
 Coventry University

DOCTOR OF PHILOSOPHY

Application Deployment Framework for large-scale Fog Computing Environment

Verba, Nandor

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/application-deployment-framework-for-largescale-fog-computing-environment(75c00526-e21e-4536-88a0-d5fd4c6b73ce).html

Application Deployment Framework for
large-scale Fog Computing

Environments

by

Nándor Verba

September 2018

A thesis submitted in partial fulfilment of the University’s requirements for the Degree of
Doctor of Philosophy

Certificate of Ethical Approval

Applicant:

Nandor Verba

Project Title:

Application Deployment Framework for large-scale Fog Computing Environments

This is to certify that the above named applicant has completed the Coventry

University Ethical Approval process and their project has been confirmed and

approved as Low Risk

Date of approval:

 21 June 2018

Project Reference Number:

P71986

Acknowledgements

I would like to acknowledge and express my thanks to my director of studies, Professor
Kuo-Ming Chao for the long meetings and difficult to answer questions that led to the
breakthroughs in my thesis as well as allowed me to have a firm grasp on defending and
explaining my work. Furthermore, I would like to thank all other members of my supervisory
and research team, Prof. Anne James, Dr. Xiang Fei, Dr. Jacek Lewandowski, Dr. Nazaraf
Shah and Dr. Daniel Goldsmith, without whom this work would have not been completed.

I would also like to show my gratitude to members of staff at both the Faculty of
Engineering and Computing but also members from the Academic Support Unit. They made
my time at the University better and simpler through their help and support.

I am also thankful for the teaching and development opportunities that came with support-
ing Dr. Norlaily Yaacob and others on their modules. I would also like show my gratitude
for the help and support I received from the Manufacturing an Technology Centre, the Future
Transportation Centre and also for the funding support from the Global Leaders Program.

Finally, I would like to wholeheartedly thank my family, Helga and my friends for their
support during my thesis. They helped me along my way and without them, I could have not
finished in time, or at all.

In summary, this thesis could not have been submitted without the support and help of
some amazing people and they have my gratitude for all of the things they did to push me
and the thesis along.

List of Publications

Journals

[1] Verba, N., Chao, K.M., Lewandowski J.,Shah. N., James, A., Tian F., 2019, Modelling
industry 4.0 based fog computing environments for application analysis and deploy-
ment Future Generation Computer Systems,91, pp. 48-60.

- based on Chapter 5 - Application and Gateway Model

[2] Verba, N., Chao, K.M., James, A., Goldsmith, D., Fei, X., Stan, S.D., 2017. Platform
as a service gateway for the Fog of Things. Advanced Engineering Informatics, 33, pp.
243-257.

- based on Chapter 3 - Fog of Things Platform

[3] Fei, X., Shah, N., Verba, N., Chao, K.M., Sanchez-Anguix, V., Lewandowski, J., James,
A., Usman, Z., 2019. CPS data streams analytics based on machine learning for Cloud
and Fog Computing: A survey, Future Generation Computer Systems, 90, pp. 435-450.

- used parts in Chapter 2 - Research Background

Conferences

[4] Verba, N., Chao, K.M., James, A., Lewandowski, J., Fei, X., Tsai, C.F., 2017, Novem-
ber. Graph Analysis of Fog Computing Systems for Industry 4.0. In 2017 IEEE 14th
International Conference on e-Business Engineering (ICEBE), pp. 46-53.

- based on Section 6.1 - AME Case Study

[5] Verba, N., Chao, K.M.,Soizic L.„ Eleni A., September. Smart Transportation plat-
form for big data analytics and interconnectivity. In 2018 International Conference on
Traffic and Transportation Engineering (ICTTE), pp. 232-238.

- based on in Section 7 - Future Work

Abstract

The extension of the Cloud to the Edge of the network through Fog Computing can have
a significant impact on the reliability and the latency of deployed applications. Recent
papers have suggested a shift from Virtual Machines and Container based deployments to a
shared environment among applications to better utilise resources. The existing deployment
and optimisation methods do not account for application interdependence or the locality of
application resources, which can cause inaccurate estimations. When considering models
that account for these, however the optimisation task of allocating applications to gateways
becomes a difficult problem to solve that requires either model simplifications or tailor-made
optimisation methods.

The main contribution of this research is the set of weighted deployments methods that
aim to reduce the complexity of the search-space in large-scale fog deployment environments
while retaining significant system characteristics. This work was attained by first addressing
some existing IoT issues by proposing a Fog of Things gateway platform to answer the
connectivity and protocol translation requirements. The proposed platform was used to
identify the characteristics and challenges of these systems. A new data-driven reference
model was then proposed to estimate the effects of application deployment and migration on
these systems. Based on this model, weighted clustering and resource allocation methods
are defined, that are then improved upon by a set of weight tuning methods focusing on
analysing favourable and sample deployments.

These proposals were validated by running tests on Industry 4.0 case studies. These
varying scenarios made it possible to identify the scaling and deployment characteristics
of these systems. Based on these initial tests, the second batch of physical and virtual
experiments was carried out to validate the models and to evaluate the proposed methods.
The findings show that the proposed application and gateway model can predict the load
and delay of components to an accuracy of 91%. Within the presented scenarios, constraints
and Fog sizes larger than 300 applications, the proposed weighted clustering methods were
shown to significantly improve the utility of deployments. In some cases, these methods
were the sole providers of valid solutions.

Table of contents

List of figures xvii

List of tables xxi

Nomenclature xxiii

1 Introduction 1
1.1 Research Context . 1
1.2 Research Problem . 2
1.3 Research Aims and Objectives . 3
1.4 Methodology . 4

1.4.1 Research Methodology . 4
1.4.2 Fog of Things Platform . 5
1.4.3 Application and Gateway Model 6
1.4.4 Clustering based optimisation method 6
1.4.5 Validation and Analysis . 7

1.5 Novelty and Contribution . 7
1.6 Thesis Structure . 8

2 Research Background 11
2.1 Internet of Things . 11
2.2 Fog and Cloud Computing . 13
2.3 Industry 4.0 Requirements . 15
2.4 Gateway and Middleware Platforms . 17
2.5 Application and System Model . 21
2.6 Deployment in the Fog . 23

2.6.1 Load Balancing . 24
2.6.2 Global Optimisation Techniques 25

2.7 Network Analysis and Clustering . 27

xii Table of contents

2.8 Summary . 28

3 Fog of Things Platform 31
3.1 General View and Platform Requirements 31

3.1.1 Protocol Agnostic Device Messaging 31
3.1.2 Regional Connections and Messaging 31
3.1.3 Multi-Cloud Tenancy . 32
3.1.4 Modular Application Deployment 32
3.1.5 Application Migration, Clustering and Testing Functionality 32

3.2 Generic Gateway Architecture . 32
3.2.1 Local Messaging Service . 34
3.2.2 Cloud Controller and Local Resources 36
3.2.3 M2M Communication and Registration 37
3.2.4 Application Container . 38
3.2.5 Regional Communications and Clustering 39
3.2.6 Cloud Connection and Management 39
3.2.7 Migration and Message Routing on the Platform 40
3.2.8 Application and Gateway Monitoring 41

3.3 Architecture Implementation . 42
3.3.1 Device Drivers . 42
3.3.2 Application Container . 44
3.3.3 Regional and Cloud Drivers . 45

3.4 Distributed Control and Metering Use Case 46
3.5 Summary . 48

4 Application and Gateway Model 51
4.1 Overview of Model . 51
4.2 Gateway Load . 52
4.3 Application Load . 54
4.4 Delay Model . 55
4.5 Reliability Model . 56
4.6 Parameter Analysis . 57

4.6.1 Processing Capacity and Speedup 57
4.6.2 Driver and Message Loads . 58
4.6.3 Processing Delays . 59
4.6.4 Networking Delays . 61

4.7 Utility Functions . 62

Table of contents xiii

4.8 Summary . 64

5 Deployment Optimisation 67
5.1 Introduction . 67
5.2 Problem Description and Categorisation 68
5.3 Overview of Approaches . 70
5.4 Deployment validation and Utility Calculation 72
5.5 Modified Genetic Algorithm based Method 72
5.6 Clustering . 76

5.6.1 Random Clustering . 77
5.6.2 Distance based Clustering . 78
5.6.3 Weights and Attributes based Clustering 79
5.6.4 Eps Value Estimation and Improvements 81

5.7 Resource Allocation . 82
5.7.1 Random but Fair . 82
5.7.2 Shared Resource Based Allocation 83
5.7.3 Weighted Property based Resource Allocation 83
5.7.4 Correlation and Weights based Resource allocation 85

5.8 Overview of Methods . 86
5.8.1 Connections based Clustering and Resource Allocation 86
5.8.2 Iterative Correlation based Clustering and Optimisation 87
5.8.3 Sampled Data based Correlation and Weight Calculation 92

5.9 Summary . 94

6 Evaluation and Analysis 97
6.1 Analysis and Replication: AME Case Study 98

6.1.1 Use Case Description . 98
6.1.2 Analysis Parameters . 102
6.1.3 Replication Data Analysis . 106
6.1.4 Network Analysis . 108
6.1.5 Replication Analysis . 111

6.2 Model Validation . 112
6.2.1 Single Deployment Validation . 113
6.2.2 Bundled Deployment Validation 114
6.2.3 Migration Deployment Validation 114

6.3 Physical System Deployment Optimisation 115
6.4 Evaluation Use Cases . 117

xiv Table of contents

6.4.1 Delay Optimisation Scenario . 117
6.4.2 Weighted Multi-Component Utility Scenario 118
6.4.3 Capability Constraint and Utility Scenario 118

6.5 Testing Parameter Selection . 119
6.5.1 GA Parameter Selection . 119
6.5.2 Clustering Parameter Selection . 124

6.6 Performance Analysis . 125
6.6.1 Small-Scale Tests . 126
6.6.2 Medium-Scale Tests . 128
6.6.3 Large-Scale Tests . 129
6.6.4 Conclusions . 131

6.7 Scalability Analysis . 131
6.7.1 Delay Scenario . 132
6.7.2 Multi-Parameter Scenario . 133
6.7.3 Capability Scenario . 134
6.7.4 Conclusions . 136

6.8 Component Evaluation . 136
6.8.1 Resource Allocation . 137
6.8.2 Clustering . 139
6.8.3 Weights Tuning . 140
6.8.4 Conclusions . 144

7 Conclusions and Future Work 145
7.1 Results Overview . 145

7.1.1 Platform Review . 145
7.1.2 Model Review . 146
7.1.3 Deployment Method Review . 147

7.2 Answer to Research Questions . 148
7.3 Future Work and Directions . 149

References 151

Appendix A VisJs Visualisation Platform 161

Appendix B Code Snippets 165

Appendix C Example Deployment File 175

Table of contents xv

Appendix D Physical Backbone of the System 177

Appendix E Optimisation Run-time Log Example 181

List of figures

1.1 Overview of Research Methodology . 5

2.1 (Hakiri et al. 2015) Overview of IoT Vision and Architecture 12
2.2 (P. Verma and Sood 2018) Example of Fog Environment 14
2.3 (Barreto, Amaral, and T. Pereira 2017) Industry 4.0 Use-Case 16

3.1 Architecture of the Gateway . 33
3.2 Messaging Exchanges and routing . 35
3.3 Application Migration from Gateway 1 to the Cloud Gateway 41
3.4 Registration sequence diagram . 43
3.5 Control and Metering Application . 47

4.1 Overview of Model . 51
4.2 Processing Delay Variation . 59
4.3 Application Delays variation . 61

5.1 High level view of Methods . 71
5.2 Chromosome used for GA . 74
5.3 Crossing used for GA . 75
5.4 Mutation used for GA . 75
5.5 Overview of Methods . 95

6.1 Parts and Flow Monitoring subsystem . 100
6.2 Energy Monitor and Control subsystem 101
6.3 Access, Safety and Environmental Monitoring and Control 102
6.4 Combined System . 103
6.5 DBSCAN Clustering Results . 109
6.6 Graph Degree Distribution of Systems . 110
6.7 Graph Betweenness Distribution of Systems 111
6.8 Replicated Systems . 112

xviii List of figures

6.9 Single Deployments Results . 113
6.10 Bundled Deployments Results . 114
6.11 Migration Deployments Results . 114
6.12 Initial Deployment . 115
6.13 Delay Optimisation . 116
6.14 Constraint Delay Optimisation . 116
6.15 Reliability Optimisation Results . 117
6.16 Generation Size Variation Impact - Delay 121
6.17 Generation Size Variation Impact - Multi-Parameter 121
6.18 Generation Size Variation Impact - Capability 122
6.19 Stop Condition - Delay . 122
6.20 Stop Condition - Multi-Parameter . 123
6.21 Stop Condition - Capability . 123
6.22 The effect of the Fog Size on Outcomes 125
6.23 Small scale Delay Scenario Performance test 126
6.24 Small scale Multi-Parameter Scenario Performance test 127
6.25 Small scale Capability Scenario Performance test 127
6.26 Medium scale Delay Scenario Performance test 128
6.27 Medium scale Multi-Parameter Scenario Performance test 128
6.28 Medium scale Capability Scenario Performance test 129
6.29 Large scale Delay Scenario Performance test 130
6.30 Large scale Multi-Parameter Scenario Performance test 130
6.31 Large scale Capability Scenario Performance test 131
6.32 Delay Scenario Execution-Time Scalability test 132
6.33 Delay Scenario Utility Scalability test . 133
6.34 Multi-Parameter Scenario Execution-Time Scalability test 133
6.35 Multi-Parameter Scenario Utility Scalability test 134
6.36 Capability Scenario Execution-Time Scalability test 135
6.37 Capability Scenario Utility Scalability test 135
6.38 Components Time Distribution . 137
6.39 Resource Allocation Comparison Delay Scenario 137
6.40 Resource Allocation Comparison Multi-Parameter Scenario 138
6.41 Clustering Comparison Delay Scenario . 139
6.42 Clustering Comparison Multi-Parameter Scenario 140
6.43 Weights Tuning Evaluation for the Delay Scenario 141
6.44 Weights Tuning Evaluation for the Multi-Parameter Scenario 142

List of figures xix

6.45 Weights Tuning Evaluation for the Capability Scenario 143

A.1 Vis.Js Platform . 161
A.2 Initial Generated Fog . 162
A.3 Results of Distance Deployment . 163
A.4 Results of Sampling and Weights Clustering Deployment 164

B.1 Sampling and Weights Algorithm Snippet 167
B.2 Testing App and Load generator Snippet 170
B.3 AMQP to Event Admin Broker Snippet 171
B.4 Bluetooth Driver Snippet . 173

C.1 Example JSON Deployment File Snippet 176

D.1 Physical Cluster . 177
D.2 Software Stack . 178
D.3 Spark Deployment . 178
D.4 Physical Devices and Nodes . 179

E.1 Performance Test Log Example . 184

List of tables

2.1 Platform and Middleware Features . 19

3.1 Message from Driver . 43
3.2 OSGI Message Translation . 44

4.1 Processing Parameters of the Machines 58

5.1 Example Correlation Results . 89

6.1 Resource Use Parameters . 107
6.2 Application Parameters . 108
6.3 Fixed Method Parameters . 120
6.4 minPts Parameter Selection . 125

Nomenclature

Acronyms / Abbreviations

AMQP Advanced Messaging Queue Protocol

API Application Programming Interface

AWS Amazon Web Services

BLE Bluetooth Low Energy

BogoMIPS ’bogus’ Million Instructions per Seconds

CGO Costly Global optimisation

CMM Coordinate Measuring Machine

CoAP Constrained Application Protocol

CPS Cyber-Physical Systems

DBSCAN Density-based spatial clustering of applications with noise

FOT Fog of Things

GA Genetic Algorithms

IaaS Infrastructure as a Service

ICT Information and Communication Technology

IoS Internet of Services

IoT Internet of Things

IoV Internet of Vehicles

xxiv Nomenclature

JSON JavaScript Object Notation

K−Means K-Means Clustering Method

LAP Linear Assignment Problem

M2M Machine to Machine

MQT T Message Queue Transport Telemetry

NaaS Networking as a Service

NP non-deterministic polynomial time

OPT ICS Ordering points to identify the clustering structure

OSGI Open Service Gateway Architecture

OSI Open System Interconnection Model

PaaS Platform as a Service

PSO Particle Swarm Optimisation

QAP Quadratic Allocation Problem

QoS Quality of Service

REST Representational State Transfer

RFID Radio Frequency Identification

RPC Remote Procedure Call

SAaaS Sensing and Actuating as a Service

SaaS Software as a Service

SDN Software Defined Networking

SenML Sensor Markup Language

SLA Service Level Agreement

SOA Service Oriented Architecture

SOC System on Chip

Nomenclature xxv

SOM Service Oriented Manufacturing

STOMP Stream Text Oriented Messaging Protocol

TaaS Things as a Service

URL Uniform Resource Locator

V M Virtual Machine

WAN Wide Area Network

WSN Wireless Sensor Networks

Methods / Functions

R(t) Reliability in function of time t

z(t) Hazard or Failure Rate Model at time t

z(x) Hazard or Failure Rate Model at Load x

Variables

Ai j Application i deployed on Gateway j

AllocBaseToULoad Base Load to Unit Load Ratio for Gateway Allocation

AllocCapab Capability similarity ratio for Gateway Allocation

Alloci
Clust Resource Share Parameter for Gateway Allocation for Clusters

AllocPer fCapToULoad Performance Capability to Unit Load ratio for Gateway Allocation

AllocResShare Resource Share Parameter for Gateway Allocation

AllocSpeedToULoad Performance Speedup to Unit Load ratio for Gateway Allocation

AllocResShare Resource Share Parameter for Gateway Allocation

AV GRoute Average path length in the Fog

CCF Clustering Coefficient

Ci
App Cluster area i for the Application

CtF Total Constraint Violations in the Fog

xxvi Nomenclature

WConstraintV iolations
i Weight of Constraint Violations for Application i

ClsDist Distance Parameter for Clustering

ClsMsgRate Message Rate Similarity Parameter for Clustering

ClsReqSim Requirements Similarity Parameter for Clustering

ClsConstr Constraint Similarity Parameter for Clustering

ClsClsSum App to App Total Distance for Clustering

ClsULoad Unit Load Similarity Parameter for Clustering

ClsUtilW Utility Weights Similarity Parameter for Clustering

DA
i j Total Delay of Application i on Gateway j

DA
iRe f Reference Delay for Application i

DF Total delay in the Fog

DPing
j,k Total delay from Gateway j to Gateway k

Diameter The Diameter of the Fog

DN
i j Networking Delay of Application i on Gateway j

DP
i j Processing Delay of Application i on Gateway j

DPing
j,k Ping Value between Gateway i and j

DR
Base The Base Networking Delay on the Platform

DR
Ext External Jump Routing Delay

DTot Total Application Delay on the System

eps minimum distance for two nodes to be Neighbours

GBC Graph Betweenness Centrality

GDD Graph Degree Distribution

G j Gateway with id j

k1,k2 Time Delay Calculation constant

Nomenclature xxvii

LA
i j Application Load on Gateway j on App i

La
i j Measured Application Load on Gateway j on App i

λ A
i j Message Rate of Application i

λ Constant Failure Rate

λ Gw
jk Message rate of Driver k on Gateway j

LB
j Base Load on Gateway j

LD
k The Load of Driver k

LGw
j Load on Gateway j

LIdle
j Idlea Load on Gateway j

LM Message Load

Loci
k The Locality of type i of application k

Lu
i j Unit Load of Application i

minPts Minimum number of points to form a Cluster

UtilF Estimated Utility in the Fog

PCap
j Processing Capacity of Gateway j

PSpeed
j Processing speedup of Gateway j

PSpeed
Re f Reference Speedup Value

RA
i j Reliability of App i

RF Total Reliability of the Fog

RGw
j Reliability of Gateway j

RRe f Reference Reliability for the system

RRes
kl Reliability of Resource k on Gateway l

RType
App Resource use of Application

xxviii Nomenclature

rxy Correlation between parameters x and y

Sx Standard deviation for parameter x

T Gw
j Execution time of process on Gateway j

T Gw
Re f Reference execution time of process

UtilCi Utility of Cluster i

UtilCi Estimated Utility of Cluster i

UtilF
Delay Utility value for the Delay Optimisation scenario

UtilF Total utility of the Fog

UtilF
Multi−Comp Utility value for the Weighted Multi-Component Optimisation Scenario

W Delay
i Weight of Delay for Application i

W Reliability
i Weight of Reliability for Application i

x Mean values of parameter x

Chapter 1

Introduction

1.1 Research Context

The concepts of Industry 4.0 provide a new means of integrating concepts from ubiquitous
computing with manufacturing technologies through cybernetics. This advances the automa-
tion of the manufacturing systems and helps improve product quality, production efficiency,
condition monitoring and decision making (J. Lee, Bagheri, and Kao 2015; DIN 2016).
Within this concept, machines become connected with humans through computer systems to
work in a coordinated way to automate data acquisition, sharing and exchange among the
physical and virtual worlds.

The wide spread availability and affordability of sensors, wireless networks and the
accessibility of high-speed Internet make real-time multiple parameters monitoring and
control of manufacturing process possible in a way that was not feasible before (Y. Lu
2017). This leads to a great number of sensors being deployed to physical machines which
in turn generates a large volume of data that requires computationally intensive analysis
and interpretation for decision-making purposes. The resulting decisions, whether made by
humans or software, often need to be transformed into control signals for actuators to operate
the machine in the physical world. This then creates a loop-back to the sensor system as
new sets of data are collected and sent back for further analysis, reflecting changing machine
states over time.

This type of system based on Cyber-Physical System (CPS) is a facilitator for realising
the concepts of Industry 4.0. It enables computational algorithms and physical components
to interact with each other through real-time monitoring and control to improve productivity
(Trappey et al. 2016; L. Wang, Törngren, and Onori 2015). Yet, as stated in (Wiesner,
Marilungo, and Thoben 2017) traditional servers with limited capacities may not be able to
cope with the new challenges in terms of scalability and complexity of such systems. In turn,

2 Introduction

the Cloud with Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) provides a promising integrated solution (Mell and Grance 2011; Chaâri
et al. 2016) to address these challenges.

However, the cost of using Cloud services and the latency between the edges of the
network and the Cloud could hinder its application to time critical applications. Furthermore,
due to health and safety issues, some machines cannot be operated remotely and can only be
operated within particular boundaries at the premises (Health and Safety Executive 2004).
Besides, in some cases, the control software and the machine are bundled together due to
security, license and driver requirements, so it cannot be run on the Cloud or other machines.
On the other hand, the computational power or other resources on the controllers may
have spare capacity to process additional tasks. The study of assigning these existing extra
resources to time-sensitive tasks and overloaded computer systems becomes an interesting
alternative to Cloud processing (Deng et al. 2016; Jiang 2016). Such systems, as part of a
network infrastructure, could efficiently deal with front-line demands (Bonomi et al. 2012a).

The Fog environment is an extension of the traditional Cloud to the edge of the network
including both Cloud and edge resources. In Cloud computing environments, the physical
machines are considered to have mostly homogeneous builds with network latencies inside
clusters small enough that the deployed location of applications is not considered. In Fog
environments, locality is considered to be an important issue, due to the heterogeneous build
of nodes, the higher communication latencies inside a wireless network and the physical
lock-in of device resources. These differences between Fog and Cloud approaches introduce
the need for a new workload descriptor for a PaaS based Fog. Furthermore, in CPS systems
the importance of device to application communication needs to be considered. These require
the formulation of a new Application and Gateway Model as well as new optimisation
approaches that can address the differences between these systems.

1.2 Research Problem

So far, only a limited number of optimisation and load balancing approaches have been
proposed in the context of Fog computing and CPS (Do et al. 2015). The existing approaches
(Mahmud and Buyya 2016), however, focus on the design of optimisation methods using
different simulated parameters such as workload, power consumption and virtual machine
distribution. These approaches also lack physical environment testing, only considering
theoretical formulas for delay and processing that can only be implemented with full knowl-
edge of the applications and the systems that is not always possible. There are few studies
(Díaz, Martín, and Rubio 2016) on application properties such as coupling nature between

1.3 Research Aims and Objectives 3

devices/drivers and controller/gateway. Such properties can lead to extra communication
delays, depending on the distance between devices and gateways. The existing approaches
(Mahmud and Buyya 2016) are mainly interested in the overall or average workload balancing
without considering individual message response time, which can be crucial for CPS.

Based on these deficiencies in the current state of the art and based on the possible
prospects of future industrial requirements the main research question can be summarised as:

• How can large application systems deployments be analysed and improved in highly
heterogeneous Fog environments?

To be able to answer the main research question, a broad set of questions need to be
defined. These look at defining the challenges involved in answering the main question and
at defining what should be improved and analysed on the system. These questions are as
follows:

• What are the requirements and characteristics of future Industry 4.0 Gateways and
how can these be translated into protocols and systems?

• How can changes in the model be analysed and estimated using the run-time pa-
rameters and connections of the applications and gateways?

• What are the challenges of application deployment in Fog systems and what meth-
ods can be proposed to diminish their effects?

These questions were used when formulating the research aims and objectives in the next
subsection and form the basis of the validation and the chapter orchestration as well.

1.3 Research Aims and Objectives

The research aim can be defined as the broad challenge of this work and is stated below.

Formulate, implement and evaluate an IoT and Fog based Application Deployment
Framework for Industry 4.0 systems

The objectives can be described as steps that need to be taken to fully answer both the
main research question and the more precise questions that make it up. Due to the nature of
the work the objectives can be split up into three categories, Platform, Model and Method.
Each of these looks at distinct components of the big framework.

4 Introduction

Platform

• Provide a high-level framework for an IoT based Fog Platform that can satisfy the require-
ments presented by the current State of the Art.

• Implement the framework using existing technologies and protocols.

Model

• Analyse the Platform, identify relevant parameters and determine their behaviour.

• Formulate the Platform model taking into account numerous heterogeneity components.

• Identify system specific behaviours and constants, validating these.

Method

• Analyse the optimisation problem determining its hardness and propose directions for
improvement.

• Formulate methods that take advantage of system characteristics to meaningfully reduce
the search space for the optimisation methods.

• Evaluate proposed methods to identify advantages and disadvantages together with desired
use-case scenarios.

The objectives are translated into upcoming sections of the thesis where each set of
objectives is grouped into a chapter and validated in Chapter 7.

1.4 Methodology

1.4.1 Research Methodology

The research methodologies used when conducting this research changed based on the
alteration or iteration of the research questions as components were implemented and new
information was found. In overview, a collection of mixed methods was used in such a case
as suggested in (Borrego, Douglas, and Amelink 2009). Quantitative methods were used
to evaluate the benefits or drawbacks of certain approaches while qualitative methods and
data gathering were used to determine why certain methods might perform better than others.

1.4 Methodology 5

Fig. 1.1 Overview of Research Methodology

Qualitative methods were used in the evaluation of the platform where its adherence to the
Fog and IoT requirements was examined.

The overview of the research methods can be seen in Fig. 1.1 where the three stages can
be seen and the components of these are described on how they contributed to the final result.
The three stages of the research can be broken down to the three main outcomes that are the
Platform, the Model and then the optimisation Methods proven on these.

1.4.2 Fog of Things Platform

The first component was designed to answer the requirements of Industry 4.0 and also to
explore some of the novel concepts of IoT and Fog Computing. To decide which components
are to be used on the platform a similar methodology was used as in (Cruz et al. 2018) where

6 Introduction

a detailed literature review was done to identify direction and requirements while a Systems,
platform and protocol review was done to see which is mature enough and has the right
functionality to answer the requirements. Furthermore, a set of use-cases were considered
with requirements that the platform needs to answer. A final component that was considered
when formulating the concept of the platform was the capabilities of the physical devices
and team members.

Based on these stages the Platform design or framework stage was undertaken that had
three distinct components. Requirements were formulated for the platform as well as a
set of expected improvements to the current state or to a reference state. Based on these
requirements, components and technologies were chosen from the tested set and the Platform
was implemented. After the implementation, the components were validated to show they
correspond to the requirements and a run-time analysis was done to show how certain
parameters change on the system and how these are in-line with the expected improvements.

1.4.3 Application and Gateway Model

The application and gateway model was formulated after the analysis and validation of the
platform. In the first instance, a niche literature review was done where future directions were
analysed and the state of the art regarding application models for deployments, drawbacks
and shortcomings were identified as well as opportunities for improvement. With identifying
the parameters, that looked at which components of a deployment can be measured using the
platform and how these can be related to the ones that cannot but are crucial in such systems.

The method of identifying and using the models found is similar to the one used in
(Sargent 2007) where the formal model was designed, and then it went through a number of
iterative stages of altering and modifications until it could estimate changes and deployments
to match the requirements.

To validate the model there were three sets of tests that were performed. Initially, a set of
tests was run to identify the parameters of a system while afterwards the model was validated
using these parameters in two sets of tests. The first test looked at individuals being deployed
in controlled environments and how their behaviour changed, while the second one looked at
more bundled and complex deployments where the overall estimation capacity was analysed.

1.4.4 Clustering based optimisation method

The optimisation methods that could be applied to a system are largely reliant on the model
that is being used as shown in (Aibinu et al. 2016). To determine what method types can
employed, another niche literature review was performed looking at what methods were

1.5 Novelty and Contribution 7

proposed to allocate applications to gateways. Based on this review, and analysis of the
characteristics of the model and a Hardness test to analyse how difficult the problem is, the
optimisation method and its components were formulated. A number of possible directions
and solutions were found and analysed and as in the previous section in an iterative fashion
they were improved or replaced.

1.4.5 Validation and Analysis

When considering the validation of the optimisation method the guidelines of (Brownlee
et al. 2007) were followed where the methods were restricted to a certain set of use-cases
and testing data variation, limiting their generality but which also allowed the components to
be thoroughly tested and a qualitative view of the results to be available rather than just a
quantitative one. The scaling model and generated test cases were based on the industrial
use-cases and their graph-based analysis to verify how components interact and what type of
scalability model they follow.

The optimisation methods were analysed in three distinct ways. The first one looked at
evaluating the effect of each component on the results of the system, attempting to reduce
the impact of variability so the singular effects can be seen. The second component looks
at comparing the proposed methods to some existing ones, or slight variations of these to
see how they perform and what is the trade-off between these as the no free lunch theorem
(Wolpert and Macready 1997) suggests. The third set of evaluation tests look at determining
how the proposed methods work in scalability scenarios. This section looks at complexity
analysis as well as the increasing difficulty of finding valid solutions as large sizes are
reached.

1.5 Novelty and Contribution

The main contribution of this thesis is the weighted clustering methods that aim to solve the
scaling challenges of future large-scale Fog deployments that were based on the identified
characteristics, models and challenges of these systems.

When considering the Fog of Things Platform, its main contribution can be summed up
by the formulation of the Fog of Things paradigm and its implementation or architecture
proposal based on existing and modified protocols and systems. The paradigm shift can
be summed up by considering connected devices as resources and the attempt to create a
homogeneous application environment on top of a highly heterogeneous system.

8 Introduction

The novelty and contribution of the Application and Gateway model lie in its data and
system driven formulation where only measurable parameters are considered and the full
heterogeneity of the system is taken into account. This results in a model that can be deployed
in existing systems and can make more accurate predictions.

Within this framework, each component has novel elements, but the deployment optimi-
sation method provides the most novelty with the highest impact. This component focuses on
the creation of clusters to meaningfully reduce the search-space in the system. The weighted
property-based clustering and resource allocation, as well as the identification and training of
these weights is at the centre of this work.

1.6 Thesis Structure

The thesis structure follows the structure of the objectives and the research questions. Each
chapter is dedicated to answering a set of objectives and their questions. These chapters are
preceded by a background and overview information chapter and followed by their evaluation
and the conclusions of the research.

The thesis is structured in a logical way based on the proposal, where the whole thing can
be considered a framework which includes a Platform, a Model and an Optimisation method.
This structure is followed in the Research Background section and throughout the thesis and
in the Evaluation as well.

The Fog of Things Platform, the Graph Analysis of the System and the proposed Gateway
and Application models have been published by this research team in the course of the
ongoing research for the PhD. These have been linked in the Published Papers section
and certain paragraphs and sections from these were included in the Literature review,
Introduction, Body and Evaluation chapters.

Chapter 1 - Introduction aims to give a general introduction to the thesis. It also
contains a highlight of the major contributions, methodology, components and research
questions.

Chapter 2 - Research Background gives an overview of the existing state of the art,
potential directions, aspects of solving each problem and the work these are based on.

Chapter 3 - Fog of Things Platform describes the proposed platform, its components
and the theoretical and practical aspect of implementing these. This chapter discusses
characteristics and the shift in paradigms resulting from the inclusion of Things in the Fog.

Chapter 4 - Application and Gateway Model formulates the model for Application
and Gateway delay, load and reliability calculation that support the system health and the

1.6 Thesis Structure 9

utility calculations. This is built on the previous chapter and provides the foundations for the
optimisation methods described in the next chapter.

Chapter 5 - Deployment Optimisation showcases the components of the optimisation
methods as well as variants of it. In this section, these components are described together
with the four main configurations that are being tested. This chapter builds on the previous
two and provides the main contribution of the thesis.

Chapter 6 - Evaluation and Analysis evaluates and analyses the components, models
and the platform presented in the previous three chapters. Its purpose is to provide a
systematic review of the proposed ideas and show their drawbacks and advantages as well as
providing a typical use case for these.

Chapter 7 - Conclusions and Future Work summarises the whole thesis and its
findings, looking back at the initial questions aims and objectives, how these were answered
and the main finding of this research.

Chapter 2

Research Background

2.1 Internet of Things

The concept of ubiquitous sensing and computing is slowly becoming a reality with enabling
technologies like Wireless Sensor Networks (WSN) and the widespread adaptation of Cloud
computing. These advancements, as well as innovations in the fields of Radio Frequency
Identification (RFID), advancements in Wireless technologies like 4G and the introduction
of low powered microelectronics that enable wireless communication, sensing and actuation
control in microchips, and System on Chip (SOC) devices have contributed to the emerging
field of Internet of Things (IOT).

The realisation of the IoT would represent the advancement to Web3 (ubiquitous web)
as described by (Gubbi et al. 2013), where Smart Objects and Devices will be seamlessly
embedded in their surroundings. Implementation of such a concept gives rise to a new set of
challenges, such as uniquely identifying Objects in the system, gathering, interpreting, storing
and visualising the data, and being able to manage security, faults and billing requirements
for such devices.

There are numerous visions for a functioning framework for the IoT. These can be
split into three main categories: Thing Oriented, Internet or Middleware Oriented, and
Semantic Oriented. A generic overview example can be seen in (Hakiri et al. 2015). Each of
these approaches has their own advantages and disadvantages. These categories focus on
categorising IoT systems based on their architecture. Some systems might incorporate ideas
from two or more of these categories to accomplish their objectives.

A Thing Oriented approach can be seen in (Gubbi et al. 2013) where the authors give
a definition to the IoT as well as define its requirements, together with use cases and
proposed architecture on both public and private Clouds. This approach envisions objects
that are connected to a network that can interact with their environments through sensing and

12 Research Background

Fig. 2.1 (Hakiri et al. 2015) Overview of IoT Vision and Architecture

actuation as well as communicate with peers and analyse data. The authors see this step as a
“move from www (static pages web) to web2 (social networking web) to Web3 (ubiquitous
web)”. A Semantic Oriented approach is discussed in (Gyrard et al. 2015) where the authors
define the requirements of such an approach as well as analysing current contributions to
the field while defining their limitations and constructing a new architecture. This approach
is a data-oriented one, where the focus is on the abstraction of tasks with an emphasis on
communications and the transfer of data and interpretation of information.

A Middleware Oriented approach can be observed in (Distefano, Merlino, and Puliafito
2015) and (Sarkar et al. 2015) where the main focus is on the layers and architectures that
control the devices using different virtualisation policies to make the devices available on the
network. In (Distefano, Merlino, and Puliafito 2015) they envision a system where the “lower
level functionalities” are separate from the network which would be a Software Defined
Network (SDN). In (Sarkar et al. 2015) they define a layered design that adds a virtualisation
layer on each level that connects the devices with the application.

Some materials have been removed from this thesis due to Third Party Copyright. Pages where
material has been removed are clearly marked in the electronic version. The unabridged version of

the thesis can be viewed at the Lanchester Library, Coventry University.

2.2 Fog and Cloud Computing 13

2.2 Fog and Cloud Computing

The interconnection of sensor and actuator systems with decision making and analytics have
traditionally been performed by either local static controllers or sent up to the Cloud for
analysis. Through the paradigms of Internet of Things (IoT), Cloud computing based systems
propose the virtualisation of devices and provide their data and connection as a service
for users within a Sensing and Actuation as a Service (SAaaS) as proposed in (Distefano,
Merlino, and Puliafito 2015) or Things as a Service (TaaS) in (Christophe et al. 2011).
Another role Cloud computing has in CPS is focused on the analytics of the data received
from devices. The Cloud can provide a vast amount of processing and storage resource (Fox,
Kamburugamuve, and Hartman 2012) which can be used to analyse large amounts of data
(Zhang et al. 2017) or streams (Hossain et al. 2012). These Cloud capabilities are focused in
data centres (Rui and Danpeng 2015) which are centralised and have a remote nature, which
has several drawbacks. The security aspect of storing, analysing and managing data in the
Cloud is an increasing concern (Botta et al. 2016), while the remote nature of the Cloud also
has reliability and latency issues (Stojmenovic 2014).

The paradigms of Fog Computing as proposed by CISCO in (Bonomi et al. 2012b) extend
the Cloud to the edge of the network to better utilise resources available on gateways and
devices connected to the network (Cisco Systems 2016). This extension allows data to be
stored and processed locally increasing reliability and security while decreasing the latencies
between devices and the processing elements (Dastjerdi and Buyya 2016). The hosts or
gateways used in Fog systems vary from PC based Computing Nodes (Aazam and Huh
2014), Mobile Devices (Hong et al. 2013) to resource-constrained System on Chip Devices
(SoC) (Jalali et al. 2016). These hosts all have varying storage, processing and networking
capabilities (Giurgiu et al. 2009). Intel NUC and other small form factor style compute nodes
are the most common and are the most reliable, but these can usually only communicate with
devices using Ethernet or WiFi-based networks. An example of such a system can be seen in
(P. Verma and Sood 2018). The mobile device and SoC-based devices have fewer resources
but provide a wider range of wireless communication possibilities for a polyglot gateway
(Datta, Bonnet, and Nikaein 2014), such that they can be used to connect to a wider range of
heterogeneous devices that can use low-power Machine to Machine (M2M) communication
protocols.

The platforms deployed in Fog computing vary based on hosts and application domains,
but they can be categorised in a similar way as in Cloud computing. Infrastructure-based
solutions allow users to deploy Virtual Machines (VMs) (Luiz Fernando Bittencourt et al.
2015) or Docker Images (Bellavista and Zanni 2017). Platform-based solutions as in (Al-
Fuqaha et al. 2015; Khodadadi, Calheiros, and Buyya 2015; Paraiso et al. 2012) provide a

14 Research Background

Fig. 2.2 (P. Verma and Sood 2018) Example of Fog Environment

platform for users for application style system deployments. The third type of solution as
shown in (Gyrard et al. 2015; Z. Li 2016) provides networking and analytics capabilities
that the user can only configure and use without the need to program and deploy their
own application or platform. Some Cloud solutions also focus on the interconnection and
management of these services as in (Kum et al. 2015)

From the hosts perspective, there are a number of differences between Cloud and Fog.
The main difference between these systems is the amount of resources they possess, while
Cloud Systems are considered to have virtually unlimited storage and processing capabilities
(Aazam, Khan, et al. 2014), Fog systems are a lot more restricted, making their efficient
management more crucial (D. Kim, C. Lee, and Helal 2015). When looking at inter-
host communication in the Cloud, due to high-speed networks these delays are generally
considered to be uniform and negligible. In the Fog systems, due to wireless communication
and varying network types, networking delays can vary largely between hosts (Gupta and
Garg 2015). When looking at the device to host communication, the Fog is closer to the
remote devices while the Cloud adds significant networking delays when accessing them.
When looking at the differences from a platform perspective, the Cloud solutions offer full

Some materials have been removed from this thesis due to Third Party Copyright. Pages where
material has been removed are clearly marked in the electronic version. The unabridged version

of the thesis can be viewed at the Lanchester Library, Coventry University.

2.3 Industry 4.0 Requirements 15

control of resources using VMs, Docker style solutions or other Platform as a Service (PaaS)
options. Fog solutions tend to share resources between different users and systems.

Cloud-based CPS and IoT systems are typically designed using smart internet enabled
devices that connect to Cloud services using either Message Queue Transport Telemetry
(MQTT) (Truong and Dustdar 2015; Singh et al. 2015) or Constrained Application Protocol
(CoAP) (Kovatsch, Lanter, and Duquennoy 2012). These devices have higher power con-
sumption and, due to the security and protocol requirements, require more resources to run
than their Machine to Machine (M2M) technology based counterparts. In Fog systems these
smart devices are replaced by gateways that have significantly more resources and use more
power, but they are connected to devices using, Bluetooth Low Energy (BLE), Zigbee, or
other M2M specific protocols (Rahmani et al. 2015; W. Lee et al. 2016) that are more power
efficient. Hybrid systems as in (Jayaraman et al. 2014) suggest moving real-time sensitive
components closer to the edge or in the Fog while leaving resource intensive processes in
the Cloud. This can be seen with data-stream processing as well in (Baccarelli et al. 2016)
where initial analysis is performed on gateways and the data is sent up to the Cloud for more
in-depth analysis. In all of these cases, the decision to move from Cloud to Fog is based on
design choices that are influenced by processing requirements, distributivity of data and the
real-time requirements of the system (Stojmenovic 2014).

2.3 Industry 4.0 Requirements

In recent years there has been an increased interest in the development of manufacturing
systems that allow the monitoring and control of certain parameters, which can respond
to faults, be reconfigured, easily deployed and upgraded. Some of the main features and
requirements of such systems are presented in (Lasi et al. 2014). The research in this field
has resulted in a number of directions such as Cloud Manufacturing, IoT logistics, Smart
Manufacturing and others that have at the core the automation of manufacturing tasks,
the synchronisation of device usage, and the diverting of more of the management and
organisation tasks from humans to a management system. An overview was presented in
(Barreto, Amaral, and T. Pereira 2017).

