need for such methodology. Autonomous vehicles have the potential 

to improve automotive safety by preventing collisions from happening. However, 

assuming that autonomous vehicles cannot crash is a dangerous over-estimation.  

Highway Platooning considers the behaviour of road vehicles acting like 

trains. Vehicles will join platoons, all heading in the same direction at identical 

speeds. This has the effect of potentially increasing traffic flow, reducing the 

aerodynamic drag on the vehicles in the platoon, and managing safety. Highway 
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platooning is investigated due to the similar research scenario of motorway safety, 

which is of vehicles travelling at high speed on multiple-lane roadways. The control 

strategy developed in this thesis could potentially be applied to a highway platooning 

scenario.  

 The aim of this investigation are to test platooning control systems, and 

demonstrate their limitations. For this the work of Cook (2007) is heavily drawn upon. 

This research provides the control strategies for two main platooning methods, 

Bidirectional Control and Asymmetrical Control. The systems are developed and 

tested in this chapter, demonstrating what can cause these systems to fail, resulting 

in collisions between the platooning vehicles.  

 The simulations presented in Cook (2007) are repeated with a new input 

signal, and similar results are observed. The author of this thesis then adds a new 

feedback control to better manage the vehicle spacing. The platooning model is 

further stressed by time delays. Increasing the platoon size is simulated by the author 

of this thesis, to observe the limits of the new control. 

 

 Lead Vehicle First Order Velocity 

A first order system will be used as the input signal for all models presented in this 

chapter. This first order system will represent the lead vehicle velocity. It can be 

simulated quickly and tuned to the desired behaviour. The following scenario will be 

simulated. The lead vehicle will accelerate from 10�/� up to 30�/�. After driving at 

30�/� for 50�, the lead vehicle will then decelerate from 30�/� back to the original 

10�/�. The lead vehicle velocity is represented in Figure 4-1. This input is similar to 

that from Cook (2007), but the maximum velocity is increased to 30�/�, to represent 

the UK motorway speed limit of 70�9ℎ (31.29�/�). The velocity profile simulates 

sudden velocity changes from a low speed to high, and then a high speed to low. 
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 In order to stress the control systems of the following vehicles, the 

acceleration of the lead vehicle will take only 4�, and the braking will take 2�. Sudden 

changes in velocity will increase the risk of the following vehicles colliding into the 

back of the lead vehicle. They will need to avoid such an eventuality.  

Autocar.com (2017) gives the fastest accelerating road cars of the year to 

accelerate from 0 to 60�9ℎ (0 to 26.82�/�) a time of 2.3�. A 10�/� to 30�/� 

velocity change represents traffic that is slow moving, accelerates up to the UK 

national speed limit (70�9ℎ, 31.29�/�), and then decelerates back to slow moving 

traffic. The 4� to accelerate represents a fast accelerating vehicle. These are values 

given by Autocar.com (2017) which suggest are feasible. The braking time of 2� is 

assumed from a CarAndDriver.com (2008) article examining braking performance 

from 100�9ℎ to 0. The best performing car, a Porsche 911 road-car stopped 

consistently over 35 emergency stopping manoeuvres with only 20� between tests. 

The stopping distance is given as 305�002 (92.964�).  

This equates to an average rate of deceleration of 10.75� ��⁄ , given by 

Equation (4-1). 

 � =  k=� n  .�l2�  (4-1) 

Figure 4-1 - Lead Vehicle Velocity 
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where � is stopping distance k�l, . is initial velocity k� �l⁄ ,  = is final velocity k� �l⁄ , 

and � is deceleration k� ��l⁄ .  
Braking time 2 is calculated by Equation (4-2): 

 2 =  = n .�  (4-2) 

With an initial speed of 30�/�, final speed of 10�/�, and a rate of deceleration of 

10.75� ��⁄ , a stopping time of 1.8605� is calculated. The calculation of 10.75� ��⁄  

deceleration is from the static SUVAT equations, and so that value is assumed as an 

average rate of deceleration. 

 

 Highway Platooning 

Highway platooning is to be used on a long roadway with little to no steering 

required. This is a control technology which will likely be reliant on V2V 

communications, and is used to demonstrate that the system can be stressed to a 

point where the platoon is unstable, resulting in collisions. The highway platooning 

models were first published by Cook and Sudin (2003). Cook continued to develop 

the platooning control. 

 The model by Cook (2007) uses the velocity and spacing data from the 

vehicles immediately ahead and behind, not the whole platoon. Each vehicle could 

therefore rely on its own sensors to provide the inputs to its own control law. Vehicle-

to-Vehicle (V2V) communication is theoretically not required and could therefore be 

used when V2V is not available. This leads to the following assumptions: 

 It is assumed that all vehicles in the platoon can match the accelerations and 

decelerations of the lead vehicle 

 Vehicle-To-Vehicle (V2V) communication is not used, it is assumed that no 

information is passed between vehicles, the system will be relying on visual 

data obtained by each vehicle. Each vehicle in the platoon will use on-board 

sensors to determine the velocities and displacements of other vehicles. 
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 Bidirectional Control 

A model published by Cook (2007) simulates longitudinal dynamics of a platoon of 

vehicles. It can be used to demonstrate an important issue that even autonomously 

controlled vehicles can crash. This model replicates the Bidirectional Controller of 

Cook (2007), where vehicles control velocity based on values for the vehicle 

immediately in front, and immediately behind. The bidirectional control has the effect 

of maintaining the distance between the vehicle in front and behind equally. This is 

due to the issue of reducing vehicle spacing propagating through the platoon. The 

further along the platoon, the less reaction time the vehicles will have. The model 

presented here is constructed in Simulink.  

 The bidirectional control law is stated as in Equation (4-3). 

 .% =  �"kM% n M%oKl Y  �pk=%JK n 2=% Y =%oKl (4-3) 

where . is the control signal for each vehicle’s acceleration, = is the velocity, M is the 

separation distance, the subscripts 1 n 1 and 1 Y 1 refer to the vehicles ahead and 

behind the control vehicle 1 respectively, and �" and �p are constant gains. The 

separation distance is described by: 

 M% =  B%JK n B% n 8 (4-4) 

where B is the vehicle’s longitudinal displacement, and 8 is the vehicle length. Each 

vehicle is assumed to have identical lengths.  

The vehicle motion control law is defined by a Laplace transfer function qk�l: 

 qk�l =  �p� Y  �"�� Y 2k�p� Y �"l (4-5) 

where � denotes the Laplace transformation representing velocity and �� represents 

acceleration.  

As the final vehicle in the platoon will not have a velocity input for a vehicle 

behind it, a separate control is required given by: 

 =@, =  �"kM, n �l Y �pk=,JK n =,l (4-6) 

where � is the desired separation distance between the vehicles, and subscript r 

denotes the final vehicle in the platoon.  
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For the simulations all vehicles will have length 5�, and the separation 

distance will also be set to 5�. The bidirectional control of each vehicle in the platoon 

uses the velocity of the vehicle immediately ahead, and immediately behind to 

determine its own velocity control. 

 

 Five Vehicle Platoon 

The Bidirectional control will be assessed for platoon stability. Stability will be 

assessed on how each vehicle can follow the lead vehicle’s velocity. Stability will also 

be assessed by the acceleration of each vehicle to match the lead vehicle’s velocity, 

and the separation distance between each vehicle. It can be assessed if a collision 

does or does not occur. The lead vehicle will use the velocity defined in Section 4.2 

as the input to the system, and 5 vehicles will follow the lead vehicle, as presented in 

Figure 4-2. 

 

The lead vehicle’s velocity is represented by line >s.The velocity plot of all 

vehicles demonstrates that each vehicle overshoots the vehicle ahead’s velocity, for 

both the acceleration and deceleration. The overshoots demonstrated in Figure 4-2 

do work to maintain the separation between the vehicles and there is little oscillation, 

but a further look at the acceleration and separation plots will determine this system’s 

performance. 

Figure 4-2 - Five Vehicle Platoon Velocity 
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The acceleration results presented in Figure 4-3 demonstrates a similar result 

to the velocity. No vehicle exceeds the lead vehicle’s maximum accelerations, but 

there is a noticeable oscillation following the inputs from the following vehicles (>K to >t). 

 

 

Figure 4-3 - Five Vehicle Platoon Acceleration 

Figure 4-4 - Five Vehicle Platoon Separation Displacement 
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The separation results presented in Figure 4-4 is the most concerning. The 

collision line represents the point at which a collision occurs from vehicles 1 to 5, by 

impacting the rear of their respective vehicles ahead. Vehicles 1 to 4 have all crossed 

that collision line, indicating a collision. Only vehicle 5 avoided collision. It is observed 

that the further down the platoon (higher number vehicles), the least severe the 

separation appears to be, for both the increasing and decreasing velocity motions. 

Vehicle 1 must react immediately to the lead vehicle’s sudden accelerations, and the 

following vehicles have more and more ability to dampen these changes. Each 

collision is considered separate from all other collisions, and so the effect of collisions 

ahead of any given vehicle, and this affecting the velocity and spacing of those 

vehicles ahead is not taken into account. 

 

Adjusting the maximum velocity of the lead vehicle, whilst still using the same 

acceleration and deceleration transfer function, results in preventing collision, as 

presented in Figure 4-5. It is found that the maximum speed without resulting in 

collision is 18�/�. And even with this reduction in velocity change, a collision is only 

0.1282� away. One can conclude that the lead vehicle’s sudden deceleration are too 

severe for the bidirectional control alone, with the separation distance set to 5�. 

Increasing this distance to 13� will also maintain platoon stability without resulting in 

collisions. These results reflect the original results from Cook (2007). 

 

Figure 4-5 - Five Vehicle Platoon Separation Displacement, 18m/s maximum speed 
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 Five Vehicle Platoon with PI Control 

Due to the poor performance of the bidirectional control, the author of this thesis 

introduces a Proportional-Integral (PI) controller to improve the separation distance 

control of the vehicles. The PI controller is introduced with feedback from the 

vehicle’s velocity to control the error in this signal, which is then tuned and fed back 

into the vehicle’s control laws. 

 

  As one can see in Figure 4-6 the PI control has removed any overshoot and 

oscillation in the platooning vehicle’s velocity plots, as observed in Figure 4-2. 

 

 

Figure 4-6 - Five Vehicle Platoon with PI Velocity 
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Again, the acceleration results presented in Figure 4-7 demonstrates no 

oscillations as seen with the previous acceleration results, Figure 4-3. The further 

along the platoon, the lower the maximum acceleration peak, but does maintain an 

acceleration that is not zero for longer. 

 

The separation displacement results presented in Figure 4-8 reveals a new 

behaviour. As the velocity increases, so does the spacing, effectively creating a 

Figure 4-7 - Five Vehicle Platoon with PI Acceleration 

Figure 4-8 - Five Vehicle Platoon with PI Separation Displacement 
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velocity-dependent spacing control. This can be considered a benefit to safety, as 

with increased speed, an increased spacing gives more time to react to the vehicle 

ahead. However, there is a clear disadvantage to this PI control. Each plot still 

represents the separation distance of each vehicle to the vehicle ahead. Vehicle 1 at 

times is spaced over 80� away from the lead vehicle, and vehicle 2 is spaced nearly 

70� from vehicle 1. It is also observed that the further along the platoon, the lower 

the separation distance. The integral controls the separation, but needs to be 

maintained before the spacing control becomes unstable. The PI control, whilst 

demonstrating some desirable effects needs to be further considered. 

 

 Asymmetrical Control 

One issue with the simple bidirectional control of Cook (2007) is that the positioning 

of =% is treated as relative to the car immediately in front and behind. It is possible to 

split these, and have more specific control for the relationship with the vehicle in 

front, and the relationship with the vehicle behind, effectively having truly 

asymmetrical control. Cook (2007) also developed an asymmetrical strategy, which is 

to be evaluated here. 

 The asymmetrical control law approaches =%JK and =%oK separately by the 

following control parameters: 

 kkB%JK n  B%l n �l   k=%JK n  =%l   kkB%oK n B%l Y �l  k=%oK n =%l  

where � is the separation distance input, to form the following equation: 

 .% = u91kB%JK n  B% n �l Y u=1kB@%JK n B@%l Y  u92kB%oK n  B% Y �lY u=2kB@%oK n  B@%l 
(4-7) 

where u91 and u=1 are constant gains for the vehicle ahead 1 n 1 control, and u92 

and u=2 are constant gains for the vehicle behind 1 Y 1 control. Which can be 

redefined as: 

 =@% =  BD% = u91kB%JK n B% n �l Y u=1kB@%JK n  B@%lY  u92kB%oK n  B% Y �l Y u=2kB@%oK n  B@%l 
(4-8) 
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The derivative of Equation (4-8) is produced: 

 =D% =  u91k=%JK n =%l Y u=1k=@%JK n  =@%l Y  u92k=%oK n =%lY u=2k=@%oK n  =@%l 
(4-9) 

The differentiation causes the � values to disappear, and the equations is expanded 

to: 

 =D% = u91=%JK n u91=% Y u=1=@%JK n u=1=@% Y u92=%oK n  u92=%Y u=2=@%oK n  u=2=@% (4-10) 

to be rearranged as: 

 =D% Y u=1=@% Y  u=2=@%  Y u91=% Y  u92=%=  u=1=@%JK Y  u=2=@%oK Y  u91=%JK Y  u92=%oK 
(4-11) 

A Laplace Transformation creates the following equations: 

 ��=% Y �u=1=% Y  �u=2=% Y u91=% Y  u92=%=  �u=1=%JK Y  �u=2=%oK Y  u91=%JK Y  u92=%oK 
(4-12) 

which is formatted as: 

 =%X�� Y �ku=1 Y u=2l Y ku91 Y u92lZ=  =%JKk�u=1 Y u91l Y  =%oKk�u=2 Y u92l 
(4-13) 

to develop the following control law of Equation (4-14). 

 =% =  =%JKk�u=1 Y u91l�� Y �ku=1 Y u=2l Y ku91 Y u92l
Y  =%oKk�u=2 Y u92l�� Y �ku=1 Y u=2l Y ku91 Y u92l 

(4-14) 

 

The stated control laws from Cook and Sudin (2003) are given as: 

 =@% =  u9kM% n M%oKl Y u=ok=%JK n =%l n u=Jk=% n =%oKl (4-15) 

 q±k�l =  u=±� Y u9�� Y ku=o Y u=Jl� Y 2u9 (4-16) 

The notation ± refers to two different control laws, when qJk�l and u=Jk�l are 

selected, this refers to the control law and constant gain for the vehicle ahead 

respectively, whilst qok�l and u=ok�l refer to the vehicle behind. 
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 Five Vehicle Platoon with PI Control 

The asymmetrical control will also use PI control, as proposed by the author of this 

thesis in Section 4.3.1.2, but this time the velocity ahead data will have a different PI 

tuning to the velocity behind. Also, the altered control laws described in Section 4.3.2 

are introduced. 

The asymmetrical control with PI control maintains a steady velocity for all 

vehicles in the platoon, as presented in Figure 4-9. There are no overshoots or 

oscillations. 

Figure 4-10 - Five Vehicle Asymmetrical Platoon Acceleration 

Figure 4-9 - Five Vehicle Asymmetrical Platoon Velocity 
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Figure 4-10 demonstrates a similar behaviour to the previous PI acceleration 

in Figure 4-7. However, this demonstrates a noticeable reduction in the time of non-

zero acceleration for the platooning vehicles. The plots of the platooning vehicle also 

seem to be closer to each other, demonstrating more similar acceleration behaviours. 

 

It is observed that the velocity dependent spacing whilst maintained is 

different as presented in Figure 4-11, compared to Figure 4-8. Displacement 

increases by a factor of three at the velocity change, as velocity also increases by a 

factor of three. This is due to the integral control of the PI controller. This controls the 

velocity dependent spacing, and tuning it to maintain a 5� displacement at 10�/�, 

results in the different displacement at 30�/�. Adjusting the integral will influence the 

spacing control, as well as increasing the value of the integral reduces the maximum 

delay before the system fails.  

The velocity dependent spacing has been maintained, and there are no 

concerns about collisions. The velocity dependent spacing increases the separation 

displacement by 20�, when the speed increases by 20�/�. The plots are stable, 

with no overshoots or oscillations.  

The separation displacement of the last vehicle in the platoon, >t does 

behave slightly differently to the other platooning vehicles. This is due to >t having 

the >@, control given by Equation (4-6). This vehicle also has its own PI control. The 

Figure 4-11 - Five Vehicle Asymmetrical Platoon Separation Displacement 
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five vehicle asymmetrical control with PI behaves satisfactorily, and now must be 

stressed to examine limitations by making the conditions more challenging.  

 

 Five Vehicle Platoon with PI Control and Time Delay 

The Asymmetrical control will be assessed using the same scenario observed in 

Section 4.3.2.1, but now the system will be stressed by introducing a time delay for 

the incoming velocity data. The time delay represents anything that may delay the 

information being processed, such as computational and measurement speed. The 

time delay is added by the author of this thesis to further stress the model to observe 

its capabilities at adapting to the proposed situation. A delay may cause the vehicles 

to collide, as they are incapable of reacting immediately to sudden velocity changes. 

A delay could be caused by processing times, or by V2V communication. The control 

system will still need to maintain stability. 

  Simulating a delay introduced to each platooning vehicle in increments of 

0.05�, the platoon maintained stability up to 0.15�. At 0.2� it is observed that 

oscillations are exponentially increasing in all simulation plots: Velocity, Acceleration 

and Separation Displacement. 

 Instead, the stability of the platoon will be assessed if only 1 vehicle has a 

disruptive delay. All but one vehicles will have a standard delay time of 0.001�. >�, 

which is near the front of the platoon, will have an increased delay, and the effects of 

this will be observed. The maximum delay >� can experience before the system 

becomes unstable is 0.45�. 
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The velocity results presented in in Figure 4-12 shows that velocity is 

maintained, but oscillations are observed on all velocities, except for lead vehicle >s. 

These oscillations are most evident at velocity changes, especially at times, 30� to 

40�, and 80� to 100�. 

The oscillations in vehicle accelerations is very evident in Figure 4-13. This 

would produce an uncomfortable experience for the occupants of the platoon, as it 

cannot maintain a steady acceleration, and therefore velocity. Whilst platoon stability 

can be considered to be maintained, this performance would indicate a failing 

Figure 4-12 - Vehicle 2 with 0.45� Delay Velocity 

Figure 4-13 - Vehicle 2 with 0.45� Delay Acceleration 
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stability due to the acceleration oscillations. However, the acceleration oscillations do 

not drastically affect the velocity and displacement graphs of Figure 4-12 and Figure 

4-14. 

 

The separation displacement presented in Figure 4-14 does look fairly stable, 

with only minor oscillations observed at the velocity changes. However, whilst 

separation displacement has been maintained and therefore platoon stability 

maintained, the performance of the acceleration in Figure 4-13 demonstrates that this 

platoon is on the verge of becoming unstable. 

 

 

 

 

Figure 4-14 - Vehicle 2 with 0.45� Delay Separation Displacement 
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 The separation displacement results, when vehicle 2 has a delay of 0.5� is 

given in Figure 4-15. 

The velocity and acceleration plots exhibited large oscillations, which would 

be severely uncomfortable for the occupants of those vehicles. This is translated to 

the separation displacement plot, where even though spacing is maintained, the plots 

also show oscillations, suggesting an unstable platooning control, for all vehicles, not 

just >�. Another observation is that increasing the delay for all other vehicles in the 

platoon, reduces the maximum delay that can be applied to >� before the platoon 

becomes unstable. 

 

 Ten Vehicle Platoon with PI Control and Time Delay 

As the Asymmetrical control has proven to maintain platoon stability well, more 

vehicles are simulated, to observe how stability is maintained, and how the effects of 

delay will affect more vehicles. The maximum time delay applied to all vehicles 

equally before exponentially increasing oscillations are observed is 0.15�. This is the 

same maximum time delay as demonstrated in Chapter 4.3.2.2 for a five vehicle 

platoon.  

 Repeating the scenario with all vehicles set to time delay of 0.001�, except for 

1 vehicle yields the following results. This time, with more platooning vehicles, the 

Figure 4-15 – Vehicle 2 with 0.5� Delay Separation Displacement 
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increased delay is applied to >w, as to better observe how this disruption propagates 

not only to the following vehicles, but also propagates forwards, to the vehicles 

ahead. The maximum time delay before platoon instability is observed is 0.4�, which 

is 0.05� lower than the previous simulation in Section 4.3.2.2. Although only a small 

difference, this suggests that the larger the platoon, the more vulnerable it is to time 

delays. 

 

The velocity plot in Figure 4-16 shows that even with the increased delay 

applied to >w, the velocity of all vehicles in the platoon maintains stability. Small 

oscillations are observed, but these can be considered minor and will not de-stabilise 

the platoon. 

 

 

 

 

 

 

Figure 4-16 - Vehicle 4 with 0.4� Delay Velocity 
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 The acceleration of the 10 vehicle platoon with delay presented in Figure 4-17 

demonstrates a different behaviour. Oscillations are clearly evident for many vehicles 

in the platoon. Again, this alone is not enough to de-stabilise the platoon, but it is the 

first sign that stability is reducing. 

 

A magnified look at the deceleration in Figure 4-18 demonstrates how the 

oscillations propagate through the platoon. The delay is caused with >w, and 

Figure 4-17 - Vehicle 4 with 0.4� Delay Acceleration 

Figure 4-18 - Vehicle 4 with 0.4� Delay Acceleration Magnified 
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oscillations are observed for vehicles 1 to 7. The oscillations of vehicles 8 to 10 are 

very minor. The oscillations are most severe for >w, and the vehicles immediately 

surrounding it. As each vehicle experience the oscillations, it appears that the effects 

are dampened for the nest vehicle along. 

 

 Figure 4-19 demonstrates that the separation displacement of the entire 

platoon is maintained. 

Figure 4-19 - Vehicle 4 with 0.4� Delay Separation Displacement 

Figure 4-20 - Vehicle 4 with 0.4� Delay Separation Displacement Magnified 
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Magnifying the separation displacement in Figure 4-19, as given in Figure 

4-20, to focus on one velocity change from 10�/� to 30�/� shows how the 

behaviour of >w differs from the others, at it follows a similar plot to the vehicle in front >R, however the vehicle behind >t has a noticeable space. 

The single large delay is then applied to vehicles 2, 6 and 8 separately, to 

observe when platoon instability occurs. Like >w, >x and >y were able to manage a 

delay of 0.4� before destabilising at 0.45�. Vehicle 2 was able to maintain stability 

with a delay of up to 0.5� before destabilising at 0.55�. This suggests that the effects 

of large delays with a single vehicle are better dampened closer to the front of the 

platoon.  

 

 Conclusions 

Autonomous highway platooning systems developed by Cook (2007) were modelled 

and tested to demonstrate that an autonomous system can be forced beyond its 

limits and result in vehicle collisions. A bidirectional controller was developed and 

tested, but the separation displacement proved difficult to control when treating the 

input velocities of the vehicles ahead the same as the vehicles behind. An 

asymmetrical control was developed from the bidirectional controller, but this time 

managing the information from the vehicle behind differently to the information from 

the vehicle in front. This proved better at maintaining steady velocities and 

accelerations. The added benefit of the introduced PI controller was the velocity 

dependent spacing. The asymmetrical platoon proved to maintain stability, even 

when controlling 10 vehicles. 

 One of the influential factors capable of destabilising the platoon control was 

delays to the processing of the information. With a large enough delay, a single 

vehicle proved capable of destabilising the platoon. Each of the systems developed 

could result in platoon instability, which would mean that the autonomously driven 

vehicles can possibly collide into one another.  

 All of the highway platooning methods investigated by Bergenhem et al. 

(2012) state the importance of utilising V2V communication. With V2V 

communication it would be possible to network all platooning vehicles, and have 

control over all vehicles operating as one platoon, as opposed to each vehicle 
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controlling itself. Networking has not been investigated, as the platooning model 

proposed by Cook (2007) can theoretically operate without V2V.  

 Predictive control could be applied, as this could help mitigate the overshoots 

and oscillations of the following vehicles when the lead vehicle’s velocity changes. 

The PI control was capable of controlling the accelerations and spacing distances of 

the vehicles until a large enough delay was simulated. Model Predictive Control 

(MPC) models a dynamic system to predict future states, which in this application 

would be the dynamics of the other platooning vehicles. MPC therefore has the 

potential to better control the vehicle spacing by predicting the changes in velocity. 

However, the demonstrated PI control was sufficient to make initial observations 

which inform later chapters. The following chapters look at controlling just one 

vehicle, and so the introduction of MPC for controlling multiple vehicles will need to 

be addressed in future research problems. This raises the question as to whether 

V2V communication is needed to provide accurate inputs to these models, from the 

vehicles in the platoon which are being modelled, or if an average vehicle model can 

be used to represent all vehicles. With V2V assumed to be unavailable, an average 

vehicle model would be the only possibility, but the accuracy of this model to 

represent the longitudinal vehicle dynamics of any vehicle in the platoon must be 

tested. 

 It is the nature of engineers to develop and test, so these limitations can be 

assessed and prevented from occurring. However, these simulations show that 

further safety systems are required to be developed with autonomous vehicles, as 

assuming they cannot crash would be naïve, especially in motorway scenarios where 

the vehicle speeds are high. 
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Steering Controller 

 

 

 Introduction 

The aim of this research project is to evaluate the possibility of a vehicle steering 

itself to a safer outcome when facing an imminent collision. In this chapter 

development of a steering controller is presented and used to evaluate the possibility 

that an autonomous car can steer itself to complete a lane-change manoeuvre. The 

development of a steering controller is not new, but it has to be analysed as the 

characteristics of the steering controller may influence the possible actions the 

vehicle can take in certain emergency situations. 

The aim of this chapter is to develop a method for planning a lane-change 

manoeuvre, which could be employed to steer a vehicle for collision avoidance. The 

trajectory planning is tested by use of a kinematic bicycle model steering controller. A 

combined steering and braking controller is also evaluated. 
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The investigation is based on a kinematic bicycle model. The kinematic 

bicycle model is used when discussing vehicle dynamics. Kinematic models are 

robust in estimating vehicle states geometrically which will be used to determine if a 

vehicle has accomplished a steering manoeuvre. A required longitudinal distance to 

complete the manoeuvre and required lateral distance to avoid the hazard ahead, are 

used to analyse it. Vehicle limitations need to be evaluated, to ensure that such a 

manoeuvre can be completed without a loss in vehicle control. The steering controller 

evaluates a required distance to complete the lane-change, and this is compared 

with an average braking stopping distance. Tyre saturation properties are evaluated, 

and the controller is simulated to assess the performance. The steering controller is 

further developed to combine the steering and braking control.  

 

 Bicycle Model 

The Bicycle model is a common steering model. It assumes an average steering 

angle for the front wheels, and can therefore be assumed to be one wheel. Milliken 

and Milliken (1995) described the model which had 2 degrees of freedom, lateral 

velocity and yaw rate. The Ackermann Steering Angle (radians) is given by Milliken 

and Milliken (1996) in Equation (5-1). 

 L��� =  /< (5-1) 

 

where / is the vehicle’s wheelbase length (�), and < is the turning radius (�). 

The Ackermann steering angle is a geometric calculation, and so it is limited in its 

application. Blundell and Harty (2004) state that the geometric steering behaviour for 

passenger vehicles is limited to speeds up to 15mph. The Ackermann steering angle 

does not account for tyre dynamics. The Ackermann angle assumes the car will 

travel in the direction the wheels are pointing, which at speeds of 15mph and higher 

does not necessarily occur due to the behaviour of pneumatic tyres.  It is important to 

note that this research project is not developing a new steering controller. A simplistic 

kinematic steering controller which relies on the Ackermann angle calculations is 

used to test the trajectory planner. 

An issue considered by simple steering controllers is the effect that velocity 

has on the steering effect. At lower velocities, the vehicle will turn as predicted, but 
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as speed increases the turning radius also increases. This is represented by a 2-

degree-of-freedom steering model, the 2 degrees being lateral and longitudinal 

velocity, which by integrating give lateral and longitudinal positions.  

 The model formed by Equations (5-2) and (5-3) is informed by a model 

constructed by Compere (2016). This model has 3 inputs: Forward Velocity, 

Wheelbase Length and Steering Angle. The velocities are calculated by the following 

kinematic model: 

 =� = [=. cosXS~���% !Z n _/2` . S@ . �14XS~���% !Zl] (5-2) 

 =	 = [=. sinXS~���% !Z Y _/2` . S@ . :-�XS~���% !Zl] (5-3) 

 

where = is forward velocity (m/s), S@  is yaw rate (rad/s), S~���% ! is yaw angle (rad), =� is velocity in B direction (m/s), and =	 is velocity in E direction (m/s). For these 

simulations the wheelbase length is set to 2.6�. 

The author of this thesis uses the 2D terrain frame model of Compere (2016) 

which is used to provide an image of vehicle trajectory in which the issue of velocity 

is evident. This model was simulated with a fixed velocity value, and plots the B and E coordinates of a vehicle with several different steer angles. The steer angles 

increased incrementally by 0.001���. This simulation was limited to a maximum yaw 

rate of 100°/� (1.7453���/�). This was selected due to it being far greater than the 

expected yaw rate capabilities of ground vehicles and it demonstrated the limitations 

of what steer angles were achievable. This value is validated by the yaw rate 

simulations in Section 5.3. 
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The plots in Figure 5-1 and Figure 5-2 represent a vehicle’s trajectory for 

different steering angles. Both figures represent a constant velocity, and it is 

observed that at lower speeds the vehicle can achieve many steering angles, more 

plots are presented on Figure 5-1 at 10�/� than on Figure 5-2 at 30�/�. Also, the 

smallest radius turn of the 10�/� plot achieves a radius of 10�, whilst the 30�/� 

plot has a minimum radius of 30�. These values are limited by a yaw rate limiter. 

The yaw rates of the velocities show that without limitations the values are 

Figure 5-1 - Simulated Vehicle Trajectories at 10m/s 

Figure 5-2 - Simulated Vehicle Trajectories at 30m/s 
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unrealistic, so the importance of limiting the capabilities of the vehicles steering with 

respect to yaw are necessary. 

Table 5-1 demonstrates the maximum steering angles that can be achieved 

at certain velocities. 

Table 5-1 - Maximum Steering Angles to Achieve Limited Yaw Rate Value 

Velocity (�/�) Steering Angle (���1�4�) Steering Angle (�0)�00�) 

10 0.453 25.955 

20 0.226 12.949 

30 0.151 8.6517 

 

The higher the velocity, the lower the required steering angle to achieve a 

desired Yaw Rate. However, the trajectory plots (Figure 5-1 and Figure 5-2) show 

that the radius of the turn increases with velocity. Velocity has a significant influence 

over a vehicle’s ability to turn. 

 

 Vehicle Yaw Rate 

 Calculation of Vehicle Yaw Rate 

Some of the values for steering angle in Figure 5-2 seem to be unrealistic, as a 

vehicle would be unable to achieve such a high steering angle at high speed without 

losing control. Further investigation was required, which the work of Blundell and 

Harty (2004) provided. When a car turns it is limited by many factors, one being yaw 

rate. Blundell and Harty (2004) gave two equations which calculated the maximum 

possible yaw rate. The first is the geometric yaw rate, which is the maximum yaw rate 

of a vehicle due to the steering geometry, described by Equation (5-4). 

 S@!��� = =. L/  (5-4) 

 

L is the average steering angle, which calculated from Ackermann steering 

geometries is 
k������o ������l� .  
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The second yaw rate equation is limited by friction, and is given by Equation 

(5-5). 

 S@��%'&%� =  P. )=  (5-5) 

where P is the coefficient of friction, and ) is acceleration due to gravity (9.81�/��). 

The example in Blundell and Harty (2004) gave the coefficient of friction P as 0.9. 

Jones and Childers (2001) give examples of coefficients of friction between a tyre 

and the road. For a dry road a P value of 0.7 to 0.9 was reported, depending on the 

tyre. For a wet road this P value reduces to 0.4. This value reduces further for ice 

conditions. To demonstrate the steering manoeuvre, the highest value of 0.9 is used. 

This gives the greatest potential for the manoeuvre to be completed. Simulation of 4 

different steering angles is presented in Figure 5-3. 

 

 Figure 5-3 is the yaw limitation described by Blundell and Harty (2004), 

which plots the maximum yaw rates described by Equations (5-4) and (5-5). It is 

noticed that all 4 steering angle plots meet the same friction limit. The maximum yaw 

rate achieved for a given steering angle at a given velocity is where the two yaw 

limiting plots meet. The trend of these plots is that the higher the steer angle the 

higher the maximum yaw rate, the maximum yaw rate is higher at lower velocities. 

Table 5-2 summarises the main findings presented in Figure 5-3, i.e. the velocity at 

which the maximum yaw rate is achieved with the 4 steering angles considered. 

Figure 5-3 - Maximum Yaw Rates of Differing Steering Angles vs Velocity 
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Table 5-2 - Maximum Yaw Rates and Velocities of Steering Angles 

Steer Angle (���) Maximum Yaw Rate (���/�) Velocity (�/�) 

0.45 1.2375 7.15 

0.175 0.77135 11.46 

0.05 0.41212 21.43 

0.0175 0.24379 36.22 

 

This yaw limitation model is now modified, in line with the model in Section 

5.2, as a novel approach to limit yaw rate with respect to steer angle not velocity. 

This model is modified to have a fixed velocity and varying steer angle, which 

produces the results displayed in Table 5-3. 

