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ABSTRACT Soft-core processors implemented in SRAM-based FPGAs are an attractive option for
applications to be employed in radiation environments due to their flexibility, relatively-low application
development costs, and reconfigurability features enabling them to adapt to the evolving mission needs.
Despite the advantages soft-core processors possess, they are seldom used in critical applications because
they are more sensitive to radiation than their hard-core counterparts. For instance, both the logic and signal
routing circuitry of a soft-core processor as well as its user memory are susceptible to radiation-induced
faults. Therefore, soft-core processors must be appropriately hardened against ionizing-radiation to become
a feasible design choice for harsh environments and thus to reap all their benefits. This survey henceforth
discusses various techniques to protect the configuration and user memories of an LEON3 soft processor,
which is one of the most widely used soft-core processors in radiation environments, as reported in the state-
of-the-art literature, with the objective of facilitating the choice of right fault-mitigation solution for any
given soft-core processor.

INDEX TERMS LEON3 soft-core processor, fault tolerance, spatial redundancy, temporal redundancy,
software redundancy, SEE, SEU, soft errors.

I. INTRODUCTION
One of the most significant and complex environmental
remediation tasks in the whole of Europe is the cleaning-
up process of the legacy nuclear waste, which is projected
to cost more than £115bn and perhaps as high as £220bn,
over the next 120 years [1]. Cleaning up radioactive waste
inside a nuclear power station is too hazardous to be done
by human beings due to the severe adverse effects of the
ionizing radiation on biological tissues, which abound in
these environments primarily in the aftermath of a severe
nuclear accident. Consequently, there is a strong motivation
and desire to use robots, and consequently, electronic devices
to enter radiation facilities, e.g. nuclear power plants, nuclear
waste disposal sites.

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli .

When using electronic devices, human beings are spared
from entering harsh environments. However, this is not
a straightforward task because electronic circuits in these
robots are also susceptible to the radiation effects; this has
become even clearer after the Fukushima Daiichi nuclear
power plant in Japan suffered a series of meltdowns as a
result of the failure of its safety systems due to a tsunami.
Robots dispatched into the accident site to monitor radia-
tion levels and facilitate the cleaning-up process have kept
breaking down and failing very soon after entering as their
circuits were destroyed by the radiation, thus turning the
entrance of the facility into a robot graveyard [2]. Henceforth,
if robots are to be deployed in such scenarios, the behaviour of
electronic circuits in extreme nuclear radiation environments
remains to be thoroughly studied, and radiation effects to be
mitigated.

There are two significant cases where electronic equipment
can be employed in order to spare human lives. The first one
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is to manage (move, dispose of) nuclear waste generated by
nuclear plants, and the second is the case of a nuclear disaster.
In both cases, using robots instead of human beings is still a
much more rational solution. Additionally, robotics will play
an increasingly important role in in-service maintenance and
inspection of the current nuclear fleet to support plant life
extension (PLEX). Finally, robotic systems will soon become
an essential design element of new-built reactors, as well as
helping to build them in the first place, thereby reducing risk
and cost while improving safety at the same time.

Soft errors in electronic circuits are consequences of
faults induced by energetic particles (e.g. alpha particles,
heavy ions, neutrons) or electromagnetic waves (e.g. X-rays,
gamma rays) striking the semiconductor substrate of transis-
tors [3] in radiation environments such as nuclear facilities
or outer space. These errors have a transient behaviour that
does not permanently damage digital circuits. However, they
adversely affect the reliability of systems to a great extent,
especially if the integration level of the chip is high, leading to
a further decrease in dependability [4]. For instance, a number
of mission critical applications have been recently imple-
mented in Systems-on-Chips (SoCs) built on SRAM-based
FPGAs which offer the benefits of higher flexibility, lower
cost, reduced time-to-market and capability of dynamic hard-
ware reconfiguration [5]. Unfortunately, this kind of highly-
integrated circuits involving several hard-core or soft-core
processors are very prone to transient faults which can eas-
ily cause overall system failures. Therefore, developing and
employing techniques to mitigate radiation-induced transient
faults are of fundamental importance.

Even if soft-core processors can not beat hard-core proces-
sors in terms of performance, area, and power consumption,
SoCs incorporating soft-core processors are becoming very
popular nowadays in the domain of embedded systems; this
is due to the fact that soft-core processors can be implemented
in any FPGA of any technology/supplier, and can be eas-
ily customized for a specific application in order to better
accommodate its particular requirements. However, soft-core
processors must be seriously protected against ionizing radi-
ation to be an attractive design choice for harsh environments
since there are unique fault modes for soft-core processors
with respect to hard-core processors –that is, not just the user
memory but also the configuration memory controlling both
the logic and signal routing circuitry of a soft-core processor
on an SRAM-based FPGA is susceptible to radiation-induced
faults.

Therefore, adoption of fault-mitigation techniques is the
only viable way to use soft-core processors in radiation
environments. In this regard, multiple approaches have been
proposed in the literature, however, no survey has ever been
published till today, to the best of our knowledge, which
puts together developed and deployed techniques for the
protection of soft-core processors against soft errors arising
in their configuration and user memories when implemented
in SoCs built on SRAM-based FPGAs. This paper has been
written to fill in this gap, and presents a thorough survey of

soft error mitigation techniques as applied for protecting the
configuration and user memories of LEON3 soft processors
deployed on SRAM-based FPGAs. LEON3 is one of the most
widely used soft-core processors in radiation environments,
e.g. space, as reported by many research papers in the state-
of-the-art literature.

