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Abstract: Since 2003, Brazil has striven to provide energy access to all, in rural areas, in an effort to 
economically empower the communities. Unpacking fuel stacking behaviour can shed light onto the 
speed of transition toward the exclusive use of advanced fuel types. This paper presents fndings 
from surveys that were carried out with 14 non-electrifed communities in a rural area of Rio Negro, 
Amazonas State, Brazil. We identify the fuel choice determinants in these communities using a 
multinomial logistic regression model and more generally discuss the validity and robustness of such 
models in the context of statistical validation and evaluation metrics. Specifcally for the Amazonas 
communities considered in this study, the research showed that the fuel choice determinants are the 
age of household, the number of people at meals each day, the number of meals daily, the community, 
education of the household head, and the income level of the household. Moreover, given the 
Brazilian policies related to energy and sustainability, this region is not likely to reach the Sustainable 
Development Goals proposed by United Nations for 2030. 

Keywords: rural electrifcation; fuel stacking; fuel choice; multinomial logistic regression model 

1. Introduction 

Brazil faces chronic energy shortages, particularly in remote riverside communities in the 
Amazonas State where a lack of infrastructure, expertise and fnancial input [1] reduces the abilities of 
communities to meet their energy needs. According to Trindade and Cordeiro [2], using 2018 data, 
around 5% of the Amazonas State population in Brazil, distributed in 2261 communities and 41,167 
households, do not have electricity. The Federal government’s rural electrifcation programme, known 
as Luz Para Todos (Light for All) [3] created in 2003 by decree 4873 and extended to 2018 by decree 8387 
aims to provide energy access to all through mini-grids and standalone systems. According to Cabre 
et al. [1], energy is to be supplied by renewable, diesel and/or hybrid systems for remote communities 
in which grid connection is not a viable option. Among other benefts, these interventions promise to 
economically empower disadvantaged and unelectrifed communities. 

The Amazonas State is a peculiar area of Brazil, representing 18% of the whole country’s 
geographical area, surrounded and fooded by the Amazon river basin, with few roads and with 
extensive use of the rivers as the means of transport to its rural area. The State has an area equivalent 
to that of fve countries in Europe combined (Portugal, Spain, France, and Germany), however the 
population is just 1.8% of those countries. Three Amazonas State policies are of particular importance: 
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1. In 2007, the Amazonas State implemented the Programa Bolsa Floresta (Forest Assistance 
Programme), which pays families from 16 conservation areas to protect the forest. The focus 
of the programme is on introducing alternative economic efforts and ensuring regular visits to 
the communities in order to avoid deforestation [4]. However, there is no provision within the 
programme to provide additional electrifcation or regular educational activities. 

2. The adoption of protected forest areas with little oversight to check if the forest has been kept 
standing. This policy is not linked either with the need for electrifcation or education. According 
to the Amazonas State Environment Secretary [5] 57.3% of protected forest is divided among 
indigenous areas, State protected areas, municipality protected areas, and Federal protected areas. 
Partially due to this policy, Amazonas State has 97% of the original forest coverage intact. 

3. The Luz para Todos programme [3] aims to provide electricity to all parts of the state but has had 
limited reach in Amazonas State due to the diffculties in extending the grid to remote regions of 
the Amazon Rainforest. Considerable fnancial investment will be required to provide electricity 
to these remote regions and to ensure that this infrastructure is maintained. 

The 17 Sustainable Development Goals (SDGs) [6] are divided into economic, social, and 
environmental goals and form a coherent part of the United Nation’s global development agenda. 
Goal 7 calls for universal access to affordable, reliable, and sustainable energy. Goal 7 is also related to 
the 2015 Paris Agreement to reduce greenhouse gas (GHG) emissions. Schunder and Bagchi-Sen [7] 
have shown that in developing countries, household energy consumption contributes substantially to 
GHG emissions. 

In this paper, we investigate which societal factors contribute to the cooking fuel choices in the 
surveyed communities. Based on our results we evaluate whether the existing government policies 
applicable to the Amazonas State address the SDGs. We aim to identify whether there is signifcant 
progress towards the SDGs for this region. Investigations into the household fuel choices can indicate 
which socio-economic factors could contribute to communities reaching their SDG goals: by improving 
education; by increasing the income of residents; or by promoting and favouring the use of electricity 
from renewable sources. 

As the economic status of households in these communities is expected to improve, He et al. [8] 
have shown that aspects of their daily life, such as the choice of cooking fuels, are expected to 
improve. In particular, the energy ladder hypothesis formulated based on data from Zimbabwe [9], 
Botswana [10], and Ghana [11] stipulates that the households would switch from using traditional 
fuels, such as Firewood, towards more sophisticated fuels, such as Liquefed Petroleum Gas (LPG) 
or electricity. (For simplicity, the term Gas is used to denote LPG for the rest of the paper.) The 
meta-analysis in [12] argues that this switching is needed as it brings benefts in terms of health 
and environmental sustainability. As seen in [12,13] these fuels are often categorised under solid 
and non-solid fuel types, or as primitive, transition, and advanced fuel types. Along these lines, 
Firewood is considered as a solid and primitive fuel, while Gas is considered an advanced and non-solid 
fuel. Charcoal, on the other hand, is considered a transition fuel by [12]. For reasons of health and 
environmental conservation, the move towards the more sophisticated fuel types like electricity is 
largely thought to be desirable. However, the energy ladder hypothesis has been disproved in many 
surveys and alternate models, such as the approach by Alem et al. [14] have been proposed. Recent 
studies, such as that by Mekonnen and Köhlin [15] in Ethiopia, have shown that instead of fuel 
switching, households rather tend to stack different kinds of fuels together, such as Firewood and 
Charcoal, or Charcoal and Gas or Electricity, or Firewood, Charcoal and Gas or Electricity in what is known 
as fuel stacking. Fuel stacking therefore represents a slower transition toward the exclusive use of 
advanced fuel types. 

Moreover, the current consensus is that the choice of which fuels are stacked does not solely 
depend on household income, and as noted by Heltberg [16], does not signifcantly depend on income 
at all. Heltberg [17] has also hinted at other factors—such as the household occupancy, civil status 
and education level of the household head, the availability and access to fuel, and whether the 
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household is a permanent or temporary residence—as infuential in the choice of cooking fuel in 
different geographical regions. Muller and Yan’s review [18] shows that an abundance of these factors 
and their variability in different geographical regions underscore the importance of identifying which 
particular factors, among all such factors collected in a given survey, most signifcantly affect the 
household fuel choice. Identifying these signifcant factors, as done for rural Kenya [19] or rural 
China [20], yields information that directly infuences energy policy, especially in many developing 
countries where the use of traditional fuels is more common. 

