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A B S T R A C T

Occupants adapt to thermal discomfort using three types of thermal behaviours:
physiological (e.g., sweating or shivering), changing the environment (e.g., chan-
ging heating settings or opening a window), or changing personal elements (e.g.,
clothing, body position, seating location). Compared to the built environment, the
range of thermal behaviours in a vehicle is limited. Modern vehicle climate systems
aim to maximise thermal comfort semi-automatically through control modes that
allow the occupants to provide feedback via the interface. A novel approach to
automatic climate control is the use of Reinforcement Learning. However, past
work has ignored the feedback from the user.

The main aim of this thesis is to integrate user-feedback into an Reinforcement
Learning (RL)-based vehicle climate control and assess if the system can learn user’s
preferences within a reasonable time. In order to develop an integrated system that
includes the interaction of the user with the climate control interface there is a need
for: a) a set of literature-based rules describing the extent of the thermal behaviour;
b) a human-agent that mimics the feedback process; c) a method of integrating the
simulated feedback in the context of Reinforcement Learning.

For the purpose of modelling the interaction with the climate system, three
main rules were identified in the thermal comfort literature related to how likely
occupants are to make changes when they are uncomfortable, which setting (tem-
perature, blower or vent) they are likely to select, and which value they are likely
to prefer.

The activation likelihood for each rule is found using data from an in-field exper-
iment with 49 trials, monitoring occupant thermal comfort, climate control actions,
and the thermal environment parameters. The resulting hybrid model (User-Based
Module (UBM)) is validated against a hold-out set of data from the experimental
trials. The User-Based Reinforcement Learning (UBRL) climate controller combines
the simulated feedback from the UBM with feedback from the thermal environment
by means of reward shaping. Three types of reward shaping methods were statist-
ically compared: state shaping, look-back advice, and look-forward advice. Several
State-Action-Reward-State-Action (SARSA)-based RL algorithms were used to train
the system and their performance was evaluated using a set of test scenarios.

The UBM outperforms simpler models, such as neural network and fuzzy logic,
achieving the highest accuracy for estimating setting adjustments. The simulated
user feedback from the UBM improves the learning speed of the UBRL controller
to 2.9 years of simulated learning. The controller using look-back advice has a
statistically higher average reward per trial than alternative methods. Additionally,
it requires a lower number of steps to achieve occupant desired equivalent temper-
ature. The UBRL controller using the Double SARSA algorithm achieves on average
the occupant’s desired comfort in 5.6 minutes, maintaining it 86% of the journey
duration and consuming an average power of 1.07 kW.

Therefore the Double SARSA UBRL climate control can significantly improve the
comfort of the occupants by learning and maintaining their setting preferences
within less than half the life time of their vehicles. Potential avenues for improve-
ment involve a variable exploration rate, further development of the human agent,
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and multi-zone climate control, extending its application to a variety of user mod-
elling and control areas.
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1
I N T R O D U C T I O N

1.1 aim

The Heating, Ventilation and Air Conditioning (HVAC) system within a car cabin

cannot always efficiently satisfy the thermal comfort preferences of the cabin occu-

pants, while maintaining a low level of energy consumption. Car cabin passenger

thermal comfort is harder to maintain compared to comfort in homes and offices,

given the non-stationary nature of this environment and its thermal asymmetry

caused by the use of windows and the HVAC system [NH03].

Several factors related to the thermal environment contribute to the thermal

comfort problem in vehicles such as: the speed of the car; the angle at which the

sun shines; the solar loading; the outside and inside temperatures; the velocity

with which the air is circulated or re-circulated; and the humidity rates in the cabin.

When a vehicle is in motion, the external environment changes quickly causing

the parameters that impact occupant’s thermal comfort to also change rapidly.

Alternatively, when passengers re-enter a stationary and unoccupied vehicle, they

may feel immediate discomfort. This is due to the fact that the cabin can reach

extremely high or low temperatures, given the radiation from the sun and the

outside temperature.

The thermal comfort control process can be briefly described as a cycle (figure 1.1).

The HVAC system operation is tasked with maintaining the thermal comfort of the

passengers. Once they feel uncomfortable they choose from a range of behaviours

to regain comfort (e.g. HVAC adjustment, the use of windows, removing or adding

1



2 introduction

HVAC
Control  

Adaptive User 
Behaviour 

Thermal Comfort 

Figure 1.1: The cyclic nature of the thermal comfort control in the car cabin.

clothing items). The occupants’ most accessible and comfort-related behavioural

option in the car is to interact with the HVAC interface and adjust its settings. The

alternative behavioural options are not strictly related to maintaining comfort and

are beyond the scope of this thesis. The motivation behind these actions is vague

and can be associated with other intentions, such as manoeuvrability for clothing

removal, smoking habits and sleep prevention for opening windows.

The occupant’s interaction with their HVAC systems has been overlooked, despite

researchers’ and engineers’ efforts to further improve the intelligence of control

systems by the use of machine learning algorithms (e.g fuzzy logic, evolutionary,

artificial neural networks and reinforcement learning). This interaction is classified

as a secondary task because drivers concentrate on the act of driving, which causes

them to make sparse changes, only when necessary. Conversely, the changes made

to the HVAC system are essential as they can offer vital information about the

comfort preferences of the occupants.

Hence, the aim of this thesis is to develop a realistic simulation of occupant adaptive

behaviour related to the HVAC system and include this within a machine learning control

system. The main focus of the adaptive behaviour is to specifically examine the effect of

HVAC setting preferences on the performance of a reinforcement-learning HVAC controller.

Namely, if the controller can adjust its behaviour within a reasonable amount of time and

offer comfort to passengers according to their desired settings.

Current set-point HVAC systems enable occupants to select a number of settings

on the interface in order to better ensure their comfort (e.g. temperature, blower

speed, vent orientation). Despite the HVAC interface adjustments, the system may

not maintain the desired settings in all circumstances. For example, it only inputs
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hot or cold air when the sensed cabin temperature is below or abovethe desired

set-point, with maximum air blown into the cabin. Moreover, the system may not

maintain the heated or cooled air at the preferred setting configurations throughout

the journey duration given the rapidly changing factors that were mentioned above,

and also throughout the cabin environment (i.e. temperature stratification between

head and foot levels). This can trigger the occupants’ discomfort and subsequently

a further change in the settings.

The climate control system is programmed by a set of strict manufacturing rules,

determining its actions to further accentuate the discomfort of the occupants (e.g.

by not achieving the desired set-point temperature or slow vent flow changes).

Additionally, in order to achieve the preferred settings a high amount of energy is

consumed.

This is why implementing machine learning algorithms within the control process

of the HVAC system is an alternative solution to hand-coded procedures. Machine

learning has the potential to improve the passengers’ comfort and mitigate energy

constraints. Even though machine learning based HVAC systems deal with these

two major problems, occupant preferences are disregarded. As an integral part of

the environment, the occupant prefers specific settings and changes them when

feeling uncomfortable, thus providing feedback to the system. This thesis examines

the potential of integrating the setting interaction as an adaptive comfort method

for the occupant onto a machine learning based HVAC system.

Among climate control systems using machine learning, the Reinforcement

Learning (RL) HVAC controller developed by Hintea [Hin14] has the potential

to include user feedback in order to improve the time it takes for the system

to minimise energy consumption, while maintaining the desired comfort of the

passengers. The agent (system) achieves this goal by a set of trial and error steps:

observing the states and taking actions. The decision (policy) of which action

the agent takes relies on which action brings the maximum reward (numerical

value) when chosen. The reward affects both the current and future actions taken,

hence it is bounded. The environment represents the car cabin. The state vector is

comprised of the cabin, shell, ambient temperatures, and air flow. The action vector
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is a combination of the outputs of the HVAC controller (fan speed, temperature, and

recirculation).

This thesis proposes to combine a RL based HVAC controller with the modelled

occupant interaction in order to explore the impact of user feedback on the learning

performance of the control system. Interaction with the HVAC system enables the

passengers to manifest their preferences for the thermal environment. As these

preferences are reactions to the state of the environment and the current action

of the control system, they can serve as corrective or predictive measures for the

following state. The user feedback can be used as part of the reward, accelerating

the learning process of the controller.

The challenge is to use such preferences in a realistic manner to train an HVAC

controller in order for the system to learn in an effective way (to achieve an optimal

or nearly optimal policy), within a reasonable amount of time (preferably before

the end of a car’s lifetime, estimated at 6-8 years).

1.2 research questions

The fundamental question that this thesis tries to answer is:

Given the limited interaction that users have with the HVAC, can an RL based system

learn occupant’s desired settings within the expected lifetime of a car?

The three main objectives for answering this research question are:

1. to identify the fundamental aspects that trigger cabin occupants’ changes in

HVAC settings;

2. to develop and integrate a realistic simulation of how occupants choose their

HVAC settings within the framework of RL control;

3. to examine the learning capabilities of the newly developed system (User-

Based Reinforcement Learning (UBRL)) in terms of learning time and policy

performance.

Three subsequent research questions were developed related to these objectives:
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1. What is the set of simple rules that can be drawn from the thermal comfort literature

on occupant thermal behaviour related to HVAC control?

2. Can an artificial agent, validated using real-world data, realistically simulate the

interaction that humans have with their HVAC system?

3. Can the UBRL HVAC system learn and maintain a nearly optimal policy based on

occupant preferences within a reasonable amount of time?

The following sub-sections expand on the main ideas behind the sub-questions.

1.2.1 Rules of interaction with the climate control

In a confined space such as a car cabin, the occupants have a limited set of actions.

For instance, they cannot change their location in the car or include personal

heating or cooling devices (additional fans and heaters). So their opportunity to

act is to adjust the settings of the HVAC system. Examining this type of behaviour

is essential, given that the motivation behind these actions can be triggered by

discomfort. Conversely, drivers are sometimes focused on fuel conservation. Hence

they take actions to reduce the car’s energy consumption, while sacrificing their

personal comfort (e.g. not activating the HVAC system).

Modelling thermal behaviour in a car cabin is a challenging task. It relies on

extensive experimental human trials conducted over various seasons, under clearly

stated procedures that capture particular aspects of occupant behaviour. Moreover,

a method for recording any type of actions is required and the motivation behind

each action is also difficult to determine. Realistic driving scenarios are difficult

to organise as there are several factors that cannot be controlled (e.g. the weather

or traffic conditions). Furthermore, the participants need to be fully focused on

the act of driving, which renders subsequent behaviours as infrequent and their

motivation as vague (e.g. clothing changes or opening and closing windows). This

is why the information related to occupant’s adaptive behaviour needs to be readily

available to the control system, without using alternative methods of capture. This

thesis hypothesises that the first available action for occupants in cars is to make

changes to the HVAC settings.
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An alternative to capturing adaptive behaviour data is by using surveys to

capture participant motivation. These are undertaken either after or during the trial.

For the former, the surveys rely on the subject’s memories of their past experiences.

For the latter, the trials may be biased as the occupants would focus on their actions,

thus leading to forced or unnatural behaviour. Instead of using extensive trials or

surveys, the testing can initially be done by means of simulation.

In order to examine how to model the setting selections, this research compiles a

set of simple rules based on thermal behaviour literature and proposes a model

based on these rules, strictly referring to human interaction with the HVAC system.

The interaction is separated into three main aspects: the decision to make a change,

the selection of the type of setting and the value of the setting. This behaviour is

modelled as a set of conditional probabilities linking setting selections with the

overall body comfort of the occupants, represented in this thesis by equivalent

temperature.

Chapter 2 presents an examination of the potential of improving comfort by

using human feedback within the context of the vehicle’s environment, with an

emphasis on the state of the art in terms of human-RL systems interaction. The set

of rules for HVAC setting selection is presented in Chapter 3.

1.2.2 Deriving a realistic simulation of human interaction with the HVAC system

Secondary activities to the driving task can be directly related to maintaining the

comfort of drivers, since they interact with elements of the car (HVAC settings or

heated seats). Hence, a model of how occupants behave when they experience

discomfort is needed for a better evaluation and estimation of thermal comfort.

The model resulting from the combination of the three rules, named the User-

Based Module, is validated using real-world data and outputs the estimated setting

selections of a simulated cabin occupant. Each decision that an occupant makes

depends on a conditional probability. The method used to model the conditional

probabilities is a set of classifiers. The first rule is modelled as the probability

of making an adjustment or not depending on how comfortable the occupant is.
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The second rule (selecting a setting) is based on determining the probability of

selection for the three types of settings: set-point temperature, blower level or vent

distribution. The final rule is related to values selected for each setting (a set of 23

distinct values).

As the rules become more complex, the classification problem for the third rule

evolves from estimating the probabilities of two classes into identifying multiple

classes. Given the complexity of the model, it is compared with two alternative

machine learning models (a neural network, and a fuzzy logic system), in order to

test its performance.

While behaviour is important, the key factor is how to integrate the information

as feedback to the learning system (the RL based HVAC) in order to improve the

system’s learning time and adjust the cabin conditions to an occupant’s desired

comfort. The feedback method that this thesis discusses is based on a task familiar to

both drivers and passengers: changing the HVAC settings. The captured interactions

are based on data extracted from a set of trails conducted in the car. The processed

and analysed data is subsequently used to test and validate the User-Based Module

(UBM) described in Chapter 4.

1.2.3 Performance of an HVAC controller trained by passenger preferences

The RL-based HVAC system has two major goals: maintaining equivalent temperature-

based thermal comfort while using a low amount of energy. This system is designed

to be trained offline and achieve a nearly optimal policy (maximising the total

reward based on the association of environmental states with greedily selected

actions). The policy can be programmed onto the control unit of a car, making use

of the existing HVAC capabilities.

Compared to the available HVAC control systems that offer multiple modes,

including those that allow cabin passengers to adjust the HVAC settings in terms of

set-points [Sch08], the RL control system does not incorporate any form of human

participation.
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A further problem with software agents based on RL is that the learning takes a

considerable amount of time. For example, Dalamakidis [DD08] proposed an RL

based system for building comfort control that had an estimated learning time of

four years. Even though introducing human feedback has the potential to improve

the learning speed of RL systems, drivers are mainly focused on driving in the car

cabin and cannot provide constant feedback. Moreover, by the time such an HVAC

system makes changes to the environment, the occupants’ comfort preferences may

have changed and they would no longer be comfortable. Thus it is essential for the

system to learn from sparse feedback as fast as possible.

A further problem is how to integrate the preferences of the occupant into the

learning environment. A solution is integrating the feedback through the reward

function in the form of a penalty when preferences are not met. Alternatively, the

reward can be used as motivation and guidance towards future actions. Therefore,

setting selections can be used as an avenue to anticipate desired changes to the

environment and help the RL-based controller to choose actions closer to the cabin

passengers’ preferences. Integrating the feedback of a simulated human agent

(UBM) within the climate control architecture enables the RL agent to learn a policy

by means of potential based, look ahead, and look back shaping.

Additionally, the RL controller proposed by Hintea [Hin14] uses only the State-

Action-Reward-State-Action (SARSA) (λ) algorithm. There are alternative algorithms

based on SARSA that have a convergence potential, such as Expected SARSA, or

do not have an maximisation bias, Double SARSA. The performance of the control

system trained with such algorithms is examined. The controllers trained with the

SARSA algorithms are compared by means of the highest reward obtained during

the training process, how fast the occupant’s desired comfort is achieved under

cooling or warming of the cabin, the time the occupant spends in comfort and the

amount of energy consumed.

Consequently, this research proposes the UBRL HVAC controller that learns from

the feedback of a simulated occupant (UBM) and the cabin environment. It examines

the behaviour of the climate control system trained with multiple RL algorithms

in order to identify the most suitable learning strategy. The UBM represents the
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internal process of how the occupant chooses to alter the settings of the HVAC

system. This change in settings is registered as feedback by the UBRL HVAC system,

which receives an additional penalty or reward for the change.

The description of the system architecture and the exploration of the controller’s

performance are available in Chapter 5. The combined human and environmental

reward enables the system to learn and maintain the occupant’s desired comfort

within an average of 5.6 minutes, with a training of 2.9 years while providing high

comfort performance and energy efficiency.

1.3 contributions to knowledge

The overall contribution of the thesis is an integrated simulation of a heating,

ventilation and air conditioning controller that learns from the feedback of the

vehicle environment as well as the preferences of its occupant. The three main

contributions to knowledge are:

1. Identifying a set of simple and understandable rules based on thermal comfort

literature about occupant thermal behaviour (detailed in Chapter 2) that

represents the changes in HVAC settings (Chapter 3).

2. A method for representing and validating occupant feedback behaviour by

the use of empirical data (Chapter 4). The UBM model is based on a set of

interconnected conditional probabilities resulting from the combination of

a set of seven classifiers that has environmental parameters and equivalent

temperature as inputs and the setting adjustment that a human makes to the

HVAC system as outputs.

3. The User-Based Reinforcement Learning HVAC is an integrated system that

learns from environmental and human feedback. The system uses a shaped

reward based on the feedback provided by the UBM. The shaping reward is

combined with the comfort and energy usage penalties. This thesis describes

the UBRL HVAC controller and examines its performance when trained with
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alternative SARSA algorithms in terms of average step reward, the percentage

of time in which comfort is provided and energy use (Chapter 5).

1.4 publications

The work described in this thesis has lead to the following publications:

Journal

• Alexandra Petre, James Brusey, Ross Wilkins: An examination of comfort and

sensation for manual and automatic controls of the vehicle HVAC system.

Accepted for publishing by SAE International

Conference Proceedings

• Alexandra Petre, James Brusey, Elena Gaura: User Feedback for the Improve-

ment of Thermal Comfort in the Car Cabin. In Proceedings of ICAST (10)

September. 2015, pp. 91-92

1.5 thesis structure

• Chapter 2 reviews the literature, detailing the use of human feedback in

Reinforcement Learning, HVAC control, and thermal comfort.

• A closer examination of thermal comfort in the car cabin and how people

behave in the car when experiencing discomfort is combined into a set of

simple rules presented in Chapter 3 (contribution 1).

• Chapter 4 details the UBM and the approach used for developing, testing and

validating the agent (contribution 2).
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• Chapter 5 describes the probability-based model in the context of the system

architecture, which is split into the Reinforcement Learning Agent and Cabin

Environment. The capability of the UBRL system to learn from simulated

user feedback is examined. This chapter presents an analysis of the learning

speed, the quality of learning and reward maximisation of the controller

(contribution 3).

• Chapter 6 presents a summary of the answers to the research questions and

the conclusions drawn from the presented research, recommendations and

directions for future work.





2
L I T E R AT U R E R E V I E W

This chapter provides the theoretical background and support for the experimental

work described in the following chapters. It presents the gaps in knowledge and the

current developments of three major topics: i) Reinforcement Learning; ii) Thermal

Comfort; and iii) Heating, Ventilation and Air Conditioning control.

This literature review begins with an introduction to the Reinforcement Learn-

ing technique. The chapter structure is shown in figure 2.1. It includes details of

algorithms and application areas that include user feedback methods (Demonstra-

tion, Advice, Shaping, Training the Agent Manually via Evaluative Reinforcement).

Subsequently, it highlights the potential of including occupant feedback within

the context of the car cabin. The following section examines thermal comfort

and the impact it has on the occupants of both buildings and cars, namely their

thermal behaviour in terms of perception and preferences. While these aspects

represent a platform that has been newly explored in buildings, it is rarely con-

sidered for car cabin comfort. The following section explores the state of the art

in Heating, Ventilation and Air Conditioning (HVAC) control with an emphasis

on Reinforcement Learning (RL) based systems, looking at potential avenues to

improve and personalise thermal comfort. Moreover, the ways cabin passengers

manifest their preferences related to the HVAC interface is presented. The final sec-

tion is a summary of the identified avenues for exploration and their relationship

with the work accomplished for the scope of this research.

13
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Figure 2.1: Chapter 2 structure with key points, bridging the gap between the user adaptive
behaviour and reinforcement learning using the relationship between user
feedback and climate interface control.

2.1 reinforcement learning

RL is a machine learning framework that supports active learning from positive

and negative rewards associated with the state of the environment and the actions

chosen to alter this state. The environment is assumed to be a Markov Decision

Process (MDP) defined by the tuple (S, A, P, R, γ). The model of the environment is

markovian if the transitions of the state are independent from the actions of the

agent and the previous states of the environment [KLM96]. Within this framework,

a following state st+1 belonging to a set of states, S, is achieved at moment t+1 with

the probability P, when action at of a set of actions, A, is taken at state st (st ∈ S)

at time t. The reward function R(st,at), represented by R : S×A× S −→ R, relates

to an immediate evaluation of the state st and action at pairs. RL agents aim to

maximise the total discounted reward, also known as expected return Gt,

Gt =

T∑
k=0

γkR(st+k,at+k) (2.1)

Discounting (the assignment of weights to the rewards) is used to bound the return.

The discount factor, γ ∈ [0 1], decreases the value of the future reward exponentially
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Figure 2.2: General Reinforcement Learning schematic

(the weights are greater for immediate than for distant reward). This determines

the influence of future values on current predictions.

An agent acting within a framework of an RL algorithm [SB98] attempts to reach

the goal of a specific task by environmental exploration as can be seen in figure 2.2.

The behaviour of a learning agent is defined by a policy π (π : S→ A) which maps

the states of the environment to actions taken by the agent.

The value function V(st) determines the total reward (the return) that an agent

accumulates starting with the current state and leading to future states [SB98]. It

represents the expected return when starting with state st and following policy π.

V(st) = Eπ{Gt|s0 = st} (2.2)

For linear environmental models (model-based RL), the value function aids the

agent to choose the action that will determine the following state with the highest

value. For environments that do not have an exact model (model-free), state-action

values Q(st,at) are employed in order to determine action selection (equation 2.3).

This action-value function is based on the relationship between the total reward

and the state-action pairs using policy π.

Q(st,at) = Eπ{Gt|s0 = st,a0 = at} (2.3)

The optimal policy π∗ represents a policy that is higher than the alternative

policies, which will lead to the maximum action-value function (maximising the
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long-term total reward). The maximum action-value function is therefore considered

optimal (equation 2.4).

Q∗(st,at) = max
π
Qπ(st,at) (2.4)

Considering RL, two main approaches are available: policy-search and value

function optimisation algorithms. Policy search focuses on finding adequate para-

meters for policy refinement in order to solve the problem of high-dimensional

state and action spaces. Value function optimisation relies on modelling the return

to obtain a course of action that leads to the desired states of the environment. The

agent undertakes an action that not only results in a favourable immediate reward,

but also in future states that have a long term effect on the policy, subsequently

generating a high value for future rewards. This thesis uses the latter technique. As

the problem is based on model-free RL, the agent relies on the exploration of the

state-action space to learn a good policy.

There are two categories of learning problems: episodic and continual. Problems

that have one or multiple terminal states are episodic. When the states are reached,

the episode finishes and the state returns to its initial setting. Continual problems

do not have terminal states, they continue indefinitely. The discount factor is useful

for these problems as it avoids infinite reward attribution. An episodic problem

can be extended to be continuous by introducing the final state as an absorbing

one. For this thesis, the agent is trained using episodic scenarios, where the goal

is to achieve the desired occupant comfort with the minimum steps taken. It is

extended to a continuous scenario when testing if the HVAC controller can achieve

and maintain the desired comfort in the case of cooling and warming the cabin.

2.1.1 Algorithms

There are two main problems when using RL: temporal credit assignment and

generalisation [Lin92]. Temporal credit assignment is directly connected to decision

making and performance improvement. This problem relies on how the agent
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chooses a method in which credit is distributed to each state-action pair, after

the agent has executed a set of actions and has arrived at a certain stage. The

generalisation problem stems from an agent’s capability to make decisions based on

experience in an unexplored part of the state space. This problem appears when the

state space is too large for complete exploration, such as in the real-world problems

(e.g. riding a bicycle [RA98]). For solving the temporal credit assignment methods,

related to dynamic programming, algorithms based on Temporal Difference (TD)

are used.

State-Action-Reward-State-Action (SARSA)(λ) is an on-policy algorithm for TD

control learning [SB98]. It is based on the agent that experiences the world with

starting state st, action at, reward rt, the next state st+1, and the following action

at+1.

The rule for updating the state-action function for SARSA is:

Q(st,at)← Q(st,at) +α[R(+γQ(st+1,at+1) −Q(st,at)]

where α is the learning rate. The difference between this algorithm and the Q-

learning algorithm [RN94; SB98] is that the state-action values, Q, are sensitive to

the policy that is executed. In other words, the Q-value for the next state and action

is chosen in the current state.

SARSA(λ) uses eligibility traces, λ [PMK01]. Eligibility traces are essential in

training an RL agent as they are temporary records of the events that register

changes in learning. They determine which states and actions are assigned a

reward for the TD error [SB98]. The selection of different values of λ determines

types of algorithms learnt, from SARSA to Monte Carlo [PMK01]. This work uses

SARSA(λ), as it has the potential to solve continuous problems [SSR97] such as HVAC

control.

However, SARSA (λ) is known to have slow convergence and its performance can

degrade over time. For example, the agent unlearns the policy, or chooses a more

complex action that triggers the same amount of rewards over a simpler action that
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brings a final maximum reward. Expected SARSA [Van+09] outperforms both SARSA

and Q-learning agents and improves the the learning rate of the agent.

Expected SARSA is an algorithm that has lower update variance. It improves on the

learning performance by having higher learning rates. It unifies Q-learning [RN94]

and SARSA as it approximates the optimal action-value function Q∗(st,at) inde-

pendent of the policy [Van+09]. It performs the step update by using the expected

value of the action-value function (E{Q(st+1,at+1)} ) instead of the function itself

(equation 2.6). Therefore the update uses the state-value function (equation 2.5),

instead of the action-value function Q(st+1,at+1).

V(st+1) =
∑
a

π(st+1,a)Q(st+1,a) (2.5)

Q(st,at)← Q(st,at)+α[R(st,at)+γ
∑
a

π(st+1,a)Q(st+1,a)−Q(st,at)] (2.6)

By using the expected value of the following state-value function, the algorithm

determines how likely the agent is to choose the next action under the current

policy.

The problem with SARSA and Expected SARSA algorithms is that overly-optimistic

values for Q(st,at) are assigned by maximising over the estimates. The maximisa-

tion bias [Van10] can be avoided by using double learning. This method entails

having two action-value functions QA(st,at) and QB(st,at) that are switched

regularly, essentially doubling the memory requirements of the algorithm with

no impact on the amount of computation required per step [GDH16]. For Double

SARSA, the average of the two functions is used to determine the next action greedily

(equation 2.7), with the update rule for the current action-value function QA(st,at)

using QB(st+1,at+1) (equation 2.8).

π = argmax
a∈A

(QA(st,at) +QB(st,at)) (2.7)
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QA(st,at)← QA(st,at) +α[R(st,at) + γQB(st+1,at+1) −QA(st,at)] (2.8)

Similarly, Double Expected SARSA has an update rule depending on the two

action-value functions and calculating the state-value function, depending on

which element A or B is used (equation 2.9). The difference between Double SARSA

and Double Expected SARSA is that the latter has convergence guarantees.

QA(st,at)← QA(st,at)+α[R(st,at)+γ
∑
a

πB(st+1,a)QB(st+1,a)−QA(st,at)]

(2.9)

An alternative method for solving control problems by use of actor-critic al-

gorithms [SB98] such as Deep Deterministic Policy Gradient (DDPG) [Lil+15]. This

algorithm uses policy gradient to enable an agent to perform continuous actions.

