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Abstract

Predicting the movement of an object is a problem that has seen several solutions using stochastic
modelling (i.e. Markov Models), artificial neural networks (i.e. feed-forward and recurrent net-
works) and Bayesian networks. The usual methodology of a Markov Model requires the use of a
priori data to build a model that can predict the upcoming direction of movement. In this work,
a model is presented that takes the underlying framework of a Markov model and makes an adap-
tation that will count the frequency of transitions that may occur between states. The collated
information on the frequency of each transition will be used to adjust the probability vector of the
Markov model to ensure that a prediction can be made without prior learning and historical data.
The outcome of the amended model shows that a prediction accuracy can be obtained within the
range of 79% to 96%. Whilst this is a high accuracy, the rate is dependant upon the type of move-
ment that is exhibited by the object and number of previous movements that are used, otherwise
known as a models order. Adjusting the order of a model will takes into account a collection of
previous observed movement to make a prediction. For example, a first order model will take into
account a single previous direction, whereas a third order model would take into account the last
three directions.

To understand how well the amended Markov model performs in comparison to a traditional
model and artificial neural networks. A comparative study is performed on a traditional Markov
model and two neural networks. A feed-forward neural network has been used to determine how
a simple network can be used to generate a prediction on the next direction of movement whilst a
more complex recurrent neural network is used to determine how a ‘memory-like’ state (akin to the
Markov model) can increase the accuracy of the predictions generated. To ensure that the networks
follow the same basis as the stochastic model, the networks are designed in a manner to feed the
past n movements observed to train the neural network and make a prediction. The results for
the feed-forward network shows that the recorded accuracy can vary between 69.43% and 78.50%,
whilst the recurrent neural network averaged between 67.06% and 76.27%. A linear progression is
seen for the accuracy of the recurrent neural network, with the number of past movements that
are used to make a prediction influencing the accuracy.

Comparing the two models, it can be seen that the stochastic model has an advantage over
the artificial neural network when it comes to the processing times that has been observed for
the completion of video or text file. With the accuracy rates ranging higher for the amended
stochastic model and falling within a favourable computation time. The Markov model would be
best suited for problems that rely upon predictions being generated within a real-time manner.
The work also covers the prospect of recognising patterns within the matrices to determine whether
a similarity can be found between the different paths of movement that have been exhibited by
an object or pedestrian. The method is applied to the probabilities of the stochastic model and it
can be seen that by applying the scoring functions by Haralick (1979), the dissimilarity, entropy
and homogeneity scores can describe the path an object or pedestrian has travelled within a scene
and can give an insight to the direction of movement. This information can be used to build a
model database that can be used when the algorithm is running to select an appropriate model
that would generate a prediction with a higher accuracy.



Contents

1 Introduction 16

1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Scope and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Chapter 2: Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Chapter 3: Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Chapter 4: Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.4 Chapter 5: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Literature Review 20

2.1 Detection of Features for Object Recognition . . . . . . . . . . . . . . . . . . . . . 20

2.2 Feature Detectors for Machine Vision Recognition . . . . . . . . . . . . . . . . . . 21

2.2.1 Speed of Object Recognition by Humans and Machine . . . . . . . . . . . . 27

2.3 Object Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Conclusions on the Reviewed Literature . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Methodology 40

3.1 Object Recognition on Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Recognising an Object using Feature Detectors . . . . . . . . . . . . . . . . 41

3.1.2 Calculating the Dimensions and Movement of a Recognised Object . . . . . 43

3.1.3 Datasets used for Experimentation . . . . . . . . . . . . . . . . . . . . . . . 44

1



3.1.4 Experimental Plan and Measurable Metrics . . . . . . . . . . . . . . . . . . 45

3.2 Predicting the Movement of an Object . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Using a Traditional Markovian Model for Predictions . . . . . . . . . . . . . 47

3.2.2 Amending a Traditional Markovian Model for Predictions . . . . . . . . . . 49

3.2.3 Pattern Analysis of an Objects Probability Vectors . . . . . . . . . . . . . . 50

3.2.4 Using Neural Networks for Movement Prediction . . . . . . . . . . . . . . . 52

3.2.5 Datasets used for Experimentation . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.6 Experimental Plan and Measurable Metrics . . . . . . . . . . . . . . . . . . 55

4 Results Analysis 58

4.1 Results for Recognising an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Low and High Resolution Images . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Web Camera and Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Results of Predicting a Pedestrians Movement . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Dynamic Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Traditional Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Pattern Analysis of the Dynamic Markov Model . . . . . . . . . . . . . . . 91

4.2.4 Processing Times of the Markov Models . . . . . . . . . . . . . . . . . . . . 102

4.2.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.6 Comparison of the Neural Networks and Markov Models . . . . . . . . . . . 111

4.3 Results of Predicting an Objects Movement . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Dynamic Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Traditional Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.3 Processing Times of the Markov Models . . . . . . . . . . . . . . . . . . . . 122

4.4 Conclusion of the Object Recognition Experiment . . . . . . . . . . . . . . . . . . . 126

4.5 Conclusion of the Prediction Experiments . . . . . . . . . . . . . . . . . . . . . . . 130

5 Conclusion 133

5.1 Further Improvements to the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Object Recognition and Tracking . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2



5.2 Future Work and Expansion of the Study . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 Hybrid Stochastic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.2 Future Location Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.3 Applicability to Different Data Sources . . . . . . . . . . . . . . . . . . . . 137

A Thesis Results 138

A.1 Yi et al.’s Pedestrian Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Thesis Video Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B Feature Detection: Source Code 139

B.1 Linux Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 Android Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C Thesis Study: Source Code 140

C.1 Pedestrian Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.2 Video Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3



Abbreviations

BF BruteForce. 42, 63–65

BRISK Binary Robust Invariant Scaleable Keypoints. 7, 12, 15, 20, 24–26, 28, 30, 37, 38, 40–43,
45, 46, 59–63, 65, 68–75, 126–130, 133, 134

BRVO Bayesian Reciprocal Velocity Obstacles. 32, 33

CNN Convolution Neural Network. 30–32

DMM Dynamic Markov Model. 49, 50, 56, 134

DOG Difference of Gaussian. 23, 28

EWMA Exponentially Moving Weighted Average. 44, 128

EXIF Exchangeable Image File Format. 40

FFNN Feed-Forward Neural Network. 47

FLANN Fast Library for Approximate Nearest Neighbours. 42, 63, 64, 69, 73

fps frames-per-second. 45

GLMP Global and Local Movement Pattern. 33

GLOH Gradient Location and Orientation Histogram. 27, 28

ISS International Space Station. 26, 38

KLT Kanade–Lucas–Tomasi. 11, 30, 31

KNN k-nearest neighbours. 42

LSTM Long Short Term Memory. 11, 31, 54

MC Markov Chain. 47, 50

MSE Mean Square Error. 11, 30, 31

MV machine vision. 16

NN Neural Networks. 20, 30, 38, 47, 52

NNDR Nearest-Neighbour Distance Ratio. 27, 28

OpenCV Open Source Computer Vision Library. 41, 43, 46, 123, 125

4



ORB Oriented FAST and Rotated BRIEF. 28

PPM pixel-per-metric. 43

RNN Recurrent Neural Networks. 31, 47

RVO Reciprocal Velocity Obstacles. 32

SIFT Scale Invariant Feature Transform. 20, 22–28, 37, 38, 40–42, 44, 46, 59–65, 67–71, 129, 130,
133

SURF Speeded-Up Robust Features. 12, 20, 23–28, 37, 38, 41–43, 45, 46, 59–65, 68, 70–74, 126,
130, 133, 134

SVM Support Vector Machine. 31

UHD Ultra High Definition. 134, 135

5



List of Figures

2.1 Two images used by Lowe (1999) in his experimentation to determine the stability
of his feature detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The repeatability score for the wall and graffiti images, respectively. The images
consisted of transformations made to the viewpoint. The graph has been acquired
from the work of Bay et al. (2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The sampling pattern used by the BRISK detector to determine a pixel as a keypoint
of interest from an image. Image acquired from the works of Leutenegger et al. (2011). 24

2.4 The distribution of sampling points onto the object as described by Karpushin et al.
(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The matching score for the graffiti sequence of images used in the experiment. The
graph has been acquired from the works of Karpushin et al. (2015). . . . . . . . . . 26

2.6 The collection of images used by Lowe (2004) whilst evaluating his detector to
recognise an one of the three objects from the scene image. Images acquired from
the work by Lowe (2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 The error for various densities, where a lower score is more favourable. The graph
is taken from the work of Kim et al. (2015). . . . . . . . . . . . . . . . . . . . . . . 33

2.8 The subset of cells that the authors propose to use to predict an objects movement
when transitioning between the neighbouring cells. (Image Source: Nižetić et al.
(2009)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 The graph showing the results of the experiment by Krumm (2008) and how in-
creasing the order of the model can increase the overall accuracy of the predictions
made. (Image acquired from Krumm (2008).) . . . . . . . . . . . . . . . . . . . . . 36

3.1 The new collection of images used for the experimentation to determine how tradi-
tional and binary detectors perform on high-definition images. . . . . . . . . . . . . 45

3.2 The detection outcome using the third set of parameters for BRISK. Although a
strong detection can be made as shown on the right, a weak detection can also
occur (as shown on the left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 The increased number of rows for a higher order model will have a significant impact
on the number of transitions that can occur. An exponential growth can be seen for
a linear increase in the models order. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6



3.4 The entrance of the Engineering and Computing building (ECB) of Coventry Uni-
versity. The students/staff are funnelled towards a main entrance (highlighted in
red) and a card-access door (highlighted in green). . . . . . . . . . . . . . . . . . . 51

3.5 The structure of the neural networks that will be implemented for the comparative
study with the traditional and dynamic Markov models. . . . . . . . . . . . . . . . 53

3.6 An example of the dataset provided by Yi et al.. The image shows the path taken
for a pedestrian from the dataset overlaid from a sample image of a frame. . . . . . 55

4.1 The number of detected keypoints from each image of the Lowe (2004) dataset using
the three feature detectors on a mobile device. . . . . . . . . . . . . . . . . . . . . 61

4.2 The processing time for detecting the keypoints of interest from each image of the
Lowe (2004) dataset on a mobile device. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 The processing time for formalising a descriptor from each image of the Lowe (2004)
dataset on a mobile device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 The processing time for matching the descriptors from each object with the scene
image of the Lowe (2004) dataset on a mobile device. . . . . . . . . . . . . . . . . . 64

4.5 The total computation time for each image (summed keypoint, descriptor and
matching times) between the laptop and mobile hardware for each detector. . . . . 66

4.6 The growth in pixels for an increase in the resolution of the image is particularly
significant when reaching 1080p in comparison to the 540p resolution. . . . . . . . 67

4.7 The amount of time taken for detecting keypoints of interest and extracting descrip-
tors for each detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 The total computation time for recognising an object from the occluded scene image
for each detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 The detection outcome using the third set of parameters for Binary Robust Invariant
Scaleable Keypoints (BRISK). Although a strong detection can be made as shown
on the right, a weak detection can also occur (as shown on the left). . . . . . . . . 73

4.10 For an increase in the resolution of the video the computation time also increases.
The original time of the video was 300 seconds. . . . . . . . . . . . . . . . . . . . . 74

4.11 The mean accuracy of the various step thresholds used in Table 4.11. . . . . . . . . 76

4.12 Two of the four pedestrians chosen for analysis to determine why they gained the
lowest accuracy for a fifth order model. . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Two of the four pedestrians chosen for analysis to determine why they gained the
lowest accuracy for a fifth order model. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 The path of pedestrian #5, 860 to be analysed and determine why a low accuracy
rate was gained for the first order but a significant progress was made on the latter
orders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.15 The path of pedestrian #8, 382 to be analysed and determine why a low accuracy
rate was gained for the third order, when the previous and latter two orders saw a
linear increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7



4.16 The mean accuracy for pedestrians within their respective category of step ranges
for the dynamic stochastic model using the random prediction method. . . . . . . . 82

4.17 The two pedestrians that gained the lowest accuracy for the fourth order model
using the maximum-likelihood method. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.18 Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the dynamic stochastic model. . . . . 84

4.19 Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the dynamic stochastic model. . . . . 84

4.20 The path of pedestrian #7, 675 that gained the lowest accuracy for the first order
dynamic stochastic model using the maximum-likelihood prediction method. . . . . 85

4.21 The mean accuracy of the predictions generated using the dynamic Markov model
with the two prediction methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.22 The path for pedestrian #9, 842 to analyse why such a low accuracy was gained
using the traditional stochastic model for the first order. . . . . . . . . . . . . . . . 89

4.23 Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the traditional stochastic model. . . . 90

4.24 Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the traditional stochastic model. . . . 90

4.25 The paths of pedestrian #10, 866 and #8, 879 that scored 109.333 using the dissim-
ilarity score function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.26 The paths of pedestrian #4, 552 and #11, 269 that scored 97.333 using the dissimi-
larity score function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.27 The path of pedestrian #9, 075 that shows the different directions the pedestrian
was heading towards at points within their path. . . . . . . . . . . . . . . . . . . . 95

4.28 The path of pedestrian #5, 327, which is similar to the path of pedestrian #9, 075
shown in Figure 4.27 but flipped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.29 The paths of pedestrian #4, 672 and #6, 146 that scored 1.5360313058225572 using
the entropy score function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.30 The path of pedestrian #3, 652 to determine why a drop was seen in the accuracy
rates after a second order model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.31 The paths of pedestrian #9, 361 and #1, 452 that scored 1.5360313058225554 using
the entropy score function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.32 The paths of pedestrian #7, 712 and #2, 391 that scored 2.9808992703110335 using
the homogeneity score function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.33 The mean processing time for each of the various models and prediction methods
used on the university server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.34 The mean processing time for the traditional Markov model on each of the devices
used for the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.35 Two of the four pedestrians chosen for analysis to determine why the difference in
accuracy rates were achieved for each order of the feed-forward neural network. . . 106

8



4.36 Two of the four pedestrians chosen for analysis to determine why the difference
in accuracy rates were achieved for each order of the feed-forward neural network.
From right to left, pedestrian #3774 and #5390. . . . . . . . . . . . . . . . . . . . 106