While choosing which research papers to include for this
survey paper, we searched through all the major relevant
research libraries, e.g. IEEE Explore digital library, ACM
digital library, ScienceDirect etc., to find all papers published
in the last 20 years which discuss fault-mitigation techniques
as applied to any soft-core processor against soft errors.
When we established that LEON3 is the soft-core processor
reported in most of the resulting papers as the target processor
on which fault-mitigation techniques are applied, we pro-
ceeded with shortlisting LEON3 related papers based on two
criteria, i.e the number of citations received by the paper so far
and the prominence of its authors in the field, with the objec-
tive of including only the most promising research papers in
our survey. Note that only soft errors caused by single-event
effects have been studied in this paper because they are the
most widespread radiation effect for soft-core processors on
SRAM-based FPGAs [4]. Other radiation-induced fault types
are total ionizing dose and displacement damage, as will be
further discussed in Section II-A, and they have been left out
of the scope of this paper so as to have more space to delve
into techniques dealing with soft errors.

All fault-mitigation solutions presented in this survey
employ one or more forms of redundancy [6] (which broadly
refers to incorporating additional capabilities into the system
which would not be required in a radiation-free environ-
ment [7]), such as spatial redundancy, temporal redundancy,
software redundancy or information redundancy, along with
other techniques in order to empower systems to continue
their operation effectively and efficiently even when tran-
sient faults occur in their critical components. Furthermore,
fault-mitigation techniques described can be readily applied
to other soft-core processors implemented in SRAM-based
FPGAs, as the ultimate objective of this paper is to facilitate
the choice of right fault-mitigation solution for any given soft-
core processor.

The paper is organized as follows. Section II provides the
effects of radiation on electronics in general, and soft errors
it causes in SRAM-based FPGAs in particular. Section III
briefly describes the LEON3 processor which is the subject
soft-core processor of this paper, and in Section IV, promi-
nent research papers proposing various soft error mitigation
solutions for LEON3 processors implemented on SRAM-
based FPGAs are presented, and their results are evaluated
in many terms, under four subsections depending on the
types of redundancy techniques they utilize individually or
in conjunction. Finally, conclusions are drawn in Section V.

II. BACKGROUND
Soft-core processors which are implemented in an FPGA
fabric are an attractive option for applications to be employed
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in radiation environments by virtue of their flexibility,
relatively-low application development costs, and reconfig-
urability features applicable when deployed on an SRAM-
based FPGA – that is, the FPGA fabric hosting the soft-core
processor can be reprogrammed in order to accommodate
the evolving mission goals or amend possible errors in the
design. Despite the advantages soft-core processors within
FPGA fabric can bring to these applications, they are seldom
used because they are more sensitive to radiation than their
hard-core counterparts which are actually implemented in the
silicon as a physical structure.

Striking high-energy particles and electromagnetic waves
cause faults arising in the FPGA fabric occupied by the soft-
core processor. Faults can occur both in the configuration-
memory and user-memory bits of the FPGA. Thus, soft-core
processors have unique fault modes in contrast to hard-core
processors. Consequently, the adoption of fault-mitigation or
fault-tolerance techniques is vital if it is desired to employ
soft-core processors in radiation environments.

Before introducing soft-core processor fault tolerance, it is
crucial first to discuss what fault-tolerance techniques must
protect in a soft-core processor. This section motivates the
need for protection with a discussion on fault modes in
SRAM-based FPGAs. It begins by discussing the effects of
radiation on electronics in general and then identifies the
unique fault modes of soft-core processors through a discus-
sion on how faults affect an FPGA’s configuration and user
memories.

A. RADIATION EFFECTS ON ELECTRONICS
Ionizing radiation can damage electronics in three significant
ways. Radiation effects on electronics can either temporarily
change the behaviour of a circuit (a soft error), or permanently
damage the circuit (a hard error). However, radiation can also
cause an error that has characteristics of both a hard and a soft
error (a firm error) in FPGA designs.

The first-way radiation damages electronics is called as
Total Ionizing Dose (TID) [8] which refers to the cumula-
tive, permanent damage in an electronic device causing it to
degrade over time (i.e. hard error). It takes place when charge
carriers are implanted into the device’s insulators as radiation
strikes, where they consequently get trapped altering the
electrical characteristics of the integrated circuits [9].

The second major category of radiation-induced adverse
effects is generally called as single-event effects (SEE) [8].
Most often, this type of faults is transient (i.e. soft errors)
and do not cause permanent damage like TID, but they may
still induce unwanted behaviour changes. All these transient
effects stem from excess charge carriers generated through
the ionization of silicon atoms by radiation. If a sufficient
amount of these charges gathers in a certain area, the logic
value of a line in that area can be upset; this event is referred
to as a single-event transient (SET) which has a brief effect
until the excess charge dissipates.

In case of an SET, if a storage device captures the new state
of the line, there would be a longer lasting effect on the system

output, which is identified as a single-event upset (SEU).
Nevertheless, an SEU can be generally amended by restoring
all flip-flop (FF) values through a system reset. However, it is
not possible to fix some SEUs by a simple reset; these type of
SEUs are called as single-event functional interrupts (SEFIs).
There is another radiation effect called single-event latch-up
(SEL) which takes place when ionizing radiation turns on
parasitic transistors in the silicon. These parasitic transistors
can keep conducting current until a system reset, causing
parts of the device burn in some cases (i.e. hard error) [10].

The third and last significant radiation effect is called
displacement damage (DD) [8], which occurs when a high-
energy particle displaces silicon atoms out of their positions
in the silicon lattice while passing through the device. These
displacements cause silicon substrate defects, which has the
potential to alter the electrical characteristics of the device.
Fortunately, this effect is not often observed in FPGAdevices.

Like other electronic devices, radiation has effects on
FPGAs the degree of which largely depends on the type
of FPGA being employed. FPGAs are divided into three
major categories, based on how they deploy configuration
data, which include antifuse, flash, and SRAM-based FPGAs.
Antifuse FPGAs use non-volatile configuration memory
composed of fuses which can be programmed only one time
to set each and every configuration bit. Since the configura-
tion data is permanent for antifuse FPGAs, users do not have
the convenience of updating or amending the functionality
of the device in the field. However, antifuse FPGAs are very
reliable against SEUs because their configuration cells made
up of simple fuses which are resistant to single-event effects.
Nevertheless, antifuse FPGAs are still susceptible to SEUs
within their user memory.