Despite this fact, the agent has a reduced frequency of action exploration. An

improvement to this algorithm comes from the Trust Region Policy Optimization

(TRPO) [Sch+15] that introduces a guarantee that the long-term reward does not

decrease. This guarantee is maintained by introducing a Kullback-Leibler (KL)

divergence constraint and a surrogate objective function. The problem with this

algorithm is that is highly complex. A further optimisation for TRPO is Proximal

Policy Optimisation (PPO) [Sch+17] algorithm that alters the surrogate objective

function. A disadvantage with these methods is that they are off-policy, meaning

that the optimal action is learnt from a policy that is not current.

Advancements in the gaming world use a combination of RL algorithms with

deep neural networks (Deep Q-Network- DQN) to improve the learning speed

and policy optimisation for a large number of games, achieving higher scores

than gaming experts [Lia+16; MKS15]. Hasselt et al. [Van10] proposed a double Q-

learning algorithm and showed that it outperformed DQN [Van+16], combating the

problem of the latter algorithm of over-estimation. For robustness to randomised

rewards, Ganger et al. [GDH16] introduced and examined the performance of
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Double SARSA and Double Expected SARSA, which proved to have more stable

action-values than SARSA and Expected SARSA.

These alternative SARSA algorithms are used to train the HVAC controller, as

they can improve the learning performance of the system, and maintain a stable

state-action function.

2.1.2 Learning from humans

User feedback is an essential step in improving Reinforcement Learning algorithms,

especially for tasks that have an impact on the daily lives of humans. The interaction

with an RL agent has two main objectives: improving the learning performance in

order to ensure optimisation of the control as well as valuable research material

on human behaviour. People, an integral part of the environment, differentiate

themselves from their surroundings when interacting with the machine [KFS09].

DiGiovanna et al. [DiG+09] state that human-machine interaction enables the

user and the agent to learn from each other. This depends on the quality of the

information provided by the user and how this information helps the agent improve

its learning process [Gri+13]. The main goal of this section is to explore the state of

the art of RL based systems that include human feedback and how they achieve it.

Wang et al. [Wan+03] proposed the integration of user commands at different

levels of the RL algorithm in order to ensure a faster learning rate and personal-

isation. The agent maintains its autonomy to prevent any sparsity of feedback,

misinformation or breach of safety. The user feedback acts as a bias function that

can enable the system to ignore certain actions, or alter the order in which it ex-

ecutes them. As an outcome, Wang et al. emphasised the utility of user commands

for:

1. improvement of the speed of the algorithm by focusing the attention of the

agent on specific aspects of the environment;

2. additional information about user preferences;

3. capability of altering the course of a task performed by the agent;
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4. change of control strategies without complete control of the policy;

5. setting limits on the reward in order to avoid loops also known as positive

cycles.

This supports the idea that training an agent with user feedback can produce

significant improvement in the overall capabilities of achieving an optimal policy.

Knox et al. [Kno+12] noticed that human awareness in providing feedback

can improve the learning performance of agents. Transparency can attract user

involvement. Sharing specific information of the task execution can produce tailored

feedback from the users, and enables them to adapt to the system requirements,

throughout the training process [THB06a]. User requirements and the willingness

to participate in the act of providing guidance can affect their contribution and

involvement.

The present literature identifies the necessity of adapting the algorithms to

take advantage of how users want to share their information in order to avoid

preferences towards positive cycles (the agent chooses continually a set of sub-

optimal actions that provide high reward) [KFS09; KS09; Kno+12; KS12a; NHR99;

Ng03]. This can be achieved with previous knowledge about the available actions,

which comes from sensor measurements and also from the user. Zaidenberg et

al. [ZRM10] conducted a user preference study for a reinforcement learning based

system in order to develop a methodology for the development of a planning

assistant for cognitive load reduction.

Different roles come with human involvement that they assume in order to forge

a link with the machine (figure 2.3). The three roles assumed by the user are: as a

teacher (directly intervening in the policy [Mac+05]), as an evaluator (having a certain

level of expertise [MS96] and predominantly giving negative reward [KFS09]) or

as a guide (using the reward as motivation and being inclined to give positive

rewards [TB06]).

Amershi et al. [Ame+14] present aspects of the teaching role of humans and

the criteria for designing algorithms that rely on collaboration with the user,

amongst which are several RL agents (software and robot based). When trainers
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Figure 2.3: Schematic depicting the range of user feedback in the car cabin.

are aware of their role as teachers, they adjust their teaching behaviours in order

to respond to the learner’s requirements. These requirements are either inferred

by the teachers or displayed through information bars or queries. Li et al. [Li+13]

designed two interfaces in which the Training the Agent Manually via Evaluative

Reinforcement (TAMER) agent’s performance and uncertainty were displayed. An

outcome was that the trainers became more involved in the training and provided

more feedback. A transparent learning mechanism influences the user. The feedback

is tailored to respond to the type of information provided by the agent with the

goal to maximise performance.

Human perception is limited. When giving priority to the human perspective,

the agent will often focus only on a subset problem that is important to the

teacher. When assuming the role of teachers, humans tend to favour positive

reinforcement [THB06a; THB06b; TB08]. This can affect the agent’s performance

by the formation of positive cycles for a discount factor of value 1. This causes the

agent to stray from the primary goal.

Knox et al. [KS12a] demonstrated that varying the discount factor for epis-

odic tasks influences the amount of feedback given to the agent. For human

rewards, discounting needs to be appropriately chosen to user requirements. Knox
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et al. [Kno+12] observed that there is no change in learning when the user is aware

of evaluating an agent compared to providing comments (evaluation) of a recording.

The agent can influence human behaviour in terms of feedback frequency without

its performance being affected.

Thomaz et al. [THB06b], [TB08] also highlighted the interaction that happens

naturally between humans and how it can be applied to humans and machines

(guidance). The researchers discovered that not only can exploration and learning

speed be improved, but also efficiency. Guidance has the potential to alter immedi-

ate actions and the course of task execution and assign rewards to future expected

actions. The reward has a particular meaning to the trainer. If the meaning is not

fulfilled by the agent, the guide will alter his or her behaviour and stop giving that

specific kind of reward. Alternatively, humans provide information through their

actions and gestures, therefore guidance can be manifested unconsciously.

A mixture of guidance and evaluation is considered in this thesis as an appro-

priate solution for integrating feedback from the occupants of a vehicle. Knowing

what the users expect and the modalities in which they provide feedback can lead

to further improvements in the performance of control systems.

2.1.3 User interaction methods

In research areas such as robotics and gamification, the potential of RL systems that

receive knowledge from humans is already acknowledged [Ame+14]. This form

of training has an impact on the learning performances of RL agents and allows

the trainers to define correct real-time behaviour. What is more, the trainers are

not expert programmers, but instead they convey knowledge via natural ways of

communication. Similar to Sutton et al. [SB98], Knox [Kno12] also identified in

his thesis three ways to convey knowledge: by demonstration, by voice and by

shaping. Demonstration, a frequently used technique, relies on human behaviour

being captured by sensors and reproduced by a robot [NM03]. Advice relies on

voice commands or evaluations of a robot’s actions [TMV10]. Shaping refers to the

use of human defined rewards (either positive or negative) that help train a system
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Table 2.1: Areas of application for reinforcement learning.

Area Purpose References

Industrial [PG98]
Robotics Competitions [MS96][NM03][Tor+10]

Social [DiG+09][Ber+06][THB06b]

Games [Isb+06][KSS11][KS12b][KB06][Tay+14]
Control Systems [HG01][Mel09]

Simulation Smart Homes [Dal+07][DD08]
Vehicles [Hin14][OHH07]

Aerospace [Abb+07][Kim+04][Ng+06]

Learning

Demonstration Advice Shaping

TAMER

HumanOFeedbackO

Teleoperation Shadowing Sensors

OnOBody OutsideO
Observation

VoiceO

Commands Critique

Programming Policy Reward

Figure 2.4: Types of learning with human feedback

towards achieving optimal behaviour [KB06]. Table 2.1 highlights the main fields

of application that employ a form of RL. The works listed either use a form of user

feedback or mention human feedback as an improvement to the existing system.

Reinforcement Learning becomes a tool to support user interaction with the control

system.

It is worth mentioning the TAMER framework as an interactive shaping method,

which is associated with supervised learning through its structure (figure 2.4). It

maintains distinct RL traits and is used in combination with the RL algorithm in

order to improve the agent’s learning ability.

Demonstration

Demonstration is widely applied to mobile robots and involves kinaesthetics for

automating tasks in order to ease the workload of humans, especially for operations

that require force and strain. Demonstration relies on transmitting the training data

to the agent by:
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Figure 2.5: General scheme for demonstration.

i) teleoperation (the human directly operates the robot and the movement is

recorded via sensors) [Ng+04; NHR99; OHH07];

ii) shadowing (the robot records the motions of the human through its sensors

and tries to mimic them at the same time [NM03; Ogi+05];

iii) strictly using sensors to monitor and record the movement of the user (de-

pending on the sensor placement, either directly on the body or in the surrounding

environment) [Ber+06; Leo+11; LTM13].

Learning from demonstration is a technique that involves developing a policy

from examples that are provided by a teacher and learned by an agent. These

examples are represented by pairs of states and their corresponding actions that

are recorded during the demonstration of the desired behaviour by the teacher, as

captured in figure 2.5. Further work using this feedback technique is examined in

appendix A.

Demonstration is targeting physical robots, relying on motion capture. It is not

an adequate avenue for implementation in the context of control systems. The cabin

occupant would be required to wear on-body sensors or a specific sensor needs to

be installed in the car cabin to capture the occupant’s motions. This method can

be intrusive and inconvenient and can be distracting to drivers if its scope is other

than capturing their driving behaviours.

Advice

Advice is the form of guidance through which humans can give recommendations

to the RL agent. For this particular type of learning, there are two main categories
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Figure 2.6: General schematic for learning via advice.

of providing guidance either by programming [MS96; Mac+05; Tor+10] (figure 2.6)

or by voice recognition [TMP10]. A user can guide an agent by giving recom-

mendations (a natural way of advising), which in turn have to be expressed in a

manner that the system can decipher. Even though this type of feedback relies on

potentially noisy signals it improves the learning capacity of the agent. Further

works employing advice are presented in appendix B.

Advice is a feedback method that has the potential to improve the agent’s learning

and response time. It is provided in a direct manner (voice cues or programming

rules). This means that expertise or instruction as to how the agent operates is

required. Additional problems with this method are the fact that humans cannot

provide advice continuously and the response to their suggestions can be delayed.

This method is therefore not appropriate for capturing occupant feedback within

the context of a vehicle.

Shaping

Shaping relies on training using feedback that is specifically oriented towards task

performance. It serves to guide the learner towards a specific area of the state

space. The incorporation of feedback using shaping is characteristic of dynamic

programming. Its implementation into RL is popular, especially for executing goal-

oriented tasks [DC98].

The term shaping comes from psychology and refers to a form of guidance in the

training process of an animal by giving it rewards in order to achieve an intricate

task. There are two main meanings to shaping for RL [KB06]: i) the agent learns by

executing a simple task that gradually increases in complexity (altering the initial
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Figure 2.7: General schematic for learning using user feedback as an additional reward.

policy) [Gri+13]; ii) associating rewards to prior knowledge based feedback that

guides the agent to a specific part of the state space, ensuring learning optimisation

[TB06; THB06a; THB06b; TB08; KB06] (figure 2.7). A disadvantage of the first form

of shaping (altering the policy) is that the agent learns a single task but does not

generalise to similar tasks.

Reward shaping can take a general form by modifying the reward function

(R(st,at) ) to combine it with a shaping reward function (F(st, st+1)). This changes

the reward function to an extended problem that directly includes the occupant’s

feedback (equation 2.10).

R̄(st,at, st+1) = F(st, st+1) + R(st,at) (2.10)

Griffith et al. [Gri+13] introduced Advise, a Bayesian Q-learning approach that

uses human feedback to alter the initial policy. The researchers considered the

consistency of the feedback and likelihood that it might happen. Griffith et al.

compared the algorithm with other RL techniques such as action biasing, control

sharing and even reward shaping. The comparison shows promising results but

the experiments were conducted for a static environment via simulation, without

using any human feedback model. Reward shaping, as mentioned above, relies on

introducing human feedback as an additional reward function, that together with

the environmental reward, can reduce the learning time.
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Tenorio-Gonzalez et al. [TMV10] explored the introduction of an additional

reward based on the feedback given by the user. Tenorio-Gonzalez et al. explored

verbal feedback. The cues were converted into rewards added to the environmental

ones, forming the reward function. Three types of feedback were used in the on-line

training of the agent: continuous, where information is provided constantly and

the user has a concrete idea of the goal; occasional, when the user thinks that the

agent needs it, generating a sub-goal once emphasis is put on a specific state; or

it can be noisy (wrong, delayed or ambiguous feedback). The system improves

its learning rate even in the event of noisy feedback. Once the learning process is

refined, the user feedback can decrease over time. Even though shaping improves

the learning speed, there are vocabulary restrictions. Only certain verbal cues can

be used, therefore the user needs to be instructed what these cues are. Moreover,

human speech can carry specific intentions and can have different intensities which

cannot be interpreted by current sensor systems.

Thomaz et al. [THB06a] used an interactive virtual interface of a kitchen en-

vironment, where users could provide positive or negative rewards by clicking

the mouse with the goal of teaching the agent how to bake a cake. The authors

designed the reward function as a sum of the environmental and human rewards.

The teaching behaviours of non-expert users in real-time was observed. It was

noted that people have a propensity towards giving positive rewards and further

use these rewards as a means for future guidance.

Once the learning pattern of the agent is known, the teachers adapt the way they

give feedback in order to improve the learning performance. Thomaz et al. [TB06]

developed two separate reward channels: one specifically for feedback and one for

future guidance, proving that guidance is an essential step in reducing the agent’s

failure rate.

Isbell et al. [Isb+06] integrated an agent (Cobot) in the LambdaMOO social

environment, enabling the users of the world to directly interact with it. The

authors examined the evolution of the agent from the initial steps of gathering

data, to adapting it for user interaction by using RL with a shaped reward. The

particular reward function was directly affected by feedback, which could either be
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directly expressed through written verbs or inferred from the approval remarks

of the users. The agent learns a separate user policy for each individual based

on separate state features, enabling Cobot to be an integrated part of the virtual

world. The implementations of this method have not only shown an increase in

the learning performance of the agent, but have also offered insights in human

behaviour and the adaptability of the agent to user requirements.

In order to preserve policy optimality, the shaping reward proposed by Ng et

al. [NHR99] is constrained by a potential function Φ : S→ R (equation 2.11).

F(st, st+1) = γΦ(st+1) −Φ(st) (2.11)

Ng et al. [NHR99] proved that even though subsequent rewards (e.g. feedback

rewards) are introduced to an algorithm, the policy remains unaffected using MDP

under well-defined conditions. This enables the agent to learn faster and avoids the

problem of positive cycles [NHR99]. Randlov [Ran00] demonstrated that for a finite

MDP with γ < 1, the learning agent trained with a shaped reward that relies on the

physics of the problem changing, will converge to an optimal policy.

Wiewiora et al. [WCE03] extended the potential function to include the action

space. Two implementations were developed: look-ahead (the exploration of the

advised actions has priority) and look-back (the potential function is a difference

between the current and the previous situations that the agent underwent). The

first method can be used in connection with the preferred state values, whereas

the second is representative for action selection. Look-back (equation 2.12), and

look-ahead advice (equation 2.13) are also implemented in this work, in order to

examine if an agent that is aware of the past or future actions can maintain the

occupant’s comfort longer.

F(st,at, st−1,at−1) = Φ(st,at) − γ−1Φ(st−1,at−1) (2.12)

F(st,at, st+1,at+1) = γΦ(st+1,at+1) −Φ(st,at) (2.13)
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Look-ahead advice has an impact on the policy, as a greedy decision also depends

on the shaping function (equation 2.14). A greedy decision refers to the agent

selecting the action which would result in the highest estimated reward.

π = argmax
a

(Q(st,at) +Φ(st,at)) (2.14)

Wiewora et al. [Wie03] also showed that for tabular-based temporal difference

that uses an advantage-based policy for exploration, initialising the Q-function

with the potential function is equivalent to executing reward shaping.

Grzes et al. [GK10] proposed two algorithms. The first one is for model-free RL

and uses an abstract level of the value function for the potential function. The first

algorithm uses high level generalisation of the states to learn the value function.

The second, implemented for a model-based RL, is used to evaluate the value

function [GK09]. The learning ofthe potential function and the policy happen at

the same time.

Devlin et al. [DK12] generalised the shaping reward to potentials that include a

time parameter (also referred as dynamic potentials), with a demonstration that

the theoretical properties are preserved (equation 2.15).

F(st, t, st+1, t+ 1) = γΦ(st+1, t+ 1) −Φ(st, t) (2.15)

Harutyunyan et al [Har+15] introduced an arbitrary reward function that preserves

policy invariance by adapting it to a form of dynamic advice potential. It incorpor-

ated external feedback through an additional value function. Laud et al. [LD02]

used dynamic shaping to solve a walking problem in the robotics field. The shaping

function relied on directly adjusting the parameters by means of an approximate

quality function used as input. Laud et al. [LD03] also analysed the impact of

shaping on the event horizon of the agent (how far the agent needsto look ahead in

order to act according to a near-optimal policy), using an algorithm that explores

the visible states of an optimal trajectory horizon.
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Figure 2.8: Reward shaping combined with demonstration.

Marthi et al. [Mar07] proposed an automatic shaping method that learns the

shaped reward at the same time as the learning happens, by means of reward

decomposition. A function approximation algorithm identifies a good shaping

reward and learns how to perform multiple tasks by potential function adjustment.

Additionally, Snel’s et al. [SW14] algorithm uses feature selections based on k-

relevance to learn a correct potential function for multiple task solutions.

Reward shaping is often coupled with an additional method of providing feed-

back either by demonstration or advice (figure 2.8). Knox et al. [Kno+12] observed

that in 82% of cases, feedback is used in combination with other types of teach-

ing (e.g. demonstration, advice) and is used in 58% of the time after testing. For

example, Suay et al. [Sua+16] proposed two approaches using a potential-based

function derived from human demonstrations. The first algorithm uses a mix-

ture of Gaussian distributions fitted on the demonstration samples, efficiently

capturing local information using heuristics [Bry+15]. The second algorithm is

based on Relative Inverse Entropy RL [BKP11; Zie+08] and is robust against bad

demonstrations [Sua+16].

Reward shaping can be used in combination with other teaching methods. It

offers the opportunity to explore different effects of the direct involvement of the
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users. This is a method that can easily be implemented through an alternative

reward channel complimentary to the one from the environment and has a high

potential to be implemented in real-world applications. The shaping methods used

in this thesis combine the feedback from the cabin occupant concerning the states

of the environment with the actions of the HVAC controller. Therefore potential

shaping (for the state), look-back and look-ahead advice are used in this thesis.

TAMER

The TAMER framework [KS08; KS09; KS10; KSS11; Kno+12; KS12a; KS12b; Li+13]

is a strictly human feedback based learning method used in combination with

RL in order to improve the system’s immediate performance. The TAMER frame-

work [KS08] is based on the replacement of the environmental reward with credit

directly assigned by the user pointing out good and bad behaviours. Since the

human has knowledge about the goal, the agent is taught a policy that is relevant

to the user. Knox et al. [KS08; Kno+12] characterise human reinforcement as “a

moving target” due to the fact that the task execution is estimated as the agent

advances, with humans giving rewards based on their judgement of the execution.

Feedback relies on both current and past states, therefore the transition function

needs to be modelled accordingly. Humans consider what the agent intends to do,

so the reinforcement relies on inferred current and future actions. Since the feedback

channels for environmental and human-given reward are different, combining them

can result in missing information. This is why Knox et al. support the idea of direct

guidance by people (strictly human-given rewards).

TAMER uses interactive shaping, which essentially means that the agent is trained

using positive and negative rewards [KS09]. Knox et al. [Kno+12] implemented this

interactive shaping framework on a TetrisTM game, concluding that the environ-

mental reward function does not reflect the guiding behaviour of the participants.

The reward function model based on supervised learning techniques, is used to

choose actions that would provide the maximum immediate human reward [KS08].

The framework registers a faster learning rate due to the fact that it minimises the

number of learning episodes [KS09].
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The implications of using only human reinforcement are considered [KS08]

in several experiments in which the reward is not completely replaced by the

credit assigned by the human. The credit is similar to the gamma probability

function [KFS09] and is based on how likely the user responds to the previous

environmental state. Knox et al. [KS10] identified the potential of combining the

human reward of the TAMER framework that reduces sample complexity and

enables fast learning in the initial stages, with the MDP reward that determines

a transition function that triggers optimal behaviour. The combination is done

through several algorithms, user training happening before applying RL. From this

experiment, action biasing and control sharing proved to have the best performance

compared to standard SARSA(λ) [SB98] or TAMER [KS12b].

Additionally, Knox et al. [KSS11] examined the use of human intervention at

any stage during the learning process (i.e. the agent learning from the environ-

mental and user feedback at the same time) by using an alternative of eligibility

traces [SB98] that identify feedback recency [KS12b]. The TAMER framework is

suitable for the gaming environment, offering a good perspective on how humans

provide feedback. Nevertheless, this method of incorporating human feedback

requires the full attention of the participants. Therefore, it is not suitable for applic-

ation within the cabin environment, where the occupant cannot provide constant

feedback. Conversely, this thesis also maintains the idea that the cabin occupant

has a separate channel for providing feedback than the physical environment.

2.1.4 Vehicle domain implementation

As mentioned above, human feedback is an important means of improving the

learning rate and task execution performance of agents designed for interactive

environments. Wang et al. [Wan+03] suggested the inclusion of feedback at a low-

level (using devices such as joysticks or mouse) as well as a high-level (creating

sub-goals or actions either by direct intervention—reward altering—or indirectly

by verbal commands). This enables the agent to switch between different operation

modes depending on the available feedback.
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While gaming and robotics offer invaluable insight about human behaviour and

the possibility to train machines using the knowledge of non-expert users, there

are additional areas such as control systems (e.g. for comfort, appliances, light and

ambient fixtures, or industrial work) that can be equally interesting. Out of all the

feedback techniques presented above shaping makes direct use of the feedback

within the reward function and can accelerate the learning without compromising

the optimality of the learnt policy. In conjunction with the cabin, it is a potential

solution for improving the performance of an RL based control system.

Belotti et al. [BE01] and Dey et al. [DDG01] suggested that improving the control

efficiency does not rely solely on the involvement of the user but on how easily the

final outcome is achieved. A balance needs to be struck between relying too much on

the user (via warnings and queries) and a fully automated system. User interaction

is only mentioned as one of the solutions that can improve such control systems,

without an actual implementation. The fundamental problem is in identifying how

the user (the occupant of a car) is providing feedback to an RL based system, what

triggers this feedback and how this response can be modelled in the context of

thermal comfort. The following sections provide more information on these issues.

2.2 thermal comfort

According to Haghighat [Hag02], people spend 90% of the time in enclosed environ-

ments. These environments can either be static (offices [LWG13], hospitals [Giu+13],

gyms [RA14], homes [SMP12]) or dynamic (cars [MSR04], trains [KAA16], air-

crafts [GOG15]). Considering the amount of time spent in these environments, an

important factor is the level of occupant’s satisfaction with their thermal environ-

ments, also known as thermal comfort [Sta94; 01]. To avoid discomfort, the core

body temperature of 37°C needs to be maintained within a narrow range. When the

body exceeds this range, it is exposed to danger from heat, or cold stress [Hag02].

The occupant’s thermal comfort is affected by various factors in each environment.

It is an extensively researched topic for several fields, such as engineering [SMP12],

construction [DHM11], ergonomics[CB07] and design [Cro+15]. Thermal comfort
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in static environments is impacted by changes in seasons, the outside environment,

the type of construction [Hon+15b] as well as the type of ventilation system

used (natural ventilated or air conditioning systems [Hon+15b; CB15; Hon+15a]).

A particular environment where thermal comfort needs further attention is the

vehicle cabin. Thermal comfort is one of the most significant aspects of car design

as it affects the health, concentration, perception, performance and safety of the

occupants [Dam+16].

Advancement in vehicle comfort has always relied on research conducted for

other industries such as building and clothing [Wal+06]. For example, Ruzic [Ruz11]

maintains the idea that cabin comfort needs to be at the standard of building

environments. Hence, it is necessary to look at the advancements within the body

of research for building interiors and develop an understanding of what can be

applied to the cabin environment.

Arens [AZH06b; AZH06a] identified the potential of thermal environments that

are transient, asymmetric, and adequately designed to provide occupants with an

increased level of comfort. Additionally, Brager et al. [BZA15] suggested a transfer

of comfort examination towards environments that are not uniform and dynamic.

These key characteristics describe the car cabin environment.

The cabin is characterised as transient and non-uniform [Wal+06] because of the

rapid fluctuations of parameters [Vol16] such as air temperature, air flow, humidity,

and mean radiant temperature (also known as environmental parameters).

As humans perceive discomfort in terms of how much heat energy is lost from

their bodies [AZH06b; FH09], parameters related to the person are also measured

(personal parameters). These include the activity levels and clothing insulation that

influence the level of comfort experienced by the occupants.

2.2.1 Modelling

In order to get a correct estimate of thermal comfort, all these personal and

environmental parameters have to be measured [CM07; Dam+16; MSR04; Wal+06].

By grouping these parameters using equations of thermoregulation, various thermal
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comfort models have been developed [HHA01; Nil07; Sta94; Zha+05]. Among

these, the most notable is Predicted Mean Vote (PMV) [Fan73], developed in 1973

by P.O. Fanger. It essentially represents an index predicting the thermal vote

of the occupants based on the equation of the thermal balance of the human

body [Cro+15], using all the above-mentioned parameters. The model associates the

comfort evaluations of the occupants (a seven point sensation scale [Sta94]) with a

thermal vote. While PMV applies well to buildings, it does not measure correctly the

comfort in cars [Dam+16]. Fanger also developed an equation estimating the level

of dissatisfaction that occupants experience with the conditions of their thermal

environment, named Percentage People Dissatisfied (PPD) [Sta94]. For buildings, the

equation predicts that at least 5% of the occupants will be dissatisfied at any time.

When applied to vehicles, up to 100% of the occupants will be dissatisfied [Dam+16],

making PPD unsuitable for this environment.

Other models such as Standard Effective Temperature [GFB86] and Equivalent

Temperature [NH03] aim to effectively estimate thermal comfort. For the evaluation

of the thermal models, the estimated values are correlated with evaluations of the

car cabin occupants. Among the models, the most suitable for car cabin comfort is

Nilsson’s [Hin+14; Nil07] equivalent temperature model.

Also, the analysis of thermal phenomena is often performed in simulation [Ji+14],

in climate chambers with mannequins [MSR04], or using surveys targeting human

experience, with the outcomes applied to stationary vehicles. This thesis aims to

use a set of data that includes real-world driving scenarios that capture occupant

comfort.

2.2.2 Adaptive Behaviour

The problem with the afore-mentioned models is that they cover the physical

and physiological measurements with a standard evaluation of how comfortable

people are. What they are lacking is the fact that thermal comfort is a personal and

subjective experience [Sta94]. Furthermore, when given the opportunity, people

behave in order to avoid discomfort [Sch+13] which allows them to adapt to en-
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vironmental conditions. According to Schlader [Sch14], a powerful mechanism of

thermal regulation is thermal behaviour, encouraging further exploration of the

processes behind it. The decision to act, when experiencing discomfort at skin level,

allows the occupants to maintain a stable core temperature. Zhang [Zha+10b] ex-

plained that depending on the thermal state of the body, actions such as immersing

the hands in warm water can have a positive or negative impact on the subject’s

comfort. Haghighat [Hag02] further suggested that the quality of an environment

depends on the occupant’s response to the surrounding stimuli.