4.37 The mean time for each order of the feed-forward network for all pedestrians within
the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.38 The path of pedestrian #3815 to determine as to why a lower accuracy was gained
on the third order; when an increase could be seen on the first and second orders. . 109

4.39 Two of the four pedestrians chosen for analysis to determine why the difference in
accuracy rates were achieved for each order of the recurrent neural network. . . . . 109

4.40 The mean accuracy time for the feed forward and recurrent networks compared
against each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.41 The comparison of mean processing times for the various neural networks and
stochastic models that have been used in the experimentation for the pedestrian
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.42 The comparison of mean processing times for the various neural networks and
stochastic models that have been used in the experimentation for the pedestrian
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.43 The minimum, maximum and mean values for each order of the dynamic stochastic
model using the random method. The values are based upon the video dataset and
shows the difference between the range of results. . . . . . . . . . . . . . . . . . . . 115

4.44 The graph shows a plot for the accuracy against the FPS of the video with an object
moving in a trajectory shape of a rectangle. . . . . . . . . . . . . . . . . . . . . . . 116

4.45 The graph shows how the FPS can decrease for each order of the dynamic stochastic
model depending upon the resolution of the video. . . . . . . . . . . . . . . . . . . 117

4.46 The difference between the random and maximum-likelihood prediction methods for
the dynamic stochastic model on the square video. . . . . . . . . . . . . . . . . . . 119

4.47 The mean accuracy plotted for the straight and square videos using the traditional
stochastic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.48 The observed computation times for the an object moving in a straight line for the
traditional stochastic model on a Dell XPS laptop. . . . . . . . . . . . . . . . . . . 124

4.49 The mean FPS of the two videos for each order of the varying stochastic models
used for the experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.50 The miscalculated boundaries of a detected object. This can occur due to the lower
number of keypoints detected when the object is moving; or when the incorrect
training image is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.51 Two of the identification cards that are used at Coventry University with the two
cards being very similar apart from a major difference in the colour. . . . . . . . . 129

4.52 The mean processing time of the 540p video of an object moving in a square trajectory.131

4.53 The mean processing time of the pedestrian dataset on the university server using
a neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9



5.1 The proposed future work of using a hybrid stochastic model to generate predictions.136

10



List of Tables

2.1 Adjusting the image with various transformations can affect the stability of the
detector. The table shows how each transformation can affect the retention rate
between the original and transformed image. Table data acquired from the work by
Lowe (1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The threshold of detection, number of keypoints detected and calculation time for
the detectors used in the comparison by Bay et al. (2008), for the first image of the
graffiti scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The results of the comparison experiment performed by Leutenegger et al. (2011).
The table of results is acquired from their body of work. . . . . . . . . . . . . . . . 25

2.4 The results of the effectiveness study by Miksik & Mikolajczyk (2012), and shows the
average computation time of the various detectors used during the experimentation. 28

2.5 The specification of the mobile devices and Lenovo laptop that were used for the
experiment in the study performed by Cornelius (2014). . . . . . . . . . . . . . . . 29

2.6 The prediction results (Mean Square Error (MSE)) of the different methods trained
using the annotated pedestrian locations, or Kanade–Lucas–Tomasi (KLT) trajec-
tories on the two datasets. Table of results acquired from the work of Yi et al.
(2016a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 The average displacement error of the predictions using the Long Short Term Mem-
ory (LSTM) model built by Alahi et al. on various datasets. . . . . . . . . . . . . . 31

2.8 The statistical data of the three datasets used by Shao et al. (2015). The results are
acquired from the paper published by the author. . . . . . . . . . . . . . . . . . . . 32

3.1 The various parameters that have been used for the BRISK, SIFT and SURF feature
detectors. The parameters are the default values as suggested per the OpenCV
framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The eight possible directions of movement in their simplified versions, along with a
stationary move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The collection of results for the Lowe (2004) dataset on the Sony Z3 Tablet Compact
mobile device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Results of the experiment performed on the Linux operating system using the Dell
XPS laptop, with the images originally used by Lowe (2004) when testing his feature
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11



4.3 Results of the experiment performed on the mobile hardware with the high-resolution
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 The percentage difference between the computation time for object recognition using
the BRISK and SURF detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Results of the experiment performed on the Linux operating system using the Dell
XPS laptop, with the new high resolution images. . . . . . . . . . . . . . . . . . . . 71

4.6 The results of using the Speeded-Up Robust Features (SURF) only detector on a
webcam inserting live-feed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 The results of using the BRISK only detector on a webcam inserting live-feed data. 72

4.8 The results of using the BRISK only detector on a webcam inserting live-feed data. 73

4.9 The results of the experiment on the high-definition video dataset using a hybrid of
detectors to recognise an object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Results for the experiment using solely the BRISK feature detector on a collection
of high-definition video files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 The mean accuracy of the dynamic stochastic model when applying a threshold to
the number of steps that have been observed by the model. . . . . . . . . . . . . . 75

4.12 The various categories of step ranges and the number of pedestrians that fall within
each step category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5 to 305 steps. . . . . . . . . . . . . 77

4.14 A selection of pedestrians with a minimum accuracy (highlighted in bold) are analysed. 78

4.15 The statistics for the Pearson’s correlation test using the IBM SPSS statistics software. 81

4.16 The descriptive statistics of the dynamic stochastic model using the maximum-
likelihood prediction generation method for pedestrians within 5− 305 steps. . . . 82

4.17 The pedestrians that gained the minimum accuracy for the fourth order model when
using the maximum-likelihood prediction method. . . . . . . . . . . . . . . . . . . . 83

4.18 The pedestrians that gained the maximum accuracy for each stochastic model order. 84

4.19 The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the order of five dynamic stochastic model using the maximum-likelihood
prediction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.20 The descriptive statistics of the random and maximum-likelihood methods, with the
delta between the two shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.21 The statistics for the Pearson’s correlation test using the IBM SPSS statistics soft-
ware for the maximum-likelihood prediction method. . . . . . . . . . . . . . . . . . 88

4.22 The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5− 305 steps. . . . . . . . . . . . . . 88

4.23 The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the first order of the traditional stochastic model. . . . . . . . . . . . . 89

12



4.24 The accuracy of predictions using a first order model for the dynamic and traditional
stochastic models. The pedestrian in question is #9, 842 and compares the low
accuracy gained on the traditional model against the dynamic models. . . . . . . . 89

4.25 The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the first order of the traditional stochastic model. . . . . . . . . . . . . 90

4.26 The statistics for the Pearson’s correlation test using the IBM SPSS statistics soft-
ware for the traditional stochastic model. . . . . . . . . . . . . . . . . . . . . . . . 91

4.27 The different scores that have been obtained by using the Haralick (1979) formula’s
on the pedestrian matrices for the first order dynamic stochastic model. . . . . . . 91

4.28 A sample of twenty pedestrians that scored 109.333 using the dissimilarity scoring
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.29 The statistical test performed upon the pedestrians that gained a dissimilarity score
of 109.333̇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.30 A sample of twenty pedestrians that scored 97.333 using the dissimilarity scoring
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.31 The statistical test performed upon the pedestrians that gained a dissimilarity score
of 97.333̇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.32 A sample of ten pedestrians that scored 91.810 using the dissimilarity scoring function. 95

4.33 The statistical test performed upon the pedestrians that gained a dissimilarity score
of 91.810. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.34 A sample of ten pedestrians that scored 91.810 using the dissimilarity scoring function. 97

4.35 The statistical test performed upon the pedestrians that gained an entropy core of
1.5360313058225572. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.36 The accuracy of predictions for each pedestrian shown in Table 4.35. The accuracy
for each order of the dynamic stochastic model is shown where the random prediction
method was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.37 The sample of five pedestrians that gained the entropy score of 1.5360313058225554
when analysing the first order matrices of the dynamic stochastic model with the
random prediction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.38 The sample of five pedestrians that gained the entropy score of 1.5360313058225603
when analysing the first order matrices of the dynamic stochastic model with the
random prediction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.39 The sample of ten pedestrians that gained the homogeneity score of 2.9808992703110335
when analysing the first order matrices of the dynamic stochastic model with the
random prediction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.40 The sample of ten pedestrians that gained the homogeneity score of 3.8148761042878663
when analysing the first order matrices of the dynamic stochastic model with the
random prediction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.41 The processing time of each hardware for the respective stochastic model. ‘Dynamic1’
are the results of the dynamic Markov model with the maximum-likelihood predic-
tions and ‘Dynamic2’ are the times of the random prediction method. . . . . . . . 102

13



4.42 Two pedestrians from the collection of results for the embedded hardware and the
traditional stochastic model to determine why a difference in the times for each
order was recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.43 The descriptive statistical analysis of the feed-forward neural network for the accu-
racy of predictions made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.44 The accuracy rate and number of steps observed by the feed-forward neural network
for generating predictions using the pedestrian dataset. . . . . . . . . . . . . . . . . 105

4.45 The times taken for each pedestrian when using the feed-forward neural network to
make a prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.46 The descriptive statistical analysis of the feed-forward neural network for the accu-
racy of predictions made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.47 The accuracy rate and number of steps observed by the recurrent neural network
for generating predictions using the pedestrian dataset. . . . . . . . . . . . . . . . . 108

4.48 The correlation test for the recurrent neural network to find a relationship between
the steps and accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.49 The times taken for each pedestrian when using the feed-forward neural network to
make a prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.50 The mean accuracy of the stochastic models and neural networks for models of an
order up to three. ‘Dynamic1’ is the random prediction method and ‘Dynamic2’ is
the maximum-likelihood prediction method. . . . . . . . . . . . . . . . . . . . . . . 113

4.51 The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for the various videos. . . . . . . . . . . . . . . . . . . . . . 114

4.52 The results of the video where the object is moving within the shape of a square for
the dynamic stochastic model with the random prediction method. . . . . . . . . . 115

4.53 The statistics for the Pearson’s correlation test using the IBM SPSS statistics soft-
ware for the dynamic stochastic model using the random prediction method on the
square videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.54 The results of the video where the object is moving along a straight line for the
dynamic stochastic model with the random prediction method. . . . . . . . . . . . 116

4.55 The relationship values between the resolution of the video and the frame-rate
recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.56 The descriptive statistics of the dynamic stochastic model using the maximum-
likelihood prediction generation method for the various videos. . . . . . . . . . . . 118

4.57 The results of the video where the object is moving in a square shape for the dynamic
stochastic model with the maximum-likelihood prediction method. . . . . . . . . . 118

4.58 The results of the Pearon’s correlation test for a relationship between the resolution
and accuracy of the dynamic stochastic model using the maximum-likelihood method.119

4.59 The correlation results of the Pearson’s test showing how the resolution has a rela-
tionship with the FPS of the video. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.60 The results of the correlation test between the FPS and the accuracy of the dynamic
stochastic model using the maximum-likelihood method. . . . . . . . . . . . . . . . 120

14



4.61 The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5 to 305 steps. . . . . . . . . . . . . 120

4.62 Results of the experiment using the traditional stochastic model of an object trav-
elling within a straight line for various resolutions. . . . . . . . . . . . . . . . . . . 121

4.63 The processing time of each hardware for the respective stochastic model for the
video of an object travelling within a straight line for the various resolutions. ‘Dynamic1’
are the results of the dynamic stochastic model with random predictions and ‘Dynamic2’
are the times of the maximum-likelihood prediction method. . . . . . . . . . . . . . 123

4.64 The processing time of each hardware for the respective stochastic model for the
video of an object travelling within the shape of a square for the various resolutions.
‘Dynamic1’ are the results of the dynamic stochastic model with random predictions
and ‘Dynamic2’ are the times of the maximum-likelihood prediction method. . . . 125

4.65 The data in the table shows how by adjusting the threshold of the BRISK detector
can increase the number of keypoints detected but can also inadvertently affect the
frame-rate rather significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.66 The times taken for localising keypoints and extracting descriptors using the three
feature detectors for the high-definition video dataset. . . . . . . . . . . . . . . . . 130

4.67 The mean accuracy that was achieved for each of the neural networks that were
used within the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

15



Chapter 1

Introduction

An increase in demand for applications that can interact with the environment, has seen machine
vision (MV) become an important issue. The introduction of cameras on mobile hardware (such
as phones and tablets), and personal computers has seen an increase in the development of MV
systems in the past few decades/years. MV is defined as system that includes that technology and
methodology to extract key components (or information) from an image or video. The information
that is extracted from such a process can be used for tasks such as identification and tracking of
objects, the guidance of robots or the ability to create a model of the real-world from a collection of
images (Jain et al. 1995). The MV topic area has multiple related fields such as image processing,
computer graphics and pattern recognition; the various fields can be applied to the machine vision
topic to assist in the identification of an object from its environment, i.e. the resizing of an image
or adjusting the colour properties.

The area of machine vision has been explored and studied by Hariyono et al. (2014) and Koppula
et al. (2013). The work undertaken was concerned with the identification of a pedestrians location
and the learning of their movements and various activities. The process of identification for an
object within a scene is often only the first step in a more complex machine vision application.
With each turn of a decade, the price of technology falls and becomes widely available to the public.
With this, the inclusion of on-board cameras are becoming increasingly popular in vehicles. It was
only a decade ago that this inclusion was rare and seen as a novelty. However, with the growing
popularity of in-vehicular systems consisting of an operating system it leads to an increase of
premium features available.

Vehicle brands such as Alfa Romeo and Fiat have used the Windows Embedded operating
system in their vehicles (Microsoft.com 2006), whilst BWM use the Apple CarPlay operating
system (Kahn 2016). The popularity of operating systems in vehicles is growing, and the inclusion
of these operating systems can assist in the additional growing functionality being added; i.e. the
use of on-board cameras for assistance in rear-parking or lane guidance. However, an omission
of usage is the ability to detect a pedestrian and observe their movements for vehicle-pedestrian
safety. By analysing the movement and possible locations of a pedestrian from the environment it
could theoretically decrease the risk of a vehicle-pedestrian incident.