On the other hand, non-volatile flash memory cells are
employed in flash FPGAs to set the configuration memory
bits. As an advantage, flash FPGAs can be reprogrammed in
the field for a limited number of times. Furthermore, flash
memory cells built with electrically-isolated floating gate
offer resistance to SEUs, however, user flip-flops and block
memories are vulnerable to SEUs like in the case of antifuse
FPGAs. On the downside, flash FPGAs are less tolerant to
TID than other FPGA types due to the internal working
mechanism of the flash memory, which limits the amount
they can be used in harsh environments. The rest of the paper
will focus on SRAM-based FPGAs.

B. SOFT ERRORS IN SRAM-BASED FPGAs
An SRAM-based FPGA is an integrated circuit (IC) whose
logic and routing matrices can be easily reprogrammed
unlimited number of times in the field [5]. The circuitry of an
SRAM-based FPGA includes a vast array of reprogrammable
logic resources and a rich interconnect system which can
be used to create as large and complex digital circuits as a
processor. Since designs are implemented on a programmable
hardware fabric, SRAM-based FPGAs are extremely flexible
and provide a low application development cost for designs.
This flexibility and reprogrammability make SRAM-based
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FPGAs ideal for a plethora of applications in nuclear power
plants [9] and space [11], as they can be reprogrammed even
during run-time, thus adapting to the evolving mission goals
or rectifying design errors. Nevertheless, as they employ
static memory cell, SRAM-based FPGAs are volatile, i.e.
they lose their configuration data, thus functionality, once
power is removed, and must be reprogrammed from external
memory every time they are turned on.

The ability to reconfigure an SRAM-based FPGA is by
the virtue of the presence of internal SRAM cells which are
collectively called the configuration memory. For instance,
signal routing matrices within the FPGA are controlled with
some of these SRAM cells in the configuration memory.
Changing the routes through a routingmatrix is accomplished
by changing the values of these configuration memory bits.
Bits in the configuration memory also control logic elements
such as look-up tables (LUTs), multiplexers, and flip-flop
attributes. A large configuration memory, i.e. millions of
configuration bits, is required to control all of the routing and
logic circuitry within the entire FPGA.

From a reliability point of view, the primary concern for
SRAM-based FPGAs is SEUs occurring within their con-
figuration memory. An SEU occurring in an FPGA’s con-
figuration memory can cause a firm error in either logic
or interconnect part of the design. An upset is classified as
a logic upset if it occurs in a region of the configuration
memory controlling any logic element or any logic element
attribute. An SEU may upset a bit in an LUT which will in
return manipulate the logic function the circuit is supposed
to perform. Another unique FPGA failure mode stems from
upsets occurring in configuration memory regions dictating
the signal interconnection. Firm errors in signal routing can
be mainly classified either as an open error, i.e. SEU causes
an open route, or a short error, i.e. SEU causes two routes to
drive a single input.

The configuration memory is not the only FPGA mem-
ory sensitive to upsets. User memory is also susceptible to
upsets. User memory refers to registers and memories used
within a design, i.e. flip-flops or SRAM cells of block RAMs
(BRAMs). For example, the user memories in a soft-core
processor include the main memory, register file, caches,
and pipeline registers. Notably, there are much fewer user
memory bits than configuration memory bits.

III. THE LEON3 PROCESSOR
The processor considered in this paper is 32-bit LEON3 [12]
soft-core processor from Aeroflex Gaisler. This processor
has been chosen for this survey due to its widespread use
in harsh environments involving ionizing radiation such as
space; LEON3 is one of the processors used by the European
space agency [13]. The LEON3 processor is an open-source
processor which has performance and efficiency comparable
to other well-known soft-core processors while being one of
the most configurable soft-core processors [14].

LEON3 complies with the SPARC V8 instruction set
architecture (ISA), and has a processing pipeline coupled

FIGURE 1. The LEON3 processor system design [14].

with separate instruction and data caches, floating-point
unit (FPU), co-processor unit, and multiprocessing capabil-
ity [15]. Both the data and instruction caches can be con-
figured with up to four sets of 1 to 256 KB per set, and
16- or 32-bytes per line. Furthermore, the register file uses
windowed registers with up to 32 windows. Each register
window consists of 32 registers: eight global registers, eight
input registers, eight output registers, and eight local registers,
where global registers are shared by all register windows.

Typically, the LEON3 processor includes a seven-stage
integer pipeline, a ten-window register file, a hardware mul-
tiplier and divider, a memory management unit (MMU),
32 KB direct-mapped, write-through instruction and data
caches, and the on-chip memory implementable with Block
RAMs (BRAMs) on aXilinx FPGA [16]. The LEON3 system
design also encompasses several auxiliary units such as an
AMBA bus, AMBA bus controllers and interfaces, a default
memory controller, a default interrupt controller, a debug sup-
port unit (DSU) and debug port, a trace buffer, a translation
look-aside buffer (TLB) among others, as shown in Fig. 1.

LEON3 processors must be significantly protected against
ionizing-radiation to be an attractive design choice for harsh
environments when deployed on an SRAM-based FPGA as a
soft-core processor. As explained above, the logic and routing
within the soft-core processors can be seriously affected by
SEEs, since the logic and routing of a soft-core processor
is implemented in the configuration memory of an SRAM-
based FPGA. The user memory of soft-core processors is also
vulnerable to SEEs.

Therefore, the next section discusses various ways of pro-
tecting the configuration and user memories for LEON3 pro-
cessors implemented in SRAM-based FPGAs, as reported in
the literature.

IV. SOFT ERROR MITIGATION SOLUTIONS FOR
LEON3 PROCESSORS ON SRAM-BASED FPGAs
In this section, most prominent research papers proposing
mitigation solutions for soft errors in LEON3 processors
implemented on SRAM-based FPGAs are thoroughly eval-
uated after they are broadly classified into four categories
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depending which type of redundancy they utilize alone or in
conjunction with each other.