Since not all factors collected in a given survey impact the fuel choice behaviour signifcantly, 
several works [21–23] have focused on identifying the signifcant factors (referred to as determinants) 
of household fuel choice in different countries and geographical regions, such as Ethiopia [14,15], 
Ghana [23], China [22], and Guatemala [16]. Heltberg [17] observed that determinants as identifed in 
these studies tend to vary signifcantly between geographical regions due to differences in factors, such 
as education level and availability and access to fuel. For example, for a community with easy access 
to Gas, the fuel switching or stacking behaviour may be impacted by some other factor, such as income, 
to a different degree from a community with no easy access to Gas. The existing variations in these 
determinants and the extent of their unique infuence in different geographical regions motivate our 
main contribution in this paper: the identifcation of fuel choice determinants in riverside communities 
in the Amazonas State of Brazil, using a multinomial logistic regression model [24]. The model is given 
in Section 2.1. To the best of our knowledge, very few works have been conducted to investigate the 
determinants of household fuel choice in this region. The work by Heltberg [17], which considers other 
parts of rural Brazil, achieves a coeffcient of determination (R2 ≈ 0.3) for the model of fuel choice 
behaviour that leaves room for improvement (much of the variation is unexplained). 

Furthermore, to identify the fuel choice determinants in riverside communities in the Amazonas 
State, we address the issues of model validation and feature selection and how they can potentially lead 
to drawing inaccurate conclusions about the determinants of household fuel choice in Sections 2.1 and 4.4. 
In our context, model validation consists of reserving an independent dataset to test the correctness or 
accuracy of the trained multinomial logistic regression model in terms of predicting the fuel choice, 
while feature selection refers to identifying the optimal set of fuel choice factors to be used to develop 
the model. 

The rest of the paper is organised as follows: Section 2 reviews relevant literature in the area of 
household fuel choice behaviour, as well as the statistical method often employed in the identifcation 
of the determinants of household fuel choice. In Section 3, we describe the materials and methods 
used in the collection of the dataset on which the analysis in this paper is based. We provide a detailed 
discussion of our results in section 6 and conclude with recommendations on energy policy in riverside 
communities in the Amazonas State of Brazil in Section 7. 

2. Literature Review 

While clean and energy-effcient methods of cooking provide benefts in terms of health, 
environment, and sustainable development, their adoption has not been widespread in many 
developing countries [18], with Santillan et al. [25] fnding a correlation (R = 0.84) between the 
Human Development Index (HDI) of a country and its Multidimensional Energy Poverty Index 
(MEPI). For example, Olang et al. [26] notes that, while there is a general desire towards the adoption 
of advanced fuel types in Kenya, they have been hindered to some extent by poverty and other factors, 
such as availability and access to fuel. This has led to intense research for various regions, such as 
Afghanistan [27], Bhutan [28], Kenya [29], Turkey [30], and India [31], on which factors determine the 
transition from a primitive cooking fuel, such as Firewood to that of an advanced fuel, such as Gas or 
Electricity. Reviews, such as Kowsari and Zerriff’s three dimensional energy profle proposition [32] 
and Heltberg’s multi-country study [33], show that the increasing body of evidence is enabling a 
better understanding of the phenomenon and factors surrounding energy use. Beyond the adoption 
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of an advanced fuel type, the work by Tigabu [34] has also investigated what factors account for the 
sustained use of such advanced fuel types. 

In early publications [9–11], the economic status of a household was originally thought to be the 
sole determinant of this transition, in what became known as the energy ladder hypothesis. However, 
several works have since disputed [9,11,16] this theory. For example, Malakar [35] showed that, in 
rural India, income had little infuence on the choice of advanced cooking fuel. Additionally, increasing 
research has pointed to the phenomenon of fuel stacking [11,12,14,15], and have hinted at several other 
factors infuencing this transition [9,11,16,36–38]. The review in Fredriks et al. [39] shows that there 
can be a wide range of socio-demographic factors that infuence household energy behaviours and 
patterns. For example, Heltberg [16] identifed the following factors as signifcantly infuencing the 
energy choice behaviour in Brazil, Ghana, Vietnam, Guatemala, India, Nepal, Nicaragua, and South 
Africa: education level of the household, household size, percentage of females in the household, 
number of rooms in the household, household expenditure, access to electricity, and others. Rao 
and Reddy [31] identifed further factors, such as the age of the household head and their religion as 
infuencing the fuel choice behaviour in India, while Olang et al. [26] identifed the cooking location 
as another key determinant of fuel choice in Kenya. On the whole, Saksena [40] classifes these fuel 
choice factors under household demand-side factors (such as household income) and community-wide 
supply-side factors (such as access to fuel), arguing from an economic perspective that supply-side 
factors may prevent a wealthy household from transitioning towards an advanced fuel type, even 
though there might be demand for the advanced fuel. 

However, the factors identifed in the above works do not apply to all geographical regions. 
For example, Pundo [41] found in rural Kenya no signifcant effect of age of the household or household 
size on the fuel choice in rural Kenya, while the study in [42] has found that in Pakistan, an increase in 
the age of the household resulted in an increase in energy consumption. Ouedraogo [43] found no 
signifcant infuence of household ownership or gender on the fuel choice in Burkina Faso. Baral [44] 
has found that energy consumption and resource dependence varies over time with high-income 
households relying on more sophisticated fuels, such as Gas, while lower-income household continue 
to use traditional fuels such as fuel-wood. Mekonnen and Köhlin [15] found no infuence on the 
percentage of females in a household on the fuel choice in Ethiopia. 

The differences in the degree of infuence of these factors across different geographical regions [17] 
have stirred up recent work [11,14,18,21] in understanding what the determinants of household fuel 
choice are in the different regions. Some existing work [14–17,21] regarding the determinants of 
household fuel choice behaviours in terms of fuel stacking have often been accompanied by rigorous 
statistical modelling of survey data, the most common technique being multinomial logistic regression. 

Multinomial logistic regression is often employed to relate the various fuel choice factors, such as 
age or income of household head, to whether or not the household is likely to stack one or more fuel 
types. Because multinomial logistic regression is fundamentally a statistical classifcation technique, 
employing logistic analysis to identify the determinants of household fuel choice is essentially a 
statistical classifcation problem. In the general sense of the concept, statistical classifcation involves 
classifying objects into one of several distinct groups or categories, based on the features of the 
objects. In the context of household fuel choice, classifcation refers to the task of identifying which 
category of cooking fuels a household employs—such as Firewood and Charcoal, Charcoal and Gas, 
or Firewood, Charcoal and Gas—based on factors, such as those mentioned above, including income, 
household occupancy, occupation and civil status of the household head. The subset of the factors 
which contribute most signifcantly to identifying the cooking fuels a household employs is then 
identifed as the set of determinants of household fuel choice. 