Today, it is possible to create vision systems that analyse a changing visual field rapidly enough
to identify objects in real-time, tracking their location and even predicting their movements. Pre-
dicting the movement of an object is a problem that has seen a number of proposed potential
solutions, many of which make use of stochastic models to analyse stochastic features of historical
data. Other works describe the use of Hidden Markov models to incorporate the effects of latent
variables not directly expressed in a collection of historical statistics. The field of study within this
thesis is concerned with the identification and tracking of an objects movement to assist in the pre-
diction of the immediate next movement. This process is examined as both a general problem and
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in the context of a specific application. The ideology of the work is to determine the best method
that can be used to identify and track an object within a real-time constraint and a methodol-
ogy that can be used to predict an object’s movement within this constraint. The body of work
that will underline this thesis will include experimentation with with different feature detectors
to determine the best algorithm for recognising an object from its environment, along with the
experiments on a Markovian model and artificial neural networks to generate these predictions.

1.1 Aims and Objectives

The ability to predict the movement and future location of object within literature share a common
practice, the use of a priori data. This form of data originates from pre-selected data from previous
experiments to provide a level of machine learning/training. Building a model or neural network
that is based upon this method can influence the predictions generated. It is often seen that this
pre-training method is expensive and can take valuable computational resources.

In most cases, this type of training is not readily available or cannot be used for systems that
are concerned with running in a real-time constraint. Therefore, a new type of methodology is
required for training ‘on-the-fly’, and the aim of this research is to develop a new method of learning
for this purpose. The following questions have been devised to determine whether the purpose of
this study can be met:

1. Is it feasible to recognise an object in a real-time constraint on mobile hardware?

2. Based upon the recognition process, is it also feasible to generate predictions in a real-time
constraint?

3. Based upon the observations of an objects movement, is it possible to determine patterns
from the data collected?

4. Is it possible to use patterns of movement exhibited by tracked objects to incorporate prior
learning by selecting them from a set of exemplars, and would this increase the accuracy of
predictions more quickly with no a priori data?

The answers to these questions will be supplied in this study to provide a novel mechanism for
the task of recognising and predicting the movement of an object in a real-time constraint. Several
objectives have been outlined to ensure that the work underpinning this study is met:

• Real-Time Object Recognition: An object is able to be recognised from its environment
within a real-time constraint with a focus upon mobile hardware.

• Markov Model Adaptation: The Markov model is adapted to provide a learning mecha-
nism that can be done whilst the model is running.

• Real-Time Predictions: Predictions are generated within a real-time constraint without
a reliance upon prior training.

• Pattern Analysis of the Observed Movements: The patterns formed within the prob-
ability vector of the Markov model are analysed to determine whether a particular type of
movement can be observed.

Meeting each of the objectives should provide the underlying working of this thesis. The ability to
recognise and track an object as its moving within its environment and be able to make a robust
prediction on its next intended direction of movement.
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1.2 Scope and Contribution

The overarching aim of this study is the ability to recognise an object and predict its intended
direction of movement. The recognition of an object is not entirely new within literature, but the
ability to recognise an object on mobile hardware is becoming increasingly popular. With this
method of being able to track an object using mobile hardware, or on embedded systems it opens
the prospects of being able to predict the movement and trajectory of an object. Therefore, as it
stand the following are the contributions that this thesis will bring:

• Hybrid Feature Detection: a method has been devised to use two feature detectors to
formalise a descriptor to ensure that a robust and real-time recognition can be performed on
a mobile device.

• Adapted Markov Model: a traditional Markov model is adapted to provide a learning
mechanism that can be achieved in real-time.

• Pattern Analysis of a Markov Models Vector: the probability vector of the Markov
model could contain information regarding the trajectory of an object. Therefore, an analysis
of these vectors could indicate a type of movement exhibited by an object.

Although the work undertaken in this thesis is pertaining to mobile hardware, it is theoretically
expected that the work could be undertaken on in-vehicular systems. However, due to the limitation
of owning a vehicle with the necessary requirements, this is beyond the remit and scope of this
thesis.

1.3 Structure of the Thesis

The structure of the thesis has been split into four chapters: literature review, methodology, results
analysis and conclusion. An overview of each chapter is provided in their respective sections.

1.3.1 Chapter 2: Literature Review

The literature review chapter will cover the relevant literature that is pertaining to the work
undertaken in the thesis. The chapter is split into four sections, detecting features of interest, the
process of recognising an object using machines, different methodologies for predicting an object’s
trajectory and a conclusive evaluation of the literature reviewed and whether there is any missing
work that can be undertaken in this thesis.

1.3.2 Chapter 3: Methodology

The methodology chapter covers the various processes and methods that are followed to ensure
that a robust recognition is performed in real-time on a collection of images and videos for a
mobile device. Another section is included that covers the two methods that have been chosen for
implementation to generate predictions. The primary method of choice is a stochastic model that
is adapted to perform within real-time and this adaptation is discussed in detail. The secondary
method is a neural network that is included to provide a comparative study on how a more complex
model is able to generate predictions.
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1.3.3 Chapter 4: Results Analysis

The analysis of results will cover the work undertaken for recognising an object in real-time on
a mobile device and personal laptop computer. The section will look at the various experiments
performed on several datasets that include low and high resolution images and sequential data,
i.e. videos and web camera feed. The chapter will also cover the results of the Markov model and
neural networks that have been implemented to generate predictions of an objects next direction
of movement. The various models and networks have been experimented on two datasets, one
pertaining a collection of text-files with pedestrian locations and a secondary dataset of videos
that were used in the object recognition experiment.

1.3.4 Chapter 5: Conclusion

The conclusion will provide a conclusive evaluation of the entire study and whether the aims and
objectives outlined in this chapter have been met. The chapter will also include a summary of
further work that may be undertaken from the basis of work that has been supplied in this thesis.
Finally, a decision will be made on whether the original hypothesis has been met.
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Chapter 2

Literature Review

The use of feature detectors are prevalent in literature and machine vision tasks to assist in ob-
jectives such as recognising an object or handwriting. With each advent of a new detector the
methodology they follow alters providing a new set of advantages and disadvantages. This chapter
will cover a selection of traditional and binary feature detectors that are used in literature for
recognising an object from its environment. Three detectors have been chosen due to their preva-
lence within literature: Scale Invariant Feature Transform (SIFT) by Lowe (1999, 2004), SURF by
Bay et al. (2008) and BRISK by Leutenegger et al. (2011). Work has been undertaken by Coltin
et al. (2016) using a combination of two detectors to form a map and is discussed in this chapter.
Using a combination of two detectors could provide a methodology that enables the recognition
phase to be performed within a real-time constraint on mobile devices.

The chapter will also cover a selection of papers that have predicted the trajectory of an
object using a variety of different methods. Methods that have been covered include the use of
Neural Networks (NN), Bayesian Networks and a stochastic model known as a Markov Model.
The reviewed literature on these methods will provide an understanding of how the models and
networks perform. The applicability of these methods for the process of generating a prediction
within a real-time constraint are taken into consideration when reviewing the papers. The optimum
model for generating predictions in a real-time constraint will then be chosen to be implemented
as part of the study.

2.1 Detection of Features for Object Recognition

The terminology ‘feature detector’ is used in machine vision literature to describe the process of
localising key areas of interest from an image or video. The extracted data from this process is
often referred to as ‘keypoints’ and contains information that is pertaining to a pixel of interest and
are repeatable. Ensuring that a keypoint is repeatable means that no matter how an image may
be transformed, the keypoint is found within the same location. There are various methodologies
that can be used to detect these keypoints of interest and depend upon the type of feature detector
used:

• Corner Detection: this type of method detects keypoints that are localised upon the
corners found in the images content. A corner is defined as being an intersection where two
edges meet, or the point where two dominant and different edge directions meet. The corner
is classified as keypoint when it comes well defined and can be robustly detected from an
image.

• Edge Detection: this type of method simplifies the contents of an image to a collection of
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edges (Jain et al. 1995). There are two types of edges that can be formed based upon the
discontinuities of an image: step and line. A step discontinuity occurs when the intensity
changes from one value to another; whilst a line discontinuity occurs when the intensity value
changes and returns to its original value within a short distance.

The various methods of detecting keypoints from an images does not impact the overall aim
of the process; the ability to localise key areas of interest. A trade-off being may occur, whereby
the overall robustness of a method may be sacrificed for the amount of processing time. The
detected keypoints are used to formalise a feature vector, otherwise known as a descriptor. It is
representative of the various properties that are underlying within an image and are classified into
two categories:

• Global: represents the features of an image in a one-dimensional format that consists of the
images colour, texture and shape properties.

• Local: represents the features of an image that are based upon the regions of importance in
an image that are invariant to changes within the viewpoint or illumination.

Dependant upon the type of feature detector that is used, the extracted descriptors can have
an invariance to various image transformations that may occur, i.e. image skewing and rotation.
Awad & Hassaballah (2016) discussed various characteristics that a descriptor must meet to ensure
their robustness. The descriptors must be repeatable, accurate and generalised efficiently in an
abundance to form a descriptor that provides a compact representation of the image. There are
two types of descriptors that can be extracted and are classified as the following:

• Traditional Descriptors are highly dimensional and a match between them is made by
computing the Euclidean distance.

• Binary Descriptors: these type of descriptors are represented in the form of a binary string
and are matched by the computation of the Hamming distance between a pair of descriptors.

The extracted descriptors from a set of images are commonly used for the task of object recognition.
The term ‘object recognition’ is attributed to the process of being able to pick out and identify
an object from its environment. Since the evolution of primates to human beings, the ability to
pinpoint objects and recognise them has been available. However, this process of recognition for
humans and primates uses various areas of the brain. The dorsal and ventral streams are used to
perceive an object and provide the ability for us to recognise it from within its environment. Each
stream has a particular role in the visual system, the ventral stream is used for the recognition of
an object and its representation within an environment. The stream can be influenced by extra-
retinal factors such as attention, working memory and stimuli. Therefore, the ventral stream is
able to provide a description of an object and its overall significance within an environment. The
dorsal stream is involved with the task of recognising an object and the space it occupies within
the environment. It consists of a detailed map of the visual space and is best for detecting and
analysing the movement of an object (Bear et al. 2007). Work by DiCarlo et al. (2012) discuss that
the dorsal stream is most significant for the guidance of the eyes towards an object and defined
the term ‘object recognition’ as a process of assigning labels to an object that can be used for
identification and/or categorisation.

2.2 Feature Detectors for Machine Vision Recognition

The process of recognising an object using machines requires a higher level of understanding and
training in order to reach such an achievement. The process typically relies upon the use of a
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training source to find an object within a scene, the environment. The method of recognising an
object is typically done using a feature detector to detect keypoints of interest which are in-turn
formalised into a descriptor. There are various detectors that are available to assist in the formation
of these descriptors. A popular detector used within literature is the SIFT detector by Lowe (1999,
2004). The detector is designed to extract a descriptor from an image that is invariant to a variety
of image transformations that may occur, i.e. scaling, translations and rotations, and illumination
changes. The work by Lowe (1999) used an image that consisted of little or no transformations
(image A). The image was then subjected to various geometric transformations (image B) and
were then subjected to their keypoint detection method. Lowe then used a matching algorithm to
determine whether a match can be made between a pair of keypoints between image A and B to
determine whether the keypoints were repeatable. An example of an image used during their test
is shown in Figure 2.1.

(a) An example of an image used in the test showing
a subset of the keypoints detected.

(b) An example of a manipulated image under var-
ious image transformations showing a subset of the
keypoints detected.

Figure 2.1: Two images used by Lowe (1999) in his experimentation to determine the stability
of his feature detector.

The outcome of their matching process gained a retention rate of 78% between the two images,
when the following transformations were applied: increase of contrast, decrease of intensity, rota-
tion, scaling, stretching and additional noise. This meant that 78% of the keypoints from image
A were detected again in image B and further results included by Lowe also provided information
on how inflicting the image to an individual transformation could affect the repeatability score
and is shown in Table 2.1. The first column of the results show the percentage of keypoints that
have been matched between the image A and B, whilst the second column shows the percent of
keypoints with the same orientation that have been matched.

Table 2.1: Adjusting the image with various transformations can affect the stability of the detec-
tor. The table shows how each transformation can affect the retention rate between the original
and transformed image. Table data acquired from the work by Lowe (1999).

Image Transformation Match % Orientation %
Increase contrast by 1.2 89.0 86.6
Decrease intensity by 0.2 88.5 85.9
Rotate by 20 degrees 85.4 81.0
Scale by 0.7 85.1 80.3
Stretch by 1.2 83.5 76.1
Stretch by 1.5 77.7 65.0
Add 10% pixel noise 90.3 88.4
All of the above 78.6 71.8

From the results, it can be seen that solely by adjusting the noise of an image by 10% it has a
small affect on the detectors repeatability with a small reduction in the number of keypoints that
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were detected, a drop of 9.7%. The second best result was obtained when adjusting the contrast
of the image by a factor of 1.2, whereby 89% of keypoints were retained in the transformed image.
It can be seen that the SIFT detector is robust with a high stability on the repeatability of the
detector when images transformations have been applied to the image. With a large number of
keypoints detected and the stability of SIFT, it can reinforce the suitability of using the detector
for recognising an object and it can be seen why this is a popularly used detector within literature.

A key disadvantage of SIFT is the large computational cost of the detector. Therefore, over the
years numerous derivatives of SIFT have been developed whilst encompassing the key principals.
A derivative known as the SURF was introduced by Bay et al. (2008). The authors expanded
upon the work by Lowe (2004) and provided an alternative method that was faster for extracting
descriptors from an image. The new method used a method known as Hessian-matrix approx-
imation (Mikolajczyk & Schmid 2001) and relied upon the use of integral images. An integral
image is a derivative of the summed-area table (Crow 1984) and was introduced in the works by
Viola & Jones (2001). The new method by Bay et al. was tested using a collection of images
and software by Mikolajczyk & Schmid (2004, 2005). The images consisted of real-textured and
structured scenes with various transformations applied, i.e. rotation and zooming, illumination
changes, and viewpoint adjustments. The success factor of their detector was determined by a
repeatability score and indicates how many of the keypoints are relative to the total number that
were originally detected. Bay et al. tested two versions of their detector with adjustments to the
Gaussian derivative filter size. Two filter sizes were used, 9x9 and 15x5 and are referred to as FH-9
and FH-15, respectively; and results are shown in the graph in Figure 2.2.

Figure 2.2: The repeatability score for the wall and graffiti images, respectively. The images
consisted of transformations made to the viewpoint. The graph has been acquired from the work
of Bay et al. (2008).