For the building environment, the focus has shifted to understanding and mod-

elling forms of adaptive behaviour. According to de Dear [Dea11], research is cur-

rently targeting adaptive methods for local control. Moreover, Luo et al. [Luo+16]

identified three levels of adaptation psychological, physiological and behavioural.

The notion of thermal comfort is in itself, vague and individualistic. Zhang et

al. [Zha+10a] highlighted that how comfort is actually conceived by the human

mind is not explored at all. What is more, Haghigat [Hag02] found that adaptive

comfort models support the occupants to execute adaptive behaviours. Zhang et

al. [Zha+10a] further elaborated that an action produces a pleasing sensation when

it satisfies a need (e.g. when entering a cool environment, on a hot and humid day).

This identifies the source of adaptive behaviours as alliesthesia [Dea11]. According

to Cabanac [Cab92b], alliesthesia (the sensation of pleasure) is apparent only when

the body is in a transient state. This sensation helps the body to return to stable

conditions, also known as experiencing a neutral sensation. The subject’s experience

of thermal neutrality determines the end of any adaptive actions.

Research involving adaptive behaviour [Par02; GOB13; YLL09] is already being

explored for the built environment. Behaviour-based models are used in simula-

tion to explore the capabilities of building systems [LWG15]. As thermal comfort

was initially an issue addressed in the military clothing industry as well as build-

ings [Wal+06], it is necessary to look at the applicability of user-trained control

for the static environment, what aspects of human behaviour can be taken into

account and which human modelling approaches have been proposed. This is

because thermal comfort solutions initially start within this area and have been
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subsequently applied to dynamic environments, represented in this thesis by the

car cabin. As thermal comfort is an issue that affects driving performance [Hod13],

there is a need to analyse the adaptive behaviours of the passengers in order to

fulfil their requirements and preferences.

There are two aspects related to thermal behaviour present in the literature:

perception and preference. Perception relates directly to the occupant’s satisfaction

with the environment. Preference refers to the actions performed by the humans

in order to achieve thermal equilibrium or the desired elements of their thermal

environment.

Perception

Factors that influence human perceptions towards thermal comfort in a building en-

vironment can equally be applied to a vehicle cabin. Considering human perception

of the thermal environment, a series of studies show that for Indoor Environmental

Quality (IEQ) thermal comfort is the most important factor that is influenced by

time, climate, culture and social environment, and education; as well as the type

of buildings and outdoor factors [FW11]. Furthermore, this perception varies with

gender, as women have a higher predisposition towards being dissatisfied with

their environment due to the fact that they are more susceptible to changing envir-

onmental parameters [Kim+13], whereas males are more predisposed to interact

with the available control systems [Kar07].

Perceptions of comfort can also be influenced by the purpose in which the en-

vironment is used. In hospitals, air quality not set-point temperature, represents

a measure of comfort [Giu+13]. The duration of stay in the respective environ-

ment plays an important role in the subjective perceptions of patients and doctors.

Thermal neutrality (associated with a comfortable state) is also affected by the

level of activity or by the type of ventilation systems. For example people in sports

facilities prefer their environments to be warmer [RA14]. Conversely, Natural

Ventilated (NV) building occupants have more tolerance to seasonal variations

and a higher sensitivity to discomfort than those working in HVAC based build-

ings [LWG13].
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This means that the amount of time spent within an environment has an effect

on the actions of its occupants. Luo et al. [Luo+16] support this hypothesis by

stating that people’s perceptions of comfort can be directly linked to their thermal

history and are led by their expectations. As occupants get accustomed to poorly

air-conditioned environments, it influences their decisions not to make changes to

the HVAC systems, which is synonymous with not altering their comfort situation.

Cabin occupants reach a thermally neutral state (steady state) in approximately

30 minutes [Zha+14b]. This is an appropriate window during which more frequent

changes to the HVAC system are likely to happen.

Conversely, a closer look needs to be taken to the duration of a car journey. Jeffers

et al. [JCR15] explained that an average journey in the United States of America is

approximately 20 minutes. On the other hand, Johnson [Joh02] made the point that

because of the short nature of car trips, the HVAC system is left on for the entire

duration of the journey, since most of the journeys are short (about 92% of journeys

last under 40 minutes). This thesis uses the same principle for testing the learning

ability of the RL system within a time frame of 20 minutes, and investigating after

how many simulated trips the system can learn.

Preference

More recent work considers the adaptability of humans [YLL09] when they experi-

ence discomfort and assumes that they change their behaviour [Sch14; Sch+13] in

order to achieve thermal comfort either directly (changes made to the environment)

or indirectly (e.g.drinking hot or cold drinks). Nevertheless, the adaptive levels

of humans vary with the type of environment in which they are situated, hence

an adaptive model cannot be standardised for all buildings and cars in a specific

region, or for the entire life span of the respective control system [Son+15]. In both

cases, humans are required to actively participate in training the control systems

so that their preferences and requirements are satisfied in a personalised in an

efficient manner.

In the available literature on mechanisms ensuring thermal comfort for the

building environment [TC08], human input is often necessary to verify the pre-
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dicted results (e.g. NEST and HIVE thermostats). Adjusting a thermostat can be

taken as an example. Certain aspects need to be considered in order to enable

setting the right temperature for the user: direct access and control of the system;

easy interaction and useful information display [Pef+11]. Additionally, a basic

knowledge of what the system is trying to achieve (e.g. time duration until the

set-point value is reached) can enable the user to understand its workings and

detect any problems [TC08]. When given the opportunity to act, individuals can

adjust the amount of clothing they are wearing [Par02] or open and close the

windows [KK07] instead of adjusting the thermostat. These actions also represent

adaptive behaviours [GOB13]. Apart from the need for accessibility and integrabil-

ity with other devices (e.g. mobile phones) and direct monitoring through the

internet, an alternative is to control the system by voice [Pef+11].

Personalisation represents a key objective in the development of smart environ-

ments which can improve the occupant’s comfort. It relies on customised controls

that can prevent energy wastage. The main problem of personalisation is that there

are often more than one individual interacting with the controls, leading to a higher

amount of data needed in order to construct a preference model.

Existing work done on personalising intelligent systems proposes the use of

fuzzy logic. Daum et al. [DHM11] created a model based on occupant preferences

in order to develop a personalised system for controlling window blinds. Jazizadeh

et al. [JMB13] ran a series of experiments when developing a user interface that

revealed that the perception of comfort is mainly associated with set-point temper-

ature. This served as a practical testing method for setting up a personalisation

framework using a fuzzy logic based controller [Jaz+13].

Pattern monitoring [YB14] can be used to train a system depending on the users

present in the environment. Occupant preferences are related either to the range

of acceptable temperatures, which constitute the base for comfort distributions

that train a Bayesian network [GTB15]; air flow levels for the summer and winter

periods in a climate chamber [CB15]; or have associated selections of lighting and

music preferences [KWA09].
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Conversely, there is the question of what are the occupant’s readily available

adaptive methods in a limited space such as a car cabin, where concentration

and focus need to be dedicated to the road and the act of driving. An answer

comes from Brager et al. [BZA15]; that directly links the improvement of comfort

with the occupant’s relationship with the architecture and systems present in

their surrounding environment, manifested in the form of personal control. This

points the thesis in the direction of the HVAC system. This is why perceptions and

preferences need to be taken into consideration when designing and implementing

HVAC control systems. Frontczak et al. [FW11] not only identified that there is a

need to examine the dynamic character of human responses, but also to customise

the available controls according to their preferences. This supports the tendency for

individual control, to which Ruzic [Ruz11] refers when explaining the functions of

the HVAC systems in cabs (i.e. the system should deal with personalised comfort,

rather than catering globally for all the occupants of a cabin). The following section

explores the HVAC system and the state of the art, with an emphasis on what new

avenues can be taken from the building environment and implemented within the

car cabin.

2.3 climate control

The interior conditions of both built and vehicle environments are changed using

HVAC control systems to fulfil the occupant’s comfort needs. The term control is

often encountered within the engineering and mathematical fields. It determines

the dynamic behaviour of a device [DFT91], describing the relationship between

the inputs and outputs of a system (plant). A controller is designed to capture the

error signal between the desired and actual values of the output. This signal is

used as feedback for the input of the system in order to enable the convergence of

the output with its desired value (reference). Control theory can be used to model

simple systems (e.g. thermostats) to complex ones (e.g. vehicle commands – the

steering wheel, HVAC system or brakes).
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This thesis examines the control of HVAC systems within the car cabin. The car

cabin environment is characterised by rapid changes due to different external

parameters [CM07] which determine its transient states e.g. solar loading and

velocity. Due to these rapid changes, occupant comfort and well-being are af-

fected [Cro+15]. Not only does the HVAC system determine thermal comfort, but

also air quality [SC13]. Hence, vehicles incorporate management systems that

control air circulation, purification, temperature and humidity.

While the use of actuation is typical for internal HVAC control [Sch08], the

HVAC interface or panel deals with climate control (input or set-point control).

The main objective of the interface is to maintain a temperature and humidity

balance no matter the conditions present outside the car [Sch08], with a focus on

temperature control. What is more, current systems have additional settings such

as preventing window fogging, and preserving the relative humidity at healthy

levels (45-50%) [Wan00].

Vehicle passengers can set their desired set-points and the system will automatic-

ally output the highest levels of air (either heated or cooled) in order to achieve and

maintain the desired selections [Sch08]. This causes a non-uniform temperature

change from the head to the foot area in the car cabin. The high discrepancy

between the thermal sensations experienced at different levels of the body (e.g. cold

feet and hands, heated body) impacts the comfort of the occupants [HC04].

The use of a climate control system in this manner also leads to a high amount of

energy being consumed [Cro+15], especially for hybrid and electrical vehicles [Che+15;

KB14; NW14]. Hence, another constraint for HVAC design is energy efficiency.

Thus, the two constraints of the HVAC system are: maintaining the overall com-

fort of the passengers, while keeping energy consumption to a minimum. A study

conducted in the United Kingdom in 2014 [JDP14] reported that only 31% inter-

viewed drivers were satisfied with their cars’ systems. In order to deal with the

two constraints and improve the performance of the HVAC system, several machine

learning techniques have been proposed.
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2.3.1 State of the art

Farzaneh et al. [FT08] aimed to optimise the HVAC system in the automotive

environment using fuzzy logic. The novelty was that PMV was used for thermal

comfort prediction and included in the feedback loop of the climate controls.

The PMV based controller was further optimised using a genetic algorithm and

compared to a strictly temperature based controller. Its robustness was analysed

for uncontrolled environmental variations, namely fluctuations in the outside

temperature. Energy consumption was measured by monitoring the evaporator

cooling capacity. A mathematical model of the Peugeot 206 control architecture was

developed in order to determine blower power and temperature door positions.

Their results proved that a PMV based controller outperformed the temperature

based one in both comfort and energy consumption.

Kranz et al. [KNG12] used a black box approach to automate HVAC control. Data

was gathered by sensor measurements, comfort evaluations and HVAC interface

settings for blower, temperature, and flap positions on a Volkswagen Polo in South

Africa [Kra11]. An artificial neural network was trained using this data in order

to control the blower level and flap positions. Research on comfort preferences

and draft evaluations were captured by means of a joystick based interface. The

training algorithm used was conjugate gradient descent achieving a classification

performance of 87%. Kranz’s work was more oriented towards how to improve

HVAC interfaces to better incorporate comfort evaluations, demonstrating that

intelligent systems can be trained directly by the use of these evaluations. A linear

function was used for modelling temperature settings depending on the ambient

temperature, instead of including its control as for the blower and flap positions.

Conversely, RL can be used for the optimal or near-optimal control of comfort and

the reduction of energy consumption [Bru+17; Hin14] for vehicle HVAC systems.

A one-dimensional simulation of a car cabin was developed, using vectors for

the cabin state, and the HVAC actions. The bounded reward, associated with the

following state that the cabin achieves and the current state-action pair, relies

on two controlled parameters: Nilsson’s Equivalent Temperature for measuring
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comfort [NH03; Nil07] and energy consumption. The system outperformed a fuzzy

logic and a standard controller in terms of policy performance. Even though the

system learns the controls and consequently provides a near-optimal policy, it does

not account for the preferences of the individual. What is more, the RL system

needs 6.8 years of training trials until a near-optimal policy is achieved, which is

not feasible in a real-world implementation.

These machine learning based controllers ([Bru+17; FT08; Hin14; KNG12]) aim

to refine comfort metrics and energy consumption without considering the fact

that humans have specific habits and preferences concerning the control of HVAC

systems. The current design of control systems has a limited capability to sense or

infer certain aspects of human behaviour. This behaviour is contextual, individual,

and cannot be accurately modelled. It is difficult to quantify and measure all the

factors that drive the actions of the occupants. Therefore, the targetted aspects of

the occupants’ behaviours need to be precisely defined in order to be monitored.

One of the main objectives of this thesis is to develop a set of definitions or rules

that identify explicit thermal behaviour actions related to thermal comfort.

A control system can deal with basic aspects of context that are either repetit-

ive, pattern-related or strictly defined and conditioned [BE01]. It can benefit from

refinement by receiving feedback from the user, preventing it from making false

assumptions (e.g. rapid heat reduction by blowing cold air into the cabin, a pre-

ferred interval of set-point temperatures). The most suitable system for including

the occupant’s feedback is an RL based HVAC system.

Human feedback can be defined as additional information or opinions provided

by a user (human) about the agent’s (machine) performance of a specific task. A

series of questions emerge when considering human feedback: Which parts of

human behaviour can be considered as feedback? What is missing from comfort

modelling? To answer these questions, further research on adaptive models for the

building environment is presented in the following subsection.
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2.3.2 Adaptive behaviour models for HVAC control in the built environment

According to Perceptual Control Theory (PCT) [Pow+11], control refers to the cap-

ability to act upon the surrounding environment with the goal of maintaining a

specific experience. This theory supports the modelling of a person’s internal mech-

anisms as a negative feedback control loop [GWP11]. PCT depicts how an external

stimulus perceived by a person (e.g. sensation, cognition, perception) is compared

to a desired experience triggering a particular behaviour towards the external

environment. PCT establishes the link between perception and action, outlining the

fact that perception has an impact on the human-environment interaction [VP00].

Powers et al. [Pow+11] took the example of thermoregulation when the skin or

body comes into contact with cold air, triggering shivers. Core temperature is the

variable that the individual tries to control. The neural control system acts as a

comparator and the action to counteract the error for example is the act of shivering.

If the body is not capable of dealing with the amount of heat loss, a person will

employ a different action such as using a heater.

Fabi et al. [Fab+12] examined occupant behaviour in order to improve comfort

and energy efficiency. Karjalainen et al. [KL11] identified the need for users to

control their environment and proposed a modular user interface for joint control

over building or home systems, having both comfort and energy efficiency as

motivation. Gunay et al. [GOB13] encouraged the use of occupant control to

improve the robustness of control systems in offices, giving recommendations on

how to build a human behaviour model depending on one or multiple variables.

The research of Fabi et al. [FAC15; Fab+15] consists of the verification and

validation of behavioural models, analysing the difference between stochastic and

probabilistic behaviour for set-point and window adjustment. Logistic regression

is used to develop predictive models for opening windows and validating them

against real-world data. Zhao et al. [Zha+14b] proposed a model that takes account

of complaint behaviour related to the IEQ depending on the states of the individual

(transient or steady state).
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Langevin et al. [LWG13; LWG15] developed a model of occupant adaptive be-

haviour in the office environment using climatic, building interior and occupant

preferences data.. Bayesian estimation, using Gibbs sampling, was applied in order

to project the satisfaction, thermal acceptability and preference for controls. Four

versions of the developed agent-based model (with clothing variation, standard

acceptability, reordered behaviour, and with realistic ranges) were compared to

random guess, logistic regression, Humpreys algorithm, and Haldi regression

models. The full version of the agent-based model outperformed the alternat-

ive methods by having the highest balanced accuracy (70-76%). The alternative

models overly-predicted window use, and under-predicted use of fans. Wong et

al. [WMC14] also used the Bayesian estimation model in order to examine the level

of adaptation to the environment, registering less dissatisfaction among the elderly,

and in student classrooms. Hong et al. [Hon+15a; Hon+15b] identified the need for

a joint framework that can define and plan for any experimentation on occupant

behaviour providing a unified and standardised view.

Kim et al. [Kim+18] developed personal comfort models for seats using a set

of machine learning algorithms: classification tree, Gaussian process classification,

gradient boosting, kernel support vector machine, random forest and regularised

logistic regression. For training and testing the models k-fold cross validation

was used on combined data from surveys and trails with 38 participants. The

model with the highest prediction accuracy (Area Under Curve (AUC) of 0.71)

was random forest surpassing PMV models (0.5), the minimum amount of surveys

necessary for model convergence was 64. The research demonstrated the potential

of personal comfort adjustments as an alternative method for comfort prediction to

using surveys. Kim et al. [KSB18] also proposed a framework for personal comfort

modelling recommending the use of regression, decision tree, Bayesian and kernel

algorithms.

Among the proposed intelligent methods of providing comfort that are strictly

related to HVAC control, Dalamagkidis et al. [DD08; Dal+07] modelled a RL based

controller for the home environment. It is based on a radial basis function for the

feature vector, which is then multiplied with a weight vector. The reward function
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is a combination of comfort, energy consumption, and air quality. The authors

proposed a user simulator module based on Fanger’s PPD [Sta94]. The performance

of the controller was proven to be comparable to fuzzy logic controllers. Despite

this fact, the agent’s learning is slow (4 years). Moreover the algorithm (Q-learning)

does not converge to an optimal solution in simulation.

Fazenda et al. [Faz+14] used a reinforcement learning HVAC controller in conjunc-

tion with a simulated human, based on an α-fuzzy logic. The simulated behaviour

represents occupant’s interaction with a thermostat. It is based on prior devised

schedules for when the occupant is working or is out of the building and on the

adjustment of the thermostat when the occupant is uncomfortable. Fuzzy logic

was used for modelling set-point temperature selection. The controller was based

on Q-learning with neural network adjustment of the weights and was used to

examine two cases: a standard on-off control (Bang-bang control) and a set-point

adjustment control. The HVAC controller could pre-heat the room given that the

simulated occupant’s behaviour did not change (i.e. the same schedule was main-

tained). While it has the potential of integrating occupant’s behaviour to train the

system, the caveat is that the learning is slow (80 days of training) and does not

converge under any circumstances.

These models were developed in order to improve comfort control in both

home and working environments, enabling designers to create more realistic

scenarios in simulations involving the occupants. Human behaviour has a high

degree of uncertainty, especially in the car cabin. Changes to the HVAC system

are seldom, but are targeted to the occupants’ comfort needs. Using probability

distributions to model such behaviour has the convenience of varied certainty,

while maintaining the bivalence of the response (a statement is either true or false).

Modelling adaptive behaviour via probability distributions ( [Fab+15; GOB13;

LWG16; YLL09]) computes the likelihood of whether or not a specific behaviour

happens, such as changing the settings.

Occupants’ decisions to act are influenced by their perceptions, that vary from

person to person. Nevertheless, certain preferences are exhibited throughout the

literature and need to be compiled in the form of a set of rules, as people convey
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knowledge of their perceptions via natural language. The rules can be expressed

as conditional probabilities linking comfort and preference. A solution is a com-

bination of Bayes inference with other machine learning techniques to identify

appropriate posterior probabilities. Alternative machine learning algorithms can be

used for modelling the occupants’ actions such as neural networks, support vector

machines, conditional inference trees, logistic regression and random forest.

2.3.3 Adaptive behaviour in the cabin environment

Numerous trials have been conducted in enclosed environments [Kim+13] using

surveys [FW11] and sensor measurements [Hin+11], but fewer driving or in the

car [KNG12]. An integral aspect of how people perceive their thermal environment

is what actions they choose in order to adapt to it [Sch+13]. This aspect of thermal

comfort is just emerging within the building environment [Fab+12; LWG16] and

is not yet observed within vehicular research. It is mainly overlooked as it is

considered a secondary task, priority being given to the task of driving [PBR07].

Models of human behaviour that go beyond physical and psychological char-

acteristics, are vital for improving the experience of cabin occupants. The HVAC

systems mentioned in subsection 2.3.1 rely only on the evaluation of comfort from

estimated values (equivalent temperature, PMV) and ignore the fact that humans

act when they experience discomfort. The occupants’ adaptive actions can alter the

estimated comfort values. For example, removing an item of clothing can change

the value of clothing insulation. Human evaluations commonly rely only on the

scales [Sta94] of thermal comfort and sensation. These are completed either after

experimental trials take place, or during the trials by means of queries. In the car

cabin, localised comfort is a significant problem, as a difference in temperature at

the head and foot level produces more than 10% dissatisfaction [Hod13].

When experiencing thermal discomfort in buildings, people tend to use ac-

tions [Sch14] in order to achieve their thermal equilibrium [Hag02] (e.g. removing

or putting on more clothes [Sch+13], or getting close to heating or cooling sources).

In enclosed environments such as car cabins, there is a limited number of action pos-
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sibilities [FF86], hence the subjective and preferential responses of the passengers

are also limited.

Fugiglando et al. [Fug+18] aimed to develop a personal thermal comfort model

for HVAC control in cars by using data collected from 10 cars through the CAN-bus.

The data includes information on window opening, wind shield wiper activation,

HVAC and air conditioning compressor turning on and off, heated seat activation,

as well as external and internal temperatures, however the thermal comfort of

the occupants was not measured. The results showed that the activation of the

heated seats is correlated to the HVAC heating mode being selected (Pearson’s R

of 0.42), to using the air-conditioning in heated mode (Pearson’s R of 0.46), and

to turning on the the wipers(Pearson’s R 0.36) . The method used for developing

the personal comfort model was a regression tree model, that registered poor

estimation performance. However alternative models are recommended for use

such as support vector machines, artificial neural networks and random forest.

When cabin passengers experience discomfort they use adaptive methods to

improve their state. The range of behaviour when experiencing thermal discomfort

can be limited to:

1. Removing or adding more items of clothing.

2. Use of windows and additional heated surfaces (e.g. heated seats or steering

wheel).

3. Changing the HVAC interface settings.

The motivation behind the first two points is vague as it cannot be solely related to

thermal comfort, but also to alternative aspects such as ease of driving (for clothing)

or smoking (for opening the windows). These aspects are detailed in appendix C.

HVAC Interface

The HVAC interface is conveniently placed as part of the instrument panel [PBR07;

Sal01; Hor01] (figure 2.9). Specific legislation is designed for the placement of the

control systems so as to enable drivers to easily reach for them [Foc06; NHT12;

OIC15]. Symbols on the control panels are standardised in order for passengers to
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Figure 2.9: Heating, Ventilation and Air Conditioning system panel for a Ford Escape, with
set-point temperature, blower and vent control [Coo17].

easily recognise their use [Rie+13]. The types of panels can include push-buttons,

knobs, or LCD screens. The interfaces offer the operator a range of features that can

include outside air temperature measurements as well as input controls for heating

and air-conditioning. Alternative interfaces employ either speech, handwriting and

gesture recognition [Bla+10; HN98; Ich04; Rie+13]. A problem with these types of

interfaces is that they contribute to driver distraction [PBR07; Ran+00; Sal09].

Three types of HVAC system are identified: automatic, semi-automatic or

manual [Hod13]. The control interfaces have a head-up or down display [Rie+13].

All systems allow the direct adjustment of temperature, blower level or air distri-

bution. A problem with the current HVAC systems is that even though passengers

know what settings are available, they do not understand how the HVAC system

operates internally once they make adjustments to the settings [Com16]. Hence

people experience impatience and dissatisfaction [DeM15].

The HVAC system has multiple modes. Amongst these modes, AUTOMATIC

has already built-in rules programmed in the electronic control unit. These rules

enable the HVAC to blow in cold or hot air, depending on the state of the cabin

environment. In their climate control descriptions, car brands detail the AUTO-

MATIC mode [Com16; Vol16], where a set-point temperature is the only additional

setting that can be adjusted. This specific mode enables the climate control system

to blow air until a pre-defined set-point temperature is reached, at which point

it reduces the blower speed to a minimum (level 1 or 0 depending on HVAC sys-

Some materials have been removed from this thesis due to Third Party 
Copyright. Pages where material has been removed are clearly 

marked in the electronic version. The unabridged version of the thesis 
can be viewed at the Lanchester Library, Coventry University.
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tem). When an increase or decrease of the specific temperature is registered by a

temperature sensor, the system resumes blowing air into the car cabin until the

set-point is subsequently reached. For FULL AUTOMATIC selection the passenger

is required to switch on the AUTO button and select the knob for fan control (also

on AUTO) [Sch08]. Once a change in settings is registered (i.e. a change in the speed

of the fan or selection of recirculation) the interface activates its semi-automatic

function and the FULL AUTO mode is no longer available.

Cabin occupants are not always content with the AUTOMATIC settings and

make their own settings selections through MANUAL mode. This enables them to:

i) select a specific temperature; ii) select a blower level; iii) select airflow mode. For

MANUAL settings, a set point is selected by increasing or decreasing the default

temperature on a screen or turning a knob to the left or right. A general range

for temperature selection is 15 °C to 32 °C with increments of one degree [Sch08].

Temperature regulation happens only when the set-point or knob is placed between

the minimum and maximum points. Once either of these points is selected, the

system outputs the maximum heated or cooled air. The blower level controls how

much air is blown into the cabin (the levels control the speed at which the fan

moves). Depending on the model of the controls, there are 5 to 7 levels of fan

speed that represent the percentage of the duty cycle [NXP15]. For air flow or

air distribution control, the actuator motor driver is positioned towards a body

part towards which the air is blown (Head, Foot, Both, Ambient). It extends to 4 to

5 positions, or levels [NXP15]. The term Both defines the direction that the air is

blown towards the feet and the head, whereas Ambient identifies a neutral position.

Knox [Kno12] proposed modelling the feedback delay as a negative uniform

distribution between 0.2 and 0.8 seconds, the point of origin being the feedback to

the learning system, and having a backward view of the event that is approximated.

This thesis uses a forward view, with the event (in this case the human feeling

discomfort) triggering the process of a change in settings. The following chapter

will examine interactions with the HVAC interface concerning the adjustment of

temperature, blower, and vent angle settings as a set of rules based on the literature.
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2.4 summary

In this chapter, the main problem with state of the art HVAC controllers is presented.

They do not offer the occupants the opportunity for personal control. Among

the machine learning techniques for HVAC control, Hintea’s [Bru+17; Hin14] RL

controller could benefit from integrating interactions with the HVAC interface as

feedback to improve its learning speed and the occupant’s comfort. Exploring the

feedback methods already encountered in robotics and gaming, shaping has a high

potential of generalisability. Furthermore, it offers the opportunity for simulated

interaction with the settings to directly train an RL controller by using the reward

function.

As thermal comfort plays a significant role in how occupants act within their

environment, a closer look at modelling adaptive behaviour in the context of the

building environment was necessary. The main problem with modelling thermal

behaviour is that it is individual and situational. Therefore, a clear identification is

needed of which behaviour aspects are examined. A solution is to identify simple

rules based on how occupants react in a car cabin that can be modelled as prob-

ability distributions. Classifiers can be used in order to estimate the probabilities

of actions. Moreover, examining the opportunities of action within the car cabin,

complementary to the driving task, gives insight into how to tailor the HVAC system

to the individual. This chapter establishes that only changes in climate control

can represent a first step towards providing direct occupant feedback to an HVAC

system, as the motivation behind the use of other methods is ambiguous.