 

Table 5-3 - Maximum Yaw Rates and Velocities of Steering Angles 

Velocity (�/�) Maximum Yaw Rate (���/�) Steering Angle (���) 

10 0.88462 0.229 

20 0.44615 0.057 

30 0.3 0.025 

40 0.23077 0.014 

 

Table 5-3 gives the maximum yaw rates and steering angles of the velocities 

that can be achieved with 4 fixed velocities. Comparing these 4 plots graphically can 

be done using Figure 5-4. 
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The benefit of the plot in Figure 5-4 is that it gives a fixed steering angle once 

the maximum yaw rate limited by friction is reached. This is the point where the 

maximum steering angle is, so the steering controller can be limited to calculate steer 

angles up to this point. Increasing the steer angle beyond this maximum yaw rate will 

not provide a greater yaw rate and so will not provide an increased turning rate. It is 

at this point that the vehicle will begin to lose steering ability, referred to as a loss in 

grip. Here the vehicle stability characteristics of understeer and oversteer, discussed 

in Section 2.3.2 are experienced. The steering controller proposed in this chapter 

intends to avoid these stability characteristics, and maintain neutral steer.  

 The maximum yaw rate simulated was 0.88462���/� at 10�/�. This equates 

to 50.682°/�, so the maximum yaw rate previously used of 100°/� was a significant 

over-estimation. 

 

 Steering Control with Yaw Limiter relative to Velocity 

With the new yaw limitation model inspired by Blundell and Harty (2004) providing a 

limit to the yaw capabilities of a vehicle, and from that the limit of the maximum 

steering angle before a loss in traction with the road is experienced, a new model 

calculating vehicle trajectories is created. The model introduced in this chapter works 

as the previous heading angle calculation, but with a maximum yaw rate based on 

the vehicle limitations in the yaw model. 

Figure 5-4 - Maximum Yaw Rates of Differing Steering Angles vs Steering Angle 
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By limiting the maximum yaw rate of a vehicle at the simulated velocities the 

maximum steering angle is also limited, which limits the possible vehicle trajectories 

as presented in Figure 5-5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Desired Trajectory 

A desired trajectory or path has to be determined. For this a sinusoidal curve is 

created. This requires only an B and E value, or a longitudinal and lateral 

displacement. The longitudinal displacement refers to how much distance is required 

to make the manoeuvre. The lateral displacement refers to how much the car needs 

to turn. The benefit of a sinusoidal curve is that the vehicle can finish the manoeuvre 

in a parallel heading to where it began. This is a very useful feature, especially if the 

road is straight and the vehicle needs to be heading in the same direction to all other 

road traffic.  

The sinusoidal shape is created by an S-function which has the ability to add 

longitudinal distance, without lateral distance. For a longitudinal displacement of 

10�, and lateral displacement also at 10�, the S-function is demonstrated in Figure 

5-6. The S-function begins at 0.5� longitudinal distance, and ends with a given 

Figure 5-5 - Simulated Vehicle Trajectories with Limitations in Yaw Rate 

Top Left Velocity 10m/s, Top Right Velocity 20m/s, Bottom Left Velocity 30m/s, Bottom Right 
Velocity 40m/s 
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safety displacement of 10%. This means the vehicle will reach its lateral 

displacement with 10% of the longitudinal displacement still to drive. This can be 

adjusted, but is introduced in the model to ensure the vehicle is on the correct lateral 

displacement with no steering input at the final stages of the manoeuvre, in case a 

corrective steer input is required.  

 

The kinematic steering controller needs an input of either steering angle or 

yaw rate. As yaw rate is a limiting factor of how fast a car can turn, this will be 

calculated from the desired vehicle course. Using an equation proposed by Houenou 

et al. (2013), Equation (5-6) can calculate the required yaw rate: 

 S@ = I. = (5-6) 

where S@  is the yaw rate, I is the curvature of radius and = is the vehicle’s velocity. 

As the B and E displacement values of the planned course are given 

parametrically, the radius k<l of the turns, and the curvature of radius kIl will also be 

calculated parametrically using Equations (5-7) and (5-8), given in 

Mathworld.Wolfram.com (2016). 

 < =  kB′� Y E′�lR/�|B�. E�� n E�. B′′| (5-7) 

Figure 5-6 - Vehicle Trajectory - Longitudinal Displacement 10m, Lateral Displacement 
10m 
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 I = 1< (5-8) 

 

where B� =  ���&, E� =  ���& , B�� =  ����&�, E�� =  ��	�&�  

Using Equations (5-6), (5-7), and (5-8) the necessary yaw rate to complete 

the manoeuvre is calculated. The Longitudinal displacement is set as not to require a 

yaw rate higher than the maximum yaw rate calculated for the given speed. 

 Leics.gov.uk (2016) gives the minimum width of a carriageway lane (dual 

carriageways and motorways) as 3.7�. This is supported by the Federal Highway 

Administration for the U.S. Department of Transportation (2014) giving a Freeway 

lane width of 3.6�. For the simplicity of demonstrating a lateral manoeuvre, this 

lateral distance will be rounded up to 4�, as even a slight increase in lateral distance 

will require a higher yaw rate, which is the limiting factor. This will ensure that the 

vehicle can make a single lane change manoeuvre. 

 

 Kinematic Steering Controller 

 Model of Kinematic Steering Controller 

Now that the necessary yaw rate XS@Z has been calculated, the required steering 

angle kLl is calculated by rearranging equations from Rajamani (2011): 

 S@ =  =<                < =  /L (5-9) 

 S@ ≅  =L/  (5-10) 

 L ≅  S@=// (5-11) 

where / is the vehicle’s wheelbase length. 

 For these calculations, the steering angle is a calculated approximation due to 

the lack of slip angle (H) available. Therefore H is assumed to be zero and not 

included in these calculations. H would assume small slip angles, and so would not 

drastically change the steering angle. 
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This steering angle signal is now simulated using the model formed by 

Equations (5-2) and (5-3), as represented in Figure 5-7 and Figure 5-8.  

 

 

One can conclude that the inputted steering angle can follow the planned 

vehicle course. It does not follow the planned trajectory exactly, and at lower speeds 

there is an evidence of overshoot as the simulation runs wider than 4m, but the 

simulated trajectory follows the planned trajectory when the steering input is zero. 

Figure 5-7 – Four metres Lateral Movement at 40m/s Simulation 

Figure 5-8 – Four metres Lateral Movement at 15m/s Simulation 
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The final position of the vehicle is as intended. The simulations show that with a 

small lateral displacement to achieve, and the behaviour of the vehicle kept in the 

linear region by limiting the maximum yaw rate, the autonomous steering controller 

can steer a vehicle to an intended final position. 

 

 Feedback with PI Controller 

To aid with the path tracking, a feedback controller is analysed in this research. It will 

adjust the input steering angle relative to a calculated error. This is a similar 

kinematic method that Lee et al. (2013) employed, but here will not estimate slip 

angle. The input to the steering manoeuvre is the steering angle, which was 

calculated by a desired yaw rate. The steering angle error will need to be calculated 

from the simulated vehicle’s lateral acceleration. On a real vehicle, acceleration 

would be measured using an accelerometer, but for the simulation this needs to be 

simulated using the derivative of the lateral velocity result. Using the following 

equation given in Shah et al. (2015), a yaw rate calculated from the trajectory 

simulation is also achieved. 

This yaw rate is then equated to steering angle using Equation (5-11). The resulting 

simulated steering angle is used to determine the error compared with the desired 

steering angle input. This steering angle error is then controlled via a PI controller. 

Simulation shows that with velocity dependant values for the PI controller, the 

kinematic steering controller tracks the planned vehicle course very closely. 

 

 

 

 

 

 

 

 

 S@ =  �	=  (5-12) 
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 Figure 5-9 and Figure 5-10 demonstrate the simulated trajectory of the 

kinematic steering controller tracking the planned course very closely. A Closer 

inspection shows that with velocity dependent PI variables, the controller can track 

the path with less than a 0.01� error. The feedback helps to minimise the limitations 

of relying on kinematic control alone without more complex dynamic inputs. Due to 

the effectiveness of PI control, it is unnecessary to introduce a PID control, as this 

requires extensive tuning to achieve even a minimal improvement in tracking 

performance. 

Figure 5-9 – Four metres Lateral Movement at 15m/s Simulation with PI Controller 

Figure 5-10 – Four metres Lateral Movement at 40m/s Simulation with PI Controller 
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  PID control is explained by Asif and Webb (2015), “It is a generic controlled 

loop feedback controller. In PID P (Proportional) determined by present error in the 

system, I (Integral) is the accumulation of past error and D (Derivative) is the 

prediction for future error.” It is also explained that a PID controller can use just P 

with I, or P with D, or even just the individual P, I or D based on the requirements of 

the system to be controlled. It is a simple design for a controller, but is widely relied 

upon due to its “Robustness, performance, stability and noise/disturbance rejection 

are some of the advantages of using PID controller.” It also only requires slight 

adjustments to improve the system performance. 

It might be worth mentioning that Model Predictive Control (MPC) has been 

applied to steering controllers by Falcone et al. (2008) and Falcone et al. (2007). 

MPC has the benefit of predicting future events and making control adjustments as 

required, and so would benefit a steering controller to maintaining accurate tracking 

of the desired trajectory. However, Asif and Webb (2015) describe stability, model 

uncertainty and limited variations of model as disadvantages for MPC. It is important 

to note that this research programme does not involve developing a new steering 

controller but testing the trajectory planning for deciding if a lane-change manoeuvre 

is possible or not. It is the robustness and stability of PID controllers described by 

Asif and Webb (2015) are what is needed to test the trajectory. Therefore, as the 

simulation results showed, the PI control will be sufficient to test this. 

 

 Effectiveness of Steering Manoeuvre 

This steering controller of Section 5.5 simulates a lane change manoeuvre. It needs 

to be investigated whether a steering manoeuvre will reduce the risk of collision 

compared to a braking only manoeuvre. A braking only manoeuvre means the 

vehicle will apply full braking force and remain driving in a straight line, possibly 

towards the hazard. 
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 Braking Distances 

Braking distances includes a complex calculation because brakes do not behave 

linearly. For simplicity the best performance scenario is assumed: 

 Assume that full braking force is applied, 

 Assume there is no wheel slip or need for Anti-lock Braking System (ABS). 

The calculation of braking distance in the Bosch Automotive Handbook (2014) gives 

the following equation: 

 � =  .� Y =�2�  (5-13) 

 

Where s is stopping distance (�), u is initial velocity (�/�),  v is final velocity (�/�), 

and a is deceleration (�/�� ) For this calculation the deceleration is assumed to be 

constant and equal to 10.75�/��, as discussed in Section 4.2, using Equation (4-1). 

This is of course a static equation, and does not consider the resistance forces acting 

on the vehicle. Equation (5-13) is used as a guide. The braking value in Section 4.2 

is an average value calculated from a real stopping distance test. 

 

  Steering Manoeuvre Distances 

As presented in Section 5.3.2, four velocities are simulated to determine the 

maximum yaw rate. These yaw rates are then used as the limiting factor when 

simulating those velocities again in the model in Section 5.4. The maximum 

longitudinal distances are simulated to the nearest 0.5� for the steering manoeuvre, 

and compared against the braking only stopping distances as tested using Equation 

(5-13). The results are given in Table 5-4. 
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Table 5-4 - Steering Manoeuvre Distances 

Velocity 

(�/�) 

Yaw Rate 

(���/�) 

Distance to End of 

Manoeuvre (�) 

Stopping Distance 

Braking only (�) 

10 0.88462 16 4.65 

15 0.59423 23 10.47 

20 0.44615 31 18.6 

25 0.35577 38.5 29.07 

30 0.3 46 41.86 

35 0.25577 54 56.98 

40 0.23077 61.5 74.42 

45 0.20769 69 94.19 

 

The results in Table 5-4 show that a braking only manoeuvre results in a shorter 

stopping distance, than the distance required to complete a steering manoeuvre for 

velocities of 30�/� and lower. However, from 35�/� and higher, the steering 

manoeuvre is completed before the braking manoeuvre. These results are 

represented graphically in Figure 5-11. 

Figure 5-11 - Comparison of Displacement to End of Manoeuvre 
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Figure 5-11 demonstrates that up to approximately 33�/� (118.8��/ℎ or 

73.8�9ℎ) a braking only manoeuvre will result in the shorter displacement compared 

to end of manoeuvre. However, this assumes a perfect braking performance and 

after this point the steering manoeuvre will accomplish the task of avoiding the object 

by performing a single lane change manoeuvre. The best avoiding manoeuvre for 

slower speeds is braking, whilst at higher speeds it is steering that provides the 

better avoiding manoeuvre, is a conclusion shared with Jansson (2005). 

This displacement to end of manoeuvre also gives a 10% safety factor, which 

is that the lateral distance must be accomplished with 10% of the available 

longitudinal left, and does not account for a loss in speed due to tyre scrub or 

braking. The displacement to end of manoeuvre may be further improved if a 

reducing velocity is simulated. Combining a steering manoeuvre with braking force 

may result in an even shorter displacement, with the benefit of a steering manoeuvre 

being evident at velocities lower than 33�/�. This is however a more complex 

simulation, as the saturation properties of the tyres needs to be considered.  

However, this comparison has demonstrated the need for a steering controller 

as it has the potential to improve upon the reliance of automatic emergency braking 

systems giving more and potentially safer options for collision avoidance and 

mitigation. Torque vectoring and brake assist steer would increase the maximum 

possible yaw rates, which would allow for faster turns and hence a shorter 

displacement. 

 

  Discussion  

The model developed is an analytical kinematic steering controller, using equations 

of motion which are based on the linear behaviour of vehicle dynamics and PI 

controlled feedback. The limiting yaw rate aims to keep the vehicle behaviour in the 

linear region, which suits the limitations of a kinematic model as not to require the 

use of dynamic modelling techniques.  

Further research would include development of a dynamic steering controller. 

This would require more input parameters such as mass (�)), yaw moment of inertia 

(kg.m2), and tyre cornering stiffness (�/�0)). From these parameters tyre lateral 

forces and slip angles are used to calculate the desired outcomes. However, 

introducing these parameters comes with an additional complexity. It is most evident 
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with the tyre cornering stiffness. Tyres do not always behave in a linear manner, but 

would for simplicity need to be assumed as linear.  Gillespie (1992) describes 

cornering stiffness as the negative lateral force rate of change with respect to change 

in slip angle, which is usually evaluated at a slip angle of zero. This relationship 

between lateral force and slip angle is linear at low slip angles. The tyres for a typical 

passenger car begin to behave in a non-linear manner at sideslip angles of 4° 

(0.07���), and fully saturate at 8° to 10° (0.14��� to 0.17���) as given by Abe 

(2009). Therefore, a dynamics model would rely heavily on non-linear parameters 

making the model itself non-linear and complex. 

 For real world applications a dynamic model would be better suited, but for 

the purposes of demonstrating the requirements of an autonomous steering 

controller the 2 Degrees of Freedom (DOF) kinematic model is sufficient. A kinematic 

steering controller is also concluded to be accurate to a point, namely the linear 

region of vehicle handling dynamics, appropriately limiting with maintaining the 

maximum yaw rate. 

 

 Steering and Braking Manoeuvre 

The steering controller described in Section 5.5 completes a lane change manoeuvre 

whilst maintaining the set speed. The potential for improving safety further is to 

combine a steering and braking controller. The aim of this is to avoid or mitigate a 

collision. The final velocity of the steering manoeuvre will be evaluated. 

 

  Determine Braking Force 

As the steering manoeuvre is the main manoeuvre taking place, it must be 

completed. A ‘g-g’ diagram is used as the braking controller. The inspiration for this is 

taken from Kritayakirana and Gerdes (2012) who used a ‘)-)’ diagram for a racing 

controller. The principle is that the overall )-force exerted on the car cannot exceed a 

set value.  

Calculating Lateral Acceleration using the ‘)-)’ principle is given by Rajamani 

(2011), in Equation (5-14). 
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Assuming a unit circle for the maximum lateral �	.���  and longitudinal ��.���  

accelerations (and decelerations), the resultant braking after steering can be 

determined by Pythagorean Theorem: 

 

 

Figure 5-12(a) represents a Tyre Saturation diagram as discussed in Section 

2.3.1, where the maximum longitudinal acceleration is equal to the maximum lateral 

acceleration. Figure 5-12(a) represents a vehicle where the maximum acceleration is 1) which equates to 9.81�/��. Figure 5-12(b) represents a vehicle unequal 

longitudinal and lateral accelerations. For example, a vehicle can achieve a 

maximum longitudinal acceleration (and deceleration) of 1.15) which equates to 

11.28�/��, but only 0.95) in lateral acceleration equating to 9.32�/��. 

An elliptical shape results if the ��.��� and �	.��� are unequal, described by: 

 �����.��� Y �	��	.��� = 1 (5-16) 

 

 �	 =  ED  Y  =�S@  (5-14) 

 �� =  [����� n  �	� (5-15) 

Figure 5-12 - Tyre Saturation Diagrams (a) Unit Circle, (b) Elliptical Shape 

(a) 

(b) 
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Calculating �� is done by finding angle 2 which subtends the vector of �� and �	 from the following equations: 

 �	 =  �	.���sin k2l (5-17) 

 �� =  ��.���cos k2l (5-18) 

 

The benefit of using a simple sinusoidal wave for the trajectory from Section 

5.4 is evident here. The lateral acceleration is used to calculate the available 

longitudinal acceleration. This method prioritises the steering manoeuvre over the 

braking, which ensure the steering manoeuvre is completed, which ensures the 

braking does not compromise the steering. If braking had been determined first and 

lateral acceleration afterwards, it cannot be guaranteed that the hazard ahead be 

avoided given the available longitudinal distance. 

A correction step when calculating the Velocity and Distance Travelled needs 

to be applied. The steering manoeuvres will have a slightly greater distance to travel, 

as the lateral component of the vehicle’s displacement increases the distance 

travelled by the vehicle from the longitudinal distance only, allowing the vehicle more 

distance to reduce velocity. This velocity is also in the direction of travel, which is not 

always entirely longitudinal. Using the planned trajectory and yaw rate, a required 

yaw angle is determined. Using trigonometry, velocity values for B and E direction 

can be calculated, where =� is the longitudinal velocity. Then a longitudinal rate of 

deceleration is determined. This will be slightly greater than the previously calculated 

rate of deceleration due to the extra distance and =	 component of velocity. 

The kinematic equations of motion are used to determine the velocities of the 

vehicles and the stopping distances. Equations used are as follows: 

 = = . Y �2 (5-19) 

 =� =  .� Y 2�� (5-20) 

and to calculate distance:  

 � = 22 k. Y =l (5-21) 

where � is acceleration, � is distance, 2 is time, . is initial velocity, and = is final 

velocity.  A time sampling rate is set, and the calculations are performed for every 

time sample.  
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The =� and =	 velocities are determined by equations from Abe (2009): 

 =� = = coskS Y  Hl (5-22) 

 =	 = = sinkS Y  Hl (5-23) 

 

As this is required velocity calculations and the vehicle is assumed to achieve 

the desired yaw rate, slip angle (H) is be assumed to be zero again. The equivalent 

braking calculates the rate of deceleration in the longitudinal direction only, using 

Equation (4-1), with =� as the initial velocity. =� is used for the distance calculations 

using Equation (5-21), which therefore will consider the effect of a greater distance 

the steering manoeuvre makes. 

 The rate of deceleration calculated by Equation (5-18) could calculate 

dynamic braking for every time sample, as the reducing velocity will result in a 

reducing �	. As �	 lowers, Equations (5-17) and (5-18) calculate an increasing ��. 

However, it is the minimum �� that is applied to the velocity calculations. This is a 

safety consideration to guarantee tyre grip. Otherwise keeping the braking on the 

limit of tyre saturation increases the risk of over-saturation.  

 The vehicle will reduce velocity faster in the longitudinal direction, with greater 

distance to do so, as a proportion of its velocity will be in the lateral direction. Another 

consideration is that when the steering manoeuvre is complete, it assumes the higher 

rate of deceleration. This is not a concern, however, as the vehicle will have no 

lateral manoeuvre after this point, and greater braking force can now be applied. The 

vehicle will just have to maintain the rate of deceleration. 

 The simulated Lateral Acceleration is used as the error, in the PD feedback to 

maintain tracking of the intended course. PD improves the control but still needs a 

speed dependant value for the derivative. Maintaining the intended course proved 

difficult due to the now changing velocity and steering inputs. This demonstrates the 

limitations of the steady-state bicycle model relying on PD control to maintain 

tracking of the trajectory. 
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  Simulation Results 

The simulation uses a unit circle maximum peak acceleration of 1g, or 9.81�/�� . 

This value is used for demonstration purposes as it is a rounded integer based on the 

maximum braking deceleration of 10.75� ��⁄  (1.01)) and the maximum lateral 

acceleration recorded by the maximum speed tested 8.52� ��⁄  (0.87)). A real 

vehicle would require a detailed study of the longitudinal and lateral dynamics for the 

‘)-)’ principle, where the elliptical shape of Figure 5-12(b) is likely to be reproduced. 

For the purposes of demonstrating the ‘)-)’ braking controller, the unit circle will be 

sufficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13 – Four metres Lateral Movement at 20m/s Simulation with PD Controller and 
Reducing Speed 
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 With velocity dependent PD control the plots of the 20�/� and 35�/� 

simulations show that the simulated vehicle can follow the intended course closely. 

As shown in Figure 5-13 and Figure 5-14, it is noted that the slower the vehicle 

speed, the more difficult for the vehicle to track this path.   

The reduction in speed achieved by the combined Steering and Braking 

controller is presented in Table 5-5. 

Table 5-5 - Speed reduction of Steering and Braking Controller 

Initial Velocity Distance  Final Velocity Velocity Reduction Applied Braking 

(�/�) (�) (�/�) (�/�) (�/��)  

15 23 4.8666 10.13 4.2804 

20 31 11.1348 8.87 4.3974 

25 38.5 16.32 8.68 4.6203 

30 46 21.74 8.26 4.6203 

35 54 26.27 8.73 4.9306 

40 61.5 31.95 8.05 4.6916 

45 69 36.93 8.07 4.7788 

Figure 5-14 – Four metres Lateral Movement at 35m/s Simulation with PD Controller and 
Reducing Speed 
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The distance to complete the steering manoeuvre is the same as in the case 

of the Steering only controller. Furthermore, the steering manoeuvre could not be 

completed for 10�/� as the velocity reduced to 0�/� before the end of the 

manoeuvre. An average of 4.6171�/�� was applied as braking for the steering 

manoeuvres, which resulted in an average velocity reduction of 8.6843�/� at the 

instant the steering manoeuvre was completed.  

 

  Effect of Coefficient of Friction 

For comparing the braking distances versus the combined steering and braking 

distances the values for the maximum braking and coefficient of friction have 

remained constant. The coefficient of friction will change dynamically depending 

upon variables such as rainfall, temperature, tyres etc. Therefore, the coefficient of 

friction is a vital parameter which affects the performance of both the braking and 

steering. 

 The constant values are 10.75� ��⁄  for maximum braking ��, and a constant 

coefficient of friction P of 0.9. P can be determined from the braking performance and 

conservation of energy equations. Revaluating Equation (4-1) gives Equation (5-24). 

 � =  k=� n  .�l2. � = �7 (5-24) 

 

where 7 is the vehicle mass, � is force, which is calculated with ) as the 

gravitational constant. 

 � =  P. 7. ) (5-25) 

 P = �7. ) =  .�2. ). � (5-26) 

 � =  P. ) (5-27) 

 

Therefore, the coefficient of friction P required to decelerate from an initial 

speed to 0 over a set distance can be calculated using Equations (5-25) to (5-27). 

Now varying deceleration and coefficient of friction values can be simulated, to 

evaluate the effect of different braking and steering performances. For a comparison, 
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a P=0.7 can achieve a maximum average deceleration of 6.867� ��⁄ . These values 

of P (0.7 and 0.9) are simulated for calculation of braking distances and combined 

steering and braking distances. Using a coefficient of friction of P=0.9, a maximum 

deceleration of 8.829�/�� can be achieved. Comparing the braking and steering 

distances to end of manoeuvre for these two coefficients of friction demonstrates its 

effect on the vehicle’s ability to complete the manoeuvres.   

 

Figure 5-15 demonstrates that with a lower coefficient of friction, a combined 

steering and braking manoeuvre completes the manoeuvre in a shorter distance after 

speeds of 24�/�, compared to 27�/� of the 0.9 friction coefficient plots. The 

coefficient of friction does still affect the steering manoeuvre’s distance to completion, 

but not as drastically as on the braking only manoeuvre. The coefficient of friction 

would also have an effect on the ‘)-)’ braking controller, as in the lateral dynamics of 

the tyres would also be affected which would require more extensive modelling. The 

yaw rate limited by friction in Equation (5-5) is how the coefficient of friction limits the 

steering controller from performing a steering manoeuvre. 

 

Figure 5-15 - Comparison of Displacement to End of Manoeuvre  
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 Active Vehicle Dynamics Systems 

The limiting factor of the kinematic steering controller is the maximum yaw rate. 

Active vehicle dynamics systems aim to improve performance of the steering 

controllers. These systems include Brake Steer and four-wheel-steering (4WS), as 

discussed in Section 2.3.3. Pilutti, Ulsoy, and Hrovat (1995) developed a steering 

intervention system using differential braking. It is noted that similar issues with 

maximum yaw rate were observed. Due to available yaw rate saturation, the brake 

steer manoeuvre was most effective at low steering angles (0.5�0)�00�) and only 

minor braking can be applied at higher angles (2.3�0)�00�). Exceeding these limits 

caused the vehicle to spin. Simulations showed “that the maximum differential 

braking is found at low speeds and zero steering angle, and the minimum is found at 

high speed and high steering angle.” For an emergency steering manoeuvre at high 

speed, whilst an advantage would be gained, it would only be minimal. 

 Song (2012) developed a controller using fuzzy logic to control an integrated 

brake pressure and rear-wheel steering. Song concluded that a body slip angle was 

reduced, and the simulation could track the reference yaw rate. It was also noted that 

adhesion limit was extended increasing the vehicle’s controllability and stability. 

 Falcone et al. (2008) proposed two controllers utilising active front steering 

and braking. The first was a tenth order five input controller, which was noted for the 

best performance when following the desired path. The inputs were steering angle 

and the four-wheel braking torques. However, this model was computationally heavy 

and difficult to tune, demonstrating the need for a simpler lower order model. The 

second model was based on a two input sixth order simplified bicycle model. The 

four braking torques were simplified to a single braking yaw moment. This simpler 

model was more attractive for real-time applications, but a loss in stability at high 

entry speeds was observed, which would include emergency manoeuvres. 

 A study into the capabilities of four-wheel steering kinematic models was 

conducted by Spentzas, Alkhazali, and Demic (2001). It is concluded that “A 4WS 

vehicle has a manoeuvring advantage over a 2WS vehicle only if its rear wheels can 

turn in the opposite direction to its front wheels, because only in that case we have a 

relative reduction of the turning radius.” 

 Potential active vehicle dynamical systems such as differential braking or 

rear-wheel steering would provide a benefit to vehicle handling, and so would be able 

to complete a lateral manoeuvre faster and allow for higher yaw rates. However, a 
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higher order model required for accurate simulation would prove computationally 

heavy. There is also a question of how much the maximum yaw rate is increased by, 

which requires both complex dynamic modelling and physical testing. Due to the 

added complexity of active vehicle dynamics systems, this research programme will 

progress without modelling these systems, as to focus on the defined objectives. 

 

  Conclusions 

A new trajectory planner using a sinusoidal wave to plan a vehicle’s trajectory is 

proposed here. This sinusoidal trajectory planner is tested with the use of kinematic 

steering controllers. The steering controllers are based on existing models, but 

adapted to suit the intended purpose in this PhD research, including introducing the 

sinusoidal lane change manoeuvre and better tracking the intending course with PI 

control. 

A kinematic steering controller is developed in this research based on the 2D 

bicycle model to perform a single lane change manoeuvre. PI control was introduced 

to the kinematic steering controller using lateral acceleration error as feedback to 

better track the intended trajectory. The simulation results are satisfactory, as the 

simulated trajectory followed the planned trajectory closely. A braking only 

manoeuvre is then evaluated, to compare the end of manoeuvre distances between 

a single lane change manoeuvre and full braking. It is concluded that at lower 

speeds, with the aim of avoiding a collision, a braking only manoeuvre would be 

more successful. The braking only manoeuvre does assume a high rate of 

deceleration only achievable by high performance road cars.  

A novel combined steering and braking controller with the aim of avoiding or 

mitigating an imminent collision was introduced in this chapter. Using the kinematic 

steering controller, a reducing velocity (deceleration) is introduced. However, an 

appropriate rate of deceleration needs to be calculated first, and this utilizes tyre 

saturation properties to reduce the risk of the vehicle losing control. The lateral and 

longitudinal accelerations of the vehicle are evaluated. It is demonstrated that the 

reducing velocity applied to the steering controller does not reduce the distance to 

the end of the manoeuvre, but does provide a reduction in velocity once the steering 

manoeuvre has been completed. 
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 The steering and braking controller required a PD controller to track the 

planned trajectory. Again, the simulated trajectories followed the planned trajectory 

closely, but performed better at higher speeds. It has been shown from existing 

research that dynamic controllers would have a better performance in tracking and 

simulating, however they do require greater computational effort making them slower 

to complete the required calculations. This is a concern for an emergency 

manoeuvre, and tracking of the kinematic controller proved satisfactory. The 

kinematic steering controller would require further testing with a real vehicle to 

validate the trajectory tracking performance. 

 A kinematic Bicycle model is limited in its capability of simulating a dynamic 

situation with a changing velocity brought by the combined steering and braking, 

which would explain why the PD controller is required to maintain tracking of the 

planned trajectory.  

 The combined steering and braking controller gives another option for 

avoiding or mitigating a collision. The steering controllers developed all use the same 

trajectory planning method. The aim of this research is not developing a new steering 

controller, but investigating means to plan a manoeuvre for an autonomous vehicle in 

an emergency situation. A method is now needed to evaluate what the best 

manoeuvre plan is. The steering trajectory planner gives the inputs required to 

determine if a steering manoeuvre is possible. It is demonstrated that the trajectory 

planner will be suitable for analyses of whether lane-change manoeuvres are 

possible for the autonomous vehicle, as all steering controllers developed and tested 

in this research have used the same sinusoidal trajectory planner and its outputs.  
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Collision Modelling 

 

 

  Introduction 

This chapter describes a modelling technique which is able to replicate in simulation 

a vehicle collision scenario. It is based on existing research, which can be found in 

the literature, as well as more recent models that capture the nonlinearity which is 

observed in practice. Recognising that all models are approximations, the model is 

required to be sufficiently representative as well as computationally efficient. This is a 

key issue with Finite Element Analysis (FEA) simulations, which, depending on their 

complexity, can take hours to simulate. Should a collision model be required for use 

within a specific on-line application, such as a vehicle simulating its own imminent 

collision, then rapid simulation is required. 

Modelling of the collisions allows metrics to be produced whereby the severity 

of the collision can be assessed. Using FEA data of a vehicle collision to compare 
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the accuracy of the simulations, a collision model may be created to test a number of 

scenarios. The modelling technique uses lumped mass models to represent the 

colliding vehicles. The lumped mass model is developed from an initial linear model, 

to a bilinear model, as proposed by Pickering et al., (2018).  

The bilinear model requires tuning, to best represent the FEA data. A 

Euclidean optimization process is developed to compare the simulated results with 

the FEA data. A range of model parameters are simulated and a Euclidean 

optimization selects the best performing simulation, i.e. the closest model fit to the 

FEA data. A limited number of scenarios are tested to produce relevant outputs. To 

assess the performance of the lumped mass modelling, four key properties 

comprising peak deformation, peak acceleration, collision energy and collision 

duration time are used to assess the efficacy of the lumped mass models. 

 

 Single Vehicle Collision Modelling 

This Section introduces the background to vehicle crashworthiness, with focus given 

to the current testing legislation authorities. A finite element analysis (FEA) model is 

set-up based on the current testing legislation involving a collision into an immovable 

rigid barrier. Based on the FEA model, linear and nonlinear (bilinear) dynamic 

lumped mass and spring models are set-up to capture the key features of the 

collision, i.e. peak deformation, peak acceleration and collision energy. To tune the 

bilinear model, a Euclidean optimization process is developed. The key features 

obtained from the linear and bilinear lumped mass-spring models are compared to 

the features from the corresponding FEA simulation to provide a basis for a suitable 

model to be selected.  

 

 Background to Vehicle Crashworthiness 

A vehicle body structure is typically made up of three compartments, namely the front 

crash structures, the passenger cell and the rear crash structures. In the event of a 

collision, the design requirement of the passenger cell is to remain rigid and prevent 

any intrusion. The crash structures (front and rear) on the other hand are designed to 

fail/buckle in a controlled passive manner. The role of the crash structure is therefore 

to increase the collision duration, which minimises the accelerations/decelerations 
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experienced by the passenger(s), as discussed by Du Bois et al. (2004). As detailed, 

in MacDonald (2013) the buckling of the crash structure must not exceed the crash 

structure design deformation length, which would result in an intrusion in to the 

passenger cell. Bastien et al. (2013) examined the kinematics of occupants in 

collisions by comparing crash tests of a vehicle into a rigid wall at 25�9ℎ against a 

vehicle decelerating at 1) until the vehicle reaches 25�9ℎ, and then impacting a 

rigid wall. The chest accelerations resulting in this study were in the order of 

magnitude between 41) and 64). 

A measure of a vehicle’s crash performance is known as crashworthiness. In 

Europe the crashworthiness authority is known as the European New Car 

Assessment Programme (Euro NCAP), see (Euro NCAP, 2017) and in the United 

States of America (USA), the crashworthiness authority is known as USA NCAP. In 

the case of both authorities, vehicles are tested against various crashworthiness 

tests. Relevant to this research is the full-frontal impact test. In the Euro NCAP test, 

this involves the vehicle being driven at 31�9ℎ (13.8582�/�) into an immovable rigid 

barrier (Euro NCAP, 2017), whereas the US NCAP test involves the vehicle being 

driven at 35�9ℎ (15.6464�/�) into an immovable rigid barrier (US NCAP, 2017). 