A negative linear projection can be seen when the viewpoint angle increases for the wall sequence
of images with the repeatability score decreasing. A similar pattern can be seen with the sequence
of images containing the graffiti. When an angle greater than 40 degrees is present, the detector is
unable to match keypoints between the original image and transformed image. The reduction in
the repeatability score is most likely due to the complex nature of the image used (graffiti sequence)
and the differing structures that are present within the images. However, it can be seen that for a
20 degree viewpoint change, the a similar level of repeatability can be achieved as that of the works
by Lowe (2004). The data in Table 2.2 shows the processing time taken for detecting keypoints
using SURF and compared to SIFT, referred to as Difference of Gaussian (DOG).
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Table 2.2: The threshold of detection, number of keypoints detected and calculation time for the
detectors used in the comparison by Bay et al. (2008), for the first image of the graffiti scene.

Detector Threshold Number of Keypoints Computation Time (ms)
FH-15 60 000 1 813 160
FH-9 50 000 1 411 70
Hessian-Laplace 1 000 1 979 700
Harris-Laplace 2 500 1 664 2 100
DoG Default 1 520 400

From the results of the authors’ work, it can be seen that their FH-15 detector achieved the
best number of keypoints within 0.16 seconds, which was significantly faster than that achieved
by SIFT which detected 1, 520 keypoints in 0.40 seconds. The authors discuss that the number of
keypoints between the detectors are all very similar in range. However, the threshold rate for each
detector were applied to ensure a similar number of keypoints were detected to that of SIFT. The
best result for computation was achieved when a 9x9 filter was used, FH-9. It can be seen that
although a fewer number of keypoints were detected the amount of time taken was recorded to be
significantly lower (0.07 seconds); an overall drop of 0.33 seconds, a reduction of 140.42%.

The SURF and SIFT detectors have a similar method of formalising their descriptors as a
traditional detector. The matching method used between the descriptors is computed by the
Euclidean distance and these type of detectors are often seen to be computationally expensive.
The work by Bekele et al. (2013) highlighted that the likes of a traditional descriptor are too
computationally expensive to be considered for applications where processing is to be computed
within real-time. Therefore, work by Leutenegger et al. (2011) have introduced new types of
detectors that extract descriptors in the form of a binary string that can be easily matched by th
Hamming distance. Their detector, known as BRISK, uses a unique sampling pattern to detect
keypoints of interest from an image, shown in Figure 2.3.

Figure 2.3: The sampling pattern used by the BRISK detector to determine a pixel as a keypoint
of interest from an image. Image acquired from the works of Leutenegger et al. (2011).

The sampling pattern consists of 60 location points (the blue circles) which consist of larger
radii (the red dashes) for sampling. A mask is used to determine whether a minimum of nine
pixels within a sixteen pixel radius are continuously bright or darker to that of the central pixel,
known as 9-16 mask. This results in far fewer sampling points used in comparison to the amount

24

Some materials have been removed from this thesis 
due to Third Party Copyright. Pages where material has 

been removed are clearly marked in the electronic 
version. The unabridged version of the thesis can be 

viewed at the Lanchester Library, Coventry University.



of pairwise comparisons and therefore the overall complexity of searching the intensity values are
far fewer. Leutenegger et al. held a comparative study of their detector with SIFT and SURF,
results are shown in Table 2.3.

Table 2.3: The results of the comparison experiment performed by Leutenegger et al. (2011).
The table of results is acquired from their body of work.

SIFT SURF BRISK
Detection Threshold 4.4 457000 67
Number of Points 1851 1557 1051
Detection Time (ms) 1611 107.9 17.20
Description Time (ms) 9784 559.1 22.08
Total Time (ms) 11395 667.0 22.08
Time per point (ms) 6.156 0.4284 0.03737

BRISK is able to detect 1, 051 keypoints from an image in approx. 0.017 seconds, whilst SIFT
and SURF were able to detect 1, 851 and 1, 577 in 1.611 and 0.108 seconds, respectively. Although
the traditional detectors were able to detect a larger number of keypoints, the amount of time
taken was far more significant; with SIFT taking greater than a second. Overall, BRISKis able to
detect a moderate number of keypoints within a significantly less amount of time due to the fewer
number of sampling points. Due to this methodology, BRISK can be seen as being advantageous for
applications that are met with a real-time constraint, or systems with a finite amount of memory
(i.e. mobile-hardware or embedded systems). However, BRISK is lacking in the area that it only
considers sampling pixels within a two-dimensional axis of an image or video. The detector does
not take into account the depth that may be exhibited in an image.

Karpushin et al. (2015) looked at improving the distinctiveness of BRISK by taking into con-
sideration the depth axis, z. The authors’ incorporate a depth map that is used to consider the
out-of-plane rotations that the normal sampling pattern of BRISK is unable to handle. There has
been previous work by authors like Mikolajczyk & Schmid (2004) that have explored the area of
handling rotations using the BRISK detector, but were limited to a degree of rotation of up-to forty
degrees. The new method proposed by Karpushin et al. (2015) distributes the sampling points of
BRISK over the surface of an object, as shown in Figure 2.4.

Figure 2.4: The distribution of sampling points onto the object as described by Karpushin et al.
(2015).

Upon the distribution of the sampling points, the original method by Leutenegger et al. is
used to detect keypoints of interest from the image. Upon detection of the keypoints, Karpushin
et al. compute the local parametrisation at each keypoint. For example, the authors look for the
radial and angular co-ordinate of each pixel that are intrinsic to the scenes surface. This results in a
descriptor that is extracted based upon the objects’ texture and is mapped to the image intensity of
the objects’ geometry. To test the feasibility of their method, the authors use a synthetic texture
and depth dataset. The dataset consists of images with significant out-of-plane rotations. The
graph shown in Figure 2.5 shows the results of their detector on a sequence of images with graffiti.
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Figure 2.5: The matching score for the graffiti sequence of images used in the experiment. The
graph has been acquired from the works of Karpushin et al. (2015).

It can be seen in the graph that the matching score of the authors depth map is significantly
greater than that the original BRISK detector. It can be seen that a score of approximately 75%
was achieved for the depth map when an angle of view difference was zero. A negative linear
progression can be seen when the angle of view increases up-to 60 degrees, of which from there
on it begins to increase. The same pattern can be seen with the BRISK detector, but it becomes
significantly worse between 20 and 80 degree. BRISK begins to increase positively on the matching
score, but there is still a significant delta between the two methods (approx. 20%). Karpushin
et al. (2015) conclude that their results show that the depth-map enables BRISK to detect objects
within the bounds of 120 degrees for a the sequence of graffiti images. The matching score of their
work was approximately 45% for a collection of images used in their research. It can be seen that
with the addition of a depth map to BRISK, the robustness of detection can significantly increase.
Whilst it can also been seen that the major advantage to BRISK is the low overheads that can be
gained by using a binary detector. Not only are the descriptors extracted faster than the likes of a
traditional detectors (SIFT and SURF) but the matching time between the binary descriptors are
also inherently faster. With this gain in time saved for extracting and matching of descriptors can
make BRISK a worthwhile detector for applications that require to be computed within a real-time
constraint and have have hardware limitations.

However, the combination of a traditional and binary feature detector could provide a hybrid
detector. The benefits of such a detector could provide the robustness of a traditional descriptor
with the fast matching of the binary descriptors. Such hybrid models have been discussed in the
work by Coltin et al. (2016); whom proposed the use of a combined methodology of SURF and
BRISK. The combined method was used to aid robots used in the International Space Station (ISS)
to conduct a variety of experiment by helping their placement around the station. The processing
power of the robots were constrained, and therefore a method of extracting features from images
captured using the onboard cameras within a timely manner was essential. The robots are able to
localise themselves around the ISS by using a visual feature map that is precomputed offline on a
system using the SURF detector. The feature map is a database that consists of various descriptors
and three-dimensional pointers. The robot uses these maps to compare the descriptor extracted
onboard to move itself around the ISS. The uniqueness of this work is the authors methodology
of using BRISK to rebuild the map when a new feature has been detected. By combining the two
feature detectors together, the authors were able to add to the robust feature collection by SURF
to rebuild the map of the ISS. However, Coltin et al. recognises that the BRISK detector is not
as accurate and robust in comparison to SURF. The low computational cost of BRISK makes it
an ideal detector to be used for processing on hardware with constraints in place due to external
factors. In the next section, literature will be reviewed to determine how the process of recognising
an object by humans and machines are undertaken; and the amount of time that it takes for a
human and/or machine to perceive an object from its environment.
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2.2.1 Speed of Object Recognition by Humans and Machine

The term ‘object recognition’ is attributed to the process of being able to pick out and identify
an object from its environment. Since the evolution of primates to human beings, the ability to
pinpoint objects and recognise them has been available. However, this process of recognition for
humans and primates uses various areas of the brain. The dorsal and ventral streams are used to
perceive an object and provide the ability for us to recognise it from within its environment. Each
stream has a particular role in the visual system, the ventral stream is used for the recognition of
an object and its representation within an environment. The stream can be influenced by extra-
retinal factors such as attention, working memory and stimuli. Therefore, the ventral stream is
able to provide a description of an object and its overall significance within an environment. The
dorsal stream is involved with the task of recognising an object and the space it occupies within
the environment. It consists of a detailed map of the visual space and is best for detecting and
analysing the movement of an object (Bear et al. 2007). Work by DiCarlo et al. (2012) discuss that
the dorsal stream is most significant for the guidance of the eyes towards an object and defined
the term ‘object recognition’ as a process of assigning labels to an object that can be used for
identification and/or categorisation.

Machines’ require a further level of training in order to complete a similar process by human
beings that happens subconsciously. There have been several studies performed upon humans and
primates to measure the amount of time it takes for them to recognise an object. It can be seen
in the work by Thorpe et al. (1996) that humans are able to recognise an object between 0.38
and 0.57 seconds. Latter work by Fabre-Thorpe et al. (1998) have shown that humans are able to
recognise objects within a similar time of 0.35 seconds, but their work also included an experiment
on primates. From their work, it can be seen that primates are able to recognise an object in
0.25 seconds, which is approximately 0.10 seconds faster than a human. It has been discussed in
the work by DiCarlo et al. (2012) that by removing the behavioural time of a human or primate
to acknowledge the recognition of an object the though-process behind it can be as little as 0.20
seconds. In the work by Bay et al. (2008), it can be seen that the SURF detector (labelled as
FH-9) was able to detect keypoints of interest within 0.07 seconds. By factoring in the rest of the
process, i.e. extracting and matching the descriptors, work by Chen et al. (2015) has shown that
the recognition of an object can be performed in as little as 0.16 seconds. The performance of
feature detectors for machines have been critiqued and evaluated by a number of researchers over
the years.

The work by Mikolajczyk & Schmid (2005) studied various feature detectors on a collection
of different image datasets. Each dataset consisted of various image transformations that ranged
from plane rotations, scale adjustment or Gaussian filtering. The criteria of evaluation for the
authors’ work was based upon the number of positive matches made between an image pair. Three
different matching strategies were used:

1. Threshold Application: a match is found between a set of pairs when the distance between
the two descriptors fall within a pre-defined threshold.

2. Nearest-Neighbour: a match is found between the descriptors if descriptor B is the near-
est neighbour to descriptor A. The distance between these two descriptors then becomes a
threshold.

3. Nearest-Neighbour Distance Ratio (NNDR): the method proposed to the author is
similar to the nearest-neighbour method. However, a threshold is applied to the distance
ratio between descriptors A and B’s nearest neighbour.

The experiment involved matching 400 features between the collection of images. Mikolajczyk &
Schmid (2005) results show that their implementation of a feature detector, Gradient Location
and Orientation Histogram (GLOH), gained the best results out of the several detectors featured
within their experimentation. SIFT in comparison, performed reasonably well when using the
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NNDR matching strategy. The detector was able to match 177 of the features out of 400, with
GLOH only slightly beating SIFT with 192 matches. Mikolajczyk & Schmid discuss that SIFT
was marginally worse off due to the poor performance on textured images and in images where the
edges of an image were unreliably distinguished.

A further study was held by Miksik & Mikolajczyk (2012) where an evaluation was performed
upon the effectiveness of BRISK, SIFT and SURF. The work compared the binary and traditional
descriptors by experimenting with the extraction and detection of features amongst various images.
The main purpose of the study was to determine whether the use of binary descriptors were more
efficient in comparison to the traditional methodology. The outcome of the experiments were
measured using a repeatability, precision recall and speed-up scoring metric. The results of their
work can be seen in Table 2.4.

Table 2.4: The results of the effectiveness study by Miksik & Mikolajczyk (2012), and shows the
average computation time of the various detectors used during the experimentation.

Feature Detector Run-Time (ms) Speed-up # of Detected Keypoints
SURF 176 1.9 2911
DoG 338 1.0 1552
FAST 2 169.0 5158
STAR 17 19.9 849
MSER 60 5.6 483
BRISK 10 33.8 1874
ORB 7 48.3 594

Similar to the work of Bay et al. (2008), the SIFT detector is referred to as DOG and it can
be seen that BRISK is considerably faster than that of SIFT with a similar amount of keypoints
detected. However, it can be seen that FAST by Rosten & Drummond (2005, 2006) is the best
performing detector with the ability to extract 5, 158 keypoints in 0.002 seconds. This is signifi-
cantly faster than SIFT and marginally faster than BRISK. However, the work by Bay et al. is
as expected faster than SIFT with it able to compute in almost half the amount of time. Miksik
& Mikolajczyk (2012) conclude that the binary detectors (BRISK, FAST and Oriented FAST and
Rotated BRIEF (ORB) etc.) are inherently faster than that of the traditional detectors due to the
simple binary test between a pair of descriptors. The performance gain seen in the results can be a
positive when considering applications that require processing to be done in a real-time constraint.

The robustness of SIFT was studied in prior work by the author whereby an evaluation was
performed on the detector using various mobile devices ranging from the budget-friendly to high-
end models (Cornelius 2014). The study involved using a collection of images used by Lowe (2004)
in their experimentation. The images are shown in Figure 2.6 and the resolution of the images
that were used are low when compared to the resolution of images that can be obtained on the
mobile devices onboard camera.