That is why the aim of this thesis is to model occupant preferences related to

climate control and use them as feedback for training an RL based HVAC system

to improve its learning performance and personalise comfort within the car. The

following chapter details the literature-based rules that are considered in this thesis,

with the purpose of developing a model of HVAC setting adjustments to be executed

by the occupant.



3
O C C U PA N T H VA C I N T E R A C T I O N R U L E S

Chapter 2 examined the importance of a user feedback-trained Reinforcement

Learning (RL) system and identified which method is suitable in the case of vehicle

thermal comfort. The chapter established the link between comfort and the user’s

thermal behaviour, distinguishing that the most suitable form of feedback to the

climate control is the adjustment of the Heating, Ventilation and Air Conditioning

(HVAC) settings. The main focus of comfort literature is on which factors impact

thermal comfort, and how it can be effectively modelled. Little is known about

how occupants act in order to improve their comfort, or how to model this thermal

behaviour in the context of a car cabin.

Karjalanien et al. [Kar07] stated that there are three main aspects that need to

be considered for tailored control: the HVAC system; the available controls for the

occupant and the strategy used. Moreover Zhang et al. [Zha+10a] recommended

developing user models based on variable rules through a trial-and-error method.

Based on this recommendation, this chapter describes a set of three simple rules

based on the available literature. The rules define how occupants use their climate

controls.

The research question that this chapter answers is : “What is the set of simple

rules that can be drawn from the thermal comfort literature on occupant thermal behaviour

related to HVAC control?”.

The choice of rules is motivated by the fact that they need to be understandable

and establish a probabilistic relationship between thermal comfort and HVAC control.

53



54 occupant hvac interaction rules

The author does not deem the set of rules to be exhaustive but a start towards a

closer look at thermal comfort behaviour and its modelling potential.

The rules are as follows:

1. R1: When people are uncomfortable they are more likely to make changes to

the HVAC interface than when they are comfortable (section 3.1).

2. R2: People are more likely to make changes to the temperature settings, than

the blower and vents (section 3.2).

3. R3: Occupants prefer specific settings depending on the type of environment

(either hot, cold or neutral, section 3.3).

3.1 r1 : making changes to the climate controls

Schlader [Sch14] states that when people experience thermal discomfort, they

choose to act. For example, when occupants experience discomfort with their

thermal environments, they change the HVAC settings to ensure that a stable core

temperature of 37 °C is maintained [Hag02].

There are several external factors mentioned in the thermal comfort literature

that determine how users interact with control settings. Cabin occupants experi-

ence discomfort due to external environmental changes and solar radiation, that

cause them to make changes to the climate controls [HC04]. When going from

an extreme environment (e.g. cold or hot) to a neutral environment people tend

to feel uncomfortable. People act in order to change their surrounding [KK07]

until thermal equilibrium is reached, depending on the type of transition from

one environment to another [Du+14; Liu+14]. Zhao et al. [Zha+14a] discovered

that the behaviour and complaints of occupants are different when they are in

transient state, than when they are in a thermally steady state (i.e. reaching a stable

skin temperature). Moreover, according to de Dear [Dea11], occupant’s adaptive

mechanisms are activated when they are in non-steady states. Therefore, occupants

are more likely to use HVAC settings in transient states.
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Part of the decision to make changes to the controls is the fact that occupants’

health and driving performance are impacted by a rapidly-changing environment,

combined with the air quality in the cabin [Ruz11; Wal+06]. According to Luo et

al. [Luo+16], their thermal satisfaction depends on their immediate experience and

their thermal comfort expectations. In the building literature, personal control over

the environment increases occupant’s psychological comfort satisfaction [BCB98;

BPD04; Hal+15; Hui+06; LWG12; PBZ18]. Moreover, Singh et al. [SBS15] stated

that the thermal satisfaction of the vehicle occupants is related to their use of an

available system (in this case, the HVAC interface).

The purpose of the changes is two-fold, according to Cabanac [Cab92a]:

1. to reduce displeasure;

2. to indicate desire for comfort improvement.

Ruzic [Ruz11] stated that it is not always guaranteed that the occupants will

experience a higher level of thermal comfort by performing changes to the settings.

This needs to be considered in the first rule.

Rule R1, states that occupants are likely to make changes to the HVAC interface

when they experience discomfort. R1 is based on Johnson’s [Joh02] hypothesis

that when people experience dissatisfaction with their thermal environment, they

activate the air conditioning. To further examine this, Johnson [Joh02] assumed that

the Percentage People Dissatisfied (PPD) [ASH10] model determines the percentage

of time for which the occupant uses the HVAC. Similar to Johnson, this thesis avoids

examining the use of the interface for other purposes such as automatic mode,

defrost mode, noise responses or opening and closing windows. Additionally,

Zhang et al. [Zha+10a] incorporated a similar rule to R1: for transient environ-

ments or when occupants interact with the control system, their overall comfort

is higher than the body-part comfort of the two most uncomfortable regions. The

rule is used to model thermal comfort responses for the building environment.

Fugiglando et al. [Fug+18] also infer the thermal comfort of the occupants from

their actions assuming that drivers’ changes to the climate controls are triggered by

their discomfort.
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R1 refers to the overall changes made to the HVAC interface when in MANUAL

mode. It refers to the action of whether or not to make a change to the HVAC,

therefore it can take a binary value (0 for no change, 1 for change). It also depends

on the state of the occupant, i.e. if the occupant is comfortable or not.

The measure of comfort used in this thesis is equivalent temperature [NH03] (Teq).

According to Hintea [Hin14], the equivalent temperature model is the most accurate

model for the car cabin environment. The overall body equivalent temperature is

calculated using Bedford’s equation [Nil07]:

Teq = 0.522× Ta + 0.478× Tw − 0.01474×
√
v× (100− Ta) (3.1)

where, Ta, is the air temperature, Tw is the average temperature of the surround-

ings (both expressed in degrees Fahrenheit), and v is the air speed (measured

in feet/minute). In this work the following environmental parameters are used:

for air temperature, cabin air temperature (Ta = TC); the surrounding surfaces

temperature (Tw = TInt) and air speed v (calculated using the air flow V̇). By

surrounding surfaces temperature, this work refers to the average temperature of

the cabin surfaces surrounding the occupant. The surrounding surfaces can be the

instrument panel, the dashboard, the trim or the car seats.

The relationship between comfort and changes can be described as a conditional

probability, represented as P(Change = 1|Teq) and P(Change = 0|Teq). Given

the sparsity of the interactions with the HVAC interface, it is expected that the

probability of change would be lower than the probability of no change.

According to Nilsson and Madsen [Nil07], the average overall body equivalent

temperature at which occupants are comfortable is 22°C. Equivalent temperature

is also used by Brusey et al. [Bru+17] for the comfort associated reward for the RL

HVAC control system with a target temperature of 24°C. Conversely, several studies

in comfort performance indicate that there is no exact temperature for comfort, as

each passenger experiences it at different ranges [BZA15; Ruz11; Lim+12].
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R1 identifies when changes are made to the HVAC system, therefore it is a global

action similar to that proposed by Fazenda et al. [Faz+14] for estimating when an

office worker is uncomfortable, or is present in the building. R1 represents the start

of the interaction with the system, it is followed by the decision of what setting to

select, presented in the following section. R2 builds on R1 in order to include more

information about the type of changes made to the HVAC.

3.2 r2 : selecting a setting of the climate control

Singh et al. [SBS15] identified the main control parameters of the HVAC system.

These parameters are the set-point temperature, air speed, the vent numbers, the

temperature in the cabin and the relative humidity. Temperature selection is most

frequently used, as occupants are likely to associate their comfort strictly with the

adjustment of this setting. Supporting this fact, Karjalainen et al. [Kar07] suggested

localised temperature controls for buildings. Fazenda et al. [Faz+14] modelled

the decision for a preferred set-point temperature of a building occupant as an

α-level fuzzy set. Moreover, Ruzic [Ruz11] proposes that in taxis an increase in air

temperature has the potential to increase the amount of energy saved. Singh et

al. [SBS15] added that it is difficult to identify a single temperature that provides

uniform comfort for all occupants of the cabin. Even for the automatic mode,

set-point temperature adjustment is most commonly used. On the other hand the

discomfort of the occupants can be accentuated by dual-zone systems catering to

different desired temperatures [DeM15].

Conversely, Ruzic [Ruz11] recommended combining existent settings by selecting

a range of values (set-points or levels) preferred by the occupants to increase

their perception of comfort. Even though temperature selection is associated with

thermal comfort, the blower level is subsequently adjusted by the passengers to

control the amount of hot or cold air entering the cabin [CB15]. Knowing that

the system blows in hot air, the cabin occupant selects the blower level, with no

other interventions after this action [Pir76]. Additionally, high blower speeds are
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recommended by Singh et al. [SBS15] in cool down conditions, with a vent angle of

30◦ for 4 minutes. A decrease in speed is expected after this duration.

This research is in line with the arguments of Singh et al. [SBS15]. While vehicle

systems are advancing scientifically, including new technologies onto the HVAC can

increase the weight of the cabin, impacting the engine. Thus the system becomes

inefficient and costly. This is why the second rule, R2, averts attention to the

three main adjustment options readily available to the cabin occupant: set-point

temperature (Tset), blower level (Bset), and vent distribution (Vset). These three

settings are available to the occupant on the instrument board, with recognisable

symbols to differentiate between their purposes (equation 3.2).

Setting = {Tset, Bset, Vset} (3.2)

R2 is related to R1 as the decision to select a specific setting depends on the

decision to make a change. It also depends on the comfort level of the occupant

(equivalent temperature). If the person does not make a change then no setting

selection happens P(Setting|Change = 1, Teq).

R2 outlines that the most frequently used setting is temperature (Tset) as comfort

is often associated with temperature adjustment. Blower speed (Bset) follows, as

high levels of speed promote the circulation of the air in the cabin and rapid changes

to the thermal environment. Vent distribution (Vset) is the least favoured setting,

as it depends on passenger’s preferences and health. By using binary values for the

setting selection and having a model for each setting selection, multiple selections

within a single time step can be predicted. One of the points that this research

will examine is if the equivalent temperature can be the only input parameter

for modelling occupant behaviour or if elements of the thermal environment (e.g.

ambient, cabin, surrounding surfaces temperatures, air flow) need to be considered.

R2 only deals with preferences for the types of settings, therefore the information

contained is still insufficient, as each setting is based on a number of set-points

or levels. These values serve as comparison measures to the sensed data captured
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from the cabin environment. To further improve on this rule, once the decision

to change at least one setting is made, the final step is to adjust the value of the

setting.

3.3 r3 : impact of the environment on selecting a setting value

Thermal comfort is directly associated with thermal alliesthesia (a term that is used

to differentiate pleasure from a neutral thermal level) [Dea11]. Depending on the

type of environmental stimuli, the extremities (e.g. hands, feet, ears) experience

discomfort first. People who are sensitive to cold will try to adjust the HVAC

settings towards those body parts [AZH06a; FH09]. Other body parts, such as the

head for hot and abdomen for cold environments [AZH06a] are targeted when

passengers try to achieve body part comfort by changing the orientation of the air

distribution [Ruz11; SBS15]. Alternatively, Ruzic [Ruz11] recommended inputting

air (either heated, cooled or dry) into the cabin by means of vents placed on the

instrument panel and at the foot region.

In extreme cold or hot environmental conditions (e.g. tropical or seasonal

e.g. winter and summer), the cabin temperatures reach extremely high or low

levels [Ruz11]. Passengers use their HVAC system to cool down or heat up the car

to improve their driving performance [JCR15; Joh02]. Nilsson et al. [NH03] found

that there is a shift in set-point temperature preference when the seasons change.

Zhang et al. [Zha+05] identified that specific body parts can be targetted for cooling

(the head) or warming (the feet) depending on the types of environment (cold, hot

or neutral).

One of the main complaints that people have when entering a car is that, when

the environment is cold, the HVAC blows cold air until the engine is heated, hence

they are uncomfortable [Com16]. When occupants are in a hot environment, they

do not choose settings that will make their surroundings even hotter. Alternatively,

for a cold environment, they will not select settings that will make it colder. R3

incorporates the following types of environment: extreme, such as hot or cold,
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including warm (higher than 24 °C) and cool temperatures (lower than 20 °C); and

neutral (between 20 °C and 24 °C).

For each type of environment, there is a specific set of selections that cabin

passengers choose, or conversely avoid, related to set-point temperature, blower

level, and vent orientation. When the selection of a set-point temperature is in

place, the aim is to bring the cabin to the selected set-point. Due to the speed of

the blower and the desired vent angles, there is a high discrepancy between the

air temperature at different regions of the body, such as the head and feet, which

accentuates occupant discomfort. Zhang et al. [Zha+05] established a link between

the operative temperature of the environment and the acceptable limit between the

head and ankles of the occupant. The limit is different than the one recommended

by the American Society of Heating, Refrigerating and Air-Conditioning Engin-

eers (ASHRAE) Standard 55 (2004) of 3 °C. An average temperature for a neutral

environment is between 25.3 °C and 25.8 °C, with an acceptable variation of 7 °C

between the head and foot regions. For cool or warm surroundings, stratification is

not acceptable because it causes body-part discomfort (i.e. cold feet, warm head).

According to Zhang et al. [Zha+05] the asymmetry of the environment is not

the main cause of discomfort but the actual local discomfort experienced at the

extremities. Therefore an occupant’s first target is a local comfort when aiming

to obtain overall body comfort. According to Zhang et al. [Zha+10a], localised

comfort is impacted by the comfort perceived at other regions of the body, and the

whole body comfort. Furthermore a cool breathing zone is favoured in all types of

environment, whereas a warm one is not tolerated. A warm foot region impacts

the overall comfort of the subjects. Localised cooling of the trunk is a problem, as

excessive cooling of the chest and lower back can further cause discomfort.

The sensations at specific regions such as the face, head, chest, lower back, hands,

and feet have clear associations with discomfort. Nakamura [Nak+08] stated that

cooling of the face is favoured for warm environments. For cool environments,

heating the chest and abdomen produced a comfort response, whereas warming

or cooling the face did not have any impact. Therefore,there is a clear preference

for specific areas of the body to be cooled or warmed, depending on the type of
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environment. The occupant can target specific regions of the body by adjusting the

angle of the vent. Walgama et al. [Wal+06], also observed that the regions of the

body that are in contact with the seat are not directly impacted by the air flow.

Concerning sensation reports, there is a phenomenon called overshoot that occurs

when the occupant passes from an extreme into a neutral environment and vice-

versa, or transitions into another extreme one. Thermal sensation vote overshoot

means that the reported sensation scores exceed the final steady-state values. For

example, occupants can report a sensation vote of “+3”, associated on the ASHRAE

7 point sensation scale with the term “Hot”, before reporting a steady state value

of “0”, which corresponds to a “Neutral” sensation [ASH04]. Liu et al. [Liu+14]

examined the effects of step changes in transient environments, namely from warm

to neutral and back to warm. By looking at mean skin temperature and overall

sensation, Liu et al. [Liu+14] discovered that a thermal sensation vote overshoot

is present both when going from warm to neutral, and from neutral to warm

environments. Skin temperature reaches a steady state after 10 minutes in the step

down case and after 20 minutes in step up. Additionally, skin temperature is not a

direct determinant of sensation and comfort, but heat loss at skin level is. Du et

al. [Du+14] share similar findings for the transition from cool to neutral, and neutral

to cool environments in terms of heat loss. The thermal sensation vote overshoot

is present only for transitions from cool to neutral environmentswith the skin

temperature reaching steady state after 10 minutes. Whereas in the neutral-cool

transition steady state is still not reached even after 20 minutes. Du et al. [Du+14]

recommend that the set-point temperature difference between the cold environment

and the air-conditioned environment is less than 5°C. Moreover, alliesthesia can

be a factor that alleviates the sensations of the participants for the cool-neutral

transitions.

Horikoshi [HF93] examined the step change transition from cold to hot environ-

ments and vice-versa. Horikoshi [HF93] found that the comfort level rapidly deteri-

orated when moving from a hot to a cold environment. According to Horikoshi et

al. [HF93] human response is non-linear, with a delay in response when transition-

ing from cold to hot environments. An important factor influencing both comfort
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and sensation votes is represented by sweating, which started immediately as the

participants entered the hot environment, and stopped when transitioning to the

cold one. The measured skin temperature reached steady state after 10 minutes in

both cases, with an increase in comfort when transitioning from the cold to the hot

environment.

Since vehicle cabins represent transitional environments, it is rarely possible

for the occupants to experience steady state thermal sensations. Often passengers

perceive the environment as being extreme, when the car is left under the sun in

summer or left outside in winter. For warm up and cool down processes, occupants

experience transience not only due to the movement of the car, but also due to the

activation of the HVAC system, that aims to rapidly establish a neutral environment.

The type of behaviour exhibited in such cases is likely to trigger overshoots in

the selections of set-point temperatures. To be noted that according to Luo et

al. [Luo+16] occupants can easily adapt to solutions of improved comfort.

Related to climate controls, there are specific actions that take place when extreme

environments have an effect on the car and rapid cool down or warm up takes place.

Jeffers et al. [JCR15] maintain the idea that occupants activate their HVAC systems

because of the impact of the environmental conditions, the driving schedule, the

settings of the interface and the cool-down time. Once the temperatures in the

cabin reach steady state, the impact is reduced. Singh et al. [SBS15] examined the

cool down process of a car left in the sun using different types of vents. They

recommend an initial maximum speed and high air flow for approximately 3-4

minutes, after which a reduction is necessary. Currle et al. [CM00] recommended

the use ofside and centre vents, with a 30
◦ direction. Moreover, Jeffers et al. [JCR15]

provided a description of the settings they used in their cool-down experiments:

blower speed at level 7; maximum recirculation for the panel vents (alternative

vents being turned off); a set-point temperature lower than 60 degrees Fahrenheit

(approximately 16°C). The process is similar at warm-up with maximum blower

speed and high-temperature set-point selection.

R3 is related to the occupant’s decision to select a specific value for a desired

setting. The three types of settings (temperature, blower, and vent) have different
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Table 3.1: Blower speed levels reflecting the a percentage of maximum blower speed ,
according to [AMC].

Blower Level Percentage of Max. Blower Speed

1 0.4%
2 12.5%
3 25.0%
4 37.5%
5 50.0%
6 62.5%
7 100.0%

values depending on their purpose within the cabin context (equation 3.3). The

temperature varies from 16°C to 28°C in 1 degree increments (Tval). Blower speed

(Bval) has 7 levels corresponding to a percentage of the maximum blower speed

(table 3.1). Vent distribution (Vval) has four levels: Ambient, Head, Both, Foot.

Instead of these classes the corresponding angle at which the vents are oriented is

used: 0
◦, 30

◦, 60
◦, 90

◦.

The probability of a value being selected depends on the occupant’s choice of set-

ting (activating R1 and R2) and the level of discomfort felt (equivalent temperature).

Value = {Tval,Bval,Vval} (3.3)

Even when the overall body equivalent temperature is within the comfort range (22-

27°C [NH03]), there is a probability occupants will still make a change depending

on the preferred setting and the rate of discomfort P(Value|Setting,Change =

1, Teq).

This rule also introduces the direct impact that the thermal environment has

on the decision making process. Depending on the type of environment (either
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hot: TEnv > 24, neutral: TEnv ∈ [20, 24] or cold: TEnv < 20) the occupant is likely to

select from a reduced range of settings.

Tval =



a ∈ {24, ..., 28} TEnv < 20

a ∈ {20, ..., 24} TEnv ∈ [20, 24]

a ∈ {16, ..., 20} TEnv > 24

(3.4)

Bval =



b ∈ {5, 6, 7} TEnv < 20

b ∈ {1, 2, 3, 4, 5} TEnv ∈ [20, 24]

b ∈ {5, 6, 7} TEnv > 24

(3.5)

Vval =



c ∈ {60◦, 90◦} TEnv < 20

c ∈ {0◦, 30◦, 60◦, 90◦} TEnv ∈ [20, 24]

c ∈ {30◦, 60◦} TEnv > 24

(3.6)

R3 is the final rule in the context of the occupant’s interaction with the HVAC

system. To reiterate, the scope of this thesis is narrowed to a set of simple rules

related to the available settings of the HVAC interface.

3.4 limitations of the rules

This chapter presents the three main rules based on the available thermal comfort

literature and seeks to further use their combination towards a first attempt at

modelling occupant interaction with HVAC controls. The rules represent a start

for the examination of what are the available thermal adaptive actions of vehicle

occupants.
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The rules can also be expanded to cover more aspects of the cabin environment

than the HVAC interface. The three rules are essential but not all-encompassing, as

the rule-base can be extended to incorporate other control features (e.g. heated

seats or wheel) and other features of the cabin environment (e.g. humidity or air

quality). Given the fact that one of the main objectives of this thesis is to develop a

rule-based model for a simulated occupant that changes the HVAC settings, the rules

derive conditional probabilities that specific actions are selected by an individual.

3.5 summary

Examining the climate control selections of occupants can shed light onto their

preferences. As thermal behaviour is restricted in vehicles, this thesis hypothesises

that there are three rules that answer the research question: “What is the set of simple

rules that can be drawn from the thermal comfort literature on occupant thermal behaviour

related to HVAC control?”. The first relates to the opportunity to make changes to

the HVAC system interface in order to control the environment (section 3.1). The

changes made are related to the three main HVAC settings: set-point temperature,

blower level, and vent distribution (section 3.2). The third and final rule covers the

value selection for the desired setting (section 3.3). The three rules offer a clear and

simple trajectory for how people interact with the HVAC control interface.

As the rules derive conditional probabilities, chapter 4 presents the available

opportunities for modelling interaction with the HVAC system by means of the

probabilities based on three rules.





4
T H E U S E R - B A S E D M O D U L E

Automatic climate control systems are not fully autonomous as they enable the user

to change their control behaviour via i) target temperature adjustment; ii) turning

on and off the vents, or adjusting their angles; iii) the air distribution selections;

iv) fan speed selection. When designing a system that allows user feedback, it is

essential to define the nature of the feedback and then design algorithms based on

this definition. In chapter 3 three main rules for occupant interaction were identified

from the available literature. This chapter aims to construct a model that mimics the

occupant’s interaction with the Heating, Ventilation and Air Conditioning (HVAC)

interface and examine if the model can outperform alternative simple models such

as a neural network or fuzzy logic.

The main contribution of this chapter is a hybrid model, named the User-Based

Module, combining a set of seven classifiers that mimics the occupant’s decision

making process of selecting HVAC settings. The model is tested and validated

against real-world data captured under a set of driving trials. Each step of the

process is based on a probabilistic rule that is then modelled using classification

methods. Each model is then compared with alternative classifiers by means of

error metrics. This chapter provides the following:

1. the method behind the mathematical development, experimental procedure,

testing, and validation (section 4.1);

2. results and discussion for the set of rules (section 4.2);

67
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3. the hybrid model architecture and comparison to a fuzzy-logic rule based

model and a simple neural network (section 4.3).

4.1 modelling approach

4.1.1 Bayesian Probabilistic Method for the Classification Problem

Chapter 3 identified three rules of interaction of occupants with their HVAC inter-

faces. The purpose of defining these rules was to identify the probability distribu-

tion of the possible actions that the occupant can take when feeling uncomfortable.

The way that people act is not defined by the initial conditions and parameters of

the environment, there are aspects of their behaviour that are difficult to determine,

sense, or model (e.g. an occupant can change their mind as to which setting to

select). Given the lack of further information, the actions are modelled stochastically.

Therefore R1 determines the probability of change or no change given equivalent

temperature. R2 determines the probability of a setting being selected given the

decision to make a change and the equivalent temperature. R3 is represented by the

probability of value selection given the preferred setting and the equivalent temper-

ature. For R3, additional environmental features affect the probability distribution

over the possible values for the respective setting.

Within this framework, modelling the desired settings selected by the passenger

becomes a classification problem. For an already known distribution of the data,

Vapnik [Vap98] recommends using a Bayesian classifier. The classifier relies on the

latent distribution of the inputs to outputs being modelled as a conditional density

function [NJ02] (often Gaussian). The Bayesian classifier essentially attributes the

input to a specific class using the posterior probability derived from the relationship

between the outputs and inputs based on the Maximum A Posteriori (MAP) decision

rule [GL94].

The framework of the hybrid model is based on n feature vectors of dimension

m, X = [x1, ...xn], where xi ∈ Rm,∀i ∈ {1, ...,n} as input. The features include:

the cabin temperature, the internal mass temperature of the cabin, the ambient
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exterior temperature, the overall-body equivalent temperature, and the cabin air

velocity. A subset of the set of features D, which represents equivalent temperature,

D ∈ {d1, ...,dn} is used as initial input for the models. It is then expanded to the

entire feature set depending on the performance of the models.

Each rule was initially modelled as a binary classification problem. The data is

appropriately labelled, indicating if each rule is activated or not, then separated

into two classes C = {C1,C2}.

Given the set of two classes C, let there be a label for each class, using the MAP

decision rule the most likely class to be selected C∗(D) is given by:

C∗(D) = argmax
Ck

P(Ck|D), k ∈ {1, 2} (4.1)

In order to compute the posterior probabilities P(C1|D),P(C2|D) the classifier relies

on the Bayes rule:

P(C1|D) =
P(D|C1)P(C1)

P(D)
(4.2)

similarly for C2. The following sections examine the applicability of the Bayesian

classifier on the first rule.

4.1.2 Modelling Changes to the HVAC Interface (R1)

The labels are binary for R1, which means that C1(D) = no change,C2(D) =

change, hence y = {0, 1} is the label for changes and no changes corresponding to

{C1(D),C2(D)}.

By definition:

P(y|D) =
P(y∩D)

P(D)
(4.3)
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The joint probability P(y∩D) can also be written as the product of the probability

of change P(y) and the conditional probability P(D|y):

P(y∩D) = P(D|y)× P(y) (4.4)

The probability of equivalent temperature can be calculated using the marginal

rule:

P(D) =
∑
y

P(D|y)× P(y) (4.5)

Using the Bayesian Rule, the posterior probability for estimating change given the

equivalent temperature can be calculated using 4.4, 4.5 in equation 4.3:

P(y|D) =
P(D|y)P(y)∑
y P(D|y)× P(y)

(4.6)

From equation 4.6 the marginal probability can be calculated using equation .

∑
y

P(D|y)× P(y) = P(D|y = 1)× P(y = 1) + P(D|y = 0)× P(y = 0) (4.7)

Hence, obtaining the posterior probability P(y|D) of a change occurring when the

occupant is uncomfortable relies on the conditional probability P(D|y). Given that

there are two class labels, there are also two conditional distributions Py(D), the

dataset being separated into two depending on the labels (equation 4.8).

Py(D) =


P0(D) P(D|y = 0)

P1(D) P(D|y = 1)

(4.8)

The general assumption is that the conditional probability is already known, and

can be used to calculate the posterior. In the case of the User-Based Module (UBM),

the set of conditional probabilities Py(D) is modelled as a mixture of Gaussian

distributions [FLJ99] based on a real-world data set presented in section 4.1.6. The

prior distributions are calculated by the relative frequency of the data.