This paper follows the same methodology to identify the determinants of fuel choice behaviour 
in riverside communities in the Amazonas State of Brazil. Furthermore, we validate the multinomial 
logit model and investigate the infuence of feature selection on its performance. 
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2.1. Multinomial Logistic Regression 

Multinomial logistic regression, more commonly referred to as multinomial logit, is a multi-class 
classifcation technique that is used in multiclass scenarios, i.e., in scenarios where the dependent 
variable to be predicted has more than two categories. Multinomial logit is a multi-class extension of 
logistic regression and, in the following, we provide a brief background for the method. 

Suppose that the choice of cooking fuel (denoted by y) in a household is suspected to depend on 
the following variables: x1: household income; x2: occupation of the household head; x3: civil status 
of household head; x4: number of household occupants; and, x5: availability and access to different 
fuel types. In general, there will be up to d different variables considered. Let x represent the set of 
these d variables, as: 

x = [x1, x2, x3, x4, x5, ..., xd]
> . (1) 

Because the dependent variable y denotes the choice of cooking fuel, it is a class label or a 
categorical variable. For the moment, we suppose there are only two categories for y, namely: Gas (G) 
and Charcoal (C); in other words, we assume that a household uses either Gas (G) only or Charcoal (C) 
only. We may assign numerical attributes to y, as follows: Gas (G) 7→ 0 and Charcoal (C) 7→ 1. 

Logistic regression fnds a linear combination of x, parameterised by w and b, and passes the 
results through a logistic function that is bounded between 0 and 1 to obtain a probabilistic score for 
the dependent variable y. More specifcally, logistic regression seeks to fnd parameters w and b that 
relate the independent variables x to the dependent variable y, as follows [45]: (

G, if z ≥ 0.5 
y = (2)

C, if z < 0.5, 

where 1 
z = (3)

1 + e−(w>x+b) 

The parameters w and b are normally found by maximising the log-likelihood of the dataset or 
by minimising the cross-entropy error [45]. The function that is given in (3) is the logistic function, 
which ensures that the output z remains within the range [0, 1], which can be interpreted as the 
probability that a household uses gas or Charcoal. 

The relationship in (3) can be rewritten as: 
z>w x+ b = ln , (4)

1− z 

Because z is a probability value, (4) explicitly captures the infuence of the independent variables x 
on the log-likelihood of a household using a particular fuel type and not the other. In our particular 
scenario where we have only considered two categories for the dependent variable y, namely Gas (G) 
and Charcoal (C), an increase in z corresponds to an increase in the probability of Gas use according to 
(2). Thus, the relation in (4) is equivalent to: 

p(G)>w x+ b = ln , (5)
p(C) 

Now, suppose that we have more than two class labels or categories for y, for example: (1) Gas 
(G); (2)Firewood (F); and, (3) Charcoal (C). In order to generalise logistic regression to these 3 categories, 
one of the categories is arbitrarily selected as the reference category, against which logistic regression 
models are trained for all other categories. For example, with category C (Charcoal) arbitrarily selected 
as the reference, the following logistic regression models are required: 

p(G)>w1 x+ b1 = ln , (6)
p(C) 

p(F)>w x+ b2 = ln , (7)2 p(C) 
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Thus, from (6) and (7), the probability of each of the non-reference categories of y—can be obtained 
in terms of the probability of the reference category C, as follows: 

1 x+b1p(G) = p(C)ew> 
, (8) 

2 x+b2p(F) = p(C)ew> 
, (9) 

Because the sum of the probabilities of all 3 categories must equal 1, the probability of the reference 
category can be solved for from the following: 

w> w> 
p(C) + p(G) + p(F) = p(C) + p(C)e 1 x+b1 + p(C)e 2 x+b2 = 1, (10) 

from which the probability of any other category, i.e., Gas (G) and Charcoal (C) can be derived according 
to (10). In general, for a dependent variable y with k distinct categories, k − 1 logistic regression 
equations are necessary and suffcient for multinomial logistic regression. 

However, like many other statistical classifcation methods, the statistical analysis that has 
accompanied the identifcation of the determinants of household fuel choice while using multinomial 
logistic regression have several pitfalls that can lead to overestimating or underestimating the 
importance of some variables. In particular, 

1. The statistical models employed in the literature are not often validated [11,14,17,18,21]. 
Model validation involves testing the model of fuel choice behaviour on a test dataset (that 
was not used for training the model) in order to evaluate the correctness of the model. Given 
that multinomial logit is a classifcation technique, the validation that is required is in terms 
of how accurately the multinomial logit model predicts the cooking fuel categories for all 
households based on the factors or variables considered. This measure of accuracy is known as 
the classifcation accuracy. A satisfactory classifcation accuracy is necessary in order to draw 
robust conclusions regarding the statistically signifcant factors. Without model validation, any 
conclusions drawn regarding the determinants of household fuel choice, despite their being 
statistically signifcant, may be unreliable, since the logit models may have poor classifcation 
accuracy. 

2. Achieving poor classifcation accuracy from validation using the multinomial logit model may 
suggest one of two things: frst, more sophisticated machine learning algorithms for classifcation, 
such as artifcial neural networks [46], may be used in place of multinomial logit to achieve 
superior classifcation accuracy; with these machine learning approaches, different conclusions 
may be drawn regarding the determinants of household fuel choice. Secondly, the relationship 
between fuel choice behaviour and the variables considered may be inconsequential, despite some 
variables being statistically signifcant. 

3. Several surveys collect much information about a given household; some parameters tend to be 
irrelevant to the understanding of their fuel choice behaviour. For example, Pundo [41] collected 
information, such as the household labour activities and found that they have no signifcant 
infuence on the energy choice behaviour. Understandably, such information is collected because 
it is safer to make no prior assumptions as to the factors that determine the fuel choice. However, 
these nuisance factors, when considered in the statistical model, often cause over-ftting and often 
lead to identifying the wrong factors as the predominant ones. Specifcally, the inclusion of these 
nuisance factors in the statistical models tend to account for noisy samples, so that the model 
fails to correctly predict new samples. This problem makes feature selection an indispensable 
aspect of statistical modelling. Feature selection involves fnding an optimal subset of the fuel 
choice factors to be used to develop the multinomial logit model in order to reduce the effect of 
overftting that may result from including nuisance factors. 
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In our efforts to identify the determinants of fuel choice behaviour in riverside communities in 
the Amazonas, we simultaneously address the above issues of model validation and feature selection 
in order to obtain robust conclusions that can positively and consequentially infuence energy policy. 