(a) Basmati (b) Book (c) Box (d) Scene

Figure 2.6: The collection of images used by Lowe (2004) whilst evaluating his detector to
recognise an one of the three objects from the scene image. Images acquired from the work by
Lowe (2004).
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The minima and maxima of the resolutions used were 265-by-175 and 512-by-384, a total of
45, 500 and 196, 600 pixels, respectively. When compared to the resolution of images that can be
captured on these mobile devices (3264-by-2448, a total of 7, 990, 272 pixels) these are significantly
of lower quality. The methodology of the study involved matching the extracted descriptors from
the training and scene image. The study emphasised on the time taken for extraction and matching
and whether it was feasible to to be done in a real-time applicability. The specification of the mobile
devices and personal computer used for the experimentation are shown in Table 2.5.

Table 2.5: The specification of the mobile devices and Lenovo laptop that were used for the
experiment in the study performed by Cornelius (2014).

Device Processor Clock-speed RAM
Archos Titanium 40 MediaTek MT6572 1.3 GHz (Dual-Core) 512 MB
Google Nexus 7 (1st Gen.) Nvidia Tegra 3 1.2 GHz (Quad-Core) 1 GB
Sony Xperia E Qualcomm MSM7227A 1.0 GHz (Single-Core) 512 MB
Sony Xperia Z Ultra Qualcomm MSM8974 2.2 GHz (Quad-Core) 2 GB
Lenovo ThinkPad T420 Intel i5-2520M 2.5 GHz (Dual-Core) 4 GB

The results of the mobile devices were compared to the Lenovo laptop to determine how the
differing processing times and computation power between the devices can inflict the applicability
of recognising an object in real-time. The experiment was designed to use the images from the
work undertaken by Lowe (2004) to determine how long it takes to detect keypoints of interest and
to formalise a descriptor. It was purposely chosen to use these images to see how the advancement
of technology can impact the processing time of extracting descriptors and recognising the object
within the scene image.

A selection of the results from the study can be seen in Cornelius, Table 13, Page 75. The
results show the Lenovo laptop performed the best in comparison to the mobile devices. This was
to be expected due to the abundance of power that can be found within a laptops process when
compared to the processing power of a mobile device. For example, the Google Nexus 7 detected
the keypoints for the three images in 0.47 seconds, an average that has been taken across the three
object images, whilst the Lenovo laptop was able to detect the keypoints in 0.04 seconds (a tenth of
the time taken by the mobile device). The method used for extracting descriptors saw an opposite
set of results, with the Lenovo laptop extracting a descriptor in 0.88 seconds, whilst the Google
device extracted the descriptors within 0.74 seconds.

A positive progression can be seen on the results for the scene image. The Lenovo laptop was
able to extract a descriptor for this image within 0.11 seconds, and the Google device extracted
a descriptor in 1.72 seconds. These range of results are more in-line with the general consensus
of what is to be expected, with the expectation being that the laptop should extract a descriptor
faster than the mobile device. The conclusion of the previous work was that the mobile devices at
the time of publication were not applicable for the task of recognising an object within real-time
due to the large overheads required for the extraction of the descriptors. However, with the linear
direction seen in the improvement of mobile device hardware, such as the processing power, over
the last few years since the previous study it may become feasible that mobile devices can now
perform these tasks.

Based upon the studies by Miksik & Mikolajczyk (2012) and Mikolajczyk & Schmid (2005), it
can be seen that the detection methods of machine vision algorithms are similar (or quicker) in
regards to extracting key features from an image. In the work by Leutenegger et al. (2011) it can be
seen that the total amount of time taken for recognising an image from a scene is 0.02208 seconds
for their algorithm. This process of recognition undertaken by a machine is significantly faster than
that of a human with the average time of recognition being 0.35 seconds (Thorpe et al. 1996). The
difference between the human and machine is 0.328 seconds and would have an impact in the time
taken for applying the brakes in a vehicle autonomously when compared to a manual application.
The difference between the time of a human and the machine could be the difference between a
collision occurring or not. With the incorporation of the work previously undertaken, it can be
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seen that mobile devices were able to detect keypoints within a reasonable amount of time, but
the extraction method used for the descriptors the amount of time taken was significantly higher.
However, with the possibility of using the BRISK detector, the amount of time taken for extracting
features from an image may increase significantly due to the composition of the descriptor.

2.3 Object Trajectory Prediction

The previous section has discussed the use of feature detectors to be able to recognise an object
from within a scene. With the ability for machines to be able to recognise objects and track their
movement throughout a scene, the possibility of being able to predict its movement using various
different methods are prolific within literature. There is an abundance of work available that
discuss the use of ?, Bayesian Models or Stochastic Models to generate predictions for a trajectory
of an object. In this section, the three aforementioned models are discussed and how their method
is used to predict the trajectory of an object.

2.3.1 Neural Networks

Neural Networks are prolific in literature and are used for a multitude of varying tasks. The
structure of a NN is inspired by the architecture of the human brain and are composed of a large
collection of interconnecting neurons (Zou et al. 2008). They have been used in literature to model
a pedestrians behaviour in a crowded environment to be used in applications for predicting the
pedestrians walking path and intended direction of movement. The ability to model a pedestrians
behaviour is a challenging issue and the decision process of a pedestrian can be influence by external
factors, such as the interaction with stationary or moving people.

The work by Yi et al. (2016a) uses a Convolution Neural Network (CNN) to make a reliable
prediction on the pedestrians walking path, or intended direction of movement. The input to their
network is a section of an observed pedestrians walking path from a previous collection of frames;
with the intended output to a predicted walking path for the next collection of successive frames.
The path of a pedestrian are represented as pixel displacement values, the difference between the
previous and current location. A prediction was generated using a CNN that has been trained
in two different methods. The first model was trained using a collection of human-annotated
pedestrian locations; whilst the second model was trained using the KLT (Tomasi & Kanade 1991)
trajectories. The results of the work by Yi et al. are shown in Table 2.6 and using a scoring metric
known as the MSE for the two training methods that were used.

Table 2.6: The prediction results (MSE) of the different methods trained using the annotated
pedestrian locations, or KLT trajectories on the two datasets. Table of results acquired from the
work of Yi et al. (2016a).

The authors CNN, known as the ‘Behaviour-CNN’, can be seen to achieve the best results out
of the various other methods that have been evaluated. The best method of training used for their
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work was the human-annotated locations of the pedestrians. It is expected to see that this method
would achieve the lowest MSE score due to the accurate marking of a pedestrian through multiple
scenes. There is always a possibility that using an algorithm like KLT could incorrectly label a
pedestrian in a crowd; this would account for the slightly higher MSE score. However, it can be
seen that both methods have performed favourably in comparison to other methods such as the
Support Vector Machine (SVM) regression and constant acceleration.

The work undertaken by Alahi et al. (2016) have used a neural network to predict the motion
dynamics of pedestrians that are situated within a crowded scene. There are instances where
pedestrians are able to take various paths to accommodate changes within their environment, i.e.
obstacles that move into their path. Alahi et al. (2016) use a LSTM neural network to learn the
movement of a pedestrian and predict their future trajectory. The model by the author is able
to account for the behaviour of people within the crowd to ensure that a trajectory is accurately
predicted; they call their model a ‘Social-LSTM’. The model is experimented with on a collection
of datasets that consists of trajectory data for multiple pedestrians that are moving within a
crowded environment. Three different scoring metrics have been applied to the predictions: average
displacement error, final displacement error and the average non-linear displacement error. The
model was compared to other leading models that were available at the time of publication, and
the results for the average displacement error are shown in Table 2.7. The full collection of results
can be found in the work by (Alahi et al. 2016, see Table 1).

Table 2.7: The average displacement error of the predictions using the LSTM model built by
Alahi et al. on various datasets.

Dataset LSTM O-LSTM Social-LSTM
ETH 0.60 0.49 0.50
HOTEL 0.15 0.09 0.11
ZARA 1 0.43 0.22 0.22
ZARA 2 0.51 0.28 0.25
UCY 0.52 0.35 0.27
Average 0.44 0.28 0.27

The results shown in bold were the best result that was obtained out of the collection of
results. It can be seen that the Social-LSTM gained a majority of the best results from their
evaluative study, with a low error rate being recorded across all metrics. When accounting for
all the dataset results and calculating an overall average of the displacement error, it can be seen
that the Social-LSTM was the best performing across two out of the three metrics. Alahi et al.
discusses that their model out performs the other models on the standard dataset and provide
qualitative analysis of the Social-LSTM. The analysis involved using the scenes of people where
they interact with other people in a particular pattern. Based upon their qualitative analysis the
authors’ conclude that their model is able to make an intelligent prediction on the future trajectory
of a pedestrian in a crowded environment.

The work by Yi et al. (2016a) and Alahi et al. (2016) have both used neural networks to predict
the trajectory of a pedestrian for their future destination or for a route to avoid collisions with
other obstacles. The applicability of their work can be used in work where predicting the final
destination of objects can be obtained by analysing the current trajectory of an object. Recurrent
Neural Networks (RNN) could be used to provide a long-term prediction by using a short-term
prediction to be fed-back into the network. Yi et al. conclude in their work that by using a CNN
to model the behaviour of a pedestrian can be used to build an encoding system to encode the
pedestrians behaviour from a crowded scene. A common trait from the work by Yi et al. and
Alahi et al. (2016) is that the datasets used for testing their networks have used human-annotated
data. An alternative method has been used by using KLT trajectories (Yi et al. 2016a), but this
method led to a slight increase in the MSE scores of their study.

A method of labelling pedestrians from crowded scenes autonomously and without a prior need
for training has been explored by Shao et al. (2015). The authors used a CNN to count the number
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of people that exist in a high-density crowd and is training by using a switchable learning process
with two main objectives: building of a crowd density map and counting the number of people
within the crowd. The CNN model used by the authors can learn the crowd-specific features of an
environment which can be more effective and robust than using hand-crafted features (Shao et al.
2015). The authors model their neural network on three different datasets, and the results of their
work can be seen in Table 2.8.

Table 2.8: The statistical data of the three datasets used by Shao et al. (2015). The results are
acquired from the paper published by the author.

Dataset Number of Number of Resolution FPS Minimum & Total Number
Frames Scenes Maximum of People

UCSD 2 000 1 158x238 10 11 to 46 49 885
UCF_CC_50 50 50 - - 94 to 4 543 63 974
WorldExpo 4 440 000 108 576*720 50 1 to 253 199 923

The neural network built by the authors were able to label 199, 923 pedestrians from the
‘WorldExpo’ dataset, which consisted of over four million frames for analysis. This dataset was
introduced by Shao et al. and was built from the observation of 1, 132 frames from 108 surveillance
cameras. The labelling of a pedestrian was recorded at the centre of their head across a collection of
3, 980 frames. The authors conclude in their work that the model is effective for annotating people
from an environment with a high crowd density that is typically considered to be ‘unseen’. By
employing this method of annotation to a scene that has not been previously observed, it can assist
a neural network in being able to detect pedestrians and employ a model by Yi et al. (2016a) to track
their trajectory. Using such a model like this would ensure that pre-training would not be required
to detect pedestrians and could be undertaken during the real-time analysis of a video. However,
a major limitation with the use of neural networks is the amount of computation power that is
required to build and train the model. A majority of the time taken for a neural network is spent
in the training phase to ensure that an accurate prediction is made; and without investing time
in this training phase the resulting outputs could be of a poor quality. Considering the constraint
that is imposed on hardware by the limitation of processing power, it would not be feasible to use
a neural network of such high cost to make predictions. Therefore, alternative methods such as
Bayesian models and stochastic models have are used within literature for prediction generation
due to a low computational cost due to the nature of their methodologies.

2.3.2 Bayesian Models

Bayesian models have been in literature for predicting the trajectories of pedestrians in a similar
fashion to the work that has been done by Yi et al. (2016a) and Alahi et al. (2016). A Bayesian
model represents the conditional independences between a set of random variables Ghahramani
(2001) and have been used for trajectory prediction by Kim et al. (2015) and further expanded
upon in the work by Bera et al. (2016) to build an individual motion model for each pedestrian.
The work undertaken by Kim et al. uses various sensor data from the robot to improve the motion
model of a moving pedestrian from the perspective of a robot and its environment. The work is
an expansion of work by Van Den Berg et al. (2011) and is used by Kim et al. (2015) to reproduce
the pedestrian behaviours when moving, i.e. lane formation and the style of movement. The
Reciprocal Velocity Obstacles (RVO) motion model by Van Den Berg et al. was chosen for its
suitability to be used with various sensors that can be found on a robot.

The work of Kim et al. (2015) assumes that a pedestrian is a human entity and will be sharing
their environment with a robot that has the ability to move. They also assume that the humans
will automatically seek to not collide with another human but not with a robot; and therefore
propose a model that will predict the trajectory of pedestrian to move the robot so a collision does
not occur. There are many factors in a robots environment that could influence the prediction
tracking method of the authors work (Bayesian Reciprocal Velocity Obstacles (BRVO)). Poor
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lighting conditions can reduce the efficacy of the camera sensors which could in-turn increase the
noise in the sensor data. People are also able to change their velocity of movement frequently
in order to avoid colliding with other obstacles. This would increase the uncertainty in their
motion path. Factoring these environmental factors can make it increasingly difficult in predicting
a pedestrians movement.

The results of the work by Kim et al. (2015) show that the stability of their work is robust
and able to generate a high-quality motion prediction for various scenarios. The authors work was
used on a variety of datasets and measured the mean the mean prediction error for each robot in
the scene for the entire video sequence. The graph in Figure 2.7 shows hows the density of a scene
could affect the error of the predictions made.

Figure 2.7: The error for various densities, where a lower score is more favourable. The graph is
taken from the work of Kim et al. (2015).

From the graph, it can be seen that the work by Kim et al. performs exceptionally well across
all three densities with only a marginal increase in the lower densities. It has been discussed by
the author that robots move relatively slower in a higher density crowd and would explain the
reason behind why the error rates are lower for a larger crowd. It can be seen in a low density
crowd the error rates for the alternative methods of motion prediction the BRVO method performs
significantly better.