There are multiple challenges and directions that can be taken to create a fully Automated
Manufacturing Environment. One of the components is the orchestration of the resources that
are needed to make products, reducing Time to Market, manufacturing times and idle devices
and resources. A Cloud computing and Enterprise Model based solution is presented in (Bi,
Da Xu, and Chengen Wang 2014) that focuses on the management of resource components

16 Research Background

Fig. 2.3 (Barreto, Amaral, and T. Pereira 2017) Industry 4.0 Use-Case

of Cloud-based manufacturing, allowing delivery and deployment models to be implemented
based on known characteristics.

Other research (Bi, Da Xu, and Chengen Wang 2014) focuses on the technology com-
ponent of the system that allows devices from different mediums to send information in a
heterogeneous system. The system is broken down into multiple levels abstracting unneeded
information at each level, while ensuring the mapping and access to resources through
manufacturing services in a Service-Oriented Architecture(SOA) system, thereby offering a
Service Oriented Manufacturing (SOM) solution.The platform presented in (Tao et al. 2014)
suggests the collaboration of a number of higher-level systems such as the IoTs for resource
management and orchestration, the Internet of Users for requests and tasks and the Internet
of Services (IoS) for Cloud resource utilisation.

The proposed gateway platform would perform the tasks of the IoT component while
overflowing into the IoS region allowing the use of local resources to increase the configura-
bility and Quality of Service (QoS) specifications of manufacturing systems. Furthermore,
from an industrial management point of view the gateway platform would allow the fast
reconfiguration of systems to decrease the time to market and allow for higher flexibility in
industrial production.

Some materials have been removed from this thesis due to Third Party Copyright. Pages where
material has been removed are clearly marked in the electronic version. The unabridged version of

the thesis can be viewed at the Lanchester Library, Coventry University.

2.4 Gateway and Middleware Platforms 17

2.4 Gateway and Middleware Platforms

IoT gateways have become increasingly configurable and their functionalities have expanded.
The horizontal integration directives aim at allowing platforms and devices from different
providers using different protocols to interact. This would increase re-usability and reduce
application complexity. To allow the connection of multiple devices multi-M2M protocol
support, registration, management and enhanced configurability is needed for these devices.
The increased number of resources available on the gateway has led to the need to be able
to virtualise these and move a portion of the resource use from the Cloud to the edge of the
network.

When discussing the IoT, three distinct approaches for the architectures of such systems
(Fortino et al. 2014b) can be considered. An IPv6 based network where Smart devices are
uniquely accessible through Constrained Application Protocol (CoAP) or other lightweight
protocols as has been suggested in (P. P. Pereira et al. 2013). In the Cloud-oriented approach
devices are accessed from the Cloud through API’s (Fox, Kamburugamuve, and Hartman
2012) or using Message Queue Telemetry Transport (MQTT) protocol. In the middleware
approach, information goes through gateways or brokers that communicate with devices
through more lightweight communication protocols such as 6LoWPAN, nRF24L01 or ZigBee
and forward these messages to the Cloud or local users such as in (Sarkar et al. 2015).

With the introduction of Cloud and Fog Computing paradigms, the use of resources
available at the edge of the network is considered as well as the deployment of application and
processing tasks on the edge devices (Chao et al. 2015). Proposals like MADCAT in (Inzinger
et al. 2014; Kovatsch, Hassan, and Mayer 2015) suggest large applications be decomposed
into components and deployed onto devices while (Khodadadi, Calheiros, and Buyya 2015)
suggests a MapReduce like approach with IoT application development. Together with
proposals from (Ruckebusch et al. 2016) which looks at reconfigurable components and
(Fortino et al. 2014a) which looks at agent-based cooperative smart objects, these suggest a
need for Software Defined Networking as well as the need of decomposing applications into
components and running them on the gateway.

The idea for the use of resources on the edge of the network was first introduced by
Cisco (Bonomi et al. 2012b). Advances in Networking as a Service (NaaS) and the increased
processing power of gateway devices have led to the development of edge computing
platforms like Docker (Ismail et al. 2015). Edge computing includes solutions based on
Virtual Machines (Vogler, J. M. Schleicher, et al. 2015; Vögler et al. 2016) as well as
container-based application deployment solutions.

Open Service Gateway Interface (OSGI) is a modular service platform for Java that has
been the focus of research towards modular IoT Gateways. OSGI can be used for multi-tenant

18 Research Background

Cloud connection architecture as in (Azeez et al. 2010). Platforms like HEPA (Seo et al.
2015) propose the use of Zookeeper to control a set of OSGI Gateways that would facilitate
the transmission and translation of device information. One of the drawbacks of the OSGI
core platform is that it lacks solutions for asynchronous communication between components.
To address this issue (Koschel et al. 2012) and (Sivieri, Mottola, and Cugola 2016) proposed
a messaging-based solution that maps messages to either internal services or to an event
administration system component.

There are a number of different approaches to the design and implementation of IoT
gateways. Most of the initial approaches as well as some of the latest ones like Eclipse Scada,
Krikkit, SmartHome and HePA (Seo et al. 2015) concentrate on semantic interpretation
of data and configuration based routing or event creation. Other approaches like that of
Eclipse Kura (Eclipse Kura n.d.) and Eliot (Sivieri, Mottola, and Cugola 2016) look at
fully re-configurable systems where applications configure and define everything, a fully
modular system. These approaches cause platform and provider lock-in where information
passing between peers is problematic. Solutions like BUTLER (Botella et al. 2009) and the
use of eTrice provide an abstraction of protocols to enable easier application development.
While eTrice (M. H. Orabi, A. H. Orabi, and Lethbridge 2016) generates Java or C code
based on the written code, Butler deploys the run-time environment directly onto devices,
which allows the user to review the written code. Most of the presented gateways have
very limited solutions for re-configuring and re-programming connected devices to suit the
needs of the users. However, there are proposals like GITAR (Ruckebusch et al. 2016) and
MADCAT (Inzinger et al. 2014) that provide a platform that can reconfigure embedded
devices connected to it. A functionality based summary review can be seen in Table 2.1
where the differences between the gateway platforms are highlighted based on six most
commonly considered criteria.

Due to the differences in processing and storage resources of IoT devices there is a wide
range of tailored M2M protocols. The higher level protocols like CoAP, SNMP and MQTT-
SN are used on devices that have higher processing and power resources available. More
resource constrained devices use protocols with lower levels of abstraction and functionality,
such as 6LoWPAN, XBee, RF24 or even core 434 MHz, each having their preferred imple-
mentation scenarios and varying advantages and disadvantages. This protocol fragmentation
has led to increased research regarding the brokering and semantic translation of received
messages from the existing protocols such as in (Al-Fuqaha et al. 2015). Architectures like
Krikkit and BUTLER look at mapping to REST requests with notification feedback. In
contrast, BUTLER attempts the handling of asynchronous requirements of IoT Systems with
the use of a messaging service that provides this implicitly. The solutions like Kura and

2.4 Gateway and Middleware Platforms 19

Table 2.1 Platform and Middleware Features

Gateway
Platform

Horizontal
Integration

Multi
M2M

protocol

Multi
Cloud

Tenancy

Deployable
App

Layer

Protocol
Agnostic

Messaging

Local
Resource

Use∗

Krikkit X X – – X R
SCADA – X – – – R,S
Kura – X – X X P,N,S,O
SmartHome – X – – – P,R
eTrice X X X X – P,R
HePA X X X – X P,N
BUTLER X X X X X P,N
GITAR X – – X X P,N
ELIoT – – X – X P,N,S

∗P-Processing R- Message Routing, N- Full Networking, S-Storage, O-Other

ELIoT use MQTT as a messaging service with the Cloud and translate all device messages to
MQTT. The drawback of some of the presented solutions is that while they offer a uniform
and configurable communication means with the Cloud, they do not provide a protocol
agnostic message passing system for applications and device messaging.

The management and northbound or Cloud oriented connections of the gateways have
a number of approaches that can be used. Gateways like Krikkit, Eclipse SCADA, Kura,
SmartHome and BUTLER all use RESTful APIs and User Interfaces for control and manage-
ment. Platforms like Kura and Krikkit allow for MQTT Cloud connections to be configured
for message passing. BUTLER allows for multiple Cloud tenancies through connections
made through the REST APIs which can connect to local area and Cloud resources as well
as other smart devices. Approaches like HePA suggest proxying through CoAP for passing
of control and device data between gateways. While these approaches allow for some basic
networking configuration they lack a truly software defined networking platform that would
support the configuration of multiple networking connections that not only allow message
passing but management and application deployment as well.

The requirements for the horizontal integration of devices has become evident in the past
years with an increased amount of platforms switching from a vertical view, where platforms
have their specific protocol and device support, to a more horizontal one, encapsulating
different protocols and device connections from other providers. This is leading to an
increased interconnectivity and the use of multi-tenancy connections for features available
from different providers. Most of the presented platforms like Kura only allow one MQTT
connection to be configured. While applications can implement the drivers and have their

20 Research Background

own connection, this is not implicit to the platform. BUTLER provides the most extensive
support for this, supporting multiple types of devices like smart phones, local computers,
gateways and Cloud connections. In general however, these platforms provide a mostly
vertical view of the system with connected devices and messages still being confined to their
respective gateways and these needing to be updated and deployed independently. There
is a requirement for a more loosely coupled connection among devices, applications and
resources, where these applications can pass messages seamlessly from different containers
to devices connected to other available gateways without needing to be rewritten. This would
allow for functionalities like migration, clustering and high availability to be exploited on
these gateways which could lead to higher quality of service (QoS) standards.

The use of resources at the edge of the network is one of the main concerns of Fog
Computing as described by Cisco (Bonomi et al. 2012b), with the use of processing and
networking resources being of main concern. Some platforms suggest deploying VMs such as
in ELIoT or allowing the users to configure the data processing as with the Krikkit, SCADA
and SmartHome platforms. Solutions like Kura, eTrice and BUTLER suggest the deployment
of applications onto these gateways which allows for faster deployment and more efficient
use of resources but constrains the users to platforms or languages whereas VMs allow for
full control of the environment. Although the storage resources available on the gateways are
rarely discussed, there is research where the use of software like CouchDB and PouchDB for
Fog computing devices is evaluated (Kimak and Ellman 2013). In these scenarios, device
related information is stored locally and updated with the Cloud when needed. Context
resources are made available to applications which may include location as in Kura or region
information as made available in HePA. A more comprehensive view on how to manage
these resources is needed as well as a need to be able to combine resources management
systems from different languages and platforms.

Based on the review of the existing platforms as well as the direction of the IoT commu-
nity, it can be concluded that there is a need for more horizontal integration of gateways as
well as a need for a protocol agnostic messaging system for applications to talk to devices.
Furthermore, in evaluating the current platforms it is obvious, that certain aspects have
received a lot of attention and have had good solutions, especially in the case of BUTLER,
but there is still a room for improvement. The resource availability and use by gateway
applications, as well as in the creation of protocol agnostic and event based device messaging
environment for the applications, and not just the Cloud are key issues for the development
of future platforms. In addition to the platform lock-in created by a vertical, single platform
approach for most of the existing systems, device and protocol dependent solutions create a

2.5 Application and System Model 21

big impediment for application development of devices from multiple providers and protocols
that provide similar functionalities, reducing the capabilities and reusability of such systems.

If gateways are to cope with the proposed interconnectivity and the wide range of
devices, use cases, protocols and QoS requirements of future environments, they need to
be able to connect to multiple Cloud providers that may offer different data processing,
storage and meta-data analysis tools and features. Furthermore, these gateways need to
allow for migration and clustering while maintaining device communication and application
persistence within the cluster and the Fog. Current approaches fail to provide an application
environment to decouple deployment and messaging which is partly due to a lack of M2M
protocol abstraction. They also fail to provide a virtualisation layer for applications to allow
complex application deployment using the resources of a set of gateways rather than the
limited resources from a single gateway. This becomes a particularly big issue for use cases
where a highly interconnected and constantly reconfiguring environment is in place such as
in the case of Smart Office and Home scenarios as well as Industrial Monitoring and Control
applications that involve task and project based reconfiguring of the system.

2.5 Application and System Model

Future IoT and Fog computing systems will be deployed in an environment that is highly
heterogeneous both in its geographical distribution, density and in the characteristics of
both the applications and their host nodes. The hosts vary from highly heterogeneous edge
networks with reduced resources to Cloud nodes that can be considered as having endless
resources. The introduction of these concepts promises to reduce delays, increase reliability
and improve security as well as provide better resource utilisation. In order to achieve this
however, services or applications need to be deployed as optimally as possible. Before this
can be achieved however, there is a need for the requirements of such systems to be analysed
and models to be put up so the health of each individual service or application as well as
the systems’ health can be evaluated, monitored and estimated. An attempt of finding the
platforms’ general characteristics has been carried out in (Cruz et al. 2018) where they do
not provide a mathematical model that can be optimised but rather a collection of all the
characteristics that can be considered in Gateway based Systems. The proposal in (Jim Zw
Li et al. 2011) provides a model that can account for several parameters in a multi-goal
model. A combination of models that can account for goal heterogeneity as well as multiple
parameters is crucial for these systems.

The types of models proposed by researchers are linked to the optimisation method
attempted and the use-case context. Cloud and Edge applications require different models

22 Research Background

while Fog use-cases require both to be considered. Some research focuses on providing
very accurate but narrow models while others seek to encompass a wide range of parameters
but using simple methods. The issue of latency is a key factor in Fog computing. The
authors in (Bauer, May, and Jain 2014) propose a real-time gateway approach for Industry
4.0 where they seek to model the latencies in the Ethernet system through the slave and
master components. The framework in (N. Wang et al. 2017) is built on the idea of optimising
resource use while reducing latencies in the system by a reported minimum of 20%. This
is done by deploying services to the edge nodes that are closest to the users. The research
carried out in (Intharawijitr, Iida, and Koga 2016) focuses on modelling 5G network based
systems to reduce communication latencies through the Fog model. Their approach looks at
varying latencies and types of connections as well.

Other approaches may include reliability, energy, QoS improvement or SLA compliance
and even pricing calculation and reduction. The framework proposed in (Osanaiye et al.
2017) looks at providing a live-migration backbone for Fog environments based on VM, and
seeks to model the Reliability and Availability of these. The computational offload technique
in (X. Chen et al. 2016) looks at offloading code and workloads from the Cloud to the edge
in such a way that they model latencies, computational energy and overhead. The research of
(Zeng, Gu, and Yao 2018) proposes a more advanced energy estimation model that focuses
on computational and networking costs, as well as seeking to minimise these. The approach
in (Congjie Wang et al. 2017) focuses on multi-Cloud deployment through modelling QoS
compliance. They also propose an optimisation algorithm for both global and load balancing
deployment styles. The model in (Aazam and Huh 2015) looks at methods of estimating
costs related to deployment in Fog data centres based on resource estimation. It attempts to
calculate resource scarcity. This is then evaluated using the CloudSim toolkit.

These models can differ in their application environment as well. Some are designed
to work in a way where applications are considered to be deployed one after another or
in some cases little or no information is known about these linking components. Load
balancing approaches usually look at applications and their components as a subset of tasks
or workloads totally independent of each other that need to be allocated within a time-frame
satisfying some criteria. The authors in (Minh et al. 2017) look at decomposing applications
into their tasks to better deploy them on both Fog and Cloud nodes. Their model focuses on
resource utilisation modelling. The proposal in (Skarlat, Kevin, and Schulte 2018) proposes
a workload view of services where they are deployed on the Fog and Cloud system with full
knowledge of their demands. They look at deployments where response time constraints are
not violated and the total execution time is reduced. These can be categorised by a simple
and easy to implement light-weight model that is being used in conjunction with greedy

2.6 Deployment in the Fog 23

or first-fit algorithms. The work in (Taneja and Davy 2017) looks at resource utilisation
and latency modelling and global deployment. Their model is designed to consider all the
connections and the algorithms are designed on top to find the minimum. The drawback of
such approaches is that the resulting model that needs to be optimised creates an NP-Hard
problem in most cases. The proposal in (Intharawijitr, Iida, and Koga 2016) attempts to
minimise a connection graph of components deployed in a system which follows the global
deployment direction.

The presented models all vary in how complete they are, in how accurately they describe
the systems they attempt to model, and how complex these systems are in real life. Cloud
based systems typically require simple models as they are considered mostly homogeneous.
The Fog or edge based counterparts are usually more complex and consider different variables
as they are more heterogeneous in nature which makes creating such models more difficult
but also gives more opportunity for improvement. Optimising these systems using some of
these models results in an NP-Hard problem, which is a main concern for deployments as
their scalability is affected by a non-polynomial increase with size. A trade-off of complete
models and complex models needs to be reached where the models are complete enough to
be accurate but do not fall into the NP-Hard problem category.

2.6 Deployment in the Fog

Several CPS Clouds have been proposed to enhance the functionalities and alleviate some
barriers in CPS development (Chaâri et al. 2016). However, latency is one of the inherent
challenges in Cloud computing, and this issue limits its use in time-sensitive applications.
CPSs often work in a dynamic environment having a mixture of urgent, unexpected, and
periodic events with hard and soft real-time constraints. This means the Cloud approach may
be inadequate for CPSs (García-Valls, Cucinotta, and C. Lu 2014).

The core concept behind Fog Computing optimisation is to improve the efficiency of
resource utilisation throughout the system. Load and Delay optimisation as suggested in (Dhi-
nesh Babu and Venkata Krishna 2013) is imperative for time-sensitive CPS applications and
has become an important field of research for managing resources in Fog environments. The
use of OSGI and similar resource sharing platforms for application deployment (compared to
Container and VM based solutions) offers new possibilities but also creates challenges due
to increased interdependence.

When considering Application deployment in either Fog or Cloud environments there
can be two approaches to solving the problem. Load Balancing techniques focus on online
or on-the-fly optimisation where requests or changes need to be satisfied as they arrive

24 Research Background

and reaching a solution in an allocated time set and having an acceptable solution is more
important than having an optimal or improved solution (Sivieri, Mottola, and Cugola 2016).
The second method focuses on Global optimisation where a known set of initial requirements
and set-ups are given as well as workloads and system configurations. A solution is then
required to deploy all of these on an system. These methods can be used interchangeably or
can build on top of each other .

2.6.1 Load Balancing

Various resource management strategies and algorithms have been studied for decades in
a variety of scenarios and it is a well understood area in general distributed systems and
Cloud computing. However recent years have witnessed that researchers are moving their
focus towards load balancing optimisation for Cloud-Fog systems. The key question in load
balancing optimisation is how to allocate jobs on various machines so that each receives its
fair share of resources to make progress while providing good performance (G. Lee, Chun,
and Katz 2011).

The studies conducted by (Lucas-Simarro et al. 2013) and (Zhan et al. 2015) provided
comprehensive survey of various techniques for load balancing optimisation for Cloud
computing. The load balancing optimisation mechanisms used in managing resources in
the Cloud computing context can be broadly be divided into virtual machine (VM) and task
based allocation optimisation. These focus on optimising parameters such as QoS, Load,
Costs and Energy. (Hu et al. 2010) presents an algorithm for load balancing optimisation of
VM resources by using a genetic algorithm. Their proposed algorithm attempts to reduce
migration cost of VMs using historical data and current state of the system. (Zhao et al. 2013)
presents the design and implementation of an algorithm that employs the Pareto dominance
theory and simulated annealing to achieve a long-term efficient power saving and load
balancing optimisation. (Dhinesh Babu and Venkata Krishna 2013) propose an algorithm
to achieve load balancing across VMs in order to maximise and balance the priorities of
tasks so that the amount of waiting time of the tasks is minimal (Trappey et al. 2016). A
task scheduling algorithm for load balancing optimisation based on QoS, proposed in (Wu
et al. 2013), computes the priority of tasks based on some specific attributes and evaluates
the completion time of each task and then schedules each task onto a resource, which can
complete the task according to the task priority. In (Ramezani, J. Lu, and Hussain 2014)
the authors propose a new load balancing optimisation method that uses Particle Swarm
optimisation to balance system load by transferring tasks from an over-loaded VM to less
loaded one.

2.6 Deployment in the Fog 25

Through application of various algorithms, these approaches revolve around optimal task
distribution on various VMs or VM migration to achieve effective load balancing optimisation.
The underlying characteristic of these algorithms requires their customisation to be applicable
in Fog computing settings.

The Fog computing model extends the Cloud load balancing problem from Cloud re-
sources to include edge device resources. The Cloud load balancing optimisation methods
cannot be applied in Fog computing due to the fundamental difference between these comput-
ing models. The Fog computing dynamic load balancing optimisation mechanism provided
in (Ningning et al. 2016), through graph partitioning and clustering, assigns tasks to VMs
according to the resource requirements of the tasks. The authors propose this method as they
conlude that, existing Cloud optimisation methods for load balancing have shortcomings in
terms of system hierarchy and load forecasting, which cannot be applied to the dynamic and
P2P architecture of Fog computing. The proposed research, on the other hand, focuses on
application migration.

In (Deng et al. 2016) a framework has been proposed to investigate the trade-off between
power consumption and delay in the Cloud-Fog environment. The research in (S. Verma
et al. 2016) proposed a load balancing optimisation algorithm, which uses a data replication
technique for maintaining data in Fog networks with an attempt to reduce overall dependency
on big data centres. Application latency in Fog computing has been addressed by VM
migration (L F Bittencourt et al. 2015). In (He et al. 2016) an architecture is proposed to
integrate Fog computing and SDN (Software Defined Network) to IoV (Internet of Vehicle)
to improve the latency of sensitive services. This approach is highly domain dependent and
uses particle swarm optimisation to decrease service latency.

2.6.2 Global Optimisation Techniques

Global optimisation, as opposed to Load Balancing and similar solutions in the context
of application and service deployment, can be defined as an attempt to allocate all the
components as if they appeared at once. Load balancing techniques can handle similar
situations but their solution, as well as their response style, might be far from optimal.

Cloud computing approaches as in (Congjie Wang et al. 2017) can be described as data
centre based, with homogeneous resources and low latencies. The optimisation techniques
deployed on these systems reflect this. They employ methods to decrease costs or improve
SLA and QoS adherence. The paper in (Jim Zw Li et al. 2011) looks at multi-parameter
optimisation based on SLA, costs, licensing, etc. to deploy a set of applications in a Cloud
environment using a Greedy Algorithm. The approach in (J. Li et al. 2009) considers an
Auxiliary Network Flow model based incremental method to decrease costs in a Cloud

26 Research Background

deployment. The framework in (Beran, Vinek, and Schikuta 2011) focuses on optimising
profits across a large set of workloads and parameters based on performance models. The
deployment strategies used in (Congjie Wang et al. 2017) propose a QoS aware content
allocation based on a prediction model and a first fit method.

The Fog Computing approaches connect the Cloud with the Edge of the network which
means that the new environment will have an increased heterogeneity as well as varying
latencies. In this scenario the edge nodes are more resource constrained and different nodes
have different requirements. The solution in (Taneja and Davy 2017) proposes a custom
model based on use-case scenarios that maps application modules to network or Fog and
Cloud nodes. This method uses a first-fit method to place apps on the system. Deployment in
large-scale heterogeneous smart environments can be seen as Fog deployments as suggested
in (Cicirelli et al. 2017) where they investigate a container and VM based deployment
framework. The authors of (Minh et al. 2017) propose a Fog based Service placement
method that differentiates between Cloud and Fog services and attempts to maximise the
number of services deployed on the Fog. The research in (N. Wang et al. 2017) addresses
the geographical distribution of data centres or Cloud servers to manage a set of edge nodes
through their ENORM framework using a simple First-Fit method for deployment.

The review paper in (Cruz et al. 2018) evaluates existing platforms and IoT Systems to
identify key characteristics, components and modules. These can be used to define and apply
a Fog model for deployment that can satisfy an increased number of use cases. Optimisation
methods can then be tailored to these characteristics.

Container based optimisation has emerged since the rise of Docker (Merkel 2014) as
a lightweight alternative to VM’s. The authors of (Hoque et al. 2017) look at optimising
container based deployments in IoT based Fog and Cloud environments. Cluster based
deployments orchestrated by Kubernets (Brewer 2015) is then proposed. The PaaS based
approach in (Aggarwal and Aron 2017) focuses on providing an architecture to support
container deployment in IoT environments to better utilise resources. The research in (S.
Kim, C. Kim, and Jongwon Kim 2017) proposes a high level IoT polyglot framework that
can encompass and orchestrate a varying number of Cloud and edge clusters.

These methods usually employ greedy or first-fit methods to deploy applications, due to
the large-scale of typical Fog systems. While these provide an attractive time-complexity,
their solutions are sub-optimal. More advanced methods need to be considered to fully
utilise the capabilities of the Fog. The methods proposed in (Zeng, Gu, and Yao 2018) are
designed to solve the NP-hard problem of service composition in heterogeneous environments
through an algorithm that attempts to reduce the complexity of the optimisation problem. The
research in (Duro, Purshouse, and Fleming 2018) investigates methods of using partitioning or

2.7 Network Analysis and Clustering 27

clustering to divide complex system into a set of smaller subsystems to reduce the complexity
and time required to find a minimum. The authors of (Intharawijitr, Iida, and Koga 2016)
focus on evaluating Fog computing as a paradigm to find size and scalability issues as well
as inflexion points where the use of clustering or fragmentation is warranted.

2.7 Network Analysis and Clustering

Optimisation in IoT systems is made difficult by two main factors. The first is with respect to
the complexity of these systems where migrating an application, service or resource leads
to the alteration of the connection topology as well as the locally available resources the
effect of which is difficult to model or estimate. The second hindrance in developing an
optimisation solution for Fog computing is the lack of real-life information on data-sets,
use-cases, application sizes, processing requirements, message rates and their impact on the
deployed nodes. Most available use-cases such as in (Scheuermann, Verclas, and Bruegge
2015) show a high-level view of agile manufacturing systems which cannot be used for
optimisation purposes. The state of the art solutions for this as in (Oueis, Strinati, and
Barbarossa 2015; Deng et al. 2016; Zeng, Gu, Guo, et al. 2016; Vogler, J. Schleicher, et al.
2016) are the proposal of example applications and use cases on top of which they build their
optimisation methods. The drawback of these approaches is that there is no guarantee that
the proposed system parameters or use-cases resemble real-life solutions, reducing the utility
of the proposed models and algorithms.

The solutions look at different aspects of optimisation. The solution in (Oueis, Strinati,
and Barbarossa 2015) is a clustering based method based on a simple delay model between
components, while in (Vogler, J. Schleicher, et al. 2016) a simple topology reduction is
attempted. The proposals in (Deng et al. 2016; Zeng, Gu, Guo, et al. 2016) show a more
elaborate application and delay model considering processing delay as changing through the
deployment locality as well as considering several different connection delay types. Although
these models are extensive, the constants, rates and values that change through migrating are
assumed instead of measured or deduced. This may cause certain optimisation approaches to
seem more advantageous than others as well as leading to inaccurate models.

When considering highly connected complex systems, the common approach is the use
of graphs to model the connections between entities. This has been done to model WWW
connection as in (Kleinberg et al. 1999) as well as to optimise Wireless Sensor Networks
(WSN) as in (Savazzi, Rampa, and Spagnolini 2014) for connection reliability, zero single
node failures and other parameters. Increasingly there are attempts at using these methods on
Fog Systems as in (Jingtao et al. 2015) where a tree based system is used or in (Ningning et al.

28 Research Background

2016) where graph re-partitioning methods are proposed. These proposals have the same
drawbacks of lacking real deployment data on which to test their algorithms on real-world
systems where the clustering factor, connectivity and distribution of nodes might vary greatly.
Finally, these solutions do not consider the existence of a physical and virtual connection sets,
where the physical one consists of where application, devices and resources are deployed
or orchestrated, while the virtual one consists of interactions between components. The
mapping of the virtual graph to the physical one is the core of the Fog Computing placement
problem.

2.8 Summary

Advancements in Sensor and Actuator technologies and the standardisation of protocols
have led to the Emergence of the Internet of Things. This paradigm shift proposes the
interconnection of billions of devices through a varying set of methods. The resulting
environment is a highly interconnected heterogeneous system that promises to solve some of
the main issues of implementing Industry 4.0 requirements. The requirements of this proposal
envisage factories with interconnected devices and systems that would result in increased
productivity, higher range of feasible products and increased safety and fault response. To
achieve these goals, the IoT systems need to have reliability and latency parameters at the
edge of the network that are usually reserved for the Cloud.

The paradigm shifts that came with the introduction of Fog Computing by Cisco aims to
solve some of the latency and reliability issues that some of the core IoT frameworks and
approaches have by looking at the system not as separate Edge and Cloud components but as
one whole Fog. This approach envisions extending the virtualisation that can be found in
the Cloud to the edge of the network utilising the resources available at the edge for lower
latencies and data locality. These concepts can be used in Industry by employing local or
on-the-fly processing of sensor data, which can reduce latencies and decrease the reliability
and security issues that come with sending sensitive data up to the Cloud.

To achieve the virtualisation level suggested by these new paradigms on the edge devices,
a shift from traditional VM based deployments needs to take place. This is required by
the nature of the edge nodes that have fewer resources than traditional Cloud nodes and
might be at higher demand due to their close proximity to end devices. Container and shared
environment based solutions are proposed as a way of keeping some of the separation present
in VM based deployments while providing a more light-weight deployment. These gateways
also need to consider advanced networking discovery and management solutions that can
adapt to a dynamically changing environment. Furthermore, these gateways need to support

2.8 Summary 29

multiple application types of varying languages as well as have connection capabilities to
several types of peripheral devices.

Deploying applications on these gateways is as big a challenge, as is creating the gateways
themselves. These applications can be as heterogeneous as the gateways themselves with
varying requirements and characteristics. They may require large processing capabilities, or
have these vary over time or with the number of devices. These could require high reliability
or low latency. To accommodate these, the first thing that needs to be done is to model how
the gateways and the applications behave so the problem domain is known and so is the
’Hardness’ of the problem. The optimisation methods attempted in the reviewed papers as
well as the models vary in complexity and applicability where some only attempt to do a
First-Fit or Greedy deployment with emphasis on fast solutions, while others attempt global
deployments with GA, PSO and similar approaches.

If the requirements of Industry 4.0 are to be met through IoT and Fog Computing, a
lot of research still needs to be done so a standard framework or set of platforms can be
used. Available and accurate models that can be used together with a varying number of load
balancers and global optimisation tools are needed to provide the users and developers with
ways of measuring deployed systems and also deciding on what actions to take or on which
use-cases they can be used.

Existing solutions fail to recognise that the system models need to be based on mea-
surable parameters and contain as complete a characterisation of the system as possible.
With the proposed optimisation methods, these need to be tested and analysed on use-case
driver scenarios and their limitations or preferred use-cases need to be determined. Finally,
tailored methods need to be proposed that can answer the large-scale and interdependency
requirements of future Fog systems.

Chapter 3

Fog of Things Platform

3.1 General View and Platform Requirements

The proposed Platform as a Service generic gateway architecture attempts to answer the
requirements of an ever-evolving IoT environment while improving on existing proposals
especially on the topic of migration, clustering, abstraction and routing of device messages to
the appropriate regions. The use of the resources available on the Gateway has been expanded
from those suggested in (Aazam and Huh 2014) with the introduction of context information
such as region, network information and location information. The review showed a need
for a generic architecture that can encapsulate a wide variety of containers and drivers from
different providers and languages.

This architecture is designed to fulfil the requirements stated in the below subsections.

3.1.1 Protocol Agnostic Device Messaging

The messaging between devices and the application environment through the drivers is
designed to allow for messages to be transmitted regardless of the devices’ protocols or
technologies. This allows applications to be oblivious to the underlying protocols or tech-
nologies with which they want to communicate. Furthermore, due to the routing of messages,
applications can communicate with the devices from the Cloud, or with the ones that are
registered to other gateways on the local cluster.

3.1.2 Regional Connections and Messaging

When gateways are deployed onto a WAN network they can form a local region which should
allow information and messages to be shared between peers. This allows for faster message

32 Fog of Things Platform

passing among local devices and with this connection clustering and high availability are
also possible.

3.1.3 Multi-Cloud Tenancy

The gateway should enable multiple Cloud connections to be established in order for applica-
tion and management information to be sent and received from these tenants.

3.1.4 Modular Application Deployment

The application container should allow multiple applications to be deployed on the same
gateway and communicate with each other so that complex applications can be deployed
across simple components.

3.1.5 Application Migration, Clustering and Testing Functionality

Due to the nature of the gateway, it needs to meet QoS requirements associated with the
applications or Cloud that it interacts with. These applications need to be tested and mi-
grated seamlessly while maintaining inter-application and device communication in a secure
environment.

3.2 Generic Gateway Architecture

This research defines the Fog of Things as a Fog Computing platform that treats things as
resources of the edge device and allows for a unified view and messaging with these devices.
Fig. 3.1 shows the overview of the platform and the connections between components. The
proposed gateway architecture is built around a new asynchronous messaging based model
that allows the abstraction of different drivers and components by allowing messages to be
routed to their destinations dynamically, based on a new header oriented routing model.

The proposed architecture offers a novel gateway design by increasing the horizontal
integration of the gateways by allowing applications to send and receive information to
and from a number of Cloud providers using the configurable brokers. It also offers a
wider range of client connection possibilities by providing WAN client connectivity through
the configured regional connections. Another novelty presented by the gateway is the
protocol agnostic container environment that allows applications to communicate with Cloud
providers, regional clients, peer applications, devices and requests resources through a
unified medium without considering the underlying protocol for device, region or Cloud

3.2 Generic Gateway Architecture 33

communication. This is achieved through a set of brokers and drivers that translate and route
these requests into messages understood by the respective sinks. The final novelty of the
gateway is the possibility to configure WAN clusters of peer devices and migrate applications
without the need of reprogramming them between the peers and available Cloud containers.

This architecture in Fig. 3.1 and the associated components described in the following
paragraphs can satisfy the requirements presented in the section above.

Fig. 3.1 Architecture of the Gateway

The gateway controller analyses and deploys applications, as well as sending usage,
load, capacity, connected device and region information to Cloud and region clients. The
gateway manages the non-admin tenant connections and the device drivers, and controls the
regional authentication and registry. Finally, the gateway is capable of searching for available
gateways in its WAN network. It can either enrol them to a region or create one and become

34 Fog of Things Platform

its coordinator, if no peers are found. The controller manages the information about the
capabilities of the gateway, its resources, the connected drivers and the available regional
devices.

The Application Container is controlled and monitored by the Gateway Controller. Rather
than having applications connecting to the Messaging Service directly, the Application
container translates messages and events into its internal equivalents that can be understood
by the deployed applications. This allows more applications to listen to the same broadcasted
message, communicate between each other, and send information to the outside components
asynchronously. Furthermore, this allows policies to be put on the devices like an internal
firewall that would allow apps to send and receive messages only from authorised or authentic
sources.

M2M communication is fulfilled by the device communication components that are
directly linked to the transceiver hardware and are also tasked with registering, authenticating
and monitoring the devices. The received device messages are interpreted and sent to the
corresponding sink through the messaging service, while messages sent from applications
are encoded into the desired format and sent to the devices.

Cloud communication takes place through dedicated brokers that take messages directed
at them, parse the headers and payload to the desired format and send them through the
broker’s medium, doing the reverse for received messages. This allows for different protocols
to be used by tenant Clouds to access applications and the gateway controller. Storage and
metadata information like location, regional clients, network information and other gateway
details are considered local resources to the applications. Applications and devices are
allowed to save data into databases, request location data and send the data to the application
layer or the Cloud.

The regional communication refers to two distinct communication methods. The first
looks at gateways that can be discovered through a local network and that can be linked
through the federation of the messaging service. The second method proposes the creation
of regional access points to applications which can receive messages from a more varying
range of local clients.

The details of the proposed components are described in the following subsection. Each
section looks at a major component of the framework and describes its functionality and
proposed mechanism.

3.2.1 Local Messaging Service

The local messaging service is responsible for routing messages to the appropriate queue
based on their headers and routing information. It is designed to support asynchronous

3.2 Generic Gateway Architecture 35

messaging between components. Furthermore, new drivers and different configurations can
be added to the gateway without modifying any applications or other components. In order
to accomplish this, the messaging service is designed with a complex array of exchanges,
which can be seen in Fig. 3.2.

Fig. 3.2 Messaging Exchanges and routing

The routing is designed in such a way that components can send messages in a generic
format and the exchanges can route these messages based on the routing table on the gateway.
The exchanges that route messages to other components hold the group name of components
(resources, devices, region, Cloud, apps) and are designed to route the collected messages to
the corresponding resolver components.

The message passing is designed for scaling, in order to support the addition of new
components seamlessly and removal of old ones. Resolver exchanges allow messages to be
routed to their specific queues based on header information and are the main configurable
components to support the routing table in the messaging service.

36 Fog of Things Platform

Components are designed to communicate with other components by publishing messages
to their specific exchange and retrieving messages from the queue in a unified way, without
knowledge of the number or type of destinations of the message. This takes away the burden
of re-configuring the components when modifications on sources or destinations take place.

The control component is a special one, as it does not communicate with any other
components through the messaging system but configures them on deployment, with the
exception of the Cloud connections which it uses to send and receive information and control
parameters. The region component is connected to the container and Cloud component,
which is done in order to be able to route messages to applications which are deployed locally
and to those which are deployed to the Cloud.

Each message on the system follows the same basic link from their source to their
destination. At first they get routed to an exchange based on their loose connection. The
main exchanges are: Cloud; Region; Apps; Resource. These regions that route the messages
based on their headers, information and specific source to a resource resolvers exchange as:
Cloud Resolver; Region Resolver; Apps Resolver; and Resource Resolver. These then route
the message to the desired messaging queue where the right sink will be able to read it. As
example, a message from a cloud service to an application will come through the Tenant
Cloud Messaging Broker from Fig. 3.1 that sends the message to the Cloud exchange, which
based on the headers, routes the messages to the Apps Resolver Exchange. This exchange
then routes the message to the Apps Queue that is then read by the Messaging to Event
Admin Broker that translates the message to an internal event in the Application Container.
After this, application designated as receivers of the message can catch the event.

3.2.2 Cloud Controller and Local Resources

The Cloud controller is responsible for configuring and deploying all the communication
drivers with the Cloud or the devices as well as managing the regional connections and
authentication while relaying status information to the Cloud.

The gateway sends status information to the specific Cloud component by responding to
requests that were made through the Cloud connections. The first and main Cloud connection
has the most control over the system, as it is able to add and delete other connections, remove
and modify apps deployed by other tenants as well as set up the region communication and
the device drivers. The other tenants are limited to offering and requesting authentication
information for devices or regional agents as well as deploying and configuring their own
applications and devices.

Local resources are controlled by the gateway controller and receive requests, data and
commands through their respective drivers connecting them to the local messaging service

3.2 Generic Gateway Architecture 37

and through this the applications. These local resources may include context information
such as region parameters, location information, and storage. The storage component is a
special one, because in contrast with other resources, it can contain meta-data to support data
requests. The resource can be configured for high-availability throughout the gateways as
well as through Cloud backups by replicating its functionalities which are abstracted away
from the applications. A distributed database is proposed for the use of Cloud storage and
redundancy is proposed for highly distributed unreliable systems. Local versions will run on
the gateways providing local instances of data, smart migration and backup.

3.2.3 M2M Communication and Registration

Each gateway is equipped with its own set of communication mediums to transmit and
receive messages from sensors and actuators. To account for differences in communication
protocols and communication mediums the gateways have a driver for each medium that
acts like a broker between the devices and the messaging system. These brokers are used to
authenticate devices and add them to the locally available list for security and encryption.
Furthermore, they interpret the received messages and assign the proper routing and header
details to assure that they reach the required destinations. These drivers can have a more
diverse range of tasks based on the requirements of the protocols and mediums such as packet
forwarding, routing table creation and other WSN gateway tasks.

The registered device information is stored in the driver specific database and is used by
the gateway controller to determine which application to deploy and for routing purposes.
Furthermore, the device information saved in the database, that uniquely identifies the
connected physical devices and their states, is used by the driver to monitor, authenticate and
correctly route messages to their destinations.

Due to the wide range of protocols and transmission mediums, the messaging and routing
system needs to be configured in such a way to allow different drivers to send and receive
messages in a unified way. A slightly altered version of a JSON based markup language
presented in (Jennings, Arkko, and Shelby 2012) that has been used to link advanced IoT
structures in (Lampesberger 2016), called Sensor Markup Language or SenML is proposed.
This would require all connected devices to register, send and receive information based on
this language. The device registration information needs to contain information about the
device’s type, its version, and the sensors that it is equipped with. Any other communication
specifics that are not relevant to applications or monitoring of devices are abstracted. The
SenML based device message transmission is used for driver to driver, driver to app and
app to driver communication only and is used as a common medium between protocols that
can describe messages that need to be sent. The actual messages sent to the devices may

38 Fog of Things Platform

vary depending on the control protocol. This would allow older devices to use their existing
handshakes and means of message transmission to be connected to the system.

3.2.4 Application Container

The client bundle in the container can be configured to read messages from a messaging
service queue and to create events based on these messages. The applications create events,
the broker reads the messages generated from these events and sends them on to the local
messaging service as shown in Fig. 3.2 The headers of the messages are designed to allow
applications to send messages to different locations, but also to act as a filter between the
application container and the gateway resources only allowing applications to send messages
to their preconfigured resources.

Communication between applications can be carried out in two distinct ways. The
messaging system is more suited for communication between applications that are not
closely linked to each other and can be interchanged. Communication through the internal
services or other structures provided by the container is more suited for use within the
same application set to create larger application from individual bundles following the
Microservices architecture. The only constraint is that applications that communicate with
each other through container specific structures need to be migrated together. Those which
communicate through the messaging service can be kept in different locations and migrated
separately.

In order to enable applications to respond to new devices being added to the system as
well as to be able to listen to individual devices and have messages transmitted to these
applications from the Cloud, applications need to be able to reconfigure their application
name and the name of the devices they are listening to. This is achieved through assigning
a configuration file to each application that contains all the relevant information. The
gateway controller adds information regarding the devices the application is configured to
communicate with as well as the applications’ name, the regional communication channel, the
Cloud connections and other configuration parameters. When the configuration is updated,
all applications are refreshed to start with the new set of data. Applications can then be
deployed into multiple environments with multiple use cases as well as facilitating their
testing and migration.