Considering the full-frontal impact tests of the Euro/US NCAP, the Vehicle, 

denoted � of mass, denoted 7�, is driven into an immovable rigid barrier with an 

impact collision velocity, denoted =�. Due to Newton’s Second Law which states that 

a force, denoted �� acting on an object, here Vehicle �, is proportional to the time 

rate of change of its linear momentum (velocity). The momentum is the product of 

mass and velocity, i.e. 7�=�, so that the force expressed as a function of time may 

be alternatively represented by: 

 ��k2l = 7� �=�k2l�2 = 7� ��B�k2l�2� = n��B�k2l (6-1) 

 

where B� denotes the deformation of the crash structure of Vehicle �, �� denotes the 

crash structure stiffness and 2 denotes time. From Equation (6-1), it is evident that an 

increased structural stiffness of the crash structure would result in lower deformation, 

hence higher accelerations, experienced by the occupant(s) on-board the vehicles. 

Therefore, a lower stiffness value of the vehicles structure would result in higher 

deformations and lower accelerations experienced by the occupant(s) on-board the 

vehicle.  
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The original equipment manufacturers (OEMs) design their vehicles to satisfy 

the Euro/US NCAP frontal impact tests, hence the structures are designed to absorb 

a pre-determined amount of collision energy. The collision energy must be absorbed 

within the deformation length of the crash structure. This is designed such that some 

pre-determined collision energy is absorbed within a pre-determined collision time to 

allow pre-determined accelerations/decelerations to be experienced by the 

occupants, as discussed by Du Bois et al. (2004). Therefore, if the OEMs know the 

vehicle’s laden mass and collision test velocity, the collision energy can be pre-

determined and taken into account at the design stage. The pre-determined collision 

energy is given by: 

 

 ∆�� = 7�k=�l�2  (6-2) 

 

where, for a given vehicle, denoted Vehicle �, ∆�� is the pre-determined collision 

energy, 7� is the vehicle collision test mass and =� is the vehicle collision test impact 

velocity. Equation (6-2) is later used to verify the FEA model and the developed 

single vehicle lumped mass-spring collision mathematical models.  

 

 Finite Element Analysis (FEA)  

To develop an initial understanding of the ‘input’ (force due to collision impact 

velocity) and ‘outputs’ (peak deformation, peak acceleration and collision energy), i.e. 

the key properties of a collision, a Toyota Yaris Sedan FEA model is employed. The 

developed 2010 Toyota Yaris Sedan model is available on ‘open-access’ from the 

Centre for Collision Safety and Analysis (CCSA) website, see (Centre for Collision 

Safety and Analysis, 2017). The CCSA is a research organisation at George Mason 

University which focuses on understanding vehicle collisions and developing 

methods to avoid or mitigate collisions. It can be seen in Marzougui et al. (2012) that 

the FEA model matches the crashworthiness performance of the actual vehicle very 

closely. The FEA Toyota Yaris Sedan collision simulation is set-up based on the US 

NCAP, i.e. a collision impact velocity of 35m9ℎ into an immovable rigid barrier.  

The outputs from the FEA Toyota Yaris Sedan simulation are illustrated in 

Figure 6-1 and the key properties (peak deformation, peak acceleration and collision 
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energy) of interest in this research are documented. The top-left plot illustrates 

deformation versus time up to the end of the first ¼ cycle, as this is the point of 

maximum deformation, as detailed by Du Bois et al. (2004). Hence, the time period to 

reach maximum deformation is used for the rest of the graphical outputs. The top-

right plot illustrates acceleration versus time and the bottom-left illustrates force 

versus deformation. In the case of the force versus deformation plot, the area under 

the curve represents the collision energy. The collision energy in Table 6-1 has been 

determined by making use of the trapezoidal rule to calculate the area under the 

curve. The trapezoidal rule is the method used in the MATLAB function, as it is 

MATLAB/Simulink in which these simulations. The trapezoidal rule uses the FEA 

data of displacement and force to calculate collision energy. This calculation is 

completed for every time sample in the data set. The time sampling rate of the FEA 

data is not constant, but is between 90Jx and 1.010Jt seconds. The trapezoidal rule 

is sufficient for the modelling in this thesis, but future developments could investigate 

the potential benefits of employing Simpson’s rule for integration. Note that for this 

study the coefficient of restitution is not taken into account, i.e. the ‘restored’ energy 

through the rebound of the collision structure which is typically 10-15%, see Batista 

(2005) for further details, is effectively ignored.  
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Figure 6-1 - FEA Data of Toyota Yaris Sedan 
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Table 6-1 - FEA Data comparison with Actual Vehicle Collision Results 

Collision property Actual vehicle  FEA model 

Mass (�)) 1271 1247 

Impact Velocity (m/s) 15.6464 15.6464 

Peak Deformation (�) 0.5620 0.5625 

Peak Acceleration ()) ~ 52.000 54.5232 

Collision Deformation Energy 

(without restitution) (��) 

--- 
148 

Collision Duration (�) --- 0.0522 

 

 The results of the FEA model are close to the actual vehicle collision data, as 

given in Table 6-1. The peak deformation has a difference of 0.0005m for the two 

sets of data. The peak acceleration of the actual vehicle is an estimation based on 

the available data, but the FEA model produces an acceleration value with a 2.5g 

difference, which is an error of 4.85%. These values demonstrate the validity of the 

FEA modelling, compared to the results of the actual vehicle. 

 

 Linear Lumped Mass Modelling and Simulation 

Lumped mass dynamic modelling offers a simplified approach to understanding the 

dynamics of a collision to that of an FEA simulation, e.g. reduced computational 

effort. There are a number of linear collision modelling approaches for single one-

dimensional lumped mass models representing a collision into an immovable rigid 

barrier, such as the methods proposed by Kim and Arora (2003), Deb and Srinivas 

(2008), Cheva et al. (1996), Klausen et al. (2014), Lim (2015) and Lim (2017), where 

the initial motivation for this initial modelling came from.   
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Figure 6-2 - Vehicle Mass Travelling at a Constant Velocity Consisting of Crash structures with 
an Immovable Rigid Barrier in Sight (Top) and Single Mass and Spring (Bottom - Left) Indicating 
Forces (Bottom - Right) 

 

When a vehicle of a certain mass travels at a known velocity (see Figure 6-2) 

and collides into an immovable rigid barrier, the vehicle crash structure, modelled as 

a lumped mass model, opposes the forces created by the collision. The 

corresponding free body diagram of the lumped mass model is given in Figure 6-2. 

The reaction force is given by the spring stiffness force, denoted ���. Due to 

Newton’s Third Law, the reaction force from the immovable rigid barrier acting 

through the vehicle’s crash structure is given by ��� = n��k2l, where ��k2l is related 

to the vehicle crash structure deformation, B�k2l, so that ��k2l = ��B�k2l. The 

differential equation representation of the dynamic collision scenario is given by: 

 7� ��B�k2l�2� Y ��B�k2l = ��k2l (6-3) 

 

The differential equation may be converted from the time-domain to the frequency-

domain via the Laplace transform, with this being given by: 

 7���C�k�l Y ��C�k�l = ��k�l (6-4) 

 

=� = �B�k2l�2  

7�   
��                     

7�   ��                     

E     

7� ���k2l ��k2l
B     

=�     
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Equation (6-4) is rearranged to give the following transfer function form: 

 qk�l = ��k�lC�k�l = 17���k�l Y ��k�l (6-5) 

 

Later in this Section, the stiffness value in Equation (6-5), i.e. �� , will be 

tuned using a linear least squares fit to the force versus deformation FEA data 

detailed in Section 6.2.2, therefore, the gradient of the best straight line becomes a 

first estimate of the stiffness value. Linear least squares is used to effectively 

determine the ‘best’ fit to the force versus deformation data by minimising the error 

between the data points and the resulting model fit. When calculating the best fit for 

the linear least squares optimization, an offset is produced and is known as the 

failure point �"�. This is the initial value of the force to be overcome prior to the 

commencement of deformation. The linear force versus deformation model originally 

used by Watson (1967) is given by the following: 

 �� = �"� Y ��L� (6-6) 

 

where, equivalently, L� = B� is the crash structure deformation along the longitudinal B axis. 

Using Least squares, the stiffness value is estimated using the following 

general formula: 

where the quantity kC�ClJKC′ is known as the pseudo inverse, (Watson, 1967). 

 H� = kC�ClJKC′E (6-7) 
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In Figure 6-3, the force versus deformation from the FEA model is plotted with 

the corresponding linear least squares stiffness estimate. 

 

Table 6-2 - Linear Least Squares Estimates of Crash Structure Stiffness 

Model type Estimate of stiffness 

(��/�) 

Estimate of failure 

point (��) 

Linear single 886.009 13.968 

 

The MATLAB/Simulink phase variable form block diagram representation of 

Equation (6-4) is given in Figure 6-4, where the initial condition of collision velocity to 

the model is applied to the left-hand integrator, i.e. corresponding to an unforced 

model.  

Figure 6-3 - Linear Lumped Mass Modelling Comparison with FEA Data 
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Using the estimated stiffness value and failure point value given in Table 6-2, 

the MATLAB/Simulink simulation is undertaken. The unforced free dynamic response 

of the linear lumped mass model is simulated for the time period up to the maximum 

deformation, this corresponds to the first quarter cycle of the dynamic response and 

the point at which the relative velocity becomes zero (or the final combined velocity 

becomes constant). The relevant data to be captured from the simulation is 

deformation versus time, acceleration versus time and force versus deformation, as 

discussed in Section 6.2.2. Figure 6-5 illustrates the lumped mass simulation results 

compared to that of the FEA simulation data. The top-left plot shows deformation 

versus time, the right-hand plot shows acceleration versus time and the bottom-left 

shows force versus deformation. The output data of interest is given in Table 6-3, 

where the lumped mass model key properties are compared to that of the FEA model 

(i.e. peak deformation, peak acceleration and collision energy). To compare the 

accuracy of the lumped mass simulation model results, a discrepancy between the 

FEA model data and lumped mass model outputs is determined using: 

 ��� ��2� n  8.�90� 7��� <0�./2��� ��2�  (6-8) 

  

Figure 6-4 - MATLAB/Simulink Block Diagram of a Single Lumped Mass Collision Model 
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Table 6-3 - Linear Lumped Mass Modelling of Collision Comparison with FEA Data  

Key properties  FEA 

model 

Lumped mass 

model 

Discrepancy (+/-) Error (%) 

Peak deformation (�) 0.5625 0.5868 -0.0432 4.32 

Peak acceleration ()) 54.5232 42.5010 0.2205 22.05 

Collision energy 

(without restitution) 

(��) 

147.693 152.546 -0.0329 3.29 

Simulation time (2) 0.0522 0.0580 -0.1111 11.11 

 

 The results presented in Table 6-3 demonstrate that the linear modelling 

produced results with a low error percentage compared to the FEA data for peak 

deformation and collision energy. However, the peak acceleration of the lumped 

mass modelling is 12) lower than the FEA data, which is an error of 22%. This 

demonstrates that the linear modelling needs to be improved upon. 

 

Figure 6-5 - Linear Lumped Mass modelling of Collision Comparison with FEA Data 
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 Bilinear Lumped Mass Modelling 

In this research, a class of nonlinear lumped models known as bilinear systems 

models will be considered. Previous work in the area of modelling nonlinear spring 

stiffness elements is sparse. Elmarakbi and Zu (2007) have modelled the spring 

stiffness using a cubic approximation. In (Pickering, et al., 2018), the convoy collision 

scenario has been considered and modelled using a bilinear lumped mass model.  

Bilinear systems modelling and control has witnessed various applications, in 

areas such as ecology, engineering, medicine and socioeconomics. A bilinear 

system modelling approach offers a first step when attempting to capture nonlinear 

behaviour that arises. For a comprehensive overview of applied bilinear systems and 

control, see for example, Mohler (1973), Bruni, DiPillo and Koch (1974), Mohler and 

Kolodziej (1980), Burnham (1991) and Ekman (2005). 

The bilinear lumped mass collision model is now developed step by step by 

first considering the general second order bilinear representation: 

 ED� Y HE� Y NE�.� = 0 (6-9) 

 

where .� and E� denote the arbitrary system input to the bilinear modelling (based on 

initial conditions) and system output, H denotes the coefficient of the linear part of the 

system and N denotes the coefficient of the bilinear product term involving the input 

and output (the output here being regarded as an internal system state, i.e. 

deformation). The bilinear lumped mass collision model to be used in this research is 

given by: 

 7�BD� Y ��B� Y NB��� = 0 (6-10) 

 

where the output of the lumped mass model is deformation, denoted B� and the input 

of the lumped mass model is force, denoted ��. The force input is derived from the 

initial impact velocity differential which is the internal input to the left derivative in the 

phase variable model, see Figure 6-6. 

Simplifying Equation (6-10), noting that B� is common to both the constant 

coefficient of the linear term and the input dependent coefficient of the bilinear term, 

leads to: 
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 7�BD� Y k�� Y N���lB� = 0 (6-11) 

 

i.e. a system having an input dependent dynamic and steady state response. 

 

 

Dividing Equation (6-11) through by �� gives: 

 BD� Y _ ��7� Y N� ��7�` B� = 0 (6-12) 

 

As the force is derived from the initial collision impact velocity is given by �� = 7�BD�, 

the following relationship is given: 

 BD� Y _ ��7� Y N� 7�BD�7� ` B� = 0 (6-13) 

 

which can be simplified as: 

 BD� Y _ ��7� Y N�|BD�|` B� = 0 (6-14) 

 

From initial tuning of the bilinear term N�, it was determined that an additional scaling 

factor of �� was needed to ‘better’ capture the key properties (i.e. peak deformation, 

peak acceleration and collision energy) from the FEA data, with the following given: 

 

 BD� Y _ I�7� Y N�|BD�|` B� = 0 (6-15) 

 

where I� =  H��� and H� is the stiffness scaling factor. There are now two parameters 

within the bilinear collision model that can be tuned to capture the FEA collision data.  

This may be configured for simulation in the phase variable form with the 

additional nonlinear multiplicative bilinear term, as given in Figure 6-6. 
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 Bilinear Lumped Mass Model Tuning and Simulation 

In the tuning process of the terms N� and H�, the key properties of peak deformation, 

peak acceleration and collision energy, with consideration also given to the collision 

duration time captured from the FEA collision model are used as benchmarks for 

assessing the ‘goodness’ of the bilinear model fit, as with the linear model, discussed 

in Section 6.2.4. A Euclidean norm tuning metric/approach is used to compare the 

key properties from the FEA model data to the bilinear simulation model results. The 

stiffness  �� value used in the tuning process of Equation (6-15) is taken from the 

linear least squares process, as discussed in Section 6.2.4. The linear spring 

stiffness value of 886,009�/� given in Table 6-2 is used.  

For the initial simulation tuning process, a range of values for H� of between 

0.1:0.1:5 are used and a range of values for N� between -1.5:0.1:1.5. The values 

giving the closest Euclidean norm tuning metric to the FEA model data are selected 

for the bilinear simulation model.    

A range of bilinear terms and multiples of stiffness are simulated and plotted 

on the three-dimensional plot in Figure 6-7, where each blue data point represents a 

single simulation of the bilinear model’s key properties, i.e. peak deformation, peak 

acceleration and collision energy (note: collision time duration is not plotted). The 

Figure 6-6 - Simulink Diagram for a Bilinear Lumped Mass Model 
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green rhombus/point represents the FEA data and the red dot is the simulation which 

has the closest Euclidean distance i.e. metric to the FEA data point.  

 

In order to complete the optimization of the Euclidean metric, the simulated 

and captured peak deformation, peak acceleration, collision energy and collision 

duration time values must be vector normalized. This is undertaken to re-scale the 

simulation results, e.g. acceleration is in units of 10, whilst deformation is in units of 

0.1. The vector normalisation is given by: 

 Bi =  |B$ n E�FG|∑k|B$ n E�FG|l (6-16) 

 

and the Euclidean distance metric is given by: 

 � =  [Bi�''�����&%� � Y Bi�������&%� � Y  Bi� ��!	� Y Bi&%���   (6-17) 

 

where B$ denotes the simulated value, E�FG is the FEA value, and � is the Euclidean 

distance metric. The closest simulation is given by bilinear term 1.40, and multiple of 

stiffness 0.5, described in Table 6-4. Using these values, the bilinear model 
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Figure 6-7 - Euclidean Optimization of Collision Modelling Results using 1/10 
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discussed above is simulated, with the graphical output given in Figure 6-8. From 

initial observations, the peak acceleration from the bilinear model is not captured 

accurately, with a value of 83.03), compared to a value of 54.52) from the FEA 

simulation. This led to the further refinement in the tuning process, with ranges of 

values for  H� between 0.57 : 0.01 : 0.97 were used and a range of values for N� 

between 0.56 : 0.01 : 0.96.  

These values were selected based on the initial tuning process and also trial 

and error. As with the initial tuning process, the range of bilinear terms and multiples 

of stiffness are simulated and plotted on the three-dimensional plot given in Figure 

6-9. The Euclidean distance metric optimisation is undertaken with the new ranges of 

values, with the closest bilinear term being 0.77 and the multiple of stiffness being 

0.76, stated in Table 6-4. Figure 6-10 represents the simulation results of the bilinear 

model where it is visibly clear that the bilinear model now captures the peak features 

of the FEA data more accurately. The full results are given in Table 6-5, where as in 

the case of the linear model simulation, the discrepancies have been determined 

between the bilinear model and the FEA collision data. The discrepancies of the 

three key features (i.e. peak deformation, peak acceleration and collision energy) are 

much lower for the bilinear model than for the linear model, see Table 6-3.  

The simulation duration time is slightly longer for the bilinear model than that 

of the linear model, with both models’ results being of a longer duration than that of 

the FEA collision data.  

 

Table 6-4 - Euclidean Optimization Tuned Parameters 

Model type Bilinear Term (N) Multiple of Stiffness (I) 

Bilinear – 1/10 1.40 0.50 

Bilinear – 1/100 0.77 0.76 
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Figure 6-8 - Bilinear Lumped Mass Modelling of Collision Comparison with FEA Data and 
Linear Modelling using 1/10 Tuning Values 
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Figure 6-9 - Euclidean Optimization of Collision Modelling Results using 1/100 Tuning Values 
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Table 6-5 – Linear and Bilinear Lumped Mass Modelling of Collision Comparison with FEA 
Data Results 

Key properties  FEA Linear 

model 

Discrepancy 

(+/-) 

Bilinear 

model 

Discrepancy 

(+/-) 

Peak deformation (�) 0.5625 0.5868 -0.0432 0.5623 0.0004 

Peak acceleration ()) 54.5232 42.5010 0.2205 54.5829 -0.0011 

Collision energy (��) 147.693 152.546 -0.0329 146.240 0.0098 

Simulation time (2) 0.0522 0.0580 -0.1111 0.0596 -0.1418 

 

 

 Highway Vehicle Collision Modelling 

This Section introduces the three-lane highway scenario and the basic physics 

between two colliding bodies, i.e. vehicles. The need for simplified lumped mass 
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Figure 6-10 - Bilinear Lumped Mass Modelling of Collision Comparison with FEA Data and 
Linear Modelling using 1/100 Tuning Values 
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models was introduced in Sections 6.1 and 6.2, therefore in this Section a linear and 

bilinear two-lumped mass model is developed and simulated. For each of the 

modelled vehicles, it is assumed that the rear and front crash structures of the 

vehicle have identical stiffness. It is further assumed, to simplify the problem that all 

the vehicles in the simulation have the same structural stiffness values. Therefore, 

the tuning parameters captured for the linear and bilinear models from Section 6.2 

are used for the corresponding models developed in this Section. An example 

scenario of the three-lane highway scenario is given at the end of the Section to 

demonstrate the effectiveness of the approach.  

 

 Three-Lane Highway Scenario  

To investigate the collision outcomes of three highway collision scenarios, the 

collision modelling is undertaken in two stages. The first stage of the collision event 

involves the Host Vehicle, denoted >? colliding into a vehicle ahead, denoted >�� 

where 4 is the lane number, i.e. 1, 2 or 3, as illustrated in Figure 6-11. It is the role of 

the Host Vehicle to determine the collision path, i.e. steering into either >�, >�� or >��. 

It is assumed within this research that the Host Vehicle can undertake the steering 

manoeuvre to achieve a full frontal-rear collision, i.e. with no offset. This has the 

effect of maximising the frontal crash structure area which deforms in the collision. It 

is assumed that this collision then leads to a secondary collision with a vehicle 

behind colliding into the primary stage of the collision, as illustrated in Figure 6-12. It 

is further assumed that the vehicles involved in the first stage are combined and 

share a common final velocity, denoted =�. An example is given in Figure 6-12, 

where the Host Vehicle has made a decision to steer and collide into >�� . In this case, 

the secondary collision will involve >�� colliding into the combined vehicle mass and 

velocity of >? and >��. This is an example of one possible two-stage collision, with a 

total of three given in Table 6-6, where the example given is Collision 1.  
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Figure 6-11 - Host Vehicle with Three Possible Collision Paths 

 

 

Figure 6-12 - Secondary Collision Involving a Vehicle Behind Colliding into Two Combined 
Vehicles 

 

Table 6-6 - Autonomous Vehicle Collision Paths 

Collision First Collision 

Stage 

Secondary Collision Stage 

1 >? ⇒ >�� >�� ⇒ X>? Y >�� Z 

2 >? ⇒ >�� >�� ⇒ X>? Y >�� Z 

3 >? ⇒ >�� >�� ⇒ X>? Y >�� Z 
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 Physics of Two Colliding Vehicles 

This sub-section builds on Section 6.2.1, where an introduction into vehicle 

crashworthiness is given. The physics of two colliding inelastic bodies that represent 

a vehicle to vehicle collisions is introduced, i.e. conservation of momentum and 

energy, and the total combined energy absorption of two colliding inelastic bodies. 

The physics of the highway collision scenario in Section 6.3.1 is checked to ensure 

the verification of the highway collision model for use in the later Sections.  

It is well known from Newtonian dynamics that when two bodies collide, as in 

the case illustrated in Figure 6-12, the resulting momentum of the combined body is 

given by the momenta of the two bodies prior to the collision, i.e. the momentum of 

the two moving bodies, is conserved within the single combined moving body. This 

may be expressed as follows: 

 7�=�    ⃗ Y 7�=�    ⃗ = 7�o�=�    ⃗  (6-18) 

 

where 7� and 7� denote the masses of two colliding vehicles (namely Vehicles � 

and ¢), =�    ⃗  and =�    ⃗  denote the velocities of the two vehicle masses and =�    ⃗  denotes the 

final velocity of the combined vehicle mass, denoted 7�o�, where 7�o� = 7� Y 7�. 

The pre- and post-impact conditions are illustrated in Figure 6-13 (Top) and Figure 

6-13 (Bottom), respectively.  

 

Figure 6-13 – Illustrating Pre- and Post-Impact Conditions of Two Colliding Vehicles 
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The arbitrary illustrative example given by Equation (6-18) and shown in Figure 

6-13 indicates that the momentum 7�=�    ⃗  is greater than 7�=�    ⃗  and, noting the same 

direction of motion of the two moving vehicles, it is clear that 7�o�=�    ⃗   has the same 

sign as 7�=�    ⃗  , hence the same direction of travel for the combined body. 

Rearranging Equation (6-18), the final velocity of the combined mass can be 

expressed as follows: 

 =�    ⃗ = 7�=�    ⃗  Y  7�=�    ⃗7�o�  (6-19) 

The principle of conservation of energy states that the kinetic energy pre- and 

post-collision must be identical. This may be expressed as follows:  

 12 7�=��    ⃗ Y 12 7�=��    ⃗ = 12 7�o�=��    ⃗ Y ∆� (6-20) 

 

where ∆� denotes the collision deformation energy. It is possible from Equation (6-

20) to deduce and pre-determine the collision energy from a two vehicle collision 

scenario.  

In the event of a two vehicle full-frontal impact collision, when the vehicles 

collide, equal and opposite forces are applied to the two vehicles collision structures. 

The following is given: 

 �� =  7��� (6-21) 

 

and  

 n�� = nk7���l (6-22) 

 

where �� and �� represent the two vehicle’s accelerations and �� and �� represent 

the two vehicle’s opposing forces, respectively. In the case of an increase in one of 

the vehicles mass values (due to passenger numbers and luggage) and assuming 

the two colliding vehicles have identical collision structures (i.e. stiffness and 

geometry), this would result in a lower acceleration being experienced by that vehicle 

and a higher acceleration experienced by the other vehicle.  
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As with the single vehicle case, detailed in Section 6.2.1, the amount of 

deformation to each of the vehicles’ collision structures will depend on the structural 

stiffness, vehicle mass and initial impact velocity. Considering the structural stiffness, 

the following equations are given for the two vehicles: 

 �� = ��B� (6-23) 

 

and 

 n�� = nk��B�l (6-24) 

 

where �� and �� denote the structural stiffness values of the two vehicles 

respectively, and B� and B� denote the two vehicle’s deformations respectively. 

Assuming the vehicles have identical structural stiffness, the result of a two vehicle 

collision would result in equal deformation. Considering the case when the vehicles 

have the same structural stiffness properties and considering the following for 

Vehicle �: 

 ∆�� = ��B� (6-25) 

 

informs us that the collision energy share between the two colliding vehicles must 

also be equal, as the forces and deformations are equal on both vehicles.   

 

 Linear Lumped Mass Modelling and Simulation 

Building on the single vehicle lumped mass modelling in Section 6.2, a two-stage 

highway platoon model is developed, as detailed in Section 6.3.1. To the knowledge 

of the author, collision modelling of multiple convoy vehicles using lumped parameter 

models have not been undertaken to represent such a collision. 

Each vehicle is described as a single lumped mass and a linear spring element, 

modelled as a dynamic second-order system. The first stage involves the host vehicle >?�, where subscript � refers to the front spring stiffness of this vehicle, colliding with 

the rear of a vehicle ahead >�. The second stage is when a Vehicle Behind >� collides 

into the rear of the Host Vehicle >?�, where subscript � refers to the rear spring stiffness 

of this vehicle, after the collision with >�. The free-body representations of the two-
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stage collisions are represented in Figure 6-14 and Figure 6-15, respectively, where 

the Host Vehicle is described as >?, Vehicle masses are denoted by 7¦�, and spring 

stiffness �?���, where 4 denotes the vehicle identification for a multiple lane scenario 

(nodal representation). The contact between the colliding vehicles is represented by 

mass 7' which is set to be arbitrarily low. With the 3 individual masses, the system is 

now a 6th order mathematical model. Simulating a full frontal-rear collision, the spring 

sections both compress, with mass 7' acting as the datum point. This is the reference 

point for the vehicle deformations. It must be noted that depending on the combined 

two vehicle structure’s momentum, within its own reference frame this datum point 

shall move. Using the first stage collision (Figure 6-14) the degrees of freedom are 

given by deformations B?, B' and B�. 

 

 

 

 

Figure 6-15 - Lumped Mass Model of Rear-End Collision Stage Two 

 

The following coupled differential equations describe the first stage of the two vehicle 

collisions from Figure 6-14: 

 7?BD? Y �?�kB? n B'l = 0 (6-26) 

7� 7? Y 7� 

�� 

 

�?�  

 

=� 

 

=?o� 

 

B� 

 
B?o� 

 

7'  

B'  

7? 7� 

�?§ �� 

=?  =� 

B? B� 

7' 

B' 

Figure 6-14 - Lumped Mass Model of Rear-End Collision Stage One 
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 7'BD' Y  �?§B? Y ¨�� n �?§ © B' Y �� = 0 (6-27) 

 7�BD� Y  ��kB� n B'l = 0 (6-28) 

 

The second stage detailed in Figure 6-15 results in the following coupled differential 

equations:  

 7�BD� Y  ��kB� n B'l = 0 (6-29) 

 7'BD' Y ��B� Y X�?� n ��ZB' Y �?� = 0 (6-30) 

 k7?Y7¦�lBD? Y  �?�kB? n B'l = 0 (6-31) 

 

This two stage collision assumes the Host Vehicle >? impacts the Vehicle 

Ahead >� first, then the Vehicle Behind >� impacts the Host Vehicle >?. If the 

collisions occurred the other way, it is a simple matter of re-ordering the terms in the 

same equations. Stage one would use the terms of the Vehicle Behind >� and Host 

Vehicle >?, and the second stage would use the combined mass of the Host Vehicle >? and Vehicle Behind >� colliding with the Vehicle Ahead >�. 

A second order matrix differential equation for the 1st stage of the collision can 

represent the unforced collision of two vehicles in nodal coordinates, given by: 

 7 BD Y u B = 0 (6-32) 

 

where the mass and stiffness matrices are given, respectively, by the following: 

 7 =  ª7? 0 00 7' 00 0 7�« (6-33) 

 

 u =  ¬ �?§ n�?§ 0n�?§ k�?§ Y ��l n��0 n�� ��
­ (6-34) 
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and B and BD  denote the vector quantities, given by: 

 B = ªB?B'B� « and BD =  ªBD?BD'BD� « (6-35) 

 

Equation (6-32) is multiplied by the matrix inverse of 7  in Equation (6-33) to give: 

 

 BD Y  u® B = 0 (6-36) 

 

where the normalised nodal stiffness to mass ratio matrix is given by u®  of the 

collision model for the two vehicles is given by: 

 

u® =  n
⎣⎢⎢
⎢⎢⎢
⎡ �?§7? n �?§7? 0
n �?§7'

k�?§ Y ��l7' n ��7'0 n ��7�
��7� ⎦⎥⎥

⎥⎥⎥
⎤
 (6-37) 

 

 Figure 6-16 illustrates the MATLAB/Simulink modelling of the two vehicle 

collision model. Subscript � denotes the vehicle ahead, whilst subscript ¢ denotes 

the vehicle behind, � and � represent the mass and spring stiffness of the vehicles. 

Subscript : denotes the datum point. Both the vehicle ahead and behind have three 

outputs which are Force, Acceleration and Deformation. The velocities of the vehicles 

are input to the simulation as the initial conditions on the first integrals, illustrated in 

Figure 6-16. These initial conditions are the impact velocities of the vehicle collisions. 
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Figure 6-16 - Simulink Block Diagram Representing Linear Lumped Mass Modelling of Two 
Vehicle Collision 
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 Validation of Model 

For the simulation of the two-vehicle model developed in this Section, initially a full 

frontal impact collision scenario is set-up based on the US NCAP initial test 

conditions, i.e. two vehicles travelling in opposite directions at 35�9ℎ (i.e. 

15.6464�/�). This is initially undertaken to ensure the model’s dynamics behave as 

would be expected, detailed in Section 6.3.2. The model tuning parameters as 

determined in Section 6.2.5 are used for the two-vehicle full-frontal collision (as 

identical vehicles are used) and the simulation of deformation was taken up to the 

first ¼ cycle (the corresponding time for peak deformation was used for all the 

graphical outputs).The same outputs as in the single vehicle case in Section 6.2 are 

of interest, i.e. peak deformation, peak acceleration and collision energy. The 

graphical outputs relating to these are given in Figure 6-17. It is visibly clear that the 

deformation and acceleration versus time graphical outputs of the two vehicles are 

identical, as would be expected when considering the physics, as detailed in Section 

6.3.2. The peak values of the graphs are also identical to those presented in Table 

6-3.  

 

 

 

Figure 6-17 – Graphical Outputs from the Linear Two-Vehicle Full Frontal Impact with both 
Vehicles having Identical Properties 
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As a further verification check that the model operates as the physics 

suggests in Section 6.3.2, the mass and velocity of the second colliding vehicle is 

varied (with the first vehicles properties remaining as above, i.e. 1247�) and 

15.6464�/�). Figure 6-18 illustrates the case where the second colliding vehicle 

mass is increased by a factor of 1.5, i.e. 1.5 x 1247�) (with the velocities remaining 

the same). As would be expected, based on Section 6.3.2, the deformations and 

forces of the two colliding vehicles are equal and opposite, respectively, (due to the 

stiffness values of the vehicles being the same). However, the accelerations between 

the vehicles vary, with the lighter vehicle experiencing higher acceleration and the 

heavier vehicle experiencing lower acceleration, as would be expected. Figure 6-19 

illustrates the case where the second colliding vehicle’s velocity was increased from 

15.6464�/� (35�9ℎ) to 22.3520�/� (50�9ℎ), with the first vehicle’s properties 

remaining as above (with the vehicle masses being equal). Again, as would be 

expected, based on the collision physics in Section 6.3.1, the peak deformation, peak 

acceleration and collision energy are equal and opposite. It can be confirmed from 

these initial model verification checks that the developed two-vehicle full frontal 

collision scenarios are producing results as would be expected.  

 

 

 

Figure 6-18 - Graphical Outputs from the Linear Two-Vehicle Full Frontal Impact with One 

Vehicle having a Higher Collision Mass 
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 Bilinear Lumped Mass Modelling and Simulation 

Due to the inaccuracies of using a linear collision model, further attention is needed 

to develop a simulation model that can be used and relied upon for the collision 

modelling here. In Pickering et al. (2018) a bilinear model has been developed to 

simulate the accelerations and collision deformation energy of a full-frontal collision. 