3. Materials and Methods 

In order to evaluate the determinants of household cooking fuel choice in Amazonas State 
riverside communities, a cross-sectional study was conducted in 14 riverside communities (593 
households) located on the Rio Negro, Amazonas State, Brazil. These 14 communities are shown 
in Figures 1–7. The GPS coordinates are provided in the datasets to allow for easier and clearer 
visualisation of these communities. 

(a) Aruau (b) Baixote 
Figure 1. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 

(a) Chita (b) Maraja 
Figure 2. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 

(a) Monte Sinai (b) Nova Sugarcanea 
Figure 3. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 
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(a) Nova Esperanca (b) Pagodao 
Figure 4. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 

(a) Santa Isabel (b) Santa Antonio 
Figure 5. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 

(a) Sao Tome (b) Terra Preta 
Figure 6. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 

(a) Tiririca (b) Tres Unidos 
Figure 7. Maps of communities surveyed: yellow indicates a community facility, grey indicates a 
household surveyed, black indicates a household not surveyed and the blue lines show the paths the 
surveyors took. 
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3.1. Data Collection 

The study was conducted over a 9 week period between April and June 2017. Two surveys were 
deployed in each of the 14 communities. One survey targeted individual households, while the second 
focused on the community as a whole. 

The household survey included open- and closed-ended questions that are based on the World 
Bank guidelines for questionnaire design for household energy use from living standards measurement 
studies [47]. One purpose of the households survey was to obtain data about their socio-demographic 
data, such as: income, education, house occupancy, house ownership, kitchen types, their choice of 
cooking fuels, their energy usage data, as well as their energy needs and aspirations. The repository 
in [48] contains the full dataset and complete listing of the response variables collected in this study . 
This paper only considers a relevant subset of these variables, as shown in Table 1. 

Table 1. Characteristics of the households. 

Variable Name Surveyed 
Population 

Firewood 
and Gas 

Firewood, 
Charcoal and Gas 

Charcoal 
and Gas Gas 

Number of people at meals daily 4 ± 2.5 6 ± 3.5 4 ± 2.2 3 ± 1.7 3 ± 1.8 
Number of people contributing to 1.8 ± 0.8 2 ± 1 1.8 ± 0.82 1.8 ± 0.65 1.6 ± 0.61 
the monthly income 
Number of meals per day 3.3 ± 0.83 3.2 ± 0.8 3.4 ± 0.77 3 ± 1.2 3.3 ± 0.71 
Number of Men in Household 2 ± 1.4 3 ± 1.4 2 ± 1.2 2 ± 1 2 ± 1.3 
Number of Women in Household 2 ± 1.1 2 ± 1.1 2 ± 1.2 2 ± 1.3 1.5 ± 0.95 
Age of Household Head 

15–25 18.1% 9.7% 22.4% 21.1% 14.7% 
26–36 27.7% 9.7% 35.3% 26.3% 23.5% 
37–45 22.0% 41.9% 15.3% 21.1% 17.6% 
46–55 16.9% 16.1% 14.1% 5.3% 32.4% 
>56 15.3% 22.6% 12.9% 26.3% 11.8% 

Civil Status of Household Head 
Divorced 0.6% 0.0% 0.0% 0.0% 2.9% 
Married 42.1% 61.3% 40.0% 31.6% 37.1% 
Other union 24.7% 19.4% 28.2% 36.8% 17.1% 
Separated 0.6% 0.0% 0.0% 0.0% 2.9% 
Single 30.9% 19.4% 30.6% 31.6% 37.1% 
Widow 1.1% 0.0% 1.2% 0.0% 2.9% 

Education of Household Head 
Does not know how to read 4.0% 6.7% 2.4% 5.3% 2.9% 
Can read and write 5.7% 13.3% 6.0% 5.3% 0.0% 
Incomplete elementary school 39.4% 43.3% 41.0% 31.6% 37.1% 
Completed elementary school 8.0% 0.0% 7.2% 15.8% 8.6% 
Incomplete high school 16.0% 20.0% 19.3% 5.3% 14.3% 
Completed high school 22.9% 10.0% 24.1% 36.8% 25.7% 
Completed higher education 4.0% 6.7% 0.0% 0.0% 11.4% 

Gender of Household Head 
Female 54.0% 48.4% 61.9% 33.3% 52.9% 
Male 46.0% 51.6% 38.1% 66.7% 47.1% 

House Ownership 95.5% 93.5% 100.0% 89.5% 88.6% 
Residence 85.5% 64.5% 94.1% 100.0% 80.0% 
Normal Cooking Area 

Outdoor kitchen 6.4% 12.9% 4.8% 5.6% 0.0% 
There is no kitchen 1.2% 0.0% 0.0% 5.6% 0.0% 
Built-in kitchen 92.4% 87.1% 95.2% 88.9% 100.0% 

For the households survey, participation was decided based on the following two criteria: (i) the 
respondent is an adult family member (over 18 years old) and (ii) the respondent is the primary cook 
or the primary decision maker regarding the choice of household cooking fuel. 

The community survey was used to obtain data regarding the community as a whole, including 
the number of households, cost and availability of fuel, and the proximity of the communities to 
municipal areas. These data are necessary to understand in what respects the communities differ, such 
as the availability of cooking fuel. The community survey was answered in each of the 14 communities 
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by the designated community leader, or their representative, where the community leader was not 
present. Table 2 summarises the locations of the communities and the availabilities and prices of Gas in 
these communities. 

Table 2. Community summary. 

Community Name Nearest Municipality Travel Time to Nearest 
Municipality (hours) 

Gas 
Availability 

Cost of Gas 
(BRL) 

Aruau Manaus 1.77 Yes 74 
Baixote Manaus 0.62 Yes 65 
Chita Manaus 0.97 No -
Maraja Novo Airao 1.5 No -
Monte Sinai Manaus 1.45 Yes 65 
Nova Sugarcanea Manaus 1.37 Yes 70 
Nova Esperanca Manaus 1.45 No -
Pagodao Manaus 1 Yes 80 
Santa Isabel Novo Airão 0.83 No -
Santo Antonio Novo Airão 0.5 No -
Sao Tome Manaus 1.4 No -
Terra Preta Manaus 0.93 Yes 75 
Tiririca Novo Airão 0.5 Yes 67 
Tres Unidos Manaus 1.2 Yes 68 

Before the administration of the surveys, several enumerators were trained on (i) the purpose 
of the study, (ii) obtaining informed consent, and (iii) how to administer and record the data. Ethical 
approval for the surveys was obtained at Coventry University. To collect the data, the trained 
enumerators surveyed each household by a face-to-face interview in Portuguese. The surveys were 
originally designed in English and then translated to Portuguese by a native speaker. The collected 
survey data were then translated to English. The English translation was checked by a native English 
speaker for understanding. 