The construction of the application container allows for application migration within the
local cluster and to the Cloud. One of the main differences between the application container
on the host or other local gateways and the Cloud based/virtual gateways is the complexity of
the messaging service. The gateways residing on the Cloud only receive and send information
from one source, having the modified brokers in the application container mimic the gateway

3.2 Generic Gateway Architecture 39

sources of the messages based on the message headers. This difference allows the deployed
applications to be location agnostic, receiving messages in the same format. Finally, using
this method, the creation of virtual gateways is possible as well. These virtual containers
have dummy applications that mimic the behaviour of real devices by posting and consuming
events on their behalf to allow for a more realistic testing environment as well as for scaling
experiments.

3.2.5 Regional Communications and Clustering

Regional communication refers to gateways that are on the same network or can reach each
other through local network scans or any other methods that send and receive application
messages for clustering, high-availability or other inter-application communications. There
are two ways to connect and access applications from the local network. The first one, with
more constrained connection is realised through the federation of the messaging service, so
gateways can connect to each other seamlessly. The second one is a more loosely coupled
connection that would allow messages to be sent from different clients through the regional
drivers that convert the messages to application messages inside the messaging service. The
federation configuration of the messaging service offers better security, message latency and
ease of use due to the fact that it extends the messaging service from one device to another
by having the exchanges mirror on all nodes and having some of the queues unique to their
specific gateways. Applications can be deployed on a single node and communicate with
other devices and Cloud tenants. The federation messaging approach also enables devices
to configure clustering and high-availability as resources which may lead to better QoS
parameters.

The more loosely coupled connection through the regional drivers would permit gateways
to be of different types and configurations with even outside applications connecting to these
endpoints. The configuration of these endpoints would be fulfilled by the Cloud controller
that creates a queue for each application that has regional communication set up in the
configuration files and modifies the driver to make these available through external requests.
These requests are treated as RPC calls and each request has a unique transaction id. This
solution offers extra functionality and reduces costs by adding an alternative of accessing
applications through the local network rather than through the Cloud connections.

3.2.6 Cloud Connection and Management

Cloud connections enable the gateway to send and receive application data, sensor and
actuator data, as well as to migrate applications through message passing and the deployment

40 Fog of Things Platform

of applications. Each connection to the administration or tenant Clouds is managed by a
designated broker through the protocol preferred by the Cloud. The first connection is to the
main Cloud, which is preconfigured in the gateway. The other connections can be started
through commands received on the first one using the gateway controller.

When applications are migrated to the Cloud, the respective connection is used to allow
messages that would normally be transmitted to the local container to be transmitted to the
Cloud where they are routed to the Cloud container. The brokers in the container transform
them into messages with the headers and payload corresponding to those received on the
physical gateways container. Applications can be migrated from the physical gateway to a
virtual gateway in the Cloud while retaining all inter-application communication and local
messaging without reconfiguring or redeploying the applications.

In order to allow inter-application communication to occur a forwarder is required in
the container that receives messages designated to the application and sends them to the
Cloud communication component as well as accepting responses and creating events as if the
application was never migrated. This functionality can be extended to replicate local services
on the container.

3.2.7 Migration and Message Routing on the Platform

The message routing on the gateway is the backbone of the protocol agnostic messaging for
drivers as well as the mechanism used for the migration of applications between gateways.
Migrated applications need to maintain their full functionality, being able to access data in
storage and all connected devices while being able to communicate with peers in the region,
Cloud and other services on the gateway.

The migration process requires all messages going from and to the application to be
routed to the new host gateway. This gives the app the illusion of still being on the same
gateway, without needing to reconfigure or rewrite its code.

The messaging service uses federated connections to forward messages between peers.
The connections between gateways by default are in a star topology that allows each gateway
to access each other directly, reducing latencies and hops but increasing overhead on larger
systems. Other topologies can be designed per application environments.

An example of how this routing is done can be seen in Fig. 3.3 where Application 2 is
moved from the Cloud VM to the gateway, this changes the run-time characteristics of the
Application, the new environment having different latencies, different load and processing
capabilities.

An application is migrated by deleting it or stopping it on the host gateway, re-configuring
the existing routes of the application to be sent to the new host, adding the routes on the new

3.2 Generic Gateway Architecture 41

Fig. 3.3 Application Migration from Gateway 1 to the Cloud Gateway

host to the application container and then finally deploying and starting the application in the
new host’s container. This is done through the configuration file of the application.

3.2.8 Application and Gateway Monitoring

The monitoring on the gateway is done by two components. The first is inside the application
container and monitors all application messages, even inter-app messages as well as the total
CPU usage of the applications threads. This component sends a message to the gateway
monitor which looks at a wider range of parameters but takes a more general look at messages.
The second component creates a summary file which is saved to the database periodically.

The monitor in the application container is able to retrieve information on messages
sent to and from each application to any drivers, Cloud connections, regions and resources.
Furthermore, it reads information on the CPU usage of every application. The gateway
monitor has a more general view of the messaging as it shows all messages routed from all
components without information on individual users/applications. This monitor can also give
information on individual application storage use, gateway load, RAM use and CPU usage
on the system. The load is adjusted to the processor count of the platform.

42 Fog of Things Platform

3.3 Architecture Implementation

The existing architecture is implemented based on the general descriptions and technical
requirements presented in Section 3.1. The implementation demonstrates the feasibility of
the proposed generic gateway architecture as well as the use of the OSGI container as a
gateway application container. The communication technologies and message passing system
is chosen based on the literature review of the existing platform and current technology trends
done in the Sections 2.2 and 2.4. The underlying messaging architecture is AMQP within
the RabbitMQ server. The proposed communication mechanism with the Cloud is MQTT
which has received support from an increasing number of Cloud providers. For the regional
communication, either REST or STOMP based drivers are proposed while the clustering of
gateways is supported through the federation functionality of the RabbitMQ messaging server.
Each M2M communication protocol and device has its own functionalities, advantages and
drawbacks. The device drivers’ subsection shows the basic backbone to the drivers that were
used. For the application container, the OSGI based Karaf is the most compliant with the
proposed generic architecture.

3.3.1 Device Drivers

The approach to creating the drivers has been tested for four different communication
mediums, 434Mhz, RF24, Bluetooth and Xbee. These four mediums differ in their level of
abstraction of the OSI layers as well as in their added functionalities. The first protocol only
implements the physical level requiring the driver to configure the rest. The RF24 based
protocol has the added functionality of discovery and being able to listen to specific channels,
but what this lacks is the ability to listen and communicate on multiple channels effectively.
The Bluetooth based RFCOM communication protocol allows for a wider range of features
and sending messages through sockets to certain devices. Xbee is a similar protocol having
multi-hopping and networking functionalities as well. The drivers for these protocols work
in the same way for applications, with none of the differences being visible at the application
level.

All applications to be deployed in the proposed architecture at least include a few common
functionalities and these are: the registration of devices; the monitoring of devices; and the
sending and receiving messages from devices based on their ID’s. The whole registration
procedure is shown in Fig. 3.4 for the case where the device has been previously registered
or when it is a newly registering device.

After the registration, devices only send a shortened version of the sensor data, only
containing the sensor name, the value and the device id. The received message is parsed to

3.3 Architecture Implementation 43

Fig. 3.4 Registration sequence diagram

make sure that it is consistent to the JSON format and key information like the device id is
extracted and then the appropriate header information is created and the payload is sent to
the messaging service. The structure of this message can be seen in the example shown in
Table 3.1.

Table 3.1 Message from Driver

Content Name Data/Property
Property Name Property Value

Header

device OWaDMY9V
dev_type ardUnoTemp

dev_count 0
comm Gateway-RF24

datetime 2017-05-09 12:02:36

Payload [{"v": "26.00", "n": "temp"}, {"v": "34.00",
"n": "hum"},{"v": "8.95", "n": "dew"}]

Information regarding the time when the message was received and the driver ID is added
to the message headers. Furthermore, the device id is used to retrieve the device type and
order from the registered device database and added to the headers to simplify routing and
application development.

44 Fog of Things Platform

3.3.2 Application Container

There are a number of platform that could be used as application containers. Docker would
allow applications of any type to be deployed. Some language specific containers are also
available for applications like Python and NodeJs. These are usually web-application centric,
based on the Web Service Gateway Interface (WSGI). The container, which best fits the
requirements as well as possesses extensive control of deployment and life-cycle management,
was based on the Open Service Gateway Interface (OSGI) framework (Alliance 2003), which
is designed for deploying modular java applications, dynamically on top of the Java VM.
The Apache Karaf (Nierbeck et al. 2014) implementation of the framework has a number
of add-on libraries that are key components in the development of applications using the
Microservice architecture and in enabling a wide range of applications to be deployed side
by side.

To allow applications to listen to specific events, the received messages are routed to the
EventAdmin based on their headers and contained data. These routing rules can be seen in
Table 3.2.

Table 3.2 OSGI Message Translation

Sender Key Property Receiver Resulting Topic

device dev_type app /device/receive/[dev_type]
app * device /device/send/

Cloud app_name app /Cloud/receive/[app_name]
app * Cloud /Cloud/send/[app_name]

resource resource_type app /resource/[res_type]/receive
app resource_type resource /resource/res_type]/send

region app app /region/receive/[app_name]
app * region /region/send
app app_name * /apps/[app_name]/send
* app_name app /apps/[app_name]/receive

In order to allow for applications to respond to new devices being added to the system
as well as to be able to listen to individual devices and have messages transmitted to these
applications from the Cloud, they need to be able to reconfigure their application name and
the name of the devices they are listening to. This is achieved through the ManagedService
class’s update() function that allows applications to read the configuration file. In this case,
each device will have its own file where the gateway controller adds information regarding
the devices the application is configured to communicate with as well as the application’s
name, the regional communication channel and other configuration parameters. When the

3.3 Architecture Implementation 45

configuration is updated, all applications are refreshed to start with the new set of data.
Applications can be deployed into multiple environments with multiple use cases to facilitate
their testing and migration.

The applications can be managed through the gateway controller, while their status and
performance are monitored through the bundles deployed on the container according to JSON
based deployment files. For the migration of applications, the internal structures used for
communication-like services allow for containers to migrate this service on the local region
if configured properly. For the implementation, they are considered to be available only on
the local deployment and applications linked through these services are required to be on the
same gateway.

3.3.3 Regional and Cloud Drivers

The drivers used to connect to the Cloud providers are designed to broker messages from the
local AMQP messaging service to a Message Queue Telemetry Transport (MQTT) server
hosted on the Cloud. MQTT was chosen as the connection protocol to the Cloud due to the
wide range support from major Cloud providers like AWS and the added functionalities these
propose. This light-weight messaging format was designed for high-latency or unreliable
networks so it offers the best solution for asynchronous messaging between Cloud and
gateway. The Cloud communication drivers are designed to allow for single direction
connections and can have multiple providers connected and routed through their instances.

Connecting to the Cloud can be done through the Secure Socket Layer (SSL) or through
simple username and password authentication, depending on the security requirements and
the provider’s options. In order to send and receive information from the Cloud messaging
service, the proposed broker translates the byte-array messages into headers and payloads as
well as sending them to the required exchange. The first connection is to the main Cloud,
which is done before the gateway starts. The other connections can be started through
commands received on the first one using the gateway controller.

Messages on the local Cloud queue need to be parsed into a byte array and sent to the
Cloud. The solution for this parsing problem is creating JSON strings from the received
AMQP messages where each header and the payload are made into a JSON object. The
payload is either parsed as one object, or as sub-components formatted in JSON as seen in
Table 3.1. Drivers used for regional communication use REST APIs to receive and send
messages from applications. Each application has the option of configuring one or more
regional connections that can be used by outside applications. These are configured by
creating a queue for each and routing the queues based on URL location on the REST APIs
which get configured by the gateway controller. This configuration would allow applications

46 Fog of Things Platform

to have their own access keys and authentication option on the region. The other proposed
drivers would rely on STOMP messages being routed to the messaging service based on
correctly formatted headers. Messages with the appropriate configuration would be routed
and those without the right data would be lost.

3.4 Distributed Control and Metering Use Case

The adopted use-case scenarios show a simple home and office monitoring and a control
environment where the advantages that this system brings compared to other platforms
are highlighted. The deployment scenario looks at cases where gateways are deployed in
multiple rooms or environments having their own set of devices connected to them. This
platform allows the deployment of applications to be done to a variety of gateway while
making use of these resources from peers without the need to reprogram the applications.
Furthermore, these applications can communicate with a wide variety of devices through the
same format regardless of the devices’ communication protocol. This allows for a better use
of resources on the gateways as well as facilitates the deployment of complex applications.
These functionalities would be very difficult or impossible to implement on the reviewed
platforms.

The setup has the configuration of a smart home thermostat. It consists of a humidity
sensor, temperature sensor, presence sensor and an actuator device that turns the heating
on and off. The application reads data from the devices and controls the actuator based on
a control algorithm while saving all relevant temperature readings to the database and all
important events to the log. The applications are able to receive user commands locally or
from the cloud. The setup also allows for the applications to be migrated among gateways
and to the cloud based on the configuration needed. A deployment of the system can be
seen in Fig. 3.5 where the first application is deployed on the cloud while the second one is
deployed on the RF24 capable gateway.

The first application has the task of collecting the sensor data, saving it to the database
and the log files and sending periodic reports to the second application. The second one
is tasked with reading reports from the first application and comparing those to its control
algorithm and sending control signals to the actuator, while saving information to the log files
and sending reports to the second cloud connection. These two applications can be deployed
anywhere on the two gateways or the cloud, being able to control and read the devices while
performing the logging and storage tasks.

The three devices have their unique sensors and tasks, and are designed in a way that
they can be analogous to low power sensors. The two sensing devices are Atmega Attiny85

3.4 Distributed Control and Metering Use Case 47

Fig. 3.5 Control and Metering Application

boards equipped with NRF24L01 transceivers, one of them with a temperature sensor and
the other with a light based presence sensor. The actuator is an Atmega128rfa1 434MHz
communication enabled micro-controller that signals a relay that controls the heating agent.
These devices communicate with the gateways through the dedicated drivers. An NRF24L01
transceiver is connected to the GPIO pins of the Raspberry Pi. The heating actuator is
connected to the first Raspberry Pi, while the temperature and presence sensors are connected
to the second one.

Consider the route a set of messages take through the system to go from peripheral device
to Test App1, Test App2 and then come back as an actuator action. The messages from
the Temperature sensor connected to the Gateway housing the first application are sent to
this application by first being processed by the RF24 Dongle Communication Driver from
Fig. 3.1 which then routes the message through the Device Exchange to the Apps Queue
as shown in Fig. 3.2. This message is then translated by the Messaging to Event Admin
Broker to the Application Container. Here the Application reads the message and send the
processed data to the logger, storage and the second application. A message coming from a
different gateway to the same application would be routed in the same way, but with the Route
between the Device Exchange and Apps Queue being extended by not routing the message
to the local Apps Queue but sending it to the Region Resolver that sends the message

48 Fog of Things Platform

to the appropriate gateway queue, where the message is then sent through the Regional
Communication component to the gateway hosting the application. Here, the message arrives
through the appropriate Region Exchange and is Routed to the local Apps Queue, where
it follows the previous route. This application saves data to the logger and database in the
same way, but sending a message to the Event Admin in the Container that then brokers the
message to the Messaging Services’ Apps Queue that routes the message to the Resource
Resolver that then puts the message in the right resource queue. Local Resource Access
Drivers then take these messages and perform the corresponding actions. This application
sends messages to it’s control counterpart through the same system, but is this case the Apps
Exchange Routes the message to the Region Resolver. It then sends the message through
the Regional Communication component to the other gateways Region Exchange that then
routes the message to the corresponding Apps Queue. The control application finally receives
an event that looks exactly as if it were generated in the same container by the metering
app. The control app adjusts the thermostat by sending a message through the Containers
messaging broker to the Apps Exchange, which then gets routed to the Device Resolver and
through the corresponding queue and Device driver to the device. Through these routing
techniques, the two applications can communicate with each other and the devices as if they
were on the same gateway, or in this case same virtual environment.

The implementation shows the clustering and migration functionality of our platform
as well as scenarios where applications may need to communicate with devices connected
to other gateways on the region and how this is deployed. Finally, we demonstrate that the
presented implementation shows functionalities and scenarios which surpass the capabilities
of other systems, due to migration and message passing between gateways as well as
presenting a proposed use-case for the system.

3.5 Summary

The middleware platform and its components described in the previous sections are designed
to satisfy the connectivity and resource management requirements of Industry 4.0 through
message translation and routing. This research proposes extending these requirements with
the concepts of Fog Computing where the system resources are virtualised and the users view
the system as one homogeneous entity.

The messaging service and the translation of messages through the SenML and AMQP
format are designed to produce a homogeneous view of a system that comprised hetero-
geneous sensors and devices that have varying methods of communication, reliability and
latencies. This translation is also used to allow message transmission from a source gateway

3.5 Summary 49

to a destination one. The same method is used to translate inter-app or service messages to
be transferred between application containers. This supports application migration and also
allows the system to support a single system view.

This view and the translation methods add extra overhead to every message but is crucial
if migration and message routing is to be considered. This in hand also shortens development
times by allowing developers to focus on functionality rather than lower level connection
programming and message sending. This system also allows for drivers to be developed and
deployed once which increases horizontal integration of these services and since the used
format is an industry standard it can be easily applied to allow multiple platform, Cloud and
device collaboration.

The Platform was implemented to the full extent of the description, supporting an OSGI
Karaf Based Application Container and Monitoring. This implementation can be downloaded
from the GitHub Repository (https://github.com/nandor1992/FogOfThings). This implemen-
tation contains: drivers for RF24, 434Mhz, Xbee and Bluetooth peripheral drivers; Logging
and CouchDB based database management components; MQTT to AMQP brokers for cloud
connection; Local Administrator component that manages RabbitMQ, CouchDB and Karaf;
Karaf based Container monitoring elements and Linux gateway monitoring components;
Cloud controller that is able to receive the deployment JSON files and send the appropriate
commands to the nodes; Example of an Android-based client application for the Temperature
control use-case, as well as the code for the CNC control use-case. TheJavaUpdates branch
of the repository contains all the optimisation code that was used. This repository doesn’t
contain any deployment code that is designed to deploy the system, all the services and
libraries need to be installed and the right configurations set up.

This system, while having numerous benefits also results in a number of challenges
as deploying applications on the system in such a way that latency, reliability and other
characteristics are maintained to assure QoS constraints and to satisfy SLA agreements
becomes a very complex optimisation problem. Due to the highly shared environment in
which applications are deployed, traditional VM based models are not suitable to model
these platforms. The upcoming chapters look at modelling these parameters for individual
applications, gateways and devices. Multiple parameters are taken into account and varying
utilities are proposed.

The proposed Fog of Things Platform is shown to answer the requirements stated in
Section 3.1 by highlighting the resulting capabilities in the use-case in the previous sections
as well as through the extensive use-cases presented in Section 6.1.1. The platform also
undergoes a quantitative analysis of its run-time capabilities in the analysis Section 6.1.2.

https://github.com/nandor1992/FogOfThings

Chapter 4

Application and Gateway Model

4.1 Overview of Model

The application model attempts to estimate the functioning parameters of an application
based on the limited information available, making estimation and optimisation possible.
The model attempts to calculate the load of the application and its connected devices on the
gateway which is used to estimate the effects of migration. To be able to measure the total
delay of the device messages test drivers are used, that allows messages to be sent to the
application container at a constant rate and allows the measurement of the actual return times
of the messages. The processing delay is measured by the application itself. The delays
between drivers and physical devices are not considered, because these delays cannot be
improved by the system and are subject to the adopted protocols and underlying connections.

Fig. 4.1 Overview of Model

An overview of the approach that was used to defining the model can be seen in Fig.
4.1, where two distinct systems can be observed. The gateway and the application. Each

52 Application and Gateway Model

component has a set of inputs based on which it generates a set of outputs. The applications
sit on top of gateways so they can be considered as a part of the gateway. The main task of
the model is to take measured variables and constants and estimate variables that cannot be
measured in normal application deployment.

The novel elements of this model consist of the identification of the application’s charac-
teristic Unit Load Lu

i j based on the measured load on the system as well as the characterisation

of the gateway based on its processing capacity PCap
j and speed PSpeed

j . Another novel ele-
ment in the model is the use of the network structure and individual connections and resources
for the definition of loads and delays.

The elements of the model consist of three distinct types of variables. The measured
variables such as the Measured Application Load La

i j, Network latency DPing
j,k and others can

be measured by the monitoring component. Variables such as the Time Delay Calculation
constants k1 and k2 are characteristic to the system and are derived from experiments. Finally,
variables such as the Total Application Delay DA

i j are estimated, or more precisely, calculated
by the model based on the other two variables.

4.2 Gateway Load

The gateway load is measured by the monitoring component on the gateway and is defined
as the total CPU usage of the system in (%). The gateway has two types of overhead, the
first type is generated by maintaining the cluster connections and background applications.
The second is generated by device message processing by their respective drivers. Both are
constant to a gateway and are not improved by migration.

The Gateway Cluster consists of the Gateways G j having j denoting the gateway number
containing Applications Ai j defined as application number i owned by gateway j.

To characterise a gateway or cloud node in this system a set of variables were defined
to allow variability in the amount of processing a certain system can do and how fast
this processing can be done. This distinction is important as with multi-core systems the
processing capacity or quantity of processing a system can do increases, but the speed of
how fast it can run a single thread is still tied to the speed of a single processor. To account
for these the processing speedup PSpeed

j and processing capacity PCap
j parameters were

introduced. The Gateway processing speedup PSpeed
j is calculated in Eq. (4.1) by comparing

the execution time T Gw
j of a bit of code on the gateway to the reference value T Gw

Re f which

was run on the node with a PSpeed
Re f of 1.

4.2 Gateway Load 53

PSpeed
j =

T Gw
j

T Gw
Re f PSpeed

Re f

(4.1)

The Gateway processing capacity PCap
j is calculated in Eq. (4.2) by comparing the

measured application load of a known reference application and comparing it to the value
measured on the reference gateway that has a processing capacity PCap

Re f of 1.

PCap
j =

LA
i j

LA
iRe f PCap

Re f

(4.2)

The Gateway Load LGw
j is the sum of Measured Application Loads LA

i j and the Base Load
LB

j . The equation for the Gateway Load LGw
j can be seen in Eq. (4.3) and is measured in %

of the CPU usage. This variable is directly measured through the monitoring component.

LGw
j = LB

j +
i

∑
1:N

LA
i j (4.3)

As defined in Eq. (4.4), the Base Load LB
j is the processing power used by sys-

tem/background processes and drivers which are considered constant throughout the migra-
tion process.

LB
j = LIde

j +
k

∑
1:N

LD
k λ

Gw
jk ∗PCap

j (4.4)

The Idle Load LIdle
j in Eq. (4.4) is the % CPU of the gateway j at rest without any

message passing or any application related activities. It is considered that this is constant on
every gateway, regardless of applications or connected devices or peers.

The Gateways Driver Message Rate λ Gw
jk used in Eq. (4.4) is defined as the total number

of messages n jk sent and received by driver k on gateway j in a certain time interval ∆t and
is measured in messages per second (msg/sec). The Driver Load LD

k in Eq. (4.4) is described
as the %CPU used by driver k to communicate with the devices connected to the gateway
through the driver for a certain message rate and is specific to each device driver.

The power consumption of a server or gateway can be a factor of the CPU Load, IO
Rates, Storage, Memory Accesses and other peripherals. Considering a case where through
migration the resources and drivers are accessed from the same location, the main components
that are of interest would be the CPU Load and added communication between gateways.
If considering as this work does, that Reliability of the communication can be partially

54 Application and Gateway Model

accounted for by its effect on the CPU the work in (Blackburn and Grid 2008) is used, where
the Power Consumption can be defined as a factor of the Gateway CPU.

4.3 Application Load

The total load of an application can be modelled based on the test data from the total CPU
usage of the application threads and the known messaging overhead added by the driver and
the container broker. These units are defined based on the test application set but would
describe any measurable application deployed on the gateway that functions in a similar
manner.

Lu
i j =

La
i j

λ A
i j

PCap
j (4.5)

The Application Unit Load Lu
i j is defined as the reference processing power used to

process one message of the application regardless of the current Message Rate. The Unit
Load in Eq. (4.5) is used to compare the behaviour of different types of applications based
on their processor use and message rate, without knowing anything about how they work.
Considering that the processing power of the host remains the same, the Lu

i j of the application
is constant indifferent of deployment location. The unit load is measured in % of the CPU
usage for the specified message rate or (%cpu/msg/sec)

LA
i j =

(Lu
i j +LM)λ A

i j

PCap
j

(4.6)

The Total Application Load LA
i j in Eq. (4.6) defines the weight of the application on the

Gateway j which is defined as the sum of the application unit load Lu
i j and the Message Load

LM adjusted to the processing capacity coefficient PCap
j and multiplied with the application

message rate λ A
i j .

The Message Load LM in Eq. (4.6) is a constant that denotes the processing impact of the
received messages of an application and is the load created by the broker driver between the
messaging service and the containers event service. La

i j and λ A
i j in Eq. (4.5) are measured by

the monitoring application while Lu
i j and LA

i j are calculated.
The Application Message rate or λ A

i j used in Eq. (4.6) is defined as the total number of
messages ni j sent and received and application i on gateway j in a certain time interval.

The Measured Application Load La
i j in Eq. (4.5) is defined by the amount of CPU the

application threads are using on average when running and is denoted by % of the total CPU,
as measured by the container monitor.

4.4 Delay Model 55

4.4 Delay Model

The delay of the application can be modelled based on the load of the gateway they are on,
the number of messages they receive and the amount of load they generate on the gateway.
The model limits its predictability to applications that only perform major processing tasks
based on device messages and do not perform background operations. This method can be
used for a general application set but its predictability decreases by the amount that the test
application differs from the test model.

The Application Delay DA
i j can be formulated in Eq. (4.7) as the sum of all application

related delays, and is the sum of the processing delay DP
i j and the networking delay DN

i j.

DA
i j = DP

i j +DN
i j (4.7)

The Processing Delay DP
i j in Eq. (4.8) is deduced from the experimental data in the

parameter analysis section, where it is a function of the Gateway Load LGw
j in Eq. (4.3), the

Unit Load Lu
i defined in Eq. (4.5), the Gateway processing speedup coefficient PSpeed

j and the
two constants k1 and k2. The values of k1 and k2 are analogous to a reference IPSGw value
and how it changes with load. The value of k1 defines the reference IPS rate of the gateway
with no load while k2 defines how the k1 value is reduced with added load. These reference
values are adjusted to differentiate between gateway processing capabilities using PSpeed

j .

DP
i j = Lu

i PSpeed
j (k1+ k2 LGw

j) (4.8)

The Networking Delay DN
i j can be described by the sum of delays generated by routing

messages from one gateway to another through the messaging system and is described in Eq.
(4.9).

DN
i j = DR

Base +
j=GHost

∑
k=GMigrated

DPing
j,k +DR

Ext (4.9)

DPing
j,k represents the network latency between j and k while the sum is the set of delays

that are required to link two gateways. If the application is deployed on the same gateway as
the devices, then DN

i j = DR
Base.

The External Routing Delay DR
Ext in Eq. (4.9) is a component of the Networking Delay

and is an experimentally derived platform specific constant that denotes the average time it
takes for a message to be routed from one gateway to another, not taking the latency inside
the network into account. The Base Routing Delay DR

Base is the delay added to any message

56 Application and Gateway Model

going from the driver to either local or external application, and is a fixed experimental and
platform specific value.

The Ping Delay DPing
j,k in Eq. (4.9) represents the latency between two directly connected

gateways and is measured by the monitoring component on the gateway.

DTot =
N

∑
j=1

M

∑
i=1

DA
i j (4.10)

The Overall Delay of the system DTot is described in Eq. (4.10) as the sum of all
application Delays defined in Eq. (4.7) on the system.

4.5 Reliability Model

For the reliability model, only the influence of the Total CPU load on the Reliability of the
system are considered, because driver message rates and access values are unchanged when
migrating. Furthermore, it is considered that the decreased reliability due to added message
rates between gateways is covered by the increased Gateway Load LGw j.

The load-hazard model in (Iyer and Rossetti 1986) is adapted, which provides an analysis
of the impact of Load on the probability of the machine to run without any CPU or system
errors. They propose a load-dependent hazard or failure rate model z(x) , where x is the
gateway load LGw

j . They prove statistically that there is a correlation between increased
load and increased failure rates. They define the hazard rate z(x) as the probability of an
error occurring at a CPU load x+∆(x), where ∆(x) is the added load, given that there was no
failure at load x.

Considering Eq. (4.11) for defining reliability, where R(t) is a function of the hazard
function z(t) or a function of the constant failure rate λ . In the case of the hazard function λ

can be replaced with z(LGw
j) as it is considered constant in time.

R(t) = e−
∫ t

0 z(u)du = e−λ t = e−z(LGw)t (4.11)

Based on the data from (Iyer and Rossetti 1986) the hazard function z(LGw
j) is approx-

imated to a third-degree polynomial Eq. (4.12) where x is between 0.08 and 0.96 in CPU
usage, the min value is 0.0018 and the max value 0.0118

z(x) = 0.0195x3−0.137x2 +0.0059x+0.0015 (4.12)

4.6 Parameter Analysis 57

Considering a constant run-time of a day or 24 hours, the Gateway Reliability RGw
j can

be defined using the Load based Reliability function R(LGw
j) in Eq. (4.13). This results in a

maximum reliability of 95.5% and a minimum reliability of 75.35%.

RGw
j = e−0.468LGw

j
3
+0.3288LGw

j
2−0.1416LGw

j −0.036 (4.13)

Based on the gateway reliability in Eq. (4.13), the application reliability RA
i can be

calculated as the product of all the gateway reliabilities where the application has resources
deployed. This can be seen in Eg. 4.14 where k represents a resource and peer applications of
the tested application i deployed on gateway j. RRes

kl represents the Reliability of the Gateway
l where the resource or peer k resides. It is worth noting that k represents a unique gateway,
so if resource k1 and k2 reside on the same gateway, the reliability of this gateway is only
considered once in the product.

RA
i j = RGw

j

k∈Ai

∏ RRes
kl ,where l is unique (4.14)

4.6 Parameter Analysis

The tests are performed in a physical environment based on the scenario presented in (Verba,
Chao, A. James, Lewandowski, et al. 2017) and in the Use-Case of the Evaluation section.
This configuration is used to find the parameters of the application and gateway model. The
testing environment consists of homogeneous Raspberry Pi nodes that have a processing
speedup coefficient of PSpeed

j and processing capacity coefficient PCap
j of 1. When migrating

to the Cloud, there are two VM’s on different hosts with varying processing capabilities.

4.6.1 Processing Capacity and Speedup

The Gateway processing speedup PSpeed
j and processing capacity PCap

j are calculated in Eq.
(4.1) and Eq. (4.2) by deploying a reference application for five minutes and measuring a
stable four minutes the load it creates and delays of the application. For the tests, a set of 5
applications with varying loads on top of four types of gateways are deployed on the two
VM’s and two Raspberry Pi’s. The first VM (VM1) has two VCPU’s and 4GB of RAM on a
host with an i5-Intel Xeon E312 3.1Ghz Processor with a BogoMIPS value of 6185.94 . The
second VM (VM2) has two VCPU’s and 4GB of RAM on a host with an i7-4770 3.4GHz
Processor with a BogoMIPS value of 6784.28. The Raspberry Pi 2 model B has an ARM
Cortex-A53 1.2 GHz quad-core processor and 1GB of ram. Two scenarios are considered
with the Raspberry pi, for the first (RPi1) is overclocked to 1.2GHz and for the second (RPi2)

58 Application and Gateway Model

is left at the base value of 1GHz. This overclocking changes the BogoMIPS value of the pi
from 697.95 to 732.2. The more performant VM and Raspbery Pi is used for the rest of the
testing and evaluation.

For the estimation of the processing capacity PCap
j values, the systems CPU use is

measured when on idle resulting in an LIdle value of 3.68% for the Raspbery Pi’s and 1.8%
for the VMs. After this, the load application with varying loads is deployed. This application
mimics the standard applications but it performs the processing tasks on a timer rather then
on received messages making the created load more stable. The deployed loads were 0, 50,
100, 200, 300, 500, and 1000 cycles of the processing task. The CPU load of the Machines is
measured and based on Eq. (4.2) the processing capacity of the machines is calculated.

For the estimation of the processing speedup PSpeed
j an application is deployed on the

machines and its Processing Delay DP
i j is measured. The application deployed was given

50, 100, 250, 500 and 700 cycles of the processing task with a message rate of 5 giving
the unit load Lu

i j values of 0.55, 1.008, 2.448, 4.76 and 6.6126. The processing times of
these applications are then measured and based on Eq. (4.1) the processing speedup of the
machines can be calculated.

Table 4.1 Processing Parameters of the Machines

Machine VM1 VM2 RPi 1 RPi2

Processor
I5-Intex Xeon

3.1 Ghz
i7-4770
3.4 GH

ARM
Cortex-A53

1.2 GHz

ARM
Cortex-A53

1.0 GHz

CPU Count 2 2 4 4

BogoMips 6185.94 6784.28 732.2 697.95

PCap
j 2.304 2.556 1 0.924

PSpeed
j 4.189 4.307 1 0.874

The results of these experiments can be seen in Table 4.1., where the differences between
the machines can be seen. Here,the BogoMips is a good indicator of the relation between
two gateways processing coefficients, it however cannot be used to estimate these values.

4.6.2 Driver and Message Loads

The loads of the drivers LD
k are calculated on the system by measuring the idle load of the

system with the drivers running but no messages being sent through, after which messages at

4.6 Parameter Analysis 59

different rates are sent to a non-routable queue and the added load on the CPU is measured.
The results are divided with the message rates to get the driver characteristic load for each
message received. This was tested for the RF24 , Bluetooth and the TestingDrivers. The
tested message rates were 1, 3, 5, 10 and 20 messages every second.

To measure the load of routing the messages on the system and through the Karaf
container, the TestingDriver application is used to send messages to an application with a
known Unit load Lu

i j of 1.008 with varying message rates of 1, 3, 5 and 10. The application
load is then measured and the base load LB

j is calculated based on the message rates and the
initial idle values. Based on Eq. (4.6), the value of LM is then calculated.The mean value of
the four tests is considered as the reference value.

For the Driver Loads LD
k an averages is measured of 1.61 for each RF24 message, 0.73

for each Bluetooth Message and 1.10 for the Testing Driver. The difference in created load
can be attributed to the implementation of the drivers but also the hardware support on the
system. While the Bluetooth driver has a dedicated chip that takes off some of the load by
implementing more of the OSI model on chip, the RF24 most of this needs to be done by
the driver. For the driver, the load is caused by the measurements and data retention. The
average messaging load LM on the system was found to be 0.285.

4.6.3 Processing Delays

Fig. 4.2 Processing Delay Variation

60 Application and Gateway Model

To estimate the processing delays DP
i j of the system k1 and k2 need to be determined,

which represent the characteristic delay for a certain amount of processing done with a certain
amount of load on the system. From the tests, it can be concluded that the RAM of the
system only affects the delays when the system goes above 80% ram use, in which case the
system may crash. Furthermore, the message rate only influences every individual message
by adding load to the system, and when that contribution is taken out no further delay is
added. If the message rate exceeds the Karaf driver capacity or the application capacity and
overload situation is considered, as the Karaf driver causes a bottleneck. In conclusion, for
the system the impact of the Gateway Load LGw

j and the Application Unit Load Lu
i j is tested

within normal operation parameters of the system where RAM use does not exceed 80% and
the messaging rate does not cause bottlenecks. Testing for these is done through the Gateway
monitoring application for RAM and the RabbitMQ monitoring for queued up messages to
validating the message rate.

For the testing, four known applications are deployed with unit loads of 0.55, 1.008,
1.906 and 4.76, and a constant messaging rate of five messages every second. The total CPU
utilisation of the system and the Application load was measured through the monitoring
component. To account for different scenarios, the CPU usage of the gateways were increased
through the Load app. These scenario were deployed on VM1 and RPi1 and got the points
presented in Fig. 4.2. Using the equation from Eq. (4.8) and the performance values from
Table 4.1 a curve fitting is done to match the data-points, having k1 and k2 as unknowns.
The resulting function provides the slightly curved form of the two surfaces.

DP
i j = Lu

i j PSpeed
j (38.409+0.1885 LGw

j)

DP
i V M1 = Lu

i j (9.169+0.0459 LGw
V M1)

DP
i RPi1 = Lu

i j (38.409+0.1885 LGw
RPi1)

(4.15)

The resulting equations for DP
i j in the general case, for VM1 and for RPi1 can be seen

in Eq. (4.15). The value for k1 is 38.409 and 0.1885 for k2 where the first means that for
each unit of load, 38.409 milliseconds of processing on a reference system needs to be added,
while k2 means that for each percentage of extra load 0.1885 milliseconds of processing
delay for each unit of load on the reference system is added. The Processing Delay Constants
fir RPi1 stays the same, at 38.409 for k1 and 0.1885 for k2. The values for VM1 are 9.169
for k1 and 0.0459 for k2.

4.6 Parameter Analysis 61

4.6.4 Networking Delays

The Networking Delay is measured by testing the response time of an application when
running on the RPi1 and when running on a VM1. The monitoring component measures the
ping values between peers which allows the system to compare response times to the ping
values. The latency between the two gateways was increased using netem (Hemminger 2005)
for Linux from 0 to 80ms to match typical Cloud-user latencies.

DN
i j = 9.83+

j=GHost

∑
k=GMigrated

DPing
j,k +8.246 (4.16)

To get the value of the base Routing Delay DR
Base and that of the External Routing Delay

DR
Ext , the processing delay is subtracted from the total delay which results in the total DN

i j.
From this, measured ping value DPing

j,k between the two gateways is subtracted which results
in DR

Base +DR
Ext . The mean values for local processing where only DR

base is present with
a value of 9.83ms is then subtracted from equation resulting in DR

Ext , that has a mean of
8.246ms giving rise to the equation for DN

i j in Eq. (4.16).

Fig. 4.3 Application Delays variation

The graphs in Fig. 4.3 shows the impact the networking delay has on the total delay,
resulting in a set of gateway load LGw

j and Unit Load Lu
i j threshold values where applications

have smaller latencies on the gateway than on the Cloud VM. Considering the P1 points on
the figure, a difference in their values between processing and total delay on both the VM
and the RPi can be seen. For these cases, the points are a result of having an app with a LU

i j

of 1.906 and a gateway load LGw j for the RPi of 51.917% and 51.425% for the VM. This
results in a calculated Total Delay of 101.69ms for the RPi and 90.57ms for the VM. The

62 Application and Gateway Model

actual values were 108.743ms for the RPi and 85.051ms for the VM. This results in a mean
error of 6.29%.

4.7 Utility Functions

Providing a utility function for a system is a crucial part of its development as it provides a
way for developers to improve or analyse changes in a system. This utility function needs
to represent the needs and health of individuals in the system but should also provide an
overview of how the system is performing as a whole. In the case of the model this utility
function is used to evaluate a set of multi-variable characteristics of the system and how they
affect individual applications and the system as a whole.

When compiling the parameters that should comprise the utility function these need to be
quantifiable based on the model that is proposed and these need to be relevant to the system.
This is the reason why even though the load of gateways is calculated it is not considered a
relevant component and why even though through Green Computing the energy consumption
of the system is important, based on the used model, it is impossible to estimate the value
of this component so it is left out. The parameters that are considered are based on (Verba,
Chao, A. James, Lewandowski, et al. 2017) where some key components and parameters of
some industry-based systems are identified.

When considering the general utility function, it can be decomposed into three compo-
nents: delay, reliability and constraint violations. To consider a utility function that can be as
generic as possible, each application is considered to have different preferences to reliability
and delays as well as constraints. To account for this, individual weights for each component
are defined, where W X

i denotes the weight of an application Ai ∈ A for the parameter X where
X ∈ {Delay,Reliability,Constraint_Violations}

The first component focuses on the Delay of each individual application DA
i j where the

delay component DF can be defined as in Eq. 4.17 as the sum of all application delays
compared to their reference status multiplied by the individual weight for those applications.
The normalisation of the delays to each applications’ reference position puts the applications
in an even playing field where large applications do not have an unfair advantage or priority.
This also helps provide the utility component of the system, that is going to have a rough
average value around or lower than 1.0. Considering DA

iRe f as in Eq. 4.18 where the Total
Delay of the application DA

i j is considered in a case where the Networking component DN
i is

0.0 and the Processing Delay DP
i is calculated for the Average Gateway load and a speedup

of 1.0. The average load of the system can be calculated by looking at all the adjusted

4.7 Utility Functions 63

Processing capacity available on all the gateways and extracting all the required processing
capacity by the applications which does not consider networking requirements.

DF =
n

∑
i=0

DF
i =

n

∑
i=0

DA
iRe f

DA
i j

W Delay
i (4.17)

DA
iRe f = Lu

i (k1+ k2
∑

m
j=0 LGw

j

m
) (4.18)

The second component focuses on the Reliability of applications on the system and can
be defined as RF as in Eq. 4.19 as the sum of all application Reliabilities RA

i j compared to the
reference system reliability. As with the previous component, the normalisation provides a
view for each individual as compared to itself rather than its absolute value. The reference
value calculation can be seen in Eq. 4.20 where the average utility of gateways is considered
as a proxy to the average utility of Applications as this might not be known.

RF =
n

∑
i=0

RF
i =

n

∑
i=0

RRe f

RA
i j

W Reliability
i (4.19)

RRe f =
∑

m
j=0 RGw

j

m
(4.20)

The third component of the utility function represents the constraint violations of the
application deployments CtF . This can be seen in Eq. 4.21 where the individual constraint
values CtDelay

i and CtReliability
i are considered. In the case of this formula, + is considered as

a numeric addition where the Boolean result of the inequality can either be 0 or 1. In this
case the possible values for any individual CtF in the case of two components are {0,0.5,1}.