4.1 modelling approach 71

Each probability is defined as a mixture model of K components:

Py(D) =

K∑
k=1

αkPy(D)k (4.9)

where αk represents the k-th component mixing weight, with the property
∑K
k=1 αk =

1. When substituting each distribution by a Gaussian probability density function

of form N(µ,σ2), formula 4.9 becomes:

Py(D) =

K∑
k=1

αkN(D|µk,σ2k) (4.10)

where µk is the mean and σ2k is the variance of component k.

For the component fitting, the Expectation-Maximization Algorithm [GH+96]

is used from the Mixtools package (R-library) [Ben+09]. The iterative algorithm

consists of three steps: initialisation, expectation, and maximisation. It starts by

using an initial estimate of the hidden parameters αk,µk,σ2k for the selected K

components. The maximum number of components was K = 5 determined using

bootstrapping [You08]. Then it iteratively updates the parameters according to the

expectation (E) and maximisation (M) steps, until log-likelihood convergence. The

E-step calculates the expected value of the log-likelihood function, while the M-step

generates up-dated values of the hidden parameters, which maximise the expected

values of the log-likelihood.

The likelihood denotes the goodness of fit of the model l(α,µ,σ|D) = Py(D),

and it is generally modified to calculate the log-likelihood (equation 4.11).

log(l(α,µ,σ|D)) =

N∑
n=1

log(
K∑
k=1

αkN(D|µk,σ2k)) (4.11)

The higher the value of the log-likelihood the better the model will fit.
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In order to test how many Gaussian components are needed to estimate the

conditional distribution of equivalent temperature given changes, and no changes,

Kullback-Leibler (KL) divergence is used 4.12:

KL(P||S) =
∑
D

Py(D)log
Py(D)

Sy(D)
dx (4.12)

where Sy(D) is the conditional distribution for the actual data points, whereas

Py(D) the conditional distribution of predicted values from the model. Between

2-5 component models were developed, the maximum component number is

determined by bootstrapping. The final model uses Bayes inference to determine

the prior distributions of change and no change using the Gaussian mixture with

the lowest KL divergence fitted to the input.

A set of binary classifiers were selected for comparison with the Bayesian in-

ference model available in the caret package in R [KJ13]. The selected classifiers

are: naive Bayes (nb); support vector machine with radial basis function kernel

(svmRadial); neural network (nnet); penalised logistic regression (plr); the Bayesian

generalised linear model (Bayesglm); conditional inference trees (ctree) [KJ13]. The

classifiers are mentioned in the building literature for designing human behaviour

models (chapter 2).

The four main objectives for R1 were:

1. To determine how many Gaussian components are needed to estimate cor-

rectly the equivalent temperature distribution using KL divergence.

2. To determine if the probability of change and no change given a specific value

of equivalent temperature can be correctly estimated using the 3-Gaussian

Bayes classifier compared to alternative classifiers.

4.1.3 Modelling Setting Selection (R2)

Setting selection is estimated by introducing another variable to the probability

set for R2. Let there be the setting variable z, defining one of the available HVAC
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interface settings (temperature, blower, vent). The solution for this problem is

still binary (whether a setting is selected or not) z = {0, 1}. Each setting can be

modelled using a Bayesian classifier, the outputs being combined in a vector

zsetting =
(
ztemperature zblower zvent

)T .

A single input (equivalent temperature) is not sufficient to correctly estimate the

probability of setting selection. The input set was expanded to include the sensed

elements within the thermal environment (the cabin, and surrounding surfaces,

ambient temperatures, and the air velocity). The classifiers used for the comparison

are the same as for R1.

The objective for R2 is :

1. To determine if the conditional probability (that a setting is or is not selected at

the activation of R1 given a multiple feature input) can be correctly estimated

using the set of binary classifiers mentioned in section 4.1.2.

4.1.4 Modelling Value Selection (R3)

R3 represents the probability of value selection depending on the comfort experi-

enced by the occupant and their decision to make a change to a selected setting.

Let there be the variable for value selection w, with labels w = {0, 1} depending

on the type of setting selected (temperature, blower, vent), the value is within the

ranges presented in chapter 3.

The multi-class problem emerges when an instance has more than two classes.

For example, the equivalent temperature suddenly drops and the passenger decides

to make a change and selects a temperature. Therefore, the occupant is left with

the decision to select a value from 12 set-points or, alternatively, 7 levels for blower

speed or 4 directions for vent distribution.

Similar to the other rules, this distribution can be modelled as a Gaussian prob-

ability function. The problem is that such a model increases the complexity as there

would be a total of 46 prior distributions, and the same amount of posterior distri-

butions for two class label- models. A subsequent problem for R3, also encountered

in R2, is that the input parameter used (equivalent temperature) is not enough
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for an accurate estimation of the setting values. This is why introducing the other

elements of the cabin environment (specified in section 4.1.4) and including setting

selections (R2) is necessary.

The advantage of using classification models is that they estimate the probability

of an event happening in the form of continuous values, and a predicted class

in discrete form. While the discrete prediction is useful in terms of estimating a

specific decision, or an event happening, the probabilities determine the confidence

in the particular classification.

Given the problem of multiple classes, one of the most common solutions is

applying algorithm adaptation techniques. The algorithms used for modelling R3

are: support vector machines with radial basis function kernel (svmRadial); with

linear kernel (svmLinear); and dual linear kernel (svmLinear2); neural network

(nnet); k-nearest neighbours (knn); stochastic gradient boosting (gbm); conditional

inference trees (ctree); recursive partitioning and regression trees (rpart); random

forest (rf); rule-based classifier (PART) [KJ13].

The main objective for R3 is:

1. To determine if the conditional probability (that a value for temperature,

blower or vent is selected given the features of the environment, the comfort

of the occupant, and the activation of R2) can be correctly estimated using a

set of multi-class classifiers.

4.1.5 The Final Hybrid Model

The final goal is to combine the classifiers for each rule into a hybrid model that

predicts the selections made by the user. The hypothesis is that a single-model used

for classification or a strictly rule-based model cannot efficiently predict patterns of

thermal behaviour. For the single model a neural network was chosen, whereas for

the rule-based one fuzzy logic was used. The selected models were previously used

in modelling feedback of the occupants or estimating setting selections (described

in chapter 2).
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Figure 4.1: The UBM architecture each rule being activated when the change, selection and
value adjustment are predicted depending on the comfort of the occupant and
the state of the environment.

Therefore, a more complex model is developed, UBM, that combines the highest

performing classifiers for each of the three rules (figure 4.1). The interaction with the

HVAC system is essentially a three level classification problem, each level depending

on the activation of the previous rule. The problem gradually escalates from a

binary output for the first two rules, to a set of multi-class outputs for the final one.

4.1.6 Experimental method

This section details the data gathering and the pre-processing procedures, followed

by the training, testing and validation method in section 4.1.7 (figure 4.2).

For the data gathering, the Comfort Studies Data Bank was obtained by Cogent

Labs in collaboration with Jaguar Land Rover and MIRA during the Low Car-

bon Vehicle Technology Project (LCVTP). For LCVTP, the series of comfort studies

aimed to obtain a catalogue of quantitative and qualitative data including cabin,

physiology and perception of thermal comfort over a variety of conditions (hot,

cold and neutral environments).
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Figure 4.2: Method for testing and validation of the combined hybrid model.

Figure 4.3: Jaguar X3 used for the LCVTP trials, courtesy of Jaguar Land Rover.

Some materials have been removed from this thesis due to Third 
Party Copyright. Pages where material has been removed are 

clearly marked in the electronic version. The unabridged version of 
the thesis can be viewed at the Lanchester Library, Coventry 

University.
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Table 4.1: Subject details for the LCVTP experiments.

Subject Sex Age (years) Height (cm) Weight (kg) Nationality

1 Male 46 173 78 English
2 Female 37 157.5 73 English
3 Male 56 166 70.5 English
4 Male 49 178 75 English
5 Female 24 162 48 Romanian
6 Male 26 176.5 77 English
7 Female 34 160 55 Mexican

Average 38.9 167.6 68.1
SD 11.1 7.66 10.9

Min 24 157.5 48

Max 56 178 78

The sets of trials involved 7 subjects (details included in table 4.1). Each subject

was allocated a time slot for each day. Clothing was standardised for all subjects and

tests. It consisted of long trousers and a short-sleeved shirt or blouse (approximately

0.7 Clo clothing insulation). A dry test run was performed to ensure that the

procedure was correctly followed. An observer sitting at the right side of the rear

passenger seat monitored the actions of the subjects. The start of the trial was

marked by the subjects entering the vehicle and providing initial reports on their

subjective thermal sensation and comfort.

The trials included gathering information about the control adjustments made

by the cabin occupants in various conditions according to the American Soci-

ety of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard

55 [ASH04]. Part of the experiments took place in the wind tunnel, and the other on

the road under real-driving conditions. The procedure involved pre-conditioning

the subjects to cold (16°C), neutral (22°C), and hot (28°C) temperatures. The HVAC

system was set to condition the car at the same target temperatures: 16°C, 22°C ,

28°C. The subjects remained in the pre-conditioning room for 20 minutes, then they

entered the car and remained inside for 15 minutes. During this time they were

permitted to adjust the air conditioning in order to make themselves more comfort-

able. The control adjustments were manually logged by the observer. Additionally,

thermal comfort and sensations were reported every 2 minutes. The first report
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was at the start of the test. For each subject, a total of six tests were performed: for

neutral, hot and cold temperatures; with and without solar loading.

For the driving trials, the same pre-conditioning procedure was used. The differ-

ence between the two sets of trials was that the subjects had to drive the car on the

road with no additional solar loading. The duration of the trials was determined by

the observer running the experiments. Each subject was required to make turns and

change speeds at frequent intervals in order to simulate the level of concentration

normally required during driving. The tests for hot and cold temperatures were

performed twice per subject, but only once for the neutral temperatures, as the

subjects made no significant control changes during them.

For the thermal comfort and temperature monitoring the data was extracted

from:

1. sensors placed on the body;

2. sensors placed on clothing;

3. cabin surface mounted temperature, humidity, and air velocity sensors;

4. solar loading sensors;

5. a Flatman manikin;

6. subjective reports by the occupants;

7. annotations of manual control adjustments of the HVAC system.

For each occupant positioned in the driver seat, the surface temperature was

measured at different locations throughout the car (figure 4.4). Other parameters

such as air temperature, relative humidity, air velocity, and CO2 concentration were

monitored using data loggers (figure 4.5) from Cogent Labs embedded onto the

mbed platform (NXP LPC1768 microcontroller, I2C, analogue and serial interfaces,

digital inputs and outputs for buttons and LCD screen, Ethernet support for time

synchronisation and direct data download, microSD flash support for data logging).

The Flatman manikin was used for the automated calculation of the Predicted

Mean Vote (PMV) (figure 4.6) using Dry Heat Loss sensors to determine the effects of
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Figure 4.4: Sensors measuring surface temperature at 30 locations including: top, front and
bottom of the instrument panel, front seat, windscreen, back of the driver and
passenger seats, inside of the door and window, roof, seat locations: back and
underneath.

Datalogger

CO2
Solar

Loading

AC vent

Subject

Flatman

Wired connection

Figure 4.5: Overview of the sensor and data logger connections (wired). To the AC vents
air temperature, relative humidity, and velocity sensors were installed. For the
subject air temperature, relative humidity, air velocity, and skin temperature
sensors were attached on the face, hands, chest, tighs, and calfs. The flatman
(positioned in the front passenger seat) used dry heat loss sensors. Additionally
the data logger was connected to CO2 and solar loading measuring sensors.

Some materials have been removed from this thesis due to Third 
Party Copyright. Pages where material has been removed are 

clearly marked in the electronic version. The unabridged version of 
the thesis can be viewed at the Lanchester Library, Coventry 

University.
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Figure 4.6: Flatman manikin with data logger.

air temperature, mean radiant temperature and air velocity on a simulated person.

The measurements were carried out using Analogue Digital ADT75a temperature

sensors. The Flatman manikin was configured with a metabolic rate of 1.2 Met, an

overall clothing value of 0.7 Clo based on the weighting of each body location. The

body locations measuring equivalent temperature were: head; upper arms (left and

right); lower arms (left and right); chest; thigh and calf. The Flatman manikin was

positioned on the front passenger seat.

The overall body equivalent temperature measured by the manikin was modelled

as a weighted sum of all body parts according to the information sheet [SVG14]:

Teq = [10.3× Teq−head + 31.1× Teq−chest

+ 6.4× (Teq−left−up−arm + Teq−left−low−arm)

+ 6.4× (Teq−right−up−arm + Teq−right−low−arm)

+ 22.8× Teq−thigh + 23× Teq−calf]/100 (4.13)

Thermal sensation values reported by the occupants were performed using the

ASHRAE thermal sensation scale included in the ISO7730 and ASHRAE Standard

55 [ASH10], modified to include ratings of −4 to +4 ( [AZH06b]). For the sensation

Some materials have been removed from this thesis due to Third 
Party Copyright. Pages where material has been removed are 

clearly marked in the electronic version. The unabridged version of 
the thesis can be viewed at the Lanchester Library, Coventry 

University.
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Table 4.2: Annotations and ranges for the changes in HVAC settings available to the parti-
cipants of the trials.

Data Range Annotation

Set Point Temperature 16-28

Climate (C)
Blower Level 1-7

Automatic (Auto)
Head (H)
Feet (F)

Vent Selection Both (head and feet) (B)
Ambient (A)

Automatic (Auto)

scale, 0 is the desired value representing thermal neutrality. Similarly a thermal

comfort scale of -3 to 3 was used. Rating of 3 indicates a high level of comfort

for the passengers, and -3 extreme discomfort. The difference between thermal

sensation and thermal comfort is that the former is a result of the impact of the

thermal environment on the occupants, whereas the latter is a measure of how

satisfied the occupants are with their surrounding environment.

The data used for the UBM contains the time in seconds since the start of the

test, the control changes made by the subject separated by target temperature

setting (T), blower speed (B), and vent selection mode (F) (table 4.2). The ranges

for each setting are identical to those described in chapter 3. Blower speed is on

a scale from 1 to 7. Vent selection depends on orientation towards the head (H),

feet (F), both head and feet (B), and ambient (A). Also, there are notations for the

automatic selection of both the blower speed and vent (Auto) and climate control

for temperature (C). The reasons for changing the control settings were written

down by the observers, when specified by the subject. This data was merged with

the Flatman data, the reports of sensations and comfort (overall and per body part),

solar loading, pre-conditioning, and the subject’s gender.

Prior to using the data for modelling purposes the following pre-processing steps

were executed:

1. Sensor measurements that were outside the ranges were removed.
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Figure 4.7: Overall equivalent temperature, and corresponding HVAC setting selections for
a cold environment trial.

2. Sensor data and observer reports were combined by day, time and type of

trial.

3. Overall equivalent temperature was calculated using equation 4.13.

4. The data was linearly interpolated to correspond to the selection intervals.

5. Setting labels were changed to correspond to the classification labels men-

tioned in the previous sections, in order to correspond to each of the rules.

Figure 4.7 displays the setting selections and the measured body equivalent tem-

perature under cold conditions. The temperature and blower selections vary from

higher to lower values over the trial duration. While equivalent temperature is

gradually rising, the vent orientation stays the same throughout the duration of the

trial, registering only one change within the first minutes of the trial.

From a total of 49 recorded trials under hot, cold and neutral environmental

conditions, a total of 306 individual changes were recorded with 125 for set-point

temperature, 112 for blower level, and 69 for vent direction.

Modelling of the numerical and categorical data was executed in R-Studio [Tee11]

using the caret package [KJ13] for training, validating and testing the individual

classifiers, and the mixtools package [Ben+09] for fitting the mixture of Gaussians.
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The highest performing classifiers were converted into Predictive Model Markup

Language (PMML) format using the pmml package in R [Wil+19]. The PMML classi-

fiers were then opened in Java using the jpmml library [Ruu18] and coded into the

UBM. The UBM was included into the cabin simulation, which is a simple lumped

capacitance model [Bru+17] and used to train the Reinforcement Learning (RL)

HVAC system. Further details can be found in Appendix E. The following section

presents the training and validation methods for the classifiers used for each of the

three rules.

4.1.7 Testing and Validation Methods

The dataset is split into 90% for training and development of the classification

models and 10% for testing the final model. The classification model dataset used a

training and validation set split using k-fold cross-validation (90%) [Koh95], and a

hold-out test set for performance evaluation (10%). The hold-out method prevents

over-fitting on the data, the final test scenario evaluation compares the hybrid

model against more simplistic models.

As occupants are focused on driving, interacting with the HVAC interface becomes

a secondary task. Therefore the instances of change or selection are expected to be

less than the instances of non change or non-selection. This means that one outcome

significantly outweighs the other, resulting in a class imbalance. The solution for

class imbalance used in this thesis, similar to Kim et al. [Kim+18] is over-sampling

of the minority class. This method of balancing the classes relies on randomly

reproducing (with replacement) the minority class (e.g. the class for changes). This

method is used within the cross-validation step in the caret package [KJ13]. On

the one hand, the advantage of this method is that there is no loss of information,

which can happen when using the under-sampling technique. On the other hand,

there is a risk of over-fitting, as the minority class observations are replicated. This

problem is prevented using of the hold-out method.

In determining which method was more suitable to use, alternative sampling

methods were compared when training the Bayesian model (R1). The alternative
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methods used are under-sampling, both, ROSE (Random Over-Sampling Examples).

Under-sampling is a method that reduces the samples of the majority class, more

suitable for large data sets. Both uses under-sampling with replacement of the

majority class and over-sampling with replacement the minority class. Finally ROSE

is a method of synthetic generation of data from the conditional density of the

classes using bootstrapping [LMT14].

For evaluating the classification performance of a model, the most common used

method is the confusion matrix. It displays the differences between the observed

and predicted classes by means of a table. The diagonal cells of the table indicate

the correctly predicted classes (TP – samples that are events, TN – samples that

are non-events, and are predicted as such) while the alternative numbers indicate

the classification errors (FP – non-events, classified as events, and FN – events

misclassified as non-events). In the case of a binary problem (R1 and R2), the

evaluation methods are used for determining event occurrences. Given that the

data is imbalanced, the changes or selections are minority classes, and therefore

will be classified as non-events. Two measures based on the confusion matrix are

essential for model evaluation: sensitivity and specificity. Sensitivity (equation 4.14)

is known as the true positive rate at which an event is predicted correctly.

Sensitivity (TPR) =
TP

TP+ FN
(4.14)

Specificity (true negative rate) is the rate at which samples are accurately predicted

as non-events (equation 4.15). Related to the dataset, the setting selection is less

frequent than non-selection, which determines the classifiers to treat the changes

as non-events.

Specificity (TNR) =
TN

TN+ FP
(4.15)

Generally, there is a trade-off between sensitivity and specificity. Given the nature

of the data and the purpose of the model, specificity has a higher performance
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impact than sensitivity, as the cost for misclassifying a non-event as an event is

higher than the cost of estimating an event where there is none (equation 4.16),

C01 > C10 (4.16)

An alternative to evaluate the trade-off between the two rates is the Receiver

Operating Characteristics (ROC) curve. The curve evaluates the classification probab-

ilities by means of a continuous threshold (often 50%) by plotting the true positive

against the false-positive rate. A model that is not effective has the curve following

the diagonal between the two axes (with an Area Under Curve (AUC) of 0.5). The

Area Under Curve can be used as a comparison method between various binary

classification models. Among the advantages of using the AUC is that it is not

sensitive to class disparities, while a disadvantage is that it leads to obscured

information. The model that has a large AUC is considered as the most effective.

Despite this, since the area of interest is within the lower end of the curve, this

measure on its own might not be indicative of the best model.

Additionally, a metric for evaluating the error rate is accuracy (equation 4.17).

This metric is easy to interpret as it is an indicator of how the predicted data agrees

with the observed data.

Accuracy =
TN+ TP

TN+ TP+ FN+ FP
(4.17)

One of the problems of this metric is that it does not offer information about

the error type. The accuracy is used for R1, R2 (as an additional metric), R3 (in

conjunction with Cohen’s kappa) and the final model (on its own).

Cohen’s kappa [KJ13] is a complimentary evaluation method to accuracy, initially

designed as a method of assessing agreement between two classes. The advantage of

kappa is that it includes the accuracy of a model in the case of the events are being

chosen by chance. In equation 4.18, the two accuracies are related to the estimated

and observed data and are based on the marginal totals of the confusion matrix.

Kappa can take values from -1 to 1, with 0 indicating no agreement between the

estimated and observed data. Negative values indicate an opposite direction of the
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truth. Depending on the scales (Landis et al. [LK77], Fleiss [Fle71], Altman [Alt90])

the values of kappa can indicate agreement (from 0.30-0.50- according to Kuhn

et al. [KJ13]). The advantage of kappa is that it can evaluate the models that are

predicting multiple classes, such as those used for R3.

Kappa =
Accuracyobserved −Accuracyestimated

1−Accuracyestimated
(4.18)

From the above presented metrics, the following are used for:

1. R1: KL divergence to evaluate the best model based on Gaussian mixtures.

2. R1 and R2: specificity, sensitivity, AUC and accuracy.

3. R3: accuracy, and Cohen’s kappa for multi-class model comparison.

4. UBM: accuracy.

4.2 results and discussion

4.2.1 Modelling the Change in Settings (R1)

To model R1, all the instances of change and non-change depending on the estim-

ated overall body equivalent temperature were grouped to examine the overall

response frequency (figure 4.8). The frequency of non-changes was considerably

higher than the changes made to the HVAC interface, which highlights the data

imbalance. The probability of making changes increased when occupants feel un-

comfortable, registered as an increase in the frequency of changes for equivalent

temperature values higher and lower than 20°C indicating that once the occupants

feel discomfort they will make changes to the settings. Rare instances where equi-

valent temperature is higher than 40°C were due to the increase in solar loading

and reduced cabin air speed. Only a couple of trials regsitered these instances, the

number of changes being minimal due to the small interval in which the occupants

experienced these equivalent temperatures. Additionally the adaptation to the
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Figure 4.8: Frequency of change and no change data depending on the estimated overall-
body equivalent temperature.

warm environment lowers occupant comfort expectancy and reduces the frequency

of change.

The distribution of equivalent temperature given the change and no change is

unknown. Therefore multiple Gaussians were fitted to the density distribution.

In order to determine the number of components for the Gaussian mixture, boot-

strapping was used for hypothesis testing. The maximum number of Gaussian

mixtures that could be fitted is 5, the size of the mixture increasing when the

difference between the current component number and the next is significant (95%

confidence level). The method used 100 boot-strap replicates. The null hypothesis

(for 4 components being fitted instead of 3) was rejected in the case of change

(p = 0.04 < 0.05) and no-change (p = 0.01 < 0.05). Therefore for estimating the

conditional probability for each of the two classes a 3-component Gaussian mixture

provides the best fit (at 95% confidence level).

K-fold cross validation was used to further test the hypothesis that a 3 component

Gaussian mixture Bayesian model produces the best fit for the data against altern-

ative models that use 2, 4, and 5 components. Using the Expectation-Maximization

algorithm, the Gaussian mixtures for 2 to 5 components were fitted against the

equivalent temperature training data (figure 4.10). When using more than 5 com-
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Figure 4.9: Boot strapping method to examine the number of Gaussian components that
can be fitted to the changes data.

ponents for both distributions the curves have overlapping regions, as the means of

the components are close in values.
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Figure 4.10: Fitting a 3-Gaussian mixture (left) and 5-Gaussian mixture (right) on the
changes data. The 5-component mixture is over-fitting the data, as the Gaussian
distributions are overlapping.

Examining the estimated values for equivalent temperature against the original

values from the testing set and given the fact that there is a reduced number of

data points for changes, the density area is lumped and more difficult to estimate.
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Despite this, the 3-component model estimations correspond to the original data

for both change and no change estimations (figures 4.11).
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Figure 4.11: The original testing data against the estimated output of the 3-component
Gaussian model for change and no change, as the density plots overlap this
indicates that the model correctly estimates both changes and no changes
depending on the overall-body equivalent temperature.

To strengthen the hypothesis that the 3 component model fits the data better

for both change and no change, KL divergence was calculated for the 4 types of

Gaussian mixture models (kl2, kl3, kl4, kl5) (figures 4.12,4.13). The 3- component

model (kl3) has a lower difference between the estimated and the real data, and less

variation between the quartiles than the other Gaussian mixture models. Therefore

the 3-component mixture Gaussian Bayes model is used for comparison with

alternative classifiers. It is highly likely that as more changes are recorded, the

model will be closer to the original response, leading to improvements in model

prediction with the increase in training and testing data points.

Testing the performance of the model using various sampling techniques, over-

sampling method proved to have the highest AUC (0.67) and maintaining an ac-

curacy of 84%. Compared to the model trained with unbalanced data, and the

alternative methods (down, both, and ROSE), the model manages to predict the

minority class with a 50% rate compared to 42% for the alternative methods. It

registers a slight reduction in estimating the majority class 84% compared to 87%

for the unbalanced model, and 86% for both. An interesting aspect is that the model
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Figure 4.12: Box plots for the KL divergence for the 2 to 5 component models for estimating
change, the 3-Gaussians mixture model (kl3) estimating the data better than
the alternative models.

Figure 4.13: Box plots for the KL divergence for estimating no change, the 3-Gaussians
mixture model (kl3) estimating the data better than the alternative models.
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Figure 4.14: Box plot of accuracy margins for the classification models trained with original
and over-sampled data.

trained with samples generated from synthetic data (ROSE) had the lowest AUC

(0.6) and a significant decrease in sensitivity (78%).

Additionally, alternative binary classification models trained with up-sampled

data were used for comparison. While the median accuracies (figure 4.14) for

the support vector machine and neural network are the highest, both have poor

performance (high sensitivity, low specificity). The models predict only the majority

class of no changes to the HVAC interface. The conditional inference tree model has

high variance, whereas the naive Bayes model has a median accuracy of 0.7.

Comparing the results on the testing set (table 4.3), the proposed Bayesian model

has the highest performance compared to the alternative classifiers. It estimates

correctly the change at the rate of 50%, and non-changes at 84%, with an AUC of 0.67.

The alternative models have low estimations for the minority class (less than 1-2%

true negative rates), despite a high accuracy (0.95 for the neural network and 0.99

for the support vector machine). The Bayesian model using 3-component mixture

is therefore used as the R1 component of the UBM as it has a higher estimation rate

for changes to the climate control.
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Table 4.3: Evaluation of R1 classifiers, the proposed Bayesian model outperforming the
other classification models.

Model TPR TNR Accuracy AUC

bayes 0.84 0.5 0.84 0.67

bayesglm 0.99 0.01 0.44 0.53

ctree 0.99 0.01 0.43 0.59

nnet 0.99 0.02 0.95 0.61

svmRadial 0.99 - 0.99 0.58

nb 0.99 0.01 0.71 0.59

plr 0.99 0.01 0.44 0.53

4.2.2 Modelling Setting Selection (R2)

R2 refers to the occupant’s decision to select a specific setting from the HVAC inter-

face options. The most selected setting in the experimental trials was temperature

(figure 4.15). It was followed by blower speed selection, and finally vent distribu-

tion. For equivalent temperatures such as 35°C and 55°C, blower selection was

preferred. Vent distribution was the least selected setting (the maximum frequency

of non-selection). The sample size was reduced to overall 231 instances for each

step second corresponding to the recorded instances of change. The objectives for

modelling R2 were similar to those of R1. The exception is that only bootstrapping

was used to determine the number of Gaussian components fitted to the conditional

distribution.