A. SPATIAL REDUNDANCY BASED SOLUTIONS
In [17], a non-intrusive fault-tolerance technique has been
described for soft processors embedded in SRAM-based
FPGAs, which was developed targeting LEON3-based
On-Board Computer (OBC) systems to be employed in the
satellite construction missions of the Brazilian Institute of
Space Research (INPE). The proposed technique has the
ability to identify run-time errors through bus monitoring,
without any modifications to the application software, with
the goal of preventing an error in the OBC processor (i.e.
LEON3) to propagate across the whole system.

There are two SRAM-based FPGAs in the proposed OBC
board along with the output selection circuit connected,
where the proposed technique implements on-line fault detec-
tion mechanisms in order to identify run-time errors in one
of the FPGAs, thus avoiding error propagation to the rest
of the satellite system by masking faults through spatial
redundancy.

On each FPGA, a LEON3-based system-on-chip (SoC) has
been deployed in which a second (redundant) processor and
a specially developed Bus Monitor have been added to the
AMBA AHB bus as another instance of spatial redundancy –
see Fig. 2. These two processors are executing same instruc-
tions over the same data, where the redundant processor does
not have the authority to write to the bus, while the bus
monitor is tasked with comparing data produced by both
processors in order to check whether outcomes of the main
processor match those of the redundant one. If there is a
mismatch in one of the two SoCs, the error signal of the corre-
sponding Bus Monitor will be asserted to be used by the out-
put selection circuit to disregard the erroneous data coming
from that SoC and provide the correct data coming from the
other SoC to the rest of the satellite system. On the downside,
the proposed technique does not incorporate any mechanism
to recover the faulty processor and re-synchronize it with
other processors. However, advantages of this technique are
twofold:
1) The area overhead per each FPGA is significantly

reduced compared to triple modular redundancy
(TMR) [18] technique as only one redundant processor
is added to the SoC.

2) There is no intrusion to the application software run-
ning on the processors, thus avoiding performance
losses which could be the case for fault-tolerance tech-
niques interfering with the software.

The proposed fault-mitigation technique was validated
through fault injection experiments which are conducted by
executing a TCL script within the Mentor ModelSim simula-
tion tool. The simulation script is designed to inject a fault
to each and every internal signal of OBC in one-at-a-time
fashion through a set of simulations, with faults injected at
different simulation times for each internal signal. Authors
claim that two Bus Monitors in the overall system were able

FIGURE 2. LEON3 architecture with a redundant processor [17].

to detect all failures arising from fault injections, therefore
all failures could have been masked by the Output Selection
Circuit. Note that neither emulation-based fault injection nor
accelerated radiation testings have been done.More seriously,
no particular FPGA chip or board has been mentioned for
the actual implementation of the proposed technique. Conse-
quently, there is no FPGA resource utilization or timing data
presented in the paper.

In [19], authors propose a fault-mitigation approach for
FPGAs where functional units can be replaced by a hardware
spare unit in case of a fault, presenting an example of spatial
redundancy. The proposal comprises two sets of Replaceable
Functional Units (RFU) and Spare Functional Units (SFU).
Critical RFUs are initially hardwired on the device (i.e. they
are placed in a non-reconfigurable area), and when found
defective, they are replaced by an SFU mapped inside the
reconfigurable area. Non-critical RFUs instead are initially
mapped inside the reconfigurable area, and are replaced by a
software SFU if the reconfigurable area is needed to host a
critical spare unit.

An SoC based on LEON3 processor, depicted in Fig. 3,
was used as the target in this work where the major objective
was to protect the Arithmetic Logic Unit (ALU) within the
LEON3 processor. The ALUwas identified as a critical RFU,
while the utilized Data Encryption Standard (DES) crypto-
core was regarded as a non-critical RFU. Consequently,
the reconfigurable area was initially occupied by the DES
crypto-core. In the case where the ALU embedded in ALU
fails, the previously allocated DES would be swapped at run-
time with the hardware SFU implementing ALU via dynamic
partial reconfiguration. In this scenario, the de-allocated DES
hardware core would be replaced with its corresponding soft-
ware SFU in the LEO3 processor.

The given approach was synthesized and tested on a Xilinx
Virtex-4 FPGA. It has been shown that the system can keep
working normally after a reconfiguration, but there is an
increase, as expected, in the execution time, from 183 ms
to 1500 ms, when executing the DES algorithm in software
rather than in hardware. Note that the reconfigurable area
was allocated with 536 slices which can be regarded as the
area overhead of the proposed approach. To verify the cor-
rect operation, faults were manually injected into the system
through a switch on the board; When the board switch is
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FIGURE 3. Conceptual block diagram of the proposed architecture [19].

FIGURE 4. Shadow register technique extended with ECC units [20].

asserted, the fault injection mechanism in the system was
triggered to emulate a fault. The details of the fault injec-
tion campaign was not provided. As another shortcoming,
no actual radiation test for this workwas reported in the paper.
Furthermore, the approach presented in this work merely
protects one small module in the processor, i.e. the ALU,
while the remaining modules are left unprotected. Moreover,
the area overhead is always bounded to the biggest module,
which may cause inefficiency in the resource utilization if
smaller modules occupy significantly less space.

Bouajila et al. [20] has proposed an spatial redundancy
based fault mitigation technique for RISC processors in gen-
eral, while the actual implementation was merely carried out
for LEON3 processors. The underlying objective of the pro-
posed approach is to detect and correct any faults occurring
in the pipeline registers of the processor. To achieve the given
objective, pipeline registers are replicated and then coupled
with ECC units as shown in Fig. 4, where register replicas are
referred to as shadow registers. The modified version of the
pipeline works as follows: whenever the utilised ECC mod-
ules supervising pipeline registers detect an error, the pipeline
is frozen at the current clock cycle and then the corrupted data
is corrected in the second clock cycle deploying the complex
mechanism explain in Section III-A of [20]. Therefore, any
error will be detected and corrected with a fixed penalty of
two clock cycles.