CtF =
n

∑
i=0

CtF
i =

n

∑
i=0

RA
i j <CtR

i +DA
i j <CtD

i

2
WConstraint_Violations

i (4.21)

When the individual components of the utility function are compiled, the resulting global
utility function UtilF takes the form as in Eq. 4.22. This represents the sum of all the
components. The problem with this utility function is that it automatically scales with the
increase of the Fog system, so in order to scale the results Eq. 4.23 is used where the global
value is divided by the total number of apps resulting in the mean utility UtilF . This allows
for the comparison of systems of varying sizes.

UtilF = DF +RF +CtF (4.22)

64 Application and Gateway Model

UtilF =
DF +RF +CtF

n
(4.23)

When deploying large systems or only partial systems as it is in the case of clustered
deployments not all the applications are deployed so UtilF ′ is defined as the sum of local or
clustered partial utilities UtilC

′
i . The actual local utilities can then be calculated when all the

components are deployed resulting in UtilCi . Subsequently, these result in the formulas for
the cluster utility and the adjusted cluster utility in Eq. 4.24. Here a set of Clusters Ci are
considered, where i ∈C and nC

i represents the size of cluster i.

UtilCi =
i∈C

∑ DF
i +RF

i +CtF
i UtilCi =

∑
i∈C DF

i +RF
i +CtF

i

nC
i

(4.24)

When considering highly heterogeneous multi-environment deployment, it can be consid-
ered that certain nodes or gateways will have platform and system capabilities CapGw

j that are
unique to a subset of these nodes. Furthermore, it can be considered that some applications
have requirements for these capabilities CapA

i where they could not be deployed in systems
where these capabilities are not met. This component needs to be considered on validation
where an application is only allowed to be deployed on a gateway if the gateway can satisfy
all of the capability requirements of the application. Not satisfying this condition means
that a deployment is not viable and thus its utility function UtilF can be considered 0.0. To
differentiate between scenarios that cannot be deployed, the deployments are differentiated
based on the number of capability and gateway max load violations that occur where less is
better.

4.8 Summary

When considering CPS and Industrial environments, the latencies of a system and its relia-
bility are crucial components. Estimation and optimisation attempts in Fog Computing and
IoT need to consider as complete a model as possible for their methods, so they do not lose
applicability and accuracy.

The model and platform provide a way of measuring and estimating the run-time param-
eters and migration benefits of applications in such systems. Based on the model, a set of
novel approaches are proposed for load and delay optimisation through application migration
between the Edge and the Cloud. These allow the estimation and improvement of certain
parameters of deployed applications. Inspired by (Kunz 1991), an experimental load model
description derived from measuring run-time parameters over physical systems has been

4.8 Summary 65

developed and used to represent the gateway and application loads, which provide a more
realistic estimation than theoretical ones presented in other papers.

The presented model and utility function serves as a base for the upcoming chapter,
where the focus is on methods for improving the system and individual health of applications.
Variations of the presented utility function are proposed, that have simpler scenarios as
discusses in several papers as well as more advanced cases where the traditional method may
not be able to satisfy all constraints and find a solution.

Chapter 5

Deployment Optimisation

5.1 Introduction

When considering the deployment optimisation of applications in any ICT environment it is
crucial to identify the characteristics and requirements of the systems that come into play.
Optimisation methods designed to work in Cloud environments might not be suitable for
Edge or mixed Fog Environments. Furthermore, methods developed for VM-based load
balancing, estimation and optimisation might neglect certain characteristics and issues that
Container-based systems might have. Container based systems also neglect some of the issues
and drawbacks of shared environments. These shared environments consist of applications
being deployed on the same system, sharing processing, storage and RAM, as opposed to
VM and Docker containers, where resources are allocated solely to an application.

The presented models and methods might have certain optimisation scopes in mind when
they are being developed, which could be in line with Green Computing trends as in (Zeng,
Gu, and Yao 2018), classical Load Balancing and Optimal Resource Utilisation approaches
as in (Congjie Wang et al. 2017) or they might explore more advanced methods as Location
aware deployments and consider communication delays between peers, clusters and Cloud.

In this chapter, different optimisation techniques will be presented that aim to solve
certain issues concerning the deployment of applications in large-scale heterogeneous IoT
environments. Some of these are designed to solve Execution time based issues such as the
Random Clustering and Allocation method while more advanced methods are designed to
improve on existing solutions by analysing partial or full results and explore improvement op-
portunities through more meaningful search space reduction through clustering and resource
allocation.

68 Deployment Optimisation

5.2 Problem Description and Categorisation

The problem of allocating Application or Services to Gateways, Machines or VMs has been
explored in (S. Kim, C. Kim, and JongWon Kim 2017). When considering the Off-Line
approach to deployment optimisation rather than a load-balancing, on-line or on-the-fly
approach to deployment, the number of possible methods that can be applied increases as
the constraints on decision time are less stringent. More complete models can be used to
determine the health of systems and more advanced goals can be set. The optimisation tasks
increase in size when deploying hundreds of tasks, services or applications onto hosts that
not only fit their needs or constraints but also work towards improving the global health or
utility of the system.

The use of more advanced Application and Gateway models as described in Chapter 4
has the downside of adding extra complexity to the deployments. This could be the main
reason why some proposals as (N. Wang et al. 2017) have used more simplified and less
interconnected models. This is also a reason why using VM or Container based solution may
seem more appropriate in certain situations as resources are fully allocated to one container
or VM and varying response times and reliabilities do not occur or are reduced when other
applications are modified or deployed.

Due to the high interconnectivity of certain components, there are several difficulties and
limitations to the proposed methods. The main one with the most impact to these methods is
the highly interconnected nature of applications with a varying number of gateways, peers,
resources and edge connections. This increased interconnectivity means that the deployed
elements can be considered as a graph and simply separating the environment into the
smallest number of connected graphs will not solve the problem. The size of these will
still be too large for certain methods and would not cause great improvement to this system.
Because of this, calculating the exact utility of certain sub-deployments is impossible to do
without having the whole system deployed. To account for this, the partial utility UtilA

i is
defined for apps that represents for the partial utility of the app Ai j where only a set of known
components are deployed.

A positive side to the high interconnectivity of these components is the possibility of
creating clusters or cooperative sets based on these connections and their impact on the
individual and global utility, which may produce better results. A part of the presented
methods focus on finding these meaningful connections and reducing the search-space to a
solvable amount. They achieve this by creating a hierarchy of connections based on custom
distance measurements and disregarding less important connections.

The allocation problem of assigning the highly connected application to a set of gateways
can be considered as a set of Applications Ai ∈A where i∈ 1, ...,N, and Resources (Peripheral

5.2 Problem Description and Categorisation 69

Devices, Storage, Logging, Regional Connections, etc.) R j ∈ R where j ∈ 1, ...,M assigned
to a set of Gateways Gk where k ∈ 1, ...,P where Sn denotes the possible set of permutations
φ : N,R− > M resulting in the Utility function presented in Chapter 4. A case can be
considered, where the Applications have at least one external connection that influences their
utility. In this case the optimisation problem can be simplified so that it is analogous to the
Quadratic Assignment Problem in Eq. 5.1 or simplified further to be similar to the Linear
Assignment problem (LAP) presented in (Lawler 1963). Here, the Gateways are analogous
to the Locations and the application are analogous to the Facilities.

N

∑
i, j=1

M

∑
p,q=1

Ci jpq Xi j Xpq (5.1)

In this case, a non-zero interconnected utility function is considered for the applications,
where Application and Resources are considered as Entities A∪R ∈ E . The Koopmans-
Beckmann Formulation (Burkard et al. 1998) from Eq. 5.2 is a special case of the generic
formula presented in Eq. 5.1. Starting from the notation from Eq. 5.2 the Application and
Gateway utility function can be presented in a special simplified case as equivalent to this
equation. Here fi j represents the number and value of interdependent parameters between
application i and j as analogous to the flow between facility i and facility j. The latency, load
or the change in reliability between gateways k and l, as hosts of application i and j can also
be considered as analogous to the distance between locations dk l = dφ(i)φ(j) where φ(i) is
the gateway hosting application i. The utility cost of placing application i on gateway k is
analogous to bik = biφ(i) which represents the costs of placing facility i at location k.

min
φ∈Sn

N

∑
i=1

N

∑
j=1

fi jdφ(i)φ(j) +
N

∑
i=1

biφ(i) (5.2)

Considering these analogies, it can be assumed that the optimisation problem can be
broken down in a special case where the impact of other applications on the gateway load
and thus the utility is not considered when computing bik. These make the problem more
difficult to solve than the traditional Quadratic Assignment problem. The QAP problem
has been proven to be an NP−Comple and NP− hard problem so when considering the
QAP problem as a special case of this allocation problem, it can be concluded, that this
optimisation problem is both NP−Complete and NP−Hard.

Finally, due to the nature of the optimisation being an allocation problem most opti-
misation methods that rely on climbing a hill or a look for a valley would not work on
such a problem as the allocation of resources lacks these characteristics. Finally, due to the
highly interconnected nature of the problem, a ripple effect can be seen even with the single

70 Deployment Optimisation

movement switching operations between placements where even applications that have no
connections with these are affected and their utility changes.

Due to the scale of future industrial setting and thus Fog and IoT deployments in these
scenarios the requirements for Distributed solutions to solve the deployment problem are
crucial. One of the major disadvantages of Global optimisation problems it that with the scale
that comes with these problems and the NP-Hard nature and non-polynomial complexity,
methods need to be proposed that reduce the search-space or put constraints and bounds to
the system in such a way that it remains solvable within a reasonable time frame.

In the upcoming sections, the methods will highlight attempts at randomly reducing the
search space and the size of problems as well as looking at methods of meaningfully reducing
these while considering the characteristics of these systems and how they work. This second
step also attempts to solve the problem of platform lock-in by considering applications have
requirements and that gateways have a certain set of capabilities. A random clustering and
allocation might leave the system in a state where no viable solution can be found.

5.3 Overview of Approaches

The approaches used to try and solve the above-mentioned problem range from a black
box approach used through the Global Genetic Algorithms Optimisation to the Tuning and
Weights based Clustering method that is proposed. These methods are combined, compared
and tested in different environments to show their advantages, disadvantages given certain
models and methods. A high-level view of the proposed methods can be seen in Fig. 5.1.
Here, a. represents the modified global GA approach, while b. looks at the app to app
connection and resource-based allocation as well as the random allocation in the case of
weights values of 0. The direction c. and d. showcase the proposed methods components
which are either initialised through sampling or using some initial weights

The graph-based analysis of the connections and distances of applications and their
deployments on gateways is central to the proposed methods and their rationale. With the
increase in size, a reduced improvement in utility when deploying systems through GA and
an exponential increase in processing time can be seen on these systems. This warrants the
need to break up the problem into smaller pieces. The random allocation and clustering
proposes the most rudimentary methods of doing this but shows that in some cases even
this method outperforms the global GA just because it can dig deeper when it comes to the
outcome. The same can be said with respect to the allocation methods where not sharing the
gateway between clusters improves the results just by removing load constraints.

5.3 Overview of Approaches 71

Fig. 5.1 High level view of Methods

The connection-based resource and application clustering attempts to remove some
of the problems that are inherent with the random allocation by choosing peers based on
their connections and by allocating gateways based on resources and access. This method
maintains the requirements of the previous one with the allocation method maintaining the
integrity of gateways and the cluster sizes being considered within reasonable values based
on the previous test.

The training and weights based clustering and resource allocation method looks at
providing a generic solution for application allocation on gateways with varying utility
functions and scenarios with the condition that the parameters of gateways and applications
need to have a relation with the output of the utility function. This method aims to analyse
existing solutions and to reinforce good directions in clustering and allocations through a
custom weighted distance measurement. The training of these weights falls into the category
of Costly Global optimisation or Expensive Black-Box problems due to the difficulties in
finding the global UtilFog from the set of local utilities ∑

N
i=1UtilClusti .

To be able to account for a varying number of models and utility function a step forward
from application connections and resource locations needs to be done when clustering and
allocating resources. For these, a custom distance function is needed to account which
parameters contribute to two applications collaborating and residing on a certain gateway. A
set of best solutions is used and correlation calculation based on (Pearson 1895) are applied

72 Deployment Optimisation

to measure these. The clustering is then attempted using an extended DBSCAN (Ester et al.
1996) method that uses elements from OPTICS (Ankerst et al. 1999) to allocate apps that
behave like noise. The issue with this method can be the overconfidence of certain directions
and some high correlation number that may only be noise. The iterative method aims to solve
some of these problems. This method can also work similarly to a random allocation method
when false parameters are considered as important due to bad initial solutions.

Each method builds on the previous one, as all methods employ the GA method that is
designed to attempt to allocate the applications inside the clusters onto the gateways. The
connection and resource share based allocation builds on the random method as it attempts
to find more meaningful clusters and allocate better gateways in a fair manner. The final
solution then attempts to account for a larger set of models where other characteristics might
determine whether two applications collaborate or are deployed to a certain gateway.

5.4 Deployment validation and Utility Calculation

The deployments that are generated using the global and Clustered GA method can sometimes
allocate more application to gateways that the gateway has capacity for or more than the fair
share of the Cluster. Furthermore, when considering application Requirements and gateway
capabilities, whether a gateway can actually house the apps needs to be considered. The
validation is done by clearing previous deployments, then deploying the apps to the gateways
and calculating the resulting gateway load for each gateway of interest. If this load is larger
than 99% for Global Clustering or larger than the Base Load plus the cluster share of the
gateway then the validation has failed.

With small deployments and those that do not consider requirements this is not an issue,
but producing valid individuals becomes an increasingly challenging task when considering
large-scale deployments. Requirements based deployments put even more strain on the
system and this issue becomes more prevalent.

5.5 Modified Genetic Algorithm based Method

Genetic Algorithms (GA) are evolutionary and meta-heuristic optimisation methods that
are based on Darwin’s theory of evolution. These typically rely on four basic operations to
improve generations. These are inheritance, mutation, selection, and crossover. GA also
has the advantage over other traditional optimisation methods that the concept behind it is
easy to understand and to modify the parameters involved (Hoque et al. 2017). It is also
able to avoid being trapped in minimum points by and employs a probabilistic selection

5.5 Modified Genetic Algorithm based Method 73

rule rather than a deterministic one. It has been previously shown that such methods work
better than Hungarian methods given a random initial deployment in most cases as in (Verba,
Chao, A. James, Goldsmith, et al. n.d.). This method allows for the use of a single Utility
function through which local and global optimal solutions can be reaches as in (Minh et al.
2017; Zeng, Gu, and Yao 2018; Hoque et al. 2017; Congjie Wang et al. 2017). A further and
probably the most important characteristic of the GA method is that it does not assume any
characteristics of the system, but rather considers it a black box.

Taking all the positive of GA it is in its essence designed to solve optimisation problems
that have a defined hill or valley it can climb and works well with similar methods. Due to the
odd nature of the presented problem the core GA components need to be modified similarly
as they are in (Bhondekar et al. 2009). The characteristics of the problem when modifying
the method needs to be considered as traditional ways of doing crossing and mutation might
affect the system too much as rendering these as useful as the random population generation.

ALGORITHM 1: Modified Genetic Algorithm
1 Set popSize← 500; genMax← 1000; pop← genPop(popSize);
2 while genCount ≤ genMax do
3 sortPop← sort(pop , Cost(G,A));
4 newPop← sortPop[1 ... popSize*0.2];
5 newPop← newPop + genPop(popSize*0.3);
6 for [indi1,indi2] in sortPop[1 ... popSize*0.6] do
7 for i = 0 to size(indi1) do
8 newIndi[i]← randomSelect(indi1[i],indi2[i]);
9 newPop← newPop + newIndi;

10 for indi in pop do
11 if random() ≤ 0.2 then
12 indi[random(1,len(indi))]← rand(1,gwCount);
13 newPop← newPop + indi;
14 pop← newPop

Our version of GA can be seen in Algorithm 1 where it takes an initial population size of
N for which it generates a new random population of size N. After this, for a predetermined
number of iterations or until there has been no change in the utility for many generations the
algorithms continue the internal loop. In this loop, individuals with the highest utility that
meet the validation criteria are first selected and if not enough are found the remaining spaces
are filled with individuals with high utility but who fail to meet the validation requirements.
The size of this group is predetermined as a fraction of the total population and is discusses
in a later subsection. The next step is the crossing given a certain change of some of the best
individuals after which the mutation of some of the best individuals with another varying

74 Deployment Optimisation

chance is performed. Finally, a set of new random individuals is added to the population so
local minimum points that might have been missed could be found. This new population is
then forwarded to the new iteration.

The GA used for deploying clustered applications onto their respective gateways works
in the same way as the global version with certain parameter changes and the validation of
solutions being modified. A final difference is linked to the utility function they optimise
which does not represent the realistic utility function but just a derivative of this containing
all the known and controllable parameters of the apps.

An individual of a population is an array of integers where the indices represent the
application id Ai and the value at each point represents the gateway id G j to which the
application is deployed as seen in Fig. 5.2.

Fig. 5.2 Chromosome used for GA

Generating a new random population is done by creating several individuals for that
population. This is done by randomly assigning a gateway to each individual app from the
set of gateways, this is done by shuffling a set of the available gateway and allocating the
first one to the app.

The elitism component takes the top individuals from a generation and saves them for
future generations. In this case, this is done by evaluating the resulting utility if a generation is
deployed but also verifying whether a deployment is valid. The elitism has two components,
where the first one looks at those individuals that are valid and have the best utilities while
the second component considers that if there were not enough individuals that satisfied the
validation process then those individuals need to be considered that have a good utility but
might not be valid as a lower utility might mean a move towards validating the deployment as

5.5 Modified Genetic Algorithm based Method 75

well. This step is mostly done for very large scale and requirements based deployments where
a case might arise so that thousands of generations still failed to produce valid individuals.

The crossing of individuals in the method is done by first getting the top N individuals
from the generation after which a crossover individual is computed, that has a chance of
either having a chromosome from one individual or the other. This method can be extended
to cross certain regions of these applications and pick sets but for this implementation as
which applications fit together isn’t known this would limit the generality of the method. The
crossing can be seen in Fig. 5.3 where how these might be picked is shown.

Fig. 5.3 Crossing used for GA

Mutation works in a similar way to crossing as a set of N elite individuals are selected
from the current generation go through the chromosomes of the individual and using a
random number generator and mutationChance constraint the gateway of the application is
deployed to is either changed or the old one is kept. This can be seen in Fig. 5.4.

Fig. 5.4 Mutation used for GA

When doing testing, two stopping conditions are typically used. The first and most basic
condition is the number of generations condition, which is the most common GA condition
where the algorithm is allowed to run for several generations. An extra condition can be
added to this where it is allowed to run over this amount if no valid individuals have been

76 Deployment Optimisation

found yet. The second stopping condition and the one used in the tests focuses on stagnation.
It looks at whether the GA has found any improvements to the total utility within a predefined
number of generations. If no valid individuals were found this, as in the previous case is
neglected. Both these cases neglect their stopping conditions if no valid individuals were
found. To make sure these methods terminate, safety stops are introduced at very large
generation counts.

Considering the Time complexity of such an algorithm a number of parameters influence
it, such as the number of generations G , population size P , and chromosome length L .
Another component that is considered that other methods don’t is the Chromosome Height.
Where the length is the number of applications and the height is the number of gateways.
These change separately and the gateway changes at about 1/3 of the rate of the app. All
of these determine the total run-time of the System. Taking these into account Random
generation, mutation, crossing has a time complexity of O(P ·L) or O(n2) while getting a
set of elite individuals has a time complexity of O(P2 ·L) or O(n3) as the size of the heap to
which each individual is compared to needs to be gone through to be able to select the best.
This is in line with the work in (Nopiah et al. 2010) where they found that some traditional
GA algorithms had a Time Complexity of O(n3) to O(n5). Considering that all of these
methods only work on a fraction of the population except the elitism, a conservative Time
Complexity of O(n3) can be deducted.

This modified version of the GA algorithm and the subsequent version of it that is used for
deployment of clustered applications to their allocated gateways is a good benchmark due to
its generic nature and black-box approach to solving the problem. All methods are assessed
compared to this one on how well and in how much time they solve certain problems.

5.6 Clustering

The main purpose of clustering is to reduce the computational time of the GA algorithm
while trying to find an acceptable solution to the problem. This is done by reducing not just
the length but the height of the chromosomes inside a generation. The main challenge with
clustering is finding the inflexion zone where the maximum integrity of the system is retained
while a large enough speedup of the code is achieved so that its deployment and run-time are
feasible or desirable. Considering two disconnected graphs and their individual deployment
and thus resulting utility function would have a reduced processing time but still retain most
of the original systems integrity. Due to the highly connected nature of the problem, certain
connections need to be severed in order to make these disconnected graphs. Minimising

5.6 Clustering 77

the number of relevant severed connections and creating relevant clusters is one of the key
components of the proposed methods.

The four types of clustering methods are increasing in complexity and processing time,
but except the random one they are based on DBSCAN or Density based Scan algorithm that
is one of the most common algorithms used is Graph analysis for identifying clusters. The
presented methods vary in not just their complexity but also on the number of assumptions
that need to be made in order to use them.

The Time Complexity formula from GA (Nopiah et al. 2010) that provides the O(n3)

complexity can be modified to look at how the chromosome length and size change when the
large deployment is divided into clusters. With a varying cluster size, a reduced complexity
of O(n2 · log(n)) is desired. When this is repeated for a number of clusters but whose size
is smaller than the chromosome length, an average run-count of log(n) can be considered,
resulting in a total approximation of the Time Complexity of O(n2 · log(n)2). This results in
a large improvement of the optimisation time, especially at larger sizes. This is a very good
reason to consider clustering even with the disadvantages and search space reduction that
comes with this. This advantage is maintained even if the added processing time caused by
the Clustering and Allocation methods is considered.

5.6.1 Random Clustering

Random clustering is the fastest clustering method, but it is also the one that does not attempt
to place peers close to each other or close to their resources and endpoints. It is designed as a
benchmark for the subsequent optimisation methods and is also used as an initialising agent
for the training algorithm.

The algorithm for random clustering is a special case of the Noise Sort algorithm in
Algorithm 2. where the distance function from all noise nodes to the clusters is 0 and in this
case, the initial cluster size is 0 as well. Here, a maximum value is needed for the cluster sizes
and the method will take applications at random and fill up every cluster to its maximum
size while attempting to make no clusters smaller than the min size, redistributing these at
the end. This method has a very low time complexity of just O(n · log(n))? where n is the
number of applications as it only needs to go through the applications once and then partially
through the clusters. It is the fastest method but the one that in the case of hard requirements
and meaningful distances between apps might result in a very bad solution or one that does
not have a valid deployment.

78 Deployment Optimisation

ALGORITHM 2: Noise Sort
1 Input Apps[],Clusters[];maxPts
2 for i = 0 to size(Apps) do
3 minDist←MAX_FLOAT; minCls← 0; alloc← f alse ;
4 for j = 1 to size(Clusters) do
5 if size(Clusters[j]) ≤ maxPts then
6 tmpDist←CalcDist(Clusters[j],Apps[i]);
7 minDist← min(minDist,tmpDist);
8 minCls← j;
9 if minDist ≤MAX_FLOAT then

10 Clusters[minCls].add(Apps[i]);
11 else
12 for j = 1 to size(Clusters) do
13 if size(Clusters[j]) ≤ maxPts then
14 Clusters[j].add(Apps[i]);
15 alloc← true;
16 break;
17 if !alloc then
18 newId = Clusters.CreateNewCluster();
19 Clusters[newId].add(Apps[i]);

5.6.2 Distance based Clustering

The Distance based Clustering works by considering that applications behave in a similar
fashion as people do and utilises DBSCAN from Social Network Analysis where it looks at
connections between peers and considers that these connections show an interest of working
together and deploying them close to each other would improve on the system. In this case,
only the app to app connections are considered.

The modified DBSCAN method can be seen in Algorithm 3 where the method is given a
minPts value which is the minimum cluster size and an eps value for which is a minimum
distance at which another application is considered a peer, which for 1, means that an
application is directly connected with this one, while for two they would have an application
connecting them. These connections are directional by nature but for this method, they are
considered unidirectional. The method works by going through all the points, checking
if they were ever visited and if not checking how many neighbours they have, and if they
have more neighbours than the minimum value they form a cluster. This cluster then goes
through an expansion phase where all the nodes of the cluster look for additional numbers of
neighbours with a size larger or equal to the minPts value. If such neighbours are found they
are added to the cluster, and this continues until no new points are found. These points in the

5.6 Clustering 79

ALGORITHM 3: Weighted Clustering
1 Input Apps[],minPts, eps ;
2 Set visited← Array[]; noise← Array[]; clusters← Array[];
3 for i = 0 to size(Apps) do
4 if !visited.contains(i) then
5 visited.add(i);
6 neighbours← getNeighbours(Apps[i],eps,minPts);
7 if neighbours.size()≤ minPts then
8 noise.add(i);
9 else

10 points← expandCluster(neighbours,Apps,eps,minPts);
11 clusters.add(points);
12 noiseSort(clusters,noise,Apps);
13 for i = 0 to size(Clusters) do
14 if Clusters[i].size() < minPts then
15 points = Cluster[i] ;
16 delete(Cluster[i]);
17 noise.add(Points) ;
18 noiseSort(clusters,noise,Apps);

cluster are then subsequently added to the visited points and are not verified later. If a point
fails to find enough neighbours or is not part of any cluster it is considered noise.

When considering clustering, for social media analysis and other scenarios noise is a
normal thing and those points are just discarded. This is not acceptable for the application de-
ployment case, so the next step looks at removing those clusters who had enough neighbours
but whose neighbours belonged to other clusters. These are removed and added as noise.
This noise then needs to be allocated to certain clusters. This is done by adopting methods
from the OPTICS (Ankerst et al. 1999) algorithm where the average distance between an
app and the connected clusters are calculated and the app is allocated to the nearest cluster
or if none is found then its allocated to one at random. This method removes the need for
a maxPts constraint to be added as the clusters are created based on their peers and these
connections need to be retained.

5.6.3 Weights and Attributes based Clustering

Weights and attributes based clustering works in a similar way as the connection based
clustering described above, with the difference than rather just looking at one characteristic
of applications it looks at all of them. For this model, the parameters of interest were defined
as the Distance, Resource Share Rate, Constraints Similarities, Message Rate Similarities,

80 Deployment Optimisation

Unit Load Similarities, Utility Weights Similarities and Requirement Similarities. The
selection of the weights can be done manually in the case of a Gray-box scenario where the
details of the system are known or the subsequent training algorithms can be used to try and
find these values.

When evaluating the parameters that are considered for the custom clustering function
the existing app and gateway parameters need to be modified as shown in the equations from
Eq. (5.3..5.9). These equations show how the parameters are calculated between apps a1
and a2. These parameters are summed up in Eq. 5.10 where the weights fall into the types
TypeCls ∈ {Dist,Share,Constr,MsgRate,ULoad,UtilW,ReqSim}.

ClsDist =
1

ConnDist(a1,a2)
(5.3)

ClsShare =
∑Resourcesa1 ∈ Gatewaysa2

∑Resourcesa1

∑Resourcesa2 ∈ Gatewaysa1

∑Resourcesa2

(5.4)

ClsConstr = 1−
i∈ConstraintTypes

∑ |Constraint i
a1
−Constraint i

a2
| (5.5)

ClsMsgRate = 1−|MessageRatea1−MessageRatea2| (5.6)

ClsULoad = 1−|UnitLoada1−UnitLoada2| (5.7)

ClsUtilW = 1−
i∈UtilityWeights

∑ |UtilWeightsi
a1
−UtilWeightsi

a2
| (5.8)

ClsReqSim =
∑Requirea1 ∈ Requirea2

∑Requirea1

∑Requirea2 ∈ Requirea1

∑Requirea2

(5.9)

ClsSum =
i∈Types

∑ ClsiWCls
i (5.10)

Further improvements to the clustering algorithm, especially to its processing time can
be done by limiting the scope to which applications look for neighbours. In the base case,
they look for neighbours in the whole application set which might be hundreds of individuals.
A slight modification would be to consider neighbours that are at a certain distance from the
application. If the applications that are considered for the neighbourhood test are limited
to be at a connection distance of 4 the total run-time of the method is reduced significantly
without affecting the results.

5.6 Clustering 81

As a conclusion, Clustering methods can greatly reduce the processing time of opti-
misation methods through the reduction of the search space but if the aims is to have a
meaningful reduction more resource intensive methods need to be applied that in some cases
can outweigh the benefits of clustering but in others might give better results than the GA.

5.6.4 Eps Value Estimation and Improvements

Having to specify a starting eps value for DBSCAN is one of its disadvantages, one that
OPTICS solves, but at a great cost as the OPTICS algorithm takes a lot more time to run than
the DBSCAN one which at large scales might cause problems. To try and solve this without
employing OPTICS a histogram of the distances between apps is generated from which the
minimum and maximum eps values and the desired steps can be deducted. This method is
described in Algorithm 4.

ALGORITHM 4: Eps Estimation and Result Validation
1 Input parameterWeights; Apps ;
2 Set distances← new Array[]; histogram← new Array[10];
3 for i = 0 to size(Apps) do
4 for j = 0 to size(Apps) do
5 if i != j then
6 distance.add(getDistance(Apps[i],Apps[j],parameterWeights));
7 min← distance.getMin(); max← distance.getMax();
8 band =← (max-min)/10;
9 for i = 0 to size(distance) do

10 location = (distance[i]-min) mod band;
11 histogram[location]← histogram[location]+1;
12 iStart← histogram.getMax();
13 for i = 0 to size(histogram) do
14 if i>iStart and histogram[i]>Apps.size() then
15 iStop← i;
16 return [iStart*band,iStop*band,(iStop-iStart)*band/10]

To evaluate the results from each iteration the quality of clustering algorithms outputs
needs to be evaluated. Here, there are two extremes, either almost all the applications
went into a single cluster or a very large number of applications were generated where a
good portion of which have their own cluster. To account for this the method looks at the
distribution of clusters which should be as even as possible without too large clusters and
without too small ones. The iteration with the best distribution is retained. The algorithm has
two stopping conditions, one is if the iteration hit the maximum value and the other is if two

82 Deployment Optimisation

results have been on the extremes after a viable solution was found. Extreme solutions are
not considered as viable, because they either make resource allocation impossible or they
subvert to the global GA.

These improvements increase the processing time for the algorithm but also make it more
generic and results in fewer parameters that need tuning. Variations of the method can be
used on scenarios and data-sets that are known to improve the run-time while maintaining
the generality.

5.7 Resource Allocation

Resource Allocation focuses on allocating Gateways or shares of a Gateway to clusters in
such a way that the upcoming Cluster based GA will produce not just a viable solution, but a
solution that improves on the existing global utility. In order to do this, a number of things
need to be considered. The first is to make the method as fair and even as possible given the
situation. This means that clusters should have a very similar Resource Share Rate based
on their Cluster Load. This balance is very high in the Random Allocation and it becomes
increasingly worse with the more advance methods as the right allocation becomes more of a
priority than the even or balanced one.

5.7.1 Random but Fair

The Random but fair Resource allocation, as mentioned above looks at allocating resources
to gateways in as even a manner as possible without considering any other parameters while
maintaining gateway integrity as much as possible. This allocation method can be considered
a component of the upcoming methods, or more precisely, this method is used to allocate
the noise gateways that are left after the initial set of allocations which for the Distance
and Resource Share method would be the Cloud Gateways and for further methods those in
which no app and subsequently no cluster is interested. The simple algorithm for this method
can be seen as a version of the Noise Distribution Algorithm 5 where the clusters apps have
no affinity to any gateway. This is the same situation as having the weights set to 0.

The method works by going through each gateway and verifying if all its processing
resources have been allocated and if not a cluster with the lowest share rate is found and the
gateway is allocated to that cluster in full. Variations of this method could allow gateways to
be shared among clusters for an even fairer distribution, but due to the fragmentation of the
gateways, the solutions might not be ideal.

5.7 Resource Allocation 83

ALGORITHM 5: Gateway to Cluster Allocation Noise Distribution
1 Input Gateways[]; Clusters[]
2 for i = 0 to size(Gateways) do
3 if Gateways[i].getFreeLoad() > 1 then
4 if Gateways[i].getFreeLoad() < 25 and Gateway[i].ClustrCnt() ≥ 1 then
5 Gateways[i].expandClusterShares();
6 else
7 minShare←MAX_FLOAT; minId← 0 ;
8 for j = 0 to size(Clusters) do
9 tmpVal = Clusters[j].getShareRate();

10 if tmpVal < minShare then
11 minShare← tmpVal;minId← j
12 Gateways[i].allocateFreeResource(Clusters[minId]);

5.7.2 Shared Resource Based Allocation

The shared resource based allocation looks at the resources that are linked to a gateway and
attempts to allocate gateways to clusters that have the most resources on that gateway. This
method also considers that the resource share of the gateways is important as the resulting
share is divided by the resource share if the allocates share is larger than 120% of the allocated
load. The share values are multiplied by a factor of 10 when the minimum share rate of
120% of the minimum required is not fulfilled. This gives clusters that haven’t fulfilled
the minimum requirements an edge over those that have. Also while there are clusters that
haven’t met the minimum share rate other clusters are not allowed to demand resources.

5.7.3 Weighted Property based Resource Allocation

To allocate gateways to clusters a similar distance needs to be defined as in the application
clustering section. In this case, the Gateways distance to the Clusters or more precisely to
the Application of the clusters is central. In the random allocation, this component is not
considered and in the case of Resource share allocation, only the resource is considered.

When considering the parameters that are need to show the preference of an application
or a cluster of applications to a gateway the ratio of these parameters needs to be modified as
shown in Eq. (5.11..5.15). These equations show how the parameters are calculated between
app a1 and gateway g2. These parameters are summed up in Eq. 5.16 where the weights fall
into the types TypeAlloc ∈ {ResShare,BaseToULoad,Per fCapToULoad,SpeedToULoad,Capab}.
How this is calculated for Clusters is shown in Eq. 5.17

84 Deployment Optimisation

AllocResShare =
∑Resourcesa1 ∈ Gateways2

∑Resourcesa1

(5.11)

AllocBaseToULoad = 1−| L2
B

100.0
− L1

u−MinLu

MaxLu−MinLu

| (5.12)

AllocPer fCapToULoad = 1−|
PCap

j −MinPCap

MaxPCap−MinPCap
− L1

u−MinLu

MaxLu−MinLu

| (5.13)

AllocSpeedToULoad = 1−|
PSpeed

j −MinPSpeed

MaxPSpeed −MinPSpeed
− L1

u−MinLu

MaxLu−MinLu

| (5.14)

AllocCapab =
∑Requirea1 ∈ RequireGw2

∑Requirea1

(5.15)

AllocSum =
i∈Types

∑ AllociW Alloc
i (5.16)

Alloci
Clust =

i∈Types

∑ AllociW Alloc
i (5.17)

The Algorithm 6 works by first creating a list of all the gateways each cluster is interested
in with their specific share rate or distance function. After this is compiled the algorithm
loops until all clusters run out of gateways of interest and the noise sorting or random but
fair allocation is done. In the loop, there are several special cases considered. First, if a
cluster has received 90% of the average share rate of the System and more than 120%, all the
gateways are removed from its preference list.

The main body or the loop of the algorithm goes through all the valid clusters, which then
select the gateway that they are most interested in. All the other clusters that are interested in
this gateway then compete for a share. Only clusters that have their distance or share rate
within a fraction given as a constant are considered. The number of clusters that can share
a gateway is also limited by a fraction constant that is given, so even if some gateways are
within the threshold if they are outside that constant they are not considered. After a gateway
is allocated it is removed from all clusters that are interested. If the selected gateway falls
outside the threshold, it is not considered.

5.7 Resource Allocation 85

ALGORITHM 6: Weighted Property based Resource Allocation
1 Input Gateways[]; Clusters[]; globalShareRate; clsShareRate;
2 Set EmptyClusters← new Array[]; ClsInterrest← new Array[];
3 allocatedGWs← new Array[]; for i = 0 to size(Clusters) do
4 for j = 0 to size(Gateways) do
5 if distance(Clusters[i],Gateways[j]) != 0 then
6 ClsInterrest[i].add(Gateways[j],distance(Clusters[i],Gateways[j]));
7 while Clusters.size() < EmptyClusters.size() do
8 for i = 0 to size(Clusters) do
9 if Clusters[i].getShareRate()>0.8*globalShareRate or

ClsInterrest[i].size()==0 then
10 EmptyClusters.add(Clusters[i]);
11 else
12 maxGwId← ClsInterrest[i].getMaxGw() ;
13 maxDist←ClsInterrest[i].getMaxVal() ;
14 competeCls← new Array[];
15 for k = 0 to size(ClsInterrest) do
16 if k!=i and ClsInterrest[k].contains(maxGwId) then
17 competeCls.add(k);
18 topCls← competeCls.getBestCls(clsShareRate);
19 if Clusters[i] not in topCls then
20 clsInterest[i].remove(maxGwId);
21 else
22 clsInterest.removeAll(maxGwId);
23 distributeGwToClusters(topCls,maxGwId);
24 GatewayToClusterNoiseSort();

5.7.4 Correlation and Weights based Resource allocation

Correlation and Weights based Resource allocation is a variation of Distance based clustering
method where the distance between one gateway and a cluster is not just defined by the share
rate, but rather a set of variables that are given a certain importance based on their weighting.

The varying parameter based distance supported allocation is crucial to the similar style
clustering as they are complementary methods. There is little reason to only consider
advanced clustering methods and then just allocate random gateways to these as they would
defeat the core purpose of these methods which is to put the application to their most preferred
gateways within the best conditions possible in a sensible amount of time. It is also worth
noting that if the applications in a cluster are allocated randomly the clusters preference to
gateways will be week, so the algorithm will not be able to perform as well as it could with
proper application clustering.

86 Deployment Optimisation

This version of the resource allocation proposes an initial allocation set for the clusters.
These allocations could later be revisited by analysing failed Clustering GA results to see
which component or parameter of the allocation failed and increasing the weights of those
parameters and having two or more clusters re-negotiate their gateways with an incentive
to reach an agreement. These fall under the iterative methods that can be used to improve
tweak the algorithm.

The resource allocation methods provide the backbone for the system as they allocate the
gateways to the clusters which could very well be random on initial deployments or in the
case of poorly selected weights. Besides the distance based allocation, the main task of this
method is to make sure that not just the best possible result is found but allocations are made
that produce viable deployments as the whole deployment direction is considered a failure if
just one cluster fails.

5.8 Overview of Methods

5.8.1 Connections based Clustering and Resource Allocation

Network Analysis Clustering and Allocation in Fig. 5.1 route b. is designed to support the
work that was done in (Verba, Chao, A. James, Lewandowski, et al. 2017) where a number
of use case scenarios were analysed with a varied number of Graph analysis methods and
an extensive characteristics analysis was conducted to analyse their choice of peers and
gateways as well. Through this research, it has become obvious that when considering
clustering and deployment for the presented Delay optimisation Scenario the parameters that
most commonly linked application together were their connection. Their choice of gateways
was determined by whether their resources were deployed on that gateway or by the gateways
latency to those resources.

Due to the method sole interest in the connection of application for clustering the method
used to find neighbours and clusters is a lot less resource intensive than the parameter and
characteristics ones as this one can easily be solved by a Dijkstra algorithm and as such
is easily distributable and scalable. This makes it the best method for optimising typical
scenarios. The sorting of the noise applications that do not fit into any clusters can also
be done more easily as they could be considered individually and ping clusters for their
parameters and then join these when preferred.

The resource allocation based on shared resources poses the same advantages as with the
clustering as finding gateways that host the application’s resources is a lot less processing
time intensive than finding ones that have desirable parameters/characteristics. This also

5.8 Overview of Methods 87

allows this method to be distributable and is thus better scalable. The allocation of Cloud
Gateways and those that have no resources allocated to them is done in a similar fashion as
with the clustering with these being allocated by preference or to the gateway with the lowest
share rate.

The final part of the method involves running a Clustering GA method where the applica-
tions inside a Cluster are deployed onto the gateways allocated to this cluster while making
sure the deployments are valid. This is the final step in the solution and it shows how well the
method worked. Compounding the best individuals from the clustered deployments results
in the global deployment and finally the complete and global utility function.

5.8.2 Iterative Correlation based Clustering and Optimisation

When considering more advanced or difficult deployments such as the ones presented in
(Zeng, Gu, and Yao 2018) and in the utility model in chapter 5 only considering certain
parameters when clustering applications and choosing peers as well as allocating resources
might be detrimental. In order to be able to apply the clustering methods to a larger scope
of models and problems, there needs to be a generic template on how to measure distances
between peers and resources and how to allocate these. This approach aims to solve some of
the problems inherent with making initial assumptions of the system and proposes methods
of deducing these characteristics and then enforcing them when considering Deployments
and modifying them when needed. This method is the most processing time intensive one as
it has a number of high complexity components, but it is the only one that is generic enough
to be used all across this problem and use-case domain.

5.8.2.1 Overview of Method

A general view of how this method works can be seen in Algorithm 7 where the compo-
nents interaction and work-flow is shown in detail. This method can be expanded to add
intermediate tuning components and fault and fail based intermediate iterations which would
reduce the computational time of components but it would still fall under the same category
of problems and fit in the presented diagram.

The correlation between parameters and deployments is calculated by taking a set of
possible best-case deployments and looking at the relation between parameters when they are
deployed together and when they are not. In this case, the correlation is calculated between
a Boolean value of whether they are deployed together or not and a double value which is
the parameter relation value. Due to this method, there is a lot of noise when calculating
the correlation, and because of the uncertainty of the quality of the solution, the correlations

88 Deployment Optimisation

ALGORITHM 7: Iterative Correlation based Clustering and Resource Allocation
1 Input weights[]; applications[]; gateways[]; corrTrainer;
2 Set stopStatus← false ;
3 clusters← new Array[]; bestDeployment← new Array[]; bestUtil← 0.0;
4 while !stopStatus do
5 [results,clusters]← weightedClustering(weights,applications);
6 if results.status == "success" then
7 weightedResourceAllocation(weights,clusters, gateways);
8 [results, deployments[]]← GADeployment(clusters);
9 if results.status == "success" then

10 [tmpUtil,deplId] = getBestDeplUtil(deployments);
11 if tmpUtil>bestUtil then
12 bestUtil← tmpUtil; bestDeploymetn← deplId;
13 corrRes← calculateCorrVals(getBest(deployments,5));
14 corrTrainer.updateParameters(corrRes,tmpUtil);
15 weights← corrTrainer.getNewWeights();
16 else
17 corrTrainer.setFailed(results);
18 else
19 corrTrainer.setFailed(results);

might be very small or not representative of a good direction at all. The correlation parameters
are the ones mentioned in the previous subsections for weighted Clustering and Weighted
Resource allocation. The data for the correlation is generated by creating a list of applications
for each application that are deployed together, calculating their parameters and adding them
to the data set with a Deployed value of 1. After this, data is added with the applications not
in the list and a Deployment value of 0. The data is filtered in such a way that only unique
data points are added and no duplicate entries such as A1’s relation to A2 and A2’s relation to
A1.