3.2. Responses 

Assuming a normal distribution, the required number of samples n necessary to guarantee a 
margin of error of e at a certain confdence level is given by [49]: r 

q(1− q)
z ≤ e (11)

n 

where z is the z-score corresponding to the required confdence level and q is the degree of variability 
in the population (which is often set to q = 0.5 [49]). Thus, a sample size of 234 was initially established 
according to (11) as necessary in order to identify the determinants of the fuel choice behaviour in the 
14 communities with a 5% margin of error and a 95% confdence level. From the feldwork, however, 
we obtained a total of 179 responses, which was 23.5% lower than the target number of 234. Table 3 
shows the rate of response in each community. The response rate was lower than expected due to the 
following reasons: 

1. houses were unoccupied during the visit: people were either not permanently living in 
the community, or were working outside of the community, for example, fshing or doing 
agricultural work; 

2. houses were far outside the main village, therefore were inaccessible; and, 
3. the sizes of the communities were larger than offcial records, therefore the human resource 

required to cover all households was not available prior to the survey administration. 

Before statistical analysis proceeded, pre-processing of the data was undertaken to remove invalid 
responses. The data were then fltered to only include households that responded to all of the required 
information for the analysis. Furthermore, each nominal categorical response variable was converted 
to numeric variables of one category less. 
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Energy-based surveys in developing countries are increasingly evidencing household expenditures 
as well as or rather than household incomes. 

Following the guidelines from [50], while household expenditures is a reliable indicator of daily 
expenses, household income as a variable indicates overall household wealth, including how more 
than one individual within a household contributes to the household income. These data, along 
with other determinants, such as gender, education, and food insecurity, can measure the level of 
economic inequality in a particular context, which can be used to identify the demographic groups 
with household income levels that make them more at risk of energy insecurity. 

In total, there were 150 usable responses, which corresponded to 25.3% of the areas population. 
Therefore, at the 95% confdence level, we can expect a margin of error of about 8% from (11). This is 
the error due to sampling that can be expected in the results of our analysis. 

Table 3. Breakdown of respondents by community. 

Community No. of Households No. of Respondents Response Rate (%) 

Aruau 68 12 18 
Baixote 39 15 38 
Chita 45 9 20 
Maraja 14 9 64 
Monte Sinai 58 17 29 
Nova Sugar Canea 53 15 28 
Nova Esperanca 46 17 37 
Pagodao 40 10 25 
Santa Isabel 47 12 26 
Santo Antonio 23 12 52 
Sao Tome 38 6 16 
Terra Preta 47 12 26 
Tiririca 21 12 57 
Tres Unidos 54 21 39 
Total 593 179 30 

4. Identifcation of Fuel Choice Determinants 

4.1. Energy Ladder Hypothesis 

In this section, we attempt to verify the energy ladder hypothesis by identifying any correlation 
between the evolution of household fuels from primitive to advanced fuel types, with increasing 
income levels. In this paper, we employ three fuel types: Firewood (F); Charcoal (C); and, Gas (G), 
representing primitive, transition, and advanced cooking fuel types, respectively. First, we provide the 
distribution of the communities by their household fuel choice in Table 4 and by their income brackets 
in Table 5. 

From Figure 8, we observe a general decline of Firewood usage as the income level increases. 
However, rather than observing a proportionate gradual increase in Gas and Charcoal usage to suggest 
that households switch from Firewood to advanced and transitional fuel types as their income level 
increases, we observe no such obvious trend; this goes against the energy ladder hypothesis. 

Table 4. Fuel combinations. Only the fuel mixes in bold were used in the analysis. 

Key Fuel Mix Class Index y Percentage of Respondents (%) 

G Gas 1 19.6 
C Charcoal 2 1.1 

C,G Charcoal and Gas 3 10.6 
F Firewood 4 0.6 

F,G Firewood and Gas 5 17.3 
F,C Firewood and Charcoal 6 1.1 

F,C,G Firewood, Charcoal and Gas 7 47.5 
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Table 5. Distribution of respondents by income bracket. MW represents the minimum wage, which is 
998 BRL per month as of June 2019, equivalent to £205 per month. 

Income Bracket Percentage of Respondents (%) 

< 1MW 74.25 
1–2 MW 18.56 
2–5 MW 4.79 
5–10 MW 1.80 
10–20 MW 0.60 
> 20MW 0 

Figure 8. Energy ladder hypothesis. 

In opposition to the energy ladder hypothesis, as was mentioned earlier in Section 1, the work 
in [9,11,16] has shown that households generally tend to stack multiple fuel types for reasons not 
due to income alone. To identify the other determinants of household fuel choice, the problem is 
formulated as a classifcation task, where the classes are the fuel mix or combinations of the 3 fuel types 
considered, i.e., Firewood (F), Charcoal (C), and Gas (G). Table 4 shows these fuel mix or combinations. 

4.2. Multinomial Logistic Regression 

In the determination of household fuel choice by multinomial logit, the multiple classes are 
represented by the different fuel combinations used in the households (Table 4). However, in our 
survey, there are very little data belonging to the fuel mix categories: 2, 4, and 6 (Table 4). Consequently, 
these three categories are excluded, as their inclusion leads to numerical instability in the statistical 
computations, and thus we end up with 4 fuel mix categories for our multinomial logit analysis, i.e., 
1, 3, 5, and 7. 

Multinomial logit expresses the relative log-likelihood of any two of these categories as a linear 
model. To illustrate, let y, as before, represent the dependent variable, which is the indicator of the fuel 
combination, with 4 different discrete outcomes: 1, 3, 5, and 7, as given in Table 4. Additionally, let x 
be a vector representing the set of all 14 independent variables as given in Table 1. Subsequently, a 
multinomial logit model can be expressed using the following equation: 

p(y = 1) >ln = w x+ b1 (12)
p(y = 3) 1 

where the vector w1 and the bias b1 are the parameters of the linear model that are ft to the data. 
Essentially, (12) provides the log-likelihood that a household would employ Gas only (Class 1) as 
a cooking fuel as opposed to stacking Charcoal and Gas (class 3) as cooking fuels; by analysing the 
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properties of the vector w1, it is then possible to infer what the determining factors informing such a 
behaviour are. Similar equations can be derived for the remaining fuel mix categories, as follows: 

p(y = 5) >ln = w x+ b2 (13)
p(y = 3) 2 

and 
p(y = 7) >ln = w x+ b3 (14)
p(y = 3) 3 

It will be noted that all of the probabilities in (12)–(14) are expressed relative to p(y = 3). These 
equations therefore consider class 3, which represents the Gas and Charcoal fuel mix (see Table 4), as 
the reference category. 