Pickering et al. (2018) state that “Bilinear system models are characterised by an 

input dependent dynamic and steady state behaviour.” When considered 

independently, the models are described as linear for both the system state and 

control input, with the coupled terms which involve products of internal system state 

and control, and give rise to the bilinear properties as follows:  

A second order dynamic bilinear system involving a bilinear function is formed 

with the state-dependent spring stiffness as: 

 7 BD Y [u Y µ]B = 0 (6-38) 

 

 

 

Figure 6-19 - Graphical Outputs from the Linear Two-Vehicle Full Frontal Impact with One 

Vehicle having a Higher Collision Velocity 
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where the bilinear function µ is: 

 µ =  ¬N?�? 0 N���­ (6-39) 

 

with the coefficients of bilinear multiplicative terms of the single mass models given 

by N? and N� for the Host Vehicle and vehicle ahead respectively. The initial 

conditions generated from the mass and collision velocity generates the internal input 

forces �? and ��, again for the Host Vehicle and vehicle ahead respectively. u¶�� 

denotes the normalised bilinear nodal stiffness matrix ([u Y µ]) represented by: 

 

 

u¶��  =  n
⎣⎢⎢
⎢⎢⎢
⎡�?§7? Y  N?|BD?| n �?§7? 0

n �?_�7'
k�¦¸ Y ��l7' n ��7'0 n ��7¦�

��7� Y N�|BD�|⎦⎥⎥
⎥⎥⎥
⎤
 (6-40) 

 

Figure 6-20 shows the Simulink model of the bilinear two-vehicle collision. It is 

similar to Figure 6-16, except that the spring stiffness has a multiplication factor E 

and the feedback of the deformation goes through a gain 4. The velocities of the 

vehicles at impact are input as the initial conditions in the first integrals, which are 

labelled Vehicle Ahead Velocity and Vehicle Behind Velocity. In Figure 6-20, 

subscript � denotes the vehicle ahead, : denotes the datum point, and the vehicle 

behind is denoted by subscript ¢. From Equations (6-38) and (6-40) the Host Vehicle 

is represented by the vehicle behind. 

To ensure the model was performing subject to the collision physics in 

Section 6.3.2, the same scenarios were simulated in Section 6.3.3, i.e. in the linear 

case. Figure 6-21 highlights the case where the two colliding vehicles have identical 

properties, it can be seen that the collision outputs match that of the single vehicle 

into an immovable rigid barrier as given in Section 6.2.5, see Figure 6-10. Figure 

6-22 illustrates the case where the second colliding vehicles mass was increased by 

a factor of 1.5, i.e. 1.5 x 1247�) (with the velocities equal). As would be expected 

based on Section 6.3.2, the deformations and forces of the two colliding vehicles are 
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equal and opposite (due to the stiffness’s of the vehicles being the same). However, 

the accelerations between the vehicles differ, with the lighter vehicle experiencing 

higher accelerations and the heavier vehicle experiencing lower accelerations, as 

would be expected. Figure 6-23 illustrates the case where the second colliding 

vehicle’s velocity was increased from 15.6464�/� (35�9ℎ) to 22.3520�/� (50�9ℎ), 

with the first vehicles properties remaining as above (with the vehicle masses equal). 

Again, as would be expected based on the collision physics in Section 6.3.1, the 

overall peak deformation, peak acceleration and collision energy values increase. All 

the properties are equal and opposite and in agreement with the laws of physics. The 

dynamics observed from the bilinear model match that of the linear model. It can be 

confirmed from these initial verification checks that the developed two-vehicle full 

frontal collision is doing as would be expected. 
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Figure 6-20 - Simulink Block Diagram Representing Bilinear Lumped Mass Modelling of Two 

Vehicle Collision 
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Figure 6-22 - Graphical Outputs from the Bilinear Two-Vehicle Full Frontal Impact with One 
Vehicle having a Higher Collision Mass 

Figure 6-21 - Graphical Outputs from the Bilinear Two-Vehicle Full Frontal Impact with both 
Vehicles having Identical Properties 
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 Example Scenario  

The two vehicle collision model developed in Section 6.2.4 is used to simulate the 

two-stage highway collision detailed in Section 6.3.1. The vehicle model in this case 

will involve the collision velocities acting in the same direction, i.e. convoying in the 

same direction. The rear-end spring stiffness of the vehicles in convoy on the 

highway simulations will assume to be equal, therefore, an assumption is made that 

a vehicles front end stiffness is identical to that of the rear. It is further assumed that 

all vehicles in the simulation have identical stiffness, i.e. collision structures. This 

modelling method has the potential to be used for vehicles with different crash 

structure stiffness values, this would require further FEA data to tune those models. 

This section serves to present the highway model working with an example scenario.  

 

 First Stage of the Highway Collision 

This sub-section details the first stage of the highway collision scenario detailed in 

Section 6.3.1. For the rear-end collision simulations the vehicle ahead will be 

travelling at 22.3520�/� (50�9ℎ), whilst the vehicle behind impacts the vehicle 

ahead at a velocity of 31.2928�/� (70�9ℎ). The Toyota Yaris with mass of 1247�) 

Figure 6-23 - Graphical Outputs from the Bilinear Two-Vehicle Full Frontal Impact with One 
Vehicle having a Higher Collision Velocity 
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will be the lightest vehicle (this being the laden vehicle mass), an increase to the 

mass will be known as the medium mass, given as 1500�) and the large mass 

vehicle will be 1750�), as detailed in Table 6-7. The full results are presented in 

Table 6-7 and an example graphical output from one of the scenarios is given in 

Figure 6-24. The scenario considered involves the 1750�) vehicle behind colliding 

into the vehicle ahead with a mass of 1247�). The model dynamics are as would be 

expected by the collision physics detailed in Section 6.3.2.  

 

Table 6-7 – Highway Collision Simulation Results from the First Stage 

Vehicle 

Behind 

 1247kg Vehicle 1500kg Vehicle 1750kg Vehicle 

1247kg 

Vehicle 

Vehicle 

Behind 

1800kg 

Vehicle 

Vehicle 

Behind 

2400kg 

Vehicle 

Vehicle 

Behind 

1247kg 

Vehicle 

Deformation (m) 0.1830 0.1830 0.1908 0.1908 0.1970 0.1970 

Acceleration (g) 11.7284 11.7284 10.2377 12.3147 9.1008 12.7829 

Energy (kJ) 12.466 12.466 1.3614 1.3614 15.637 15.637 

Combined 

Velocity after 

collision (m/s) 

26.8201 26.4101 26.0712 

1500kg 

Vehicle 

Deformation (m) 0.1909 0.1909 0.1998 0.1998 0.2069 0.2069 

Acceleration (g) 12.3147 10.2377 10.8031 10.8031 9.6514 11.2599 

Energy (kJ) 13.615 13.615 14.995 14.995 16.148 16.148 

Combined 

Velocity after 

collision (m/s) 

27.2328 26.8262 26.4791 

1750kg 

Vehicle 

Deformation (m) 0.1970 0.1970 0.2069 0.2069 0.2148 0.2148 

Acceleration (g) 12.7812 9.1075 11.2601 9.6515 10.0957 10.0957 

Energy (kJ) 14.556 14.556 16.148 16.148 17.495 17.495 

Combined 

Velocity after 

collision (m/s) 

27.5734 27.1635 26.8225 
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 Second Stage of the Highway Collision 

This sub-section details the first stage of the highway collision scenario detailed in 

Section 6.3.1. As in the first stage, the initial velocity of the vehicle behind colliding 

into the two combined vehicles ahead is travelling at a velocity of 31.2928�/�  
(70�9ℎ). The velocity of the two combined vehicles is captured from the first stage 

simulation, at the point whereby the two combined vehicles travel at a common 

velocity, as illustrated in Figure 6-24 for that example. The combined masses are as 

follows: 1247�) Vehicle and 1247�) Vehicle, 1247�) Vehicle and 1500�) Vehicle 

and 1247�) Vehicle and 1750�) Vehicle, as detailed in Table 6-8. The full results 

are presented in Table 6-8 and an example graphical output from one of the 

scenarios is given in Figure 6-25. The scenario considered involves the combined 

vehicle ahead being 1247�) Vehicle and 1750�) Vehicle and the vehicle behind 

being a mass of 1247kg. The model dynamics are as would be expected by the 

collision physics detailed in Section 6.3.2.  

 

 

Figure 6-24 - Example Graphical Outputs from the Highway Collision Simulation Results from 
the First Stage 
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Table 6-8 - Highway Collision Simulation Results from the Second Stage 

Vehicle 

Behind 

 1247kg Vehicle and 

1247kg Vehicle  

1247kg Vehicle and 

1500kg Vehicle  

1247kg Vehicle and 

1750kg Vehicle  

Vehicles 

Ahead 

Vehicles 

Behind 

Vehicles 

Ahead 

Vehicle 

Behind 

Vehicles 

Ahead 

Vehicle 

Behind 

1247kg 

Vehicle 

Deformation (m) 0.2097 0.2097 0.2128 0.2128 0.2155 0.2155 

Acceleration (g) 6.8821 13.7642 6.3596 14.0095 5.9163 14.2191 

Energy (kJ) 16.618 16.618 17.149 17.149 17.607 17.607 

1500kg 

Vehicle 

Deformation (m) 0.2218 0.2218 0.2255 0.2255 0.2287 0.2287 

Acceleration (g) 7.3615 12.2396 6.8175 12.4851 6.3561 12.6994 

Energy (kJ) 18.728 18.725 19.396 19.396 19.987 19.987 

1750kg 

Vehicle 

Deformation (m) 0.2317 0.2317 0.2359 0.2359 0.2396 0.2396 

Acceleration (g) 7.7619 11.0618 7.2032 11.3069 6.7278 11.5219 

Energy (kJ) 20.561 20.561 21.368 21.368 22.085 22.085 

 

Figure 6-25 - Example Graphical Outputs from the Highway Collision Simulation Results from the 
Second Stage 
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 Conclusions 

A bilinear lumped mass model to simulate a multiple vehicle collision scenario is 

developed in this Chapter. The developed model comprises a nonlinear (bilinear) 

rear-end highway collision simulation initially between two vehicles. A Host Vehicle 

colliding into a vehicle ahead being the primary collision, and then when a vehicle 

behind collides into the primary collision, a secondary collision is simulated. 

The bilinear model requires tuning, to obtain a closest representation of the 

FEA data. A Euclidean optimization process is proposed by the author of this thesis, 

which simulates a range of values for the bilinear term and a further tuning 

parameter. The simulated key properties of peak deformation, peak acceleration and 

collision energy are compared with the FEA data, and the minimum Euclidean metric 

norm indicates the most suitable model parameters. The Euclidean optimization also 

required refinement and tuning. It was found that initial values did not yield the most 

suitable model parameters. However, by narrowing the range of values in the search 

space the approach has been demonstrated to work effectively. Obtaining a set of 

model parameter values is clearly an area of further work. 

Once tuned, it has been demonstrated that the bilinear model is able to 

simulate a multiple vehicle collision with acceptable accuracy, when considering the 

key collision properties. The results have been verified against the laws of physics to 

ensure that the simulated collision scenarios are justified. 

The lumped mass modelling technique adapted and developed in this chapter 

provides a relatively fast and realistic simulation approach, which can be used to 

assess the severity of automotive collisions. It has been demonstrated that the 

modelling approach is able to simulate secondary collisions, implying that a multiple 

collision scenario involving any number of vehicles can, in principle, be evaluated, 

thus lending itself to assessing the potential impact in terms of the key properties. 
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Motorway Simulation  

 

 

 Introduction 

In the event of an unavoidable collision, an autonomous vehicle will need to make an 

informed decision on the best action to take with the aim of reducing the severity of a 

collision. For this purpose, a simulator of autonomous vehicles is developed that 

produces objective numerical outputs. 

 The simulator calculates metrics on possible collisions, for a 3-lane motorway 

situation. It must assess collisions if the Host Vehicle stays in its current lane, as well 

as to assess the outcomes should the Host Vehicle change the lane to avoid the 

hazard ahead. There also needs to be a consideration of secondary possible 

collisions, such as those that will occur if any vehicles behind collide with the Host 

Vehicle whilst it is trying to mitigate the initial collision ahead.   
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 Once the required metrics are calculated, a decision on the best lane for the 

autonomous vehicle needs to be made. The decision method must guarantee that 

the selected output does not result in a more severe outcome than taking no action. 

 

 Definition of Motorway 

First, the simulation requires a motorway to be modelled. Motorways (arterial roads) 

are considered as multiple high-speed lanes. Lanes are considered straight, so any 

directional control would be negligible. The important dimension is the width of each 

lane, which for simplicity will be assumed to be constant for each lane. Each lane 

width is set to 3.75�, for a set number of lanes (4). This distance now better 

represents the lane width described by Leics.gov.uk (2016), as it is not just a steering 

manoeuvre but a three lane motorway which is simulated.  

 The current lane (CL) is the lane the host vehicle begins the simulation in. 

The number of lanes of the motorway is in fact irrelevant in this research. The host 

vehicle can be limited to a single lane change manoeuvre, so must not perform a 

lateral manoeuvre which exceeds this, as a large lateral manoeuvre has the potential 

of losing vehicle control by exceeding the maximum Yaw Rate. Decision control 

neglects all other lanes except those that fit the rule of +/- 1 lane from CL, and CL 

itself. 

 In the simulation, each lane is considered to have 2 vehicles, with velocity, 

headway distance and braking values. The headway of the vehicle ahead of the Host 

Vehicle in the current lane is specified as a function of time, in line with Adaptive 

Cruise Control (ACC). The deceleration value is set very high (e.g. 50�/��) 

simulating a collision. The host vehicle velocity follows the vehicle ahead in the 

current lane. 
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 Linear Motorway Simulation 

Chapter 7 will develop two motorway simulators which simulate the velocities and 

displacements of vehicles. One assumes V2V communication is not available and 

will require assumptions to simulate the behaviours of all vehicles. The second 

assumes that V2V communication will be available to provide the inputs for more 

accurate dynamic simulations. Assumptions that are relevant to both simulators are: 

 The motorway is completely straight.  

 All vehicles defined in the model are assumed to be in the centre of their 

lanes. This is just to calculate the required lateral distances, but in a real 

world application lateral distance could be calculated from the on-board 

sensor data. 

 A no-deceleration scenario is assumed to determine if a lateral steering 

manoeuvre is possible. This is to avoid any possibility that the host vehicle 

can collide before the manoeuvre is completed, possibly resulting in a side-on 

collision. 

 The steering manoeuvre for any direction is described by the longitudinal 

distance to vehicle ahead in the current lane. This ensures any steering 

manoeuvre is guaranteed to avoid any collision before completion. 

 The simulation here uses inputted values for the calculations. For real-world 

applications these values would need to be acquired from on-board sensors, 

and confirmed to be accurate. 

Figure 7-1 - Motorway Scenario 
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 All inputs required for the calculations are assumed to be available. Some 

parameters such as vehicle mass may only be available with V2V 

communication. It is assumed if a parameter is needed, it will be available. 

The outputs from these simulators will be used to describe the severity of the 

potential collisions. The time to complete simulations is a concern, especially for the 

dynamic simulator, therefore simulation times will be compared to observe whether 

the simulator is impractical for implementation. 

A motorway simulator is developed by starting with linear calculations of 

velocity and displacement relying on constant deceleration assumptions. The 

velocities and displacements of motorway and the Host Vehicle are simulated in 

discrete time steps. The time sampling rate is set to 0.001� for the simulations, which 

is used for all vehicles in the simulation, vehicles ahead, vehicles behind and Host 

Vehicle. The outputs of the simulation will provide a basis to describe the severity of 

the potential collisions in any of the simulated lanes. The velocity of all vehicles and 

moments of impact will inform the severity of the collision. The simulator must also 

determine whether a lane-change manoeuvre is safe to proceed, by assessing the 

manoeuvre capabilities of the host vehicle and whether collisions occur before a 

manoeuvre is complete. Collisions between the Host Vehicle and vehicles ahead and 

behind need to be evaluated. 

Several methodologies are adapted from reviewing the simulators discussed 

in Section 2.5. Planning the steering trajectory cannot make the same assumptions 

as Hayashi et al. (2012) on full braking applied through the steering manoeuvre. The 

Cartesian coordinate system employed by Eidehall et al. (2007) is an effective 

method for plotting vehicle positions, which is used in this research. It is important to 

define the limitations of the host vehicle, as done by Anderson et al. (2010). 

 

  Motorway Vehicles Simulations 

In order to determine the distance to impact and whether a collision into a vehicle 

ahead will occur before a manoeuvre is complete, the simulation will assume no-

braking. This means the impact points of potential collisions with the vehicles ahead 

need to be calculated, and the host vehicle will be assumed to have no braking. This 

would result in the highest impact speed, and shortest distance to impact. It is this 

no-braking scenario that potential actions need to take into account. For the 

simulated lanes, the vehicle velocities and stopping distances are calculated. Based 
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on these a worst-case impact point is determined. This displacement is then 

assumed for the steering manoeuvre. 

 The SUVAT kinematic equations of motion given in Equation (5-14), and 

Equations (5-20) to (5-22) are used to simulate the position, velocity and deceleration 

of the simulated motorway vehicles. The SUVAT equations repeat the calculations 

for every discrete time step. The simulator calculates velocities and displacements in 

a given time step for all vehicles and compares them.  

 The vehicles ahead use a constant braking value assumed at the beginning 

of the simulation. This is the initial braking of the vehicle which may be determined by 

the Host Vehicle’s sensors. However, there is an issue with the braking values of the 

vehicles behind. These will not have started braking, yet it is necessary to predict 

their actions to base a decision on. Without an assumed braking value, the simulation 

outputs are limited to a required braking value determined by the initial velocities and 

available braking distances. A braking value of the vehicles behind is assumed. For 

this, inspiration is taken from Driving Standards Agency for the Department for 

Transport (2007) which publishes the UK Highway Code as a set of rules and 

regulations for driving in the UK. Importantly, the Highway Code provides a 

generalised guide to car stopping distances. This is simply a guide according to 

which modern vehicles will certainly be able to achieve a greater deceleration. The 

stopping distances determine an assumed deceleration, which will be used for the 

vehicles where a deceleration value is not available, such as with the vehicles 

behind. Also, the Highway Code provides thinking distances, which is the distance 

the vehicle travels before braking is applied. This is a time delay applied to the 

velocities and displacements of the vehicles behind before they begin to decelerate. 

This is used in the simulator for assuming the velocities and displacements, giving 

potential impact velocities. Of course, this places strict assumptions in the simulator, 

but this allows impact velocities to be used for the later calculations. 

 The motorway is assumed to be perfectly straight, and the motorway vehicles 

do not change lanes. Therefore, directional factors do not need to be considered. It is 

only the longitudinal velocities and displacements that are being calculated. 
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  Host Vehicle Braking 

The constant deceleration assumption works well when the host vehicle stays in its 

current lane. However, the full braking that can be applied in this situation may not be 

possible when the host vehicle performs a lane-change manoeuvre into one of the 

adjacent lanes. Many parts of the steering controller as discussed in Chapter 5 are 

used to determine whether a steering manoeuvre is possible. Firstly, the Maximum 

available yaw rate is determined using Equation (5-5), for which Coefficient of 

Friction is required. Using the worst-case-scenario longitudinal distance, and known 

lateral distance, the steering trajectory to move into either the left or right lane is 

calculated. From this calculation the required yaw rate is found, and then it is 

determined if this exceeds the maximum available yaw rate. If it does, then the 

steering manoeuvres into the adjacent lanes are disqualified from the decision 

process. 

 Using the SUVAT equations the Host Vehicle’s distance travelled with no 

braking is calculated. A point of impact for all vehicles under consideration is 

calculated, assuming no Host Vehicle braking (worst-case-scenario). From this 

worst-case-scenario collision, a required braking deceleration value is calculated. Of 

course, this value will not determine where an impact will occur, as a higher braking 

value would allow the vehicles ahead longer braking distances. But this value of 

deceleration of the Host Vehicle is used as a comparison for which lane would 

require the most braking effort of the Host Vehicle.  

 The longitudinal distance to the vehicle ahead in the same lane, is used for 

the steering trajectory. The yaw rate to complete the manoeuvre is calculated from 

this using Equations (5-6) to (5-8), which is used to determine the maximum available 

braking, using the ‘)-)’ diagram principle described in Section 5.8.1. This constant 

braking value produces new velocity and displacement values of the Host Vehicle. 

Using these values, and calculating a new impact point, the impact velocity and 

distance is found when the separation between the host vehicle and vehicles ahead 

reaches 0. In these calculations, distance travelled is simply the distance each 

vehicle travels for its given velocity. Displacement is the distance travelled plus the 

headway distance. Separation is the difference in displacement between the vehicles 

ahead on the simulated motorway and the host vehicle. 

 The lateral acceleration calculation follows the process described in Section 

5.7.1, using Equations (5-14) to (5-21). Equation (5-22) gives the longitudinal 
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velocity, used for calculating the velocity of the Host Vehicle when it impacts the 

vehicles ahead and behind. For the simulation a unit circle ‘)-)’ diagram is assumed, 

utilising Equation (5-16), but the elliptical ‘)-)’ diagram could be applied if the Host 

Vehicle has different maximum longitudinal and lateral accelerations. 

The no-braking scenario is assumed to ensure that any steering manoeuvre 

is allowed to be completed. A steering manoeuvre will only be allowed as a potential 

action if it can be guaranteed to be completed. If the Host Vehicle impacts or is 

impacted into before the manoeuvre is complete, this is considered to be an 

unacceptable scenario, as this is a different type of collision. The decisions based 

here must ensure a rear-end zero-lateral offset collision, for the safety of using the 

crash structures. Side-on collisions will effectively ‘close’ a lane, and that lane will be 

disqualified from the decision made. 

 

 Manoeuvre Acceleration 

The decision to be made is based on metrics which describe the collision severity. It 

may also be beneficial to look at the severity of the manoeuvre itself, as this will 

describe if a steering or braking manoeuvre is severe for the vehicle occupants. The 

manoeuvre acceleration is calculated as the unit vector (�p) of the longitudinal and 

lateral accelerations as follows: 

 �p =  [��� Y  �	� (7-1) 

Lateral acceleration k�	l is calculated using Equation (5-14). The longitudinal 

acceleration k��l is calculated from the SUVAT Equation (7-2), using the longitudinal 

velocity for = and .. 

 �� =  =� n .�2  (7-2) 

 

 Linear Vehicle Dynamics Limitations 

The model developed has limiting factors that determine if a manoeuvre is possible, 

such as comparing the maximum manoeuvre yaw rate with the maximum allowable 

yaw rate as limited by friction. There are other factors, which can be considered to 
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make a quick decision on whether a manoeuvre is possible. These are the Skidding 

and Overturning speeds, given by Kett (1982). 

 

 j�1��14) j900� =  ¹º)� _ P Y tan O 1 n P tan O`» (7-3) 

 ¼=0�2.�414) j900� =  ½¾)� ¿h tan O Y �2ℎ n �2 tan OÁÂ (7-4) 

 

where � is the vehicle track width, ℎ is the height of the Centre of Mass (CoM), � is 

the radius of the turn (steady state) and O is the bank angle of the road (assumed to 

be 0 for simulations).  

The skidding speed describes the speed at which the coefficient of friction 

between the road surface and vehicle tyre will begin to skid for a given radius and 

velocity. The overturning speed describes the speed at which the height of the CoM 

will cause the inside wheels to have no vertical load forces. 

 These equations do assume steady-state conditions, which are not valid if 

braking velocity is taken into account. These equations are used as an indication of 

the skidding and overturning speeds, and are used as limiting factors. A quasi-state 

condition of a slowly changing deceleration best works with a dynamic simulator that 

can calculate the forces acting on the vehicle. 

 

  Linear Simulation Assumptions 

The assumptions of this model and simulation are as follows: 

 It must be noted that the velocity of a decelerating vehicle will likely not be 

linear, with aerodynamic and rolling resistances. However, the motorway 

simulation model needs to produce a numerical value with the available data, 

and resistance forces of all vehicles are not available. For simplicity, it is 

therefore assumed that all vehicles will maintain a constant rate of 

deceleration. 

 For acquiring the relevant data including velocity and displacement, it is 

assumed that the closer the vehicle is to the hazard, the faster it can react. 

Therefore, by the time the Host Vehicle reacts, all vehicles ahead will have 

already started reacting, making all required data available. The same 
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therefore cannot be true of vehicles behind, which will not have started 

braking as they have not yet received the required information. As a result, 

the host vehicle may need to make assumptions on braking for the vehicles 

behind. 

 

  Linear Simulation Outputs 

The outputs of the simulator which will inform the decision making are: 

 Impact velocity with vehicle ahead (�/�) 

 Required rate of deceleration for vehicles behind (�/��) 

 Acceleration of Host Vehicle through manoeuvres (�/��). This describes the 

severity of the manoeuvre itself. 

 Impact velocity with vehicle behind (�/�), using Highway Code assumed 

rates of deceleration. 

 Lanes disqualified due to vehicle limitations or collisions occurring before 

manoeuvres are complete. 

 

  Linear Simulator Benchmark Parameters 

The parameters that are inputted to the simulator will affect the outputted data for the 

decision making process. Each parameter will be tested on how it influences the 

decision made. First, a benchmark scenario is defined, where the Host Vehicle 

parameters are defined in Table 7-1, and the Motorway Vehicle parameters are 

defined in Table 7-2.  

 

Table 7-1 - Host Vehicle Linear Simulator Benchmark Parameters 

Parameter Value 

ACC Following Time 1.4� 

Coefficient of Friction 0.7 

Overall Manoeuvre acceleration 8.83�/�� (0.9)) 

Maximum Host Vehicle Deceleration 9�/�� 

Height of CoM 0.5� 

Track Width (front and rear) 1.6� 
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The following time is the time required for the autonomous vehicle to reach the rear 

of the vehicle ahead. The coefficient of friction is selected as 0.7 from Section 5.3.1, 

as this is more typical of a passenger vehicle on a dry road. Here, the motorway 

simulator is simulating a set scenario of a typical car on the road. 

 

Table 7-2 - Motorway Vehicles Linear Simulator Benchmark Parameters 

Parameter Value 

Mass of Vehicles Ahead 2000�) 

Velocity of Vehicles Ahead 70�9ℎ 

Headway Distance to Vehicles Ahead 20� 

Braking Values of Vehicles Ahead 7�/�� 

Mass of Vehicles Behind 2000�) 

Velocity of Vehicles Behind 70�9ℎ 

Headway Distance of Vehicles Behind 20� 

 

 Dynamic Braking Simulation 

The Linear Motorway Simulation of Section 7.3 is capable of producing useful 

outputs that inform a decision process to select the best lane for the host vehicle to 

drive into. However, the outputs can be made more accurate if the constant braking 

assumption is replaced by a dynamic braking simulator. This will rely more heavily on 

the capabilities of V2V to communicate the braking of other vehicles, but the 

assumption on V2V given in Section 7.3.3 is maintained. 

 

  Dynamic Braking Calculations 

Rajamani (2011) gave the equation of motion for a vehicle: 

 7BD = ��� Y  ��� n  ����� n <�� n <�� n 7)�14kOl (7-5) 

 

where ��� and ��� are the longitudinal tyre forces at the front and rear respectively, ����� is the aerodynamic drag force, 7 is vehicle mass, <�� and <�� are the Rolling 

Resistances at the front and rear respectively, BD  is the second differential of 
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displacement (acceleration), and O is the angle of incline. To simplify, the equation 

can be given as: 

 7BD = ��� ! n  �#�$%$&� '� (7-6) 

 

where ��� ! is the forces acting from the vehicle to accelerate it, or decelerate by 

braking, and �#�$%$&� '� is the total resistance forces of the aerodynamic drag, rolling 

resistance and gradient of incline. The motorway is assumed to be flat, meaning the 

gradient of incline is 0. Further on for simplicity, the forces of the front and rear axles 

will be calculated together, therefore �#�$%$&� '� can be described as follows: 

 �#�$%$&� '� =  ����� Y <� Y  7)�14kOl (7-7) 

 ����� = 12�
���k>� Y >A% �l� (7-8) 

 

where � is the density of air, 
� is the aerodynamic drag coefficient of the vehicle, �� 

is the largest cross sectional area of the vehicle, >� is the longitudinal speed, and >A% � is the headwind of the air the vehicle is driving through (assumed to be 0 for 

the simulation). A simplified equation for Rolling Resistance <� is adapted from Yin 

and Jin (2013): 

 <� =  
�7) (7-9) 

 

where 
� is the coefficient of rolling resistance.  

Rolling Resistance can be modelled more accurately with tyre pressures, but 

for the purposes of this simulation, the static calculation is sufficient to display the 

effect mass has on vehicle acceleration. 

 To evaluate dynamic braking, two vehicles with identical parameters are 

simulated which are slowing to a complete stop. The only difference is each vehicle’s 

mass. The parameters are given in Table 7-3. ��� ! is the braking force applied by 

the vehicle, determined by ��� ! = 7�, so a constant braking force for both vehicles 

is calculated by a desired rate of deceleration �. 
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Table 7-3 - Simulation Parameters 

Parameter Value 

Initial Velocity 30�/� 

Final Velocity 0�/� ��  2.5�R 
�  0.27 
�  0.011 

� 1.225�)/�R O 0�0)�00� ) 9.81�/�� � 7�/�� 

 

where �� is the cross-sectional area of the vehicle, 
� is the aerodynamic drag 

coefficient, 
� is rolling resistance coefficient, � is the density of air, and O is the 

gradient angle. 

The values for parameters 
� and 
� are typical values given for an 

aerodynamic sports coupe vehicle driving on concrete or asphalt used by Bosch 

(2014). �� is calculated by multiplying the maximum width and height of a Jaguar F-

type, JAGUAR LAND ROVER LIMITED (2016), which is a representative of the 

aerodynamic coupe described by parameters 
� and 
�. The area calculated is 

rounded to the nearest 0.1�� value. The only differing parameters are the masses of 

the two vehicles. Vehicle 1 has a mass of 1000�), while Vehicle 2 has a mass of 

2500�). 
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Figure 7-2 shows that the lighter Vehicle 1 is able to achieve the higher 

maximum deceleration of -7.48�/�� , whilst vehicle 2 can only achieve -7.26�/�� at 

an initial speed of 30�/�. This is only a 0.22�/�� difference, but this will have an 

effect on the velocity and displacements of these two vehicles. As the vehicles 

reduce velocity, the difference in deceleration reduces, but it is clear that a lower 

mass allows the vehicle to reduce its speed more.  

 

 

Figure 7-3 - Stopping Distances 

Figure 7-2 - Rates of Deceleration 
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 Figure 7-3 shows the effect the different decelerations have on the stopping 

distances of the vehicles. The lighter vehicle 1 is able to come to a complete stop at 

61.71�, whilst vehicle 2 takes 62.66�. This may not seem like a big difference 

(0.95�), but it does mean that the two vehicles will have different velocities and 

displacements at any given time, when only the mass parameter of the vehicles 

different.  

Furthermore, this is compared to a constant braking scenario, which without 

the resistant forces calculated for the vehicle, takes 64.32� to stop. When 

developing the decision making process, it is important to consider that changing the 

mass of the vehicles, changes the velocities and displacements also. Therefore, by 

changing one parameter, mass, actually two outputs of the simulation, velocity and 

displacement. This will only affect scenarios when testing vehicles of different 

masses, but it must be noted that these vehicles will have different impact velocities. 

Numerical Integration of Newton’s 2nd Law is used to calculate the velocity 

and displacement of a dynamic moving object, as long as the force is a function of 

time. This method is used by Bathe and Baig (2005), and Savage, P. G. (1998). The 

implementation of this method in the dynamic braking simulator, is done by 

employing cumulative trapezoidal integration. Trapezoidal integration is used to 

integrate discrete data when the time of the samples is known, as it is in this 

simulator. Trapezoidal integration is also used by Bathe and Baig (2005). 

 = =  Å � �2 (7-10) 

 B =  Å = �2 (7-11) 

 

  Dynamic Tyre Force Vehicle Dynamics Modelling 

In the dynamic braking simulator, it is necessary to perform a more detailed vehicle 

dynamics modelling in order to determine whether the vehicle will be able to perform 

the planned steering manoeuvre. In practise, a far more dedicated vehicle dynamics 

modelling would be employed to also assess tyre forces and vehicle roll. First, it is 

important to assess load distributions. Through the steering manoeuvre the load 

distributions will change due to the longitudinal and lateral accelerations. The load 

distribution can be described by the vertical load forces �, acting on the wheels. A 
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non-linear model given by Doumiati et al. (2009) examines the longitudinal and 

lateral accelerations coupling. 

 

 �Æ§Ç = 12 7 _/�/ ) n ℎ/ ��` n 7 _/�/ ) n ℎ/ ��` ℎ��) �	
�Æ§� = 12 7 _/�/ ) n ℎ/ ��` Y 7 _/�/ ) n ℎ/ ��` ℎ��) �	
�Æ�Ç = 12 7 È/�/ ) Y ℎ/ ��É n 7 È/�/ ) Y ℎ/ ��É ℎ��) �	
�Æ�� = 12 7 È/�/ ) Y ℎ/ ��É Y 7 È/�/ ) Y ℎ/ ��É ℎ��) �	

 (7-12) 

 

where �� and �	 are the longitudinal and lateral accelerations respectively, �� and �� 

are the track widths front and rear respectively, ℎ is the height of the CoM, / is the 

total wheelbase length, /� and /� are the distances from the CoM to the front and rear 

axles respectively, and 7 is vehicle mass.  

These equations build on from the simpler Overturning Speed calculation of 

Equation (7-4) and can calculate whether an individual wheel has no load. Therefore, 

whether a potential rollover may happen. This also considers the vehicle braking, as 

the �� value will cause a longitudinal load distribution. A lane-change manoeuvre is 

to be disqualified if any of the �Æ loads have a value 0 at any point during the 

manoeuvre. It is worth mentioning that the limitations described in Section 7.3.2.2 are 

also used to disqualify a manoeuvre. 
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Figure 7-4 demonstrates the vertical tyre forces acting on each wheel, as 

calculated in Equation (7-12). This example represents a manoeuvre from the centre 

lane into the adjacent left lane. Lateral weight transfer increases the vertical forces 

on the outside (right) wheels first, and conversely reduce the forces on the inside 

(left) wheels. When the manoeuvre requires a steering action to return the orientation 

to 0, a right turn is enacted and now the left wheels are the outside wheels and their 

vertical forces increase whilst the inner right wheels decrease vertical forces. It is 

also observed that the vertical forces on the front wheels are larger than the rear (on 

the same side of the vehicle). This is due to longitudinal weight transfer caused by 

the braking. At approximately 53� is when the steering manoeuvre ends, 

immediately afterwards a sudden decrease in vertical force is observed on the front 

wheels and increase on the rear wheels. At this brief time instant the vehicle applied 

no braking, which cause the front vertical forces to reduce, whilst increasing the rear 

forces. After this time instant, full longitudinal braking is applied, and the longitudinal 

weight transfer increases the vertical forces on the front wheels more than on the 

rear wheels. The left and right wheels of the same axles have equal vertical forces. 