Authors have prototyped this technique on a Xilinx
Virtex-IV FPGA, and verified its fault tolerance reliability
by introducing instruction execution errors at a variable rate
via random fault injection into pipeline registers. To mea-
sure the execution overhead, they compared the Cycles per

Instruction (CPI) performance of the proposed approach to
that of the baseline design. These experiments have shown
that for an error rate of 4%, the CPI has increased to 1.09,
whose nominal value is 1 under no fault scenario. Fur-
thermore, the proposed approach exhibits an area overhead
of 17%, 29% and 28% in terms of Flip-Flops (FFs), LUTs and
slices, respectively, with respect to the unmodified design.
As a shortcoming, authors have not included any results
regarding the clock frequency shift as would be caused by
the design modifications; a critical path increase is highly
expected since more elements are added between the pipeline
registers, which causes a clock frequency reduction. Finally,
no radiation test was carried out for this work.

In [21], various combinations of three SEU mitigation and
repair techniques, i.e. TMR (a widely used technique based
on spatial redundancy), internal block memory scrubbing
(BRAM scrubbing) [11] and configuration memory scrub-
bing (CRAM scrubbing) [11], are utilized in an attempt to
study and and evaluate the effects of each technique on the
radiation sensitivity of the LEON3-based SoC implemented
on SRAM FPGAs. In total, authors have conducted experi-
ments on five combinations of the mentioned techniques:
1) Unmitigated SoC design (reference design)
2) SoC design with TMR
3) SoC design with TMR and BRAM scrubbing
4) SoC design with TMR and CRAM scrubbing
5) SoC design with TMR, BRAM scrubbing and CRAM

scrubbing
Same authors previously reported the outcomes of similar
experimentation over only one case study, where all the
aforementioned SEU mitigation and repair techniques were
applied together to the LEON3 soft processor, in [22].

Each of these five LEON3-based system variations or
versions incorporates only the core architecture of the
LEON3 with a minimal set of peripherals and no cache
memory, which obviously prohibits the full coverage of the
SEU failure modes and therefore, facilitates simpler exper-
imentation flow. All but the first of these system versions
employ full TMR at the fine granularity level, which means
the entire design is replicated at the primitive level where
triplicated majority voters are placed in the feedback paths.
Furthermore, version #3 and version #5 deploy BRAM (used
to implement instruction and data memory) scrubbing in the
processor systems, where the scrubbing logic goes through
each memory address and continuously writes the correct
value to that memory locations, as determined by voting
between triplicated BRAM copies (see Fig. 5). Moreover,
in processor system versions #4 and #5, external read-back
CRAM scrubbing is performed over JTAG using a high-
speed JTAG controller, where the current configuration of
the FPGA is compared bit-by-bit against the golden copy to
detect erroneous bits and correct them by writing back the
correct bit value via partial reconfiguration.

All five LEON3 processor system variations are imple-
mented one-by-one on the same Xilinx Kintex 7 FPGA
chip mounted on the KC705 evaluation board. Since each
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FIGURE 5. Internal BRAM scrubbing [21].

FIGURE 6. SEU testing infrastructure [21].

version employs different SEU mitigation and repair tech-
niques, the resource consumption on the FPGA varies across
the versions, where design with TMR only (version #2)
and design with TMR and BRAM scrubbing (version #3)
occupy 3.9× and 4.8× more slices, as compared to the
unmitigated reference design (version #1). Note that ver-
sions #4 and #5 occupy same number of slices as version
#3 since CRAM scrubbing does not require any additional
resources.

Both emulation-based fault injection and neutron radi-
ation testing were used to evaluate each LEON3 system
variation for SEU fault tolerance through the same test-
ing infrastructure whose purpose is to detect when the
LEON3 processor produces incorrect outputs. Within the
mentioned testing infrastructure, two identical processor sys-
tems are incorporated onto the same FPGA as shown in Fig. 6,
where LEON3 processors run in parallel and bus signals
from each processor are compared on a clock-by-clock basis
to produce a single failure indicating signal; this signal is
attached to the JTAG boundary scan for external sampling.
Furthermore, Dhrystone benchmark is continuously executed
on both processors to allow errors, if any, to propagate
throughout the system so as to cause failures which are then
detected and signalled by the comparison circuit available
within the testing infrastructure. The foremost outcome of
both fault injection and neutron radiation testing is that the
sensitivity of the processor system to SEU-induced failures is
getting reduced, i.e. improved, incrementally as we traverse
from design variant #2 to design variant #5, in comparison
to the unmitigated design variant. Finally, processor system
design featuring all the three fault mitigation and repair tech-
niques (version #5) offers 51.3× and 28.9× improvement in
radiation sensitivity, respectively, as measured in fault injec-
tion and neutron radiation experiments.

FIGURE 7. Checkpointing with configuration memory scan [23].

B. TEMPORAL REDUNDANCY BASED SOLUTIONS
An SEU mitigation approach was proposed in [23] and
[24] for processors embedded in SoPCs where configura-
tion memory scan/scrubbing was used for fault detection
and fault repair while checkpointing with rollback recovery
technique [25], which is based on temporal redundancy, was
employed for fault recovery; notably, checkpointing with
rollback recovery cause redundant time delays in process
executions – the reason why these approaches are regarded
as temporal redundancy-based solutions. In this approach,
only the sensitive frames of the configuration memory are
scanned periodically to detect SEUs, thus the scan period
depends on the number of sensitive frames of the design,
while context of the processor is stored at the end of each scan
interval during a checkpoint, as illustrated in Fig. 7. Authors
has reported that the given approach uses the SEU detection
and correction related IP cores built for Xilinx Virtex FPGA
devices where each configuration memory frame is protected
by Error Correcting Code (ECC), and therefore the fault
repair can be done using the error correction capability of the
ECC unit whenever faults are detected through scanning.