In principle, the formulation of multinomial logit allows for any of the 4 fuel categories we have 
considered to be arbitrarily used as the reference category. However, we have used category 3 as the 
reference category, so that the results from the logit analysis would be easily interpretable in terms of 
understanding both fuel switching and fuel stacking behaviours. Specifcally, 

1. By comparing class 1 to class 3, we are able to identify the factors responsible for households 
stacking Charcoal and Gas (class 5) instead of using Gas only (class 1). 

2. By comparing class 5 with class 3, we are able to identify the determining factors for a household 
that uses Firewood and Gas (class 5) as cooking fuels, switching the Firewood component to Charcoal 
(class 3). 

3. By comparing class 7 to class 3, we are able to identify the factors that are responsible for a 
household stacking Firewood, Charcoal and Gas (class 7) instead of using Charcoal and Gas (class 3) 
only for cooking. 

Table 6 shows the results of multinomial logit on our dataset. 

4.3. Interpretation of Results 

The following conclusions are drawn from the results in Table 6: 

Table 6. Multinomial logistic regression—all response variables. 

Variable Name F, C, G F, G G 

w4 p-Value w5 p-Value w6 p-Value 

Age of Household Head −3.35 0.0543 −0.91 0.6689 −1.63 0.3626 
Civil Status of Household Head 0.75 0.5236 1.16 0.3885 1.61 0.1742 
Community name 

Baixote 1.39 0.5158 9.28 0.8946 −0.10 0.9640 
Chita 13.43 0.9802 20.19 0.9705 9.96 0.9853 
Marajá 15.55 0.9764 24.27 0.9635 14.80 0.9775 
Monte Sinai 0.69 0.6761 9.66 0.8903 1.19 0.4597 
Nova Esperança −0.37 0.8093 7.16 0.9186 −0.84 0.5997 
Nova Sugar caneã 5.29 0.9989 17.43 0.9965 5.78 0.9989 
Pagodão −0.75 0.6191 9.89 0.8877 −32.48 1.0000 
Santa Isabel 23.89 0.9999 −6.50 1.0000 −9.35 1.0000 
Santo Antônio 4.24 0.0352 12.08 0.8631 2.22 0.2840 
São Tomé 25.47 0.9999 −7.39 1.0000 −10.22 1.0000 
Terra Preta 0.65 0.6622 7.73 0.9121 −1.37 0.4453 
Tiririca 18.24 0.9935 −12.35 1.0000 17.04 0.9939 
Três unitos 1.82 0.3099 10.96 0.8756 0.81 0.6534 

Education of Household Head −2.13 0.3574 −4.75 0.0655 −0.77 0.7475 
Gender of Household Head −1.22 0.1906 −0.43 0.7053 −0.93 0.3308 
House Ownership −25.23 0.9999 1.61 0.5816 2.09 0.4331 
Monthly Income of the Family −4.41 0.1532 3.44 0.2759 −0.11 0.9671 
Normal Cooking Area −11.90 0.9902 −14.35 0.9881 17.16 1.0000 
Number of Men in Household −5.68 0.2225 −6.21 0.2103 −6.03 0.2174 
Number of Women in Household −4.23 0.2368 −5.84 0.1617 −4.33 0.2717 
Number of meals per day 4.22 0.1315 6.38 0.0423 5.06 0.0755 
Number of people at meals daily 27.11 0.0460 34.74 0.0139 26.12 0.0641 
Number of people contributing to the 2.24 0.4999 3.23 0.3593 −0.89 0.8143 
monthly income 
Residence −12.73 0.9864 −12.28 0.9869 −12.84 0.9863 
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4.3.1. Charcoal and Gas vs. Firewood, Charcoal and Gas 

The determinants of this fuel stacking behaviour are as follows: age of household head, the 
number of people at meals daily, and the community type. 

1. Age: the odds that a household that uses Charcoal and Gas only as a cooking fuels would stack 
Firewood, Charcoal, and Gas decreases for older household heads than younger household heads. 

2. Number of people at meals daily: the odds that a household that uses Charcoal and Gas as cooking 
fuels would stack Firewood, Charcoal and Gas increases with the number of people at meals daily. 

3. Community: the odds that a household that uses Charcoal and Gas as cooking fuels would stack 
Firewood, Charcoal and Gas increases if the household is in Santo Antonio than if it were in Aruau. 
This is likely due to the fact that Santo Antonio has no Gas availability and, hence, the households 
prefer to stack Firewood rather than access the nearest municipality. 

4.3.2. Firewood and Gas vs. Charcoal and Gas 

The determinants of this fuel switching behaviour are as follows: education of household head, 
number of meals per day, and the number of people at meals each day. 

1. Education: the odds that a household that uses Charcoal and Gas as cooking fuels would switch the 
Charcoal component to Firewood decreases as the education level of the household head increases. 

2. Number of meals per day: the odds that a household that uses Charcoal and Gas as cooking fuels 
would switch the Charcoal component to Firewood increases with the number of meals per day. 

3. Number of people at meals daily: the odds that a household that uses Charcoal and Gas as cooking 
fuels would switch the Charcoal component to Firewood increases with the number of people at 
meals in a day. 

4.3.3. Gas vs. Charcoal and Gas 

The determinants of this fuel stacking behaviour are as follows: number of meals per day and the 
number of people at meals daily. 

1. Number of meals per day: the odds that a household that uses only Gas as a cooking fuel would 
stack Charcoal with it decreases with the number of meals per day. 

2. Number of males: the odds that a household that uses only Gas as a cooking fuel would stack 
Charcoal with it decreases with the number of people at meals daily. 

These last couple of conclusions seem rather counter-intuitive, and we address this in Section 6, 
where we discuss the effects of not performing any feature selection prior to or as part of the 
model building. 

4.4. Cross-Validation of the Multinomial Logit Model 

The multinomial logit is one of the models of choice for identifying household fuel choice 
determinants, yet the model can lead to wrong conclusions being drawn about the predominant 
factors, without proper validation and feature selection. While the results of multinomial logit may 
point to the determinants of household fuel mix, it is impossible to tell how accurately the model is in 
terms of predicting the fuel mix categories that different households employ, without proper validation. 
Consequently, if a multinomial logit model has a low predictive accuracy, the determinants pointed out 
by the model are not reliable. For example, the model that is given in Table 6 has an average accuracy 
of only 70.15% in terms of predicting the true fuels households use. Thus, for example, the conclusion 
that income may be a determining factor for a household that uses Firewood and Charcoal as cooking 
fuels, to switch the Charcoal component to Gas (as shown in Section 4.3.2), may be dubious, due to the 
relatively low accuracy of the model. We will demonstrate on our dataset, however, that after proper 
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validation and feature selection, a different conclusion may be drawn regarding the predominant 
factors that infuence the choice of fuel mix. 