 

 

Figure 7-4 - Vertical Tyre Forces 
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  Dynamic Braking Simulation Assumptions 

The assumptions listed in Section 7.3.3 remain true, except for the constant linear 

braking assumption. The additional assumptions are listed as: 

 Whilst the braking is calculated to be dynamic, a constant applied braking 

force is assumed for the calculations. This is a braking force calculated by 

Newton’s 2nd Law � = 7�, where the deceleration parameter � is simply a 

desired braking value. 

 The dynamic braking calculations rely more heavily on the capabilities of V2V, 

so it is critical that this information can be communicated fully and quickly. 

This builds on a previous assumption, however, if it can be demonstrated that 

an input parameter is required then it may be made available. 

 The vehicles behind will experience a time delay of 0.6711� before braking is 

applied. This is the same time delay as discussed in Section 7.3.1 from the 

Highway Code thinking distances. 

 

  Dynamic Braking Simulation Outputs 

The dynamic braking simulator can provide the following outputs for the decision 

making: 

 4 vehicle impact velocities for the 2 collisions in each lane (�/�) 

 Acceleration of Host Vehicle through manoeuvres (�/��), describing the 

severity of the manoeuvre itself. 

 Time-To-Collision (�) 

 Lanes disqualified due to vehicle limitations or collisions occurring before 

manoeuvres are complete. 

 

 Collision Severity 

 Kinetic Energy  

Potential collisions are simulated for given impact velocities and required braking 

rates, and a decision needs to be made on which lane the Host Vehicle should drive 

into. Some decision making processes need more information than is already 
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available, so extra calculations are needed to provide this information, as described 

in the following sections. The discussion on kinetic energy from Section 6.3.2 is 

developed, to be used to generate a metric which could be used by a decision 

making process. 

 

  Severity of Collision Described by Kinetic Energy 

A kinetic energy-based decision requires a number of calculations to be made. 

Firstly, all collisions are assumed to be inelastic, and using the conservation of linear 

momentum, a velocity of the vehicles can be calculated after the collision, as follows: 

 ; = 7= (7-13) 

 ∑; =  7K=K Y 7�=� (7-14) 

 ;������ =  ;��&�� (7-15) 

 =R =  ∑;k7K Y 7�l  (7-16) 

where 7 is Vehicle Mass, ; is momentum, = is vehicle velocity, and subscripts 1 and 

2 describe vehicles 1 and 2 respectively in the collision. =R is the velocity of Vehicles 

1 and 2 after they have inelastically combined.  

Now that a velocity after the impact has been calculated, kinetic energy 

values can be calculated for all vehicles in the collisions before and after the impact. 

Next, a difference in kinetic energy is calculated, which demonstrates how much of 

the kinetic energy before and after the collision is converted. This is an output that 

shows the severity of the collision, as energy will be transferred to deforming the 

vehicles, as well as sound and heat energy.  

 u�1 = 12 71=12 Y  12 72=22 (7-17) 

 u�� = 12 (71 Y 72lk=32l (7-18) 

 ∆u� =  u��  n  u�% (7-19) 

where u� denotes kinetic energy, and subscripts 1 and � denote the initial and final 

calculations respectively of the kinetic energy. 
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Equations (7-13) to (7-19) demonstrate a need for the input of Mass, and 

therefore it is assumed V2V communication from all simulated vehicles will 

communicate this parameter. 

 

  Kinetic Energy Decision Making Process 

Assuming that there are 3 lanes available for the Host Vehicle manoeuvre (Current 

Lane, adjacent left, adjacent right), and there is 1 vehicle ahead in each lane and 1 

vehicle behind in each lane, there are 6 vehicles for which ∆u� has to be calculated, 

as there are 6 potential collisions on which to base a decision. All collisions are 

considered to be independent of one another, meaning a collision with a vehicle 

behind in a lane does not affect the result for the collision with the vehicle ahead in 

the same lane. The parameters used in the benchmark simulation for kinetic energy 

are given in Table 7-4. 

 

Table 7-4 – Kinetic Energy Simulation Benchmark Parameters 

Parameter Value 

Mass of Vehicles Ahead 2000�) 

Velocity of Vehicles Ahead 70�9ℎ 

Headway Distance to Vehicles Ahead 15� 

Braking Values of Vehicles Ahead 7�/�� 

Mass of Vehicles Behind 2000�) 

Velocity of Vehicles Behind 70�9ℎ 

Headway Distance of Vehicles Behind 20� 
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The parameters affecting the Host Vehicle’s performance are adjusted also, 

given in Table 7-5. 

Table 7-5 - Host Vehicle Kinetic Energy Benchmark Parameters 

Parameter Value 

ACC Host Vehicle Following Time 1.4� 

Coefficient of Friction with Road 0.7 

Host Vehicle Maximum Lateral Acceleration 8.829�/�� 

(0.9))  

Host Vehicle Maximum Rate of Deceleration 9�/�� 

 

Using the Kinetic Energy Simulation Benchmark, 6 values for Kinetic Energy 

are produced, as given in Table 7-6. The current lane (CL) is referred to as Lane 2, 

adjacent left is Lane 1, and adjacent right is Lane 3. 

 

Table 7-6 - Kinetic Energy Example Simulation Values 

∆KE_Ahead Lane 1 (Ê) ∆KE_Ahead Lane 2 (Ê) ∆KE_Ahead Lane 3 (Ê) 

1.6653 * 1.0e^+4 0.7178 * 1.0e^+4 1.6653 * 1.0e^+4 

∆KE_Behind Lane 1 (Ê) ∆KE_Behind Lane 2 (Ê) ∆KE_Behind Lane 3 (Ê) 

0 5.2360 * 1.0e^+4 0 

 

where � denotes Joules. 

Assuming all lanes are available for the selection, the lane is chosen using 

the method proposed. For each lane its maximum ΔKE is determined, as 

demonstrated in Table 7-7 – Maximum ΔKE Values. 

Table 7-7 – Maximum ∆KE Values 

∆KE_Ahead Lane 1 (Ê) ∆KE_Behind Lane 2 (Ê) ∆KE_Ahead Lane 3 (Ê) 

1.6653 * 1.0e^+4 5.236. * 1.0e^+4 1.6653 * 1.0e^+4 
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Afterwards, the minimum of these maximum ΔKE is selected. This will 

therefore select the lane by avoiding the lanes with the largest ΔKE value. Due to 

Lane 2 having the highest maximum ΔKE value, Lane 2 is disqualified from further 

selection. However, as the Kinetic Energy Benchmark simulation demonstrates, there 

are 2 ΔKE values in Table 7-7 which are identical.  

Table 7-8 - Minimum ∆KE Values 

∆KE_Behind Lane 1 (Ê) ∆KE_Ahead Lane 2 (Ê) ∆KE_Behind Lane 3 (Ê) 

0 0.7178 * 1.0e^+4 0 

 

The minimum ΔKE values of Lanes 1 and 3 are then considered, and the 

minimum of these values is selected, making Table 7-8. However, again Lanes 1 and 

3 have identical ΔKE values. So, the final decision process is to select Lane 1, 

because on a motorway this would be the lane closest to the emergency lane (Hard 

Shoulder), and most likely to have the slowest traffic. 

 

 Kinetic Energy and Vehicle Mass  

Basing the decision to change lanes in the event of an emergency situation on a 

motorway on the difference in kinetic energy before and after the collision would 

appear to satisfy the requirement of selecting the lowest risk lane. However, the risk 

to the other vehicles involved in the collision needs to be considered also. The least 

severe collision must take into account the risk to the other vehicles, not just the Host 

Vehicle. Analyses of this issue is presented using the following scenario. 

 The Host Vehicle will be involved in an unavoidable collision and must select 

the lowest risk lane to drive into. There are 2 lanes to select from, and both have a 

vehicle ahead with which the Host Vehicle can collide. The two vehicles ahead are 

both stationary, 0�/�, and the host vehicle will collide with both at 10�/�. The only 

difference between the two vehicles ahead is their mass. The parameters for this 

scenario are given in Table 7-9. 
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Table 7-9 - Analysis Parameters 

Parameter Value 

Host Vehicle Velocity at Impact 10�/� 

Vehicles Ahead Velocity at Impact 0�/� 

Host Vehicle Mass 2000�) 

Vehicle Ahead 1 Mass 2500�) 

Vehicle Ahead 2 Mass 2100�) 

 

Using Equations (7-17) to (7-19) ΔKE for the two collisions is calculated as 

given in Table 7-10. 

 

Table 7-10 - Assessment Results 

 Impact with Vehicle 1 Impact with Vehicle 2 

∆KE 5.5556e+04 � 4.2857e+04 � 

Velocity of Vehicles Ahead after collision 4.4444 �/� 5.7143 �/� 

 

Assessing the ΔKE values only would suggest selecting Vehicle 2 to collide 

with, because it leads to the least amount of kinetic energy to be converted in the 

collision. However, assessing the velocity of that vehicle after the inelastic collision 

shows that it accelerates to a higher velocity than Vehicle 1. Selecting a vehicle to 

collide with based solely on kinetic energy difference could be described as selfish as 

the higher acceleration indicates greater risk of injury to the vehicle occupants. There 

is also an issue of assuming an inelastic collision because car crashes exhibit both 

plastic and elastic behaviours. Coon and Reid (2006) modelled a car crash as a 

certain portion of the kinetic energy was lost to the system in the form of deformation. 

They derive the ratio of the velocities before and after the impact as the coefficient of 

restitution, 0. 

 0 =  =K� n =��=� n =K (7-20) 
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where =K�  and =��  are the velocities of Vehicles 1 and 2 after the collision respectively. 

Brach and Brach (1998) gave equations of how the velocity of the vehicles involved 

in a collision has affected by the energy absorbed by the vehicle: 

 ∆=K =  ½ 2I9Kk�K Y ��l7Kk1 Y I9K7KI9�7�
              ∆=� =  ½ 2I9�k�K Y ��l7�k1 Y I9�7�I9K7K

 (7-21) 

 

where �K and �� are the Energy absorbed by Vehicles 1 and 2 respectively, I9K and I9� are parameters calculated as: 

 I9% =  ��%���%� Y ℎ%� (7-22) 

 

where ��% is the radii of gyration calculated by +% =  7%�%�, and ℎ% is perpendicular 

distance to the CoM of the vehicle from the line of action of the principle direction of 

force. Calculating �K and �� is vital for determining accurate values of kinetic energy 

of a collision and the final velocities. However, calculating the energy absorbed 

requires further simulation. Whilst the ΔKE values are one indication of the severity of 

a collision, there are other values which need to be assessed. Therefore, more in-

depth simulation of the vehicle’s crash energy dissipation is needed to evaluate the 

severity of the simulated collisions. 

 

  Collision Modelling 

Using Kinetic Energy does give an indication as to the severity of a collision. This 

process also has the benefit of producing an unbiased numerical value for the 

decision making process. However, the kinetic energy calculations do not take into 

account the performance of the vehicle’s crash structure. Using the experience 

gained from the collision modelling in Chapter 6, the collision severity can be 

dynamically assessed. 

For the collision modelling to be implemented in the motorway simulator and the 

decision making process a number of pessimistic assumptions are made. This is 

because the motorway simulation calculates the moment of impact and impact 

velocities for two separate collisions, including the collision between the Host Vehicle 
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and the vehicle ahead, and the collision between the Host Vehicle and the vehicle 

behind. Collisions between the Host Vehicle and vehicles in adjacent lanes with little 

or no headway distance will not be considered due to the collision occurring before a 

lane-change manoeuvre can be completed. This would result in that lane being 

disqualified from the decision making process. In reality, when one collision occurs, 

this will change the velocity and displacement of the second. There are also two 

possible orders that these collisions can occur, either: 

1. The Host Vehicle impacts the vehicle ahead, and then the vehicle behind 

impacts the lumped Host vehicle and vehicle ahead, or 

2. The vehicle behind impacts the Host Vehicle, then the lumped mass of the 

Host Vehicle and vehicle behind impacts the vehicle ahead. 

 

The pessimistic assumptions will assume the maximum velocity differences, to 

calculate the worst collisions. In order 1, the velocity of the Host Vehicle and vehicle 

ahead will be assumed as the minimum velocity of both vehicles. The calculated 

velocity of the vehicle behind will still be used for the second impact. In order 2, the 

velocity of the lumped Host Vehicle and vehicle behind after the collision will be 

calculated, and this will be used as the impact velocity into the vehicle ahead. This 

assumes no additional braking after the first impact. It is assumed that the worst-case 

impact speeds will lead to the worst collision to be considered by the decision making 

process which will decide on which collisions to avoid. The motorway simulation will 

determine what order the vehicles collide in, based on the time of moments of 

collision. 

Further assumptions that are made for the collision modelling to be combined 

with the dynamic braking simulator are: 

 Vehicle Mass and Crash Structure Spring Stiffness will be available, through 

V2V. This has been discussed in the assumptions of Sections 7.3.3 and 

7.4.3. 

 The Bilinear terms discussed in Section 6.2.5 used to model the crash 

structure behaviour will be assumed equal in all simulation scenarios. A future 

consideration can be on how these crash structure properties will be 

determined/communicated, but in this research all vehicles will assume 

identical crash structures. Only the mass and stiffness will change. The 

collision modelling parameters used for all vehicles are given in Table 7-11. 
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Table 7-11 - Collision modelling Parameters 

Parameter Value 

Bilinear Term 0.135 

Stiffness 886,009�/� 

Multiple of Stiffness 3.167 

 

Using the 4 vehicle impact velocities listed in Section 7.4.4 the collision 

modelling gives four vehicle accelerations. The vehicles ahead and vehicles behind 

in each lane, each have one acceleration value, and the Host Vehicle has two 

accelerations for each lane. Of course, one of these accelerations of the Host Vehicle 

will be shared with either a vehicle ahead or behind, depending on which collision 

occurs first. Along with the manoeuvre accelerations and times-to-collision these will 

be the inputs to the decision making process. This gives a total of 6 unbiased and 

uncorrelated criterion on which to base a decision. 

  

  Dynamic Braking Simulator Benchmark 

Parameters 

With the collision modelling introduced to the dynamic braking simulator, a 

benchmark scenario is defined as follows. The parameters defining the Host Vehicle 

are given in Table 7-12, and the Motorway Vehicles parameters are given in Table 

7-13. 
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Table 7-12 - Host Vehicle Dynamic Braking Simulator Benchmark Parameters 

Parameter Value 

Mass 2000�) 

ACC Following Time 1.4� 

Maximum Longitudinal Deceleration (Braking) 8�/� 

Maximum Lateral Acceleration (steering) 8.5�/� 

Height of CoM 0.5� 

Track Width Front Axle 1.65� 

Track Width Rear Axle 1.58� 

Longitudinal Distance from CoM to Front Axle 1.3� 

Longitudinal Distance from CoM to Rear Axle 1.4� 

Cross-Sectional-Area of Vehicle 2.5�� 

Aero Drag Coefficient 0.27 

Rolling Resistance Coefficient 0.011 

Coefficient of Friction between Tyre and Road 0.7 

 

Table 7-13 - Motorway Vehicles Dynamic Braking Simulator Benchmark Parameters 

Parameters Vehicle Ahead Vehicle Behind 

Mass 2000�) 2000�) 

Initial Velocity 70�9ℎ 70�9ℎ 

Headway Distance from Host Vehicle 12� -20� 

Inputted Deceleration -7�/�� -5�/�� 

Cross-Sectional-Area of Vehicle 2.5�� 2.5�� 

Aero Drag Coefficient 0.27 0.27 

Rolling Resistance Coefficient 0.011 0.011 
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 Simulator Flowcharts 

  Flowchart of Linear Simulator 

The Linear simulator begins by inputting all data about the motorway, the Host 

Vehicle, and the motorway vehicles. The simulator uses discretised time to 

synchronise all calculations, and therefore a simulation time Δ is defined. The time 

for the Host Vehicle to impact the vehicle ahead in the same lane is the first impact to 

calculate. Δ is set at twice this time period empirically, as testing has demonstrated 

that all collisions will have occurred within this Δ time sample. If a collision does not 

occur, then a collision avoidance can be observed.  

 Calculations for velocities and displacements for the vehicles ahead, and 

required braking distances for the vehicles behind are performed to determine the 

outputs of the simulator. Separation distances between the Host Vehicle and vehicles 

behind calculate when a collision will occur. The steering manoeuvre is also 

assessed for whether it can be completed before a collision occurs. This is used to 

determine any lanes that must be disqualified from the decision making process. The 

simulation ends once the outputs are defined. The simulator is represented in Figure 

7-5, and the symbols are described in Table 7-14. 

 

Table 7-14 - Flowchart Symbols 

Symbol Description 

 Process – Action Performed 

 Input – Incoming Data 

 Output – Outgoing Data, may also be used in simulation for other calculations 
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 Figure 7-5 - Linear Simulator Flowchart 
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  Flowchart of Dynamic Braking Simulator 

Just as the linear simulator described in Section 7.7.1 defines the discretised time, 

the dynamic braking simulator also defines the same value for Δ. The calculations for 

velocity and displacement are performed for the vehicles ahead and behind, which 

are compared with the same calculations for the Host Vehicle to determine 

separation distances. The steering manoeuvre is assessed for completion before a 

collision, which allows for the evaluation of whether lanes should be disqualified from 

the decision process. The impact velocities are used as inputs to the collision 

modelling, and once the outputs of this are calculated the simulation ends. The 

simulator is represented in Figure 7-6, using the same symbols as represented in 

Table 7-14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7-6 - Dynamic Braking Simulator Flowchart 



 Motorway Simulation 
 

178 
 

 Simulation Results 

  Linear Simulator Output Results 

14 scenarios are simulated to demonstrate how the linear simulator produces its 

outputs, and how they can compare. Scenario 1 is the benchmark described in 

Section 7.3.5. Scenarios 2 to 6, and scenarios 8 to 10 only change parameters 

describing the vehicles in the adjacent Lane 3. Lane 1 will represent the benchmark 

scenario for scenarios 2 to 10. For scenarios 1 and 11 to 14, Lanes 1 and 3 will have 

identical outputs and therefore do not need to be presented. Scenario 7 describes a 

change to the vehicles in Lane 2. Scenarios 11 to 14 are parameters that affect the 

Host Vehicle’s behaviour. 

 The results are presented in Table 7-15. Impact Velocity signifies the relative 

velocity difference between the Host Vehicle and vehicle ahead (�/�), Braking 

signifies the required braking of the vehicles behind to avoid an impact with the Host 

Vehicle (�/�2), and Manoeuvre signifies the maximum acceleration experienced by 

the vehicle to perform its intended manoeuvre (�/��). 

 It is noted that in Scenario 5, when the initial velocity of the vehicle ahead in 

Lane 3 is reduced to 50�9ℎ, Lane 3 is disqualified as the collision occurs before the 

steering manoeuvre is complete. In Scenario 12, with a reduced CoF, Lanes 1 and 3 

are disqualified as the required yaw rate to complete the manoeuvres exceeds the 

maximum allowable yaw rate due to friction.  

 Impact velocities are observed in Lane 3 when the headway distance ahead 

is reduced to 15�. This impact velocity actually reduces at headway distance 4�, 

and this is due to the vehicle ahead not having enough distance to brake sufficiently 

to reduce its velocity, therefore the relative velocity is lower with a lower initial 

headway. Impact velocities are also observed when the velocity ahead is reduced, or 

braking ahead is increased. If the headway behind is increased to 43�, this reduces 

the required braking of the vehicle behind in Lane 2 enough to be lower than the 

required braking of the vehicles behind in Lanes 1 and 3. Reducing the headway 

distance and increasing the velocity of the vehicle behind in Lane 3 causes the 

required braking to increase, whilst reducing the velocity reduces the required 

braking. 
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Table 7-15 - Linear Simulator Outputs 

 

Increasing the ACC following time improves all of the outputs for Lane 2, whilst also 

improving the manoeuvre acceleration for the adjacent lanes, but does increase the 

required braking of the vehicles behind in the adjacent lanes. This is due to the 

Scenario 
Parameter 
Changed 

 
Stay in Current Lane 2  

 
Steer into Adjacent Lane 3  

Impact 
Velocity 

( �/�) 

Braking  �/�� 

Manoeuvre  �/�� 

Impact 
Velocity 

( �/�) 

Braking  �/�� 

Manoeuvre  �/�� 

1 
Benchmark 
Scenario 3.79 8.29 9.00 0.00 6.52 8.46 

2 
Headway 
Ahead 

15� 3.79 8.29 9.00 5.77 6.52 8.46 

3 
Headway 

Ahead 4� 3.79 8.29 9.00 3.39 6.52 8.46 

4 
Velocity 
Ahead 

68�9ℎ 3.79 8.29 9.00 4.64 6.52 8.46 

5 
Velocity 
Ahead 

50�9ℎ 3.79 8.29 9.00 11.72 6.52 8.46 

6 
Braking 
Ahead 

7.5�/��   3.79 8.29 9.00 5.44 6.52 8.46 

7 

Headway 
Behind 
Lane 2 

43� 3.79 5.31 9.00 0.00 6.52 8.46 

8 
Headway 
Behind 

17� 3.79 8.29 9.00 0.00 7.23 8.46 

9 
Velocity 
Behind 

72�9ℎ 3.79 8.29 9.00 0.00 7.17 8.46 

10 
Velocity 
Behind 

68�9ℎ 3.79 8.29 9.00 0.00 5.93 8.46 

11 
ACC Time 

1.5� 0.52 8.12 8.63 0.00 6.52 7.95 

12 CoF 0.6 3.79 8.29 9.00 0.00 7.10 9.16 

13 
Max 
Overall g - 
0.8 3.79 8.29 9.00 11.30 5.40 7.44 

14 

Host 
Vehicle 
Braking 

8�/��  11.02 7.82 8.00 0.00 6.52 8.46 
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increased time allowed to complete the steering manoeuvre, which reduces the 

available braking distance for the vehicles behind. Reducing the maximum overall ) for the steering manoeuvres increases the impact velocity for the adjacent lanes, 

but reduces the required braking and manoeuvre acceleration. This result is due to 

the limited braking available when performing a steering manoeuvre as described by 

the tyre saturation. Reducing the maximum braking for the Host Vehicle does not 

directly affect the outputs for the adjacent lanes, as their braking values are 

determined by tyre saturation. The Host Vehicle’s braking does increase the impact 

velocity in Lane 2, which is directly affected. 

 

  Dynamic Braking Output Results 

The dynamic braking simulator produces more outputs which describe the severity of 

the collision. Therefore, only 5 scenarios will be demonstrated here which have a 

significant effect on the simulation results. The parameters for the vehicles in Lane 3 

will be adjusted. The benchmark scenario described in Section 7.6 is simulated and 

presented in Table 7-16. 

Table 7-16 - Dynamic Braking Simulator Benchmark Scenario Outputs 

 

Lane 1 Lane 2 Lane 3 

Vehicle Ahead Velocity (�/�) 9.119 0 9.119 

Host Vehicle Velocity Collision Ahead (�/�) 13.132 11.456 13.132 

Host Vehicle Velocity Collision Behind (�/�) 3.692 10.358 3.692 

Vehicle Behind Velocity (�/�) 12.689 21.425 12.689 

Manoeuvre Acceleration (�/��) 8.776 8.310 8.776 

Time-To-Collision (�) 3.080 2.417 3.080 

Lanes Open 1 1 1 

 

The benchmark has demonstrated that the results for Lanes 1 and 3 are 

identical. The velocities of Lane 2 are higher than those of Lanes 1 and 3, except for 

the vehicle ahead which is 0m/s. this describes that vehicle is at a full-stop. A 

collision occurs earlier if the Host Vehicle stays in Lane 2, and will have more time to 
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react if it moves into either Lane 1 or 3. All lanes demonstrate similar manoeuvre 

accelerations and all lanes are open, meaning that all lanes will be considered in the 

decision making process. The velocity outputs of Table 7-16 correspond to the 

following collision accelerations presented in Table 7-17. 

Table 7-17 - Dynamic Braking Simulator Benchmark Scenario Collision Accelerations 

 Lane 1 Lane 2 Lane 3 

Collision Acceleration Vehicle Ahead ()) 3.974 12.683 3.974 

Host Vehicle Collision with Vehicle Ahead ()) 3.974 12.683 3.974 

Host Vehicle Collision with Vehicle Behind ()) 5.657 7.222 5.657 

Collision Acceleration Vehicle Behind ()) 11.314 14.443 11.314 

 

The collision acceleration results presented in Table 7-17 demonstrate that 

for all vehicle collisions, the highest accelerations are experienced in Lane 2. The 

highest acceleration is for the vehicle behind, which is in line with the results 

presented in Table 7-16. The vehicle behind in Lane 2 had the highest impact 

velocity, and this impact will occur with the mass of the Host Vehicle and the vehicle 

ahead, as that collision occurs before the collision behind. 
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 The next scenario will change the initial headway distance of the vehicle 

ahead in Lane 3 from 12� to 7�. 

Table 7-18 - Dynamic Braking Simulator Outputs - Headway Ahead Distance 7m 

 

Lane 1 Lane 2 Lane 3 

Vehicle Ahead Velocity (�/�) 9.119 0 16.935 

Host Vehicle Velocity Collision Ahead (�/�) 13.132 11.456 21.929 

Host Vehicle Velocity Collision Behind (�/�) 3.692 10.358 3.692 

Vehicle Behind Velocity (�/�) 12.689 21.425 12.689 

Manoeuvre Acceleration (�/��) 8.776 8.310 8.776 

Time-To-Collision (�) 3.080 2.417 1.986 

Lanes Open 1 1 0 

 

There are only 3 differences between the outputs presented in the benchmark 

(Table 7-16) and the simulation of a reduced headway presented in Table 7-18. The 

impact velocities of the vehicle ahead, and the Host Vehicle into the vehicle ahead 

are higher, but the relative velocity between the two is approximately 5m/s which is 

still lower than the relative velocity of Lane 2. However, Lane 3 is described as 

disqualified due to the collision ahead occurring before the lane-change manoeuvre 

can be completed. 

Table 7-19 - Dynamic Braking Simulator Collision Accelerations – Headway Ahead Distance 7m 

 Lane 1 Lane 2 Lane 3 

Collision Acceleration Vehicle Ahead ()) 3.974 12.683 5.018 

Host Vehicle Collision with Vehicle Ahead ()) 3.974 12.683 5.018 

Host Vehicle Collision with Vehicle Behind ()) 5.657 7.222 5.657 

Collision Acceleration Vehicle Behind ()) 11.314 14.443 11.314 

 

Table 7-19 demonstrates that although Lane 3 is disqualified, the collision 

accelerations of the vehicle ahead and Host Vehicle demonstrate the effect of the 
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relatively small impact velocity compared to their actual velocities at the moment of 

impact. Both accelerations are considerably lower than their counterparts in Lane 2. 

 

 The initial headway distance of the vehicle behind in Lane 3 is now reduced 

from 20� to 10�. 

Table 7-20 - Dynamic Braking Simulator Outputs – Headway Behind Distance 10m 

 

Lane 1 Lane 2 Lane 3 

Vehicle Ahead Velocity (�/�) 9.119 0 9.119 

Host Vehicle Velocity Collision Ahead (�/�) 13.132 11.456 13.132 

Host Vehicle Velocity Collision Behind (�/�) 3.692 10.358 15.602 

Vehicle Behind Velocity (�/�) 12.689 21.425 20.255 

Manoeuvre Acceleration (�/��) 8.776 8.310 8.776 

Time-To-Collision (�) 3.080 2.417 2.868 

Lanes Open 1 1 1 

 

Table 7-20 shows that the collisions ahead are identical for Lanes 1 and 3, 

but as the headway distance behind is reduced, the impact velocities for the Host 

Vehicle and vehicle behind in Lane 3 are higher than those of Lane 1. All lanes are 

open, but one important difference is that in Lane 3 the collision behind occurs before 

the collision ahead. 

Table 7-21 - Dynamic Braking Simulator Collision Accelerations – Headway Behind Distance 
10m 

 Lane 1 Lane 2 Lane 3 

Collision Acceleration Vehicle Ahead ()) 3.974 12.683 11.044 

Host Vehicle Collision with Vehicle Ahead ()) 3.974 12.683 5.522 

Host Vehicle Collision with Vehicle Behind ()) 5.657 7.222 4.652 

Collision Acceleration Vehicle Behind ()) 11.314 14.443 4.652 
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Table 7-21 demonstrates the effect of the collision behind occurring before 

the collision ahead in Lane 3 has affected the collision accelerations for all impacts. 

The combined mass of the Host Vehicle and vehicle behind impacting into the rear of 

the vehicle ahead has increased that vehicle’s acceleration result. It has also 

reduced the acceleration values for the vehicle behind and the Host Vehicle’s impact 

with the vehicle behind compared to Lane 1. 

 

 The mass of the vehicle ahead in Lane 3 is now reduced from 2000�), to 

1000�). 

Table 7-22 - Dynamic Braking Simulator Outputs – Vehicle Ahead Mass 1000kg 

 

Lane 1 Lane 2 Lane 3 

Vehicle Ahead Velocity (�/�) 9.119 0 9.786 

Host Vehicle Velocity Collision Ahead (�/�) 13.132 11.456 14.208 

Host Vehicle Velocity Collision Behind (�/�) 3.692 10.358 3.692 

Vehicle Behind Velocity (�/�) 12.689 21.425 12.689 

Manoeuvre Acceleration (�/��) 8.776 8.310 8.776 

Time-To-Collision (�) 3.080 2.417 2.948 

Lanes Open 1 1 1 

 

Reducing the mass of the vehicle ahead in Lane 3, as presented in Table 

7-22, does not drastically change the simulator’s outputs from the benchmark 

presented in Table 7-16. There is a small change to the impact velocities of the 

vehicle ahead and Host Vehicle, but this is to be expected as the lower mass will 

have affected the braking of the vehicle ahead, as described in Section 7.4.1. 
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Table 7-23 - Dynamic Braking Simulator Collision Accelerations – Vehicle Ahead Mass 1000kg 

 Lane 1 Lane 2 Lane 3 

Collision Acceleration Vehicle Ahead ()) 3.974 12.683 7.110 

Host Vehicle Collision with Vehicle Ahead ()) 3.974 12.683 3.555 

Host Vehicle Collision with Vehicle Behind ()) 5.657 7.222 7.097 

Collision Acceleration Vehicle Behind ()) 11.314 14.443 10.646 

 

Although only minor changes to the outputs of the simulator presented in 

Table 7-22 are observed, there are more considerable changes to the collision 

accelerations presented in Table 7-23. The lighter mass of the vehicle ahead in Lane 

3 has nearly doubled the collision acceleration, compared to the same collision in 

Lane 1. This effect is also observed by the Host Vehicle and vehicle behind, which 

both have lighter masses to collide with. The acceleration for the Host Vehicle 

colliding with the vehicle behind has increased, as the overall mass of the Host 

Vehicle and vehicle ahead is now reduced. 

 

The final scenario presented will increase the Host Vehicle’s maximum lateral 

acceleration from 8.5�/�� to 10�/��. This will affect the tyre saturation braking for 

the steering manoeuvres. 

Table 7-24 - Dynamic Braking Simulator Outputs – Host Vehicle Lateral Acceleration 10m/s2 

 

Lane 1 Lane 2 Lane 3 

Vehicle Ahead Velocity (�/�) 0 0 0 

Host Vehicle Velocity Collision Ahead (�/�) 0 11.456 0 

Host Vehicle Velocity Collision Behind (�/�) 7.117 10.358 7.117 

Vehicle Behind Velocity (�/�) 16.088 21.425 16.088 

Manoeuvre Acceleration (�/��) 9.007 8.310 9.007 

Time-To-Collision (�) 3.623 2.417 3.623 

Lanes Open 1 1 1 
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The increased available lateral acceleration for the Host Vehicle has had a 

considerable effect of the simulator outputs presented in Table 7-24. The Host 

Vehicle collision with the vehicle ahead displays impact velocities of 0m/s for Lanes 1 

and 3. This means that a collision avoidances has been achieved. However, 

compared to the benchmark presented in Table 7-16, the impact velocities with the 

vehicle behind have increased. 

Table 7-25 - Dynamic Braking Simulator Collision Accelerations – Host Vehicle Lateral 
Acceleration 10m/s2 

 Lane 1 Lane 2 Lane 3 

Collision Acceleration Vehicle Ahead ()) 0 12.683 0 

Host Vehicle Collision with Vehicle Ahead ()) 0 12.683 0 

Host Vehicle Collision with Vehicle Behind ()) 9.562 7.222 9.562 

Collision Acceleration Vehicle Behind ()) 9.562 14.443 9.562 

 

This effect of the increased impact velocities for the collision behind is 

presented in Table 7-25. Compared to Table 7-17, the Host Vehicle’s acceleration 

has increased, whilst the vehicle behind has reduced. The collision avoidance is also 

represented, which informs the acceleration results for the collision behind in Lanes 1 

and 3. With no impact ahead, the vehicle behind only has the mass of the Host 

Vehicle to collide with. The Host Vehicle acceleration increase and vehicle behind 

acceleration decrease is consistent with this observation. 

 

 Simulator Performance 

Two simulators are developed which can be employed to determine the outputs for a 

decision making process to decide on the best action for an autonomous vehicle to 

take when faced with an imminent collision. One simulator assumes constant braking 

described in Section 7.3, which is capable of performing its calculations without V2V 

to communicate vehicle parameters. The second simulator assumes dynamic braking 

featured in Section 7.4. The dynamic braking simulator is entirely dependent on the 

capabilities of V2V. 
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 Both simulators are investigated for their advantages and disadvantages for 

application to a real autonomous vehicle. The usefulness of accuracy of the outputs 

is compared. The implementation issues and computational requirements of both 

simulators are also investigated. 