5.8.2.2 Correlation Calculation

The correlation is calculated using the Pearson R Correlation (Pearson 1895) where R[x,y]
is considered as the correlation between parameter x and parameter y. The Pearson R
Correlation is considered as opposed to the Spearman’s Correlation (Spearman 1910) based
on the work done in (Hauke and Kossowski 2011) where it is stated that the results of
the Spearman’s Correlation can be less reliable with some data sets but might find certain
correlations that the Pearson’s misses. This is due to the understanding that Pearsons’s looks
for linear Correlation between variables while Spearman’s is looking for a Monotonic one.

5.8 Overview of Methods 89

Furthermore, Spearman’s method requires the Ranking of data which implies knowledge
about the data. As a conclusion, the Pearson’s correlation is used as it requires less implied
knowledge of the data and has a lower chance of offering a false positive for the correlation.

The formula for the correlation can be seen in Eq. 5.18 where n represents the total
number of data-points, x and y represent single data points, x̄ and ȳ are the mean values of
these data points while Sx and Sy represent the standard deviation for x and y. The mean
of x and y is calculated by adding all the values and dividing them with n. The standard
deviation for a parameter is based on Eq. 5.19. This is done by first calculating the sum of
all differences squared between each individual point and the mean of that parameter. After
this, the sum is divided by (n−1) where n is the total number of data points.

rxy =
∑

n
i=1(xi− x̄)(yi− ȳ)

Sx Sy
(5.18)

Sx =

√
n

∑
i=1

(xi− x̄)2 (5.19)

The following calculations are completed for all parameters and in relation to the deploy-
ment status which is the property noting whether two application are deployed together. An
example of this can be seen in Table. 5.1 for the Delay Optimisation scenario where the
resource share and distance measurement parameters have a lot higher correlation than the
other ones, even though these values are still under 0.5 resulting in a week correlation at best.
The reason for this is partially due to the sub-optimal parameters and the high levels of noise
in the data. Here, all the 7 parameters for app to app relations and the 5 parameters between
app to gateway relations are shown.

Table 5.1 Example Correlation Results

Clustering Parameters
Dist Share Constr MsgRate ULoad UtilW ReqSim
0.159041 0.277061 -0.005882 -0.021282 -0.002517 0.0 0.004135

Allocation Parameters
ResShare BaseToULoad PerfCapToULoad SpeedToULoad, Capab
0.382969 -0.006193 -0.042599 4.46E-19 0.0

Taking these correlation values, the algorithm is applied, that looks at the highest correla-
tion and applies a constant processing Limit to see which other parameters are within range
of the best ones. After this is done, the selected correlation values are given adjusted based
on the predefined penalties for certain parameters and then they are adjusted so the sum of

90 Deployment Optimisation

weights is equal to 1. These parameter specific weights are then used do the Clustering and
Resource allocation with the specification that those parameters that are not considered are
not calculated as well when clustering or allocating.

5.8.2.3 Weight Tuning Method

The Weight tuning method falls under the category of Costly Global optimisation (CGO)
methods. This method is considered a CGO because of the costly computation that goes into
verifying the validity of a tuning step through the clustering, allocation and actual deployment
of the applications based on these. This method works by controlling the processing limits
that are considered when calculating the weights and by adjusting penalties for certain
parameters. This is done through a number of steps and taking into account the location of
certain fails and the cause of these. These steps are Probing, Underfitting, Overfitting and
Undefined Stagnation Resolution.

ALGORITHM 8: Weight Tuning
1 Input correlationResults[]; ClusteringStatus; DeploymentStatus;

previousWeights[]; maxStep; failCnt; utility; prevUtility; utilDiffLim;
2 Set exit← false; adjustments← new Array[];
3 if failCnt ≤ maxStep then
4 if utility < prevUtility+utilDiffLim or ClusteringStatus=="Failed" or

DeploymentStatus == "Failed" then
5 if uder f itAppCheck(weights) then
6 adjustApp← under f itCompensationApp();
7 else if over f itCheck(weights) then
8 adjustApp← over f itCompensationApp();
9 else

10 adjustApp← randomAd justmentsApp();
11 if uder f itGwCheck(weights) then
12 adjustGw← under f itCompensationGw();
13 else if over f itCheck(weights) then
14 adjustGw← over f itCompensationGw();
15 else
16 adjustGw← randomAd justmentsGw();
17 weights← probeDirection(correlationResults,adjustApp,adjustGw);
18 return weights
19 else
20 return exit← true;

The main body of the algorithm can be seen in Algorithm 8 where an initial set of
deployments with the best utility function and a set of correlation parameters are considered.

5.8 Overview of Methods 91

If no comparison exists or if the new solution is the best so far then the Probe sequence
continues with the current direction. If the received solution fails the direction stop criteria
then a change needs to be made to the existing setup. In this case, the results and the
system are analysed to determine the cause of stagnation or worse solution which could be
Underfitting, Overfitting or Undefined. If the received solution fails the full Stop Criteria
then the algorithm is terminated and the best viable solution is used.

The direction stop criteria are used to verify whether the current direction of the tuning is
a correct one or new directions need to be explored. This condition returns true if it is the first
iteration of the method and false if the attempt failed for any reason. Furthermore, the method
returns false if there is only one parameter considered and the tests on that results have come
in as well as in situations where the weights have not changed significantly enough compared
to previous attempts or the improvement of the utility function that was made is too small to
warrant further probing.

The full stop criteria is triggered when the direction stop criteria returns a false response
and the maximum number of failed attempts from a single point have been reached or the
maximum number of total iterations has been reached. The algorithms counts the number of
times the method attempted to find a new minimum point from an existing best point. If it
finds a new minimum point the fail count is reset.

The probing method is called when all the criteria are satisfied but also when the direction
criteria is not and changes have been made through one of the three changing methods. In the
second case the probing method would have its constants changes or modified and it would
use the best solutions data to find the new weights as the current solution is considered a bad
direction. This method works by applying the correlation calculation mentioned above and if
new weights are found based on the constraints given a new deployment is attempted.

The Underfitting method is concerned with verifying whether the solution that is at-
tempted is too generic and whether that might be the problem why the system is stagnating
or no better solution can be found. It verifies whether this is the case by looking and the
compensated values of the weights and whether their mean is below a certain set threshold.
If this condition is met then the method will attempt to correct his problem by Increasing the
processing Limit by a constant that is intensified or multiplied by the current fail count.

The Overfitting Method looks at verifying if the current solutions are focusing too much
on a parameter and if that is the reason for the stagnation or bad results. It first verifies that
this is the case by looking at whether any parameter has their weights higher than a given
constant. If such a case is found then the processing Limit is decreased by the same constant
as before and multiplied by the current fail count. A further step is taken by adding an extra
penalty to the parameter in question. The penalty is based on a penalty constant.

92 Deployment Optimisation

The Undefined Change Method is used when the reason for the stagnation is not known
or cannot be found. This happens if all previous validations fail. In this case, the processing
limit is kept the same. The average weight of properties is calculated and given a negative
penalty to the high ones and a positive penalty to the low ones in the first attempt and the
other way around in the second attempt.

When and how these methods are used and to which set of weights app to app or app
to gateway can be altered based on the results of the deployment as well based on which
part failed. Redoing clustering weights if the found clusters were very uneven or if the
clustering itself failed is an option. Redoing the allocation weights if the Resource allocation
or deployment failed would also speed up the system by not requiring a full analysis or it
could be done when a failure occurs.

The iterative correlation method, while allowing the user to forget certain constraints and
allow the algorithm to just run on its own has significant disadvantages when it comes to the
impact on the processing time as highly complicated and resource intensive algorithms needs
to run multiple times to train parameters or evaluate existing ones. Despite this, this method
is the only one that is designed to work with an unknown system with varying parameters
and objectives and attempt to make assumptions about that system in a combination of
probabilistic and deterministic approaches.

5.8.3 Sampled Data based Correlation and Weight Calculation

Considering the high processing time and complexity of the Iterative clustering an correlation
calculation, a case could be made that there is no reason to analyse the whole system but
rather taking a representative chunk out of the system and analysing the behaviour of those
parameters as well as looking at just a small portion of the clusters deployment for later
analysis might yield similar results with a major reduction in complexity and processing time.
The problematic component is figuring out what a representative sample means, how small
or large it has to be.

The creation of the initial sample can be done in several ways. The first and most low
cost but risky method is just selecting a fraction of the application that needs to be deployed
on the system, and considering them as a cluster, while allocating resources to them based
on the weighted allocation method and to point where they match the resource share of the
system. This method is seen in 9. The second method of doing this is a more deterministic
approach where the general characteristics of the large-scale system are considered and these
are replicated in the small-scale deployment, not just the share rate, but application types
sizes and connections. If the consequent deployment fails or exceeds the maximum allocated
time for the run a small sized cluster is selected until a valid deployment is reached. The

5.8 Overview of Methods 93

ALGORITHM 9: Sampling Algorithm
1 Input initialWeights[]; apps[];gateways[]; maxFailCnt; reqSize; minClsSize;
2 Set failCnt← 0; clsSize← reqSize;
3 while failCnt < maxFailCnt do
4 cluster← generateRandomClusterO f Size(apps; clsSize);
5 assignGwToCluster(cluster,gateways);
6 [results,deployments[]]← GADeployment(cluster);
7 if results == "Success" then
8 break;
9 else

10 if clsSize/2<minClsSize then
11 clsSize← minClsSize; failCnt← failCnt + 1;
12 else
13 clsSize← clsSize / 2;
14 failCnt← 0;
15 while failCnt < maxFailCnt or size>=reqSize do
16 corrRes← calculateCorrVals(getBest(deployments));
17 weights← getNewWeights(corrRes,adjustParams);
18 cluster← createCluster(apps;clsSize;weights);
19 assignGwToCluster(cluster,gateways,weights);
20 [results,deployments[]]← GADeployment(cluster);
21 if results == "Success" then
22 clsSize← clsSize+clsSize/(2+failCnt); failCnt← 0;
23 else
24 failCnt← failCnt + 1;
25 adjustParams← modi f yAd justmentParameters(weights,failCnt);
26 return corrRes← calculateCorrVals(getBest(deployments));

worst case scenario is that of one application being allocated to one gateway in a valid way.
Larger cluster sizes are then attempted until a successful cluster deployment is found that is
of an appropriate size.

Using this cluster and deployment the GA is run with a now higher termination count,
generation size and population count which would result in good deployment solutions for the
set. Based on this set, the eps value is calculated and scale it based on the tests conducted in
(Verba, Chao, A. James, Lewandowski, et al. 2017) to account for the increase in connections
with the increase in scale.

In the subsequent iterations, a sampling of the resulting clusters is considered as a
reference for further deployment and analysis. The number of clusters is determined by the
selected fraction of sampling size which then determines the accuracy of the evaluation and
its results. This can also be done in two ways, the first being a random selection of clusters

94 Deployment Optimisation

another being a deterministic selection where the ones are selected that have the highest
individual application utility while retaining System characteristics and resource share rates.
After these clusters are selected they are combined and their results are analysed as with the
global method presented in the previous chapter.

Due to the sampling nature of this approach, there is no guarantee that the selected
individuals behave characteristically to the whole system. This method may also make the
impact of positive feedback loops more prominent and have a wider effect on the system. On
the other hand, because this system allows for solutions to scale back to sizes where finding
viable deployment becomes feasible and then scale up again, this approach might have a
higher chance of finding solutions in a difficult highly constrained setting, as the previous
method requires a viable solution to arise from the first initial deployments.

This method attempts to solve some of the complexity and scalability issues with the
previous one by sacrificing some of the generality that comes with it. It is also an attempt to
provide a solution for instances where finding any viable individual or deployment becomes
a difficult task in itself.

5.9 Summary

When considering the presented methods, they have a varying level of implementation
complexity, processing run-time and generality. Methods like the Random Clustering and
Allocation, Distance-based clustering Share-based Allocation and sampling based Iterative
optimisation are distributable with slight modifications so in theory could be used to optimise
systems with thousands of applications and devices. For such systems, it is becoming apparent
that a higher level of separation might be needed where these systems might need to be split
up to different Fogs as their high level of heterogeneity and varying utility requirements might
create systems for which no single distance function or allocation method may apply. Here,
the creation of smaller Fog deployments is needed, where their utilities and characteristics
are similar enough so that their deployment warrants more advanced methods as the ones
described in this section.

The Processing costs of the methods and their generality are compared in Fig. 5.5. From
these, it is obvious, that in order to gain a certain sense of generality added processing power
needs to be allocated. Here, while the Global GA is the most general method it is still the
most resource intensive and while the random allocation is the simplest to implement and
fastest it may only work in certain cases and might cause undeployable allocations when
Requirements or hard constraints are introduced into the system.

5.9 Summary 95

Fig. 5.5 Overview of Methods

In this chapter, clustering methods and one generic method were presented that aim to
solve the QAP of allocating interconnected applications to gateways and maximising their
utility as well as the system utility. A number of clustering methods have been explored
with various capabilities and complexities. These methods will be evaluated in the upcoming
section based on the specified use cases where the differences in applicability and processing
requirements will be shown through rigorous testing and comparisons on scalability tests.

Chapter 6

Evaluation and Analysis

The evaluation and analysis chapter follows three distinct evaluation processes. These are in
line with the components presented in the methodology section. The tests are designed to
accomplish two things. First, a set of tests are conducted to determine the testing scenario,
generations, model and testing parameters. Secondly, these tests aim to evaluate the proposed
methods and their components in such a way that their impact on the scalability, quality of
the outcomes and execution time can be determined.

The first set of subsections is designed to provide an evaluation scenario and to analyse
the accuracy of the proposed application and gateway model. This is done by proposing four
industry based use-case scenarios from which scalability and interconnectivity parameters are
derived using graph analysis tools. After these parameters are found a set of single, bundled
and migration deployments are performed to evaluate the proposed model’s accuracy.

After the model is evaluated, the testing parameters and objectives of the optimisation
methods are fixed. First, the three optimisation scenarios and their utilities are defined and
the GA algorithm is evaluated to find the parameters where it performs best. This is done so
that the proposed methods quality is evaluated and not the quality of the modified GA.

The subsequent validation tests can be split into three categories. The performance
analysis looks at comparing the proposed methods to some standard scenarios or variations
to show how the resulting utility and execution time changes with the scale and scenario
alterations. This provided an overview of how results are achieved. The scalability tests
look at how the proposed methods function on higher scales where the only interest is in the
outcomes and execution time, the path towards those is not relevant. These tests are there to
show the large-scale affinity of the proposed methods and the advantages of clustering in
general.

The component evaluation section is designed to showcase the individual contribution of
the method components in both the execution time and the resulting outputs. Here a number

98 Evaluation and Analysis

of varying methods that have the same objectives are compared while fixing every other
parameter to showcase their capabilities.

6.1 Analysis and Replication: AME Case Study

6.1.1 Use Case Description

The presented use cases are based on the 4 physical workstations available at the Institute For
Advanced Manufacturing and Engineering. The proposed automation and control systems
are in concurrence with the requirements of the industrial partner and those presented in
Industry 4.0.

6.1.1.1 Physical Systems

The Dimension Testing Metrology station contains a Coordinate Measuring Machine (CMM),
alongside some smaller measurement devices, and an environment monitoring station for
accurate temperature and humidity control which is essential for accurate measurements as
well as a monitoring screen and a parts organising station. This workstation is designed to
measure tolerances on finished components as well as bending and torsion. The key factors
here are linked to quality assurance, environmental monitoring and Energy Control and
monitoring.

The Metallurgy Metrology workstation contains a Hot Mould Machine, a Polishing
Controller, Digital Microscopes, a part organiser and monitor. This workstation is used to
take weld pieces, mount them into plastic moulds, polish and analyse these for integrity. The
key factors here are part monitoring, tests logging and quality control.

The Stress testing workstation contains a Compression testing, Burst testing and Stretch
testing instruments as well as parts organiser and monitor. This station is used to test the
integrity of welded tubes under pressure through the burst tests, as well as component
characteristics through the compression and stretch or pull tests. The key components are
regarding parts monitoring and tests logging together with energy monitoring and quality
control.

The Assembly line contains several ABB Robot arms with 2D vision capabilities together
with welder units, a conveyor belt with position sensors, controls and barcode readers, an
input and output part organiser, safety proximity laser curtains and emergency stop buttons.

The assembly line is used to weld and assemble components going through the line based
on their part numbers. The key components are part monitoring as well as quality control
through the metrology stations, safety and energy monitoring and control.

6.1 Analysis and Replication: AME Case Study 99

6.1.1.2 Application Use Cases

The design of the application use-cases are based on the existing hardware and sensor
environment as well as guidelines presented in (J. Lee, Bagheri, and Kao 2015). The main
purpose of these systems is to map flow based energy control, part monitoring access and
environmental control on top of existing hardware with a realistic composite application
approach. Each scenario has a different approach to the topology of the connections. The
part Logging system is designed to be a more connected design while the energy monitoring
and access control scenarios are more hierarchical or resemble fractal and tree based graphs.

6.1.1.3 Part Logging and Flow Monitoring

This system is designed to monitor the progress of parts through the assembly and metrology
environments as well as gather data on parts production rate and use per environment as well
as receive controls from the energy optimiser on where to assign parts.

The virtual connections of the system can be seen in Fig. 6.1 where each component or
application is shown with its respective Cloud, storage, local access and device connections.
The graph shows that the applications are highly connected between each other while the
devices usually belong to one controller/orchestrator or reader with no direct machine to
machine (M2M) communication between devices.

The use-case contains a main parts flow monitor and a status monitor component which is
then connected to a local component for each room which communicates with each individual
machine type, controller and reader. There is a local repository for parts status monitoring
for each workstation as well as local access. Finally, there is a Cloud monitoring connection
for saving data and advanced analysis.

6.1.1.4 Energy Monitoring and Control

The system is designed to monitor the energy use of devices and machines for each worksta-
tion and the factory as well. It also controls the power supply of machines based on parts
flow and existing optimisation scenarios. These parameters are shown on displays and saved
to a Cloud source.

The virtual connections of the system can be seen in Fig. 6.2. The diagram shows that
the connections in this scenario are much less clustered and more hierarchical than in the
previous scenario especially for the left half, which is the control region, while the right is
the monitoring and optimisation part.

The presented use case contains a Cloud-connected main power controller linked with
local controllers that have local access and that in hand orchestrate the individual devices.

100 Evaluation and Analysis

Fig. 6.1 Parts and Flow Monitoring subsystem

This component is linked with the Energy Optimiser which is connected to the flow monitor
and Main Energy Monitor.

The main monitor is linked with local monitors that save data to local storage and show
info on local displays while saving data for further analysis on a common Cloud Energy
Monitor endpoint.

6.1.1.5 Access, Safety and Environment Control

This system is designed to take care of controlling and logging access on machine and rooms
as well as controlling safety and environmental variables inside the rooms. Cloud logging,
control, access and displays are connected to these components.

The graph of these connections can be seen in Fig. 6.3 where the graph has a similar
structure to the one in Fig. 6.2, but containing more local access points and a much more
hierarchical system which is designed for layered safety in the case of access and security.

6.1 Analysis and Replication: AME Case Study 101

Fig. 6.2 Energy Monitor and Control subsystem

This scenario contains the main access manager that controls the room access, parts
access and machine access modules that in hand orchestrate the room modules and their
devices. The access manager is linked to the safety controller which in hand is linked to the
environmental controller to initiate safety protocols if needed. The safety controller is linked
to individual room components that in hand control the safety devices and sensors available.
The environmental components orchestrate ventilation, temperature and humidity control
through factory level components. It also has specialised units for the high precision environ-
ment control requirements of the Dimension measurement workstation which increases the
number of sensors and splits the humidity and temperature as well as the ventilation.

102 Evaluation and Analysis

Fig. 6.3 Access, Safety and Environmental Monitoring and Control

6.1.1.6 Combined System

The combined system can be seen in Fig. 6.4 looks at connecting the separate systems for
a fully functioning factory floor. This is done by linking certain main components in these
systems through a layered architecture design.

The main connected components that are the part flow controller with the energy use
optimisation that connects to the machine part controller which then relates to the Safety
Controller and the Access Manager.

6.1.2 Analysis Parameters

When considering the analysis of IoT systems, there are several parameters that need to be
examined that may be interesting for two reasons. The first reason is for replication and
scaling of these systems when testing how optimisation algorithms perform with larger data

6.1 Analysis and Replication: AME Case Study 103

Fig. 6.4 Combined System

sets. The second reason is to identify the characteristics of these systems that can be used
to better select and create new optimisation approaches. Finally, as proposed in (Voutyras
et al. 2015) these parameters can be used to calculate or estimate latencies, reliability and
redundancies of entities and the system. For the analysis, the system is considered a graph
G = (V,E) where V denoted the vertexes, nodes denote the applications, storages, Cloud
entities, and regional access points while E denotes the Edges or connections between these.

Considering Vi ∈Vk ∈V where k denotes the type of Node and i denotes the number or
id of the node and Vk denotes the set of all nodes of the same type. The edges are denoted
by Ei, j ∈ E where i and j are the id of the connected Nodes and Ei, j denotes the edge itself
where Ei, j = E j,i due to the undirected and unweighted nature of the graph.

104 Evaluation and Analysis

6.1.2.1 Replication Parameters

The replication parameters are simple properties of the graphs that look at key parameters that
are used to replicate the structure of the graph to allow for the scaling of certain use-cases.

Application Resource Use looks at what is the average number and distribution of device,
region, storage and Cloud connections from applications. The resource use of an Application
is denoted by RType

App where Type is the resource type and App is the application id. Eq. 6.1
defines this resource use as a sum of all connections of an application to a type of device.

RType
App =

EApp,i

∑
i

Vi ∈VType (6.1)

Clustering of Applications looks at how certain applications group together into clusters
and what is the average size and number of these clusters and how interconnected they are.
Cluster Clusti is defined, where Application Vi ∈Clusti as defined by a clustering algorithm
like K-Means or DBSCAN (R. Xu and Wunsch 2005).

Connection Locality looks at what are the chances of one application connecting to
resources and devices from the same gateway and how many external resources and ap-
plications it uses. The distribution of these types of connections is crucial to replication.
Three types of locality {Local,Cluster,External} are defined, where Vi ∈ LocLocal

k so that
all elements Vi are on the same gateway, Vj ∈ LocCluster

k so that all elements Vj are part of the
same Cluster and Vl ∈ LocExternal

k as in Eq. 6.2.

LocExternal
k = V − (LocLocal

k ∪ LocCluster
k) (6.2)

Inter-App communication looks at the average number and distribution of connections
between applications deployed on the system. Together with clustering and locality, this
component helps create a more realistic environment. The connections of an Application are
denoted by CArea

App where Area denotes the region to which the application connects to which
can be local or cluster level. Eq. 6.3 defines these connections as a sum of all connections
from each region coming or going to the application.

CArea
App =

EiApp

∑
i

Vi ∈ LocArea
k , where VApp ∈ LocArea

k

CExt
App =

EiApp

∑
i

Vi ∈ LocExt
k , where VApp ̸∈ LocExt

k

(6.3)

6.1 Analysis and Replication: AME Case Study 105

6.1.2.2 Graph Parameters

The graph parameters are designed to show certain characteristics of these systems that
can be translated to parameters of interest, such as reliability, latencies, clustering and
interconnectivity. These characteristics are used in (Newman 2003) to analyse a varying
range of systems such as the World-wide-web, social networks, citation interconnectivity
and others.

Connectivity checks if there is a route route(i, j) from any node Vi in the graph to any
other node Vj in the system. After verifying connectivity, the distinct connected graphs
are analysed. This parameter aids in clustering of these connected graphs as well as shows
separate subsystems. The use-cases are all connected graphs so this parameter, while
important in the analysis, in the case is overlooked when discussing results.

Average path lengths look at what is the average distance between two nodes while the
graph diameter looks at the maximum distance. These parameters can be used to determine
simple average and maximum latencies and hops within a network while comparing them to
node and vertex counts can help determine QoS parameters. The minimum distance from
node Vi in the graph to any node Vj can be computed through the Dijkstra’s algorithms and is
denoted with routeMin(i, j) while the average path in a system is defined as in Eq. 6.4 and
the diameter or maximum shortest route is defined in Eq. 6.5.

AV GRoute =
∑

V
i ∑

V
j routeMin(i, j), where i ̸= j

size(V)(size(V)−1)
(6.4)

Diameter = max
Vi∈V

(max
V j∈V

routeMin(i, j)), where i ̸= j (6.5)

The clustering coefficient looks at the average number of triangles Tri(Vi), or three
node pairs with each node being a member of a system. This number is divided by the
total number of possible triangles, adjusting for the size of the graph. The sum of these
values is the Clustering Coefficient (CCF) of the graph as can be seen in Eq. 6.6. This
information can be used to determine how tightly coupled a cluster is. This parameter could
be useful in determining the optimisation of subsystems using divide and conquer techniques
in optimisation, especially latency optimisation.

CCF =
V

∑
i

Tri(Vi)

size(V)(size(V)−1)
(6.6)

The graph degree distribution (GDD) looks at how many nodes have a certain number of
connections in a system compared to the maximum possible number of connections. The

106 Evaluation and Analysis

number of nodes that have a certain degree can be calculated based on Eq. 6.7 where k is the
edge count.

GDD[k] =
V

∑
i

E

∑
j

Ei, j = k (6.7)

This gives a view of how the connections differ between systems and can provide the
main comparison factor when categorising the system as well as verifying generated systems.

The Graph Betweenness Centrality (GBC) of a node is calculated by counting the number
of shortest paths routeMin(i, j) that contain a node and compare it to the maximum and
minimum values present in the system. This implementation looks at all the paths whose
length is equal to the shortest one. The Eq. 6.8 shows how the centrality of one node is
calculated.

GBC(Vi) =
V

∑
j

V

∑
l

Vi ∈ routeMin(j, l), where i ̸= j, l (6.8)

The distribution looks at how many nodes have these values between a certain range.
This parameter is key in determining high importance nodes in the system as well as critical
single points of failure. This characteristic is also important when comparing systems and
verifying the generated graphs.

6.1.2.3 Network based Categorisation

There are several network types based on their connection typology as suggested in (Newman
2003), each having their real-world equivalent and their set of attributes. The use-cases are
then compared to the behaviour of known models such as random-graphs, Markow graphs,
non-scalable networks, small-world models, Barabas-Albert and other growth models.

With each network having its own characteristics, they require different approaches when
certain optimisation or analysis attempts are made such as clustering and single point of
failure rerouting.

The analysis and categorisation approximation of the system will allow for model specific
method to be applied which may reduce run-times and reduce the diminishing returns seen in
similar systems, such as in (Heller, Sherwood, and McKeown 2012).

6.1.3 Replication Data Analysis

The data analysis for the 4 virtual scenarios from the application resource use and locality
point of view can be seen in Table 6.1. broken down to device, storage, Cloud and local

6.1 Analysis and Replication: AME Case Study 107

interfaces and computed through the equation in Eq. 6.2. Each component has a local and
external factor which looks at the locality of these connections with the local being the
gateway hosting most resources while the external represents other gateways.

The connections between application are described in Table 6.2. Where they are broken
down to local connections, cluster connections and external connections based on Eq. 6.3
and Eq.6.4. These are important when designing systems when considering approaches that
focus on connections remapping SDN based router rewiring and other similar methods.

The clustered connections refer to the clusters in Fig. 6.5 and looks at all the connections
that are not to the same Gateway but are in the same cluster, while the external ones look at all
connections to external gateways not on the cluster while the total shows all the connections.

Table 6.1 Resource Use Parameters

Prop
Scenario

Energy
Parts and

Flow
Access and

Security
Combined
Systems

Loc Ext Tot Loc Ext Tot Loc Ext Tot Loc Ext Tot
Device

Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 7 0 7 2 0 2 8 1 9 8 1 9
Avg 2.87 0.0 2.87 1.25 0.0 1.25 2.94 0.05 3.0 2.3 0.01 2.32

Cloud
Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 1 1 2 1 1 2 1 0 1 1 1 2
Avg 0.12 0.18 0.31 0.04 0.04 0.08 0.05 0.0 0.05 0.07 0.07 0.14

Storage
Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 1 0 1 1 0 1 1 0 1 1 0 1
Avg 0.25 0.0 0.25 0.16 0.0 0.16 0.11 0.0 0.11 0.17 0.0 0.17

Local Access
Min 0 0 0 0 0 0 0 0 0 0 0 0
Max 1 0 1 1 1 2 2 0 2 2 2 4
Avg 0.25 0.0 0.25 0.2 0.08 0.29 0.38 0.0 0.38 0.26 0.05 0.32

Determining the number and size of the clusters for the analysis that was used for the
app data in Table 6.2. was done using a Density-Based Clustering Scan (DBSCAN) on the
graphs.

The configuration of the scan requires a minimum number of points for a cluster which
for this case is 8 and an epsilon which is a maximum distance between two peers which in
the graph is 1. The minimum points value is determined by the structure of the graph. A

108 Evaluation and Analysis

Table 6.2 Application Parameters

Property
Parameters

Local Cluster External Total
Energy Monitoring and Controll

Min 0 0 0 0
Max 4 6 1 8
Average 1.375 1.25 0.125 2.75

Parts and Flow Monitoring
Min 0 0 0 2
Max 5 11 2 15
Average 2.0 1.5 0.33 3.83

Access and Security Control
Min 0 0 0 1
Max 6 4 1 8
Average 1.66 0.55 0.11 2.33

Combined System
Min 0 0 0 1
Max 6 14 3 15
Average 1.64 1.21 0.32 3.17

more highly connected graph would require higher values to return distinct clusters rather
than one big cluster.

The resulting clusters can be seen in Fig. 6.5 where (a) is the Parts and Flow Monitoring
system, (b) is the Access Safety and Environmental Control and monitoring subsystem, (c) is
the Energy Monitoring optimisation and Control subsystem and (d) is the Combined System.
Individual application clusters are coloured the same and applications that are not part of any
cluster are coloured white.

This clustering method made for an average cluster size of 7.42, a maximum of 22 and
minimum of 1. The method resulted in an average of 2.25 applications not being assigned a
cluster. This method works well in (d) and (b) where the density of nodes is more uniform
and the results are weaker in (a) where the tightly coupled nature of applications results in
one big cluster. In (c) due to the varying density, the top part of the graph is well clustered
while on the bottom it identifies two small clusters and two unassigned nodes.

6.1.4 Network Analysis

The subsystems are analysed based on the parameters in the previous section where the
connectivity path length and diameter are the more basic properties of the system. For these
tests, all the systems are made up of connected graphs, but this test would allow a fast

6.1 Analysis and Replication: AME Case Study 109

Fig. 6.5 DBSCAN Clustering Results

clustering and easier group based optimisation in cases such as the combined system if there
were no connections between subsystems. The average diameter is 7 hops, while the average
path length is 4.15. The maximum diameter is in the combined system with 9 as well as the
highest average path length of 5.23. The diameter and average path length (APL) increases
with the size of the cluster and are reduced with the increase of clustering as in (c) with a
Clustering Coefficient (CCF) of 0.01 having an APL of 3.84 and the more tightly clustered
(a) with a CCF of 0.09 has an APL of 3.29.

Looking at the CCF of the applications on not just the systems but also on the subgraphs.
The average CCF of the systems is 0.0425 varying between 0.016 and 0.09. If the clusters

110 Evaluation and Analysis

are taken by themselves the average CCF of clusters that have a size larger than 2 is 0.208
with values between 0.09 and 0.46.

Fig. 6.6 Graph Degree Distribution of Systems

The Graph Degree Distribution of the systems can be seen in Fig. 6.6. The number of
nodes displayed is relative to the maximum number of nodes to allow a comparison between
the graphs. For the systems, the highest node count values were at 1 connections, which
is due to the device and resource links which are usually used by one application. The
maximum values for these are 58 for Access in Fig. (6.5.b), 37 for parts monitoring in Fig.
(6.5.a), 56 for Energy in Fig. (6.5.c) and 150 for the combined system in Fig. (6.5.d). The
highest number of edges are on the combined system with 18 and the second is on the Parts
monitoring with 17. Every Node has at least one connection as the connectivity of the graphs
show as well.

The Graph Betweenness of the systems is shown in Fig. 6.7. The centrality value is a
relative value to the maximum available on the system which is scaled to account for network
size differences. The relative node count is scaled to the max values as well.

The node in (d) with the highest absolute centrality has a value of 40745 possible shortest
paths crossing this node. This high number is also due to the implementation of the algorithm
where the minimum distance between two nodes is calculated and all paths of the same
lengths are considered. These values are 3763 for the Energy Monitoring, 4012 for Access
Control and 3886 for Parts Monitoring. The devices and resources often have a value of 0
residing at the edge of the network, not providing a connection between any two components.

Based on the betweenness data as well as the graph degree distribution and structure
of the system it can be shown that there are some similarities with existing models. The
Access Control and Energy Monitoring Systems have similar structures and the data in
Fig. 6.6 and Fig. 6.7 show that they have similar properties in structure to hierarchical and

6.1 Analysis and Replication: AME Case Study 111

Fig. 6.7 Graph Betweenness Distribution of Systems

fractal networks with certain outliers and density variations. A closer look at these systems
shows that their distribution and betweenness, especially that of the Access Control are
like a Barabási-Albert model with an initial degree, m0 = 1. The Parts Monitoring system
has a different architecture with similar properties to a Random Graph when looking at the
application’s connections and the lack of clustering, as well as the outliers in Fig. 6.5. and
Fig. 6.6. For the Combined system, the plotted data, as well as its structure, suggest that it
has similar attributes to the Random Network that models the World Wide Web (WWW),
having clusters form and a varied type of connections.

6.1.5 Replication Analysis

When looking at the parameters used to generate use cases, certain properties of interest are
considered. The increased adoption of connection locality and clustering can be seen in Fig.
6.8. Part (a) shows a completely random system with just the node numbers and average
connection data being used. Part (b) adds connections types, distribution and locality, while
part (c) adds the remaining factor of clustering.

The data in Fig. 6.8 shows that as more parameters are adopted the systems resembles
those presented in Fig. 6.5. The system in (b) is similar to the Parts Monitoring use-case with
the exception that devices are more interconnected due to the lack of locality data. System
(c) contain all considered parameters and is like the Combined use-case and the Energy
Monitoring one. When considering even more realistic systems, the scaled generations based
on Random Networks or Barabási-Albert models should be considered. These can form the
basis of how these will scale up.

112 Evaluation and Analysis

Fig. 6.8 Replicated Systems

6.2 Model Validation

For these tests, a set of applications are proposed that have different loads and message rates.
These are tested individually on the gateways. They are deployed in groups and migrated to
verify that the presented application model stands and that the estimations for Gateway Load
and Application Delay are correct. Based on these the accuracy of the model is measured.
After the model is verified and the resulting parameters tested, two sets of optimisation tests
are performed.

The first set consists of testing the optimisation of a system of four gateways having
a varying set of applications deployed on them. The run-time parameters are measured,
validating them to the model, then the optimisation algorithms are run, deploying the results

6.2 Model Validation 113

and validating them on the physical system. Based on these tests two approaches are evaluated
on a small-scale deployment.

In the second set, the scalability of the methods and optimisation algorithms are tested
by generating a random set of gateways with a set of available Cloud VMs with random
latencies between them and a random set of deployed applications and look at how well each
method performs.

The main assessment criteria for the model are the precision of the Load and Delay
estimation on the system. The optimisation methods are assessed by looking at the decrease
in application delays and the reduction of constraint violations that are adjusted to the size of
the cluster by looking at how much the total delay drops on average for each gateway as well
as how many applications can fulfil their requirements on average per gateway.

6.2.1 Single Deployment Validation

The initial model’s error is known from the fitting tests which resulted in 7.34%. A more
extensive test is performed and the results evaluated when deploying to four RPi1 type
gateway and an equivalent Cloud GW. There are 8 applications with varying loads of 0.465,
1.45, 4.265 and 9.915 and varying message rates of 1, 4 and 20.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

E
rr

o
r

(%
)

App Number

 Delay Estimation Error

CPU Use Estimation Error

Fig. 6.9 Single Deployments Results

This test consists of deploying applications on a free gateway, measuring the app and the
gateways run-time parameters and comparing them to the estimations that the application
model made. The results of these tests can be seen in Fig. 6.9.The Idle Load LIdle

j in Eq. (4.4)
for these tests is 5.64. The estimations of a single app deployment had an average error for
the Total Load of 3.30% and 4.99% for the Estimated Delay, with a maximum error for the
load of 5.68% and 8.35% for the delay. These maximum values were achieved at the edges
of the linearization by two apps. For further testing, the remainder of 9 apps are considered
that lacked the maximums.

114 Evaluation and Analysis

6.2.2 Bundled Deployment Validation

Bundled deployment testing considers the applications from the first test and deploys 10 sets
of them on the gateway and verifies how accurate the model is in determining the application
delay and the total processor use. For these tests, applications have the same Unit Load as in
Eq. 4.5. The accuracy of these deployments can be seen in Fig. 6.10.

1,2,3 1,5,8 8,8,8 4,5,6 2,6,9 6,7,7 3,10,11 3,4,7
0

2

4

6

8

10

E
rr

o
r

(%
)

App Bundle

Delay Estimation

CPU Use Estimation

Fig. 6.10 Bundled Deployments Results

From these tests, the Gateway Load estimation error when deploying a set of applications
is 3.92% while the maximum value is 8.6% which was found for the deployments with
applications of low message rates. The Delay estimation error was found to have a mean of
5.47% and the worst result of 9.04% from the same set of applications.

6.2.3 Migration Deployment Validation

2,[6],9 2,7,[7] 3,[10],11 8,8,[8] [3],4,7
0

1

2

3

4

5

E
rr

o
r

(%
)

App Bundle

Total Delay Change

CPU Change

Fig. 6.11 Migration Deployments Results

6.3 Physical System Deployment Optimisation 115

For the final tests, an application is migrated while measuring the changes in the original
host of the application and considering the delay time of the application and how accurate
this estimation was. The results can be seen in Fig. 6.11.

The resulting errors measure the estimation error increased with the total value of the
delay. In these cases, the average estimation error of the CPU of 2.26% with a maximum
of 4.91 was found. The delay estimations had an average error in accuracy of 1.75% with a
peak of 4.4%. This is partially due to the small size of the errors compared to the total delay
as well as using monitored parameters to estimate the results of the migration.

6.3 Physical System Deployment Optimisation

100

300

500

700

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 u

se
(%

)
4

5

6

8

3

7

3

4

5

2

1 0

20

40

60

80

100
Gateway Load
Gateway Delay

Fig. 6.12 Initial Deployment

For these tests the Fog of Things Platform has 4 gateways and a Virtual Cloud Gateway.
The gateways have a delay between them of an average of 19.53ms while the delay between
the Cloud gateway is set to an average of 42ms. The initial state of the Cloud is empty only
having application migrated to it after optimisation if needed. A set of initial configurations
are generated, deployed and monitored on the gateway. After this, the information is fed into
the optimisation algorithms that come up with the best solution within the parameters and
proposed functions.

The results are then deployed on the physical cluster and the actual values are examined.
The initial Delays and CPU usage of the gateway can be seen in Fig. 6.12. The total delay
of the system is 1881.80ms while the average Load variation is 21.67% with a System
Reliability of 66.53% and there are 2 applications that do not meet their constraints.

For this initial phase, the differences in results from the given fitness functions are of the
highest interest. For this set, the best results from the Hungarian, GA and Random methods
are used. The results can be seen in Fig. 6.15 for Reliability Optimisation and Fig. 6.13

116 Evaluation and Analysis

0

200

400

600

800

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)

20

40

60

80

100Gateway Load
Gateway Delay

7

38

6

4

5

4

2

3

1

5

Fig. 6.13 Delay Optimisation

0

200

400

600

800

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)
20

40

60

80

100

Gateway Load
Gateway Delay

8

6

4

4

7

3
5

1
2

3

5

Fig. 6.14 Constraint Delay Optimisation

for Delay Optimisation and Fig. 6.14 Constraint and Delay Optimisation. Here the number
represents the application ID.

From these tests, the Reliability Optimisation method managed to reduce the load varia-
tion to 2.07% and had the maximum reliability of 73.56%. This did not improve constraint
violations and it actually increased the delays to 2038ms due to unnecessary migration. The
Delay Optimisation achieved a minimum total delay of 1854ms with 1 constraint violation
while the Constraint and Delay Optimisation had a higher total delay of 1974.1 ms but
managed to have 0 constraint violations. Both the Delay Optimisation and Constraint and
Delay Optimisation methods improved the Reliability to 72.35% and 71.43% which is an
improvement to the initial deployment but falls short of the Reliability Optimisation results.

These tests show that some methods that are tailored to solve single parameter problems
affect other parameters as well, in some cases improving them. Due to the exponential
nature of the reliability function, the best overall reliability was achieved by balancing out
the applications on the system. This solution had the consequence of creating the worst

6.4 Evaluation Use Cases 117

overall delay on the system. These physical deployments tests serve as proof of the need for
multi-parameter methods but also show the interconnected nature of these parameters.

0

200

400

600

800

D
e

la
y

 (
m

s)

Gateway1 Gateway2 Gateway3 Gateway4 CloudGateway

C
P

U
 U

se
(%

)

20

40

60

80

100

4

5
6

8

3

7

3

4

52

1

Gateway Load
Gateway Delay

Fig. 6.15 Reliability Optimisation Results

6.4 Evaluation Use Cases

The evaluation use cases are deployment scenarios that are designed to evaluate the perfor-
mance of the algorithms in increasingly difficult conditions. The difficulty is increased in
two directions, the first direction is the validation, where the deployed applications require
more parameters to in line so their deployment is acceptable. The second direction is the
complexity of the utility function. In the first case, a single component utility function is
examined while later on varying weights and constraints based utility is considered as well.