In the above papers, the configuration memory scrub-
bing time of a LEON3-based System-on-Programmable
Chip (SoPC) design was estimated counting the number
of design configuration frames which contain sensitive
bits [11] (i.e. counting sensitive configuration frames). Then,
a constraint-driven re-placement method was proposed uti-
lizing the idea of column-based placement [26] in order
to reduce the number of sensitive configuration frames,
and to consequently minimize the scrubbing time. The pro-
posed method’s effectiveness was verified on the given SoPC
design.

Furthermore, the information from the sensitive bits map
file produced by the Xilinx implementation tool-chain was
employed along with the bit-stream generated in order to
identify how sensitive bits were distributed on the FPGA
layout, and to calculate the number of sensitive configuration
frames, as illustrated in Fig. 8. This analysis process was
applied to the LEON3-based SoPC implemented on a Xilinx
Virtex-5 device, whose results have showed that although
only 14.16% of the FPGA configuration bits have been
found to be sensitive bits, the FPGA slice utilization rate
is 46%, and a large portion of the configuration frames are
characterized as sensitive frames by a percentage of 84.9%.
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FIGURE 8. Sensitive bits analysis process [23].

As a consequence, a large number of frames contain few
sensitive bits causing time to get wasted by the scrubbing pro-
cess for scanning these underutilized frames. This situation
arises due to the problem of inefficient logic placement in the
FPGA.

As a remedy to this problem, authors propose a
constrained-placement (CP) method to be applied after the
initial placement whose target is to maximize the utilization
of configuration frames. The steps of the given method are
thoroughly explained in section 3 of [23]. With the applica-
tion of the CP method, it has been reported that the rate of
sensitive frames has been reduced from 84.9% to 49.86%,
thus an improvement of 41.29% has been achieved in com-
parison to the initial (i.e. unconstrained) placement, while the
clock frequency degradation is negligibly small. The direct
consequence of this result is the reduction in the configuration
memory scan time by 41%. The CP method was advanced
in [24] by introducing a selective scrubbing approach where
selected system components not used at a particular time
during task execution are not scanned, thus further reducing
the scrubbing time by 23%.

Finally, the LEON3-based SoPC system reliability was
analytically evaluated using the number of sensitive frames
and the configuration memory throughput in order to prove
the reliability improvement owing to the reduction in sensi-
tive frame counts achieved by the CP method. The reliability
of the SEU mitigation approach proposed was measured
in terms of mean-time-to-detect (MTTD) and mean-time-
to-repair (MTTR) parameters. It is important to note here
that the checkpoint and rollback mechanisms were not actu-
ally implemented by the authors, and therefore their impact
on the system performance was not considered. Finally,
the CP method applied within the proposed SEU mitigation
approach reduces the MTTD and the MTTR by 41% in
comparison to the case where only unconstrained placement
is applied. Furthermore, it was reported that if the selective
scrubbing method is incorporated as well in the approach,
the reduction in the parameters of MTTD and MTTR would

FIGURE 9. Architecture of the lockstep system [27].

be even better, i.e. 54%. Note that neither fault injection nor
irradiation experiments have been conducted to practically
measure the reliability of the proposed approach.

C. SPATIAL AND TEMPORAL REDUNDANCY
BASED SOLUTIONS
In [27] and [28], a design flow is described for FPGA-based
SoPCs which can be adopted to mitigate radiation-induced
faults (i.e. SEUs) affecting embedded processor IP cores in
harsh environments. The design flow employs three different
fault-tolerance methods, i.e. lockstep technique (also known
as Duplication with Comparison (DWC) technique) [29]
which draws on spatial redundancy, checkpoint with rollback
recovery technique (based on temporal redundancy), and on-
demand configuration memory scrubbing, where the objec-
tive is to provide a balance between resources overhead and
reliability. The authors claim that the proposed flow reduces
the required hardware resources and makes it possible to
easily harden processor cores within new SoPCs which are
bound to work in harsh environments. The design flow was
furthermore applied in the design of an SoPC-based system
with a complex processor IP core, and results of the applica-
tion were reported.

The proposed processor hardening approach is based on
a combination of lockstep for fault detection, checkpointing
with rollback for fault recovery, and configuration memory
scrubbing for fault repair, which is achieved as follows:

1) The processor in the system is duplicated where two
exact copies of the processor (named as the master
and checker processors) are synchronized on clock-
by-clock basis (i.e. lock-stepping) while executing the
same software (see Fig. 9).

2) A monitor module is added to the system in order to
detect radiation-induced SEUs occurring either in the
master processor or in the checker processor by com-
paring the bus activities of the two processors, as shown
in Fig. 10.

3) If no errors are detected by the monitor module,
it periodically issues an interrupt request to the mas-
ter processor, so that a copy of the system’s context
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FIGURE 10. Checker logic architecture [27].

FIGURE 11. Automated design flow [28].

(i.e., master processor’s register values and contents
of the data memory) is stored in a safe memory (i.e.
checkpointing).

4) If an error is detected, an interrupt request is issued to
both processors, so that the system’s context is replaced
with the previously saved one, thus rolling back proces-
sors to a previous presumably-good state (i.e. rollback
recovery).

5) If the monitor module still detects errors after a roll-
back before reaching a new checkpoint, it is assumed
that there occurred persistent SEUs in the FPGA con-
figuration memory (i.e. firm error). To recover from
these firm errors, themonitor forces the reconfiguration
of the FPGA (i.e. on-demand configuration memory
scrubbing), and then it resets both processors forcing
them to restart the execution.

Following the above approach, the authors have proposed
an automated design flow which can effectively support the
safety-critical system designers by streamlining the modifi-
cation of the processor IP at HDL level, thus applying the
proposed hardware hardening solution, and by incorporating
interrupt routines for context storage and context recovery
operations into the processor boot software. This design flow
is illustrated in Fig. 11.