 

  Simulator Computational Time 

It is stated that the dynamic braking simulator produces more comprehensive and 

useful output data, but this simulator is far more complex than its linear counterpart. 

In fact, the dynamic simulator is split into several simulators working together, which 

suggests a large computational effort needed compared to the linear simulator. 

Therefore, times to complete the calculations in the simulators will be compared. 

 It must be noted that these simulations are run using a PC. The simulations 

are run using MATLAB 2016a, on a 3.10q�r processor with 8q� RAM and 4 cores.  

Car ECUs are dedicated to performing a defined task, whereas PCs are adaptable to 

different programmes. It is taken into account that background applications are 

running on the PC, which will slow down the computational time. The times 

presented are intended only as a demonstration of the differences between the two 

simulators. The times presented vary, so each simulation is run 3 times, and an 

average is taken. The timing is using the internal wall-clock time. These times are 

used to compare the differences between the simulators, and presented in Table 

7-26. 

Table 7-26 - Total Simulation Times 

 

Simulation Runs (�) Average 

(�) 1 2 3 

Linear Braking Simulator 0.046 0.068 0.070 0.062 

Dynamic Braking Simulator 5.767 5.784 5.801 5.784 

 

There is a significant difference in simulation times between the linear braking 

(non-V2V) simulator and dynamic braking (V2V) simulator. The required outputs of 

the linear braking simulator are produced, on average, within 0.07�, whilst the 

dynamic braking simulator takes an average of greater than 5.7�. The dynamic 
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braking simulator does perform far more accurately, and it performs more complex 

calculations. However, this system is intended for use in an emergency situation and 

waiting 5.7� for the required outputs is impossible. 

 A closer look at the dynamic braking simulations demonstrates the complexity 

of this simulator as presented in Table 7-27. This simulator carries out three distinct 

simulations for the Host Vehicle and the Motorway Vehicles. It is clear that the most 

time consuming task is calculating the dynamic braking of the motorway vehicles, 

where in total 6 vehicles are simulated. Furthermore, calculating just the Host 

Vehicle’s behaviour takes nearly 1�.  

Table 7-27 - Dynamic Braking Simulator Times 

 

Simulation Runs (�) Average 

(�) 1 2 3 

Host Vehicle Simulation 0.984 0.984 0.981 0.983 

Motorway Vehicles Simulation 4.783 4.800 4.820 4.801 

 

The collision modelling that takes place after the dynamic braking simulations 

is more computationally heavy, as presented in Table 7-28.  

Table 7-28 - Collision Modelling Simulator Times 

 

Simulation Runs (�) Average 

(�) 1 2 3 

Collision Modelling 45.307 45.864 45.813 45.661 

 

The times presented in Table 7-28 are not practical for a real-world scenario 

where a decision must be made very quickly. The times presented represent 6 

separate collision modelling simulations, 3 for the collisions ahead of the Host 

Vehicle, and 3 for the collisions behind the Host Vehicle.  
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  Simulator Implication 

It is clear that the dynamic braking calculations require significantly more 

computational effort than the linear simulator. The dynamic braking simulator relies 

on V2V, but this could be used to a simulator’s advantage. The Host Vehicle 

calculates the velocities and displacements of all motorway vehicles, requiring 

parameters such as rolling resistance <� and aerodynamic drag 
� to be 

communicated. Furthermore, it would be beneficial if each vehicle calculates its own 

velocities and displacements, and simply communicate those data sets. This means 

that the time required to do the motorway vehicle simulation can be improved. All 

vehicles would need to use the same time sampling rate, but again V2V would 

synchronise all vehicle’s outputs together. This is in line with Kamali et al. (2017) who 

discussed the importance of vehicle-to-vehicle synchronisation, as well as the issues 

with its implication for highway platooning systems.  

 As autonomous vehicles will need to plan their velocities and displacements 

to perform any manoeuvre, it is reasonable to assume that these results of the Host 

Vehicle and Motorway Vehicles will already be available. The Host Vehicle simulation 

can be shortened to calculate the steering manoeuvre and its limitations, as well as 

the separation distances between all vehicles. A time-based synchronisation of V2V 

communication would be required. It is worth noting that this is required in the patent 

of Rubin and Betts-Lacroix (2016).  

 

  Future Considerations for Improvements 

The time taken for the Host Vehicle simulation and collision modelling raised a 

concern, but the times presented in Section 7.9.1 are based on the computational 

ability of a PC. Autonomous vehicles will need significant computational power to 

perform all control activities. Hou et al. (2016) noted the required increase of 

communication and computational capability for autonomous vehicles and suggested 

vehicular clouds to be used as data centres and augmented processing resources. 

Computational tasks can be handled by parked vehicular clouds at company car 

parks, or communication resources can be shared, and messages be transmitted by 

collaborating vehicular clouds. 

 It is likely that the control systems for a single autonomous vehicle will require 

many cores to compute many calculations for many systems, not just a collision 
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avoidance/mitigation simulator. This is an issue that affects not only the implication of 

the simulators developed here, but all control systems on autonomous vehicles. 

 Due to the future developments of autonomous vehicle control architectures, 

it is assumed that the computational effort required to run the simulators and decision 

making processes will not be an issue, for both the linear and dynamic braking 

simulators.  

 

  Motorway Simulation Conclusions 

Two simulators which can assess potential collisions between a Host Vehicle and 

simulated motorway vehicles ahead and behind are developed. The first simulator 

relies on constant braking assumptions and is intended for use when V2V 

communication is not available to provide data important for the calculation of 

dynamic braking and factors inputted for collision modelling. The SUVAT equations 

used to simulate velocity and displacement for all vehicle works significantly faster 

than the dynamic braking calculations, and so this simulator would be more easily 

introduced to a current autonomous vehicle, requiring sensors on board to determine 

the initial velocities, accelerations and displacements of the motorway vehicles. 

However, the outputs produced are limited in describing the severity of the collision.  

To provide necessary inputs to the kinetic energy modelling, assumed braking 

values are required for the vehicles behind. However, the limitations of the kinetic 

energy modelling demonstrated the need for the collision modelling discussed in 

Chapter 6. The calculation of kinetic energy requires V2V to communicate mass of 

vehicles. However, if V2V is available then the more complex collision modelling to 

be included in the decision making on the least severe collision would be more 

appropriate. Without V2V, the linear braking simulator is limited in the outputs and in 

order to reduce the reliance on the assumptions, the impact velocities with the 

vehicles behind will no longer be used. The required braking of these vehicles will be 

used to describe the available braking distance and initial velocity of the vehicles 

behind for the decision making process.  

 The second simulator is a dynamic braking simulator developed which is 

based on input parameters that are assumed to be available by V2V. They are used 

to calculate dynamic braking which is combined with the collision modelling given in 

Chapter 6. This dynamic braking simulator produces outputs that better describe the 
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collision severity, and so would be preferable for the decision making process, but it 

cannot be guaranteed that V2V will be available all of the time from all vehicles. It is 

also significantly more computationally heavy, and so future developments on 

computational power of autonomous vehicles is needed. 

 Both the non-V2V and V2V simulators will continue to develop in this 

research, to decide on how a decision can be made from the available outputs. The 

simulators and their outputs are tested with the decision making process developed 

in Chapter 8. It is intended that the dynamic braking simulator working with V2V is 

the preferred simulator, but the non-V2V linear simulator is developed as a back-up 

when the ideal situation of fully V2V capable vehicles is not available. 

 

 

 

  



 Motorway Simulation 
 

192 
 

 

 

 

 



 MADM Methods in Selection of the Lane for Collision 
 

193 
 

 

 

                

MADM Methods in 

Selection of the Lane for 

Collision  

 

 

 Introduction 

The simulators developed in Chapter 7 produce outputs which describe the severity 

of potential collisions in three lanes of a motorway. A decision making process is 

required to assess the outputs from the simulator, and select the lane which will 

result in the least severe collisions. The Multi-Attribute Decision Making (MADM) 

methods discussed in Chapter 3 are appropriate. 
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 The MADM methods are discussed in this chapter, and three methods are 

selected for further investigation. These three methods are the most appropriate for 

the research problem. The methods which are not investigated further are discussed 

for their disadvantages to the research problem. Each of the methods selected for 

further investigation are described for how they work, giving a practical 

demonstration of the steps to these processes. All methods use the linear braking 

benchmark scenario given in Chapter 7 to demonstrate the MADM processes. 

 

 MADM Terminology 

Criterion – This is a metric by which the decision will be based upon.  

Alternatives – These are the possible choices, which are available lanes. Each Lane 

will have a value for each criterion listed. 

Goal – The Goal is to select the Alternative (Lane) which will result in the least 

severe outcome. The least severe results are the optimal values for each criterion. 

Attribute Value – Refers to the value of each alternative for a given criterion.  

Priority Vector – This is a normalized vector (unit vector) describing how each 

criterion is weighted, more important criteria will have a higher priority number. 

Decision Matrix – A matrix of the attribute values for each alternative against each 

criterion. 

 

It is important before employing any decision-making technique to define the Goal, 

Criteria and Alternatives. An important requirement of the criteria is that they cannot 

correlate. Correlating criteria can influence the decision process, as multiple criteria 

will bias the decision in favour of a certain alternative. 

 The three methods selected for further investigation are TOPSIS, AHP and 

ANP, and will be explained using the benchmark scenario defined in Section 7.3.5. 

This will illustrate the decision making process.  
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The following criteria are used: 

Criteria 1. Impact velocity with vehicles ahead. 

Criteria 2. Required braking of vehicles behind. 

Criteria 3. Maximum manoeuvre acceleration. 

 

The criteria presented describe the severity of the imminent collisions, whilst 

also having no correlation between other criteria. The criteria are calculated using the 

developed simulators in Chapter 7. 

 

 MADM Methods in Selection of the Lane 

for Collision 

Thor, Ding, and Kamaruddin (2013) discussed the controlled consistency that AHP 

and ELECTRE featured, which SAW and TOPSIS did not. It is stated that TOPSIS 

was not an inferior method to AHP or ELECTRE, as TOPSIS employs a 

compromising idea in which the optimal solutions is obtained by the optimal attribute. 

No arguments arise regarding consistency due to each alternative being compared 

with the ideal solution. AHP is inferior to SAW, ELECTRE and TOPSIS regarding the 

structure of the problem, because when numerous criteria and alternative are 

concerned AHP cannot be employed. ELECTRE only provided partial pre-ordering, 

which makes it inferior to the other methods discussed regarding the final result. 

Further investigation of the results is required to obtain each alternative’s final 

ranking. TOPSIS is described as being relatively simple to implement, whilst also 

being suitable for large-scale data. For these reasons, ELECTRE will not be 

investigated due to the requirement of further investigation due to the partial pre-

ordering. SAW will also be discounted due to its lack of controlled consistency, which 

is important for ensuring all alternatives are assessed equally. This is mostly 

important with the assessment of subjective values, i.e. the criteria weights. Although 

the simulator outputs are all objective and the weighting methods for all MADM 

methods will be the same, the SAW method is also discounted due to its similarity 

with AHP. The AHP method has a similar process, by employing vector normalization 

as a standard principle to remove scale from the decision. 

Thor, Ding, and Kamaruddin (2013) note the lack of controlled consistency for 

TOPSIS is not an issue due to the method which finds the ideal solution. And the 
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small number of alternatives and criteria which limits the performance of AHP is also 

not an issue, as there will be a limited number of alternatives and criterion for this 

decision-making algorithm.  

Therefore, further investigation into TOPSIS and AHP will be conducted, see 

Sections 8.3.1 and 3.3.4. ANP method will also be investigated, which evolves on the 

AHP method, see Section 3.3.5. 

The objective assessments from the simulators are objective, and so are 

considered to be consistent. The decision maker needs to process the objective data 

from the simulator effectively. In this case a normalization technique is used to format 

the results into a useful format for further processing. Saaty (2000) describes the 

benefit of employing vector normalization to remove scale from the decision process. 

Dominance numbers arise from an absolute scale which can be appropriately 

weighted by other numbers added.  

 

 TOPSIS Method 

The TOPSIS method has been applied to a wide variety of decision making 

problems, and adapted to suit their individual needs. The application of TOPSIS 

follows the following steps: 

Step 1. Define the weights of criteria, 3e. Each criterion is given a weight on a scale 

from 1 to 10. The weighting system is fairly simple, each criterion is ranked out of 10 

for importance (10 is the highest importance, 1 is the lowest importance). This scale 

is determined by the designer of the decision-making problem. The weighted criteria 

are normalized and form a normalized Priority Vector, given in Table 8-1.  

 

Table 8-1 - TOPSIS weighting of Criteria and Priority Vector 

Criteria 1 2 3 

Normalized Priority Vector 0.657 0.254 0.090 

 

 

Step 2. Standardise the Decision Matrix given in Table 8-2. This is necessary so that 

each alternative can be assessed across criteria in a dimensionless format. The 

Alternatives for TOPSIS are standardised using the technique described by Yoon 
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and Hwang (1995), where the rating of each attribute value is calculated by Equation 

(3-1). The standardised decision matrix is given in Table 8-3. 

 

Table 8-2 - Decision Matrix simulation values 

 Criterion 1 Criterion 2 Criterion 3 

Alternative Lane 1 0 42.537 7.289 

Alternative Lane 2 14.355 68.752 8.257 

Alternative Lane 3 0 42.537 7.289 

 

Table 8-3 - Decision Matrix Standardised 

 Criterion 1 Criterion 2 Criterion 3 

Alternative Lane 1 0 0.526 0.565 

Alternative Lane 2 1 0.669 0.601 

Alternative Lane 3 0 0.526 0.565 

 

Step 3. Calculate the weighted standardised decision matrix. The decision matrix 

which was standardised in Step 2 (Table 8-3) has each attribute value multiplied by 

its corresponding weight from the Priority Vector (Table 8-1). 

 

 2%e =  3e�%e ,     1 = 1, . . . , �;     c = 1, . . . , 4 (8-1) 

 

where wÌ is the weight of the jth attribute of the criteria, �%e is the standardised rank 

value of the attribute, and 2%e is the weighted standardised value of each attribute. 

The weighted decision matrix is given in Table 8-4. 

Table 8-4 - TOPSIS Weighted Decision Matrix 

 Criterion 1 Criterion 2 Criterion 3 

Alternative Lane 1 0 0.133 0.051 

Alternative Lane 2 0.657 0.170 0.054 

Alternative Lane 3 0 0.133 0.051 

 

 

Step 4. Determine the Ideal �∗ and Negative Ideal �J Solutions. These are the 

artificial alternatives determined from the weighted decision matrix (Step 3). The 

most desirable value for all criteria forms the Ideal solution, and the least desirable 

values form the Negative Ideal Solution. This is done depending on whether each 
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criterion is minimized or maximized for values of =%e . For the linear braking simulator, 

all three criteria have to be minimized to form the Ideal solution. 

The ideal and negative ideal solutions for each criterion are given in Table 

8-5. It is noted for the Non-V2V benchmark scenario that Alternatives 1 and 3 are 

identical. 

 

Table 8-5 - TOPSIS Ideal and Negative Ideal Solutions 

 Criterion 1 Criterion 2 Criterion 3 

Ideal Solution �∗ 0 0.133 0.051 

Negative Ideal Solution �J 0.657 0.170 0.054 

 

Step 5. Calculate the separation from the Ideal j∗ and Negative Ideal jJ Solutions 

for each weighted attribute 2%e. The distance is calculated by Euclidean Distance. For 

a 4 criteria decision, the distance is calculated by Yoon and Hwang (1995): 

 j%∗ =  ½ÏX2%e n 2e∗Z� 
egK , 1 = 1, . . . , �. (8-2) 

 j%J =  ½ÏX2%e n 2eJZ� 
egK , 1 = 1, . . . , �. (8-3) 

where 2e∗ is the ideal attribute value for criterion c, and 2eJ is the negative ideal 

attribute value for criterion c.  
 The ideal and negative ideal solutions are given in Table 8-6. 

Table 8-6 - TOPSIS Ideal Solution Matrix 

 j%∗ j%J 

Alternative Lane 1 0 0.658 

Alternative Lane 2 0.658 0 

Alternative Lane 3 0 0.658 

 

 

Step 6. The Relative Closeness 
%∗ of each alternative to the Ideal Solution is 

calculated by Yoon and Hwang (1995): 

 
%∗ =  j%JXj%∗ Y j%JZ  ,      1 = 1, . . . , �. (8-4) 
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The relative closeness ranks for the presented example are given in Table 8-7. 

 

Table 8-7 - TOPSIS Relative Closeness 

 Closeness 

Alternative Lane 1 1 

Alternative Lane 2 0 

Alternative Lane 3 1 

 

Step 7. Select the optimal alternative by ranking the respective relative closeness, 

and select the alternative which is closest to 1. In the linear braking benchmark 

scenario Alternatives 1 and 3 result in the ideal ranks of 1. In this scenario the default 

decision is to select the lowest number alternative, as this represents the motorway 

lane closest to the emergency lane. 

 

  Analytical Hierarchy Process Method 

The application of AHP follows these steps: 

Step1. Define the weight of each pairwise criterion in the criteria weight matrix �. 

Each criterion is compared with each other criteria (Pairwise). The method for 

assessing pairwise comparisons uses values of 1 for equal weights, 2 to 9 where 2 

represents a slightly more important criterion and 9 describes an extremely more 

important criterion, and the reciprocal of 2 to 9 to represent less important criterion, 

as described by Saaty and Vargas (2004). The pairwise rating of the criteria are 

given in Table 8-8. 

Table 8-8 - AHP Criteria Pairwise Weighting 

 Criterion 1 Criterion 2 Criterion 3 

Criterion 1 1 1/4 1/6 

Criterion 2 4 1 1/3 

Criterion 3 6 3 1 

 

 

The grey shaded boxes show that when one criteria is compared against 

itself, it must always have a value of 1. Criterion 1 of impact velocity is ranked as the 

most important. Criterion 3 of manoeuvre acceleration is ranked as the least 
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important. As criterion 2 of required braking of the vehicles behind relies on the 

assumption that the vehicles can achieve that braking value, it is considered less 

important than the impact velocity ahead, but more important than the manoeuvre 

acceleration. 

 

Step 2. Normalize the weights of the criteria to create the Priority Vector (the 

normalized eigenvector of the matrix). Normalization is described by Saaty (1990) as 

the total dominance of the alternatives being compared to obtain the distribution of 

criterion priorities to each alternative corresponding to the relative dominance of the 

alternative. This process removes the scale of the attributes from influencing the 

decision. The normalized column sums technique to calculate the unit vector is given 

by Equation (3-2). The normalized priority vector is presented in Table 8-9. 

 

Table 8-9 - AHP Priority Vector 

Criteria 1 2 3 

Normalized Vector (Priority Vector) 0.657 0.254 0.090 

 

Step 3. Calculate the consistency of these subjectively assessed criterion weights. 

Consistency ensures that all subjective judgements have been assessed fairly.  

Saaty uses the eigenvector method to calculate consistency. In this example only the 

criteria weight matrix � is a judgement matrix. The �3 matrix is formed by multiplying 

each criteria attribute value by the priority vector calculated in step 2. �3 is used to 

determine the maximum eigenvalue Ð��� by the following equation: 

  

 �3 =  Ð���3 (8-5) 

 

  The columns of the �3 matrix are summed and divided by the priority vector 

to give a numerical rank of each criterion. The newly calculated vector is then 

averaged to calculate the Ð���. This maximum eigenvalue is used to calculate the 

consistency index. 

The consistency Index (
+) is calculated next using the formula from Saaty 

and Vargas (2004): 

 

 
+ =  kÐ��� n 4lk4 n 1l  (8-6) 
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where 4 is the number of criteria. 

The consistency ratio (
<) is calculated by dividing the consistency index by 

the corresponding Random Consistency Index number, given by Saaty and Vargas 

(2012) in Table 8-10. The value is a percentage indicating consistency of subjectively 

assessed values. The adjustment is small compared to the actual values of the 

eigenvector entries if there is an inconsistency of 10 percent or less. 

A greater percentage will need the judgements of the priority vector to be 

reassessed, as this indicates that the subjective judgements are inconsistent. 

Table 8-10 - AHP Random Consistency Index Numbers 

n 1 2 3 4 5 6 7 

Random Consistency Index Number 0 0 0.52 0.88 1.11 1.25 1.35 

 

 
. <. = 
. +.<. +. (8-7) 

 

For the application of AHP here, only the priority vector weights are 

subjectively assessed, and so consistency of the decision matrix will not be required 

as this matrix is objectively determined from outputs produced by the simulators. The 

inconsistency of discrete data will always be zero. For the proposed example, the 

Consistency Ratio is calculated to be 7.57%, using Equations (8-5) to (8-7). 

 

Step 4. The decision matrix with the objective attribute values from the simulator for 

each alternative against each criterion must be normalized, using Equation (3-2). The 

quantitative attributes allow for immediate vector normalization, without the need to 

pairwise compare or assess inconsistency, (Saaty and Vargas, 2012). The Decision 

Matrix given in Table 8-2 is normalized and presented in Table 8-11. 

 

Table 8-11 - Vector Normalized Decision Matrix 

 Criterion 1 Criterion 2 Criterion 3 

Alternative Lane 1 0 0.306 0.326 

Alternative Lane 2 1 0.389 0.347 

Alternative Lane 3 0 0.306 0.326 
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Step 5. Multiply the normalized decision matrix by the priority vector normalized 

weights, as given in Table 8-12. 

Table 8-12 - AHP Weighted Rank Matrix 

 Criterion 1 Criterion 2 Criterion 3 

Alternative Lane 1 0 0.078 0.029 

Alternative Lane 2 0.658 0.099 0.031 

Alternative Lane 3 0 0.078 0.029 

 

Step 6. Calculate the weighted rank vector by summing all attributes for each 

alternative, as given in Table 8-13. 

 

Table 8-13 - AHP Weighted Rank Vector 

 Rank 

Alternative Lane 1 0.107 

Alternative Lane 2 0.786 

Alternative Lane 3 0.107 

 

Step 7. Select the optimal alternative by ranking the respective weighted rank vector. 

Note, for a minimizing optimization this will be the value closest to 0, for a maximizing 

optimization the value closest to 1 will be selected. In this case, Alternatives 1 and 3 

are the optimal choice, and Lane 1 will be selected, as this is closest to the 

emergency lane. 

 

  Analytical Network Process Method 

As ANP refers to a network it does not follow the hierarchical process of AHP. The 

criteria can affect the alternatives, but the alternatives can now affect the criteria as 

well. The nodes of this model need to be defined, as the feedback can influence 

nodes. The nodes are defined as the overall Goal, the Criteria and the Alternatives. 

The method is as follows: 

Step 1. Calculate the Priority Vector of criteria weights, in the same way as for AHP 

Method (see Table 8-9). 

 

Step 2. Use the Decision Matrix of normalized alternative attributes given in Table 

8-11 to calculate the weighted ranks of the alternatives given in Table 8-12 by AHP 

Method. From this step, a rank of alternatives could be calculated, as with the AHP 
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method, but ANP introduces another consideration of the influence each alternative 

has on the decision made. This gives the ANP process a way to reassess the rank 

values produced, even change the rank order if criterion are assessed to be less 

important on the decision made. 

 

Now the feedback of ANP is introduced with the Supermatrix as follows: 

Step 3. Assess the influence of the attributes with respect to the criteria. For each 

criterion, determine which attribute best satisfies the goal. Normalize the alternative 

attributes, assessing how much of an influence each attribute has on satisfying the 

goal, as presented in Table 8-14 using Equation (3-2).  

Table 8-14 - ANP Weighted Ranks of Alternatives 

 Alternative Lane 1 Alternative Lane 2 Alternative Lane 3 

Criteria 1 0 0.576 0 

Criteria 2 0.484 0.224 0.484 

Criteria 3 0.516 0.200 0.516 

 

This matrix is transposed as represented in Table 8-14, to insert it into the 

Supermatrix in Table 8-15. 

 

Step 4. Create the Supermatrix by starting with an Identity Matrix, which includes the 

nodes of goal, criteria, and alternatives. Input the Weighted Decision Matrix, the 

Normalized Alternative Values, and the Priority Vector. To aid with demonstrating 

how ANP is used, Table 8-15 shows how the matrices and vector are inputted into 

the Supermatrix. 
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Table 8-15 - Supermatrix of ANP Method 

 

 

 

 

 

 

 

 

 

 

 

Table 8-15 demonstrates how the Supermatrix is formed as shown by Goepel 

(2011). The yellow boxes are the priority vector values calculated in Step 1. The 

orange boxes illustrate the decision matrix calculated in Step 2. The blue boxes 

illustrate the influence of attributes calculated in step 3, and it is these attribute 

values that will be used to tune the criteria for greater or lesser importance. The Grey 

boxes indicate a value of 1, as any Criteria or Alternative rated against itself has a 

value of 1. The red boxes will indicate the final normalized ranks of the alternatives. 

 

Step 5. Calculate the Limit Supermatrix, by raising the Supermatrix’ power to �+1. 

The value of � is the power to which the matrix converges in successive iterations (all 

values in each row are identical). The value of � is the power by which the 

Supermatrix is raised. It must be high enough, so the matrix fully converges. A loop 

calculation could find � exactly, but this would take greater computational effort. For 

simplicity, � should be set to a high value, which would mean only one calculation as 

represented in Equation (3-3). The limit Supermatrix is given in Table 8-16. 

Note: the Supermatrix must be stochastic by columns, this is so when 

calculating the Limit Supermatrix it will converge when raising the matrix powers 

successively.  
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Table 8-16 – Limit Supermatrix of ANP Method 

 

 

Step 6. Normalize the clusters of nodes. A normalized value for criteria and for 

alternatives form the result of the Limit Supermatrix. The normalized alternatives are 

represented by the red boxes (Table 8-15). The normalized criteria will show the 

influence each criterion had on the decision due to the introduced feedback. The 

alternative ranks are normalized using Equation (3-2), and are given in Table 8-17. 

 

Table 8-17 - ANP Normalized Alternative Ranks 

 Rank 

Alternative Lane 1 0.211 

Alternative Lane 2 0.579 

Alternative Lane 3 0.211 

 

 

Step 7. Select the optimal alternative from the normalized values. For a minimizing 

objective, this will be the value closest to 0. Therefore, the normalized alternative 

ranks for Lanes 1 and 3 have the values closest to 0. Alternative Lane 1 is selected 

because of the default decision described in the TOPSIS Step 7 that when there are 

two or more identical rank values, it is the lowest lane number selected as this is the 

lane closest to the emergency lane. 
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 MADM Conclusions 

The simulators developed in Chapter 7 can be used to obtain values of a number of 

criteria by which to base a decision on the best lane the autonomous vehicle to be in 

regarding a potential collision. This data needs to be evaluated so a reliable decision 

can be made, instructing the autonomous vehicle to drive towards the best lane.  

The MADM methods select the best choice from a discrete number of alternatives. In 

this research, the alternatives are lanes available for the Host Vehicle to select from. 

The decision is based on the criteria which are described by the outputs of the 

simulators presented in Chapter 7. There is also the added benefit of weighting the 

criteria, to give certain criteria greater influence on the decision made.  

 Several MADM methods are evaluated, and three methods have been 

selected for further investigation due to their suitability to the research problem. 

These methods are TOPSIS, AHP and ANP. These methods are selected due to the 

decision output that they provide. They are used to select the best choice lane 

without a further investigation of the results. They all employ normalizing or 

standardizing techniques to make an unbiased decision. The MADM methods are 

demonstrated using the linear braking benchmark scenario described in Chapter 7. 

 In this thesis AHP and ANP are investigated with a single structure of criteria. 

It is possible for these methods to structure the hierarchy with sub-criteria. This 

means that the problem can be decomposed into a hierarchy of interrelated 

elements, as described by Tzeng and Huang (2011). This gives the potential for 

further development into the structuring of hierarchy and including more criteria if this 

can be demonstrated to improve the performance of the MADM methods regarding 

the decisions made.  

 The three MADM methods selected can be employed with the developed 

simulators. The decisions made by these MADM methods will be investigated. All 

three methods will be tested with the Non-V2V Linear Braking Simulator and V2V 

Dynamic Braking Simulator described in Chapter 7, to observe whether the methods 

can determine the best lane for the Host Vehicle to drive into with the aim of avoiding 

or mitigating imminent collisions. 
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Simulation Results  

 

 

 Introduction 

The simulators and decision methods will be tested against several scenarios, which 

will assess how a specific parameter inputted to the simulator will affect the results 

calculated and then the decision made. The decision will recommend the safest lane 

for the Host Vehicle to drive into. The simulations will also evaluate any possible 

limitations of the simulators and decision processes, such as decision making 

processing time and when the simulator cannot calculate potential secondary 

collisions, stating implementation challenges and when the simulators and MADM 

decision processes cannot be used. 

 The scenarios are confined to the limitations of the simulator, which is set to 

calculate the behaviours of vehicles in a motorway setting. The simulators are limited 

to simulating motorway scenarios on a straight road. The Host Vehicle occupies the 
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middle lane of a three-lane motorway; there are also vehicles occupying all lanes of 

the motorway ahead and behind the position of the Host Vehicle. The simulators will 

calculate the severity of six potential collisions, between the Host Vehicle with the 3 

vehicles ahead, and the 3 vehicles behind. 

 

 Motorway Simulation Scenarios 

The MADM methods will be tested across different scenarios. The two simulator 

results (Non-V2V and V2V) will be used first with the benchmark scenarios defined 

for both simulators in Chapter 7. Further, in each simulation scenario only one 

parameter will change from the benchmark parameters. Each parameter change is 

evaluated with respect to how this affects the simulations results, and then the 

MADM output. The Non-V2V simulator and the outputs of the MADM methods will be 

assessed in Section 9.5, and the V2V simulator and the MADM method’s outputs in 

Section 9.6. 

 The decision processes involve mathematical methods, so there needs to be 

a way to evaluate if the “correct” decision is made. For this reason, an Observer’s 

decision is required. The Observer’s decision is a human assessment of the available 

simulation results. The simulation values are used to make a human decision on 

what is thought to be the best lane choice. This Observer’s choice is considered to 

be correct, and each MADM method has its lane selection choice compared with this 

human decision. Each MADM method is evaluated on how often it agrees with the 

Observer’s decision, as a measure to determine the best MADM method for the 

applied simulators and scenarios. 

 

 Using Simulator Results in MADM 

Methods 

  Non-V2V Simulator 

Without V2V communication, there is limited information available to the MADM 

methods, which cannot describe the severity of the collisions as well as when V2V is 

available. Impact velocity and required rate of deceleration (braking) are indications 
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of collision severity and will be used as the criterion for the MADM methods. Impact 

velocity is a parameter that is used for the calculation of collision severity by the 

collision modelling, and so it is relevant for assessing collision severity. In the case 

when V2V communication is not available, an assumed constant braking value is 

needed for the calculation of the vehicles ahead velocities and displacements. The 

Host Vehicle calculates the initial deceleration at time=0 for the vehicles ahead. This 

is an assumption, but needed to be made for a useful output of the decision process. 

For the vehicles behind that have not yet begun to communicate their deceleration 

rates, the required rates of deceleration are available, assuming a lower stopping 

distance and a higher initial velocity to result in a higher impact velocity meaning a 

more severe collision. The manoeuvre acceleration is the third criterion to describe 

the severity of the collision, as the manoeuvre itself could cause injury to vehicle 

occupants. 

 

  V2V Dynamic Braking Simulator  

With V2V available to communicate vehicle parameters such as mass and crash 

structure stiffness for the collision modelling, the vehicle accelerations during the 

collisions can be calculated. V2V is also assumed to communicate the dynamic 

braking of all vehicles for calculating their velocities and displacements.  

The velocities at impact of the vehicle ahead and the Host Vehicle produce 

one impact velocity. Similarly, the velocities of the Host Vehicle and vehicle behind 

produce another impact velocity. These calculations are repeated for each lane. They 

are used as criterion for the MADM, as well as the Time-To-Collision and Manoeuvre 

acceleration results from the dynamic braking simulator. In an ideal situation all 

vehicles would communicate the required information, because this method can only 

be used if this information is available.  

  

 MADM Criteria Weights 

As there are two simulators with different criteria, two sets of criteria weights are 

defined. As the weighting method for AHP and ANP is limited to the Pairwise 

Comparison method of Saaty and Vargas (2004), and the TOPSIS weighting method 
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is less strict, all methods will use the same criteria weights. They form a Priority 

Vector for each of the simulators. 

 The criterion weighting for the Non-V2V simulator (Table 9-1) sets the most 

important criterion as the Impact Velocity with the vehicles ahead, as this will directly 

describe the severity of a collision. The Required Braking of the vehicles behind will 

indirectly describe the severity of the collision, as a lower braking value is desirable 

but will need the rate of deceleration of the vehicles behind to assess the true effect. 

The vehicles behind are further away from the initial hazard of the vehicle ahead 

coming to a sudden stop. Therefore, it is assumed that they will not react to the 

hazard as quickly as the Host Vehicle. Also, V2V communication can warn vehicles 

about the hazard, so they can then communicate a braking value, even before it is 

enacted. As the Non-V2V simulator does not have this feature available, a required 

braking value will need to suffice. The Manoeuvre Acceleration is the least important 

criterion, as it is the collisions that are the priority in making the decision. This is used 

as a criterion to describe the severity of the manoeuvre itself, as a sudden lane 

change or full braking could result in injury to the vehicle occupants if they are not 

fully restrained. The occupants could be injured by colliding with the interior of the 

car. The weights are set by the author of this thesis. 