In statistics, cross-validation involves partitioning an available dataset into a number of folds: 
one fold, known as the test set, is used for testing or validating the multinomial logit model, while the 
remaining folds, known as the training set, is used to train the model in the frst place. Approaches 
for performing cross-validation abound, including K-fold, Leave-one-out, and bootstrapping. In 
this paper, we have employed K-fold cross-validation (with K = 10[51]) which involves partitioning 
the dataset into 10 folds, such that the multinomial logit model is developed on each set of 9 folds, 
and tested on the tenth fold in terms of its classifcation accuracy. We have used K-Fold validation 
because it ensures that each data sample is used for both training the multinomial logit model and for 
testing it, as well as ensures that the model is tested only once on each data sample. 

5. Effects of Feature Selection 

Often, not all of the response variables gathered in a survey are relevant in determining the fuel 
choice behaviour of households; examples include the type of plantations or the number of pets in the 
household. Other response variables may be redundant in the presence of others; for example, in a 
community where there is a fairly equal number of household occupants, the number of males in the 
household may be redundant, if the number of females is already considered. The inclusion of these 
redundant and irrelevant response variables in the multinomial logit model can lead to overftting of 
the model, and may highlight the wrong determinants. 

Feature selection involves selecting the optimal subset out of a set of response variables (features), 
which does not contain redundant or irrelevant response variables, so that the trained model suffers 
a reduced effect of overftting. For a dataset with n response variables, there are 2n − 1 subsets 
that may be formed from the set of n features. The simplest way to choose the best performing 
subset is to perform cross-validation on each one of the 2n − 1 subsets, i.e., for each one of the 2n − 1 
subsets, a multinomial logit model is trained and tested on a test fold. The subset that yields the best 
classifcation or predictive accuracy is chosen as the optimal subset. This approach to feature selection 
is known as a wrapper. Because wrappers involve exhaustively evaluating the cross-validation 
predictive accuracy for each of the 2n − 1 subsets, they can be computationally expensive for large 
number of response variables n. Thus, other approaches, known as flters, in a bid to reduce the 
computation required, evaluate such metrics as the mutual information or correlation coeffcient instead 
of the cross-validation predictive accuracy of the model. Alternatively, rather than an exhaustive 
searching through all 2n − 1 possible subsets, other feature selection approaches employ local search 
procedures, such as variable neighbourhood search, so that they evaluate the performance for only a 
few probable subsets. 

More practically, an L1-regularisation can be used to automatically select features during the 
training of the multinomial logit model. This does not present any computational burden, since there 
is no exhaustive search of the optimal features, but rather the regularisation penalty essentially forces 
the irrelevant features to zero. 

In this paper, we employ the L1-penalty with the regularisation coeffcient set at 0.12, which was 
optimised via cross-validation. This regularisation setting zeroed out four communities, which were 
thus excluded from the multinomial logit model. 

Our results show that the set of all 14 response variables (that are expanded to 26, once nominal 
response variables are one-hot encoded) in Table 1 give a classifcation accuracy of 70.15% ± 0.90%, 
while the optimal subset of features (16 including one-hot encoded variables) obtained via the 
L1-regularisation, gives a classifcation accuracy of 73.13% ± 0.67%; the difference between these 
two classifcation accuracies has a p-value of 0.0023, and it is statistically signifcant at the 1% 
confdence level. 

Therefore, we proceed to train a multinomial logit model with only the optimal subset of features 
in order to identify the determinants of household fuel choice, after redundant and irrelevant features, 
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such as the number of men and women in the household and the place of cooking, have been removed. 
We believe the number of men and women were found to be irrelevant features, because they likely 
contain no more information over the number of people at meals daily. Table 7 shows the results. 

Table 7. Multinomial logistic regression—optimal subset of response variables. 

Variable Name F, C, G F, G G 

w4 p-Value w5 p-Value w6 p-Value 

Age of Household Head −1.77 0.1330 0.16 0.9119 −0.30 0.8015 
Civil Status of Household Head −0.08 0.9210 0.07 0.9452 0.64 0.4495 
Community name 

Baixote 0.35 0.8100 −0.00 1.0000 −0.77 0.5802 
Marajá 1.91 0.3598 2.80 0.2312 1.37 0.4914 
Monte Sinai −0.16 0.9132 0.45 0.8257 0.35 0.7981 
Nova Esperança −0.33 0.7939 −0.40 0.8303 −0.77 0.5270 
Pagodão −1.10 0.4043 1.04 0.5240 −4.31 0.1589 
Terra Preta −0.17 0.8892 −0.76 0.6712 −1.91 0.1627 

Education of Household Head −0.22 0.8896 −2.23 0.2232 0.82 0.6203 
Gender of Household Head −0.99 0.1744 −0.28 0.7544 −0.68 0.3694 
House Ownership −3.06 0.3669 0.28 0.8934 0.77 0.6645 
Monthly Income of the Family −4.29 0.0789 2.34 0.3515 −0.50 0.8131 
Number of meals per day 1.91 0.3105 3.06 0.1591 2.82 0.1447 
Number of people at meals daily 3.24 0.4629 7.94 0.0958 0.81 0.8600 
Number of people contributing to the 
monthly income 0.81 0.7326 1.60 0.5488 −1.34 0.6298 

Residence −1.21 0.4490 −1.09 0.5308 −1.59 0.3260 

5.1. Interpretation of Results 

The following conclusions are drawn from the results presented in Table 7: 

5.1.1. Charcoal and Gas vs. Firewood, Charcoal and Gas 

The determinant of this fuel stacking behaviour is the income level of the household. Specifcally, 
as their income level increases, a household that uses Charcoal and Gas as their cooking fuels becomes 
less likely to add Firewood to their fuel mix. 

5.1.2. Firewood and Gas vs. Charcoal and Gas 

The determinant of this fuel switching behaviour is the number of people at meals each day. 
In particular, as the number of people at meals increases, a household that uses Charcoal and Gas as 
cooking fuels becomes more likely to switch the Charcoal component to Firewood. 

5.1.3. Gas vs. Charcoal and Gas 

For this fuel stacking behaviour, none of the determinants is signifcant, even at the 90% confdence 
level. This contrasts with the counter-intuitive conclusions presented in Section 4.3.3, where the number 
of meals and the number of people at meals were identifed as signifcant. 

6. Discussion 

The multinomial logit analysis of our dataset reveals the determinants of household fuel choice 
for both fuel switching and fuel stacking behaviours of the selected riverside communities in the 
Amazonas. Moreover, the effect of feature selection is observed in the determinants, which are 
highlighted by the statistical analysis. 