Three scenarios are considered. The simplest one, with the most basic requirements, is
the delay optimisation which only looks at reducing the delays on the system. The Weighted
Multi-component utility scenario increases the complexity of the optimisation tasks by adding
multiple parameters that need to be improved as well as adding soft constraints to the system.
The final scenario adds capabilities and requirements matching to the equation which makes
validation more difficult.

The scaling and expansion functions of these scenarios, when generating test cases are
based on the parameters found in Table 6.1 and Table 6.2 that generates Fog systems that
resemble the one presented in Fig. 6.5 (d).

6.4.1 Delay Optimisation Scenario

The delay optimisation scenario is the most basic, as it considers no soft or hard constraints
and looks at improving only a single parameter, the system delay. The system delay is defined

118 Evaluation and Analysis

as in Eq. 4.7 and the utility function can be seen in Eq. 6.9 as the sum of all the application
delays on Fog F .

UtilF
Delay = DF =

n

∑
i=0

DF
i (6.9)

The weights for the delay W Delay
i is 1.0 for all the applications. Validating a deployment in

this scenario is simply the case of going through each gateway and checking if their maximum
load value has exceeded the maximum allowed, which is 99% of its load capability.

6.4.2 Weighted Multi-Component Utility Scenario

The weighted multi-component Utility scenario proposes a multi-property utility that is
designed to create a more difficult optimisation problem. In this scenario, the total utility of
the system and an individual can be seen in Eq. 6.10 .

UtilF
Multi−Comp = DF +RF +CtF =

n

∑
i=0

DF
i +RF

i +CtF
i (6.10)

Here, DF
i is calculated as in Eq. 4.17, RF

i is done as in Eq. 4.19 and CtF
i is computed as

presented in Eq. 4.21. When considering these scenarios, the weightings of the applications
W X

i are modified as well so certain applications are more interested in one parameter over
another having WConstraint_Violations

i at 1.0 when they are present and at 0.0 when not and
having W Delay

i and W Reliability
i in the range {0.0,0.33,0.66,1.0}. In these tests, there is a 0.2

chance that an application has soft constraints.
The soft constraints for the application reliability and delay are generated by deploying

the application to a theoretical gateway that contains the average system load, adding 10%
and considering its delay and reliability in that case as the reference. The soft constraints
don’t affect the validity of a deployment as their impact is solely on the total utility. This
allows the use of the same method for validation as for the Delay optimisation scenario
above.

6.4.3 Capability Constraint and Utility Scenario

The Capability constraint and Utility scenario builds on the previous case where the same
utility from Eq. 6.10 is used and the same method for generating new test cases. The only
difference between this and the previous scenario is the addition of gateway capabilities
CapGw

j and application requirements CapA
i . These are considered hard constraints, which

6.5 Testing Parameter Selection 119

means if they are not satisfied, the resulting deployment solution is not valid. This further
increases the difficulty of the optimisation problem that is being tested.

In this setup, 7 possible Capabilities are considered, out of which each gateway contains
at least 4 different ones and each application requires only one Capability from the gateway.
This creates a more difficult validation scenario than for the previous scenarios where the
gateway load limit was the only restrictive factor.

6.5 Testing Parameter Selection

When considering the testing parameters for the validation section, these parameters can
be put into two categories. The first category of parameters influences the results of the
optimisation methods in a limited way but doesn’t determine whether these will terminate.
The values for these can be seen in Table 6.3. and are considered constant during the testing
and are tuned to the existing parameters based on the literature available for the scenario
generations and based on the breadth of tests that were performed during the development
for the method parameters.

The test was deployed and run on a Spark Cluster deployed on five workers that have the
configuration and processing capability of VM1 from Table 4.1. Each test is allocated 2GB
of Ram for the worker and 1GB of ram for the Driver and 1 CPU each.

Besides these fixed parameters there are those that can greatly influence the results of the
optimisation methods. The tuning of these values changes with the scenario selection as well
as with deployment size. The tuning of the eps parameter is automatically done by one of
the methods as it’s tuning values differ too much between scenarios and chosen weights and
would not be practical.

6.5.1 GA Parameter Selection

When considering the dominant parameter selection for the GA, other than the parameters
that are fixed from the previous section, the generation size and the stopping condition need
to be set which are considered by (Boyabatli and Sabuncuoglu 2004) to require specialist
knowledge and there is no clear way exists of finding these.

For the generation sizes, a number of tests are run in Fig. 6.16. for the Delay Scenario, in
Fig. 6.17. for the Multi-Parameter scenario and in Fig. 6.18. for the Capability Scenario.
The resulting scaling formula for these methods can be seen if Eq. 6.11.

The graphs were generated for each scenario in the same way with the Fog Size being
the only varying parameter as the Capability Scenario is too difficult for the GA to solve at

120 Evaluation and Analysis

Table 6.3 Fixed Method Parameters

Parameter Used In Value/
Range

Inside Cluster Latency

Scenario Generation

8.97-30.89
Inside Cloud latency 2.37-6.89
Edge Cloud Latency 37.37-87.89
Cloud Edge Gw Ratio 0.1
Max App Load 30%
Max Fog Load 60%
Constraint Allocation Rate 0.1
Constraint Improvement 8%
Edge Gateway Capacity 1.0-1.4
Edge Gateway Speedup 1.0-1.4
Cloud Gateway Capacity 1.8-2.5
Cloud Gateway Speedup 2.8-4.3
Random Population

Genetic Algorithms

0.4
Elitism Population 0.2
Crossover Population 0.2
Mutation Population 0.2
Mutation Chance 0.1
Eps Distance

Clustering
1

minPts 7
Max Gw Division

Resource
Allocation

2
Gw Share Threshold 0.3
Cluster Allocation Cutoff 0.8
Min Allocation Req 1.2
Max Fail Count

Iterative Weights
Calculation

3
Max Iteration Count 10
App Consideration Limit 0.2
Gw Consideration Limit 0.05
Better Solution Limit 4%
Penalty Value 0.2
Consideration Change Rate 10%
Sample Relative Size

Sampling
Weights

Initialisation

0.1
Min Sample Size 10
Size Increase Multiplier 2
Size Decrease Multiplier 0.9
Max Fail Count 10

the scale the other scenarios were tested. The legends of the figures show the Fog Sizes that
were used, while the Polyfit represents the dotted line that shows how the size needs to be
adjusted as the system is scaled.

6.5 Testing Parameter Selection 121

10 20 30 40 50 60 70 80

Generation Size

0.5

1

1.5

2

A
d

ju
s
te

d
 T

im
e

10

20

30

40

50

60

70

F
o

g
 S

iz
e

Delay Scenario10

18

26

34

42

50

58

Polyfit

Fig. 6.16 Generation Size Variation Impact - Delay

10 20 30 40 50 60 70 80

Generation Size

0.5

1

1.5

2

2.5

A
d

ju
s
te

d
 T

im
e

10

20

30

40

50

60

70

F
o

g
 S

iz
e

Multi Component Scenario10

18

26

34

42

50

58

Polyfit

Fig. 6.17 Generation Size Variation Impact - Multi-Parameter

The values for the Adjusted time are calculated by first generating a Fog Deployment
and using a GA with a generation size of 200 and an iteration size of 5000 to find a reference
utility function. Then the generation size is then varied within the shown parameters and
repeated 5 times while the average time to reach the reference utility is recorded. When
plotting these values are adjusted so they don’t represent time but rather their deviation from
the mean time for that instance.

The PolyFit values and equations are derived by multiplying the adjusted time with the
respective generation size and dividing it by the sampling rate. If these values are considered
for each Fog Size and then a linearization method is used, they result in Eq. 6.11 where the
FSize represents the Fog Size.

122 Evaluation and Analysis

10 20 30 40 50 60 70 80

Generation Size

0.5

1

1.5

2

2.5

A
d

ju
s
te

d
 T

im
e

10

15

20

25

30

F
o

g
 S

iz
e

Capability Scenario
8

11

14

17

20

23

Fig. 6.18 Generation Size Variation Impact - Capability

Delay Scenario : 47.69+0.079FSize

Multi−Parameter Scenario : 40.31+0.22FSize

Capability Scenario : 36.43+0.76∗FSize

(6.11)

When considering the stopping condition for the GA algorithms used in the validation
a simple maxIteration count would not allow the system to find the best solutions, so a
different method is proposed where the GA terminates if it has been stagnant for a number
of iterations with no improved utility found. For this stagnation value, the double of each
scenario’s largest stagnation point is considered.

0 1000 2000 3000 4000 5000

Iteration Count

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

U
ti
lit

y
 P

ro
x
im

it
y
(%

)

Delay Scenario

10

21

32

43

54

65

76

Gap Start

Gap End

20 40 60

Fog Size

300

400

500

600

700

800

G
a
p
 D

is
ta

n
c
e
(s

te
p
s
)

Delay Scenario Stop Condition Trend

Gap Size

Fig. 6.19 Stop Condition - Delay

6.5 Testing Parameter Selection 123

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration Count

0.88

0.9

0.92

0.94

0.96

0.98

1
U

ti
lit

y
 P

ro
x
im

it
y
(%

)
Multi Scenario

10

21

32

43

54

65

76

Gap Start

Gap End

20 40 60

Fog Size

698

700

702

704

706

708

710

712

G
a

p
 D

is
ta

n
c
e

(s
te

p
s
)

Multi Scenario Stop Condition Trend

Gap Size

Fig. 6.20 Stop Condition - Multi-Parameter

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration Count

0.5

0.6

0.7

0.8

0.9

1

U
ti
lit

y
 P

ro
x
im

it
y
(%

)

Capability Scenario

5

9

13

17

21

Gap Start

Gap End

10 20 30

Fog Size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

G
a
p
 D

is
ta

n
c
e
(s

te
p
s
)

Capability Scenario Stop Condition Trend

Gap Size

Fig. 6.21 Stop Condition - Capability

For these stopping conditions, a number of tests are run in Fig. 6.19. for the Delay
Scenario, in Fig. 6.20. for the Multi-Parameter scenario and in Fig. 6.21. for the Capability
Scenario. The resulting scaling formula for these methods can be seen if Eq. 6.12.

Delay Scenario : 176.88+11.168FSize

Multi−Parameter Scenario : 694.57+0.2922FSize

Capability Scenario : 178.45∗FSize

(6.12)

The figures were generated in the same way, with only the Capability Scenario receiving
lower thresholds for the Fog Size as in the previous tests. The legends show the size of the
tested Fog environments while the figures show how they reached the best results and what

124 Evaluation and Analysis

the utility values were at each iteration. The GapStart and GapEnd points show where the
major gaps were in the testing. The adjacent figure shows the trend in the gap sizes with the
increase in scale. The iteration counts were fixed to 5000 for these scenarios.

The Utility proximity values are calculated by comparing each utility to the best one the
method found. The Gap Sizes were calculated by finding the largest stagnation periods for
each iteration excluding the one leading to the 5000th iteration and linearizing these for each
scenario resulting in the equations in Eq. 6.12. The equation for the Capability Scenario was
adjusted as to start from 0 and have a slope a of 178.45 as from the linearization, the starting
point or value of b was found to be −1658.3 which would result in small scales having a
stopping condition that is negative.

6.5.2 Clustering Parameter Selection

Selecting the right clustering parameters can determine the quality of a test and also its
run-time. Higher Cluster sizes mean that the search-space is larger which should allow
for better minimum points to be found but can also lead to the methods getting stuck or
not being able to meaningfully cover the space. A lower cluster size while improving the
time-efficiency of the algorithm might result in situations where the search-space is so small
there is no valid solution or there is little to no room for improvement.

The attempt to get a reference guide for these sizes to be able to rule these parameters
out when evaluating the methods can be seen in Fig. 6.22. where the three scenarios can be
seen in one graph with they approximated quadratic functions.

The test was conducted by generating a Fog environment of a certain size and scenario
and running a GA Optimisation on this using the stopping conditions specified in Eq. 6.12.
If there was no valid deployment found a new Fog was generated and the test was re-run
a maximum of 5 times after which a value of 0.0 improvement for the test is noted. The
utility improvement is calculated by getting the best utility of the first randomly generated
population and comparing that to the best of the last generation. If there is no improvement,
a value of 0.0 is noted as in the previous case.

Based on these tests it can be shown that increasing the difficulty of the problem reduces
the range of Fog Sizes where the GA works well. The Multi-Component scenario has a
steeper slope than the Delay scenario and the Capability Scenario has the steepest slope and
smallest Fog Size Range.

Setting the minPts value for the Clustering doesn’t directly results in cluster sizes but
from the conducted tests, the size of the resulting clusters is also determined by the confidence
factor of the parameters but a reference value of 0.25 of the desired size can be considered
as this allows the initial clusters which are based on less reliable weights to be found and

6.6 Performance Analysis 125

0 10 20 30 40 50 60 70 80

Fog Size

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

S
y
s
te

m
 u

ti
lit

y
 I
m

p
ro

v
e
m

e
n
t
(%

)

Delay Scenario

Multi Scenario

Capability Scenario

Delay 2-nd Order Approx

Multi 2-nd Order Approx

Capab 2-nd Order Approx

Fig. 6.22 The effect of the Fog Size on Outcomes

analysed fast and results in the upcoming clusters that are based on better weights to get
more time and have larger sizes. Based on these, the minPts sizes are defined as in Table 6.4

Table 6.4 minPts Parameter Selection

Delay Scenario Multi-Parameter Scenario Capability Scenario
Desired Cls Size 58 55 17
minPts 18 15 5

6.6 Performance Analysis

The scaling tests are designed to show how the proposed methods work in small, middle
and large-scale deployment scenarios. The proposed Sampling and Initial Weights training
methods are compared to the Modified GA method, the network analysis clustering method
(distance clustering) and a random clustering and allocation method to verify how they

126 Evaluation and Analysis

achieve results and in what time. The results are plotted in logarithmic time scale and the
comparative utility is the ratio of the methods result compared to the best result of the system.
If an attempt fails, the method is re-run 3 times to ensure that the failure is a characteristic of
the system and not a marginal case, considering that if out of three attempts did not succeed
the random starting points or direction is not to blame.

6.6.1 Small-Scale Tests

10
1

10
2

Time (s)

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Delay Scenario and Size of 20

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.23 Small scale Delay Scenario Performance test

The small-scale tests are shown in Fig. 6.23 for the Delay Scenario, Fig. 6.24 for the
Multi-Parameter scenario and Fig. 6.25 for the Capability Scenario. The small scale test
for the Capability scenario has fewer apps as the increased difficulty of this scenario makes
differences visible at smaller scales. In these tests, if the results of a test are at 0 or are not
visible, it means that there was not valid solution. This is true for the large test set as well.

From the results of the tests, it is obvious that as the difficulty of the scenarios increases
the effectiveness of the simple methods and their resulting utility is diminished. In these tests,
the scale of deployment is low enough, so the methods find similar or the same best results.
In the case of the Capability scenario, they find the same results. In Fig. 6.25 the methods
are tweaked to find clusters larger than the size of the Fog deployment so all methods find the
same cluster which is, in fact, the generated Fog environment. The GA is the first to finish as
it does not need to attempt clustering or resource allocation.

6.6 Performance Analysis 127

10
1

10
2

Time (s)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Multi Parameter Scenario and Size of 20

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.24 Small scale Multi-Parameter Scenario Performance test

10
0

10
1

Time (s)

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Capability Scenario and Size of 10

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.25 Small scale Capability Scenario Performance test

From the execution times, the benefits of the simple methods are visible as they terminate
much faster than the others. At these scales, the Global GA finds solutions a lot earlier than
the proposed methods, and the quality of these solutions at the same time is similar or equal.

Another element that can be seen in these tests is the reduced iteration count for the
two proposed methods, which can be attributed to the reduced size and lack of room for
improvement, as it can be seen in the GA scaling tests from Fig. 6.22.

128 Evaluation and Analysis

6.6.2 Medium-Scale Tests

10
2

10
3

Time (s)

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Delay Scenario and Size of 80

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.26 Medium scale Delay Scenario Performance test

10
1

10
2

10
3

Time (s)

0.94

0.95

0.96

0.97

0.98

0.99

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Multi Parameter Scenario and Size of 80

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.27 Medium scale Multi-Parameter Scenario Performance test

The medium scale tests are shown in Fig. 6.26 for the Delay Scenario, Fig. 6.27 for the
Multi-Parameter scenario and Fig. 6.28 for the Capability Scenario. These tests are designed
to show how the methods perform in an environment that is more suited to their purpose.

6.6 Performance Analysis 129

10
1

10
2

Time (s)

0.8

0.85

0.9

0.95

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Capability Scenario and Size of 20

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.28 Medium scale Capability Scenario Performance test

Given enough room for improvement and small enough scale the GA method outperforms
the other methods in the first two types in Fig. 6.26,6.27, but fails to find a solution in Fig.
6.28. Here, the proposed methods outperform the simple ones and come close to the GA.
This supports the need for larger clusters where enough room for improvement is given. In
this case, the proposed methods run more iterations as in the previous tests, but still do not
come close to the given limit of 10.

When looking at the execution time of the first two tests, it can be said that the proposed
methods find solution having a worse utility than the GA as at this scale the Global GA
method is close to it’s ideal running conditions.

6.6.3 Large-Scale Tests

The large-scale tests are shown in Fig. 6.29 for the Delay Scenario, Fig. 6.30 for the Multi-
Parameter scenario and Fig. 6.31 for the Capability Scenario. These tests are designed to
show how the methods perform in a large scale environment for which they were designed.

In these tests, the benefits of the proposed methods become more prominent as they
surpass the GA method in both execution time for a certain Utility and the best utility as well
in the Delay scenario. For the Multi-Parameter Scenario, the Initial weights based method
performs worse than the GA which shows the importance of finding good starting weights
for the system. The Capability scenario shows that at large scales most methods failed to
find a solution with only the sampling method being successful.

130 Evaluation and Analysis

10
3

10
4

Time (s)

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Delay Scenario and Size of 320

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.29 Large scale Delay Scenario Performance test

10
3

Time (s)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Multi Parameter Scenario and Size of 320

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.30 Large scale Multi-Parameter Scenario Performance test

The Connection Clustering and allocation method fails all scenarios as the clusters it
finds and their allocations over-fragment the resources which makes finding solutions more
difficult. The random Clustering and Allocation works well, as it is done in a balanced way
with even and test-based optimal cluster sizes and equal gateway distribution. This is a very
crude and simple allocation method but as it can be seen from the tests it provides a decent

6.7 Scalability Analysis 131

10
-2

10
0

10
2

10
4

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
a
ra

ti
v
e
 u

ti
lit

y
 (

%
)

Capability Scenario and Size of 60

Initial Weights Based

Random Clust and Alloc

Connection Clust and Alloc

Sampling Based Method

Genetic Algorithm

Fig. 6.31 Large scale Capability Scenario Performance test

solution in the first two scenarios comparable to the global GA method and in a lot faster
time.

6.6.4 Conclusions

When evaluating the performance tests, the scalability analysis of the GA method from Fig.
6.22 needs to be considered as well. In this test, the GA has its best performance at 58 for
the Delay, 55 for the Multi-Parameter and at 16 for the Capability Scenario. What this means
for these tests is that by breaking up a Fog of Size 80 or under results in a situation where
there is not enough room for the GA to get good results inside the clusters, which explains
why the global version works best. Reaching the higher scales improves the situation, but
there is still only an average of 7 resulting clusters. Even so, the advantages of these methods
are present, as the sampling method outperforms the others and GA in both execution time
and best results attained.

6.7 Scalability Analysis

The scalability tests are designed to show an overview of how the methods perform based
on the scale of the system, providing less detail than the performance tests on how a certain
solution is reached but giving an overview of the results. This set of tests is run by generating
5 Fog deployments of a certain size and scenario and then running all the methods on this

132 Evaluation and Analysis

test to verify how well they perform. If a test fails its utility is considered as 0, and if all
tests fail a new Fog is generated. As the execution time of the system increases exponentially
with the size, this is plotted in logarithmic scale while the utility improvements are plotted as
opposed to the best results of the system.

6.7.1 Delay Scenario

0 50 100 150 200 250 300 350 400 450 500

Fog Size (App Count)

10
1

10
2

10
3

10
4

10
5

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Execution Time Scaling for Delay Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.32 Delay Scenario Execution-Time Scalability test

The delay scenario is designed as a reference situation, as it is the most common objective
of most analysed optimisation attempt. The execution time scaling for this can be seen in Fig.
6.32 and the utility scaling can be seen in Fig. 6.33.

The time scaling test shows that the simple random and distance based methods are by far
the fastest of the presented ones and that their slopes are smaller as well. When considering
the more time-consuming methods it can be seen that with deployment sizes below 120,
the GA method performs faster than the proposed methods. For sizes above this, a clear
distancing between the two can be seen which would be accelerated at higher scales.

The Utility scaling for this scenario shows how at lower scales, under 200 most methods
have comparable results with little differences while at higher scales the problem of finding
a valid deployment comes into play. The beginning of GA limitations can be seen here, as
it fails to find valid solutions for any of the tests above the 320 apps mark. It is also worth
noting that the Random and Initial weights methods perform in similar fashion while the

6.7 Scalability Analysis 133

0 50 100 150 200 250 300 350 400 450 500

Fog Size (App Count)

0.94

0.95

0.96

0.97

0.98

0.99

1

C
o
m

p
a
ra

ti
v
e
 U

ti
lit

y
 (

%
)

Utility Scaling for Delay Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.33 Delay Scenario Utility Scalability test

sampling methods are consistently the best, showing the importance of finding good starting
weights and the power of clustering as well.

6.7.2 Multi-Parameter Scenario

0 50 100 150 200 250 300 350 400 450 500

Fog Size (App Count)

10
1

10
2

10
3

10
4

10
5

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Execution Time Scaling for Multi-Parameter Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.34 Multi-Parameter Scenario Execution-Time Scalability test

134 Evaluation and Analysis

0 50 100 150 200 250 300 350 400 450

Fog Size (App Count)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o
m

p
a
ra

ti
v
e
 U

ti
lit

y
 (

%
)

Utility Scaling for Multi-Parameter Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.35 Multi-Parameter Scenario Utility Scalability test

The multi-parameter scenario is designed to be a challenge for the clustering methods, as
it has varying weights and changing soft constraints for apps which makes it difficult for the
methods to find a valid direction for clustering or resource allocation. The execution time
scaling for this can be seen in Fig. 6.34 and the utility scaling can be seen in Fig. 6.35.

The time scaling tests show a similar trend as in the previous subsection, with small
divergences and a larger gap between the GA and the other methods as well as a steeper
incline and increased processing time for all the methods. This shows that the more difficult
the optimisation problem is, the more resources are required to solve it.

Form the utility tests, a number of conclusions can be drawn. One of these supports the
previous tests, where the GA outperforms the clustering methods on lower scales where it is
able to find better solutions, but at sizes larger than 300, the clustering methods get better
results.

6.7.3 Capability Scenario

The capability scenario is designed to test the limits of the methods and reinforce the findings
of the performance tests. It is designed to provide a scenario where usually first-fit style
methods are used. The execution time scaling for this can be seen in Fig. 6.36 and the utility
scaling can be seen in Fig. 6.37.

The time scaling tests for the capability scenario shows the intensification of the trend
that could be seen in the previous tests where the GA method had increased its execution

6.7 Scalability Analysis 135

20 40 60 80 100 120 140 160 180

Fog Size (App Count)

10
-2

10
0

10
2

10
4

10
6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Execution Time Scaling for Capability Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.36 Capability Scenario Execution-Time Scalability test

0 20 40 60 80 100 120 140 160 180

Fog Size (App Count)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
a
ra

ti
v
e
 U

ti
lit

y
 (

%
)

Utility Scaling for Capability Scenario

Genetic Algorithm

Connection Clust and Alloc

Sampling Based Method

Initial Weights Based

Random Clust and Alloc

Fig. 6.37 Capability Scenario Utility Scalability test

time with the increase of the deployment scenarios’ difficulty. This can also be seen here
with the sampling and initial weights methods performing similarly while the GA method
reaching execution times that were 10 times higher. This is mostly due to the difficulty of
finding valid solutions which is the main characteristic of this scenario.

From the scaling tests the results of the performance evaluation in Fig. 6.31 are confirmed
as only the two weights based clustering methods are able to find solutions with the initial

136 Evaluation and Analysis

weights based methods overtaking the sampling one. This can be explained with the over-
confidence in certain weights caused by the initial sampling, which is smaller cases allows
for faster results but in larger scenarios may cause a fast convergence. The large differences
between results also support the difficulty of finding even one valid solution.

6.7.4 Conclusions

When considering the execution time scalability, it can be concluded that the proposed
methods provide a way to reduce the execution time of the GA method and reduce the
slope at which it increases with scale. It is worth noting that this difference can mostly
be observed with Fog sizes larger than 150 applications. This difference would be more
significant if the Local allocation GA would be distributed so the different clusters could be
evaluated separately. This, however, would result in comparing a single-thread process with
a multi-thread one.

The utility improvements of the system follow a similar pattern as the execution time
wherein small scales, under 300 apps, the GA method outperforms the proposed ones but
as the scale of the system increases, the benefit of clustering becomes more evident. From
these tests a limitation of the weighted clustering methods can be observed, as well as they
perform poorly in the multi-parameter scenario where there is no clear direction to what
makes a good utility as in the case of the delay improvement and the Capability scenario.

6.8 Component Evaluation

The component evaluation section is designed to show the characteristics of each method,
broken down to its components. In this section, the Clustering components, Resource
Allocation and weight Training components will be analysed. This is done to show how
each contributes to the overall execution time and resulting utility that can be found in the
previous figures.

An overview of the execution times of these components can be seen in Fig. 6.38 where
the scaling of the execution times for these components can be seen. In this figure, the
execution times are shown in logarithmic scale as the method vary largely in their run-time
duration.

From this figure, the Clustering GA only shows the average time for each cluster and not
their values combined. From these tests, the exponential increase in the processing time for
Clustering can be noted with the other components retaining lower slope gradients.

6.8 Component Evaluation 137

0 50 100 150 200 250 300

Fog Size

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 l
o
g
(m

s
)

Time Distribution of Method

Sampling

Clustering

Weights

Clustering GA

Fig. 6.38 Components Time Distribution

6.8.1 Resource Allocation

0.988

0.99

0.992

0.994

0.996

0.998

1

R
e
la

ti
v
e
 U

ti
lit

y
Delay Scenario Resource Allocation Evaluation

Random Connection FullWeights Tuning

Resource Allocation Method

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

E
x
e
c
u
ti
o
n
 T

im
e

Execution Time

Relative Utility

Fig. 6.39 Resource Allocation Comparison Delay Scenario

The resource allocation testing scenario is designed to compare Allocation methods based
on their execution time and resulting utility after deployment. For these tests, only the Delay

138 Evaluation and Analysis

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

R
e
la

ti
v
e
 U

ti
lit

y

Multi-Parameter Scenario Resource Allocation Evaluation

Random Connection FullWeights Tuning

Resource Allocation Method

10
-2

10
-1

10
0

10
1

10
2

10
3

E
x
e
c
u
ti
o
n
 T

im
e

Execution Time

Relative Utility

Fig. 6.40 Resource Allocation Comparison Multi-Parameter Scenario

and Multi-Parameter scenarios are considered, as the Capability scenario requires weights
tuning to provide a valid solution resulting in only the Tuning based Resource Allocation to
have valid results.

These tests are run by generating a Fog environment of size 320 for the Delay and
Multi-Parameter scenario after which the Sampling method is run to identify to best weights
for the system. After the weights are identified, the Fog is Clustered using the Weighted
Clustering method and the tuned weights after which each allocation method is used to
allocate gateways to the clusters. Their run-time is recorded and local GA is run to identify
the resulting utilities.

In the Delay scenario from Fig. 6.39 , the Random, Connection and Full Weights based
methods have comparable result, with the Connection based on being the worst. The Full
Weights based method considers all app to gateway parameters equally important which is
shown to be almost as good as considering them at random while considering connection
parameters as the most important leads to the worse results. The quality of the results based
on the tuning weights allocation shows the importance of finding good weights and allocating
resources to clusters in this way.

The Multi-Parameter scenario in Fig. 6.40 shows the difficulty of allocating Gateways to
clusters that have a high heterogeneity and varying utilities and objectives. Here the quality
of results produced by the connection-based allocation worsens, and as more parameters
gain importance the quality of the Full weights allocation comes close to that of the Tuned
weights, which despite this still provides the best solution.

6.8 Component Evaluation 139

When considering the execution times of these methods, it’s worth noting that the
random allocation while not having the best performance in the utility category is by far the
fastest method. The execution time for the rest of the methods scale as expected with their
complexity.

6.8.2 Clustering

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

R
e
la

ti
v
e
 U

ti
lit

y

Delay Scenario Clustering Evaluation

Random Connection FullWeights Tuning

Clustering Method

10
-1

10
0

10
1

10
2

10
3

E
x
e
c
u
ti
o
n
 T

im
e

Execution Time

Relative Utility

Fig. 6.41 Clustering Comparison Delay Scenario

The Clustering evaluation tests are designed to test and compare the proposed clustering
methods to find their run-time characteristics. For these tests, only the Delay and Multi-
Parameter scenario are considered as well based on the same rationale as in the previous
subsection.

These tests are run by generating a Fog environment of size 320 for the Delay and
Multi-Parameter scenario after which the Sampling method is run to identify to best weights
for the system. After the weights are identified, the Fog is Clustered using the four methods.
Their run-time is recorded and then a weighted allocation method based on the calculated
weights is run to allocate gateways to the clusters. Finally, a local GA is run to identify the
resulting utilities which are then attributed to the clustering methods.

In the Delay scenario in Fig. 6.41 the advantages of the Connection based clustering
are visible as the main reason two application should be deployed together is to reduce the
connection delay between the two. This fact can be seen from the tuned weights that are
found for the scenario as from the results as well. In these tests the Full Weights and Random

140 Evaluation and Analysis

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

R
e
la

ti
v
e
 U

ti
lit

y

Multi-Parameter Scenario Clustering Evaluation

Random Connection FullWeights Tuning

Clustering Method

10
-2

10
-1

10
0

10
1

10
2

10
3

E
x
e
c
u
ti
o
n
 T

im
e

Execution Time

Relative Utility

Fig. 6.42 Clustering Comparison Multi-Parameter Scenario

allocation does not perform too well as there is a clear direction for clustering. As in the
previous scenarios, the Tuning parameters based method works best.

The Multi-Parameter scenario in Fig. 6.42 has similar results as for the Resource
Allocation of the same scenario where the Connection Clustering and Full Weights methods
do not perform so well while the Random but fair allocation has close results. In this situation,
the Tuning methods perform best as well.

The execution time for this set of tests resembles that of the allocation scenario with
the Random Clustering outperforming the Connection and Full weights based allocation at
utility and overall having the lowest execution times. The rest of the methods performed as
expected with the Full Weights and Tuning Weights ones being the slowest.

6.8.3 Weights Tuning

The Weights Tuning tests are designed to show how the training algorithms works, how
it finds new weights and how the under/over-fitting components works. The tests were
performed on all the scenarios, as they propose different challenges and the performance of
the methods varies for each scenario. The tests were conducted at Fog Sizes of 320 for the
Delay and Multi-Parameter Scenarios and with a size of 120 for the Capability Scenario. To
run the tests an initial Fog Environment is generated and both methods are deployed in the
same environment. With the difference in desired cluster sizes, all scenarios resulted in the
methods generating cluster counts ranging from 7 to 11.

6.8 Component Evaluation 141

0 2000 4000 6000 8000 10000

Execution Time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
W

e
ig

h
ts

 V
a

lu
e

s
Clustering Weights Sampling Method

Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 2000 4000 6000 8000

Execution Time

-0.5

0

0.5

1

W
e

ig
h
ts

 V
a

lu
e

s

Clustering Weights Initial Weights Method

Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 2000 4000 6000 8000 10000

Execution Time

-0.4

-0.2

0

0.2

0.4

0.6

W
e

ig
h

ts
 V

a
lu

e
s

Allocation Weights Sampling Method
Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

0 2000 4000 6000 8000

Execution Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

W
e

ig
h

ts
 V

a
lu

e
s

Allocation Weights Initial Weights Method

Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

Fig. 6.43 Weights Tuning Evaluation for the Delay Scenario

The resulting outputs are the weights for each property at different iterations showing
at what time those iterations were found. The weights that resulted in the best Utilities are
marked with triangles of the same colour. The three scenarios can be seen in Fig. 6.43 for the
delay scenario, Fig. 6.44 for the Multi-Capability scenario and Fig. 6.45 for the Capability
Scenario.

Considering the Delay Scenario tests from Fig. 6.43, the impact of the initial sampling
can be seen at the lower end of tests where there is a spike for certain parameters, after
which when the whole system is deployed the confidence in these parameters drops. This
phenomenon can be seen in some of the later tests as well as in due to the relatively small
size of the sampling test, which is set to 10% of the total size. This spike or rough ini-
tial values perform better for the stability of the system, as opposed to the Initial Weights
tests where these values fluctuate more, due to the initial weights set where all parame-
ters are equal. For this delay scenario, the Initial weights tests took longer to complete
as well as the fluctuations reduced the change of stagnation. This is sometimes benefi-
cial and results in better utilities. The best utility for the scenario of 824.06 was found
with the App Weights {ResourceShare = 0.505,Distance =−0.494} and Gateway Weights

142 Evaluation and Analysis

0 1000 2000 3000 4000 5000 6000

Execution Time

-0.2

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
ts

 V
a
lu

e
s

Clustering Weights Sampling Method

Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 5000 10000 15000

Execution Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
ts

 V
a
lu

e
s

Clustering Weights Initial Weights Method
Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 1000 2000 3000 4000 5000 6000

Execution Time

0

0.2

0.4

0.6

0.8

W
e
ig

h
ts

 V
a
lu

e
s

Allocation Weights Sampling Method

Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

0 5000 10000 15000

Execution Time

-0.2

0

0.2

0.4

0.6

0.8

W
e
ig

h
ts

 V
a
lu

e
s

Allocation Weights Initial Weights Method

Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

Fig. 6.44 Weights Tuning Evaluation for the Multi-Parameter Scenario

of {SharedRes = 0.637,Per f ToULoad =−0.225,CapToULoad =−0.137} by the Initial
Weights scenarios at 4560.59 seconds showing the advantage of the confidence adjustments.
The solution found by the sampling method was just 1 point off at 823.21 and was found at
time 5421.72.

The results of the Multi-Parameter tests can be seen in Fig. 6.44 where the initial spikes
of the sampling method are once again visible. The instability of the initial weights approach
can be seen as well with large variation in parameters and with even a reset of these at
4923.41, where the weights did not result in any valid deployments and the initial weights
were the only valid one s known. This instability resulted in a worse result for the ini-
tial weights approach. The best utility for the scenario of 276.70 was found with the App
Weights {UtilityWeights= 0.509,ResourceShare= 0.147,Constraints= 0.099,Distance=
−0.121,RequirementSim =−0.122} and Gateway Weights of {SharedRes = 0.638,
Per f ToULoad = 0.201,CapToULoad = −0.112,BaseLoad = −0.048} by the Sampling
Weights scenarios at 3277.234 seconds showing the advantage of sampling for the conver-

6.8 Component Evaluation 143

0 200 400 600 800 1000

Execution Time

0

0.2

0.4

0.6

0.8

1
W

e
ig

h
ts

 V
a

lu
e

s
Clustering Weights Sampling Method

Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 100 200 300 400 500 600 700

Execution Time

-0.2

0

0.2

0.4

0.6

0.8

1

W
e

ig
h

ts
 V

a
lu

e
s

Clustering Weights Initial Weights Method

Constraints

RequirementSim

ResourceShare

MessageRate

UtilityWeights

UnitLoad

Distance

0 200 400 600 800 1000

Execution Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

W
e

ig
h

ts
 V

a
lu

e
s

Allocation Weights Sampling Method

Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

0 100 200 300 400 500 600 700

Execution Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
e

ig
h

ts
 V

a
lu

e
s

Allocation Weights Initial Weights Method

Capabilities

SharedRes

PerfToULoad

BaseLoad

CapToULoad

Fig. 6.45 Weights Tuning Evaluation for the Capability Scenario

gence of these methods. The solution found by the initial weights method was just 266.21
and was found at time 10078.12

The Capability Scenario in Fig. 6.45 shows a case where the initial sampling results were
counterproductive and sent the method in the wrong direction resulting in more than 200 sec-
onds of added time in finding similar weights as the Initial weights method did. This scenario
has a clear set of goals as well, where the capabilities to requirements fitting are key. This
makes it a more suitable scenario for the method as opposed to the Multi-parameter scenario
that has numerous directions of interest. The best utility for the scenario of 104.54 was found
with the App Weights {UtilityWeights = 0.280,Constraints = 0.253,RequirementSim =

0.466} and Gateway Weights of {Capabilities = 1.0} by the Sampling Weights scenarios at
516.97 seconds showing the advantage of sampling for the convergence of these methods.
The solution found by the initial weights method was 103.42 and was found at time 231.91.

144 Evaluation and Analysis

6.8.4 Conclusions

When considering the execution time of the methods through the varying scenarios and
component test, several conclusions can be drawn. In the overall picture, the Resource
Allocation and Clustering still require a fraction of the time of the local GA deployments,
but as the size of the Fog increases so does the impact of these methods. The execution time
of the sampling method is comparatively low as well, and it does not suffer from the scaling
issues the Resource Allocation and Clustering do.

From the utility comparison of the individual components, the main conclusion is that
while the Random allocations and clustering are much faster than the other methods, deter-
mining the right weights for a system, clustering and allocating resources based on these
provides the best solution in most cases. In the case of the Capability scenario, this is the
only one that can reliably provide solutions. From these tests, the conclusion can be made
that using the wrong weights for a system can perform worse than random deployments
which highlights the importance of the identification and tuning of these weights.

From the weights tests section, some of the benefits and drawbacks of using sampling
become apparent, as having some initial weights for deployment can result in finding a
solution faster as in having a faster convergence, but this might result in overconfidence over
the results of the sampling. The steps increase in the tests with the increase in the Fog size is
also notable. This can be seen in both the performance evaluations and in the differences
between the Delay and Multi-Parameter tuning and Capability tuning tests.

The initial weights scenario as it allows all parameters to be considered, while sometimes
finding better solutions, most of the times struggles with determining the right weights and
in the case of the Capabilities scenario this usually means that no, or limited valid solutions
are found. These tests also support the need for adequate sample selection and the need to
learn from failed attempts.

Chapter 7

Conclusions and Future Work

7.1 Results Overview

In this chapter, an overview of the works will be presented alongside the initial requirements,
objectives and the analysis of the outcomes. Each component of the framework will be
scrutinised to identify the novelties, contribution to the state of the art and the areas where it
may fall short of the requirements or the downsides of certain approaches.

When looking at the framework as a whole it provides a complete image of platform
support for application hosting migration and systems setup on top of which the evaluation
and improvement of deployments based on the proposed model through the optimisation
methods are possible.

There are some limitations however as the proposed scenario looks at a Shared Environ-
ment based Gateway and thus the model and method are tailored for such a scenario. VM
and Container based solutions would offer simpler Models and may require simpler methods
to solve with the underlying problem being solvable in polynomial time. Furthermore, the
scaling and testing data generation is based on the WWW scaling model that was identified
in the use cases. In situations where this is not present the clustering methods would be less
effective.

7.1.1 Platform Review

The proposed Fog and IoT platform allows applications to be deployed closer to the network
edge and migrated to the Cloud based on the users’ requirements. Using the OSGI gateway
for application deployment allows life-cycle management of applications as well as the
deployment of a set of applications as they can work together in a Micro-service environment.

146 Conclusions and Future Work

Furthermore, this solution allows parts of the applications to be migrated to the Cloud where
the more processor intensive tasks might be performed.

Compared to similar research in the field, this platform, through dynamic abstraction,
allows for a protocol agnostic application environment, as well as a modular deployment of
applications to the gateway. The platform also provides a solution for the increased horizontal
integration of devices by allowing multiple tenant connections to be configured from the
gateway that may use resources available from different providers. It also provides for speedy
creation of test environments and the option of migrating between Cloud and gateways on
the region depending on processing needs. Furthermore, the gateway makes steps towards a
better horizontal integration by allowing the connection through different drivers to local and
Cloud resources while allowing different application environments and device connections.
In an industrial environment, this would allow for faster time to market, a more dynamic
production environment, faster software upgrades and easier testing.

The limitations of the presented gateway lie in the added overhead caused by having
to translate messages from one driver/protocol to the system’s protocol as well as in the
security and group reliability issues caused by the shared environment. The overhead caused
by these components can be seen in the models for the routing and message loads. These are
relatively small compared to the characteristic ping or networking delays but they are present
and need to be acknowledged. Furthermore, the drivers and brokers may cause bottlenecks
on the system as their implementation might not be designed for high data-rates but this
is dependent on the developers and is not a characteristic of the framework. The security
and interdependence issues arise from applications from different providers being deployed
in the same environment, making their interaction possible. This can cause problems if an
application overloads the system or attempt snooping on plug-in data mining activities.

7.1.2 Model Review

This model provides a way of measuring and estimating the run-time parameters and migra-
tion benefits of applications in these shared environment systems. The experimental load
model description derived from measuring run-time parameters over physical systems has
been developed and used to represent the gateway and application loads, which provide a
more realistic estimation than theoretical ones presented in other papers. The experimental
results have shown that the system has an overall accuracy of over 91%.

The assignment problem that results from attempting to minimise the proposed utilities
is an NP hard placement problem with interdependent parameters that has proven to be a
challenging one for both heuristic and deterministic methods, neither being able to provide
the best results in all cases.

7.1 Results Overview 147

Some of the drawbacks of the proposed model are related to its narrow parameter focus,
its generality and the resulting optimisation problems hardness. The presented model looks
at estimating the load of the system and applications and derives the delays and the reliability
from these considering constraint and weights as well. The later can be considered as SLA
or QoS Constraints and requirements but addressing these directly is not done. Furthermore,
recent trends show that Energy use is an increasing factor which is not considered in this work,
as replication and zero points of failure reductions either. Due to the testing environment, the
generality of the model is affected as it would need simplification to work with VMs and
Container, but it would work with other Containerised Python or Ruby based shared systems.
The final problem with the proposed solution is the complexity of the model. Solving the
system for this model results in an NP-hard problem, so sacrificing some of the accuracy of
the model for the sake of an easier allocation problem might be worth considering.