 

Table 9-1 - Non-V2V Criterion Pairwise Weighting 

 Impact Velocity 

Ahead (�/�) 

Required Braking 

of Vehicle Behind 

(�/��) 

Manoeuvre 

Acceleration (�/��) 

Impact Velocity Ahead    

(�/�) 
1 1/4 1/6 

Required Braking of 

Vehicles Behind (�/��) 
4 1 1/3 

Manoeuvre Acceleration 

(�/��) 
6 3 1 

 

The eigenvector analysis of the weights from Table 9-1, gives a consistency 

ratio of 7.57% from Step 3 of the AHP method, described in Section 8.3.2. As this is 



 Simulation Results 
 

211 
 

a measure of inconsistency, and it must not exceed 10%, it can be concluded that 

the defined weights can be applied to the decision process. The resultant priority 

vector is given in Table 9-2, and is determined by Step 2 in Section 8.3.2. 

 

Table 9-2 - Non-V2V Priority Vector 

 Impact Velocity Ahead Required Braking of 

Vehicles Behind 

Manoeuvre Acceleration 

Priority 

Vector 
0.6567 0.2537 0.0896 

 

The criterion weighting for the V2V simulator (Table 9-3) is set so that the 

relative impact velocities of the Host Vehicle impacting the vehicle ahead, and 

vehicle behind impacting the Host Vehicle are equal to each other. The impact 

velocities are more important criterion compared to the Manoeuvre Acceleration and 

Time-To-Collision. Manoeuvre Acceleration is more important than Time-To-

Collision, as this will directly affect the comfort of the vehicle occupants. Time-To-

Collision is the least important criterion, as this gives an indication to how much time 

the Host Vehicle has to react, but the other criteria describe the direct effect of the 

collisions and manoeuvres. Therefore, it has the lowest weight. 

Table 9-3 - V2V Criterion Pairwise Weighting 
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Collision Acceleration 1 1 1 1 1 1/3 1/7 

Collision Acceleration 2 1 1 1 1 1/3 1/7 

Collision Acceleration 3 1 1 1 1 1/3 1/7 

Collision Acceleration 4 1 1 1 1 1/3 1/7 

Manoeuvre Acceleration 3 3 3 3 1 1/5 

Time-To-Collision 7 7 7 7 5 1 
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The pairwise comparison of Saaty and Vargas (2004) gives a structured 

method to give subjective ratings. This method also allows for slight inconsistency, as 

discussed in Section 3.3.4, for the assessment. The resultant priority vector is given 

in Table 9-4. 

Table 9-4 - V2V Priority Vector 
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Priority Vector 0.2150 0.2150 0.2150 0.2150 0.1126 0.0272 

 

The priority vector is determined by Step 2 of Section 8.3.2. The consistency ratio for 

the defined weights of Table 9-4 is 2.47%, and so can be applied as a consistent 

priority vector to the decision process. The consistency ratio is calculated from Step 3 

of the AHP method in Section 8.3.2. 

 Included in the simulation results is the Lanes Open criteria. This is not a 

criteria used in the MADM decision calculations, as this is a limit. 1 signifies an open 

lane, whereas 0 signifies a disqualified lane which will not be included in the available 

alternatives. Therefore, Lanes Open will not need a criteria weight. 

 

 Non-V2V Linear Braking Simulations 

The non-V2V simulator are tested against the set parameters to see how each 

parameter will affect the results of the simulation and then the decision made. For the 

parameters that will change the behaviours of the motorway vehicles, the sensitivity 

analysis will aim to determine what values will influence a decision, i.e. a different 

lane to be selected. These parameters are examined in Sections 9.5.7 to 9.5.11. 

First, Sections 9.5.2 to 9.5.6 will analyse the Host Vehicle’s performance, and the 

limits of the Host Vehicle to perform lane-change manoeuvres will be tested. Section 

9.5.1 is the benchmark scenario from which the simulation results and MADM 

decisions will be compared. 
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 Benchmark Simulation 

The benchmark simulation will examine the decision made using the parameters set 

given in Table 7-1 and Table 7-2 in Section 7.3.5.  The benchmark simulation results 

are presented in Table 9-5. 

 

Table 9-5 - Benchmark Simulation Results 

  Lane 1 Lane 2 Lane 3 

Impact Velocity Ahead (�/�) 0 3.7888 0 

Required Braking of Vehicles Behind (�/��) 6.522051 8.29168 6.522051 

Manoeuvre Acceleration (�/��) 8.455976 9 8.455976 
Lanes Open 1 1 1 

 

Across all of the criteria, Lane 2 has the most severe criteria values. It demonstrates 

the highest Impact Velocity with the vehicle ahead, the highest required braking of 

the vehicles behind to avoid collision, and the highest acceleration for the 

manoeuvre. Lanes 1 and 3 have a value of 0 for the Impact Velocity Ahead, which 

signifies a collision avoidance as there is no impact velocity. Lanes 1 and 3 have 

identical values and so in this situation the decision will default to the lowest Lane 

number, as Lane 1 will be closer to the emergency lane should emergency vehicles 

be required. Therefore, the Observer’s decision is to select Lane 1 as the benchmark 

decision. All lanes are ‘open’ as indicated by a number 1, therefore all are available 

and used in the decision process. The Lanes Open signifies that all lanes are open 

and therefore available as alternatives for the MADM decision. 

 

Table 9-6 - Benchmark Simulation Decision 

  Lane 1 Lane 2 Lane 3 

Lane 

Select 

TOPSIS 1 0 1 1 

AHP 0.106786 0.786428 0.106786 1 

ANP 0.210674 0.578653 0.210674 1 

 

Table 9-6 demonstrates that all three MADM methods select Lane 1 as the best lane 

choice, agreeing with the Observer’s decision. A closer look at how the methods rank 

each alternative shows that TOPSIS is fully supporting either Lane 1 or 3, as the 
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intention of TOPSIS is to select the rank closest to 1. For AHP and ANP the decision 

is to select the alternative closest to 0. Lane 1 is closer to 0 for AHP than ANP. It 

must be stressed that AHP and ANP vector normalize their ranks, so a value of 0 will 

likely never occur, while a value of 1 occurs in TOPSIS. 

 The ranks of Table 9-6 demonstrate that for the benchmark simulation, all 

three methods have performed in the same way, as expected, because Lane 1 has 

the lowest values of all the criteria, and agreed with the Observer’s decision. 

 

 Host Vehicle ACC Following Time 

Firstly, the ACC Following Time is set to 1.4�. The lowest time this parameter can be 

set to is 1.35�, as any lower value will cause Lanes 1 and 3 to be disqualified due to 

not having enough longitudinal distance for the steering manoeuvres to be completed 

before collision with vehicles ahead. 

From a Host Vehicle ACC Following Time of 1.6� and greater, the longitudinal 

distance to complete the steering manoeuvre becomes so great that a collision 

occurs with vehicles behind before the steering manoeuvre is complete. This 

disqualifies Lanes 1 and 3 when the Host Vehicle ACC Following Time is 1.6� and 

greater. A 0.2� operating window from 1.35� to 1.55� does not seem desirable to use 

as a greater operating range would be preferred. However, one must be reminded 

that this is based on the benchmark scenario. If the headway distances for the 

vehicles behind were increased, then a different decision would have been available. 

For comparison, the ACC time is set to 2.0�, and the rear Headway distance of Lane 

3 is set to 34�. In this scenario the decision is to select Lane 3, whilst Lane 1 is still 

disqualified, as represented in Table 9-7.  

 

Table 9-7 - ACC Simulation Results 

  Lane 1 Lane 2 Lane 3 

Impact Velocity Ahead (�/�) 0 0.458931575 0 

Required Braking (�/��) 6.516618076 7.187138264 4.760085184 

Manoeuvre Acceleration (�/��) 6.553902773 6.76329643 6.553902773 

Lanes Open 0 1 1 
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Immediately Lane 1 is disqualified, so the decision has to be made between 

Lanes 2 and 3. Lane 3 has 0m/s impact velocity and a lower required braking from 

the vehicle behind, so Lane 3 is the Observer’s decision. 

 

Table 9-8 - ACC Decision Ranks 

  Lane 1 Lane 2 Lane 3 

Lane 

Select 

TOPSIS DQ 0 1 3 

AHP DQ 0.85483474 0.14516526 3 

ANP DQ 0.703145238 0.296854762 3 

 

All the MADM methods agree with the Observer’s decision in Table 9-8, DQ denotes 

a disqualified lane from the decision making process. It is noted that between AHP 

and ANP, it is AHP that seems closer to 0 for the preferred alternative, which 

suggests that AHP is more confident in its decision. For ANP the feedback gives a 

greater weight to the Manoeuvre Acceleration, and reduces the weight of Impact 

Velocity Ahead.  

 

 Coefficient of Friction 

The coefficient of friction CoF between the tyre and road is set to 0.7 in the 

benchmark. Lowering this to 0.65 causes disqualification for Lanes 1 and 3, due to 

the yaw rate S@  required to complete the manoeuvre exceeding the yaw rate limit S@��%'&%� , and also because the skidding speed calculated in Equation (7-3) is 

exceeded by the vehicles speed during the manoeuvre. Both of these 

disqualifications are due to the high yaw rate required to complete the manoeuvre. In 

order for a manoeuvre to be completed at a lower CoF, the manoeuvre yaw rate 

needs to be reduced. This is done by increasing the longitudinal distance for the 

lane-change manoeuvre, which is done by increasing the ACC Following Time and 

Headway Distances for the vehicles ahead. Conversely, increasing the CoF to 0.8 

allows for a minimum ACC Following Time of 1.25�. 
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Table 9-9 - CoF Simulation Results 

  Lane 1 Lane 2 Lane 3 

Impact Velocity Ahead (�/�) 10.84549 9.9358 10.84549 

Required Braking (�/��) 5.570096 8.29168 5.570096 

Manoeuvre Acceleration (�/��) 8.691042 9 8.691042 

Lanes Open 1 1 1 

 

Lanes 1 and 3 do have slightly higher Impact Velocities than Lane 2, but there is a 

more considerable difference in the Required Braking of the vehicles behind, 

suggesting that the vehicle behind in Lane 2 will collide with greater severity. The 

Observer’s Decision is to select Lane 1. 

 The closer alternative values given in Table 9-9 led to the closer ranks given 

in Table 9-10. However, all of the three MADM methods select Lane 1 as the best 

choice.  

 

Table 9-10 - CoF Decision Ranks 

  Lane 1 Lane 2 Lane 3 

Lane 

Select 

TOPSIS 0.648856 0.351144 0.648856 1 

AHP 0.327435 0.345131 0.327435 1 

ANP 0.319666 0.360668 0.319666 1 

 

 

The testing of CoF does indicate one concern with the lateral acceleration. 

The Yaw Rate limit is used to calculate the maximum possible lateral acceleration, 

which then calculates the braking for the steering manoeuvre. The higher CoF 

actually reduces the steering manoeuvre braking. In reality, if the CoF were to 

increase then so would the overall manoeuvre acceleration, which calculates a 

braking value with tyre saturation. Simulation results support this; the benchmark 

steering manoeuvre’s braking value is 5.5494�/��, but if the CoF is increased to 0.8 

and the overall manoeuvre acceleration to 1.0) then the lane-change braking value 

is 5.886�/��. The velocity of the Host Vehicle through the lane-change manoeuvre 

will reduce more than the benchmark simulation lane-change manoeuvre. This 
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concludes that the higher the CoF, the greater the available braking for a lane-

change manoeuvre which increases the rank preference to change lanes. 

 

 Maximum Host Vehicle Deceleration 

The maximum deceleration of the Host Vehicle is applied when the Host Vehicle 

stays in the current lane and there is no steering manoeuvre to account for. The 

braking of the Host Vehicle through a steering manoeuvre is affected by the 

maximum braking value only when the maximum braking is less than the lane-

change manoeuvre braking as determined by the tyre saturation in Equations (5-14) 

to (5-18). For the benchmark scenario, the tyre saturation calculation in Equation (5-

18) determined the lane-change manoeuvre braking to be -5.5�/��.  

 The testing shows that increasing the maximum braking increases the 

required braking of the vehicle behind in the same lane, so effectively reducing the 

severity of one collision increases the severity of another. This is why an additional 

step has been added; the required braking for the Host Vehicle is to come to a full 

stop just before impacting the vehicle ahead is determined. For the benchmark 

scenario this is calculated as -9.13�/��. This ensures no impact with the vehicle 

ahead, but also aims to reduce the severity of a collision with the vehicle behind. In 

this case the required braking of the vehicle behind is -8.35�/��, which is higher 

than the values for Lanes 1 and 3, and so it does not change the decision to Lane 1. 

The rank values for this scenario are given in Table 9-11. 

 

Table 9-11 - Host Vehicle Deceleration - Collision Avoidance Ahead 

  Lane 1 Lane 2 Lane 3 

Lane 

Select 

TOPSIS 1 0 1 1 

AHP 0.106786 0.786428 0.106786 1 

ANP 0.210674 0.578653 0.210674 1 
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 Host Vehicle Overall Manoeuvre Acceleration 

Section 9.5.3 discusses the importance of overall manoeuvre acceleration for the 

lane-change manoeuvre braking value, which is influenced by the CoF. When the 

value of the overall acceleration is set to 0.7) and below, the resultant acceleration 

available for braking as determined by the tyre saturation in Equations (5-14) to (5-

18) is 0. At 0.75) the resultant braking is -2.64�/��. As the overall acceleration 

increases, so does the resultant braking for the lane-change manoeuvres. 

 At 1), the rate of deceleration of the Host Vehicle is so high that it results in 

an impact with the vehicles behind before the manoeuvre is complete, therefore 

disqualifying Lanes 1 and 3. Increasing the initial headway distance of the vehicles 

behind does allow for those Lanes to remain open. 

 

A sensitivity analysis is displayed graphically, plotting how the rank of each 

lane changes with the varying Host Vehicle Overall Manoeuvre Acceleration 

parameter. The three methods are plotted separately, but it must be remembered 

that for the TOPSIS graph the desired Lane is plotted higher up the graph (closer to 

1), whereas for the AHP and ANP plots the desired lanes is plotted closer to 0. 

Figure 9-1 has identical rank values for Lanes 1 and 3, because these lanes have 

identical alternatives values. 

Figure 9-1 - Host Vehicle Overall Manoeuvre Acceleration Sensitivity Analysis 
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 Figure 9-1 demonstrates that for both TOPSIS and AHP from 0.5) to 0.85) 

the preferred choice is Lane 2, and then Lanes 1 and 3 are preferred from 0.9) to 

0.95). At 1) Lanes 1 and 3 are disqualified, so Lane 2 is again the preferred choice. 

TOPSIS and AHP agree with the Observer’s decision, but ANP gives preference to 

Lanes 1 and 3 from 0.5) to 0.7). From 0.75) to 0.85) the rank of ANP is very close 

between all three Lanes, but it is Lane 2 which is preferred. This is not a desirable 

result from ANP for accelerations below 0.7). The feedback has increased the 

weight of the least important criterion, and reduced the weight of the most important 

as set by the Priority Vector. 

 

 Host Vehicle CoM Height 

The height of the Centre of Mass (CoM) determines if the Host Vehicle will overturn 

for the steering manoeuvre, as determined by Equation (7-4). The benchmark sets 

this height at 0.5�. The highest that the CoM can be before the Overturning Speed 

limits a lane choice is 1.21� in the benchmark scenario. In order for the CoM to be 

raised, the track widths must also be increased to prevent the vehicle from 

overturning through the lane-change manoeuvres. The CoM height does not affect 

the results between Lanes 1 and 3, and so the decision is no different. It is only once 

the CoM height is high enough to result in the vehicle overturning that the decision 

changes, by disqualifying Lanes 1 and 3. The CoM height does not require further 

investigation, as this is a simple static calculation given in Equation (7-4) which 

determines if a manoeuvre can proceed without the vehicle rolling over.  

 

 Initial Velocity of Vehicles Ahead 

The initial velocity of the vehicle ahead in Lane 3 is varied from 52.5�9ℎ to 75�9ℎ. 

At initial velocities below 52.5�9ℎ a collision occurs before a steering manoeuvre is 

complete. It is also observed that from an initial velocity of 69�9ℎ and higher in 

Lanes 1 and 3, there is no collision ahead, therefore Lanes 1 and 3 will always have 

a collision avoidance. At the simulated initial velocities of 52.5�9ℎ to 75�9ℎ, the 

collision avoidance of Lane 1 is the preferred choice lane for all three MADM 

methods. The decision process only looks at the potential impact speeds, so does 

not see a difference between initial velocities of 69�9ℎ to 75�9ℎ as they all result in 

collision avoidance, which is why from 69�9ℎ to 75�9ℎ the rank of Lane 3 is 
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identical to Lane 1. When ranks are equal the decision defaults to the lowest lane 

number, so Lane 1 is always selected for this analysis. 

 

 Initial Headway Distance to Vehicles Ahead 

It is observed that the initial headway distance for the vehicle ahead in Lane 3 as low 

as 4� can still be enough to avoid a collision before the steering manoeuvre is 

complete. A headway distance of 18� and greater, results in no collision for Lanes 1 

and 3. 

 Figure 9-3 demonstrates that Lane 1 is always the preferred choice with a 

collision avoidance, and for all of the MADM methods, Lane 3 has the same rank as 

Lane 1 from 18� onwards. The results of TOPSIS and AHP are similar, as Lane 2 

has a better rank than Lane 3 from 6m to 16m. All of the three MADM methods 

selects Lane 1 even if Lane 3 has a greater initial headway distance, because in the 

decision process the impact velocity is 0 (collision avoidance) and this is the metric 

that informs the decision. 

 

 

 

Figure 9-2 - Initial Velocity of Vehicle Ahead in Lane 3 Sensitivity Analysis 
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 Braking Values of Vehicles Ahead 

The deceleration of the vehicle ahead in Lane 3 will now be varied from 0�/�� to      

-14.5�/��. With a rate of deceleration greater than -14.5�/��, a collision occurs 

before the lane-change manoeuvre is complete. 

Figure 9-3 - Initial Headway Distance of Vehicle Ahead in Lane 3 Sensitivity Analysis 

Figure 9-4 – Deceleration for Vehicle Ahead in Lane 3 Sensitivity Analysis 
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All of the three MADM methods preferred the collision avoidance in Lane 1. 

Lane 3 has an identical rank value up to -7�/��, because from -8�/�� and greater, 

a collision occurs in Lane 3. All of the MADM method decisions correlate from            

-9�/�� to prefer Lane 2 over Lane 3, due to the considerably larger impact velocities 

occurring in Lane 3 as a result of increasing the braking values of the vehicles ahead 

in this lane. Again, as there is no difference to the MADM methods regarding the 

collision avoidance, all of the MADM methods select Lane 1 for all of the deceleration 

values simulated. 

 

 Initial Velocity of Vehicles Behind 

Testing the simulator demonstrated that the highest initial velocity of the vehicle 

behind in Lane 3 that will still allow a lane-change manoeuvre to be completed before 

impact is 73�9ℎ. 

 

Although the difference in rank is small, all of the three MADM methods agree 

with the observer’s decision for each velocity simulated. From 65�9ℎ to 69�9ℎ the 

preferred choice is Lane 3, which has the lower initial velocity (see Figure 9-5). This 

means the vehicle in Lane 3 will have a lower impact velocity. From 70�9ℎ and 

Figure 9-5 - Initial Velocity of Vehicle Behind in Lane 3 Sensitivity Analysis 
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greater the preferred choice is now Lane 1, which remains at an initial velocity of 

70�9ℎ. 

 

 Initial Headway Distance to Vehicles Behind 

The simulator shows that a lane will be disqualified if the initial headway distance of a 

vehicle behind in Lanes 1 or 3 is 16� or less. As Lane 2 is the same lane that the 

Host Vehicle is in, it will always remain open to the decision process. With the initial 

headway benchmark set at 20�, the preferred choice is Lane 1. But as the distance 

in Lane 3 is increased further, all three MADM methods give a slight preference to 

Lane 3 over Lane 1, as in agreement with the Observer’s decision in Section 9.5.1. 

At initial distances lower than 17�, Lane 3 is disqualified due to a collision occurring 

before the lane-change manoeuvre is completed. 

  

 Summary of Non-V2V Linear Braking MADM 

Results 

The simulations demonstrated that TOPSIS and AHP both agreed with the 

Observer’s decision on every simulation of the Non-V2V Linear Braking Simulator. 

ANP agreed all of the time, except for when testing different maximum overall 

Figure 9-6 - Initial Headway Distance of Vehicle Behind in Lane 3 Sensitivity Analysis 
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accelerations for the steering manoeuvres (Section 9.5.5). For the decision process a 

clear difference in the rank values is desired. Compared to AHP the rank values of 

different lanes are often close such as with the varying initial velocities and rates of 

deceleration for the vehicles ahead, in Section 9.5.7 and 9.5.9. One can conclude 

that with the Non-V2V Linear Braking Simulator the ANP has agreed with the 

Observer’s decision less often than the TOPSIS and AHP methods.  

 

 V2V Dynamic Braking Simulations 

With more parameters informing the dynamic braking simulator, there are more 

possible scenarios to test for both the Host Vehicle and Motorway Vehicles. There is 

also a number of parameters that will not be changed. These are the dynamic 

braking parameters of Cross-Sectional Area of Vehicles, Aerodynamic Drag 

Coefficients and Rolling Resistance Coefficients. Also, the Track widths and 

Longitudinal CoM positions for the Host Vehicle will remain unaltered. These 

parameters are being left unchanged to focus the evaluation on parameters that will 

have a greater influence on being able to change the decision. Changing the 

dynamic braking will alter the velocities and displacements of the vehicles, but this is 

better altered by the braking decelerations. The Host Vehicle Track Widths and CoM 

position will affect the Host Vehicle’s turning ability, but this is better examined with 

CoF and CoM Height. The crash structure will be modelled using the same bilinear 

terms, described in Section 7.6, it is therefore assumed that all vehicle’s crash 

structures will behave the same. 

 Section 9.6.1 is the benchmark scenario from which the simulation results 

and MADM decisions will be compared. Sections 9.6.2 to 9.6.6 present the 

parameters that describe the Host Vehicle, and so these will be investigated to see 

how they affect the possibility of a lane-change manoeuvre. For these parameters 

the simulated outputs for Lanes 1 and 3 will be identical, so there is no difference in 

the decision made between these lanes. Sections 9.6.7 to 9.6.14 will change the 

motorway vehicles, and so the simulated outputs will be different. A sensitivity 

analysis will assess the decision made for varying parameter values. 
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 Benchmark Simulation 

The Benchmark simulation will examine the decision made from the parameters set 

in Table 7-12 and Table 7-13 in Section 7.6.   

 

 Host Vehicle ACC Following Time 

For the dynamic braking benchmark scenario, the available time range for the ACC is 

1.35� to 1.91�. For the times less than 1.35�, there is not enough longitudinal 

distance for a lane-change manoeuvre to be completed before a collision occurs. For 

the times greater than 1.91�, there is a collision avoidance ahead, and so Lane 2 

becomes the preferred choice.  

 The simulations of the linear braking simulator for ACC Following Time given 

in Section 9.5.2 demonstrate a similar behaviour to these simulations when there is 

V2V communication, which is also influenced by the initial headway distances of the 

motorway vehicles. One of the adjacent lanes (Lanes 1 and 3) is disqualified when 

the ACC Time is set at 2.19� or greater. This disqualification is due to the large 

distance available to complete the lane-change manoeuvre, which results in a 

collision before the manoeuvre is complete. 

 

 Coefficient of Friction 

The lowest CoF for the available longitudinal distance required to complete a lane-

change manoeuvre in 0.7. This parameter’s effect is the same as that on the linear 

braking simulator, discussed in Section 9.5.3.  

 

 Host Vehicle Maximum Longitudinal Deceleration 

(Braking) 

The Maximum Longitudinal Deceleration is the braking the Host Vehicle will apply. 

With the dynamic braking, this value will actually be slightly higher with the resistance 

forces acting on the vehicle. However, for the steering manoeuvres this value cannot 

be exceeded otherwise a loss in tyre grip will occur. 
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 Simulations reveal that a lane-change manoeuvre will be disqualified when 

this braking value is set at -1.2�/�� or lower due to an impact occurring before the 

lane-change manoeuvre is complete. However, Lane 2 will be selected when this 

value is set at -3.0�/�� or lower due to the low resultant braking value for the lane-

change manoeuvre as the tyre saturation calculated a braking value of -1.77�/��. 

 The maximum rate of deceleration for this simulation scenario is -9.1�/�� 

before Lanes 1 and 3 are disqualified. This disqualification is due to the skidding 

speed, given in Equation (7-3), being lower than the Host Vehicle’s initial speed. The 

skidding speed requires the coefficient of friction to be increased to complete the 

lane-change manoeuvre. Also increasing the available longitudinal distance to 

complete the lane-change manoeuvre would increase the skidding speed, as it is the 

low radius of curvature required to complete the manoeuvre. Therefore, Lanes 1 and 

3 are disqualified based on skidding speed. 

 

 Host Vehicle Maximum Lateral Acceleration 

(Steering) 

The benchmark Host Vehicle braking value for this scenario is -4.71�/��, as 

calculated from the tyre saturation. The lowest value the maximum lateral 

acceleration can be set to before Lanes 1 and 3 are disqualified due to a collision 

occurring before the lane-change manoeuvre is complete is 6.9�/��. This leads to a 

collision with the vehicles ahead, and the braking value for the lane-change 

manoeuvres at this maximum lateral acceleration is -0.78�/��.  

A collision avoidance for the vehicles ahead in Lanes 1 and 3 is calculated 

when the maximum lateral acceleration is set at 12.3�/�� or higher. It is observed 

that the higher this value is set to, the more severe the collision accelerations are for 

the vehicles behind. As the Host Vehicle can decelerate quicker, the relative impact 

speeds between the Host and vehicles behind is greater. At lateral accelerations set 

at 7.2�/�� and lower, there is a collision avoidance in Lanes 1 and 3 for the vehicles 

behind.  
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 Results of the sensitivity analysis displayed in Figure 9-7 show that Lanes 1 

and 3 have identical rank values throughout, and they are preferred over Lane 2. 

With a maximum lateral acceleration of 6.9�/�� to 9.1�/��, the collision ahead in 

Lanes 1 and 3 occur before the collision behind. With lateral accelerations of 

9.2�/�� and greater, the available braking for the Host Vehicle is greater, and 

therefore the collision with the vehicles behind in Lanes 1 and 3 occur first. At 

9.5�/�� and greater lateral acceleration values, the Host Vehicle braking is sufficient 

to prevent a collision ahead. All MADM methods considered agreed with the 

Observer’s Decision in every simulation scenario. The rank of Lane 2 for the ANP 

method does get very close to the ranks of Lanes 1 and 3 when the maximum lateral 

acceleration was set to 9.3�/��. At this acceleration value, however, the lane 

preference is still Lane 1.  

 

 

 

 

Figure 9-7 - Host Vehicle Lateral Manoeuvre Acceleration Sensitivity Analysis 
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 Host Vehicle CoM Height 

The CoM height is used to determine if the Host Vehicle will rollover during the lane-

change manoeuvre. This is a simple limitation, and the sensitivity analysis will 

determine if a rollover will occur, and disqualify the manoeuvre as a result if needed. 

It is observed that a rollover will result with a CoM height set at 1.21�. However, 

when examining the vertical wheel loads with the height set just below the rollover 

height, at 1.20� it is clear that even though there is a vertical load pushing down on 

all wheels the Rear Left wheel reaches a minimum force of 0.016�� (Figure 9-8). 

Even the Front Left reaches a minimum value of 0.35��.  

 

Figure 9-8 suggests that perhaps the vertical wheel force limit should be set 

higher than 0��, as a safety factor. 0�� shows that there is no vertical force pushing 

the tyre down onto the road. This means that a value of 0�� mathematically 

represents a tyre lifting from the ground. This value would need to be determined by 

vehicle dynamics testing, but it is a simple matter of inserting this into the simulator 

instead of the limit set at 0��. At 53.61� the steering manoeuvre ends, and then the 

Host Vehicle can increase its braking from the value determined by the tyre 

saturation, given in Equations (5-14) to (5-18), to the maximum longitudinal braking 

defined in Table 7-12.  

Figure 9-8 - Vertical Tyre Force approaching Rollover 
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 Vehicles Ahead Mass 

The vehicle ahead in Lane 3 will vary its mass from 900�) to 3000�), while the 

benchmark is 2000�). Adjusting the mass will affect not only the collision 

acceleration results, but also the impact velocities as vehicle mass affects the 

dynamic braking. Figure 9-9 displays the sensitivity analysis for the mass of the 

vehicle ahead in Lane 3. All of the three MADM methods agreed with the Observer’s 

Decision for every simulation. It is observed that the decisions made by the MADM 

methods are not to select the lighter vehicle. The collision accelerations 

demonstrated the dangers of a larger mass vehicle impacting with a smaller mass 

vehicle, and has taken all vehicles into account for the decision. From 900�) to 

2000�), the preferred lane is Lane 1, to collide with the equal mass vehicle ahead of 

2000�). From 2100�) to 3000�), the Host Vehicle selects the larger vehicle in Lane 

3 to collide with. 

 

Figure 9-9 represents the sensitiity analysis results. The rank values do not 

change drastically from 900�) to 3000�). A closer look at the simulation results 

reveals that for a mass of 900�), the vehicle ahead has a velocity at the moment of 

impact of 9.91�/�, and the Host Vehicle has a velocity of 14.42�/�. The simulation 

with a vehicle ahead mass of 3000�) reveals that the vehicle’s ahead impact velocity 

is 8.86�/�, and the Host Vehicle is travelling at 12.73�/�. Whilst the mass of the 

Figure 9-9 – Vehicle Ahead in Lane 3 Mass Sensitivity Analysis 
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vehicle ahead influences the results, it does not change the results considerably. 

However, the larger mass vehicle does have an effective deceleration lower than the 

lighter mass vehicle. This allows for a greater stopping distance for the Host Vehicle, 

and so the Host Vehicle’s preference is to select the collision with the larger mass 

vehicle. 

 

  Vehicles Behind Mass 

 The vehicles behind are examined using the same range of mass as with the 

vehicles ahead in Section 9.6.7. 

 

Figure 9-10 represents the sensitivity analysis of the mass of the vehicle 

behind in Lane 3. TOPSIS and AHP agreed with the Observer’s Decision for every 

simulation, where Lane 1 is preferred due to the larger mass vehicle behind 

experiencing a lower collision acceleration from 900�) to 2000�). This preference 

for colliding with the higher mass vehicle is maintained when Lane 3 has the larger 

mass vehicle behind.  

However, ANP disagreed with the Observer’s Decision in every simulation 

scenario. It is observed that throughout the sensitivity analysis, the rank values of 

Lanes 1 and 3 are very close, but the ANP method has selected the lane with the 

Figure 9-10 - Vehicle Behind in Lane 3 Mass Sensitivity Analysis 
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lower mass vehicle behind to collide with. The decision made by ANP does reflect 

the simulation results, as the lane with the lower mass vehicle behind does result in 

lower collision accelerations for the Host Vehicle, but not for the vehicle behind.  

 

 Vehicles Ahead Initial Velocity 

 The minimum initial velocity of a vehicle ahead in an adjacent lane is 65�9ℎ, if it is 

lower than this, a collision occurs before the lane-change manoeuvre is complete. To 

lower this velocity further, the initial headway distance must be increased, as for 

these simulations the benchmark distance is only 12�. To compare with the linear 

braking simulator, which had its benchmark headway distance set at 20�, the 

minimum velocity for the dynamic braking simulator could be set to 56�9h. A 

collision avoidance will occur if this initial velocity is set higher than 72�9ℎ, as this is 

the highest speed at which a collision will still occur. 

 

Figure 9-11 shows the sensitivity analysis for varying the initial velocity of the 

vehicle ahead in Lane 3. The benchmark velocity is 70�9ℎ, and the MADM rank 

values show that a starting velocity lower than this is not the ideal choice. Lane 3 is 

the preferred choice when the initial velocity of the vehicle ahead in Lane 3 is higher 

Figure 9-11 - Vehicle Ahead in Lane 3 Initial Velocity Sensitivity Analysis 
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than the Host Vehicle’s 70�9ℎ, and Lane 1 is the preferred choice when the initial 

velocity is 70�9ℎ or lower. All MADM methods agree with the Observer’s Decision 

for every simulation. At 72.5�9ℎ a collision avoidance is achieved ahead in Lane 3, 

and this lane is selected as the preferred choice. 

 

 Vehicles Behind Initial Velocity 

The minimum velocity of a vehicle behind in an adjacent lane for a collision to still 

occur is 65�9ℎ. The highest initial velocity of a vehicle behind before an adjacent 

lane is disqualified due to a collision occurring before the lane-change manoeuvre is 

complete is 84�9ℎ. These limits are of course dependent on the initial headway 

distances. 

 

For all velocities simulated, all MADM methods agreed with the Observer’s 

Decision. Figure 9-12 shows that for the vehicle behind, a lower initial velocity is 

preferred to the Host Vehicle’s initial 70�9h. This lower initial velocity means the 

impact velocity between the two vehicles is also lower, therefore lowering the 

collision acceleration and increasing the time-to-collision. From 68�9ℎ to 76�9ℎ, the 

rank values for all MADM methods are very similar.  

Figure 9-12 - Vehicle Behind in Lane 3 Initial Velocity Sensitivity Analysis 
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Interestingly, the preferred choice is not as obvious as a lower velocity is 

better. From 64�9ℎ to 67�9ℎ the preferred choice is Lane 3, which has the lower 

initial velocity for the vehicle behind. But from 68�9ℎ to 70�9ℎ the preferred choice 

is Lane 1. This is due to the relative velocity of the impact in Lane 3 is greater. Lane 

3 is then preferred from 71�9ℎ to 76�9ℎ, but at 77�9ℎ it is the collision behind the 

Host Vehicle that occurs first. At 77�9ℎ, the impact velocity creates a high collision 

acceleration for the Host Vehicle and vehicle behind, which the combined mass of 

these two vehicles then impacts the vehicle ahead in Lane 3. When the collision 

behind occurs first, it is Lane 1 that is preferred. 