Energies 2020, 13, 3857 17 of 21 

6.1. Fuel Stacking: Charcoal and Gas vs. Firewood, Charcoal and Gas 

From the multinomial logit model with and without feature selection, the decision of a household 
that uses Charcoal and Gas to stack Firewood, Charcoal and Gas is determined by the following: 
age of household, the number of people at meals each day, the community, and the income level 
of the household. The exact manner in which these factors affect the fuel choice are detailed in 
Sections 4.3 and 5.1. For this fuel choice behaviour, performing feature selection makes a big difference 
in terms of which factors are the determinants. For example, without feature selection, the multinomial 
logit analysis shows that the age of household, the number of people at meals each day, and the 
community (Santo Antonio) are the most signifcant factors with unique effects of −3.35, 27.11, and 
4.24, respectively; however, with feature selection, the most signifcant factor turns out to be the income 
level of the household only with unique effect of −4.29. Because the logit model with feature selection 
achieves a cross-validation classifcation accuracy that is statistically higher than that without model 
selection, it is more likely that the most signifcant factor is, in fact, the income level of the household. 
Thus, we note that energy policy that is based on the results of a multinomial logit model without 
feature selection may miss the importance of the income level of the household as a determinant of 
fuel choice. 

6.2. Fuel Switching: Charcoal and Gas vs. Firewood and Gas 

Comparing the multinomial logit results for with and without feature selection, the decision of a 
household that employs Firewood and Gas to switch the Firewood component to Charcoal is determined by 
the following: education of the household head, number of people at meals each day, and the number of 
meals per day. The exact manner in which these factors affect the fuel choice are detailed in Sections 4.3 
and 5.1. Without feature selection, all three factors happen to be signifcant determinants of this fuel 
choice behaviour; however, with feature selection, education of the household head, as well as the 
number of meals per day, is found not to be a signifcant factor. This disparity may signifcantly affect 
the direction energy policy takes. To resolve this disparity, the cross-validation accuracy of the statistical 
logit models with and without feature selection have to be considered. Because the cross-validation 
classifcation accuracy of the model with feature selection (73.13% ± 0.67%) is signifcantly greater 
than that without any feature selection (70.15% ± 0.90%), it follows that the conclusions that are drawn 
from the model with feature selection are more statistically likely. 

6.3. Fuel Stacking: Gas vs. Charcoal and Gas 

With the multinomial logit model without feature selection, the decision of a household that uses 
Gas only to stack Charcoal and Gas is determined by the number of meals per day and the number of 
people at meals daily. In particular, the likelihood of a household only using Gas as a cooking fuel to 
stack Charcoal and Gas decreases as the number of meals or the number of people at meals per day 
increases. This conclusion is rather counter-intuitive, as one would expect that with more people and 
more meals in a day, the households would opt for a cheaper fuel source by stacking Charcoal to Gas 
instead of the reverse relationship. This may be attributable to the fact that the multinomial logit 
model was without feature selection, because with feature selection, none of the factors were found to 
be signifcant for this fuel choice behaviour, even at the 90% confdence interval. 

6.4. Qualitative Review of Results 

From the experience of the team conducting the surveys their interpretation of the results is 
as follows: 

• The residents from the communities are aware that knowledge is limited in the community. 
Knowledge can have a strong impact on what is done in the community, and these communities 
are aware of that. The diffculty is in changing this scenario. There are a several reasons that have 
lead to the current situation: 
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1. The communities do not have enough schools as only two of the 14 surveyed communities 
had schools inside their boundaries, while the rest required a boat to attend classes. 

2. The schools are limited to teaching the fundamentals, as they lack resident teachers (a teacher 
that is available and would accept to move to the community). Teens that want to graduate 
from a higher education course need to move to the closest municipality near the community 
or to the Capital (Manaus). 

3. In most cases, people get married too early, usually before they turn 20. This also results in 
them stopping their education. 

4. There is a lack of comprehensive policies that are related to teaching for the Amazonas State. 

• Gender is an issue in any place of the world, but it is even more complicated in the rural areas 
of underdeveloped countries. We identifed a lot of women as community leaders (seven of 14), 
however those women have a double workload, as mothers (having at least three to four children) 
and managing the community. In gender, as a country, there has been a lot of improvement 
through self-governance but this is not the case in indigenous communities, where the cultural 
heritage and norms are strong. 

7. Conclusions 

The Sustainable Development Goals (SDGs) are a call for action by all countries to promote 
prosperity while protecting the planet. Goal 7 calls for universal access to affordable, reliable, and 
sustainable energy. It also encourages the adoption of renewable energy sources. 

In this paper, we studied a total of 14 isolated riverside communities from the largest State of 
Brazil, in the heart of the Amazon Rainforest, none of them electrifed until 2018. We were able to 
show, with statistical signifcance, that the fuel choice, fuel switching, and fuel stacking are dependent 
on several key factors, including: age of household, the number of people at meals each day, the 
number of meals daily, the community, education of the household head, and the income level of the 
household. 

A key fnding is that a model using feature selection produces a more statistically accurate model 
than one produced without this. Furthermore, this change alters which key factors are identifed as 
signifcant. 

It follows that an understanding of fuels use and stacking in communities can drive choice for 
energy empowerment that will form strong positive feedback loops towards several SDGs. Regarding 
the education determinant, we note that there are schools in 12 of the 14 communities, but those 
communities are mainly house elementary age pupils. If a dweller is to be educated further, they will 
migrate to the city. The funding for city education is not usually funded by government programs. 
However, some families receive a monthly stipend from the State governments income distribution 
program, Bolsa Flor This stipend is less than the minimum wage. Policies that lack an awareness of 
the local context may unintentionally reinforce inequalities. During the interviews, it became obvious 
that most resident community leaders are aware of the actual status quo of the three dimensions of 
sustainable development—economic, social, and environmental. Improvements can be made through 
an effective universal electrifcation program; by providing comprehensive opportunities for teachers 
of all levels, and through better income programs that are focused on regional potentials and local 
supply chains. 

Furthermore, when considering that the 14 communities surveyed use diesel generators for 
electricity a few hours a day, we can conclude that, so far, the ‘Goal 7: Affordable and Clean Energy’ 
and ‘Goal 13: Climate Action’ are far from being reached in the Amazonas State. The communities 
in the Amazonas State in Brazil do not have highways or telecommunication infrastructure, only the 
rivers. The challenge is huge in terms of logistics and investment. 

Extrapolating the results to the rest of the 2261 communities and 41,167 families that are without 
electricity in the Amazonas State, the SDGs will not be met until 2030. Moreover, the green house gas 
emissions will continue to rise. 

http:countries.We
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