The work of Kim et al. has been used by Bera et al. (2016) to compute the individual motion
model for each pedestrian, known as Global and Local Movement Pattern (GLMP). The authors
model learns the movement flow from a pedestrians two-dimensional trajectory that have been
extracted from a video source. The authors emphasise in their work that their approach involves
no pre-computation or learning and is able to compute in real-time. A Bayesian-interface is used
when extracting the trajectories to compensate for any errors that may occur and for when the state
of each pedestrians movement is computed. The movement patterns of a pedestrian is extracted
using their model which describe the trajectory motion or behaviour of a pedestrian for a single
frame from the video. The results of the work have been compared to the works of Kim et al. and it
can be seen that the prediction accuracy of the GLMP model is significantly higher in comparison
to BRVO. The GLMP model is able to make two types of predictions:

1. Short-term: a prediction is made for the next one second of a pedestrians movement

2. Long-term: a prediction is made for the next five to six seconds of a pedestrians movement

The GLMP methods gains the best results for both the short and long term predictions that are
made, especially within scenes where a high density crowd is observed. The accuracy of predictions
for this density is within the range of 60.2% and 71.2%, whilst the low density crowds were recorded
to be between 79.5% and 83.8%. The model is able to work best under conditions where the frame-
rate of the video is relatively low, or when the video data has been sampled at large intervals. This
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type of process would typically not perform well for conditions when the trajectory data needs
to be computed continuously for each frame of a video, or in the case where collision avoidant is
imperative.

2.3.3 Stochastic Models

There are various types of stochastic models that have been developed over the years. A general
definition of a stochastic model is a collection of random and independent variables that can be
defined by,

X = {X(t), t ∈ T} (2.1)

where for each t in index T , X(t) is a random variable. The variable, t, is often interpreted as
the time of a process. Therefore, X(t) is considered to be the state of a process at time t and if
T is a countable set then X is a discrete-time process, otherwise it is a continuous time process.
A continuous time process consist of increments that are independent for all of tn for the random
variables: X(tn)−X(tn−1) (Ross 1996). There are a variety of different models that can be used
for generating a prediction or estimation. Some of these models are relatively simple, i.e a random
walk, whereas other models can be more complex, i.e Markov Models.

The Markov model, introduced by Markov (1906), is a stochastic process that models sequential
data and this process provides a method of modelling the dependencies of current information on
previous information (Meyn & Tweedie 2009). The simplest form of a Markov model is a Markov
chain and these models have a condition independence property where each state is dependent
upon only the previous state and the initial probability vector. An nth-step transition can be
defined by the following notation:

p
(n)
ij = P (Xx+1 = j|Xn = i);n = 0, 1, ... (2.2)

where n is the number of steps. The main application of these models is the generating of a
prediction or estimation of a given problem. They can also be used for pattern recognition and
statistical learning of sequential data. Other derivatives of the Markov model exist within literature
such as Hidden Markov Models and Semi-Markov Models.

Due to the nature of how a Markov model works, the generation of a prediction can be done
computed within real-time as the simple comparison is made between the probability vector and
a uniform random number. Markovian models have been used for predicting the movement and
location of an object in the work by Nižetić et al. (2009) and Nižetić & Fertalj (2010). Their
work explored the use of a Markov chain to predict an object’s next cell of occupation, whereas
their latter work built a case-study on the different movements that are exhibited by wildlife,
vehicles and people. The use-cases were used to build a model schema that would be used select
an appropriate Markov model to generated predictions for an objects next movement. The study
by Nižetić et al. (2009) evaluated the use of a Markov chain to predict the movement of an object
based upon movement in a subset of cells. The authors’ work involved splitting the environment
of an object into a subset of cells so the object’s location is identifiable from each cell, as shown
in Figure 2.8. For the purpose of their study, the authors derive the size of the cell to be based
upon the speed at which the object is travelling, and it will automatically adjust the size of the
cells over the progression of time.

34



Figure 2.8: The subset of cells that the authors propose to use to predict an objects movement
when transitioning between the neighbouring cells. (Image Source: Nižetić et al. (2009))

The work undertaken by Nižetić & Fertalj (2010) considers the movement of people but not
their pace. Wakim et al. (2004) studied the behaviour of a person’s movement and how their pace
may affect a transition that may occur in a model. The model state space consists of a set of all
possible paces and direction changes that can be made by a person, i.e. a person standing still may
easily be able to change direction, however, someone running may not. Further information can be
modelled about a person’s movement, it can also include information such as last chance escapes,
i.e. ducking and jumping or side-steps. Wakim et al. tested their model using a Monte-Carlo
simulation to evaluate the possible occurrence of a vehicle-pedestrian incident. Four evaluative
areas can be identified based upon the results of their experiments:

• between 0-10m: the likelihood of an incident occurring is non-existent

• between 10-30m: a large chance of an incident occurring is likely

• between 30-52m: the risk of an incident disappears, but an uncertainty is still present

• over 52m: the chance of an incident happening is zero

From the study, it can be seen that there are other behaviours that need to be considered
when looking at the movement of people and not just their path of movement (as discussed by
Nižetić & Fertalj (2010), Nižetić et al. (2009)). The pace of which a person is moving could inhibit
a transition occurring between states, such as the speed of a vehicle may inhibit the next road-
segment to be predicted. Nižetić & Fertalj (2010) conclude that although the characteristics of
movement between people, vehicles and wildlife are different, they all have one similarity: their
movement is made in a spatial domain. Therefore, for any data that is inserted into their schema
a desired model is selected and the accuracy of predictions can be influenced. However, depending
upon the vagueness of the data inserted into the schema it could affect the model that is selected
and therefore ultimately influence the outcome of the predictions.

The movement of people, vehicles and wildlife are not the only models that have been studied
using a stochastic model. The prediction of an intended route by drivers can also be considered and
the study by Krumm (2008) states that approximately 60% of journeys by drivers are repeated.
The work by Krumm studied the short-term prediction of a ‘near-term’ route using an nth-order
model. The terminology ‘near-term’ is used as a definition for the upcoming road-segment that
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the driver is most-likely to take. The state space of the authors’ model represents different road-
segments and are defined by:

Xi ∈ {X−2, X−1, X0, X1, ..., X10} (2.3)

where Xn−1 are the proceeding road-segments, X0 a current road-segment, and Xn+1 the future
road-segments. The model gives a probabilistic prediction on the future road-segment a driver
could take and is based upon a number of past road-segments that have been traversed. The
authors built an nth-order model to predict the next number of road-segments a driver is most
likely to traverse, and experiment with how the number of past road-segments could alter the
prediction accuracy of their model.

The authors test their model based upon a collection of results from participants fitted with a
GPS tracker in their vehicle. The dataset consisted of GPS coordinates alongside a time-stamp for
the duration of their journey. A journey was determined using an algorithm where a gap in the
recorded data that was greater than five minutes is trimmed and is considered to be a journey. False
positives may occur and therefore the authors destroyed data where fewer than ten sample points
were collected. The trip data was further refined to determine the different road-segments using
an earlier algorithm developed by the authors (Krumm et al. 2007) which is done by transforming
the coordinates into usable data. The ‘leave-one-out’ method was used to test their model, where
all the data excluding the last set of data was used to train the model. The last set was used
to test their model and generate new predictions to gain a measurement on the accuracy levels.
The authors’ model reached an accuracy rate of 90% in predicting a single future road-segment
that was 0.15 miles away, with the results tailing off to 50% for predicting road-segments up-to
1.5miles away. The model is sensitive to the amount of historical data that is inserted, and from
their results it can be seen that the higher the number of past roads inserted into the model, then
the overall accuracy increases. For example, with only one previous road-segment inserted into the
model, an accuracy rate of approximately 60% was gained, whereas with two road-segments 80%
was achieved, as shown in Figure 2.9.

Figure 2.9: The graph showing the results of the experiment by Krumm (2008) and how increasing
the order of the model can increase the overall accuracy of the predictions made. (Image acquired
from Krumm (2008).)

The use of Markov models within literature have yielded predictions that are highly accurate.
It can be seen that the use of a Nth-order model in the work by Krumm can increase the predic-
tion accuracy when taking into account larger number of previous road segments that have been
observed. However, it can also be seen that simple Markov chains can yield a fairly high accuracy
rate with the work by Nižetić et al. citing that their use of a Markov chain ‘is appreciably more
accurate than random guessing which would be nearly 11%’. Their model was able to achieve an
average of correctly predicted cells at 50% and the average of nearly predicted cells to be 34.5%.
The simplicity of the Markov models make them useful for generating predictions in real-time for
a single step in-time. However, higher-order models can be utilised to make a prediction for the
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next location of an object in n steps. In order to predict the trajectory of a person using Markov
models is lacking due to the lack of information that is collected and observed by the model.
Markov models are great for being used to predict the next direction of movement or an intended
destination but is unable to determine a path of movement.

Semi-Markov models have been used in a study by Xia et al. (2011) where the authors studied
the spatial and temporal modelling of a tourist’s movement. The movement of a tourist is defined
as being a random spatial and temporal process and can be represented by, {Xt, t ∈ T}; where T
represents either the discreet or continuous time sequence of a process. The states in the authors’
model are the destinations and transit route locations of a holiday resort. Two assumptions are
made by Xia et al. on the tourists attractions:

• the probability of a tourist visiting an attraction is dependent upon the most recent visited
attraction

• the distribution of time spent at each attraction is dependent upon the current attraction
being visited and the next intended attraction

Paths of a tourists route between attractions were captured with tourists drawing their intended
route upon a supplied map. The authors distributed questionnaires and responses were entered into
a database to model decisions made by tourist on the choice of attraction they would like to visit.
The decisions were made by assessing the spatial and temporal interactions between the tourist and
the attraction. The outcome of the authors’ study can provide tourism managers with information
for destination management and on-site movement planning. The authors’ semi-Markov model
estimates the probability of a visit to an attraction, with managers using this information to
estimate the number of visitors who will move between one attraction to another and decide the
placement of paths and other crowd controlling mechanisms. The authors conclude that most
studies focus upon the movement of tourists and solely upon the pattern of movement. However,
in this study the authors also analyse the time that is spent at each attraction and this novel
method of incorporating the time spent at an attraction can further be used in the prediction of
the movement of an object. By providing a secondary layer to the prediction process and analysing
the duration of an object’s time in a state could alter the prediction that is generated, depending
upon the time spent in a state in previously recorded data.

2.4 Conclusions on the Reviewed Literature

With the introduction of various features over the years, it has enabled developers to introduce
algorithms that recognise objects from within their environments, similar to human vision. With
popular feature detectors like SIFT and SURF being used in literature for these tasks, it can be
seen that the use of such traditional feature detectors are computationally expensive. With the
continuing rise of mobile devices and the inclusion of high resolution cameras, the prospect of being
able to recognise objects on these devices are becoming intrinsic.

It has been discussed in this chapter, that the use of SIFT on mobile devices for real-time object
recognition is not feasible (Cornelius 2014) and although the work of Bay et al. (2008) has lowered
the computational overheads with their SURF detector the requirements are still far too high to be
considered useful for mobile device applications. An evaluative study performed by Leutenegger
et al. (2011) shows that their BRISK detector is able to perform significantly faster than SIFT
and SURF. Leutenegger et al. discusses that BRISK is ‘an order of magnitude faster than SURF’
(Leutenegger et al. 2011) with the total time for extracting a descriptor taking 0.66 and 0.039
seconds, respectively. It can also be seen that the matching performance also saw a significant
difference with BRISK matching all descriptors within 0.029 seconds, compared to 0.195 seconds
by SURF. Therefore, the possibility of recognising an object within a real-time constraint on mobile
devices is becoming more feasible.
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However, it has been acknowledge in work by Coltin et al. (2016) that BRISK is not as robust
of a descriptor in comparison to SURF and have proposed using a combination of both detectors
to build a map of the International Space Station (ISS). Therefore, the following work will be
undertaken for object recognition using,

• Traditional Detectors: recognising an object on mobile devices will be undertaken using
solely traditional feature detectors SIFT and SURF.

• Binary Detectors: recognition of an object will be performed on mobile devices using
BRISK.

• Binary and Traditional Detector: a hybrid approach of using BRISK and SURF to
extract descriptors.

The outcome of this work will be used to ensure that a robust recognition of an object on mobile
devices can be performed and that continuous tracking can occur of an object moving throughout
its environment.

With the possibility of being able to recognise and track an object moving within its environ-
ment, it can open the doors towards the possibility of predicting the intended trajectory of an
object and the next direction of movement. From the literature reviewed, it can be seen that their
is prolific use of neural networks (NN) to predict the trajectory of an object and its intended final
destination. However, it is common to see with this sort of predictive method that a high level
of training and pre-emptive learning is required to ensure that an accurate prediction is made.
Using a neural network on mobile devices could inherently prove rather difficult due to the large
computational cost that is spent on training and learning; and without the ability to scale-up the
hardware it could take a large amount of time to make a single prediction. Therefore, the use of
neural networks would not be feasible for making real-time predictions on a mobile devices.

Bayesian models have shown to be highly accurate with a relatively low computational cost.
However, from the literature reviewed, the work by Bera et al. (2016) used a source of video that
was sampled at high intervals and therefore information between a pedestrians recorded location
movement is missing and could possibly have influenced the output of the Bayesian model. A
similar probabilistic model has also been discussed, the Markovian Model which has been used
in work by Nižetić et al. (2009) to predict the next cell of occupation by an object, whilst latter
work by the author has explored various case studies that can influence the state movements of a
human, vehicle and animal (Nižetić & Fertalj 2010). Higher dimensionality Markovian models have
been explored in the work by Krumm (2008) with a study on how increasing the number of road
segments observed in the Markov model could influence the prediction accuracy. It could be seen
in their work that a single road segment observed could provide a prediction rate of approximately
70%. However, when increasing this to nine previous road segments the prediction accuracy was
increased to 90%.

Bayesian models also perform in a similar fashion, with a prediction being based upon proba-
bilistic values but are concerned with underlying factors that are ‘hidden’. The hidden values could
inflict the outcome of a prediction and are often not able to be recorded. Therefore, the Markovian
method is the most suitable method for generating these predictions. However, the probabilistic
values are often static/fixed and do not change unlike a Bayesian model. Therefore, it is proposed
that work will be undertaken to adapt the Markovian Model to adjust the probabilistic values each
time a state transition occurs. The body of work for this part of thesis will involve the use of two
Markov Models:

• Traditional: a traditional model is built whereby the probabilistic values of the state tran-
sitions are fixed and determined by pre-trained data.