 

 Headway Distance to Vehicles Ahead 

The minimum initial headway distance for a vehicle ahead in an adjacent lane is 

7.5�. At distances less than this, a lane-change manoeuvre cannot be completed 

before impact. A greater headway distance is always desirable, giving the Host 

Vehicle more distance to decelerate, and a collision avoidance will occur when this 

initial headway distance is set to 17� or greater. 

 

For all of the simulations, TOPSIS and AHP agreed with the Observer’s 

Decision in every simulation scenario. But from 7.5� to 14.0�, ANP did not agree. 

The rank values for ANP show that Lanes 1 and 3 almost identical for this headway 

Figure 9-13 - Vehicle Ahead in Lane 3 Initial Headway Distance Sensitivity Analysis 
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distance range. At 16�, the collision behind the Host Vehicle occurs first, and as a 

result all MADM methods prefer Lane 1 over the higher distance in Lane 3. At 17� a 

collision avoidance is calculated for Lane 3, and so the collision accelerations of 

0�/�� for the vehicle ahead and Host Vehicle dominates the decision. 

 However, although a collision avoidance was calculated for a headway 

distance of 17� in Lane 3, a closer look at the impact velocities of the vehicle 

behind, and the Host Vehicle for the rear collision gives an insight into a limitation of 

the simulator. The impact velocities for the vehicle ahead and Host Vehicle colliding 

with the vehicle ahead are 0�/�, but the impact velocities for the vehicle behind and 

Host Vehicle colliding with the vehicle behind is not 0�/�. The distance between the 

Host Vehicle and vehicle ahead for this simulation is only 0.23�. The impact with the 

vehicle behind will push the Host Vehicle forwards, and if this distance is greater than 

0.23�, it will collide with the vehicle ahead. The simulator does not calculate this, as 

it has determined the collision avoidance to be final. In order to determine the 

collision accelerations of the vehicle ahead in this situation, further modelling will 

need to use the velocity of the Host Vehicle after being impacted by the vehicle 

behind.  

 

 Headway Distance to Vehicles Behind 

For the vehicles behind a greater headway distance is also desirable as this gives 

those vehicles more distance to decelerate, reducing the impact velocity with the 

Host Vehicle. The minimum distance this can be set at before an impact occurs 

before the lane-change manoeuvre is complete is 8�. A collision avoidance will 

occur if this distance is set to 35m and greater. 

 Much like the headway distance of the vehicles ahead in Section 9.6.11, the 

preferred lane is not as obvious as the larger available braking distance. Figure 9-14 

shows the sensitivity analysis as the preferred lane changes between Lanes 1 and 3 

for each MADM method. From 7� to 10�, the Observer’s Decision is Lane 1, as 

Lane 3 has a lower available braking distance for the vehicle behind. From 7� to 

11�, it is the collision behind which occurs first. From 11� to 19� the Observer’s 

Decision is to select Lane 3. Although lane 3 has higher available braking distance 

for vehicle behind at 20�, it is not yet enough to reduce the relative velocity of Host 

and vehicle behind, and so the lane preference is Lane 1. At headway distance 25�, 

the Host Vehicle manages to come to a full stop. However, the lane preference is still 
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Lane 1. As this distance increases, the relative velocity between the Host Vehicle 

and vehicle behind will reduce, as the Host Vehicle’s impact velocity cannot drop 

below 0�/�. The effect of this is seen at 27�, when the Observer’s Decision is to 

select Lane 3, and this is agreed with the MADM methods. TOPSIS and AHP agreed 

with the Observer’s Decision in every simulation scenario. 

 At 8� and 9�, ANP disagrees with the Observer’s Decision and selects Lane 

3. The preferred choice of Lane 3 is due to the limited headway distance actually 

results in smaller relative impact velocities, as the Host Vehicle cannot decelerate 

considerably compared to the vehicle behind.  

 

 

 

 

 

 

 

 

Figure 9-14 - Vehicle Behind in Lane 3 Initial Headway Distance Sensitivity Analysis 
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 Vehicles Ahead Inputted Deceleration 

Much like the deceleration considered in Section 9.6.4, the actual rate of deceleration 

will be greater than the inputted value due to dynamic resistance forces acting on the 

vehicle. However, the most effective stopping force is from the brakes, and the 

inputted deceleration determines the braking force. A lane is disqualified due to a 

collision occurring before the lane-change manoeuvre is complete, if this braking 

value is set at -9.4�/�� or greater. A collision avoidance will occur if this rate of 

deceleration is set to -6.5�/�� or lower. 

 

The sensitivity analysis results presented in Figure 9-15 demonstrate a clear 

conclusion. The deceleration of the vehicle ahead is preferred to be lower. From        

-6.5�/�� to -6.9�/�� the preferred lane is Lane 3 for all of the MADM methods. 

From the benchmark of -7�/�� the preferred choice is Lane 1, which will have the 

lower collision accelerations due to the lower impact velocities. All of the MADM 

methods agreed with the Observer’s Decision for every simulation in this sensitivity 

analysis. 

 

Figure 9-15 - Vehicle Ahead in Lane 3 Inputted Deceleration Sensitivity Analysis 



 Simulation Results 
 

237 
 

 Vehicles Behind Inputted Deceleration 

For the benchmark parameters of the dynamic braking simulator, there is a sufficient 

initial headway distance for the vehicles behind not to brake, and all of the lanes are 

available for decision as no collision occurs before the Host Vehicle’s lane-change 

manoeuvre is complete. A collision avoidance will occur if this rate of deceleration is 

set to -6.0�/�� or greater. 

 

The sensitivity analysis results are presented in Figure 9-16. All of the MADM 

methods agreed with the Observer’s Decision for every simulation. For deceleration 

values of 0�/�� to the benchmark deceleration of -5�/��, the preferred lane is Lane 

1. It is the vehicle behind in Lane 3 that has its braking varied, and so the lower the 

deceleration, the higher the impact velocity. For all deceleration values greater than   

-5�/��, it is Lane 3 that is preferred. However, for all of the MADM methods plotted 

in Figure 9-16 there is a noticeable change in some of the rank values at -2.25�/��. 

This is because from 0�/�� to -2�/��, it is the collision behind that occurs before 

the collision ahead. From -2.25�/�� to greater deceleration values, it is the collision 

ahead that occurs first. 

 

Figure 9-16 - Vehicle Behind in Lane 3 Inputted Deceleration Sensitivity Analysis 
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 Summary of V2V Dynamic Braking MADM 

Results 

The simulations showed that TOPSIS and AHP agreed with the Observer’s Decision 

on every simulation of the V2V Dynamic Braking Simulator. There are 3 sensitivity 

analyses presented where ANP disagreed with the Observer’s Decision (Sections 

9.6.8, 9.6.11, and 9.6.12). The rank values of ANP were often closer than the 

equivalent AHP values, similar to the observations of Section 9.5.12.  

The reason for the close ranking of the ANP, providing at times a decision 

that disagreed with the Observer’s Decision, is due to the feedback which is 

calculated from the normalized alternative values. The feedback is beneficial in re-

assessing the importance of each criteria, but this is not necessarily required for this 

application. The proposed simulators and decision making processes must make an 

unbiased decision to result in the best outcome for all vehicles involved in the 

potential collisions. The AHP and TOPSIS methods assess the situation, and do not 

re-evaluate the decision made. The result of the feedback is that it may give a 

greater weight to a criteria which originally was determined to be less important. This 

is the intended purpose of the feedback, but may not be useful if that criterion should 

remain less important. In the simulations presented, this did not always occur as 

criterion occasionally had their weights reduced when they were not intended or 

desired to be reduced. 

 The simulation of headway distance for the vehicles ahead did present a 

limitation of the dynamic braking simulator. This can happen when a collision 

avoidance is calculated ahead, but the collision behind could still push the Host 

Vehicle into the vehicle ahead. This would require further modelling of the Host 

Vehicle’s longitudinal velocity and displacement from the modelling of the collision 

behind, and then another collision modelling simulation. 

 

  MADM Processing Time 

Section 7.9.1 discusses the computational times of the simulators. A decision still 

needs to be made after these simulators’ results are used by the MADM methods. 

The Non-V2V and V2V simulators both use the same decision processes, the 

difference being that the V2V Dynamic Braking Simulator has 6 criteria to assess, 
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whilst the Non-V2V simulator only assesses 3. The V2V Dynamic Braking decision 

process times are evaluated to assess the MADM process. The times of the 

benchmark simulation for the V2V Dynamic Braking Simulator used by the MADM 

methods are presented in Table 9-12. 

 

Table 9-12 - MADM Processing Times for Benchmark Simulations 

 

Simulation Runs (�) 

Average (�) 

1 2 3 

TOPSIS 0.0141 0.0073 0.0067 0.0094 

AHP 0.0016 0.0016 0.0011 0.0014 

ANP 0.0032 0.0029 0.0022 0.0028 

 

Table 9-12 demonstrates that there are differences in the processing times of the 

considered MADM methods, but overall it is noted that the largest time presented is 

still less than 0.015�. AHP is consistently the fastest method, and so based on speed 

alone this method would be the preferred choice. However, compared to the 

simulation times presented in Table 7-27, the processing times of all methods are 

considerably faster. The MADM methods are far simpler calculations, and therefore 

faster to compute than those used to simulate the Host Vehicle, vehicles ahead and 

vehicles behind. The times presented means that the implementation of these 

methods combined with the simulators is not a concern. The discussion of future 

computational capabilities of autonomous vehicles in Section 7.9.3 to speed up the 

simulation times would also allow for the decision process times to reduce. 

 

 Simulation and MADM Conclusions 

The two simulators developed in Chapter 7 are used with the decision making 

processes described in Chapter 8. Using the benchmark scenarios defined in 

Chapter 7 as a reference, the decision made by the MADM processes are evaluated. 

Individual parameters are adjusted to observe its effect on the outputs of the 

simulation, but more critically the decision made. The developed trajectory planner 
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from Chapter 5 and collision modelling from Chapter 6 are used for critical parts of 

the simulators as well. 

Sensitivity analyses are performed for the scenarios involving fine 

adjustments of the parameters describing the scenario, and it is analysed for how the 

parameter value can change the decision made. For some scenarios it is a simple 

task of determining an operating window, and observe at what point a potential lane 

may need to be disqualified. One limitation of the V2V Dynamic Braking Simulator is 

observed which will need to be addressed in the future developments, regarding the 

calculation of possible secondary collisions with the vehicle ahead, even if an original 

collision has been avoided. 

Out of the three MADM methods that were developed for use with the 

simulators, TOPSIS and AHP were the best performing, as determined by their 

agreement with the Observer’s Decision. ANP was less satisfactory for both the Non-

V2V Linear Braking Simulator, and the V2V Dynamic Braking Simulator. It is 

concluded that feedback needs a different method of assessing the influence of the 

alternatives on the criteria. In other examples of ANP, discussed in Chapter 3, the 

feedback is assessed subjectively by human participants. This is not possible for this 

research problem. 

The Non-V2V Linear Braking Simulator is computationally faster and so at 

this stage of development more appropriate for application with a real vehicle. 

However, the V2V Dynamic Braking Simulator produces results which describe the 

collision severity in more useful results. This is because the collision severity is 

directly described by the collision accelerations, as opposed to the impact velocity 

and required braking of the Non-V2V Linear Braking Simulator. 

 Generally, it is observed that decisions on changing lanes are made by the 

MADM methods, as informed by the simulators. The proposed method of combining 

simulation results and MADM methods for an autonomous vehicle to avoid or 

mitigate collisions on a motorway, based on what can be calculated to be the least-

severe outcome, has therefore achieved the main aim of this thesis. Of course, the 

proposed simulators and decision processes require further development before 

such a system could be employed by a real vehicle, but this proposed concept 

demonstrates encouraging findings.  
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Conclusions  

 

 

  Research Problem 

This thesis addresses the problem of what an autonomous vehicle is to do when 

facing imminent collisions. Any action the vehicle takes may result in collision. This 

research is focused on high-speed motorway driving, where the available choice the 

autonomous vehicle can make is the lane in which it should be. The autonomous 

vehicle is driving in the middle lane of a three lane motorway, and with a single lane-

change manoeuvre possible, there are three lanes available for the decision. The 

autonomous vehicle must select one lane to drive into, as to prevent further collisions 

in multiple lanes.  
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  Summary of Findings 

In Chapter 2, a literature review was compiled, giving an overview of the existing 

research and technologies that are relevant to collisions avoidance. Existing collision 

avoidance systems are included in the review, and the limitations of such existing 

technologies is discussed from which the developments of this thesis are inspired. 

The literature review also includes the relevant information on vehicle dynamics and 

automotive collision research, which greatly informs developments in the following 

chapters. Here, the first objective of evaluating the current problems is addressed. 

Chapter 3 is a literature review of MADM methods, which will be used in a 

later stage of the thesis. A broad view of several techniques is covered, and 

examples of these methods being employed is also included. 

 Chapter 4 demonstrated that an autonomous vehicle can have a collision 

when driving in an automated highway platoon. This results in the platoon becoming 

unstable as acceleration inputs to the vehicles begin to oscillate. The system fails 

when a collision is created. Multiple platooning models are tested and stressed, 

which served the intended purpose of demonstrating that it is possible for 

autonomous driving systems to crash. The second objective of evaluating whether an 

autonomous vehicle can still have a collision is achieved, by evaluating how factors 

such as platoon size, speed and time delays can cause a platoon to become 

unstable. 

 One limitation is concerning the highway platooning. At first, it was considered 

whether the steering manoeuvre to avoid collision could be implemented in a 

highway platooning system. If for example, a vehicle ahead stops suddenly, can a 

vehicle behind move into an adjacent lane to avoid impact? The answer is no. The 

steering manoeuvre to move into the adjacent lane requires a longitudinal distance 

much greater than the 5m tested with the highway platooning simulations. 

 Chapter 5 presents the developments of the collision avoidance/mitigation 

system. If an autonomous vehicle is to avoid a collision, then a possible lane-change 

manoeuvre must be planned. Autonomous vehicle research carried out at 

universities and research groups have already developed steering controllers, with 

examples discussed in the literature review, but the lane-change manoeuvre 

proposed in this thesis is specific to the research problem considered. A fully 

dynamic steering controller with dynamic cornering stiffness would most likely 

provide the greatest accuracy, but Chapter 5 demonstrates that the sinusoidal 
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trajectory planner can be implemented with a steering controller. This approach can 

even be used to calculate a safe braking value for the vehicle without over-saturating 

the tyres and potentially losing control of the vehicle.  

 In Chapter 6, the behaviour of the vehicle in a crash is examined. This is done 

by creating lumped-mass models to simulate collisions. The models must be tuned to 

best represent the available FEA data, and a Euclidean optimization process is 

demonstrated using the simulated key properties of peak acceleration, peak 

deformation, collision energy and collision time results. The Euclidean optimization 

finds the bilinear term and multiple of stiffness which best reproduces the key 

properties compared to the FEA data. The third objective of evaluating the impact of 

a collision is, in part achieved here, as the collision modelling gives a method for 

assessing the severity of collisions. 

 Chapter 7 developed the simulators which calculate the potential impact 

speeds of the imminent collisions. Two simulators are developed, one for when V2V 

communication is available, and one for when V2V is not available. Chapter 7 does 

address one of the main concerns that autonomous vehicle research faces, which is 

V2V communication. If V2V is available, and all of the parameters described in this 

thesis are communicated, then the collision avoidance/mitigation system developed 

here will be able to make complex calculations which can simulate the potential 

collisions, and make a decision based on these results. However, without V2V these 

calculations are limited in their capability. For this reason, two simulators were 

developed. It is intended that the simulator with V2V available would be the preferred 

method, but the non-V2V simulator is available if V2V is not. The simulators also 

assess the feasibility of steering manoeuvres by assessing the yaw rates, and the 

vehicle dynamics considerations of tyre loads and overturning speeds. The 

simulators also disqualify a manoeuvre based on whether a collision occurs before 

the manoeuvre is complete. 

 The proposed simulators are run using MATLAB 2016a. The outputs of the 

Non-V2V simulator include the velocities of the Host Vehicle and vehicle ahead at the 

moment of impact, which determines the relative impact velocity. This simulator also 

calculates the required braking of the vehicles behind, as to prevent a collision with 

the Host Vehicle. The manoeuvres are assessed for acceleration to describe the 

severity of a lane-change manoeuvre or full braking manoeuvre as this too could 

cause injury to the vehicle occupants. The V2V simulator also calculates manoeuvre 

acceleration, but instead of just the impact velocities ahead, also calculates the 
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velocities for the vehicles behind. With this a Time-To-Collision is also calculated. 

The velocities of all vehicles at the moment of impact are used as the inputs to the 

collision modelling. The collision modelling calculates the peak accelerations of the 

vehicles during the collisions. 

 Chapter 8 demonstrated how MADM methods can be applied for the research 

problem. The Non-V2V simulator’s benchmark scenario from Section 7.3.5 is used to 

demonstrate how the three selected methods of TOPSIS, AHP, and ANP use the 

simulation results to determine the rank values for the lanes. This benchmark 

scenario is used because it has fewer criteria than the V2V simulator and Lanes 1 

and 3 will have identical rank values. This means that a final default decision is made 

based on which lane is closer to the emergency lane. TOPSIS, AHP, and ANP are 

selected for development with the simulators as these are popular methods which 

have been applied to many varying situations. The alternative available are the 3 

motorway lanes and the criteria for the Non-V2V simulator are impact velocity ahead, 

required braking of the vehicles behind, and a maximum acceleration. The V2V 

simulator uses collision accelerations of all vehicles for the impacts, manoeuvre 

acceleration and Time-To-Collision (TTC). 

 Chapter 9 presents the results of the two simulators developed in Chapter 7, 

with the decision making processes described in Chapter 8. The limits of the 

simulators are presented and discussed, and a sensitivity analysis is performed for 

the parameters which show a varying rank preference generated by the MADM 

methods. The varying parameters include the Host Vehicle’s lateral acceleration, the 

initial velocity of the motorway vehicles, initial headway distance of the motorway 

vehicles and braking value of the motorway vehicles. The V2V simulator also 

includes the mass of the motorway vehicles as a varying parameter for a sensitivity 

analysis. These sensitivity analyses are compared to Observer’s Decisions. The 

Observer is the author of this thesis, assessing the simulator outputs for a human 

preference on which is the best lane. The general conclusion to these simulations are 

that TOPSIS and AHP performed well compared to the Observer’s Decision, but ANP 

does not agree as often. This is due to the feedback that ANP introduces. ANP could 

be further developed to improve its performance, but it would require a new method 

of calculating the feedback, and the superior performances of TOPSIS and AHP 

make it hard to justify the extra complication required by ANP. The simulators 

perform well, although a limitation is demonstrated, when the dynamic braking V2V 

simulator calculated an avoidance ahead, but does not take into account the collision 

behind forcing a second collision ahead.  
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 Overall, it is demonstrated that the simulators and decision processes can be 

used by the Host Vehicle to select a lane to drive into to avoid the most severe 

collision. The Host Vehicle can autonomously select the safest lane, taking all 

collision partners into account, and also assessed the safety of the manoeuvres 

themselves. 

 This thesis proposes a method to simulate potential collisions, simulate lane-

change manoeuvres and make a decision on what actions should be taken by the 

autonomously driven Host Vehicle. The range of disciplines required to achieve this 

aim has been larger than first thought when beginning this thesis. Using lumped-

mass models to simulate collisions and provide information describing the severity of 

a collision was not at first considered. MADM was also not an initial consideration, 

but proved to be critically useful for the applied problem.  

 

  Recommendations for Further Research 

The research presented in this thesis is encouraging, but limitations discussed in the 

chapters demonstrates the need for further research. The proposed collision 

avoidance/mitigation system is a concept, and as such the presented simulations 

only represent a limited range of scenarios and assume that all data is readily 

available. AHP has performed very well in the simulations and it can be further 

developed by adding sub-criteria to the criteria hierarchy. This has the potential to 

improve the performance even further. 

The accuracy and computational effort required for a fully dynamic steering 

controller are discussed, but in order to enact the decisions from the decision making 

process, the vehicle will need to steer itself into the desired lane. A steering controller 

will need to perform as intended, in a wide range of driving scenarios in order for the 

proposed collision avoidance/mitigation system to be employed. A steering controller 

which uses the recommend lane choice, made by the simulator and MADM decision 

process, to perform the required lane-change manoeuvre is required for the collision 

mitigation system to work with a real vehicle.  

The collision modelling used for describing the accelerations and 

deformations of collisions with a useable accuracy is relatively simple. It is applied to 

one situation of a zero-lateral offset collision only. This is also an encouraging 

research area. Modelling offset collisions have not been addressed, or even side 
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impacts. It also only considers cars, and no other vehicles such as vans or lorries. If 

these impacts could be modelled accurately and quickly, other collision situations 

would be considered. It also opens the scope to situations other than motorway rear-

end collisions, perhaps even side impacts in urban environments.  

The collision modelling itself could further investigate the severity of collisions 

by performing in-depth sensitivity analyses to observe the accelerations and 

deformations of one vehicle colliding with a range of other vehicles. This could 

determine limits to crash compatibility, meaning some vehicle types could be 

considered too dangerous to collide with given certain factors such as impact speed 

and vehicle mass. This would require extensive collision data, which is why in this 

thesis the collision modelling is limited to the available data. The lumped mass 

modelling gives outputs of peak acceleration and deformation, as well as force 

versus deformation which is used to calculate the energy of the collision. FEA 

modelling and real vehicle collision testing would give greater detailed analysis of the 

crash structure deformation, but the lumped mass modelling is an effective method of 

simulating the key properties accurately and fast. A sensitivity analysis focusing on 

these outputs can provide useful results about collision performance. This could be 

used to better inform the development of vehicle crash structures for use with more 

in-depth FEA modelling. 

The simulators developed are proved to be useful, but the limitation 

discussed would need to be addressed before the proposed system would be tested 

with a real vehicle. The limitation of the collision avoidance ahead assuming that no 

second collision will occur became clear after the simulations, and so further 

simulations would better define areas of improvements and how to solve this. The 

simulators work well with the MADM methods, and so this would need to be tested 

with a real vehicle. Real vehicle testing would require considerable simulation testing 

before physical testing, with the development of more capable simulators as more 

limitations may be discovered. The physical testing would require test track 

simulations of scenarios, starting with simpler scenarios of only 2 potential collision 

partners, and building up to multiple collision scenarios across multiple lanes. 

Other concerns raised in the thesis include computational speed of the on-

board vehicle computers, and the availability of V2V communications. Throughout 

this thesis, these have been assumed to be problems that will be addressed in the 

future. However, in order for the developed collision avoidance/mitigation system to 

be implemented in real vehicles, these concerns must be addressed. The required 



 Conclusions 
 

247 
 

information must be available, and this thesis demonstrates that such information as 

vehicle mass and braking rates are required for a safety system. Therefore, if it can 

be demonstrated that such information will be used to reduce the risk to life, it could 

be recommended that such information be compulsory for all vehicles to make 

available. The computational speed of autonomous vehicles is a concern which 

requires a multi-disciplinary approach addressed by the automotive industry, so this 

will likely be addressed. It is still intended that the developed collision mitigation 

decision making system could be used in real-time with future vehicles, but the speed 

of the simulation must be considerably increased. 

Another research problem could be raised by the findings of this thesis. One 

of the limitations of this thesis is that the proposed system would not work with 

highway platooning. However, the collision modelling could be used to determine the 

best order of the vehicles in the platoon, should a collision occur. The collision 

modelling could simulate all vehicles colliding into one another, if the lead vehicle 

stops suddenly, and then the accelerations of the vehicles could use a MADM 

method to suggest an order for the vehicles to be in. It could also take maximum 

braking available to the vehicles into account. 

 

  Concluding Remarks 

The system developed in this thesis could be used as an autonomous driving safety 

system for motorway driving, alongside existing technologies such as Adaptive 

Cruise Control, and Automatic Emergency Braking. The system aims to reduce the 

risk to life, by selecting the best collision situation for the Host Vehicle. This system 

has the potential to save lives, and limit serious injuries. The high speeds involved 

with motorway collisions make them more likely to result in fatality or serious injury, 

and so the benefits of this thesis are evident. The system simulates a motorway; 

many countries around the world have extensive motorway networks, which transport 

millions of people daily. The potential benefit is far-reaching. 

 This thesis also raises further concerns regarding autonomous vehicle ethics. 

Although not everybody is interested in automotive engineering, everybody who lives 

in developed areas will have some exposure of some degree to autonomous 

vehicles, as the technology becomes more capable and available. Even if a person 

will never drive a car in their life, only taking public transport, that public transport will 

likely be exposed to autonomous vehicle safety systems and autonomous decision 
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being made regarding their safety. This thesis presents a decision making method, 

which could be adapted beyond the scope of this research problem. It may be 

necessary for the safest collision to be assessed by more than cars on a motorway, 

such as in urban environments where there are other hazards such as pedestrians 

and cyclists. Other vehicle types such as buses could also be considered with many 

people on-board. 

This thesis proposes a concept of a collision avoidance/mitigation system. 

The concept simulates lane-change manoeuvres as potential actions for an 

autonomously driven Host Vehicle to make. Potential collisions are simulated using 

the accelerations of the collisions as metrics to describe the severity of the collisions. 

Motorway simulators calculate the impact speeds that will happen, given the braking 

rates of all vehicles on a three-lane motorway, and assess the feasibility of lane-

change manoeuvres. The Host Vehicle is simulated in scenarios where it is following 

a vehicle which has a high and sudden deceleration. MADM is used to make an 

unbiased decision for which lane the Host Vehicle should drive into. The simulations 

are presented and discussed. 

 Although, this system is a concept, the simulation results are encouraging. 

This research can be split into different areas, such as collision modelling and vehicle 

dynamics, and so with further attention from researchers with expertise in these fields 

could become a very desirable new technology for emerging autonomous vehicles to 

implement. The potential impact is that the proposed system could save lives and 

reduce the risk of serious injury, which will always be the focus of automotive safety. 
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Appendix A – IIHS Collision Data 

A - Small Overlap Crash Test Results 

Data acquired from IIHS.org (2017). 

“The small overlap front rating is based on a 40 mph crash test in which 25 percent of the 

vehicle's width strikes a rigid barrier.” 

 

Table A.1 - Small Overlap Collision IIHS Test Ratings 

Small Overlap Collision 2017 Audi Q7 

3.0T Premium 

Plus 4-door 4wd 

2015 Subaru 

Legacy 2.5i 

Premium 4-door 

4wd 

2014 Mini 

Cooper 2-door 

Vehicle Class Large SUV Midsize car Minicar 

Weight (approx. kg) 2300.17 1565.8 1212.91 

Wheelbase Length (approx. mm) 2997.2 2743.2 2489.2 

Length (approx. mm) 5080 4800.6 3835.4 

Width (approx. mm) 1955.8 1828.8 1727.2 

 

Lower Occupant Compartment 

Lower hinge Pillar max (cm) 4 9 7 

Footrest (cm) 5 7 7 

Left toepan (cm) 4 3 2 

Brake pedal (cm) 4 6 5 

Rocker panel lateral average (cm) 0 1 1 

Upper Occupant compartment 

Steering column (cm) 0 1 3 
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Upper hinge pillar max (cm) 3 5 5 

Upper dash (cm) 3 6 5 

Lower instrument panel (cm) 2 6 4 

 

Driver Injury Measures 

Head 

HIC-15 225 120 167 

Peak gs at hard contact no contact no contact no contact 

Neck 

Tension (kN) 1.3 1.2 1.1 

Extension bending moment (Nm) 8 4 13 

Maximum Nij 0.3 0.22 0.2 

Chest maximum compression 

(mm) 

30 25 24 

Femur (kN) 

Left 5.5 1.7 0.8 

Right 0.1 0.1 0 

Knee Displacement (mm) 

Left 5 4 1 

Right 0 1 2 

Knee-thigh-hip injury risk (%) 

Left  4 0 0 

Right 0 0 0 

Maximum tibia index 

Left 0.57 0.53 0.64 
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Right 0.7 0.36 0.28 

Tibia axial force (kN) 

Left 4.2 1.5 2.2 

Right 0.3 0.1 0.4 

Foot Acceleration (g) 

Left 121 65 93 

Right 127 43 52 

 

 

A – Moderate Overlap Crash Test Results 

“The moderate overlap front rating is based on a 40 mph crash test in which 40 percent of 

the vehicle's width strikes a deformable barrier.” 

Table A.2 - Moderate Overlap Collision IIHS Test Ratings 

Moderate Overlap Collision 2017 Audi Q7 

3.0T Premium 

Plus 4-door 4wd 

2015 Subaru 

Legacy 2.5i 

Premium 4-

door 4wd 

2014 Mini 

Cooper 2-door 

Vehicle Class Large SUV Midsize car Minicar 

Weight (approx. kg) 2300.17 1565.8 1212.91 

Wheelbase Length (approx. mm) 2997.2 2743.2 2489.2 

Length (approx. mm) 5080 4800.6 3835.4 

Width (approx. mm) 1955.8 1828.8 1727.2 

 

Footwell Intrusion 

Footrest (cm) 1 2 4 

Left (cm) 0 3 8 
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Centre (cm) 1 4 8 

Right (cm) 1 4 8 

Brake Pedal (cm) 1 6 4 

Instrument panel rearward movement 

Left (cm) 0 0 2 

Right (cm) 0 0 2 

Steering Column Movement 
   

Upward (cm) 0 -3 -1 

Rearward (cm) -7 -6 -5 

A-pillar rearward movement 

(cm) 

0 0 2 

 

Driver Injury Measures 

Head 

HIC-15 174 117 138 

Peak gs at hard contact no contact no contact no contact 

Neck 

Tension (kN) 1.1 1.2 1.2 

Extension bending moment (Nm) 11 20 6 

Maximum Nij 0.23 0.27 0.23 

Chest maximum compression 

(mm) 

31 32 35 

Legs 

Femur Force - Left (kN) 0.5 0.4 0.7 

Femur Force - Right (kN) 0.3 0.6 1 

Knee Displacement - left (mm) 7 1 1 
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Knee Displacement - right (mm) 0 1 1 

maximum tibia Index - Left 0.57 0.48 0.39 

maximum tibia Index - Right 0.6 0.55 0.43 

Tibia Axial Force - left (kN) 1.9 2.7 2.3 

Tibia Axial Force - right (kN) 1.5 2.4 2.5 

Foot Acceleration (g) 

Left 64 67 97 

Right 43 57 92 
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Appendix B – Non-V2V Linear 

Simulator Results 

B - Section 9.5.5 Host Vehicle Overall Manoeuvre Acceleration 

Table B.1 - Section 9.5.5 Simulation Results 
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Table B.2 - Section 9.5.5 MADM Results 
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B - Section 9.5.7 Initial Velocity of Vehicles Ahead 

Table B.3 - Section 9.5.7 Simulation Results 
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Table B.4 - Section 9.5.7 MADM Results 
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B - Section 9.5.8 Initial Headway Distance to Vehicles Ahead 

Table B.5 - Section 9.5.8 Simulation Results 
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Table B.6 - Section 9.5.8 MADM Results 
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B - Section 9.5.9 Braking Values of Vehicles Ahead 

Table B.7 - Section 9.5.9 Simulation Results 
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Table B.8 - Section 9.5.9 MADM Results 
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B - Section 9.5.10 Initial Velocity of Vehicles Behind 

Table B.9 - Section 9.5.10 Simulation Results 
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Table B.10 - Section 9.5.10 MADM Results 
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B - Section 9.5.11 Initial Headway Distance to Vehicles Behind 

Table B.11 - Section 9.5.11 - Simulation Results 
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Table B.12 - Section 9.5.11 MADM Results 
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Appendix C –V2V Dynamic 

Simulator Results 

C - Section 9.6.5 Host Vehicle Manoeuvre Lateral Acceleration 

(Steering) 

Table C.1 - Section 9.6.5 Simulation Results 
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Table C.2 - Section 9.6.5 Collision Modelling Results 
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Table C.3 - Section 9.6.5 MADM Results 
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C - Section 9.6.7 Vehicles Ahead Mass 

Table C.4 - Section 9.6.7 Simulation Results 
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Table C.5 - Section 9.6.7 Collision Modelling Results 
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Table C.6 - Section 9.6.7 MADM Results 
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C - Section 9.6.8 Vehicles Behind Mass 

Table C.7 - Section 9.6.8 Simulation Results 
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Table C.8 - Section 9.6.8 Collision Modelling Results 
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Table C.9 - Section 9.6.8 MADM Results 
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C - Section 9.6.9 Vehicles Ahead Initial Velocity 

Table C.10 - Section 9.6.9 Simulation Results 
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Table C.11 - Section 9.6.9 Collision Modelling Results 
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Table C.12 - Section 9.6.9 MADM Results 
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C - Section 9.6.10 Vehicles Behind Initial 

Velocity 

Table C.13 - Section 9.6.10 Simulation Results 
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Table C.14 - Section 9.6.10 Collision Modelling Results 
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Table C.15 - Section 9.6.10 MADM Results 
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C - Section 9.6.11 Headway Distance to 

Vehicles Ahead 

Table C.16 - Section 9.6.11 Simulation Results 
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Table C.17 - Section 9.6.11 Collision modelling Results 
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Table C.18 - Section 9.6.11 MADM Results 
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C - Section 9.6.12 Headway Distance to 

Vehicles Behind 

Table C.19 - Section 9.6.12 Simulation Results 
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Table C.20 - Section 9.6.12 Collision Modelling Results 
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Table C.21 - Section 9.6.12 MADM Results 
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C - Section 9.6.13 Vehicles Ahead Inputted 

Deceleration 

Table C.22 - Section 9.6.13 Simulation Results 
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Table C.23 - Section 9.6.13 Collision Modelling Results 
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Table C.24 - Section 9.6.13 MADM Results 
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C - Section 9.6.14 Vehicles Behind Inputted 

Deceleration 

Table C.25 - Section 9.6.14 Simulation Results 
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Table C.26 - Section 9.6.14 Collision Modelling Results 
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Table C.27 - Section 9.6.14 MADM Results 
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