The use of bootstrapping determined that a single Gaussian component was

needed for fitting the prior distribution. The classifiers trained with equivalent

temperature as a single input, including the Bayesian model, displayed poor per-

formance for specificity, sensitivity, and AUC, estimating only the majority class. To

improve the performance of the classifiers additional features of the environment

were included: cabin, average surrounding surfaces, ambient temperatures, and

air velocity. Table 4.4 displays the model comparison for all types of selections

(temperature, blower, vent) using the hold-out data. Six models were used for

the comparison (neural network, conditional inference trees, Bayesian generalised

linear model, penalised logistic regression, support vector machine, and naive



4.2 results and discussion 93

N
ot S

elected
S

elected
10 20 30 40 50 60

0

10

20

30

40

50

0

10

20

30

Equivalent Temperature(° C)

F
re

qu
en

cy

Setting

Temperature

Blower

Vent

Figure 4.15: HVAC setting selections for the LCVTP data set. Temperature (pink) was the
most selected setting, followed by blower (green). The vent (purple) has the
highest frequency of non-selection.

Bayes). The performance metrics used for comparing the models for estimating

each setting selection are specificity (TNR), sensitivity (TPR), accuracy, and AUC.

Comparing the median accuracy for temperature selections, the models had

similar performance, with Bayesian generalised linear model having a slightly

higher median than the rest (figure 4.16). Estimating temperature selection the

model with the highest AUC (0.66) was the naive Bayesian model fitting Gaussian

density functions to the input data (table 4.4). The true negative rate (58%) and true

positive rate (64%) were the highest among the selected models, with an accuracy

of (65%). The naive Bayes model was tuned by varying the Laplace function and

the adjustments (weights). The model used has 1 adjustment and no Laplace

corrections. Given that the highest AUC and specificity are achieved by the naive

Bayes model, it is used for prediction of temperature setting selection in the UBM.

The highest performing model for estimating the blower selections was a neural

network. When examining the validation data, the model had the highest median

accuracy (figure 4.17). On the hold-out data (table 4.4), the model registered the

highest specificity (50%), a 70% sensitivity, and an accuracy of 0.68. Compared to

the alternative classifiers the neural network had the highest AUC (0.69). The neural

network was tuned with 6 neurons for the input, 1 neuron for the output, and 4

neurons for the hidden layer with a size of 4 and a weight decay of 0.001.
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Figure 4.16: Box plot of accuracy margins for the classification models estimating temper-
ature selection, performance is similar with bayeglm model having a slightly
higher median accuracy.

Figure 4.17: Box plot of accuracy margins for the classification models estimating blower
selection, the neural network model has the highest median accuracy.



4.2 results and discussion 95

Figure 4.18: Box plot of accuracy margins for the classification models for estimating vent
selection, the highest median accuracy is registered for conditional inference
trees, however there are multiple outliers indicating a high discrepancy across
the validation data.

Table 4.4: Model performance using original and over-sampled data, for estimating binary
selection of temperature, blower, and vent. The highest specificity, accuracy are
in bold.

Setting Temperature Blower Vent

Model TPR TNR Accuracy AUC TPR TNR Accuracy AUC TPR TNR Accuracy AUC

nnet 0.5 0.46 0.48 0.53 0.7 0.5 0.68 0.69 0.78 - 0.78 0.77

ctree 0.54 0.5 0.52 0.42 0.5 0.28 0.31 0.51 0.82 0.33 0.7 0.8
bayesglm 0.5 0.46 0.48 0.59 0.7 0.33 0.5 0.65 0.86 0.33 0.65 0.84

plr 0.54 0.5 0.52 0.5 0.71 0.33 0.45 0.61 0.86 0.33 0.65 0.8
svmRadial 0.58 0.55 0.57 0.47 0.69 0.33 0.55 0.63 0.82 0.33 0.7 0.85

nb 0.64 0.58 0.61 0.65 0.5 0.28 0.31 0.63 0.88 0.5 0.78 0.86

Estimating vent selections, the model with the highest median accuracy (fig-

ure 4.18) was the conditional inference trees, however the model had significant

outliers. In this case, the accuracy measure was not a good indicator of model per-

formance, as the tree-based model estimates only the majority class (non-selection)

on the testing set (table 4.4). Examining the performance of all the models, the naive

Bayesian model with fitted kernel density functions had highest rate of estimating

of vent selections of 50%. The naive Bayesian model outperformed the alternative

classifier as it had the highest trade-off between sensitivity and specificity (an AUC

of 0.86). The final model had no Laplace correction, one adjustment and used kernel

density functions fitted to the inputs. The naive Bayesian classifier will be used for

estimating the selection of the vent setting for the behavioural model.
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4.2.3 Modelling Value Selection (R3)

The following classifiers were used for modelling R3: support vector machine with

radial basis function kernel (svmRadial); with linear kernel (svmLinear2); and

dual linear kernel (svmLinear3); neural network (nnet); k-nearest neighbours (knn);

stochastic gradient boosting (gbm); conditional inference trees (ctree); recursive

partitioning and regression trees (rpart); random forest (rf); and a rule-based

classifier (PART). Cabin, surrounding surfaces, equivalent temperatures, air velocity,

type of environment (depending on the ambient temperature) were used as inputs,

with the output being the selection of a value for the desired setting (temperature,

blower, vent).

Temperature

The equivalent temperature is indicative of the impact that the type of environment

has on the comfort of the occupant (as it is directly connected to the exterior

and personal parameters that impact the cabin environment, and influences the

selections of the set-point temperature). The most frequently selected set-point is

22°C corresponding to equivalent temperatures between 23-26°C. The higher the

equivalent temperature was (figure 4.19) the lower the set-point selections and

vice-versa.

Figure 4.19: Set-point temperature selections depending on the equivalent temperature
measures.
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Figure 4.20: Accuracy box plot for the cross-validated data, the median accuracies of the
nnet and rpart models are the highest and close in values compared to the
alternative classifiers.

The median accuracy of the models was between 0.2 and 0.4 without tuning

(figure 4.20), the neural network and regression trees model having the highest

median accuracies among the used classifiers. Compared to the regression trees

model, the neural network had higher variability. Despite this, the former model had

outliers on both sides of the box plot. This indicates that there was less difference

in model comparison if these outliers were included, the range of accuracy for the

the regression trees being higher than the neural network.

In order to validate the performance of the models the hold-out testing set was

used. The model with the best performance on the test set was the neural network

(table 4.5). Among the multi-class models, it had a 0.706 kappa measure and a

high accuracy of 0.8. According to Fleiss [Fle71] the kappa rate is between fair to

good, whereas according to Landis and Koch [LK77] the model was in substantial

agreement with the data. The neural network was tuned via resampled training

data (figure 4.21) using a total number of weights of 35, with a weight decay of

0.5, 10 neurons for the inputs, 12 neurons for the outputs and 1 hidden layer. The

neural network is used for determining set-point selections in the hybrid model.
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Table 4.5: Performance metrics for estimating set-point temperature value selections, the
neural network model has the highest Cohen’s kappa and accuracy.

Model Accuracy Kappa

nnet 0.8 0.706

ctree 0.6 0.375

rpart 0.4 0.211

rf 0.4 0.167

PART 0.2 -0.035

svmLinear2 0.2 -0.177

svmLinear3 0.2 -0.177

gbm 0.0 -0.19

svmRadial 0.2 -0.25

knn 0.2 -0.25
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Figure 4.21: Tuning process for the neural network by varying the weight decay and the
number of hidden units, when using 1 hidden layes the accuracy for the weight
decay is higher than when using multiple hidden units. The highest accuracy
of 26% is registered for a weight decay of 0.5.

Blower

The highest frequency of blower speed selection is between equivalent temperatures

of 21-25°C for level 5, followed by level 7 between 13-18°C. Level 7 was selected for

both high and low equivalent temperatures, with a gap between 20-30°C, indicating

that it is the least preferred selection for passengers that are in the comfortable

band of 21-24°C equivalent temperature [NH03] (figure 4.22). Lower blower speeds

were also selected for equivalent temperatures of 15-35°C.
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Figure 4.22: Blower speed selections depending on the equivalente temperature.

Similar mean accuracy performance was registered for the following models: sup-

port vector machine with dual linear and radial kernels, random forest, stochastic

gradient boosting, conditional inference trees, and rule-based (figure 4.23). This

indicates that multiple models have similar estimation capabilities, with a higher

variability for random forest, rule-based and conditional inference trees.

Figure 4.23: Model performance for blower level estimations on the cross-validated data is
similar for all models, the generalised bayesian model, random forest, PART
and ctree having higher variability. The svmLinear3, nnet, knn and rpart
models have lower median accuracies than the other models indicating a
decrease in performance.

In order to select the best performing model the hold-out set was used (table 4.6).

The tuned conditional inference trees model had the highest accuracy of 0.65 and

a kappa of 0.55 (according to Landis et al. [LK77] the model is moderate and for
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Altman [Alt90], it is good). The conditional inference tree was tuned by varying

the minimum criterion of 0.875, with 3 terminal nodes (figure 4.24). Having the

highest performance out of the compared classification models, the conditional

inference tree model is going to be used for estimating blower level values in the

hybrid model.

Table 4.6: Performance metrics for estimating blower level value selections, the conditional
inference trees model has the highest Cohen’s kappa and accuracy.

Model Accuracy Kappa

ctree 0.65 0.55

rpart 0.55 0.41

svmRadial 0.55 0.41

gbm 0.5 0.34

knn 0.5 0.33

svmLinear2 0.5 0.31

nnet 0.45 0.29

svmLinear3 0.4 0.22

knn 0.5 0.333

rf 0.33 0.172

PART 0.33 0.078
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Figure 4.24: Conditional inference trees tuning with a variation of the minimum criterion,
the highest accuracy of 44% is achieved using a threshold value of 0.875.
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Vent

For vent distribution selections there are four main classes depending on the body

part favoured by the occupant. The most selected distribution was towards both

head and feet for equivalent temperatures between 20-30°C. The lowest frequency

of selection was for the ambient setting (figure 4.25) for temperatures of 20°C

and 35°C, indicating that for front occupants this setting is not as relevant as the

alternative options. Out of the 50 independent selections, the head region was

preferred for high equivalent temperatures (impact of a hot environment), whereas

foot region was preferred for lower temperatures (cold environment).
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Figure 4.25: Vent distribution selections depending on the equivalent temperature.

Figure 4.26: Model performance for vent distribution estimations on the cross-validated
data is similar of the most models, with gbm, nnet and rf having the highest
median accuracy. The neural network model has high variation in accuracy,
whereas gbm and rf have comparable performances.
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The models with similar accuracy performance on the cross-validated data were

the stochastic gradient boosting and random forest. While the neural network

model had a similar median accuracy, although it displayed high variability. For

the validation procedure (figure 4.27), the model with the highest performance was

random forest, with 2 random predictors. While most models had an accuracy 0.5

(table 4.7), the factor that influenced the prediction power of the random forest

model was a Cohen’s kappa of 0.78 (according to Fleiss [Fle71], kappa indicates

good model performance and for Landis-Koch [LK77], the model is in agreement

with the data). This can be linked to the lower number of classes for vent direction

compared to the temperature and blower classes. It is also related to the 10% testing

margin which only has a small number of selection instances. Nevertheless, the

random forest identifies the classes correctly. It does not estimate only a single

class, which can be the case for an over-fitting model. The random forest model is

going to be used as a predictor for R3 vent distribution selection in the final model.

Table 4.7: Performance metrics for estimating vent distribution value selections, the random
forest model has the highest Cohen’s kappa and accuracy.

Model Accuracy Kappa

rf 0.86 0.78

nnet 0.67 0.5
svmLinear3 0.67 0.4

gbm 0.67 0.4
knn 0.67 0

rpart 0.33 0

svmLinear2 0.67 0

svmRadial 0.67 0

ctree 0.67 0

PART 0.33 -0.5
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Figure 4.27: Tuning process of the number of randomly selected predictors for the random
forest model, the highest accuracy of 48% is registered when the model is
using 2 predictors.

4.3 the user-based module

The User-Based Module is a hybrid model combining the seven best performing

classifiers presented above. The model has the overall body equivalent temperature

experienced by the passenger as input (figure 4.28). Additional input parameters

are included in the modelling stage of R2 and R3. The parameters are related

to the state of the thermal environment: the type of environment (hot, neutral,

cold) depending on the ambient temperature; cabin and surrounding surfaces

temperatures; and air velocity in the car cabin. These are essentially elements of a

state vector used in the RL agent simulation for the thermal environment.

Equivalent temperature is used as input for the activation of the R1 Bayesian

model, which predicts the probability of the occupant making change to the

HVAC settings. R2 is activated only when a change is predicted. For predicting

individual setting selections a naive Bayes model with fitted Gaussian distributions

(temperature), neural network model (blower), and a naive Bayesian model with

fitted kernel density functions (vent) are used. R3 is activated once a type of setting

is selected. Similar to R2, for R3 each type of setting uses a distinct classification

model. Each model outputs the desired value of the occupant from the available
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Figure 4.28: Combination of the seven classifiers with rule activation, basic structure of the
hybrid UBM.

range of the HVAC interface settings in section 4.1.6. A neural network is used for

estimating the set-point temperature, for blower levels conditional inference trees,

and for vent distribution random forest.

The purpose of using a hybrid model is to mimic the occupants’ decision making

system as a sequential process (figure 4.29), using essential information from the

cabin to predict their response. The main reason for using this process is to imitate

the step by step rationale of the occupant and incorporate it into the context of

cabin comfort modelling.

4.3.1 Model comparison

The UBM is based on the combination of multiple classifiers, therefore, can be

considered complicated. Its performance was compared to a simple neural network

model, and a fuzzy logic model using a final hold-out set (10% of the data).

The trials were randomly selected out of the dataset, representing each type of

environment (cold, neutral, warm).

The neural network model (NNET) has 5 input neurons, 23 output neurons (12

for temperature, 7 for blower level, and 4 for vent selections), with one hidden layer.



4.3 the user-based module 105

Physical 
Environment
Parameters

Calculate Teq.

Make  
change? 

More 
simulation 

time?

Start

End

 
Update HVAC 

settings

Time= Time+step

Select
Temperature?

Select
Blower?

Select
Vent?

Change
Temp. 
Value?

Change
Blower
Value?

Change
Vent

Value?

Yes

Yes Yes Yes

Yes Yes Yes

Yes

No

No No No

No No No

No

Figure 4.29: UBM model architecture diagram detailing the time step activation of each rule.
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The network was trained with the same data as the UBM. The fuzzy logic model

(FL) has 5 inputs and is based on 44 rules combining the inputs and outputs using

the centre of gravity method. The inputs for both models are the same as the ones

used for UBM, with the outputs being value selections for the HVAC settings.

The hybrid model has the highest accuracy (100%) for estimating temperature

adjustment for the neutral environment scenario (table 4.8) compared to the neural

network (72%) and fuzzy logic model (88%). Blower and vent selections are estim-

ated poorly for the neutral environment by the neural network and fuzzy logic

models. The simple models (NNET, FL) do not estimate correctly the values for

the settings, and, furthermore, cannot determine adequately setting selections.

Conversely, UBM has very good accuracy for vent distribution estimations in all

types of environment. The hybrid model has the lowest accuracy for blower level

in the neutral scenario (60%) and the highest for the cold environment (100%).

Given the small test set the results can be over-optimistic. There needs to be a

consideration that the accuracy of the model will increase with more data being

available, improving the estimations for the temperature and blower settings. Using

an alternative dataset for model validation can be a solution. However, the problem

with existent datasets is they have different features, especially, that they do not

capture the setting selections of the occupants.

The neural network can be fine-tuned by varying the input parameters, and

number of hidden layers. Moreover the fuzzy logic rules can be optimised using

different activation methods. Nevertheless, a degree of uncertainty is necessary

when modelling occupant behaviour. The UBM model displays good accuracy rates

for estimating value selections for temperature, blower, and vent thus supporting

the hypothesis.

4.3.2 Limitations of the UBM

For developing the hybrid model, each aspect of the interaction rules was defined

as a classification problem. This approach is one of the many alternatives that can

be used for modelling the changes made to the HVAC control by an occupant. The
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Table 4.8: Accuracy of neural network (NNET), fuzzy logic (FL), and hybrid model (UBM)
using the held-out test set.

Setting Accuracy
Model Environment Temp. Blower Vent

UBM
Cold 0.75 1 1

Neutral 1 0.6 1

Hot 0.71 0.75 1

FL
Cold 0.33 0.17 0.5

Neutral 0.88 0.11 0.33

Hot 0.33 0.17 1

NNET
Cold 0.09 0.17 1

Neutral 0.72 0.37 0.46

Hot 0.4 0.17 1

advantage is that each of the classifiers were trained and validated with a subset of

a real-world dataset, and the hybrid model’s performance was evaluated with a

final hold-out set.

One of the problems with the validation of the final model is that there is

insufficient data for an extensive evaluation, the performance of the final model

can be improved by using an alternative data set as a hold-out set provided that the

recorded parameters correspond to the training data set. Alternatively, the number

of trial participants might not be sufficient to represent the entire population.

However, the general trends depicted in the literature are observed through the

occupant responses.

Moreover, the choice of splitting the data in multiple sub-sets impacts the per-

formance of the classifiers, as the AUC is rarely above 0.6, indicating a high degree

of randomness when estimating binary classes. This can be due to insufficient

samples for training and validating the models. Alternatively, sample size can be

adequate but the feature set is limited to elements of the environment and the

equivalent temperature. A solution is to have a more extensive feature set and better

model constraints. Furthermore only a limited set of classifiers is examined, which

were identified in the literature and are available in the caret package (chapter 2).

Even though the risk of over-fitting is eliminated by the data split, there are al-

ternative techniques for improving performance, for instance varying the threshold
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for the Receiver Operating Characteristics curve and tuning the models. For the

multi-class models, the one-vs-one method [Gal+11] can be used to obtain the

average AUC. However this technique reduces the multi-class models to binary

models, having an extensive number of combinations and increasing the complexity

of the analysis.

Furthermore, by using binary classifiers for estimating each setting selection

individually, there is a probability that even though a change is estimated, there

will be no selection. This can be viewed as an error of the simulated human but it

is also similar to how occupants behave (e.g. accidentally touch the interface, get

distracted, forget or change their minds).

The hybrid model described in this chapter serves as an example of modelling

occupant behaviour. As the main goal of this thesis is to examine the impact that

the feedback of a simulate agent has on a machine learning based control system

(presented in the following chapter), UBM fulfils this purpose.

4.4 summary

In this chapter, the User-Based Module is presented as an answer to the research

question “Can an artificial agent, validated using real-world data, realistically simulate the

interaction that humans have with their HVAC system?”. The model is a hybrid of seven

distinct classifiers based on three inter-connected rules that are literature-based.

The first rule estimates the probability of change that an occupant can make to

the HVAC interface. The best performing model (AUC of 0.67, specificity of 0.5) is a

Bayesian model using a 3 Gaussian mixture fitted to the input data. This model has

a single comfort parameter as input, which is the equivalent temperature.

Once a change is estimated, the second rule becomes active determining the selec-

tion of a specific setting (either temperature, blower, or vent). The best performing

models for estimating the setting selection were: a naive Bayesian model using

a Gaussian distribution function for estimating temperature selection (AUC 0.65,

specificity 0.58); a neural network model for estimating blower level selection (AUC

0.69, specificity 0.5); and a naive Bayesian model using a kernel density function for
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estimating vent selection (AUC 0.86, specificity 0.5). A single input parameter was

not sufficient for estimating selections, therefore the input feature set was extended

to elements of the cabin environment.

Once a setting is selected the third rule is activated which estimates the value

selection of the setting. For this classification problem a set of ten classifiers were

trained for each type of setting selection. The problem was a multi-class one, the

models being evaluated in terms of accuracy, and Cohen’s kappa. The classifiers

with the highest performance were a neural network model for set-point temperat-

ure, conditional inference trees model for blower level, and random forest for vent

selections.

The seven presented classifiers are combined into the final model coded in Java.

Its response was compared with a rule-based fuzzy logic model, a neural network,

and the real-world occupant responses for three types of environment (hot, cold,

and neutral) on a final hold-out set. While the responses were not identical, the

performance of the UBM was similar to the real-world occupant adjustments (having

the highest accuracy), therefore answering the research question. The UBM is a first

step towards modelling the thermal actions of occupants within the context of a

vehicle cabin. It can be further optimised using additional data and simplified by

the combination of the rules.

The following chapter will examine the integration of the UBM within the Rein-

forcement Learning architecture, with the purpose of identifying which shaping

technique can enable the agent to learn faster and maintain the comfort of the

occupant longer.





5
U S E R - B A S E D R E I N F O R C E M E N T L E A R N I N G C L I M AT E

C O N T R O L L E R

Changes made to the Heating, Ventilation and Air Conditioning (HVAC) interface

in the car cabin serve as feedback to the system, in the sense that people make

changes to the settings in order to achieve their preferred comfort level. The learning

performance of the Reinforcement Learning (RL) based HVAC system proposed by

Hintea [Hin14] can be improved by using the occupant’s feedback in the form of

additional rewards by means of the shaping method. This new system, User-Based

Reinforcement Learning (UBRL) HVAC, combines the feedback from the environment

with the feedback from the occupant in order to efficiently learn a variable comfort

temperature target.

The problem with including an additional reward is that the agent can learn a

sub-optimal policy by choosing actions that ensure its immediate gain (e.g. riding

a bike in circles, instead of in a line). A solution to this issue is to use a potential-

based shaping reward [NHR99]. Potential-based shaping relies on the difference

between potential functions associated with the state transitions. It does not change

the objective of the task and is policy invariant.

Shaping advice methods are an extension of state shaping that use a potential

function connected to the states and actions. Given the fact that the reward is a

function of the state of the environment (a desired target temperature for the cabin

selected by the occupant) and the control actions of the system (the air flow input

to the cabin by means of blower level), this chapter investigates what is the most

suitable method of shaping that enables the proposed UBRL system to learn.

111
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This chapter aims to answer the following question: “Can the UBRL HVAC system

learn and maintain a nearly optimal policy based on occupant preferences within a reasonable

amount of time?”. The main contribution of this chapter is a UBRL HVAC controller,

which efficiently learns from the cabin environment and occupant feedback, to

maintain variable occupant thermal comfort control.

In order to examine the performance of the UBRL system, the controller is

trained and tested under simulation conditions using the User-Based Module (UBM)

(chapter 4) as the simulated response of the occupant. This chapter presents the

proposed architecture of the system, detailing the methods used for integrating the

feedback, the choice of the potential function, and shaping methods section 5.1.

The chapter further examines the performance of the UBRL system compared to

a standard controller and determines how long it takes for the agent to learn an

optimal policy when being trained by a simulated occupant (Section 5.2). Moreover,

the UBRL HVAC agent is trained with alternative algorithms to State-Action-Reward-

State-Action (SARSA) (λ), presented in chapter 2 in order to reduce the maximisation

bias and further improve control system’s response time of the control system.

5.1 method for integrating occupant feedback for an rl control-

ler

5.1.1 UBRL HVAC System Architecture

The HVAC control in the vehicle can be formulated as a Markov Decision Process

problem that is defined by the tuple (S,A, T ,R,γ), with a set of drawn states S

and actions A available for the controller to take. The transitions T : S×A → S

are determined by mapping the state and action pairs to the following states by

the deterministic model of the environment (equation 5.1). The reward function

R : S×A → R reflects the subsequent reward R(st,at) resulting from the agent
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taking an action for a specific state. The discount factor 0 6 γ 6 1, determines the

impact that future rewards have on the learning performance of the agent.

T(st,at, st+1) = P(st+1 = s ′|st = s,at = a) (5.1)

The policy π maps the states to actions π : S→ A and is the method for solving

a Markov Decision Process (MDP). The optimal policy π∗ represents the maximum

long-term discounted reward.

Figure 5.1 shows the overall architecture of the UBRL HVAC control, as used in

this thesis. The system has two parts: the cabin environment and the RL agent. The

cabin represents the environment that is explored by the agent. The state of the car

environment, also known as sensation, serves as input to the RL agent. The agent

chooses an action, that maximises the cabin reward. The reward is bounded to satisfy

all the following constraints: estimated comfort, occupant preference, and energy

efficiency.

The parameters for the cabin state and human feedback state are stored in the state

vector of the cabin environment (sensation). Due to the large state space for the

cabin environment, tile coding is used. Tile coding is a function approximation

method that approximates the state-action functionQ(s,a) by means of a smoothing

function. Similar to Brusey et al. [Bru+17], the total number of tiles used was 30 (10

for states and actions, 20 for actions).

5.1.2 The Cabin Environment

Compared to the system proposed by Hintea [Hin14], the UBRL system has the

cabin environment split into the physical environment (the car cabin model) and the

UBM (the occupant that makes setting changes to the HVAC). The cabin environment

has as its input the actions of the UBRL controller (internal temperature, fan air

flow, and recirculation control). Its outputs are the updated sensed states of the

cabin and interface (cabin, interior and ambient temperatures, air flow of the cabin,

occupant’s desired set-point temperature, blower level, and vent angle).
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Figure 5.1: Integrated system with the occupant (UBM) as part of the Cabin Environment,
the UBRL Agent learns from a combined occupant and environment reward.
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Physical Environment

The physical environment is based on a mathematical model of the thermodynamic

processes that a car cabin undergoes when in transit. It is a simplified model of the

conduction, convection and radiation processes based on the following equation:

QO +QS = QI (5.2)

meaning that the input heat, QI, to the system is equal to the sum of output, QO,

and absorbed heat, QS. It is based on the lumped capacity model proposed by Lee

et al. [Lee+15] and further developed and compared to empirical data by Brusey

et al. [Bru+17]. The model relies on the following equations that preserve the heat

balance:

4Qheat +αIbl (TA − TC) = Ibl (Tmix − TC) (5.3)

Ibl (Tmix − TC) +4Qs +4Qocc +
TInt − TC
RInt

+
TA − TC
RC

= CC
dTC
dt

(5.4)

TC − TInt

RInt
= Cint

dTInt

dt
(5.5)

The temperatures included are ambient air (TA), cabin air (TC), interior surrounding

surfaces (TInt), mixed air (Tmix), which depending on the recirculation factor (α), is

either cabin or ambient air. The recirculation factor is given by the percentage of

heated or cooled air recirculated from the cabin (Ibl) or input from outside (Iin):

α =
Iin
Ibl

(5.6)

The heat balance equation 5.2 is preserved through equation 5.3. The stored and

the output heat are replaced by the input heat in equation 5.4 that represents the

step update for the cabin temperature. Equation 5.5 depicts the step update for the

average temperature of the surfaces surrounding the occupant.

The solar load (4Qs) was maintained at 150W and the occupant load (4Qocc)

at 120W (corresponding to a single occupant). The change in heat pump energy is

depicted as 4Qheat, the absolute value of which is also considered as the energy
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Table 5.1: Table of constant cabin and interior resistivity and capacitance [Bru+17].

Elements Resistivity Capacitance

Cabin 1/(5.741626794× 4)K.W−1 Variable
Interior 1/75× 1.08K.W−1 450× 0.02× 7850 J.K−1

consumed by the HVAC system with the blower energy costs being negligible

(equation 5.7).

WHVAC = |(4Qheat)| (5.7)

The thermal resistances and capacities related to the cabin and surrounding surfaces

are constants (table 5.1), with the exception of cabin capacitance, which is calculated

using cabin capacitance factor (k = 8), air mass (mC) and specific heat (cp). The

mass is calculated using the volume of the cabin (VC = 2.5m3) and the density of

the air (ρC).