Authors have performed experiments as well to assess
the effectiveness of their proposed design flow using an
SoPC system based on the LEON3 processor. To evaluate the
area overhead, the resource utilization of the TMR version
of the LEON3 processor as obtained by the XTMR tool
from Xilinx has been compared with that of the duplicated
LEON3 processor architecture resulting from the proposed
design flow. It has been found that the architecture obtained
from the proposed design flow requires fewer logic cells and
memory blocks by 43% and 34%, respectively, with respect

to the TMR version. Furthermore, it has been found that the
critical path of the TMR version is 25% longer than that of
the proposed architecture. Consequently, the proposed design
flow produces processor architectures with faster clock fre-
quencies with respect to the TMR approach.

Furthermore, four software benchmark applications (i.e.
elliptic filter, FIR filter, Kalman filter and matrix multipli-
cation) were considered to evaluate the time overhead of the
approach inflicted by the involved context storage periodi-
cally performed at checkpoints. In these experiments, where
one checkpoint every 300 write cycles was committed, it
was found that the time overhead ranges from 17.7% to
53.8% depending on the amount of data to be stored during a
checkpoint. No timing overhead has been mentioned for the
context recovery operation.

Finally, utilizing emulation-based fault injection tool
in [30], ten thousand SEUs were randomly injected into
the processor registers, and in particular into the pipeline
registers. From these experiments, it was observed that 84%
of the injected faults are either effectless or detected and
corrected properly, while 15% of the injected faults could not
be corrected, therefore causing illegal instruction trap in the
processor. The remaining 1% of the injected faults, on the
other hand, were also corrected by the system through config-
uration memory scrubbing, as they caused persistent errors.
Note that no irradiation experiments have been conducted for
the given design flow.

In [31], an on-board data-handling computer incorporating
a LEON3 processor core was considered as implemented
on a Xilinx Virtex-II device for a real space mission. The
computer systemwas protected from radiation-induced faults
by the design approach mentioned above, and runs a periodic
task of acquiring a stream of data, applying the Kalman
filter on that data, and then sending the filtered data to the
platform computer. The period of the task is reported to be
1.25ms for the operational frequency of 40MHz. An analysis
was performed to assess the effects of heavy ions on the
system using two scenarios – that is, the worst-day scenario
(related to solar flare events) and the background Galactic
Cosmic Radiation (GCR) scenario were considered accord-
ing to the CREME96 predictions [32], for which the corre-
sponding user-memory and configuration-memory SEU rates
were reported.

In this analysis, it was estimated about one upset in the con-
figuration memory of the processor core would occur every
14 seconds and every 1 hour in the worst-day scenario and the
background GCR scenario, respectively, thus causing errors
in the the program execution. This implies that once every
14s or 1hr depending on the scenario, the monitor module
described above would detect a persistent error, and there-
fore trigger the FPGA reconfiguration and processor reset,
which would make the data-handling computer unavailable
for 500ms at the given configuration clock frequency every
14s or 1hr. This unavailability would cost the loss of just 3.6%
and 0.01% of the data acquired and processed in the worst-
day scenario and the background GCR scenario, respectively.
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FIGURE 12. Fault-tolerant system with I-IP [33].

Furthermore, due to the SEUs in the user memory, it is
estimated that 0.001% of the total amount of data gathered
and processed would be lost in the worst-day scenario. There-
fore, it is analytically proven that the impact of SEUs in the
configuration and user memories is negligible when using
the above fault mitigation approach for LEON3 processors
in a SoPC.

D. SPATIAL, SOFTWARE AND INFORMATION
REDUNDANCY BASED SOLUTIONS
In [33], authors extend their previous technique [34] of
fault detection for SoCs in order to incorporate fault correc-
tion as well, where SEUs in the data memories and caches
are detected and corrected with an approach comprising
source code modifications which introduce redundant code
and information, i.e. software and information redundancy,
respectively. The coherence between redundant information
is subsequently verified by a redundantly included, special-
purpose Infrastructure IP core (I-IP) [35] during the execu-
tion, which is an instance of spatial redundancy. Therefore,
this approach proposes high-level application software alter-
ations and a hardware core incorporation with no modifica-
tion to the rest of the hardware system. The authors claim that
the this approach provides the same fault detection/correction
capabilities as purely software-based fault-tolerance tech-
niques [8], such as the one reported in [36], with the merits
of diminished code and performance overheads.

Fault detection, fault localization and fault correction fea-
tures are supported in the fault-tolerance technique of [33].
Fault detection is achieved by duplicating variables on which
same duplicated instructions are applied. A coherency check
between the two replicas of each variable is then performed
by the I-IP, connected to the system bus as shown in Fig. 12,
which monitors all bus transactions and detects any discrep-
ancies, i.e. faults. Furthermore, in case of fault detection, fault
localization is performed by deploying high-level macros in
the application code. These macros submit values of a spe-
cific set of duplicated variables to the I-IPwhich subsequently
calculates the corresponding execution checksum value [36],
and then compares it with the reference checksum value to
identify which set of variables is corrupted. The internal
structure of the I-IP is shown in Fig. 13.

Moreover, fault correction is provided via a system-level
recovery scheme triggered by an interrupt request from the
I-IP once a fault is detected. Invoked interrupt service routine

FIGURE 13. I-IP block design [33].

FIGURE 14. Recovery procedure timing diagram [33].

then corrects the corrupted set of variables using the pre-
sumably fault-free values of the other set, as depicted by
the timing diagram in Fig. 14. Note that the proposed fault-
tolerance technique does not provide resilience to control
flow errors as the special-purpose registers within the pro-
cessor, most importantly program counter (PC), and program
memory/cache are not protected in any way.