• Dynamic: an adapted version of the traditional model whereby the probabilities of the state
transitions are adjusted each time a transition occurs.
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It is expected that with the traditional model requiring training data to ensure an accurate predic-
tion is made that this model would not be feasible for the applicability in real-time applications.
However, the adapted Markovian model would fair much better for mobile applications.
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Chapter 3

Methodology

The literature reviewed discussed the various feature detectors that are prevalent for formalising a
descriptor. Two various types of detectors have been discussed, traditional and binary. Each type
have their own set of advantages and disadvantages, and it can be seen in the work by Leutenegger
et al. (2011) that BRISK is computationally more efficient in comparison to its traditional coun-
terparts. Previous experimentation has shown that SIFT is unfavourable for machine vision tasks
on mobile devices (Cornelius 2014). Therefore, the use of a new feature detector is proposed to
be used to recognise an object from its environment. This will enable work to be undertaken on a
method to predict the next intended direction of movement.

In this chapter, the method behind recognising an object using a feature detector is discussed
and how the methodology will be experimented to determine whether the use of BRISK is able to
provide a recognition within a real-time constraint. The experiment will also discuss whether the
hybrid nature of using a traditional and binary feature detector can affect the robustness of the
recognition phase whilst ensuring a low computation time is achieved. Based upon the recognition
of an object, the various properties that can be extracted based upon the process is also discussed,
with a focus upon the boundaries of the detected object and the measurement of it’s movement in
the environment.

Literature has shown that Bayesian models, neural networks and Markov models have been
used to predict the trajectory or movement of a pedestrian. Work by Krumm (2008) have used
Markovian models to predict the next road-segment a road-user would take to get to their intended
direction, and shows favourable results in regards to the accuracy of predictions that are made.
The detected movement of an object is then used to generate a prediction on the next direction of
movement. The chapter will discuss the various neural networks that are implemented to provide a
comparative study to the traditional Markovian model. This chapter will introduce the Markovian
model that features a dynamically updated probability vector, and discusses how the adaptation
of a traditional model can ensure that robust predictions are made.

3.1 Object Recognition on Mobile Devices

Capturing an image can be done using a digital camera, either it be a stand alone unit or in-
built into the mobile hardware. The pixel data that is captured within this image is not the
only information that is collected. Information stored within the file of the image, known as
Exchangeable Image File Format (EXIF) is readily accessible and can provide information on:
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• date and time: the time-stamp of an image or video when it was taken or recorded is stored
in the image file properties

• camera properties: information regarding the camera brand and model and other infor-
mation such as orientation, focal length and shutter speed are stored

• thumbnails: a small representation of the image is stored to be used for temporary viewing
on the camera device or software

• descriptions and copyright: information regarding the image and any copyright informa-
tion pertaining the image are stored, i.e. the GPS location

However, other there is other pieces of information that can be extracted from an image with
the use of feature detectors. The recognised object by using these detectors can provide information
regarding the size of an object and its movement within the environment. Other properties such
as the distance from the cameras viewpoint can also be ascertained. These properties are often
approximated with human vision; however, when it comes to the task for machine vision it requires
a higher level of understanding and knowledge. Therefore, the process required for recognising an
object from images or videos is discussed in this section, along with the various calculations that
can provide meaningful data to be used in the predicting algorithm.

3.1.1 Recognising an Object using Feature Detectors

Recognising an object using machine vision has been previously discussed in Section 2.2. It has
been shown that the BRISK detector is significantly faster in comparison to traditional detectors
such as SIFT and SURF. To see the difference between the binary and traditional detectors, the
traditional feature detection method has been used in the previous work (Cornelius 2014) and will
be used again, but with the inclusion of BRISK to compare the performance between a traditional
and binary detector.

The methodology for each feature detector contains a set of parameters that will ensure a
robust method for formalising a descriptor. Improving the recognition rate of the algorithm can
be achieved by adjusting the parameters of each detector. For the purpose of this experiment, the
default values shown in Table 3.1 are used. The values are suggested by the Open Source Computer
Vision Library (OpenCV) (Bradski 2000) which has been used due to the pre-implementation of
the BRISK, SIFT and SURF detectors.
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Table 3.1: The various parameters that have been used for the BRISK, SIFT and SURF feature
detectors. The parameters are the default values as suggested per the OpenCV framework.

Detector Parameter Description Value

SIFT

# of features determines the number of features to retain that are
ranked by their score

0

# of octave layers determines the number of layers in each octave and
computed automatically based upon the resolution
of the image

3

contrast threshold filters out any weak features that may occur in low
contrast regions, the larger the number then the
fewer features that are detected

0.04

edge threshold filters out features that are localised upon an edge 10
sigma the amount of Gaussian blur that is applied to the

image at the first octave
1.6

SURF

hessian threshold a threshold for the keypoint detector to return key-
points where the hessian is larger

100

# of octaves the number of octaves that are formed in the pyra-
mid scale

4

# of octave layers the number of images that are present in each octave 2
extended boolean value, whereby set to false the dimensional-

ity of the descriptor is 64 elements, whereas if it is
true then the dimensionality is set to 127

false

upright boolean value, whereby if set to true the orientation
of a descriptor will not be computed, otherwise it
will be

false

BRISK

threshold the detection threshold of the keypoints 30
# of octaves the number of octaves used in the sampling pattern 3
pattern scale the scale of the pattern for sampling the neighbour-

hood around the keypoint of interest
1.0

Although two varying types of feature detectors are used the process they follow to recognise
an object from within its environment is similar. The process is split into three key areas:

Step 1 Keypoint Detection and Formalising a Descriptor
Localising key areas of interest will be performed upon a set of images. The detection method
requires two images, one to represent the object to be detected (known as a training image).
A second image will consist of the object within it’s environment (known as a scene image).
Key areas of interest will be detected to formalise a descriptor for each detector. The process
is computed once for the training image, and is repeatable for the scene image depending on
whether a singular image, or sequence of images/video frames are used.

Step 2 Keypoint and Descriptor Matching
A matching algorithm is used to match the keypoints and descriptors between the training
and scene images. Dependant upon the type of descriptor that is used, the type of algorithm
used will be either the BruteForce (BF) or Fast Library for Approximate Nearest Neighbours
(FLANN). Each method will use the k-nearest neighbours (KNN) matching sequence which
will return the k best matches. In this instance, the two best matches will be returned from
the collection of results and will be used in a refining process.
The refinement process will be done using a ratio test between the matched results distance
and will then be subjected to a further refinement. A comparison test is made between the
distance of the refined matches to ensure that they are equal in length and ensures that
a ‘good’ match has been made. The matching method can influence the robustness of the
recognition phase; however, this is not the only factor as the number of keypoints can also
influence the robustness of recognition.
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Step 3 Formalising the Recognised Objects Shape
In order to show that a recognition has been successful in the scene image, the boundaries
of the training image are transformed so they can appear around the ‘detected’ object in
the scene image. The process that is followed to do this will use the homography function
that is in-built into OpenCV. The process assists in calculating the perspective transform of
an object between the shape in the training image and its detected self in the scene. The
transform is a collection of co-ordinates that can then be used to draw a line around the
detected object.
The boundaries/shape of the detected object can then be used to determine the location
and subsequent movement of an object when it moves through a sequence of images/video
frames. This will provide key information that can be used in the neural network and
Markovian models discussed in Section 3.2.

Each step of the process are repeatable, depending upon the type of media used. If a video
source was used, then each frame of the video will be subjected to the recognition process and it
can become quite a lengthy process due to the amount of computing that is undertaken. Therefore,
its important to ensure that the original frame-rate of the video is maintained. It is understandable
as to why the use of traditional detectors are considered to be unfavourable in these circumstances
due to the large overheads. Therefore, alternative methodologies for detecting the object can be
undertaken, i.e. the use of a sole binary detector or the hybrid model used by Coltin et al. (2016).
Using a hybrid model could theoretically reduce the amount of computation that is required to
recognise an object from its environment. It has been discussed in literature that the BRISK
detector is not as robust in comparison to SURF and therefore it is proposed that a combination
of the two methods will be used. The BRISK detector will be used to detect keypoints from
an image due to the large number of keypoints that can be detected within a reasonably low
computation time, and SURF will be used to formalise a descriptor based upon the keypoints that
were extracted.

3.1.2 Calculating the Dimensions and Movement of a Recognised Object

The dimensions of an object are useful for assisting in the calculation of an object’s distance from
the camera. They can be measured by using the boundaries of an object that has been found within
its environment using the recognition process discussed in Section 3.1.1. Two opposing corners from
the boundaries will be chosen and the distance between the two corners are represented in a pixel
measurement. The pixel measurement is not useful for ascertaining the true dimensions of an
object in the real world. Therefore, to convert this measurement into something meaningful, such
as millimetres, a variable known as the pixel-per-metric (PPM) is calculated by using the following
formula,

ppm =
pw
Kw

(3.1)

where pw is the width of an object in pixels, and Kw is the known width of the object in millimetres.
The PPM is used to scale an object’s dimensions accordingly to determine the dimensions of the
object in real-life using the formula,

R(w,h) =
p(w,h)

ppm
(3.2)

where p(w,h) is the pixel width and height of an object. The extracted dimensions can then be
used for determining the direction of movement an object may exhibit when moving in a sequence
of images or frames from a video.

The movement of an object can be done in two different methods: velocity or pixel displacement.
Due to the simplicity of the displacement method this makes it suitable for calculations that require
to be processed in a real-time constraint. To determine the movement of an object, the location it
situates within a scene is required. The location in this instance is the central pixel that is within
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the confines of the detected boundaries and can be calculated by the following equation,

C(x,y) =

(
(c1 − c2)

2
,
(c2 − c4)

2

)
(3.3)

where c1, c2 and c4 are the various corners of an objects shape. Due to a susceptible amount of
noise that may be present when the detection of the boundaries are performed, fluctuation in the
location of the detected central pixel may occur. Therefore in order to minimise the amount of
noise the Exponentially Moving Weighted Average (EWMA) (?) is applied,

C(x,y) = α · C(x,y) + (1− α) · C(x,y)−1 (3.4)

where Cx,y−1 is the previous location and Cx,y the current location of the object and α being a
pre-defined value chosen by the user. Adjusting the value of α could reduce the rate of sporadic
movement that occurs on the central pixel by a poor transform of the objects shape. Using the
EWMA formula will ensure that fluctuations of the central pixel is reduced to a minimum and
does not affect calculating the direction of movement. In order to calculate the movement of an
object, the previous and current location of an object is required. The following formula,

C(x,y) − C(x,y)−1 (3.5)

will subtract the current location from the previous to provide an absolute difference. The result
is then subjected to conditional check to simplify the direction to a bipolar/binary value:

M(x,y) =


1 if C(x,y) − C(x,y)−1 ≥ 0.5

-1 if C(x,y) − C(x,y)−1 < 0.5

0 otherwise

(3.6)

where C(x,y) is the current location, C(x,y)−1 is the previous location and M(x,y) is the simplified
movement of the object.

The conditional check will determine if the pixel differentiates over a certain threshold, and will
then be simplified to the relevant bipolar/binary value. The values returned are a set of coordinates
that will represent the direction of movement for a two-dimensional plane. The simplified values
are used to represent one of eight directions of a compass (shown in Table 3.2. A ninth movement
is added to the list of directions to include a stationary movement.

Table 3.2: The eight possible directions of movement in their simplified versions, along with a
stationary move.

North South West East Nort-East South-East North-West South-West Stationary
(0, 1) (0, -1) (-1, 0) (-1, 0) (1, 1) (1, -1) (-1, 1) (-1, -1) (0, 0)

3.1.3 Datasets used for Experimentation

In order to understand how well the recognition process of the various feature detectors perform,
a collection of different datasets are required. For the experiments to be useful, a four various
datasets have been proposed to use to gain an insight in how various resolutions and continuous
data input can affect the recognition methodology. Similar to the work undertaken by Cornelius
(2014) the dataset used by Lowe (2004) to experiment with SIFT will be used for this study as the
first dataset. The four images by Lowe (2004), shown in 2.6, were used in the original work and are
of a significant low-resolution and in a grey-scale format. With the resolution of these images being
significantly lower in comparison to those that can be captured using mobile hardware, it could
potentially affect the performance of a detector due to the natural Gaussian filtering that may
occur. With the advancement of modern technology and a cameras mega-pixel count becoming
increasingly larger, the applicability of the dataset by Lowe is becoming out-dated. For example,
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a mobile device consisting of an eight megapixel sensor would be able to capture a still image with
a resolution of 3266-by-2449. Therefore, to ensure that an experiment can be performed upon the
types of images/videos that can be captured with modern devices, a secondary dataset has been
formed.

The second dataset con ists of images that are high in resolution and are scaled to account for
each type of resolution that is commonly used within media: 540p (960x540), 720p (1280x720) and
1080p (1920x1080). The new collection of images that will be used for the experiments are shown
in Figure 3.1.

(a) Training Object (b) Non-Occluded Scene (c) Occluded Scene

Figure 3.1: The new collection of images used for the experimentation to determine how tradi-
tional and binary detectors perform on high-definition images.

The images for this dataset consists of a single training object, which will be subject to the
recognition process to be detected within two differing scenes. The first scene consists of the object
within an environment with no occlusion preset. The second scene consists of the object in the
same location but with a variety of objects with different textures that are partially covering the
object. The dataset by Lowe (2004) will continued to be used to provide a comparative study on
how the difference in resolutions and number of pixels may affect the overall computation time of
the process for recognising an object. However, the recognising an object from static images is a
trivial task. The ability to recognise an object whilst its moving and in a collection of successive
frames is inherently more difficult. Therefore, two further datasets have been formed, one using
the in-built web camera of a laptop and the second being a duo of videos that have been scaled in
various resolutions.

The third dataset consists of using the web camera on a personal laptop, which will feed data
into the object recognition process. This dataset has solely been used to understand how using
a hybrid combination of BRISK and SURF can affect the robustness of the recognition phase.
The web camera of the laptop is set to record at a 720p resolution to ensure that an optimum
performance is achieved, and is run indefinitely to ascertain the frame-rate of video and the rate
of recognition. Similarly, a fourth dataset has been composed of videos to experiment with the
hybrid detection method on sequential data; i.e. the numerous frames of a video. The videos will
consist of an object moving in its environment in two different trajectories: a straight line, or a
rectangular trajectory. These videos will provide optimum conditions for the process of recognising
an object from its environment, and the drawing of an objects boundaries. The videos are exported
in a 1080p resolution which will be scaled appropriately for each of the other media resolutions,
programmatically. The frame-rate and run-length of the video have been set to a fixed value:
thirty frames-per-second (fps) and a length of five minutes, respectively. These variables have
been selected as they will provide a total of 9, 000 frames.