CC = k×mC × cp = k× VC × ρC × cp (5.8)

The state of the physical environment of the cabin state includes the air temperat-

ures for cabin (TC) , interior (Tint), exterior (TA) , and air flow (V̇). Additionally,

the overall body equivalent temperature (Teq) obtained using the Bedford equation

(equation 3.1) is not explicitly integrated in the state. The comfort temperature

is then compared to a desired variable target (Ttarget), detailed in the following

section.

The air velocity (equation 5.9) for the physical environment was calculated by

using the cross-sectional area (S) of the vents (estimating 2 blowers were used on

the dashboard) and the volumetric mass air flow (V̇). The cross-sectional area is

5.04× 10−3m2(50.4 cm2), corresponding to Fojtlin et al. [Foj+16].

v =
V̇

2× S
(5.9)
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User-Based Module

The UBM represents a novel approach of simulating cabin occupant interaction with

the HVAC interface, based on three thermal behaviour rules present in the literature.

Each rule is based on a set of classifiers that estimate the probabilities of making

a change (R1), selecting a HVAC setting (R2), and selecting a value for the desired

setting (R3). The cabin state parameters, together with equivalent temperature, act

as external stimuli influencing occupant’s behaviour and are used as inputs to

the UBM. The human feedback state is a vector of the output parameters of each of

the rules of the UBM. The vector includes the change (C), settings selection (Tset,

Bset, or Vset) and the values for the settings (Tval, Bval, or Vval). The vent value

is passed as a next step state for the cabin environment (Vvent), corresponding to

static vent actuation.

The state vector is updated with the human feedback parameters, in order to

incorporate the elements of the HVAC interface controlled by the occupant. These

parameters are not explicitly mapped in order to maintain unaltered the tile-coding

function. Moreover, the desired equivalent temperature (Ttarget) is calculated

using the Bedford equation by replacing the values of cabin temperature with

the desired set-point temperature (Tval) and blower speed (Bval). The inclusion

of the target temperature is based on the supported hypothesis that there is

no single comfort temperature that corresponds to all occupants of a thermal

environment. This means that there are different comfort temperatures that improve

the occupant’s comfort satisfaction, depending on the type of environment and

their preferences [BCB98; BPD04; Hal+15; Hui+06; LWG12; PBZ18].

5.1.3 UBRL Agent

The HVAC controller is an agent that has a set of available actions: control of fan air

flow (V̇fan); air temperature of the vent (Tmix); recirculation flap positions (Ar) for

determining if cabin air or external air is used. The total number of actions is 60,

with 4 possible actions for air flow, 5 for inlet temperature, and 3 for recirculation.
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In order to avoid abrupt changes in air flow and to better represent the gradual

change in HVAC control, hysteresis is performed on the air flow connecting the state

with the action (equation 5.10).

V̇t+1 = 0.9× V̇fan + 0.1× V̇t (5.10)

At the beginning of an episode, an initial state of the cabin environment is

randomly selected s0 ∈ S. The UBRL agent chooses an action based on the policy de-

pending on the exploration parameter ε (ε−greedy action selection, equation 5.11).

π =


randoma∈A withprobability ε

argmaxa∈AQ(s,a) withprobability 1− ε

(5.11)

The agent explores the associated actions as long as ε 6= 0, once it is 0, the agent

greedily selects the action and exploits the nearly optimal policy.

Given the fact that driving scenarios are limited in time (the average driving

session lasts approximately 20 minutes [JCR15] ), this thesis expands the episode

length to an average driving trial, compared to Brusey et al. [Bru+17]. As each

time-step is equivalent to 1 second, the maximum number of steps to the end of

the episode is increased to 1200.

As the learning becomes episodic, an examination of the number of steps an agent

is required to take in order to achieve the target is essential in determining how

fast the agent learns a correct policy. The episode ends either when the maximum

number of steps is achieved, or when a terminal state is reached (equation 5.12).

s =


terminal |Teq − Ttarget| 6 0.5

st+1 |Teq − Ttarget| > 0.5

(5.12)

As the desired comfort target (Ttarget) depends on the selected HVAC settings, it

can be argued that the agent receives a form of feedback from the occupant.
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According to Sutton et al. [SB98], the notation for an episodic task can be extended

to a continuous scenario by having the terminal state transition to an absorbing

state with an expected reward R(st,at) = 0, which is the case for this work. The

episodic problem is extended to a continuous one for testing the agent. The agent

can use and maintain a learnt policy, given sufficient time and exploration of the

state-action pairs in a setting where it needs to maintain control.

According to Abbeel et al. [AN], the reward function is a suitable task definition

as it is transferable and robust. Therefore, in order to enable the agent to effi-

ciently learn a good policy, the reward function presented in the following section

incorporates the occupant’s feedback.

Reward Function

For UBRL HVAC, the agent preserves the objectives to maintain comfort (achieve

maximum thermal comfort duration) and reduce energy consumption (minimum

use of energy).

As the agent learns by interacting with the environment (model-free reinforce-

ment), the reward function becomes a tool for achieving these objectives as a

weighted sum of all rewards (equation 5.13).

R(st,at) = wCRC(st) +wERE(st,at) +wGRG(st+1) (5.13)

In order to differentiate the terminal state from all the other states, an additional

reward for achieving the goal is integrated (equation 5.14).

RG(st+1) =


+1 if st+1 = terminal

0 otherwise

(5.14)

The weight of the reward for reaching a terminal state is wG = 100 (as positive

reinforcement) [Grz17; MR18]. The weight for the comfort reward is wC = 1 based

on Brusey et al. [Bru+17], the comfort reward is equivalent to the agent receiving

a penalty equal to the range between the actual equivalent temperature (Teq),
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and the desired equivalent temperature target (Ttarget). The difference is that the

comfort target does not depend on a fixed temperature (e.g. Brusey et al. [Bru+17]

using 24± 1 °C) but on various target temperatures (equation 5.15) based on the

occupant’s feedback.

RC(st) = −|Teq − Ttarget| (5.15)

The energy cost (equation 5.16) is represented by the energy reward RE(st,at),

with a weight equivalent to wE = 300W for a 1% thermal comfort improvement

derived by Brusey et al. [Bru+17].

RE(st,at) = −(|WHVAC|+ 2V̇fan) (5.16)

The RL agent takes a long time to learn a good policy by means of the reward

function, therefore additional shaping rewards can be used to serve as guidance.

Reward Shaping

In order to preserve the optimality of the original policy and directly use the

occupant’s feedback, reward shaping can be utilised. This method preserves the

optimal policy of the original problem [NHR99] and gives the agent an easier

opportunity to solve the task using additional rewards. Finding an appropriate

potential function impacts on how fast and smoothly the RL agent is guided. The

potential function used in this work is similar to that proposed by Ng et al. [NHR99]

by using elements of the state pertaining to the cabin (cabin temperature, blower

speed, vent distribution) and to the occupant (set-point temperature, velocity

derived from the blower level, and desired vent distribution). The occupant’s

desired values are considered as sub-goals pointing the agent towards an optimal

solution (equation 5.17), where 1− ε represents the percentage that the selected

action is the desired one.

Φ(st) =
−(|TC − Tval|+ |vV̇ − vBval |+ |Vvent − Vval|)

1− ε
(5.17)
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A problem with this type of function is that the agent is left to discover what

actions are appropriate to choose from the rewards associated with the states.

Wiewiora et al. [WCE03] proposed two distinct methods of extending the shaping

function to the actions taken by the agent, offering a complete view of the state-

action space to the agent. Look-back and look-ahead advice (equations 2.12,2.13)

are implemented, as the user feedback information is likely to target the actions of

the climate control.

The extended potential function for the advice methods includes the fan air flow

(part of the action vector) by deriving the velocity of the blower and comparing it

to the desired velocity (equation 5.18). The difference between the two methods is

that look-ahead advice requires the potential function to be further included within

the greedy policy, becoming biased (equation 2.14).

Φ(st) =
−(|TC − Tval|+ |vV̇fan − vBval |+ |Dvent −DVval |)

1− ε
(5.18)

The UBRL agent is trained using the SARSA (λ), which is an on-policy algorithm

that selects the next action at+1 depending on the policy π and the current reward

R(st,at). By using shaping, the reward function is changed to the compound reward

and the action value function update includes the new reward (equation 5.19),

where α is the learning rate parameter controlling the step-size used to process

the current reward R̄(st,at, st+1) for action at. In this work the α parameter is

constant.

Q(st,at)← Q(st,at) +α[R̄(st,at, st+1) + γQ(st+1,at+1) −Q(st,at)] (5.19)

Additionally, the agent is trained using Expected, Double, and Double Expected

SARSA with a similar modification of the reward for the action value function

(equations 2.6, 2.8, 2.9).

The controllers based on these alternative algorithms are compared in order to

establish if the originally proposed or the alternative controllers have an increased

performance. Details of the evaluation methods are presented in the following

section.
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5.1.4 Evaluation methods

An initial comparison of the three shaping methods was drawn by means of the

average trial reward, number of steps and step reward, for 20 runs with randomised

seeds. To test that the results for the three shaping methods were statistically

different, the Kruskal-Wallis rank sum test was used as an alternative to one-way

ANOVA, in case the variance (Lavene test) and the normality (Shapiro-Wilk test)

requirements for the data were not fulfilled. For testing the statistical difference

between groups of two methods, the Wilkoxon Rank Test was used for the not-

normal data. The performance of the UBRL controllers trained with the variations

of the SARSA algorithm was evaluated in terms of the numbers of steps taken to

reach the goal, average reward per episode, as well as with a test set scenario.

The test scenario set [Bru+17] included 200 pre-selected start states that were

randomised after each 1000 episodes of learning. This test provides a good com-

parison between alternative controllers, while maintaining a standard evaluation

of their learning capabilities. The UBRL -based controllers were compared to a

standard air-conditioning or bang-bang controller that blows air into the cabin at

the maximum speed in order to bring the cabin temperature to a 1°C range of

the target. The target in this case was the desired cabin temperature set by the

occupant (Tval). The performance metrics used to evaluate the systems were the

mean reward achieved during the test scenarios, the average percentage of time

spent in comfort, the average time to achieve the target, the average power used by

the controller, as well as the average changes made by the occupant per trial. The

following equation was used to calculate the HVAC power.

PHVAC =
WHVAC

4t
(5.20)

The power consumed is obtained by dividing the energy used by the HVAC system

by the time step (which in this case is 1 second). As the energy used by the blower

is assumed negligible, the energy consumed by the system is equivalent to the heat
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pump energy. Using equations 5.3 and 5.7, the power can be derived using the heat

from elements of the state and action (equation 5.21).

PHVAC =
|4Qheat|

4t
=
Ibl [(Tmix − TC) −α (TA − TC)]

1
(5.21)

The performance of the UBRL HVAC controller compared to the bang-bang con-

troller was also examined under two processes: cool-down and warm-up. The

cool-down process relies on the HVAC introducing cool air into the cabin with the

purpose of lowering the temperatures of the environment in hot weather. Con-

versely, the warm-up process introduces warm air into the cabin in cold weather.

For the cool-down process, the starting cabin, surrounding surfaces temperatures

were 35°C, and the exterior temperature was 25°C. The warm-up process started

with the cabin at 15°C, surrounding surfaces temperature at 5°C and the exterior

temperature at 15°C.

5.2 results and discussion

The problem with the RL HVAC car controller is that it takes approximately 6.3 years

of simulated learning time [Bru+17] (equivalent to 200000 episodes). This duration,

when implementing the controller in the car cabin, is equivalent to the estimated

lifetime of a car (6-8 years). This is undesirable as it would take the entire expected

use of the car, with the feedback from the occupant, for the controller to learn a

nearly optimal policy. Even with a pre-learnt policy, the agent needs to further

explore and potentially unlearn parts of the state-action space, as the only comfort

target is 24°C, whereas in the car there can be multiple comfort temperature targets

depending on the occupant’s preferences.

The RL HVAC controller proposed by Hintea [Hin14] can effectively learn how

to maintain a target equivalent temperature of 24°C when a car cabin is in a cool-

down process (introducing cold air into the cabin compartment in order to lower

the temperatures of the environment in hot weather). Alternatively, even when
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Figure 5.2: Equivalent temperature (green line) of the occupant for the original RL HVAC
system proposed by Brusey et al. [Bru+17] under the warm-up process. The
equivalent temperature does not reach the target equivalent temperature of
24°C (red line), or the occupant desired target temperature of 20°C (purple line).

increasing the episode duration to 20 minutes, leading to a total training time of

7.6 years (calculated using equation 5.22) for the controller.

ttraining =
Nepisodes ×Nsteps ×Nseconds per step

3600× 24× 365
(5.22)

The number of episodes (Nepisodes) is 200000, the number of steps (Nsteps) is 1200 and

the number of seconds per step (Nseconds per step) is 1, in order to get the estimated

training time in years they are divided by the the total number of seconds in a year.

To be noted that this value refers to the simulated time for training the RL agent

rather than elapsed real time for running the simulation. The RL HVAC does not

achieve the target equivalent temperature under warm-up conditions (introducing

hot air into the cabin in order to increase the temperatures of the environment

in cold weather). The equivalent temperature is maintained at 0°C (figure 5.2).

Moreover, not even the occupant’s desired equivalent temperature is achieved,

based on the changes made to the HVAC settings, which is lower than the fixed

target of 24°C.

Introducing a variable target equivalent temperature within the comfort reward

(equation 5.15) improves the performance of the RL HVAC controller, as it reaches

the cool-down target, and manages to get close to the warm-up target (figure 5.3).
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Figure 5.3: Warm-up (left) and cool-down (right) processes of the RL HVAC controller trained
for 200000 episodes with an occupant’s desired equivalent temperature instead
of a fixed target temperature.

The controller was trained for the same number of trials as the original. The

desired target was achieved much slower than the controller trained with a fixed

target (after 14.17 minutes of a 20 minutes trial duration for cool-down). It is to be

expected, as the agent requires more time to explore the state-action space when

the comfort target is variable. Compared to the fixed target of 24°C the desired

equivalent temperature shifts from 20°C to 18°C for the cool-down process and

from 20°C to 17°C for the warm-up. For a controller trained with only a comfort

and energy reward, it takes longer to achieve occupant comfort for the cool-down

process despite the fact that the desired temperature is much lower than the fixed

target. Conversely, it is easier to achieve the desired comfort target for the warm-up

process for the same reason.

There are two problems with the RL HVAC controller trained with variable targets:

the training process takes longer than the lifetime of the car and even with the

learnt policy, the occupant can achieve comfort only at the end of the driving

session (for both the warm-up and cool-down processes). The following section

presents the comparison between the three shaping methods proposed, examining

how well the UBRL controller learns by means of shaping rewards.

5.2.1 Shaping methods comparison

The three main methods of shaping explored in this thesis are: potential state shap-

ing; look-back advice; look-ahead advice. The difference between these methods is
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Table 5.2: Average steps per trial, average reward per trial, and average reward per step for
the three different shaping methods.

Shaping Method Mean Steps Mean Reward/Trial Mean Reward/Step

State 504.8± 68.31 −4.11± 0.75 −0.59± 0.72
Look-back Advice 496.25± 61.02 −3.99± 0.71 −0.54± 0.75

Look-ahead Advice 531.1± 37.96 −5.24± 0.61 −1.23± 0.66

that the first is strictly related to the environmental state (equation 2.11). The second

method includes the actions (in this case the air velocity) and compares the states

and actions taken in the last step to the current states and actions (equation 2.12).

The final method compares the predicted states and actions for the next steps with

the current states and actions (equation 2.13).

While the RL HVAC controller was trained for 200000 episodes, the UBRL HVAC

controller using all shaping methods required only 75000 episodes of training,

equivalent to 2.9 years (using equation 5.22), which is less than half the life-time of

a car. All agents were trained with ε = 0.16 for 70000 episodes, after which ε = 0

for the remaining 5000, the step size used was α = 0.01, with a discount factor of

γ = 1, meaning the agent is far sighted (future rewards having a higher impact on

the learning).

As the problem is episodic in nature, the number of steps taken until target

comfort is reached was analysed (figure 5.4). The look-back advice agent took the

lowest average number of steps until reaching the goal (the response was averaged

over 20 runs with random seeds), with the mean of 496.25 (table 5.2). State shaping

and look-back advice had comparable total rewards per trial (figure 5.5), the later

method having the lowest mean rewards per trial (-3.99) and per step (-0.54). This

means that the look-back advice agent managed to achieve the desired comfort goal

faster than the agents trained with the alternative shaping method, while incurring

the lowest penalty.

Due to the fact that the mean rewards for look-back advice and state shaping

agents are close in value, the Krukscal-Wallis rank test was used to test the difference

in means for the three agents. The statistical test is an alternative to one-way

ANOVA, as the data does not satisfy the Shapiro-Wilk normality test for the
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Figure 5.4: Average steps taken until reaching the occupant’s desired equivalent temperat-
ure using the shaping methods for 20 runs with different seeds (including error
bars and Loess fit with 95% confidence level shaded).The agent trained using
previous actions achieves a comfort target in less steps than the state-shaping
and future-actions trained agents.
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Figure 5.5: Average cumulative reward per trial for 20 runs with different seeds (including
error bars and Loess fit with 95% confidence level shaded). State shaping and
look-back advice have comparable performance.
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Table 5.3: Significance values for the Wilcoxon Rank Test, all values are lower than the 0.05

threshold indicating statistically significant difference between the groups.

Groups Steps (p-value) Reward (p-value)

State & Look-back Advice 0.01888 0.021
State & Look-ahead Advice 0.00047 < 2e−16

Look-back & Look-ahead Advice 1.8e−8 < 2e−16

number of steps and for the reward per trial (p < 2.2e−16). The null hypothesis

was rejected for both the number of steps (p = 2.47e−8) and the reward per trial

(p < 2.2e−16), meaning that there is a statistically significant difference between the

three shaping techniques. Additionally, the Wilcoxon rank test was used for paired

comparisons between the three methods as it includes corrections for multiple

testing. There is a statistically significant difference between each shaping method

at a 95% level (table 5.3).

5.2.2 SARSA-based controllers

There are alternative algorithms that can further increase the learning speed and

reduce the maximisation bias that SARSA (λ) -based agents display. The proposed

UBRL controller trained with SARSA (λ) using these shaping methods , namely state

shaping (sarsa-fs), look-back advice (sarsa-lba), and look-ahead advice (sarsa-laa)

is compared with:

• a set of standard controllers that measure cabin temperature (bang-bang-air),

equivalent temperature (bang-bang-et), or the average between the cabin and

the surrounding surfaces temperatures (bang-bang-avg);

• the controller trained with Expected SARSA (exp-fs, exp-lba, exp-laa);

• the controller trained with Double SARSA (dsarsa-fs, dsarsa-lba, dsarsa-laa) ;

• and the controller trained with Double Expected SARSA (dexp-fs, dexp-lba,

dexp-laa).

These algorithms have not previously been implemented for the HVAC field and

combined with the shaping methods.
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Figure 5.6: Policy performance during learning for the SARSA algorithms, for 70000 episodes
the agent is in exploration (ε = 0.16), the rest in exploitation (500 episodes).
The Double SARSA agent learning from look-back advice has the highest test
scenario reward (Loess fit with 95% confidence band).

The performance of the controllers was tested using the 200 episode scenario,

with the Expected SARSA and Double Expected SARSA algorithms having the lowest

reward under policy invariance (figure 5.6). While these algorithms generally have

a good short term performance, they behave as their Q-learning counterparts for

the car cabin environment, given the discount factor (γ = 1) and the use of a greedy-

policy. This means that their on-line behaviour is poor compared to SARSA and

Double SARSA, as the agents learn an optimal policy without the impact of action

selection (in this case, the controller learns to maintain the actions at a minimum

in order to minimise the energy consumption, while increasing the occupant’s

discomfort).

The highest reward under the test scenario, as well as the average reward per

step (figure 5.7) is registered for the Double SARSA UBRL controller using look-back

advice. The performance is maintained when using alternative randomised training

seeds. Compared to the Double SARSA and SARSA controllers using state shaping

(that register a higher reward at the start of the trials but their learning degrades as

the number of episodes increases), the look-back advice agents maintain a steady

reward through exploration and have the highest increase when exploitation is

enabled. Moreover, the Double SARSA agent steadily increases the test scenario
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Figure 5.7: The look-back-advice Double SARSA agent has the highest reward per step than
the alternative algorithms.

reward due to the use of the look-back shaping method, that helps the agent keep

track of the past action choices.

The trade-off between learning and execution can be observed in figure 5.8,

as the SARSA algorithms with look-back advice and state shaping achieve the

target equivalent temperature in less steps than the alternative algorithms. This

can be due to the overly-optimistic maximisation over the expected return as the

greedy-selection of the action is not based on a true value, but an estimate of that

value.

The controller that has the highest performance in terms of average reward

(-4.46) and percentage of time in which the occupant is comfortable (85.87%) is the

Double SARSA controller with look-back advice (table 5.4). It surpasses the standard

and the original SARSA-based controllers. The caveat for maintaining comfort for

a longer period of time is the amount of power used, the controller having the

highest average consumption of power of 1.07 kW, but also dealing with one of

the highest rates of changes made by the occupants, and having an estimated 5.55

minute response rate.

Analysing the performance of the agents trained with reward shaping, the

UBRL Double SARSA HVAC controller trained with look-back advice manages to

achieve and maintain the occupant’s desired comfort target under warm-up and
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than the other algorithms (with state shaping and look-back advice).

Table 5.4: Performance of the various controllers for the test set scenario.
Agent Reward Avg.Time Target (mins) Time Comfort (%) Avg. Power (kW) No.Changes

exp-laa -10.17 10.61 8.67 0.02 12.43

dexp-fs -10.05 10.55 8.05 0.02 12.57

exp-fs -10.03 11.13 7.98 0.02 12.08

exp-laa -10.17 10.61 8.67 0.02 12.43

exp-lba -10.01 10.43 8.3 0.02 12.45

dexp-lba -9.86 10.65 7.96 0.02 12.95

dexp-laa -9.79 10.95 7.93 0.02 12.48

dsarsa-laa -8.077 7.38 61.42 0.69 12.44

bang-bang-et -6.68 5.82 72.56 0.84 8.44

sarsa-laa -6.57 5.98 72.91 0.95 16.24

bang-bang-avg -6.53 5.81 71.19 0.9 13.91

sarsa-fs -6.25 4.33 80.91 0.84 11.88

bang-bang-air -6.19 6.23 74.28 0.97 16.7
sarsa-lba -6.19 4.5 82.92 0.93 12.99

dsarsa-fs -4.81 7.63 55.85 0.69 22.66

dsarsa-lba -4.46 5.55 85.87 1.07 14.7
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Figure 5.9: Warm-up (left) and cool-down (right) processes of the Double SARSA UBRL HVAC
controller trained with look-back advice (green line) and a variable equivalent
temperature target (purple line), compared to the bang-bang controller achieved
equivalent temperature(blue line).
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cool-down conditions, surpassing the alternative algorithms using the shaping

methods. Moreover, compared to a standard set-point controller (also known as

bang-bang), the UBRL HVAC controller achieves the desired equivalent temperature

faster (figure 5.9). It manages to maintain, and alternatively achieve a smoother

transition when a change in target is registered, because the desired settings for

set-point temperature (5.10), air flow depending on the blower level (5.11), and

vent distribution are reached and preserved. The bang-bang controller on the other

hand, abruptly inputs hot or cold air into the environment in order to hit the target,

struggling to maintain the passenger’s comfort.
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Figure 5.10: Cabin temperature (red) is maintained close to the desired set-point temperat-
ure (dark red) by the UBRL controller for the cool-down condition.
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Figure 5.11: Cabin air flow (dark blue) is achieved and maintained to the desired level
(blue line) by the UBRL controller for the warm-up condition.

5.3 summary

This chapter proposes an integrated system, named UBRL HVAC, that includes the

cabin environment, capturing both the physical parameters from the physical

model and the selected settings from the user model (UBM). The reinforcement

learning agent learns a variable target temperature by means of reward shaping.

The shaped reward combines the the feedback from the physical model, and the

feedback of the UBM in terms of HVAC setting selections.

This chapter aimed to answer the question “Can the UBRL HVAC system learn

and maintain a nearly optimal policy based on occupant preferences within a reasonable

amount of time?”. The Double SARSA UBRL HVAC controller using look-back advice

as a shaping method, managed to learn a policy within 2.9 years of training

(section 5.2.1) which is less than half the life-time of a car. Furthermore, it achieves

and maintains an occupant’s desired equivalent temperature within an average of

5.6 minutes (section 5.2.2), ensuring the comfort of the passenger for 86% of the

time, surpassing the standard and alternative SARSA-based controllers and avoiding

maximisation bias.

The training time is thus improved compared to a system that does not benefit

from shaping rewards. However the training duration has room for improvement,
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potentially using dynamic shaping methods that take into account a time-based

potential function. Depending on the environmental conditions, the agent can

provide and maintain comfort for an extended time using the learnt policy.



6
C O N C L U S I O N S

Human feedback (from experts and non-experts) accelerates Reinforcement Learn-

ing (RL) for robotic and gaming platforms. It has not been used for Heating,

Ventilation and Air Conditioning (HVAC) RL control within a vehicle cabin environ-

ment.

In order to mimic the interaction with the HVAC system as a form of personal

comfort control, this thesis proposed the User-Based Module (UBM) that simulates

a human agent. The model, based on the combination of three rules, is validated

against real-world data. Each rule is based and motivated from existing thermal

comfort and thermal behaviour literature.

This research examines the implementation of user feedback using reward shap-

ing, a technique specifically targeting the reward function of RL algorithms. The

most suitable shaping method for HVAC control is look-back advice (section 5.2.1),

that extends the potential function to the states and actions of the thermal environ-

ment. The potential function includes the feedback from the occupant represented

by desired changes to HVAC interface as goals for the RL controller. The resulting

User-Based Reinforcement Learning (UBRL) system using Double State-Action-

Reward-State-Action (SARSA) algorithm outperforms the SARSA trained HVAC con-

troller by maintaining comfort for a longer time but consumes a higher amount of

power due to the increased number of occupant setting selections (section 5.2.2).

This method combined with the look-back advice (section 5.2.1), eliminates any

maximisation bias for action selection and improves the learning speed of the HVAC

controller.

135
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6.1 research questions

This thesis aimed to answer the following over-arching question:

Given the limited interaction that users have with the HVAC, can an RL based system

learn occupant’s desired settings within the expected lifetime of a car?

The research question, was subsequently split into three sub-questions:

1. What is the set of simple rules that can be drawn from the thermal comfort literature

on occupant thermal behaviour related to HVAC control?

2. Can an artificial agent, validated using real-world data, realistically simulate the

interaction that humans have with their HVAC system?

3. Can the UBRL HVAC system learn and maintain a nearly optimal policy based on

occupant preferences within a reasonable amount of time?

6.2 research question 1

What is the set of simple rules that can be drawn from the thermal comfort literature on

occupant thermal behaviour related to HVAC control?

The emerging focus of building thermal comfort literature is modelling the

adaptive thermal behaviour of the occupants. There is little investigation in how

vehicle cabin occupants behave in order to maintain their desired thermal comfort.