In order to assess the memory and performance overheads,
as well the fault tolerance capacity, of the proposed approach,
four benchmark programs from the EEMBC AutoBench Per-
formance Benchmark Suite [37] have been chosen to be hard-
ened against soft errors through source code modifications
explained above. These benchmarks were respectively related
to theMatrix (MTX)multiplication of 10×10 matrices, fifth-
Order elliptical (ELPF) filtering over a set of 16 samples and
Lempel-Ziv-Welch (LZW) algorithm compressing character
strings by replacing them with single codes. All of these pro-
grams were cross-compiled to run on a LEON3-based SoC
armed with the proposed I-IP. However, the implementation
platform for the SoC has not been mentioned in [33].

In the results, it has been shown that the hardware
area overhead caused by the I-IP is less than five per-
cent of the total area occupied by the LEON3 processor,
whereas the proposed approach exhibits a code memory over-
head which is up to 5× smaller than the purely software-
based technique in [36] with a bonus of no additional data
memory overhead. Furthermore, for all considered bench-
mark programs, the proposed technique reduces the per-
formance overhead, e.g. by 4.2× for the ELPF case, with
respect to [36].

Finally, emulation-based fault injection campaigns target-
ing data memories and caches were performed for each of
the three benchmark programs using the same testing envi-
ronment in [38], so as to evaluate the fault tolerance
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performance. In these experiments, although most of the
faults have not exhibited themselves, the oneswhichmanaged
to propagate in the system have been detected and corrected
by the utilized technique for all cases, thus avoiding wrong
results at the outputs. However, for the LZW case, some
exceptions have occurred in the processor due to the injected
faults causing corruptions in memory addresses within point-
ers. Remarkably, no radiation experiments have been con-
ducted to assess the actual fault tolerance performance of the
proposed methodology.

Lindoso et al. [39] has proposed and implemented a hybrid
fault-tolerant technique for a LEON3 soft-core processor
implemented in a low-end FPGA (i.e. Xilinx Artix-7), and
then evaluated its error detection capabilities. The proposed
solution combines the use of error detection and correction
codes for memories, a module to detect control-flow errors,
software-based techniques to detect data errors and configu-
rationmemory scrubbingwith repair to avoid error accumula-
tion. Therefore, it fits in the spatial, software and information
redundancy based solutions category.

Authors have hardened RAM and caches of the system
through the implementation of an unspecified Single Error
Correction/Double Error Detection (SEC/DED) scheme in
which single errors are corrected without issuing any notice,
while double errors are merely detected and reported. Fur-
thermore, the register file of the processor was constructed
using duplicated dual-port BRAMs where single error detec-
tion was achieved through output comparisons; there is no
explanation in the paper as to why correction mechanisms
applied to RAM and caches were not employed here as well.
On the other hand, to harden the processor control-flow,
a Hardware Monitor (HM) was added to the system architec-
ture which observes the instruction flow at the beginning, i.e.
at the fetch stage, through the memory bus, and at the end of
the pipeline path, i.e. after execution, through the trace inter-
face. TheHMmodule has resulted in an area overhead of 11%
and 21% for LUTs and FFs, respectively, with respect to the
baseline implementation. Fig. 15 depicts how theHMcollects
information from different pipeline stages for evaluation, and
raises an error signal if they do not match.

Furthermore, the proposal tackles data flow errors with a
software-based technique where all variables are duplicated

FIGURE 15. Block diagram of the hardware monitor [39].

to enable consistency checks, whenever any variable is mod-
ified or a procedure is called, to detect data errors. A control-
flow duplication technique, explained in [40], was also
deployed at the assembly instruction level to further enhance
error detection. Finally, configuration memory scrubbing was
applied through the instantiation of the Xilinx Soft Error
Mitigation (SEM) IP core [41] in the system for detection and
correction of configuration bit upsets. Note that the scrubbing
module has caused an overhead of 16% and 30% in terms of
LUTs and FFs, respectively.

When comparing each technique in a fault insertion cam-
paign, authors have shown that the HM has the highest
single contribution (i.e. 57.1% on average) which is about
1.6 times more effective than the software hardening (i.e.
35.3% on average) alone. Using all the above techniques
together achieves an error detection rate of 96%. More-
over, neutron radiation experiments were carried out to com-
pare and evaluate three different versions of the proposed
approach, i.e. (i) one with configuration memory scrubbing
and SEC in RAMs/caches only; (ii) one with configuration
memory scrubbing, SEC/DED in RAMs/caches and dupli-
cated register file only and (iii) one with all four aforemen-
tioned techniques. Results show that each version have failed
to detect 95, 67 and 23 errors, respectively. Although these
experiments have resulted in a high error detection rate, it is
hard to put the test results into perspective because authors
have included neither exact execution times nor the mean
time between failures or undetected errors.

V. CONCLUSION
Various techniques for protecting the configuration and
user memories of LEON3 soft processors on SRAM-based
FPGAs were thoroughly discussed in this survey through a
number of prominent research papers, all of which employ
one or more forms of redundancy, such as spatial redundancy,
temporal redundancy, software redundancy or information
redundancy in order to develop resilience against transient
faults induced by energetic particles or electromagnetic
waves striking the semiconductor substrate of transistors in
radiation environments. Although LEON3 was the focus of
this study, fault-tolerant techniques and methods described
will equally benefit other soft-core processors implemented
in SRAM-based FPGAs. We envisage that choosing the right
mix of redundancy to develop a fault tolerance solution for
any given soft-core processor has been facilitated for the
reader now that most prominent existing solutions have been
studied in this survey.

Works presented in this survey have relied either on a single
or multiple existent techniques which were statically mapped
to solve the given problem. However, there is still an open
research challenge on how to dynamically, i.e.at run-time,
adjust the system to choose and apply themost appropriate set
of techniques at a given point in time. One good starting point
which can be exploited and expanded is presented in [19],
where multiple and larger reconfigurable areas could be used
for replacement units. Furthermore, instead of focusing on
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just one particular module or technique, we envisage the
system can decide by itself which technique/module is
the most viable one based on the current error rate, error
types, etc.
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