7.1.3 Deployment Method Review

The proposed global optimisation method attempts to solve the problem of the exponentially
increasing search-space in case of the Application to Gateway allocation problem in the
presented Fog Systems. The solution for this is to reduce or to split this search-space in such
a way that as little information or possible good solutions are lost. This method attempts
to do this by forming clusters and assigning resources to these in effect choosing solution
regions that are then optimised locally. The components of the method aim to find ways of
grouping applications so that these groups have the highest possible utility. This is done by
looking at their properties and how they relate to each-other and to the gateways and finding
those properties whose similarity makes applications deployed together result in a higher
utility.

This solution proves to be very effective both for scalability and for improved results,
given a certain size of Fog system. This is partially thank to the lack of initial assumptions
made about the system and also about allowing the methods to figure out the interesting
variables. This generality has its toll however as for the simple instances the connection
clustering methods find similar solutions but in less time. Based on the validation tests it can
be concluded that the optimisation method works best in large-scale environments that have
a complex set of requirements and utilities, where the solution for attaining these would be
difficult to find by a human.

The drawbacks of the system are liked to the core approach of the design where everything
is based on greedy or quick-sort style algorithms where the best solution is not as important
as a good solution. This can lead to sub-optimal results, but due to the number of iterations
and the size of some problems still results in large processing times. Furthermore, the training

148 Conclusions and Future Work

and sampling algorithms while sometimes finding new and better solutions through direction
changes, in most cases fail to do so. All of these are addressed by the generality to time
complexity figure as well as the scalability analysis in the validation section that shows where
concessions are made between the method variations, which would support the decision on
which to use for a system.

7.2 Answer to Research Questions

When considering the research questions and how these were answered, the niche questions
are shown first and what was found. Based on these the big questions are answered and their
completeness analysed.

Niche Questions

• What are the requirements and characteristics of future Industry 4.0 Gateways and
how can these be translated into protocols and systems?

To answer this question, a number of components have been suggested such as the
virtualisation of devices and the translation of messages to allow for more interoperability
and horizontal integration as opposed to vertical integration. A more decentralised system is
suggested as well through the gateway platform. These directions were then translated into a
framework and implemented and tested in the physical environment.
• How can changes in the model be analysed and estimated using the run-time

parameters and connections of the applications and gateways?
A number of testing use-cases were deployed and their applications were migrated

between Fog nodes and their Cloud-based counterparts. The effects of the migration were
and key parameters noted. A literature review of the parameters of interest and the testing
parameters led to the formulation of the model. This model based its estimations on the
connections and linked nature of applications.
• What are the challenges of application deployment in Fog systems and what

methods can be proposed to diminish their effects?
Use-Cases were analysed to see how Fog systems scale and what is their typical structure.

This data was used to determine the hardness of their deployment and through this analysis
methods were proposed that reduced the search-space to improve performance indices.

7.3 Future Work and Directions 149

Main Question

• How can large application systems deployments be analysed and improved in highly
heterogeneous Fog environments?

To answer this question, first, a platform was designed that can house future Industrial
applications. Based on this platform an application and gateway model was formulated that
allows the real-time and offline analysis of these systems. Finally, a global optimisation
method is proposed that aims to improve system health and allow for the deployment of large
highly heterogeneous systems.

7.3 Future Work and Directions

There are a number of future directions or research interests that can be expressed based on
this thesis. These can be related to the missing components and the limitations of this work,
but also to niche problems or opportunities that were not addressed.
•When considering the Platform a number of improvements can be made. A number

of papers have suggested a platform model that looks at the main brokers, translators and
dongles these platforms need to encompass a good portion of the existing technologies.
Implementing and testing these would reveal the true possibilities and perspectives of such
gateways.
• The deployment of multiple application containers or VMs on a system might aid in

the security and interdependence issue of Shared systems and would increase their generality
as you could deploy Java Python and other apps on one system, reducing platform lock-in.
This would result in more complication optimisation scenarios as in the 4th type but could
possibly increase the resulting system utility.
• The existing model can be generalised even further by considering the characteristic

behaviour of a number of application types as some may be distributable running multiple
threads as well as looking at the reliability differences between gateways and the Cloud and
putting these in a formal model.
• The proposed model can be extended to look at QoS improvements, Billing and Energy

Consumption reduction.
•While correlation calculation was used to determine weights and the clustering methods

were based on these machine learning methods could be applied to these systems to verify if
this allocation or clustering could be identified through these as well.
• The proposed method is a global optimisation approach to application deployment.

Load Balancing style approaches can be proposed that are based on the existing clusters

150 Conclusions and Future Work

where a mechanism could add new peers to existing clusters, create new clusters and then
locally redistribute resources to match this change.
• Agents based systems could be deployed to both create clusters and to allow these

collaborative groups to then compete for resources which are the gateways. Clustering the
applications is a good start for defining the game, but more work needs to be done in this
direction.

References

Aazam, Mohammad and Eui-Nam Huh (2014). “Fog computing and smart gateway based
communication for cloud of things”. In: Future Internet of Things and Cloud (FiCloud),
2014 International Conference on. IEEE, pp. 464–470.

— (2015). “Fog computing micro datacenter based dynamic resource estimation and pricing
model for IoT”. In: Advanced Information Networking and Applications (AINA), 2015
IEEE 29th International Conference on. IEEE, pp. 687–694.

Aazam, Mohammad, Imran Khan, et al. (2014). “Cloud of Things: Integrating Internet of
Things and cloud computing and the issues involved”. In: Proceedings of 2014 11th
International Bhurban Conference on Applied Sciences and Technology, IBCAST 2014,
pp. 414–419. DOI: 10.1109/IBCAST.2014.6778179.

Aggarwal, Deepak kumar and Rajni Aron (2017). “IoT based Platform as a Service for
Provisioning of Concurrent Applications”. In: arXiv: 1711.10685. URL: http://arxiv.org/
abs/1711.10685.

Aibinu, A. M. et al. (2016). “A novel Clustering based Genetic Algorithm for route op-
timization”. In: Engineering Science and Technology, an International Journal 19.4,
pp. 2022–2034. ISSN: 22150986. DOI: 10 . 1016 / j . jestch . 2016 . 08 . 003. URL: http :
//dx.doi.org/10.1016/j.jestch.2016.08.003.

Alliance, OSGi (2003). Osgi service platform, release 3. IOS Press, Inc.
Ankerst, Mihael et al. (1999). “OPTICS: ordering points to identify the clustering structure”.

In: ACM Sigmod record. Vol. 28. 2. ACM, pp. 49–60.
Azeez, Afkham et al. (2010). “Multi-tenant SOA middleware for cloud computing”. In:

Cloud computing (cloud), 2010 ieee 3rd international conference on. IEEE, pp. 458–465.
Baccarelli, Enzo et al. (2016). “Energy-efficient dynamic traffic offloading and reconfigura-

tion of networked data centers for big data stream mobile computing: review, challenges,
and a case study”. In: IEEE Network 30.2, pp. 54–61.

Barreto, L., A. Amaral, and T. Pereira (2017). “Industry 4.0 implications in logistics: an
overview”. In: Procedia Manufacturing 13. Manufacturing Engineering Society Inter-
national Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain,
pp. 1245–1252. ISSN: 2351-9789. DOI: https://doi.org/10.1016/j.promfg.2017.09.045.
URL: http://www.sciencedirect.com/science/article/pii/S2351978917306807.

Bauer, Matthias, Gunther May, and Vivek Jain (2014). “A wireless gateway approach enabling
industrial real-time communication on the field level of factory automation”. In: Emerging
Technology and Factory Automation (ETFA), 2014 IEEE. IEEE, pp. 1–8.

Bellavista, Paolo and Alessandro Zanni (2017). “Feasibility of fog computing deployment
based on docker containerization over raspberrypi”. In: Proceedings of the 18th Interna-
tional Conference on Distributed Computing and Networking. ACM, p. 16.

Beran, Peter Paul, Elisabeth Vinek, and Erich Schikuta (2011). “A cloud-based framework
for QoS-aware service selection optimization”. In: Proceedings of the 13th International

https://doi.org/10.1109/IBCAST.2014.6778179
http://arxiv.org/abs/1711.10685
http://arxiv.org/abs/1711.10685
http://arxiv.org/abs/1711.10685
https://doi.org/10.1016/j.jestch.2016.08.003
http://dx.doi.org/10.1016/j.jestch.2016.08.003
http://dx.doi.org/10.1016/j.jestch.2016.08.003
https://doi.org/https://doi.org/10.1016/j.promfg.2017.09.045
http://www.sciencedirect.com/science/article/pii/S2351978917306807

152 References

Conference on Information Integration and Web-based Applications and Services - iiWAS
’11. New York, New York, USA: ACM Press, p. 284. ISBN: 9781450307840. DOI: 10.
1145/2095536.2095584. URL: http://dl.acm.org/citation.cfm?doid=2095536.2095584.

Bhondekar, Amol P et al. (2009). “Genetic algorithm based node placement methodology
for wireless sensor networks”. In: Proceedings of the international multiconference of
engineers and computer scientists. Vol. 1, pp. 18–20.

Bi, Zhuming, Li Da Xu, and Chengen Wang (2014). “Internet of things for enterprise
systems of modern manufacturing”. In: IEEE Transactions on industrial informatics 10.2,
pp. 1537–1546.

Bittencourt, L F et al. (2015). “Towards Virtual Machine Migration in Fog Computing”.
In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), pp. 1–8. DOI: 10.1109/3PGCIC.2015.85.

Bittencourt, Luiz Fernando et al. (2015). “Towards virtual machine migration in fog com-
puting”. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015 10th
International Conference on. IEEE, pp. 1–8.

Blackburn, M and G Grid (2008). “Five ways to reduce data center server power consump-
tion”. In: The Green Grid.

Bonomi, Flavio et al. (2012a). Fog computing and its role in the internet of things. Helsinki,
Finland. DOI: 10.1145/2342509.2342513.

— (2012b). “Fog computing and its role in the internet of things”. In: Proceedings of the
first edition of the MCC workshop on Mobile cloud computing. ACM, pp. 13–16.

Borrego, Maura, Elliot P Douglas, and Catherine T Amelink (2009). “Quantitative, qualitative,
and mixed research methods in engineering education”. In: Journal of Engineering
education 98.1, pp. 53–66.

Botella, Cristina et al. (2009). “An e-health system for the elderly (Butler Project): A pilot
study on acceptance and satisfaction”. In: CyberPsychology & Behavior 12.3, pp. 255–
262.

Botta, Alessio et al. (2016). “Integration of cloud computing and internet of things: a survey”.
In: Future Generation Computer Systems 56, pp. 684–700.

Boyabatli, Onur and Ihsan Sabuncuoglu (2004). “Parameter selection in genetic algorithms”.
In: Journal of Systemics, Cybernetics and Informatics 4.2, p. 78.

Brewer, Eric A (2015). “Kubernetes and the path to cloud native”. In: Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, pp. 167–167.

Brownlee, Jason et al. (2007). “A note on research methodology and benchmarking op-
timization algorithms”. In: Complex Intelligent Systems Laboratory (CIS), Centre for
Information Technology Research (CITR), Faculty of Information and Communication
Technologies (ICT), Swinburne University of Technology, Victoria, Australia, Technical
Report ID 70125.

Burkard, Rainer E et al. (1998). “The quadratic assignment problem”. In: Handbook of
combinatorial optimization. Springer, pp. 1713–1809.

Chaâri, Rihab et al. (2016). “Cyber-physical systems clouds: A survey”. In: Computer
Networks 108, pp. 260–278. DOI: http://dx.doi.org/10.1016/j.comnet.2016.08.017.

Chao, Kuo-Ming et al. (2015). “Cloud E-learning for Mechatronics: CLEM”. In: Future
Generation Computer Systems 48, pp. 46–59.

Chen, Xu et al. (2016). “Efficient multi-user computation offloading for mobile-edge cloud
computing”. In: IEEE/ACM Transactions on Networking 24.5, pp. 2795–2808.

Christophe, Benoit et al. (2011). “The web of things vision: Things as a service and interaction
patterns”. In: Bell labs technical journal 16.1, pp. 55–61.

https://doi.org/10.1145/2095536.2095584
https://doi.org/10.1145/2095536.2095584
http://dl.acm.org/citation.cfm?doid=2095536.2095584
https://doi.org/10.1109/3PGCIC.2015.85
https://doi.org/10.1145/2342509.2342513
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2016.08.017

References 153

Cicirelli, Franco et al. (2017). “Edge Computing and Social Internet of Things for large-scale
smart environments development”. In: IEEE Internet of Things Journal 4662.c, pp. 1–15.
ISSN: 23274662. DOI: 10.1109/JIOT.2017.2775739.

Cisco Systems (2016). “Fog Computing and the Internet of Things: Extend the Cloud to
Where the Things Are”. In: Www.Cisco.Com, p. 6.

Cruz, Mauro A. A. da et al. (2018). “A Reference Model for Internet of Things Middleware”.
In: IEEE Internet of Things Journal 4662.c, pp. 1–1. ISSN: 2327-4662. DOI: 10.1109/
JIOT.2018.2796561. URL: http://ieeexplore.ieee.org/document/8267034/.

Dastjerdi, Amir Vahid and Rajkumar Buyya (2016). “Fog computing: Helping the Internet of
Things realize its potential”. In: Computer 49.8, pp. 112–116.

Datta, Soumya Kanti, Christian Bonnet, and Navid Nikaein (2014). “An IoT gateway centric
architecture to provide novel M2M services”. In: Internet of Things (WF-IoT), 2014 IEEE
World Forum on. IEEE, pp. 514–519.

Deng, R et al. (2016). “Optimal Workload Allocation in Fog-Cloud Computing Toward
Balanced Delay and Power Consumption”. In: IEEE Internet of Things Journal 3.6,
pp. 1171–1181. DOI: 10.1109/JIOT.2016.2565516.

Dhinesh Babu, L D and P Venkata Krishna (2013). “Honey bee behavior inspired load
balancing of tasks in cloud computing environments”. In: Applied Soft Computing 13.5,
pp. 2292–2303. DOI: http://dx.doi.org/10.1016/j.asoc.2013.01.025.

Díaz, Manuel, Cristian Martín, and Bartolomé Rubio (2016). “State-of-the-art, challenges,
and open issues in the integration of Internet of things and cloud computing”. In: Journal
of Network and Computer Applications 67, pp. 99–117. ISSN: 10848045. DOI: 10.1016/j.
jnca.2016.01.010.

DIN (2016). German Standardization Roadmap – Industry 4.0 (Version 2).
Distefano, Salvatore, Giovanni Merlino, and Antonio Puliafito (2015). “A utility paradigm

for IoT: The sensing Cloud”. In: Pervasive and mobile computing 20, pp. 127–144.
Do, Cuong T. et al. (2015). “A proximal algorithm for joint resource allocation and minimiz-

ing carbon footprint in geo-distributed fog computing”. In: 2015 International Conference
on Information Networking (ICOIN). IEEE, pp. 324–329. ISBN: 978-1-4799-8342-1. DOI:
10.1109/ICOIN.2015.7057905.

Duro, João A, Robin C Purshouse, and Peter J Fleming (2018). “Collaborative Multi-
Objective Optimization for Distributed Design of Complex Products”. In:

Eclipse Kura (n.d.). https://www.eclipse.org/kura/. Accessed: 2019-12-22.
Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in large

spatial databases with noise.” In: Kdd. Vol. 96. 34, pp. 226–231.
Fortino, Giancarlo et al. (2014a). “Integration of agent-based and cloud computing for

the smart objects-oriented IoT”. In: Proceedings of the 2014 IEEE 18th International
Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE,
pp. 493–498.

— (2014b). “Middlewares for Smart Objects and Smart Environments: Overview and Com-
parison”. In: Internet of Things Based on Smart Objects: Technology, Middleware and
Applications. Ed. by Giancarlo Fortino and Paolo Trunfio. Cham: Springer International
Publishing, pp. 1–27. ISBN: 978-3-319-00491-4.

Fox, Geoffrey C., Supun Kamburugamuve, and Ryan D. Hartman (2012). “Architecture
and measured characteristics of a cloud based internet of things”. In: Proceedings of the
2012 International Conference on Collaboration Technologies and Systems, CTS 2012,
pp. 6–12. DOI: 10.1109/CTS.2012.6261020.

https://doi.org/10.1109/JIOT.2017.2775739
https://doi.org/10.1109/JIOT.2018.2796561
https://doi.org/10.1109/JIOT.2018.2796561
http://ieeexplore.ieee.org/document/8267034/
https://doi.org/10.1109/JIOT.2016.2565516
https://doi.org/http://dx.doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1109/ICOIN.2015.7057905
https://www.eclipse.org/kura/
https://doi.org/10.1109/CTS.2012.6261020

154 References

Al-Fuqaha, Ala et al. (2015). “Toward better horizontal integration among IoT services”. In:
IEEE Communications Magazine 53.9, pp. 72–79.

García-Valls, Marisol, Tommaso Cucinotta, and Chenyang Lu (2014). “Challenges in real-
time virtualization and predictable cloud computing”. In: Journal of Systems Architecture
60.9, pp. 726–740. DOI: http://dx.doi.org/10.1016/j.sysarc.2014.07.004.

Giurgiu, Ioana et al. (2009). “Calling the cloud: Enabling mobile phones as interfaces to cloud
applications”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 5896 LNCS, pp. 83–102.
ISSN: 03029743. DOI: 10.1007/978-3-642-10445-9_5.

Gubbi, Jayavardhana et al. (2013). “Internet of Things (IoT): A vision, architectural elements,
and future directions”. In: Future generation computer systems 29.7, pp. 1645–1660.

Gupta, Rushitaa and Raghav Garg (2015). “Mobile Applications Modelling and Security
Handling in Cloud-Centric Internet of Things”. In: Proceedings - 2015 2nd IEEE Interna-
tional Conference on Advances in Computing and Communication Engineering, ICACCE
2015, pp. 285–290. DOI: 10.1109/ICACCE.2015.119.

Gyrard, Amelie et al. (2015). “A Semantic Engine for Internet of Things: Cloud, Mobile De-
vices and Gateways”. In: Proceedings - 2015 9th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, IMIS 2015, pp. 336–341. DOI:
10.1109/IMIS.2015.83.

Hakiri, Akram et al. (2015). “Publish/subscribe-enabled software defined networking for
efficient and scalable IoT communications”. In: IEEE communications magazine 53.9,
pp. 48–54.

Hauke, Jan and Tomasz Kossowski (2011). “Comparison of values of Pearson’s and Spear-
man’s correlation coefficients on the same sets of data”. In: Quaestiones geographicae
30.2, pp. 87–93.

He, X et al. (2016). “A novel load balancing strategy of software-defined cloud/fog network-
ing in the Internet of Vehicles”. In: China Communications 13.Supplement2, pp. 140–149.
DOI: 10.1109/CC.2016.7833468.

Health and Safety Executive (2004). Health and safety in engineering workshops.
Heller, Brandon, Rob Sherwood, and Nick McKeown (2012). “The controller placement

problem”. In: Proceedings of the first workshop on Hot topics in software defined networks.
ACM, pp. 7–12.

Hemminger, Stephen (2005). “Network Emulation with NetEm”. In: URL: https://www.
rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf.

Hong, Kirak et al. (2013). “Mobile fog: A programming model for large-scale applications
on the internet of things”. In: Proceedings of the second ACM SIGCOMM workshop on
Mobile cloud computing. ACM, pp. 15–20.

Hoque, Saiful et al. (2017). “Towards Container Orchestration in Fog Computing Infrastruc-
tures”. In: Proceedings - International Computer Software and Applications Conference
2, pp. 294–299. ISSN: 07303157. DOI: 10.1109/COMPSAC.2017.248.

Hossain, M Shamim et al. (2012). “Resource allocation for service composition in cloud-
based video surveillance platform”. In: Multimedia and Expo Workshops (ICMEW), 2012
IEEE International Conference on. IEEE, pp. 408–412.

Hu, J et al. (2010). “A Scheduling Strategy on Load Balancing of Virtual Machine Resources
in Cloud Computing Environment”. In: 2010 3rd International Symposium on Parallel
Architectures, Algorithms and Programming, pp. 89–96. DOI: 10.1109/PAAP.2010.65.

Intharawijitr, Krittin, Katsuyoshi Iida, and Hiroyuki Koga (2016). “Analysis of fog model
considering computing and communication latency in 5G cellular networks”. In: 2016

https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1007/978-3-642-10445-9_5
https://doi.org/10.1109/ICACCE.2015.119
https://doi.org/10.1109/IMIS.2015.83
https://doi.org/10.1109/CC.2016.7833468
https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://www.rationali.st/blog/files/20151126-jittertrap/netem-shemminger.pdf
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1109/PAAP.2010.65

References 155

IEEE International Conference on Pervasive Computing and Communication Workshops,
PerCom Workshops 2016, pp. 5–8. DOI: 10.1109/PERCOMW.2016.7457059.

Inzinger, Christian et al. (2014). “MADCAT: A methodology for architecture and deployment
of cloud application topologies”. In: Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on. IEEE, pp. 13–22.

Ismail, Bukhary Ikhwan et al. (2015). “Evaluation of docker as edge computing platform”.
In: Open Systems (ICOS), 2015 IEEE Confernece on. IEEE, pp. 130–135.

Iyer, Ravishankar K. and David J. Rossetti (1986). “A Measurement-Based Model for
Workload Dependence of CPU Errors”. In: IEEE Transactions on Computers C-35.6,
pp. 511–519. ISSN: 0018-9340. DOI: 10.1109/TC.1986.5009428. URL: http://ieeexplore.
ieee.org/document/5009428/.

Jalali, Fatemeh et al. (2016). “Fog computing may help to save energy in cloud computing”.
In: IEEE Journal on Selected Areas in Communications 34.5, pp. 1728–1739.

Jayaraman, Prem Prakash et al. (2014). “Cardap: A scalable energy-efficient context aware
distributed mobile data analytics platform for the fog”. In: East European Conference on
Advances in Databases and Information Systems. Springer, pp. 192–206.

Jennings, Cullen, Jari Arkko, and Zach Shelby (2012). “Media types for sensor markup
language (SENML)”. In:

Jiang, Y (2016). “A Survey of Task Allocation and Load Balancing in Distributed Systems”.
In: IEEE Transactions on Parallel and Distributed Systems 27.2, pp. 585–599. DOI:
10.1109/TPDS.2015.2407900.

Jim Zw Li et al. (2011). “CloudOpt: multi-goal optimization of application deployments
across a cloud”. In: Proceedings of the 7th International Conference on Network and
Services Management. International Federation for Information Processing, pp. 162–170.
ISBN: 9783901882449. URL: https://dl.acm.org/citation.cfm?id=2147697.

Jingtao, Su et al. (2015). “Steiner tree based optimal resource caching scheme in fog comput-
ing”. In: China Communications 12.8, pp. 161–168.

Khodadadi, Farzad, Rodrigo N Calheiros, and Rajkumar Buyya (2015). “A data-centric
framework for development and deployment of Internet of Things applications in clouds”.
In: Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2015
IEEE Tenth International Conference on. IEEE, pp. 1–6.

Kim, Donghyeon, Choonhwa Lee, and Sumi Helal (2015). “Enabling elastic services for
OSGi-based cloud platforms”. In: Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on. IEEE, pp. 407–409.

Kim, Seungryong, Chorwon Kim, and JongWon Kim (2017). “Reliable smart energy IoT-
cloud service operation with container orchestration”. In: Network Operations and Man-
agement Symposium (APNOMS), 2017 19th Asia-Pacific. IEEE, pp. 378–381.

Kim, Seungryong, Chorwon Kim, and Jongwon Kim (2017). “Operation with Container
Orchestration”. In: pp. 378–381.

Kimak, Stefan and Jeremy Ellman (2013). “Performance testing and comparison of client
side databases versus server side”. In: Northumbria University.

Kleinberg, Jon M et al. (1999). “The web as a graph: Measurements, models, and methods”.
In: International Computing and Combinatorics Conference. Springer, pp. 1–17.

Koschel, Arne et al. (2012). “Asynchronous messaging for OSGi”. In: Journal of computing
and information technology 20.3, pp. 151–157.

Kovatsch, Matthias, Yassin N Hassan, and Simon Mayer (2015). “Practical semantics for the
Internet of Things: Physical states, device mashups, and open questions”. In: Internet of
Things (IOT), 2015 5th International Conference on the. IEEE, pp. 54–61.

https://doi.org/10.1109/PERCOMW.2016.7457059
https://doi.org/10.1109/TC.1986.5009428
http://ieeexplore.ieee.org/document/5009428/
http://ieeexplore.ieee.org/document/5009428/
https://doi.org/10.1109/TPDS.2015.2407900
https://dl.acm.org/citation.cfm?id=2147697

156 References

Kovatsch, Matthias, Martin Lanter, and Simon Duquennoy (2012). “Actinium: A restful
runtime container for scriptable internet of things applications”. In: Internet of Things
(IOT), 2012 3rd International Conference on the. IEEE, pp. 135–142.

Kum, Seung Woo et al. (2015). “A novel design of {IoT} cloud delegate framework to
harmonize cloud-scale {IoT} services”. In: 2015 {IEEE} {International} {Conference} on
{Consumer} {Electronics} ({ICCE}), pp. 247–248. DOI: 10.1109/ICCE.2015.7066399.

Kunz, T (1991). “The influence of different workload descriptions on a heuristic load
balancing scheme”. In: IEEE Transactions on Software Engineering 17.7, pp. 725–730.
DOI: 10.1109/32.83908.

Lampesberger, Harald (2016). “Technologies for Web and cloud service interaction: a survey”.
In: Service Oriented Computing and Applications 10.2, pp. 71–110.

Lasi, Heiner et al. (2014). “Industry 4.0”. In: Business & Information Systems Engineering
6.4, pp. 239–242.

Lawler, Eugene L (1963). “The quadratic assignment problem”. In: Management science 9.4,
pp. 586–599.

Lee, Gunho, Byung-Gon Chun, and H Katz (2011). Heterogeneity-aware resource allocation
and scheduling in the cloud. Portland, OR.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A Cyber-Physical Systems architecture
for Industry 4.0-based manufacturing systems”. In: Manufacturing Letters 3, pp. 18–23.
DOI: http://dx.doi.org/10.1016/j.mfglet.2014.12.001.

Lee, Wangbong et al. (2016). “A gateway based fog computing architecture for wireless
sensors and actuator networks”. In: Advanced Communication Technology (ICACT), 2016
18th International Conference on. IEEE, pp. 210–213.

Li, Jim et al. (2009). “Performance model driven QoS guarantees and optimization in clouds”.
In: 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.
IEEE, pp. 15–22. ISBN: 978-1-4244-3713-9. DOI: 10.1109/CLOUD.2009.5071528. URL:
http://ieeexplore.ieee.org/document/5071528/.

Li, Zhe (2016). “COAST: A Connected Open plAtform for Smart objecTs”. In: Proceedings of
the 2015 2nd International Conference on Information and Communication Technologies
for Disaster Management, ICT-DM 2015, pp. 166–172. DOI: 10.1109/ICT-DM.2015.
7402060.

Lu, Yang (2017). “Industry 4.0: A survey on technologies, applications and open research
issues”. In: Journal of Industrial Information Integration 6, pp. 1–10. ISSN: 2452414X.
DOI: 10.1016/j.jii.2017.04.005.

Lucas-Simarro, Jose Luis et al. (2013). “Scheduling strategies for optimal service deployment
across multiple clouds”. In: Future Generation Computer Systems 29.6, pp. 1431–1441.
DOI: http://dx.doi.org/10.1016/j.future.2012.01.007.

Mahmud, Redowan and Rajkumar Buyya (2016). “Fog Computing: A Taxonomy, Survey
and Future Directions”. In: arXiv: 1611.05539.

Mell, Peter and Timothy Grance (2011). The NIST Definition of Cloud Computing. Tech. rep.
Merkel, Dirk (2014). “Docker: lightweight linux containers for consistent development and

deployment”. In: Linux Journal 2014.239, p. 2.
Minh, Quang Tran et al. (2017). “Toward service placement on fog computing landscape”.

In: 2017 4th NAFOSTED Conference on Information and Computer Science, NICS 2017
- Proceedings 2017-Janua, pp. 291–296. DOI: 10.1109/NAFOSTED.2017.8108080.

Newman, Mark EJ (2003). “The structure and function of complex networks”. In: SIAM
review 45.2, pp. 167–256.

Nierbeck, Achim et al. (2014). Apache Karaf Cookbook. Packt Publishing Ltd.

https://doi.org/10.1109/ICCE.2015.7066399
https://doi.org/10.1109/32.83908
https://doi.org/http://dx.doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1109/CLOUD.2009.5071528
http://ieeexplore.ieee.org/document/5071528/
https://doi.org/10.1109/ICT-DM.2015.7402060
https://doi.org/10.1109/ICT-DM.2015.7402060
https://doi.org/10.1016/j.jii.2017.04.005
https://doi.org/http://dx.doi.org/10.1016/j.future.2012.01.007
http://arxiv.org/abs/1611.05539
https://doi.org/10.1109/NAFOSTED.2017.8108080

References 157

Ningning, S et al. (2016). “Fog computing dynamic load balancing mechanism based on
graph repartitioning”. In: China Communications 13.3, pp. 156–164. DOI: 10.1109/CC.
2016.7445510.

Nopiah, ZM et al. (2010). “Time complexity analysis of the genetic algorithm clustering
method”. In: Proceedings of the 9th WSEAS International Conference on Signal Process-
ing, Robotics and Automation, ISPRA, pp. 171–176.

Orabi, Mahmoud Husseini, Ahmed Husseini Orabi, and Timothy Lethbridge (2016). “Umple
as a component-based language for the development of real-time and embedded appli-
cations”. In: Model-Driven Engineering and Software Development (MODELSWARD),
2016 4th International Conference on. IEEE, pp. 282–291.

Osanaiye, Opeyemi et al. (2017). “From cloud to fog computing: A review and a conceptual
live VM migration framework”. In: IEEE Access 5, pp. 8284–8300.

Oueis, Jessica, Emilio Calvanese Strinati, and Sergio Barbarossa (2015). “The fog balancing:
Load distribution for small cell cloud computing”. In: Vehicular Technology Conference
(VTC Spring), 2015 IEEE 81st. IEEE, pp. 1–6.

Paraiso, Fawaz et al. (2012). “A federated multi-cloud PaaS infrastructure”. In: Proceedings -
2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, pp. 392–
399. ISSN: 2159-6182. DOI: 10.1109/CLOUD.2012.79. arXiv: 1008.1900.

Pearson, Karl (1895). “Note on regression and inheritance in the case of two parents”. In:
Proceedings of the Royal Society of London 58, pp. 240–242.

Pereira, Pablo Puñal et al. (2013). “Enabling cloud-connectivity for mobile internet of things
applications”. In: Proceedings - 2013 IEEE 7th International Symposium on Service-
Oriented System Engineering, SOSE 2013, pp. 518–526. DOI: 10.1109/SOSE.2013.33.

Rahmani, Amir-Mohammad et al. (2015). “Smart e-health gateway: Bringing intelligence to
internet-of-things based ubiquitous healthcare systems”. In: Consumer Communications
and Networking Conference (CCNC), 2015 12th Annual IEEE. IEEE, pp. 826–834.

Ramezani, Fahimeh, Jie Lu, and Farookh Khadeer Hussain (2014). “Task-Based System Load
Balancing in Cloud Computing Using Particle Swarm Optimization”. In: International
Journal of Parallel Programming 42.5, pp. 739–754. DOI: 10.1007/s10766-013-0275-4.
URL: http://dx.doi.org/10.1007/s10766-013-0275-4.

Ruckebusch, Peter et al. (2016). “Gitar: Generic extension for internet-of-things architectures
enabling dynamic updates of network and application modules”. In: Ad Hoc Networks
36, pp. 127–151.

Rui, Jiang and Sun Danpeng (2015). “Architecture Design of the Internet of Things Based on
Cloud Computing”. In: 2015 Seventh International Conference on Measuring Technology
and Mechatronics Automation, pp. 206–209. DOI: 10.1109/ICMTMA.2015.57.

Sargent, Robert G (2007). “Verification and validation of simulation models”. In: Simulation
Conference, 2007 Winter. IEEE, pp. 124–137.

Sarkar, Chayan et al. (2015). “DIAT : A Scalable Distributed Architecture for IoT”. In: 2.3,
pp. 230–239.

Savazzi, Stefano, Vittorio Rampa, and Umberto Spagnolini (2014). “Wireless cloud networks
for the factory of things: Connectivity modeling and layout design”. In: IEEE Internet of
Things Journal 1.2, pp. 180–195.

Scheuermann, Constantin, Stephan Verclas, and Bernd Bruegge (2015). “Agile factory-
an example of an industry 4.0 manufacturing process”. In: Cyber-Physical Systems,
Networks, and Applications (CPSNA), 2015 IEEE 3rd International Conference on. IEEE,
pp. 43–47.

https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/CLOUD.2012.79
http://arxiv.org/abs/1008.1900
https://doi.org/10.1109/SOSE.2013.33
https://doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/10.1007/s10766-013-0275-4
https://doi.org/10.1109/ICMTMA.2015.57

158 References

Seo, Sangwon et al. (2015). “HePA: hexagonal platform architecture for smart home things”.
In: Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference
on. IEEE, pp. 181–189.

Singh, Meena et al. (2015). “Secure mqtt for internet of things (iot)”. In: Communication
Systems and Network Technologies (CSNT), 2015 Fifth International Conference on.
IEEE, pp. 746–751.

Sivieri, Alessandro, Luca Mottola, and Gianpaolo Cugola (2016). “Building Internet of
Things software with ELIoT”. In: Computer Communications 89, pp. 141–153.

Skarlat, Olena, Bachmann Kevin, and Stefan Schulte (2018). “FogFrame: Service placement,
deployment, and execution in the fog”. In: Future Generation Computer Systems.

Spearman, Charles (1910). “Correlation calculated from faulty data”. In: British journal of
psychology 3.3, pp. 271–295.

Stojmenovic, Ivan (2014). “Fog computing: A cloud to the ground support for smart things
and machine-to-machine networks”. In: Telecommunication Networks and Applications
Conference (ATNAC), 2014 Australasian. IEEE, pp. 117–122.

Taneja, Mohit and Alan Davy (2017). “Resource aware placement of IoT application modules
in Fog-Cloud Computing Paradigm”. In: Proceedings of the IM 2017 - 2017 IFIP/IEEE
International Symposium on Integrated Network and Service Management, pp. 1222–
1228. ISSN: 9783901882890. DOI: 10.23919/INM.2017.7987464.

Tao, Fei et al. (2014). “IoT-Based intelligent perception and access of manufacturing resource
toward cloud manufacturing”. In: IEEE Transactions on Industrial Informatics 10.2,
pp. 1547–1557. DOI: 10.1109/TII.2014.2306397.

Trappey, A J C et al. (2016). “A Review of Technology Standards and Patent Portfolios
for Enabling Cyber-Physical Systems in Advanced Manufacturing”. In: IEEE Access 4,
pp. 7356–7382. DOI: 10.1109/ACCESS.2016.2619360.

Truong, Hong-Linh and Schahram Dustdar (2015). “Principles for engineering IoT cloud
systems”. In: IEEE Cloud Computing 2.2, pp. 68–76.

Verba, Nandor, Kuo-Ming Chao, Anne James, Daniel Goldsmith, et al. (n.d.). “Platform as
a service gateway for the Fog of Things”. In: Advanced Engineering Informatics. DOI:
http://dx.doi.org/10.1016/j.aei.2016.11.003.

Verba, Nandor, Kuo-Ming Chao, Anne James, Jacek Lewandowski, et al. (2017). “Graph
Analysis of Fog Computing Systems for Industry 4.0”. In: e-Business Engineering
(ICEBE), 2017 IEEE 14th International Conference on. IEEE, pp. 46–53.

Verma, Prabal and Sandeep K Sood (2018). “Fog Assisted-IoT Enabled Patient Health
Monitoring in Smart Homes”. In: IEEE Internet of Things Journal.

Verma, S et al. (2016). “An efficient data replication and load balancing technique for
fog computing environment”. In: 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), pp. 2888–2895.

Vogler, Michael, Johannes M Schleicher, et al. (2015). “DIANE-dynamic IoT application
deployment”. In: Mobile Services (MS), 2015 IEEE International Conference on. IEEE,
pp. 298–305.

Vogler, Michael, Johannes Schleicher, et al. (2016). “Optimizing elastic IoT application
deployments”. In: IEEE Transactions on Services Computing.

Vögler, Michael et al. (2016). “A scalable framework for provisioning large-scale IoT
deployments”. In: ACM Transactions on Internet Technology (TOIT) 16.2, p. 11.

Voutyras, Orfefs et al. (2015). “Social monitoring and social analysis in internet of things
virtual networks”. In: Intelligence in Next Generation Networks (ICIN), 2015 18th Inter-
national Conference on. IEEE, pp. 244–251.

https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/TII.2014.2306397
https://doi.org/10.1109/ACCESS.2016.2619360
https://doi.org/http://dx.doi.org/10.1016/j.aei.2016.11.003

References 159

Wang, Congjie et al. (2017). “Optimizing Multi-Cloud CDN Deployment and Scheduling
Strategies Using Big Data Analysis”. In: 2017 IEEE International Conference on Services
Computing (SCC), pp. 273–280. DOI: 10.1109/SCC.2017.42. URL: http://ieeexplore.ieee.
org/document/8034995/.

Wang, Lihui, Martin Törngren, and Mauro Onori (2015). “Current status and advancement
of cyber-physical systems in manufacturing”. In: Journal of Manufacturing Systems 37,
Part 2, pp. 517–527. DOI: http://dx.doi.org/10.1016/j.jmsy.2015.04.008.

Wang, Nan et al. (2017). “ENORM: A Framework For Edge NOde Resource Management”.
In: IEEE Transactions on Services Computing X.JANUARY, pp. 1–14. ISSN: 19391374.
DOI: 10.1109/TSC.2017.2753775. arXiv: 1709.04061.

Wiesner, Stefan, Eugenia Marilungo, and Klaus-Dieter Thoben (2017). “Cyber-Physical
Product-Service Systems: Challenges for Requirements Engineering (Mini Special Issue
on Smart Manufacturing)”. In: International journal of automation technology 11.1,
pp. 17–28.

Wolpert, David H and William G Macready (1997). “No free lunch theorems for optimiza-
tion”. In: IEEE transactions on evolutionary computation 1.1, pp. 67–82.

Wu, Xiaonian et al. (2013). “A Task Scheduling Algorithm based on QoS-Driven in Cloud
Computing”. In: Procedia Computer Science 17, pp. 1162–1169. DOI: http://dx.doi.org/
10.1016/j.procs.2013.05.148.

Xu, Rui and Donald Wunsch (2005). “Survey of clustering algorithms”. In: IEEE Transac-
tions on neural networks 16.3, pp. 645–678.

Zeng, Deze, Lin Gu, Song Guo, et al. (2016). “Joint optimization of task scheduling and
image placement in fog computing supported software-defined embedded system”. In:
IEEE Transactions on Computers 65.12, pp. 3702–3712.

Zeng, Deze, Lin Gu, and Hong Yao (2018). “Towards energy efficient service composition in
green energy powered Cyber-Physical Fog Systems”. In: Future Generation Computer
Systems, pp. 1–9. ISSN: 0167739X. DOI: 10.1016/j.future.2018.01.060. URL: https:
//doi.org/10.1016/j.future.2018.01.060.

Zhan, Zhi-Hui et al. (2015). “Cloud Computing Resource Scheduling and a Survey of
Its Evolutionary Approaches”. In: ACM Comput. Surv. 47.4, pp. 1–33. DOI: 10.1145/
2788397.

Zhang, Yin et al. (2017). “Health-CPS: Healthcare cyber-physical system assisted by cloud
and big data”. In: IEEE Systems Journal 11.1, pp. 88–95.

Zhao, Jia et al. (2013). “A Location Selection Policy of Live Virtual Machine Migration for
Power Saving and Load Balancing”. In: The Scientific World Journal 2013, p. 16. DOI:
10.1155/2013/492615.

https://doi.org/10.1109/SCC.2017.42
http://ieeexplore.ieee.org/document/8034995/
http://ieeexplore.ieee.org/document/8034995/
https://doi.org/http://dx.doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1109/TSC.2017.2753775
http://arxiv.org/abs/1709.04061
https://doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.148
https://doi.org/http://dx.doi.org/10.1016/j.procs.2013.05.148
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1145/2788397
https://doi.org/10.1145/2788397
https://doi.org/10.1155/2013/492615

Appendix A

VisJs Visualisation Platform

Fig. A.1 Vis.Js Platform

162 VisJs Visualisation Platform

Fig. A.2 Initial Generated Fog

Vis.js dynamic browser library was modified to be able to view Fog Deployments together
with application, gateway and resource parameters. This was used to see how certain methods
perform and to have an overview of the system.

The modified platform can be seen in Fig. A.1 where the user can select directories
and files from the hdfs clous storage system which can be used by the Spark cluster to save
outputs as well. The users can select clusters to view and also to remove Gateways and
Resources for faster loading. By clicking on entities they can view information on them.

The downside of the platform is that above 100 application loading the system is slow
and details of it are hard to view.

The Fig. A.2 shows the generated Multi-Components fog scenarios for an application
size of 80. The results is Fig. A.3 shows the results of the distance based clustering and
deployment while the results in Fig. A.4 shows the results of the Sampling and Weights based
methods results. It is worth noting that as the Vis.Js platform shows connection between
components the clustering made by the first method seems to make sense on the platform

163

Fig. A.3 Results of Distance Deployment

while the one done by the second one seems random, but as seen from the tests has better
results.

164 VisJs Visualisation Platform

Fig. A.4 Results of Sampling and Weights Clustering Deployment

Appendix B

Code Snippets

This Appendix aims to show some of the main code snippets from the platform with com-
ponents from the drivers, load and testing applications as well as parts from the monitoring
drivers and from the java testing platform that was developed. The origin of the code is
reflected in the title of the included sections.