Chapter 3 identified the main aspects related to occupant interaction with HVAC

controls and combined them in three simple rules:

r1 : When people are uncomfortable they are more likely to make changes to the

HVAC interface than when they are comfortable.

r2 : People are more likely to make changes to the temperature settings, than the

blower and vents.

r3 : Occupants prefer specific settings depending on the type of environment

(either hot, cold or neutral).
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The purpose of the rules is to identify what aspects of comfort can be linked to

occupant control of the HVAC system, which can be easily represented as conditional

probabilities. R1 identifies the relationship between the changes made and the

occupant’s comfort, which in this thesis is estimated by equivalent temperature

(section 3.1). R2 concerns setting selections (the occupant having a choice between

temperature, blower, and vent). R2 depends on whether a change is made (R1) and

on the overall-body equivalent temperature (section 3.2). Once a setting is selected

(R2), R3 identifies how likely the occupants are to select a value depending on their

comfort and the thermal environment (section 3.3).

The main objective of answering the first research question is to highlight that

occupant thermal behaviour is a key element for thermal comfort modelling espe-

cially for the vehicle environment. The literature rules represent the ground truth

of how occupants control their HVAC systems, and can be extended to incorporate

alternative thermal behaviours such as the activation of heated surfaces.

6.3 research question 2

Can an artificial agent, validated using real-world data, realistically simulate the interaction

that humans have with their HVAC system?

Yes. Based on the set of three rules a human agent model is presented in chapter 4.

A real-world data set that monitored the occupant’s thermal comfort and HVAC

interaction is used to validate the rules and their combination.

The agent, named the UBM, is the result of combining a set of classifiers, each

estimating an aspect of the occupant’s response. A Bayesian model was proposed

for estimating R1. The model outperformed alternative classifiers by means of

true negative rate, accuracy, and Area Under Curve (AUC). From R2 three models

determining each setting selection (temperature, blower, vent) were identified. Two

naive-Bayes classifiers were used for estimating temperature selection and vent

distribution and a neural network for blower level selection. The three multi-class

models (R3) with the highest accuracy and Cohen’s kappa were: a neural network
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for estimating temperature set-points, conditional inference trees for blower levels,

and random forest for vent distribution.

The hybrid model was validated on a final with-held dataset (the testing set).

The UBM was compared and outperformed a simple neural network, and a fuzzy

logic model by means of accuracy. Therefore the UBM human agent can realistically

model the occupant control of the HVAC system and be used in simulation for

training a machine learning climate controller.

6.4 research question 3

Can the UBRL HVAC system learn and maintain a nearly optimal policy based on occupant

preferences within a reasonable amount of time?

The answer is yes. The UBM model was implemented within the UBRL framework

as part of the cabin environment in chapter 5. The occupant feedback (output

of the UBM) was combined with the elements of the state and action space by

means of a potential function. The resulting shaping reward was combined with the

environmental reward in order to train the RL agent. Three shaping techniques were

used: standard potential-based shaping (also known as state shaping); look-back

advice and look-forward advice. Among the three methods, look-back advice has

statistically significant higher reward and number of steps performance than state

shaping (section 5.2.1). Both methods surpass look-forward advice by means of

number of steps and average reward per trial.

To answer the research question the UBRL HVAC controller trained with the

Double SARSA algorithm can learn and maintain a nearly optimal policy under a set

of scenarios. For warm-up and cool-down of the cabin the algorithm achieves and

maintains comfort within 14 minutes and, respectively, 2 minutes. Additionally, the

controller outperforms the standard bang-bang controllers, as well as alternative

SARSA trained controllers, ensuring occupant comfort 86% of the duration of the

journey. In approximately 5.6 minutes the controller reaches a desired occupant

equivalent temperature. Conversely, in order to achieve and maintain occupant

comfort, the controller uses more power than alternative controllers (1.07 kW). The
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reduction of power consumption will be the aim of future research, by concentrating

on finding the appropriate weight for the energy reward, and examining the power

usage for a more complex cabin model.

The overall learning performance is reduced to less than half the lifetime of a

car. This is reasonable as it surpasses the original SARSA controller that does not

even manage to achieve a target temperature for the warm-up process. Despite this

fact, the learning is not immediate, therefore a solution is to train the controller

in simulation and then implement it on the electronic control unit with variable

exploration in order to learn the occupant’s desired settings. To improve the training

time of 2.9 years, alternative methods that use less samples will be explored for

training the controller. Future work will concentrate on examining the effect of

dynamic potentials [DK12] (including a time parameter within the shaping function)

as well as combining shaping with alternative feedback methods such as advice

(section 2.1.3) and demonstration (section 2.1.3).

6.5 over-arching question

This thesis aimed to answer the over-arching question:

Given the limited interaction that users have with the HVAC, can an RL based system

learn occupant’s desired settings within the expected lifetime of a car?

The answer is yes, it can learn an occupant’s desired settings and furthermore

maintain them within less than the lifetime of a car (approximately 2.9 years

simulation time). This thesis further brings to the attention of its readers the

importance of taking a closer look at the adaptive thermal behaviour exhibited by

occupants in the context of vehicle cabins and how little is known in this area. It

establishes a link between thermal comfort and the decisions to make changes to

the climate control by means of three rules.

These rules are expressed as conditional probabilities for the decision to make

a change, select the type of setting and the value for that setting. Given the

discrete and binary, solution for the rules, the performance of various classifiers
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was evaluated and validated using a real world data set. The final model, the UBM,

validated against a hold-out set is an approach to modelling a human agent.

Capturing and realistically modelling the thermal actions of cabin occupants

is in itself a challenge due to the sparsity of the responses, which can determine

class imbalance and randomness. Nevertheless, it is achievable and despite its

complexity, is essential for improving the occupants’ comfort.

The outputs of the model (setting value selections) are used as user-feedback.

The feedback is included within the RL shaping function as occupant desired goals.

These are compared with the state of the environment and the actions of the

controller, using the look-back advice method. This type of shaping function is

included as an additional reward within a Double SARSA -based controller. The

Double SARSA HVAC learns to achieve the occupant’s desired comfort, maintaining it

86% of the time and surpassing alternative controllers. A drawback of the controller

is that it uses on average more power than alternative controllers. This is a result of

the weighting system that prioritises a higher level of comfort for the occupants

than the power usage. However, it achieves the lowest reward per test scenario and

the desired comfort temperature within an average of 5.6 minutes of a journey.

This thesis shows that the feedback of the occupants is valuable for air-conditioning

system control in vehicles as it improves the performance of machine learning

systems and bridges the gap between thermal comfort and control. The original con-

tributions to the software code include firstly the User-Based Module (Chapter 4),

which represents a simulated occupant that changes the settings of the HVAC in-

terface (based on classifiers trained in R using the Caret package, and coded in

Java). Secondly the UBRL HVAC controller (Chapter 5) that combines alternative

SARSA algorithms with 3 shaping methods (Java coded) in order to identify the best

performing system that learns from occupant feedback.
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6.6 future work

6.6.1 Thermal behaviour avenues

Motivation plays an important role when it comes to the internal process of decision

making. For changes in clothing and interactions with additional elements of the

vehicle cabin, motivation for choosing these actions is often ambiguous [Ruz11].

The additional adaptive behaviours identified in this thesis (appendix C) require

further investigation on the nature of their relationship with thermal comfort.

The actions should be monitored and the reasoning behind their use needs to be

clarified in further trials and surveys.

Moreover additional factors that can influence occupants’ thermal behaviour can

be included as input features to the human agent and part of the environmental

state. Firstly, body-part equivalent temperature should be considered, namely the

difference in temperature between the head and feet, as any difference larger than

3°C [ASH04] can cause thermal discomfort. Moreover skin sensitivity influences

occupants’ decision to act, and impacts the sensations and comfort felt at the

various regions of the body.

Additionally, a detailed analysis concerning the impact of gender, age, country

of residence, health is necessary to build a case by case training method for

the human agent. The model can be further developed and implemented using

occupant profiles (determining how many seats are occupied and their position)

for personalised comfort controls. Among these factors the most significant one is

gender, as women are more sensitive to cold than men in the context of the built

environment [Kar07], therefore an investigation if this hypothesis is valid for the

vehicle environment is necessary.

An important aspect of the HVAC system that can restrict the occupants’ use of

the controls is the noise that the blower produces. This factor has an impact on both

ambiance and thermal comfort of the occupants and should be included within the

parameters of the environment.
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Finally, humidity should be considered as it can influence the passengers’ de-

cision to increase or decrease the set-point temperatures and can reduce the fluctu-

ations in the percentages (30-70%) [SBS15] towards the recommended band. It is

also important when considering the demisting functions of the controller, using

window fogging as an additional constraint in the reward function.

6.6.2 Simulation related improvements

There are several aspects that can be improved in the context of the UBRL HVAC

system. As exploration was abruptly cut after 70000 episodes, for the remainder

5000 episodes only exploitation is available to the agent. A solution would be

variable exploration using either an epsilon with exponential decay within each

episode, or an adaptive greedy exploration, as proposed by Tokic [Tok10].

A simple lumped capacitance vehicle cabin model was used. This could be

extended to a more complex model as proposed by Lee et al. [Lee+15] or a dual

zone model as proposed by Torregrosa et al. [Tor+15].

The system was trained with the feedback of a single person, as the car cabin

model included one occupant. The simulation can be expanded to include at least

two occupants with similar or completely different behaviours. The advantage of

the human agent model is that the nature of the responses is probability based,

which means that the frequency of climate control changes will vary for each

occupant.

The combination of classifiers is quite high, in relation to the UBM model (further

description of the limitations can be found in section 4.3.2). A solution would be to

combine the response of the R2 classifiers into one multi-class classifier (example

available in appendix D). Moreover, vent distribution control is static. According to

Ruzic [Ruz11] dynamic vents can improve the comfort of the occupant. Therefore,

adapting the control to a dynamic vent system would extend the values to a range.

By using continuous instead of discrete values, R3 becomes a regression problem,

for which alternative models could be tested.
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Furthermore, the UBRL architecture can be implemented using alternative pro-

gramming tools. A more complex thermal system, cabin model, and engine model

are available in programs such as Theseus-FE, with GT-SUITE, and integrating the

Double SARSA and the UBM agents using Java scripts.

Alternatively, the UBRL architecture can be adapted to alternative environments

such as smart homes for occupancy monitoring expanding the setting preferences

to use of windows, blinds, music, and lighting. Additionally, the system can be

used for remote monitoring of patient conditions and uses of medical equipment at

home. The system can also be implemented on alternative means of transportation

such as trains or planes, combining multiple occupancy profiles.

6.7 concluding remarks

This thesis showcased the benefit of training RL climate controllers with occupant

feedback by use of shaping methods. The proposed UBRL HVAC system ensures the

comfort of the occupants by achieving their desired (variable) targets. The controller

learns a nearly optimal policy using the Double SARSA algorithm in less than half

of the lifetime of a car. There are multiple avenues for development and exploration

of the UBRL HVAC system from including additional factors to the use of more

complex simulation tools. This thesis represents the start of a new journey towards

improving occupants’ thermal comfort in vehicles based on their preferences and

feedback.
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A
I M P L E M E N TAT I O N S O F D E M O N S T R AT I O N

Argall et al. [Arg+09] state that when learning from demonstrations, there are two

fundamental phases: example gathering and policy derivation. The first phase relies

on human-robot interaction and does not necessarily require expert knowledge.

The second phase represents a process that relies on strictly expert understanding.

Subsequently, RL algorithms are applied in the second phase and rely on internal

feedback. This feedback takes the form of numerical reward that shows how

desirable a particular state is to visit. The subject (not necessarily an expert) is

involved in the act of demonstration helping the agent focus on a subset of the

state space. The reward comes as a penalty for states that have not been visited

during demonstration and prevent the agent from preferring a set of states and

actions that trigger a high reward.

Due to demonstrations being noisy and sub-optimal, exploration is encouraged

to supplement for states that have not been previously encountered. The user can

define the reward function manually, leading to sparse rewards (there are a few

states in which the rewards are different from zero). In this case, demonstration

proves to be an advantage as it signals the areas of interest in the state-space,

preventing the agent from conducting extensive exploration and facilitating the dis-

covery of rewards. On the other hand, the engineered reward can trigger penalties

for actions executed by the agent that are not found in demonstration as the teacher

cannot provide actions for all possible states. The agent can choose the state-action

pairs that achieve a local maximum and not explore alternative pairs.
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Leon et al. [Leo+11; LTM13] conducted a series of tests using a Kinect sensor in

order to get the motion traces from a user that changes the place of an object. The

agent, in this case the robot, needs to reproduce the demonstrated actions. In the

event that the robot succeeds in reproducing the action, the position and orientation

of the object are occasionally different. This is because the starting position of the

robot was different to that of the demonstrator.

Leon et al. [Leo+11; LTM13] also identified key disadvantages such as the demon-

stration can be noisy and sub-optimal, the user can be inexperienced, the necessary

hardware too complex and the experimental conditions need to be strictly con-

trolled. Berlin et al. [Ber+06] developed several experiments in action reproduction,

having the user provide demonstrations that are incomplete in order to see if the

agent was capable of following the human demonstration or executing the given

task. The agent was trained to adopt the belief system of the human diverged from

the set goal and reproduced incomplete demonstrations.

To overcome the sparsity of the reward, exploration can be encouraged for

the Reinforcement Learning (RL) algorithm. The existing data can be used for

the states that have not been covered by demonstration. Torrey et al. [Tor+10]

used demonstrations of previous robotic actions and tactics translated into a

programming language in order to construct the knowledge base with which the

agent is trained, generalising the state and action pairs. Nicolescu et al. [NM03]

improved task learning by using the refinement of existing behaviours. The network

of abstract behaviour was based on the information collected by the robot’s sensors

during demonstration. The assumption is that whilst the teachers are not experts in

knowing how the robot learns to execute the task, they know about the position of

the sensors as well as the skills that the robot possesses. Using generalisation in this

case helps identify the steps that are useful for execution (most frequently executed

steps). On the other hand, omissions can be generated due to sensor limitations or

the learner can be biased due to irrelevant steps in task demonstration.

The second option is to use inverse reinforcement in order to obtain a learned

reward. Abbeel et al. [AN] aimed to find a policy that performs similarly to the

expectations of an expert that triggers the reward. The reward function is derived
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from the observed behaviour of the expert and is correctly learned with the proper

estimation of the count of features. The only downside represents that the function

is assumed to be linear with respect to the known features.

Another alternative represents having rewards aimed at how similar to the

demonstration is the executed behaviour. This can either trigger adaptation to

a different task by assigning high values when the agent is close to a goal or

by a model of Bayesian learning that uses feature vectors. In the case of Ollis et

al. [OHH07] the feature vectors were obtained during joystick training in order

to transverse different types of terrain. Additional feedback to the initial demon-

strations increases the learning performance. This can be done by updating the

policy in real time using rewards [Leo+11; LTM13] during the actual execution of

the task, or feedback is provided as direct corrections or advice [NM03] in the case

of continuous state spaces.





B
I M P L E M E N TAT I O N S O F A D V I C E

Taylor et al. [Tay+14] used multiple methods such as: early advising, alternating

advice, importance advising, mistake correcting and predictive advising on two

Reinforcement Learning (RL) agents in a teacher-student framework, one providing

the advice and the other learning from it. Compared to a standard RL algorithm

with no advice, all the proposed methods had a higher performance. Among

these, mistake correcting had a larger impact on the performance of the learning

agent. This is because advice was given only in significant states and in small

amounts. Advice is a valuable means to prioritise actions by giving hints towards

the preferred or expected behaviour.

Taylor et al. [Tay+14] stated that advice has different effects on the agent de-

pending on when it is provided in the learning process. The user cannot provide

continuous information while the learning takes place (the advice is limited) and

the agent cannot execute all the suggested actions immediately. When teachers

notice the particular mistakes that the students make, the advice can be provided

in an effective manner regardless of the algorithms used for learning.

The introduction of advice to an RL agent can take the form either of a series of

action commands ([Lin92], [UC91]) directly affecting the policy or critique [Whi91]

of the agent’s actions affecting the reward function.

In the work of Maclin et al. [Mac+05], the advice directly affects the policy

(Figure 2.6). For a specific environmental state the users give advice about which

action is preferred. The advice is represented by if-then rules encoded by the

advisor— an experienced programmer. Function approximation is done using a
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type of knowledge-based kernel regression that instead of focusing on the Q values,

indicates action preference for the condition part of the rule (Preference Knowledge-

Based Kernel Regression (Pref-KBKR)).

Previously Maclin et al. [MS96] made use of a simple programming language to

allow the user to give advice in order to maximize the agent’s reward. The advice

is directly inserted into the utility function of the agent using techniques based

on artificial neural networks. This allows the system to accept certain advice at

any time during the learning process. The agent avoided the cases in which it was

deliberately given erroneous advice by making associations. When further advice

was provided, the learner was able explore and refine the actions.

Torrey et al. [Tor+10] used existing knowledge bases from robot soccer matches

as advice. The authors used inductive logic programming to transfer skills learnt

by the agent, further allowing the user to give advice in order to maximise the

agent’s reward. The advice was directly inserted into the utility function of the

agent using the Knowledge-Based Kernel Regression (KBKR) algorithm. The role of

the human was to map between the tasks used as examples and the current task,

further identifying the differences between them. It is not necessary to provide

constant advice as long as it is provided for certain states that are deemed by

the user to be significant. What is more when knowing the root of the mistakes

performed by the agent, the user can improve the quality of the advice in order

to address the respective problem. Daswani et al. [DSH14] adapted an algorithm

called RLAdvice which uses information about the expected return of state-action

pairs in the form of advice from an oracle.

The value of the advice is used by the RL agent to learn a well-performing policy

for the respective environment (Arcade Learning). RLAdvice is an adaptation of

the Dataset Aggregation algorithm (DAgger) [RGB11], characteristic of a supervised

learning technique called imitation learning [RB10] with the difference that for

each action, a set of weights is generated. These weights contribute to the function

approximation value that serves as guidance for the agent. In this case, the policy

is directly affected by the advice provided by the oracle.
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Leon et al. [LTM13] explored the possibility of additional feedback via brief

commands (sentences that can produce a change in action) and critiques (approval

or disapproval of a specific action). The verbal cues (fixed words and sentences)

have a corresponding associated reward.





C
A LT E R N AT I V E A D A P T I V E B E H AV I O U R S A N D FA C T O R S

c.1 clothing changes

Clothing insulation is one of the personal parameters that can be included in

thermal comfort models [Dam+16; Ruz11; Sta94; Wal+06]. It varies between 0.35-0.5

Clo for a sedentary person in an enclosed environment [Sta94; Ruz11]. The clothing

insulation is assumed to be constant through the trial duration and cover uniformly

the entire body [MH09]. Conversely, the amount of clothing an occupant wears

depends on the external environment [Ruz11]. Additionally, the activity level that

a person achieves before entering the car can impact the level of discomfort. This

personal parameter is included in models such as Predicted Mean Vote (PMV).

In the building environment, an example of adaptive behaviour is removing or

adding clothes when the occupants feel uncomfortable [Par02; LWG15; LWG16]. For

vehicles, little research has been conducted on clothing changes [Hod13]. The effect

of clothing on occupant thermal comfort is determined by using manikins [NH03;

Nil07] wearing a fixed amount of clothing and without exhibiting any simulated

actions.

There are two aspects that can influence clothing changes: i) either the occupant

feels uncomfortable and decides to remove or add more layers of clothing, or ii)

the clothes impede driving performance. Chang [Cha+11] developed clothes that

have incorporated an air conditioning system for car and motorcycle occupants.
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c.2 use of windows and additional heated surfaces

Similar to clothing, windows have a high rate of protection against UV light. What

is more, tinted windows improve comfort and prevent the negative effect of glazing

on driving performance [AB14].

Current literature identifies two different motivations for the use of windows:

i) to combat sleepiness, ii) smoking. The first motivation comes when drivers are

feeling sleepy after driving for a long period of time. Opening the window is

reported to be the first counter measure in 20-35% of the cases as cold air is directly

blown towards the face and subsequently helps the driver to be alert [Asa+12;

HR99; NS07; Pyl+15]. The second motivation is related to smoking in the car cabin.

Occupants use the windows to prevent exposure to second hand smoke despite it

being an ineffective measure [Hit+12; Jon+09]. There is little to no literature linking

window opening in the car cabin with thermal comfort as a primary motivation,

hence this action will not be considered in this thesis.

Contact with heated or cool surfaces produces local and overall discomfort [Ruz11].

Extensive research has been conducted in the design of seats (material, size, posi-

tion) in order to improve the comfort of the occupants [BP99; CB07; KC98; KST04;

Sal01]. As a further improvement, heated seats are reported to increase both thermal

comfort and sensation (especially at the foot region) [Oi+12]. Heated or cooled seats

are controlled either by activating them on and off through the Heating, Ventilation

and Air Conditioning (HVAC) control panel [Oi+12], or a separate control placed

at the back of the seat and cushion [BP99]. Despite this fact, there is no record on

preferences for the heating or cooling or how and when people choose to activate

them.

Due to the fact that drivers perceive discomfort at the hand and arm region [Che+15;

Ruz11], several patents propose heated, and cooled steering wheels [Gar08; Mye04;

NWS08; NKM87; PLD02]. As of yet, there is not much investigation of people’s

comfort evaluations and preferences when using these types of steering wheels.
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c.3 additional factors impacting thermal behaviour

While humidity is included in the PMV model, it is not for other comfort models

(e.g Nilsson, Zhang). Nonetheless, Zhao et al. [Zha+14a] state that high levels of

humidity impact occupants’ perceptions of hot and cold environments, decreasing

sweat evaporation.

One of the most important factors that influence passenger behaviour is skin

sensitivity. Whilst the connection between thermal sensation and mean skin tem-

perature has been explored through the rules, according to Liu et al. [Liu+14], skin

is more sensitive to cold stimuli, the changes being noted for subjects entering

from hot to neutral environments. Liu et al. [Liu+14] noted that the most sensitive

human body parts are the head, chest, back and calf. Therefore body part equivalent

temperature can be considered.

Sensitivity in the building environment is linked to gender, with women being

more sensitive to temperature changes than males. Karjalainen [KK07] outlined

that women exhibit a preference for higher room temperatures, feel more often

uncomfortable and are less satisfied with the temperatures of their surroundings.

According to Kim et al. [Kim+13] women are more sensitive to the conditions

provided by the HVAC system and are prone to complain in relation to their thermal

comfort. A total of 30.5% of women are dissatisfied with room temperatures

compared to 21.1% of the males. Despite this fact, Karjalainen [KK07] stated that

the use of thermostats in housing can be linked to males. Nonetheless, according

to Frontczak et al. [FW11] gender, job satisfaction, and interpersonal relationships

can influence comfort but it is not conclusive as to how.

What is more, a topic that is well-known in the vehicle industry to cause discom-

fort and further influence occupant’s actions is HVAC noise (Jaeger et al. [Jag+08],

Eilemann [Eil99] , and Hohls et al. [Hoh+14]). Hohls et al. found that roughness,

sharpness and the articulation index have an impact on how occupants perceive

blower noise, with loudness specifically affecting their use of the system. Noise

discomfort is associated with the blowers as its source [Eil99], hence passengers

reduce the levels of the blower speed to minimise noise. Jaeger et al. [Jag+08]
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found that not only blower noise but air ducts and vents can also produce noise

discomfort, which can cause the occupants not to use the respective functions.

One aspect that cannot be ignored when highlighting motivation behind inter-

actions with an HVAC system is the individuality of the occupant. Ruzic [Ruz11]

stated that comfort is impacted by variations in clothing, gender, age, mood and

other individual differences, whereas Karjalainen et al. [Kar07] maintained the idea

that HVAC systems and culture impact personal control. Karjalainen [KK07] further

brings into context the possibility that not all individuals can be satisfied with their

thermal environment. Rammsayer et al. [RBN95] maintained that this can become

an advantage as the differences between individuals can impact small samples of

data bringing new discoveries to light.



D
A LT E R N AT I V E M O D E L F O R R U L E 2

R2 can be converted from a subset of binary classification problems to a multi-class

problem. The recorded outputs for each selection can be combined into a single

unique class (table D.1). The same set of multi-class models (section 4.2.3) were

used for training.

The model with the highest accuracy and kappa is the neural network model

displaying a good estimation of the combination of settings compared to the other

models (table D.2).

An alternative method for testing the performance of the models is to reduce

them to binary classes. Among the available strategies of binary reduction, One-vs-

Rest and One-vs-One [Gal+11]. The One-vs-Rest technique is based on assigning a

classifier for each class (e.g. a classifier for temperature selection, blower selection,

and vent selection). When the samples of the class are positive (e.g. temperature has

been selected), the rest of the samples are considered negative (including the other

settings that are available). Therefore each class is compared against the others. The

Class Temperature Blower Vent

Class1 0 0 1

Class2 0 1 0

Class3 0 1 1

Class4 1 0 0

Class5 1 0 1

Class6 1 1 0

Class7 1 1 1

Table D.1: Class labels determined by the combination of selected settings.
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Model Accuracy Kappa

nnet 0.7 0.51

PART 0.55 0.27

gbm 0.55 0.29

rf 0.5 0.18

svmRadial 0.5 0.19

rpart 0.45 0

svmLinear2 0.3 -0.02

svmLinear3 0.45 0.14

ctree 0.45 0

knn 0.4 0.06

Table D.2: The highest performing model in terms of accuracy and Cohen’s kappa, for the
classification of setting selections is the neural network model.

problem with this classification technique is that there can be ambiguous regions

(different scales for the confidence scores factoring in the decision), with class

imbalance emerging in the training set as the negative samples have higher rates

than the positive ones.

The One-vs-One technique can be suitable for this rule as it involves training a

set of binary classifiers for each case of setting selection (in this case 7 sets in which

at least one setting is selected), the classifier estimating the probability that setting

combination is selected or not. After training each classifier, at the prediction stage

all the classifiers are given a testing sample. The classifier with the highest amount

of positive predictions is chosen as output. Using this procedure the same neural

network model has the highest mean area under the curve of 0.68 compared to the

alternative models.

By combining the three selection combinations into a single output the risk of

estimating no selection for all the settings (when R1 is activated) is eliminated.

Moreover the complexity of the hybrid model (figure D.1) is reduced, enabling

direct estimation for the value selection when all settings are selected.
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Figure D.1: The architecture of the hybrid model using a single classifier for estimating
setting selections (R2).





E
M O D E L C O D E L I S T I N G S

The User-Based Module (UBM) code (figure E.1) was developed in Java using the

jpmml library [Ruu18] for activating the six Predictive Model Markup Language

(PMML) classifiers and the hand-coded Bayesian classifier. The classifiers have

been trained, validated and tested in R-Studio using the caret package [KJ13] and

the Gaussian distributions for the Bayesian model were fitted using the mixtools

package [Ben+09]. The code has approximately 700 lines, including the calls for the

classifiers and testing the model, for further information on obtaining the model

please contact the author.

The code for the UBM is integrated into the cabin environment file titled “Sim-

pleCabinEnvironment” which is connected to the simulation through simulation

platform “SarsaSimulation” (figure E.2). The state of the environment is passed

to the Reinforcement Learning (RL) agent that is trained with the various State-

Action-Reward-State-Action (SARSA) algorithms (Expected, Double, and Double

Expected). The agent selects the actions of the Heating, Ventilation and Air Condi-

tioning (HVAC) controller based on the fitness function (reward function) and the

algorithm that is running. The actions are passed back to the environment as the

HVAC outputs of temperature, air velocity and recirculation (figure E.3).
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Figure E.1: UBM diagram overview of the main functions and parameters.

Figure E.2: Overview diagram of the architecture of the car cabin environment that includes
the UBM as a simulated occupant, and the lumped capacitance model, and is
connected to the additional simulation files.
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Figure E.3: Overview diagram of the RL agent and its connections to the state of the
environment and the actions of the HVAC controller.
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