The whole code for the drivers, the deployments and main components can be found at
the GitHub Directory github.com/nandor1992/FogOfThings, where the Gateway components
and Drivers can be found under the master branch and the optimization tests can be found
under the JavaUpdates branch. This sections aims to highlight some of the more important
components.

A sample of the Sampling and Weighted Clustering method can be seen in Fig. B.1. A
portion of the testing application can be seen in Fig. B.2. The main section of the AMQP to
Karaf Event Admin broker are presented in Fig. B.3 and a part of the BLuetooth Driver can
be seen in Fig. B.4.

https://github.com/nandor1992/FogOfThings

166 Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\SamplingWeightedClustering.java Wednesday, August 22, 2018 10:18 AM

public static Map<Integer, Integer> SampleWeDiCOptimization(Fog f) {
f.clearAppToGws();
//Sampling
float sampleProc = (float)0.2;
int minSampleSize = getMinPts(f)*3;
//Clustering
int minPts = getMinPts(f);
//Res Share
int maxShare = 2;
double shareThreshold = (float) 0.3;
//GA
int size = getMinPtsSize(minPts,f.getScenario());
int count = getMinPtsCount(minPts,f.getScenario());
//Time start
long startIni = System.currentTimeMillis();
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
dataG.addUtility((float)0.0);
WeightedCls cls = new WeightedCls(f);
Map<Integer,Integer> bestSolution = new HashMap<>();
Double bestUtil = 0.0;
cls.initTrain(10,2);
//Random Population Initialization using Initial Weights
List<Map<Integer, Integer>> bests =
iterSampleClustGA(f,cls,getMinPtsCount((int)sampleProc*f.getApps().size(),f.getScenario()),getMinPtsSize((int)samplePro
c*f.getApps().size(),f.getScenario()),sampleProc,minSampleSize);
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
dataG.addUtility((float)0.0);
if (bests == null){ System.out.println("Initial Random Clustering Failed!");return null;}
bestUtil = getPartialUtility(f,bests.get(0)).doubleValue();
bestSolution = bests.get(0);
System.out.println("Sampling Best Util:"+bestUtil+" with solution: "+bestSolution);
cls.getWeight().attemptResult(bestUtil.floatValue());
System.out.println("Sampling Finished in :"+((System.currentTimeMillis()-startIni)/1000.0));

dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
dataG.addUtility((float)0.0);
//Iterative Solution
Map<Integer, Integer> best = IterWeDiCompOptimization(f, cls, bests, minPts, maxShare, shareThreshold, bestUtil,
bestSolution,startIni);
//Final Write Out
return best

}

//iterSampleClustGA
public List<Map<Integer, Integer>> sampleFogAttempt(){

//Initial Attempt
List<Map<Integer, Integer>> ret = attemptRandInstance();
while (ret == null && failCnt<maxFailCnt){

//First Attempt failed do diiiiive util size < min then do min while solution is found and if none is found escape
System.out.println();
System.out.println("----- Failed Attempt with clsSize: "+clsSize+" and Weights:" +appWeights+" - "+gwWeights+"
FailCnt: "+failCnt);
if (clsSize==minSize){

failCnt++;

this.modifyWeights(1.0-(1.0/(double)(2*maxFailCnt+1)*(double)failCnt),1.0+(1.0/(double)(2*maxFailCnt+1)*(double
)failCnt));
}

if (clsSize/2<=minSize){clsSize=minSize;}else{clsSize=clsSize/2;}
ret = attemptRandInstance();

}
List<Map<Integer, Integer>> tmpRet = ret;
int refClsSize = clsSize;
while (clsSize!=(int)(f.getApps().size()*proc) && failCnt<maxFailCnt){

//Grow Until Clusterin can be done
if (tmpRet!=null){

ret=tmpRet;
refClsSize = clsSize;
System.out.println("----- Successfull Attempt with clsSize: "+clsSize);
this.interpretWeights(ret);
if (failCnt>1){

this.modifyWeights(1.0-(1.0/(double)(2*maxFailCnt+1)*(double)failCnt),1.0+(1.0/(double)(2*maxFailCnt+1)*(do
uble)failCnt));}

double multi = 2.0;
if (failCnt!=0){

multi = 2.0-failCnt/maxFailCnt;}
if (clsSize*multi>(int)(f.getApps().size()*proc)){clsSize=(int)(f.getApps().size()*proc);}

-1-

167

D:\Doktori\Thesis\Thesis Draft\Appendix\SamplingWeightedClustering.java Wednesday, August 22, 2018 10:18 AM

else{clsSize=(int)(clsSize*multi);}
System.out.println("Cls Size: "+clsSize+" Max Fail: "+maxFailCnt+" FailCnt: "+failCnt+" and Weights:"
+appWeights+" - "+gwWeights);
tmpRet = attemptInstance();

}else{
System.out.println();
System.out.println("----- Failed Attempt with clsSize: "+clsSize+" FailCnt: "+failCnt);
failCnt++;
clsSize=(int) (clsSize*(1.0-1/(double)maxFailCnt));
if (clsSize<=refClsSize){break;}
System.out.println("Cls Size: "+clsSize+" Max Fail: "+maxFailCnt+" FailCnt: "+failCnt+" and Weights:"
+appWeights+" - "+gwWeights);

this.modifyWeights(1.0-(1.0/(double)(2*maxFailCnt+1)*(double)failCnt),1.0+(1.0/(double)(2*maxFailCnt+1)*(double
)failCnt));
tmpRet = attemptInstance();

}
}
return ret;

}

public static List<Map<Integer, Integer>> IterWeDiCompOptimization(Fog f, WeightedCls cls,
List<Map<Integer, Integer>> bests, int minPts, int maxShare, double shareThreshold,
Double bestUtil, Map<Integer, Integer> bestSolution,long startIni) {

Map<String, Float> prog = new HashMap<String, Float>();
boolean nextStep = true;
//cls.getWeight().showData();
// Loop here while Weighting Algorithm knows what to do next
while (cls.getWeight().getNextStep()) {

long start = System.currentTimeMillis();
dataG.addUtility(bestUtil.floatValue());
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
// Put values to the new weights Calculation
weightsCorrBasedTraining(cls, bests);
dataG.addWeightApp(cls.getWeight().appWeights());
dataG.addWeightGw(cls.getWeight().gwWeights());
System.out.println("Clustering Parameters: " + cls.getWeight().getChar() + " ----------");
cls.getWeight().showWeights();
// Try Clustering based on given weights If all eps failes then weights fail
if (WeightedClustering(f, cls, minPts)) {

dataG.addUtility(bestUtil.floatValue());
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
weightedResourceAlloc(f, cls, maxShare, shareThreshold);
dataG.addUtility(bestUtil.floatValue());
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
// Do weighted Resource Allocation based algorithm; Do Local GA, if Any fail then the method fails
List<Map<Integer, Integer>> tmpbests = Methods.GAClus(f, true,dataG);
if (tmpbests == null) {

System.out.println("Direction Clustering Failed!");
cls.getWeight().setGwFailed();
dataG.addUtility(bestUtil.floatValue());
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);

} else {
System.out.println("Direction Clustering Done in :" + ((System.currentTimeMillis() - start) / 1000.0));
bests = tmpbests;
prog.put("Clust[" + cls.getWeight().getChar() + " Time: "

+ ((System.currentTimeMillis() - start) / 1000.0) + "]",
getUtility(f, bests.get(0)));

if (getUtility(f, bests.get(0)) > bestUtil) {
bestUtil = getUtility(f, bests.get(0)).doubleValue();
bestSolution = bests.get(0);
dataG.setBestWeight(dataG.getCurrent());
dataG.setBestCluster(f.retreiveCluster());

}
dataG.addUtility(bestUtil.floatValue());
dataG.addTime((float)(System.currentTimeMillis()-startIni)/(float)1000.0);
cls.getWeight().attemptResult(getUtility(f, bests.get(0)));

}
} else {

System.out.println("Direction Clustering Failed!");
cls.getWeight().setAppFailed();

}
}
System.out.println("Results: ");
SortedSet<String> intKeys = new TreeSet<>(prog.keySet());
for (String name : intKeys) {System.out.println(name + " = " + prog.get(name));}
return bests

}

-2-

Fig. B.1 Sampling and Weights Algorithm Snippet

168 Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp.java Wednesday, August 22, 2018 10:03 AM

private static void sendEvent(String proc_time,String start) {
Thread.currentThread().setName(name);
Dictionary props = new Hashtable();
props.put("app", name);
props.put("payload","{'proc_time':"+proc_time+",'start_time':"+start+"}");
props.put("device",device);
Event event = new Event(regs.get(0), props);
ea.sendEvent(event);

}

@Override
public void updated(Dictionary properties) throws ConfigurationException {

logger.warn("App Updated");
device = properties.get("device").toString().trim();
load = Integer.parseInt(properties.get("load").toString().trim());
if (sr2!=null){

sr2.unregister();
}
Dictionary dic = new Hashtable();
dic.put(EventConstants.EVENT_TOPIC, regs.get(1)+device);
sr2 = bcontext.registerService(EventHandler.class.getName(), this, dic);

}

@Override
public void handleEvent(Event event) {

Thread.currentThread().setName(name);
String start = event.getProperty("payload").toString();
//Do Load Then Respond
long timeBefore = System.nanoTime();
l1.doMatrice(load);
l1.doFiltering(load);
l1.doFlops(load);
long timeAfter = System.nanoTime();
long elapsed_time = timeAfter - timeBefore;
//Respond
sendEvent(String.valueOf(elapsed_time/1000), start);

}

public class Load {
public void doMatrice(int qty){

for(int i=0;i<qty;i++){
int m1[][];
int m2[][];
int tmp[][];
m1=randMatrice();
m2=randMatrice();
tmp=addMatrice(m1, m2);
tmp=multMatrice(m1, m2);

}
}
public int[][] randMatrice(){

int m1[][];
Random rand = new Random();
m1=new int[20][20];
for (int i=0;i<20;i++){

for (int j=0;j<20;j++){
m1[i][j] = rand.nextInt(200);

}
}
return m1;

}
public int[][] addMatrice(int[][] a, int[][] b)
{

int ret[][];
ret=new int[20][20];
for (int i=0;i<20;i++){

for (int j=0;j<20;j++){
ret[i][j]=a[i][j]+b[i][j];

}
}
return ret;

}
public int[][] multMatrice(int[][] a, int[][] b)
{

int ret[][];
ret=new int[20][20];
for (int i=0;i<20;i++){

for (int j=0;j<20;j++){

-1-

169

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp.java Wednesday, August 22, 2018 10:03 AM

for (int k=0;k<20;k++)
{

ret[i][j]=ret[i][j]+a[i][k]+b[k][j];
}

}
}
return ret;

}
public void displayMatrice(int[][] a)
{

System.out.println("Displaying Matrice");
for (int i=0;i<20;i++){

for (int j=0;j<20;j++){
System.out.print(a[i][j]+" ");

}
System.out.println();

}
}
/*------------Filtering Operations-----------*/
public void doFiltering(int qty){

for(int i=0;i<qty;i++){
int data[];
int minmax[]=new int[2];
data=randData();
float sma[]=smaData(data);
float avg=avgData(data);
minmax=minmaxData(data);
sortData(data,true);
sortData(data,false);

}
}
public int[] sortData(int data[],boolean type){

int tmp=0;
for (int i=0;i<99;i++)
{

for (int j=i;j<100;j++)
{

if (!(data[i]>data[j] ^ type)){
tmp=data[j];
data[j]=data[i];
data[i]=tmp;

}
}

}
return data;

}
public float avgData(int data[]){

int avg=0;
for (int i=0;i<100;i++){

avg=avg+data[i]/100;
}
return avg;

}
public int[] minmaxData(int data[]){

int ext[]=new int[2];
ext[0]=data[0];
ext[1]=data[0];
for (int i=1;i<100;i++){

if (data[i]<ext[0]){
ext[0]=data[i];

}
if (data[i]>ext[1]){

ext[1]=data[i];
}

}
return ext;

}
public float[] smaData(int data[]){

///Simple moving average
float sma[] = new float[100];
float sma_tmp=0;
int curr=4;
//Length of sma =5;
for (int i=0;i<5;i++)
{

sma_tmp=sma_tmp+data[i];
}
sma_tmp=sma_tmp/5;

-2-

170 Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\TestingApp.java Wednesday, August 22, 2018 10:03 AM

sma[4]=sma_tmp;
sma[0]=sma_tmp;
sma[1]=sma_tmp;
sma[2]=sma_tmp;
sma[3]=sma_tmp;
while (curr<99){

sma_tmp=sma_tmp-(data[curr-4]/5)+(data[curr+1]/5);
sma[curr]=sma_tmp;
curr++;

}
sma[99]=sma_tmp;
return sma;

}
public int[] randData(){

int data[];
Random rand = new Random();
data=new int[100];
for (int i=0;i<100;i++)
{

data[i]=rand.nextInt(1024);
}
return data;

}
public void printData(int data[]){

System.out.println("Printing Data");
for (int i=0;i<100;i++){

System.out.print(data[i]+" ");
}
System.out.println();

}
public void printData(float data[]){

System.out.println("Printing Data");
int len=data.length;
for (int i=0;i<len;i++){

System.out.print(String.format("%5.4f",data[i])+" ");
}
System.out.println();

}
/*--------------Part For Flops--------------*/
public void doFlops(int qty){

for(int i=0;i<qty;i++){
float d1[];
float d2[];
d1=randFloat();
d2=randFloat();
float ret[][]=doFloatOps(d1, d2);

}
}
public float[][] doFloatOps(float[] d1,float[] d2)
{

float ret[][]=new float[4][1000];
for (int i=0; i<1000;i++){

ret[0][i]=d1[i]+d2[i];
ret[1][i]=d1[i]-d2[i];
ret[2][i]=d1[i]*d2[i];
ret[3][i]=d1[i]/d2[i];

}
return ret;

}
public float[] randFloat(){

float data[];
Random rand = new Random();
data=new float[1000];
for (int i=0;i<1000;i++)
{

data[i]=rand.nextFloat();
}
return data;

}
}

-3-

Fig. B.2 Testing App and Load generator Snippet

171

D:\Doktori\Thesis\Thesis Draft\Appendix\Event Broker.java Wednesday, August 22, 2018 10:04 AM

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("admin");
factory.setVirtualHost("test");
factory.setHost("localhost");
factory.setPort(5672);
try {

connection = factory.newConnection();
channel = connection.createChannel();
channel.basicQos(1);

} catch (IOException e1) {
e1.printStackTrace();

}
Consumer consumer = new DefaultConsumer(channel) {

@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties,

byte[] body) throws IOException {
String message = new String(body, "UTF-8");
Map<String, Object> headers = properties.getHeaders();
// display time and date using toString()
try {

sendEvent(message, headers);
} catch (InterruptedException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
channel.basicAck(envelope.getDeliveryTag(), false);

}
};
try {

channel.basicConsume(QUEUE_NAME, false, consumer);
} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
}
private void sendEvent(String message, Map<String, Object> headers) throws InterruptedException {

Dictionary props = new Hashtable();
for (Map.Entry<String, Object> header : headers.entrySet()) {

props.put(header.getKey(), header.getValue());
}
props.put("payload", message);
if (props.get("device")!=null) {

Event event = new Event(DEVICE_QUEUE + props.get("device"), props);
ea.sendEvent(event);

}else if (props.get("cloud")!=null) {
Event event = new Event(CLOUD_QUEUE + props.get("app"), props);
ea.sendEvent(event);

}else if (props.get("region")!=null) {
Event event = new Event(REGION_QUEUE + props.get("app"), props);
ea.sendEvent(event);

}else if (props.get("res")!=null) {
Event event = new Event(RESOURCE_QUEUE + props.get("app"), props);
ea.sendEvent(event);

}else if (props.get("app")!=null){
if (props.get("app_type")!=null && props.get("app_rec")!=null){

if (props.get("app_type").toString().equals("receive")){
String app=props.get("app_rec").toString();
props.remove("app_type");
props.remove("app_rec");
Event event = new Event(APP_REC_QUEUE + app, props);
ea.sendEvent(event);

}else if (props.get("app_type").toString().equals("send")) {
String app=props.get("app_rec").toString();
props.remove("app_type");
props.remove("app_rec");
Event event = new Event(APP_SEND_QUEUE + app, props);
ea.sendEvent(event);

}
}

}
}

-1-

Fig. B.3 AMQP to Event Admin Broker Snippet

172 Code Snippets

D:\Doktori\Thesis\Thesis Draft\Appendix\DriverCodeSnippets.py Wednesday, August 22, 2018 10:09 AM

class blue(Daemon):
class BlueThread(threading.Thread):

def transLoop(self,socket,send_q,receive_q):
message="";
while not exitFlag:

if not send_q.empty():
data = send_q.get()
logging.debug("Sending: " +data)
socket.send(data+'\n')

try:
reading=socket.recv(1024)
if ((len(reading)>0 and reading[0]!=' ')):

message=message+reading;
if message[-1]=='\n' and message[-2]=='}':

receive_q.put(message)
message="";

if (len(message)>250):
logging.debug("Long Message Error")
logging.debug(len(message))
message=""

except bluetooth.BluetoothError as error:
if error[0]!="timed out":

logging.error("Error:",error)
break;

socket.close()

class ServerThread(threading.Thread):
def __init__(self,server_sock):

threading.Thread.__init__(self)
self.server_sock=server_sock

def run(self):
logging.debug("Started Server Thread")
port = self.server_sock.getsockname()[1]
logging.debug("Waiting for connection on RFCOMM channel %d" % port)
self.server_sock.settimeout(2)
while not exitFlag:

try:
client_socket, client_info = self.server_sock.accept()
client_socket.send('x')
addr=client_info[0]
client_socket.settimeout(0.1)
send_q[addr]=Queue.Queue(10)
receive_q[addr]=Queue.Queue(10)
bluet=blue.BlueThread(addr,client_socket,send_q[addr],receive_q[addr])
bluet.start()
threads[addr]=bluet

except bluetooth.BluetoothError :
pass

logging.debug("Exiting Server")
def messageResolv(self,my_json):

dev_id=my_json.get("bn")[11:]
dev_id=dev_id[:8]
logging.debug(dev_id)
if (self.dev_list.count(dev_id)!=0):

message_amqp=json.dumps(my_json["e"])
message_amqp=message_amqp.replace('"',"'")
logging.debug(message_amqp)
if dev_id in self.timer_list:

self.timer_list[dev_id].cancel()
properties_m=pika.BasicProperties(headers={'device':""+dev_id,'comm':
""+self.gw_name,'datetime':""+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")})
self.channel.basic_publish(exchange='device', routing_key='', body=message_amqp, properties=properties_m)
self.updateDevTime(dev_id,"Available")

else:
logging.debug("No details found - not forwarding")

def registerResolv(self,key,my_json):
trans=my_json.get("bn",{})[2]
my_uuid=self.resolv_dev(my_json)
trans=trans[9:]
data="{'bn':['trans:id:"+trans+"','urn:dev:id:"+my_uuid+"']}"
self.dev_mac[my_uuid]=key
self.sendRf(my_uuid,data);

def resolv_dev(self,my_json):
logging.debug("Json Parts!")
type_d=my_json.get("bn",{})[0][13:]
mac_d=my_json.get("bn",{})[1][12:]

-1-

173

D:\Doktori\Thesis\Thesis Draft\Appendix\DriverCodeSnippets.py Wednesday, August 22, 2018 10:09 AM

ver_d=my_json.get("ver")
value=self.datab.lookupDev(mac_d,type_d,ver_d)
if value!=None:

logging.debug("Found details "+value)
rand_uuid=value
self.updateDevTime(value,"Available")
self.dev_list.append(value)

else:
logging.debug("No details found")
rand_uuid = ''.join([random.choice(string.ascii_letters+string.digits) for n in xrange(8)])
sense=[]
for sens in my_json["e"]:

sense.append({sens["n"]:sens["u"]})
self.datab.addDevice(rand_uuid,type_d,mac_d,ver_d,datetime.datetime.now().strftime("%Y-%m-%d
%H:%M:%S"),'Available',sense)
self.dev_list.append(rand_uuid)

return rand_uuid

def sendMssgResolv(self,data,header):
logging.debug("---------Send Data---------")
logging.debug(data)
dev_id=header.headers.get('device')
qos=str(header.headers.get('qos')).strip()
logging.debug(dev_id)
if (self.dev_list.count(dev_id)!=0):

logging.debug("Found details")
send_json="{'e':"+data+",'bn':'urn:dev:id:"+dev_id+"'}"
send_json=send_json.replace(" ","_")
logging.debug(send_json)
#Start timer here
if (qos!=None):

if (qos=='1'):
t=Timer(5,self.timeout,[dev_id,send_json,0])
self.timer_list[dev_id]=t
t.start()

self.sendRf(dev_id,send_json)
else:

logging.debug("Data received for non existent Dev")

def callback(self,ch,method,properties,body):
self.sendMssgResolv(body,properties)

def sendRf(self,device,message):
key=self.dev_mac[device]
logging.debug(device+"-"+key)
send_q[key].put(message)

def updateDev(self,dev_id,status):
#ToDo update Date of Device
self.datab.updateStat(dev_id,status)

def updateDevTime(self,dev_id,status):
#ToDo update Date of Device
self.datab.updateDateStat(dev_id,status,datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

def scan(self):
logging.debug("Scanning timeout")
nearby_devices=bluetooth.discover_devices(lookup_names=True)
logging.debug("found %d devices" %len(nearby_devices))
for addr,name in nearby_devices:

logging.debug(" %s - %s "% (addr,name))
if name in self.find_devs:

logging.debug("Attempting"+name+":"+addr+"port:"+str(self.port))
try:

socket=bluetooth.BluetoothSocket(bluetooth.RFCOMM)
socket.connect((addr,port))
logging.debug('Connected to %s on port %s'%(name,port))
#port=port+1
socket.send('x')
socket.settimeout(0.1)
send_q[addr]=Queue.Queue(10)
receive_q[addr]=Queue.Queue(10)
bluet=self.BlueThread(name,socket,send_q[addr],receive_q[addr])
bluet.start()
threads[addr]=bluet

except bluetooth.BluetoothError as error:
logging.error(error)

if not exitFlag:
mainTimer=Timer(300,self.scan)
self.timer_list["main"]=mainTimer
mainTimer.start()

-2-

Fig. B.4 Bluetooth Driver Snippet

Appendix C

Example Deployment File

The deployment file presented in Fig. C.1 is used to deploy applications and to save run-time
parameters from optimisation tasks. This file shows how the resources, apps, gateways,
clusters and the Fog are saved and what metadata each of them contains and how they are
linked. The file is encoded in JSON and this snippet has sections cut out and removed so
it will fit in a page. Examples of the full deployment files can be seen id the code base
presented in the previous section.

176 Example Deployment File

Fig. C.1 Example JSON Deployment File Snippet

Appendix D

Physical Backbone of the System

The physical backbone of the system supported all the tests and message management for
the physical tests as well as provided the computational backbone for the Method Evaluation
tests.The setup of the physical cluster that was used to support this can be seen in Fig. D.1.
The software stack that was deployed to run the openstack cloud, spark cluster and other
components can be seen in Fig. D.2. The Spark deployment can be seen in Fig. D.3. The
devices that were used for testing and deployment can be seen in Fig. D.4.

Fig. D.1 Physical Cluster

178 Physical Backbone of the System

Fig. D.2 Software Stack

Fig. D.3 Spark Deployment

The Devices from Fig. D.4 a,b,c and g are Raspberry pi 2 System on Chip Fog Nodes
that have attached varying sensor that allow them to interact with their surroundings. Device
a. has a relay, a temperature and humidity sensor and an RF24 wireless transmitter for
communicating with peripheral devices. The Raspberry pi from b. is designed to be used
with video surveillance, as it has attached a motion sensor and a Video Camera. The device c.

179

has attached the temperature and humidity controller together with the RF24 module as well
as a proximity sensor. The node in g. is designed to be a communication hub, as it can send
and receive messages in all the testes technologies and has a higher range RF24 device. The
device d. is a standard RF52 Thingy node that has a varying set of environmental sensors and
communication devices but is used to tests the Low-Power Bluetooth connections with the
Raspberry Pi. The XBee enabled Arduino board from e. has a light and temperature sensor
for environmental monitoring attached to it. The AtTiny device from f. is designed to be a
simple 3.3Volt powered monitoring device.

Fig. D.4 Physical Devices and Nodes

Some materials have been removed from this thesis due to Third Party Copyright. Pages where
material has been removed are clearly marked in the electronic version. The unabridged version

of the thesis can be viewed at the Lanchester Library, Coventry University.

Appendix E

Optimisation Run-time Log Example

A snippet of the output log from the performance validation tests can be seen in Fig. E.1.
Here the main section of the tests are shown with the iterations excluded as they take up too
much space.These exclusions are marked by ... in the text and could mean missing repeated
lines or method iterations.

This tests contains the outputs of all 5 methods and the initial generations as well. The
results are for a 320 application deployment for the Delay scenario, but might not be the one
presented in the evaluation section.

182 Optimisation Run-time Log Example

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM

%Driver Log : stdout log page for driver-20180814133134-0275
Args:[Perf] Size:2 sceType:1 meType:0
Starting Performance Test.

-----Generating new Fog-----

Parameters - AppCount: 320 Gw Count's Ext: 0.1 Load: 60.0 Latency: 8.97,30.897Ext Lat: 37.37,87.89 Fog Type: Delay
Tot Res Required Count: 5883.5796 Gw Count: 117 ResProvided: 13461.3955 at Rate: 2.28796 App Cnt: 320 Utility: 808.73474

----- A. Global GA Stuff -----

GA Global GwCount:117 AppCnt:320 Size:72 Gens:1070
The best of the Population 340 is: 800.79224 At: 960.172
...
The best of the Population 5275 is: 822.05914 At: 12142.278
Best of 6398 Population was at: 5328 is: 822.14844 At: 14838.124
--
----- B. Distance Clustering Deployment -----
--
----- Clustering -----
Cluster 1 Apps: [130, ... 110]
Cluster 2 Apps: [128, ... 255]
Cluster 3 Apps: [256, ... 254]
Cluster 4 Apps: [129, ... 250]
 -> GA Cluster 1 GwCount:55 AppCnt:80 Size:54 Gens:550
Ga Failed at pop 5000 !
{130=12, 4=11, 5=96, 133=24, ... 110=36}
GW: 12 Load: 74.59566 MaxLoad: 47.067543
...
GW: 96 Load: 112.97151 MaxLoad: 39.856384
Final Resp:0
Utility:205.68835
Distance Clustering Failed
--
----- C. Sample Weighted Distance Clustering Optimization -----
--
-> SampleClustering
 -> GA Cluster 1 GwCount:13 AppCnt:59 Size:52 Gens:126
The best of the Population 1205 is: 131.76009
Sample Clustering finished in :111.284
Sampling Best Util:131.76007080078125 with solution: {4=107, 132=110, ... 124=113, 253=112}
Sampling Finished in :111.293

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=0.009922318063188777, ResourceShare=0.036468574365358955,
UtilityWeights=0.0, MessageRate=-0.007976248954193159, Distance=-0.003333345863698447, UnitLoad=0.024539101908489496}
Gws Correlations: {Capabilities=0.0, SharedRes=0.010033092253716744, PerfToULoad=0.12285470794435353,
BaseLoad=-0.03805291556295542, CapToULoad=0.07774400188732135}
 -> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} ----------
Weight Apps:{RequirementSim=0.12574820000702708, ResourceShare=0.4621760312521691, MessageRate=-0.10108514385552601,
UnitLoad=0.3109906248852778}Weight Gws:{SharedRes=0.040344627320059334, PerfToULoad=0.49401792400478906,
BaseLoad=-0.15301670292729525, CapToULoad=0.31262074574785637}
-> Clustering
Eps Vals:[-0.06666663905476547, 0.4672202900299937, 0.05338869290847592]
Eps Search Results - Best Eps:0.2536655 BestValid: 12.25
Cluster 1 Size:42 Apps: [320, ... 187]
...
Cluster 8 Size:21 Apps: [128, ... 157]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:27 AppCnt:42 Size:51 Gens:467
The best of the Population 1968 is: 110.29555
...
 -> GA Cluster 8 GwCount:15 AppCnt:21 Size:49 Gens:422
The best of the Population 1534 is: 54.396114
Fog Utility: 820.6405
Direction Clustering Done in :873.417

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=-0.005347581101487097, ResourceShare=0.0020892691508377077,
UtilityWeights=0.0, MessageRate=0.0024588056933909507, Distance=-0.01297322160741293, UnitLoad=0.0033775152902921135}
Gws Correlations: {Capabilities=0.0, SharedRes=0.016669262544068475, PerfToULoad=-0.018756340143875377,
BaseLoad=-0.0030906981605134613, CapToULoad=-0.01379416814175487}
 -> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:2 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} ----------
Weight Apps:{RequirementSim=-0.24645141165717063, Distance=-0.5978906571419933, UnitLoad=0.1556579312008361}Weight

-1-

183

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM

Gws:{SharedRes=0.3186601624081684, PerfToULoad=-0.358558057420301, BaseLoad=-0.059083740218268004,
CapToULoad=-0.26369803995326246}
-> Clustering
Eps Vals:[-2.6224482468731116, -2.220446049250313E-16, 0.26224482468731114]
Eps Search Results - Best Eps:-1.3112241 BestValid: 4.777777777777778
Cluster 1 Size:24 Apps: [1, ... 249]
...
Cluster 12 Size:26 Apps: [257, 194, 258, 136, 200, 138, 267, 81, 275, 84, 212, 21, 152, 153, 154, 219, 284, 286, 225, 103,
296, 169, 299, 51, 311, 313]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:9 AppCnt:24 Size:49 Gens:428
The best of the Population 843 is: 63.25459
 ...
 -> GA Cluster 12 GwCount:10 AppCnt:26 Size:49 Gens:433
The best of the Population 494 is: 67.35516
Fog Utility: 826.7943
Direction Clustering Done in :1144.421
...

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=5.459132045650533E-4, ResourceShare=0.04517603949826375,
UtilityWeights=0.0, MessageRate=-3.9374402624911135E-4, Distance=-0.03531882268272359, UnitLoad=-4.510048126500031E-4}
Gws Correlations: {Capabilities=0.0, SharedRes=0.02152665962796101, PerfToULoad=-0.0198794274493012,
BaseLoad=-6.088063042454969E-4, CapToULoad=-0.019385437365909697}
 -> Sorting Correlation Results - Dir Stop - - Worse Util
Underfitted App Solution, Solving...
Underfitted Gw Solution, Solving...
Clustering Parameters: Count:7 FailSteps:2 ProcLim[app/gw]:0.6773759999999999/0.16934399999999997 App-Penalties:{}
Gw-Penalties:{} ----------
Weight Apps:{ResourceShare=1.0}Weight Gws:{SharedRes=0.25765659901443466, PerfToULoad=-0.39478359619918335,
CapToULoad=-0.3475598047863821}
-> Clustering
Eps Vals:[-0.1, 0.21000000000000002, 0.031000000000000007]
Eps Search Results - Best Eps:-0.069000006 BestValid: 45.5
Cluster 1 Size:162 Apps: [256, ... 204]
Cluster 4 Size:30 Apps: [194, ... 319]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:57 AppCnt:162 Size:60 Gens:728
The best of the Population 3676 is: 416.03424
 ...
 -> GA Cluster 4 GwCount:11 AppCnt:30 Size:50 Gens:441
The best of the Population 605 is: 77.55198
Fog Utility: 825.8747
Direction Clustering Done in :2406.059
Results:
Clust[Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 873.417] = 820.6405
Clust[Count:2 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 1144.421] = 826.7943
Clust[Count:3 FailSteps:1 ProcLim[app/gw]:0.24/0.06 App-Penalties:{} Gw-Penalties:{} Time: 1912.109] = 827.0376
Clust[Count:4 FailSteps:1 ProcLim[app/gw]:0.288/0.072 App-Penalties:{} Gw-Penalties:{} Time: 1248.964] = 825.09515
Clust[Count:5 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{} Gw-Penalties:{} Time:
1706.234] = 827.6831
Clust[Count:6 FailSteps:1 ProcLim[app/gw]:0.48383999999999994/0.12095999999999998 App-Penalties:{} Gw-Penalties:{} Time:
1329.65] = 826.39886
Clust[Count:7 FailSteps:2 ProcLim[app/gw]:0.6773759999999999/0.16934399999999997 App-Penalties:{} Gw-Penalties:{} Time:
2406.059] = 825.8747
Method Finished in :10732.306
--
----- D. Initial Weights Weighted Distance Clustering Optimization -----
--

New Iteration of Training Algorithm Started

 -> Sorting Correlation Results - Not Dir Stop -
Clustering Parameters: Count:0 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} ----------
Weight Apps:{}Weight Gws:{}
-> Clustering
Eps Vals:[4.779385345431594, 8.687495095131421, 0.39081097496998274]
Eps Search Results - Best Eps:6.7334404 BestValid: 5.166666666666667
Cluster 1 Size:22 Apps: [32, ... 45]
Cluster 12 Size:27 Apps: [69, ... 179]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:12 AppCnt:22 Size:49 Gens:424
The best of the Population 877 is: 54.259914
 ...
 -> GA Cluster 12 GwCount:14 AppCnt:27 Size:49 Gens:435
The best of the Population 2170 is: 68.890045
Fog Utility: 822.46436

-2-

184 Optimisation Run-time Log Example

D:\Doktori\Thesis\Thesis Draft\Appendix\Log.txt Wednesday, August 22, 2018 12:26 PM

Direction Clustering Done in :987.234
...

New Iteration of Training Algorithm Started

Apps Correlations: {Constraints=0.0, RequirementSim=0.0046098243147765635, ResourceShare=0.059628816649848336,
UtilityWeights=0.0, MessageRate=-0.013079744769438892, Distance=-0.029517770385124122, UnitLoad=-0.005124293261328776}
Gws Correlations: {Capabilities=0.0, SharedRes=0.031574343489963276, PerfToULoad=-0.023927695874447683,
BaseLoad=0.0039904809171321855, CapToULoad=-0.020199237714567705}
 -> Sorting Correlation Results - Dir Stop - - Worse Util
Underfitted App Solution, Solving...
Underfitted Gw Solution, Solving...
Clustering Parameters: Count:4 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{}
Gw-Penalties:{} ----------
Weight Apps:{ResourceShare=0.4827881117929911, Distance=-0.5172118882070088}Weight Gws:{SharedRes=0.6318911023239071,
PerfToULoad=-0.21571606599339305, CapToULoad=-0.15239283168269985}
-> Clustering
Eps Vals:[-2.275732308110839, -0.20688475528280353, 0.20688475528280356]
Eps Search Results - Best Eps:-1.4481932 BestValid: 14.081632653061225
Cluster 1 Size:39 Apps: [128, ... 131]
Cluster 7 Size:42 Apps: [320, ... 63]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:16 AppCnt:39 Size:50 Gens:461
The best of the Population 2448 is: 102.66226
 ...
 -> GA Cluster 7 GwCount:15 AppCnt:42 Size:51 Gens:467
The best of the Population 2366 is: 106.1328
Fog Utility: 826.51874
Direction Clustering Done in :1796.233
Results:
Clust[Count:0 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 987.234] = 822.46436
Clust[Count:1 FailSteps:0 ProcLim[app/gw]:0.2/0.05 App-Penalties:{} Gw-Penalties:{} Time: 1552.933] = 826.12396
Clust[Count:2 FailSteps:1 ProcLim[app/gw]:0.24/0.06 App-Penalties:{} Gw-Penalties:{} Time: 1111.917] = 827.0043
Clust[Count:3 FailSteps:1 ProcLim[app/gw]:0.288/0.072 App-Penalties:{} Gw-Penalties:{} Time: 1374.718] = 826.58
Clust[Count:4 FailSteps:2 ProcLim[app/gw]:0.40319999999999995/0.10079999999999999 App-Penalties:{} Gw-Penalties:{} Time:
1796.233] = 826.51874
Method Finished in :6823.156

----- B(0). Random Deployment -----

-> Clustering
Cluster 1 Apps: [1,... 5]
Cluster 12 Apps: [288, 289, 290, 293, 262, 295, 302, 307, 277, 278, 310, 312, 281, 313, 314, 316, 317, 286, 318]
Unallocated Apps: []
 -> GA Cluster 1 GwCount:10 AppCnt:29 Size:49 Gens:439
The best of the Population 1011 is: 75.047325
...
 -> GA Cluster 12 GwCount:8 AppCnt:19 Size:49 Gens:418
The best of the Population 880 is: 49.15943
Fog Utility: 826.2746
Finished Clusering Part in:443.6
Unalocated Apps: []
Total Elapsed Time:443.6
Utilities...
Init: 827.0043
Random: 828.2746
Dist: 0.0
Sample: 827.6831
GA: 822.14844
X.Init = [0.012 ... 6823.15];
X.Random = [0.0 0.171 0.18 443.594];
X.Dist = [0.0 21.328 21.331];
X.Sample = [0.0 ... 10732.299];
X.GA = [3.625 ... 14818.575];
Y.Init = [0.0 ... 827.0043];
Y.Random = [0.0 0.0 0.0 826.2746];
Y.Dist = [0.0 0.0 0.0];
Y.Sample = [0.0 ... 827.6831];
Y.GA = [0.0 ... 822.14844];
size = 3; type = 1;
XMat(size,type) = X;
YMat(size,type) = Y;

-3-

Fig. E.1 Performance Test Log Example

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Context
	1.2 Research Problem
	1.3 Research Aims and Objectives
	1.4 Methodology
	1.4.1 Research Methodology
	1.4.2 Fog of Things Platform
	1.4.3 Application and Gateway Model
	1.4.4 Clustering based optimisation method
	1.4.5 Validation and Analysis

	1.5 Novelty and Contribution
	1.6 Thesis Structure

	2 Research Background
	2.1 Internet of Things
	2.2 Fog and Cloud Computing
	2.3 Industry 4.0 Requirements
	2.4 Gateway and Middleware Platforms
	2.5 Application and System Model
	2.6 Deployment in the Fog
	2.6.1 Load Balancing
	2.6.2 Global Optimisation Techniques

	2.7 Network Analysis and Clustering
	2.8 Summary

	3 Fog of Things Platform
	3.1 General View and Platform Requirements
	3.1.1 Protocol Agnostic Device Messaging
	3.1.2 Regional Connections and Messaging
	3.1.3 Multi-Cloud Tenancy
	3.1.4 Modular Application Deployment
	3.1.5 Application Migration, Clustering and Testing Functionality

	3.2 Generic Gateway Architecture
	3.2.1 Local Messaging Service
	3.2.2 Cloud Controller and Local Resources
	3.2.3 M2M Communication and Registration
	3.2.4 Application Container
	3.2.5 Regional Communications and Clustering
	3.2.6 Cloud Connection and Management
	3.2.7 Migration and Message Routing on the Platform
	3.2.8 Application and Gateway Monitoring

	3.3 Architecture Implementation
	3.3.1 Device Drivers
	3.3.2 Application Container
	3.3.3 Regional and Cloud Drivers

	3.4 Distributed Control and Metering Use Case
	3.5 Summary

	4 Application and Gateway Model
	4.1 Overview of Model
	4.2 Gateway Load
	4.3 Application Load
	4.4 Delay Model
	4.5 Reliability Model
	4.6 Parameter Analysis
	4.6.1 Processing Capacity and Speedup
	4.6.2 Driver and Message Loads
	4.6.3 Processing Delays
	4.6.4 Networking Delays

	4.7 Utility Functions
	4.8 Summary

	5 Deployment Optimisation
	5.1 Introduction
	5.2 Problem Description and Categorisation
	5.3 Overview of Approaches
	5.4 Deployment validation and Utility Calculation
	5.5 Modified Genetic Algorithm based Method
	5.6 Clustering
	5.6.1 Random Clustering
	5.6.2 Distance based Clustering
	5.6.3 Weights and Attributes based Clustering
	5.6.4 Eps Value Estimation and Improvements

	5.7 Resource Allocation
	5.7.1 Random but Fair
	5.7.2 Shared Resource Based Allocation
	5.7.3 Weighted Property based Resource Allocation
	5.7.4 Correlation and Weights based Resource allocation

	5.8 Overview of Methods
	5.8.1 Connections based Clustering and Resource Allocation
	5.8.2 Iterative Correlation based Clustering and Optimisation
	5.8.3 Sampled Data based Correlation and Weight Calculation

	5.9 Summary

	6 Evaluation and Analysis
	6.1 Analysis and Replication: AME Case Study
	6.1.1 Use Case Description
	6.1.2 Analysis Parameters
	6.1.3 Replication Data Analysis
	6.1.4 Network Analysis
	6.1.5 Replication Analysis

	6.2 Model Validation
	6.2.1 Single Deployment Validation
	6.2.2 Bundled Deployment Validation
	6.2.3 Migration Deployment Validation

	6.3 Physical System Deployment Optimisation
	6.4 Evaluation Use Cases
	6.4.1 Delay Optimisation Scenario
	6.4.2 Weighted Multi-Component Utility Scenario
	6.4.3 Capability Constraint and Utility Scenario

	6.5 Testing Parameter Selection
	6.5.1 GA Parameter Selection
	6.5.2 Clustering Parameter Selection

	6.6 Performance Analysis
	6.6.1 Small-Scale Tests
	6.6.2 Medium-Scale Tests
	6.6.3 Large-Scale Tests
	6.6.4 Conclusions

	6.7 Scalability Analysis
	6.7.1 Delay Scenario
	6.7.2 Multi-Parameter Scenario
	6.7.3 Capability Scenario
	6.7.4 Conclusions

	6.8 Component Evaluation
	6.8.1 Resource Allocation
	6.8.2 Clustering
	6.8.3 Weights Tuning
	6.8.4 Conclusions

	7 Conclusions and Future Work
	7.1 Results Overview
	7.1.1 Platform Review
	7.1.2 Model Review
	7.1.3 Deployment Method Review

	7.2 Answer to Research Questions
	7.3 Future Work and Directions

	References
	Appendix A VisJs Visualisation Platform
	Appendix B Code Snippets
	Appendix C Example Deployment File
	Appendix D Physical Backbone of the System
	Appendix E Optimisation Run-time Log Example