3.1.4 Experimental Plan and Measurable Metrics

The experimental plan for recognising an object from its environment has been split into four
different categories, with each one representing a particular dataset:

1. Low-Resolution: an experiment is performed using the low resolution dataset as used by
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Lowe (2004) in the evaluation of the SIFT feature detector. The dataset is used to evaluate
the following feature detectors: BRISK, SIFT, and SURF.

2. High-Resolution: the newly formed dataset discussed in the previous section is used for
evaluating the detectors: BRISK, SIFT, and SURF.

3. Live-feed: a continuous input of data using the web-camera on the personal laptop is used
to evaluate the following feature detectors: BRISK, SIFT, and SURF. A hybrid combination
of the SURF and BRISK detector is also used.

4. Computer-Generated Videos: the computer generated videos are used to evaluate the
features detectors as aforementioned, along with a hybrid combination of the SURF and
BRISK detector.

By splitting the experiments into four, it can provide a comparative study between the various
datasets. An insight can be provided on how an input of sequential data (the videos and web
camera) can have an adverse impact on real-time recognition when compared to the same task on
static images. Each experiment category is repeated three times to provide an average across the
three set of results. Repetition has been undertaken to ensure that any anomalies that may occur
can be reduced and not impact the analysis of the results. Analysis will be undertaken by using
the following measurable metrics:

• the time of processing for detecting the keypoints, extracting a descriptor and performing a
match

• the amount of keypoints detected

• the robustness of detecting an object in live-feed data

The experiments have been undertaken on a couple of devices, a personal laptop computer and
the Sony Xperia Z3 Tablet Compact mobile device. The two devices have been used to provide a
comparative study on how the performance of recognising an object can differ between the hardware
used in a mobile device and laptop can significantly affect the time taken for completing the task.
Measuring the time that was taken for detecting the keypoints of interest and the other methods
can be computed by taking a timestamp before the process is begun and another at the end of
processing. The two values can then be subtracted by one another by using the following formula,

t =
end− start

frequency
(3.7)

where end and start are the respective time-stamps that are collected, and frequency is the number
of ticks per second as the timestamps collected are a reference to a tick number.

The number of keypoints detected can be measured by using the OpenCV libraries in-built
functionality which will return the total number of keypoints that have been detected. This
number is measured to determine how the size can influence the robustness of the recognition that
is performed. The robustness is measured by visually inspecting the boundaries that are drawn
around the object that is to be detected. An example of what is considered good and bad is shown
in Figure 3.2. This measurement is taken solely on the recognition process that is undertaken using
the live-feed data, i.e. data that is continuously input into the algorithm either from a video or
web-camera.

46



(a) Bad Recognition (b) Good Recognition

Figure 3.2: The detection outcome using the third set of parameters for BRISK. Although a
strong detection can be made as shown on the right, a weak detection can also occur (as shown on
the left).

3.2 Predicting the Movement of an Object

The process used for recognising an object from it’s environment and tracking it’s movement has
been discussed in Section 3.1. Using the basis of this process and the various formulas provided to
determine the movement of an object. The prediction of the next intended direction of movement
can be generated by using a NN or Markovian Model. For the purpose of this study, it has been
chosen to use a Markov Model in one of two ways: a traditional methodology, and a new method-
ology that can adjust the weightings of a transition. Two types of NN’s have been implemented to
provide a set of comparative results which enables a study to be held on the amount of computation
power (and the processing time) that is required by the networks and models. The two networks
of choice are the Feed-Forward Neural Network (FFNN) and RNN. The latter model is closer in
methodology to a Markovian model whereby a ‘memory-like’ state is used to feedback the output
back into the neural network. In this section, the methodologies of the Markovian models and
neural networks are discussed in detail.

3.2.1 Using a Traditional Markovian Model for Predictions

The movement of an object is defined in this work to be moving within one of the eight compass
directions, with the inclusion of a ninth state for being stationary. The types of movement are
defined in Table 3.2 and can be classified as a random spatial and temporal process. Simple Markov
models, known as Markov Chain (MC) can be denoted as:

P (Xn+1 = in+1|Xn = in, ..., X1 = i1) = P (Xn+1 = in+1|Xn = in) (3.8)

where {X0, X1, ...} are a sequence of random variables and Z = 0,±1,±2, ... the union of sets
and their realisations. The models consist of a set of states, S = {s1, ..., sn}, that have a set
of transitions that can occur between each of the states. They have a conditional independence
property where each state is solely dependant upon the previous state and a initial probability
vector. MC’s are a simplified form for a model that is known as a first-order. They are often
denoted as the following (Meyn & Tweedie 2009),

P (st|s1, s2, st−1) = P (st|st−1) (3.9)
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A commonly used example to demonstrate the workings of a Markov model is the application
to predicting the weather. The model consists of three states with each state representing a typical
weather pattern: sun, cloud or rain. An initial probability vector is constructed that will consist
of arbitrary numbers to provide a weighting of a transition that may occur:

P =

sun cloud rain[ ]
sun 0.8 0.05 0.15
cloud 0.2 0.6 0.2
rain 0.2 0.3 0.5

(3.10)

The probability vector is then used to determine a transition between states; simply, a prediction
is made on the next weather pattern that is based upon the currently occupied state. For example,
if the current weather is sunny, then the probability of it staying sunny would be 80%. The process
of making a prediction for the next state of transition is done by generating a random uniform
number and comparing it against the probabilities for its current state of occupation:

Pre =


sun if r ≤ sun

cloud if sun < r ≤ sun+ cloud

rain if sun+ cloud < r ≤ sun+ cloud+ rain

(3.11)

For example, if r = 0.43 and the current state of occupation is cloud then the next movement can
be predicted by substituting the variables in the previous equation, to supply the following:

Pre =
{
cloud if 0.2 ≤ 0.43 ≤ 0.6 + 0.2 (3.12)

The returned prediction is cloud as the randomly generated number is less than that of the prob-
ability values for a transition between sun and cloud+ rain. However, if the random number had
been greater than 0.8 then the outcome would have been different, and it would have predicted
rain. However, the use of a first-order model only takes into consideration a single previous transi-
tion. Markov models have the ability to track a collection of previous movements to make a more
informed prediction. These type of models are often referred to as N th-Order models and memory
can be built into the model by using the variable level of orders, i.e. two, three or four. The models
can be expressed by the following notation:

P (st|st−1, st−2, ..., s1) = P (st|st−1, ..., st−n) (3.13)

where st is the state at time t. The application of higher order models have been used by Krumm
(2008) to retain more knowledge about the number of road segments traversed, and their work
has shown that it can increase the prediction accuracy of a model. However, increasing the order
of a model has a negative impact on the number of transitions that can occur within the model.
For example, a first order model will consist of 9 rows in the array, which results in a total of 81
possible transitions. However, a third order model would result in 729 rows of possible movements,
which would have a total of 6, 561 transitions. The growth in the number of transitions that occur
between states is shown in Figure 3.3.
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Figure 3.3: The increased number of rows for a higher order model will have a significant impact
on the number of transitions that can occur. An exponential growth can be seen for a linear
increase in the models order.

It can be seen from the graph that up-to a third order model sees a relative small growth.
However, from a fourth order onwards the growth becomes inherently larger and more significant
as it goes on. This exponential growth on the number of transitions could impose a restriction
on the order of a model that would be suitable for applications to run in a real-time constraint.
However, the advantages of using a higher order model could infer a positive outcome with the
accuracy of the predictions increasing. Therefore, an alternative method is developed to ensure
that an accurate prediction could be yielded from using a lower order model and is discussed in
Section 3.2.2.

3.2.2 Amending a Traditional Markovian Model for Predictions

The adapted Markov model follows the methodology of the traditional model, but an adaptation
is made to the calculation of the probability vector. Typically, the values of the vector would be
static and calculated based upon prior training or historical data. To remove the reliance upon the
prior training, a secondary vector can be introduced which will count the frequency of transitions
that occur between states. This new vector will be termed as a ‘Frequency vector’ and is denoted
as, F. The probabilities are updated using the frequency vector and is achieved using the following
formula:

Pij =
Fij

k=9∑
i=1

Fik

(3.14)

where F is the frequency vector, i and j are the indices of the vectors row and column, and k is
the number of movements that can be exhibited by the object. The formula will sum up the nine
columns for a selected row of the vector, and then individually do a divisional calculation of each
column against the total summed row. This will provide an updated weight for the transitions
that will occur for the selected state at the time.

The introduced model is termed as a Dynamic Markov Model (DMM) due to the methodology
that is used to adjust the probabilities as a transition occurs. To demonstrate how this dynamic
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model will work, an initial probability vector is constructed,

π =

0.33 0.33 0.34
0.33 0.33 0.34
0.33 0.33 0.34

 (3.15)

where an equal probability has been set for the first initial movement of an object. An initial
probability is set at the beginning of the modelling to ensure that an equal chance is available for
a prediction to be generated. This process will remove any sort of bias for the first prediction, and
therefore it is expected in most cases that the first prediction would be incorrect. If a collection of
fifteen transitions have occurred, then the frequency vector will have been updated. For example,

F =

2 1 1
1 0 2
3 5 0

 (3.16)

then the probability vector will be adjusted accordingly using the formula to,

P =

 0.5 0.25 0.25
0.33 0 0.67
0.38 0.62 0

 (3.17)

The updated vector will then be used to generate a prediction in the same method as discussed
in the traditional Markov model (Section 3.2.1). A frequency vector could theoretically increase
the accuracy of predictions for a Markov Chain (MC), with the dynamic aspect of this model
it is expected to see that the model will learn the types of movement that are exhibited by an
object. Therefore, patterns within the vectors will form and an analysis can be performed upon
the patterns to determine whether a specific type of movement can be extracted from the values
or placement of them to determine whether there is any similarity between vectors for different
observed movements.

3.2.3 Pattern Analysis of an Objects Probability Vectors

The introduction of the DMM can open avenues for the analysis of patterns that may occur within
the probability vectors for each observed object. Determining whether there are any patterns in
the vector can be done using a selection of formulas that were introduced by Haralick (1979):
dissimilarity, entropy and homogeneity. The various formulas are often used for the process of
analysing texture within images but could be potentially useful for scoring the probability vector.
The various outcomes from the scoring metrics can be collectively combined to analyse the move-
ment and behaviour of an object. Objects are able to take the same route over a period of time,
especially when taking into account the environment they are interacting with. An example of this
is the entrance to a building at Coventry University, where a funnelling effect can be seen. The
students and staff are funnelled towards the entrance of the building (depicted in red) as shown in
Figure 3.4.
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Figure 3.4: The entrance of the Engineering and Computing building (ECB) of Coventry Uni-
versity. The students/staff are funnelled towards a main entrance (highlighted in red) and a
card-access door (highlighted in green).

The red and green boxes highlight the two entrances to the building, where the red highlight
is the public entrance and is freely accessible. However, the green highlight is a second entrance
that is typically accessed using an identification card, possessed by students and staff members
of the university. Therefore, it is most popular for students (or members of the public visiting)
to gravitate towards the entrance in that is highlighted in red. It would be expected that the
students may head towards this entrance in a straight line and this type of movement may be
represented in the probability vector in some way. There may also be scenarios where a sudden
change in direction may be exhibited due to either slow moving pedestrians or other obstacles that
may occur in the way. Analysis of the vectors can be done to determine whether two observed
movements are similar to each other, and the scoring metrics can be used to select a model from
an online database. This would subsequently substitute the current model with another that is
intrinsically more accurate. The models that are contained in the database could possibly consist
of observations that have been done over a longer period of time and are therefore inherently more
accurate.

Using the various formulas by Haralick (1979) can be useful for applying this scoring metric.
For example, the dissimilarity formula can be used to measure the distance between values in a
vector and if the score is increasing then it can be seen that the values do not lie within close
proximity to each other in the vector. The formula for calculating this score is shown,∑

i

∑
j

(i− j)2 · Pij (3.18)

where Pij is the probability vector at indices i, j for a given object. There is a possibility that
this score may only indicate a particular type of movement. Therefore, combining the score with
other metrics such as the entropy score could provide something more meaningful. Using the
entropy formula would determine the randomness or degree of disorder that may be present in the
probability vector. The formula for this equation is show,

−
∑
i

∑
j

Pij · log(Pij) (3.19)
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where Pij is the probability vector at indices i, j for a given object. The value of the entropy score
is at its largest when all the elements of the vector is the same, or lowest when they are unequal.
However, the homogeneity formula could also be applied to understand the distribution of the
elements towards the diagonal of the vector (Haralick 1979). The homogeneity can be calculated
using the following formula, ∑

i

∑
j

1

1 + (i− j)2
· Pij (3.20)

where Pij is the probability vector at indices i, j for a given object. The dynamic model is built so
that any transitions where a pedestrian is walking in a straight line is situated upon the diagonal
of a models vector. Therefore, if a homogeneity score is low, it would be assumed that the object
is moving within a straight line. However, the direction at which the object was heading towards
would be unknown and therefore the other scoring metrics may be able to highlight the direction
of movement.

3.2.4 Using Neural Networks for Movement Prediction

NN are predominately used in literature for predicting the trajectory of an object or pedestrian.
The ability to predict a trajectory can assist in applications where collisions are to be avoided,
i.e. robot navigation (Kim et al. 2015). Two types of neural networks are implemented to provide
results for a comparative study with the Markovian models:

• Feed-Forward: these types of networks are symbolic to the process of how the data moves,
in a forward direction.

• Recurrent: these types of models have a ‘memory-like’ structure and are similar in process
to that of a Markovian model.

The two neural networks are implemented to provide results on how a simple and more complex
neural network can be used to make predictions on the direction of movement for an object.
Literature reviewed has shown that the amount of time that is taken for training the neural
networks means that they are not applicable for using within applications that have a real-time
constraint.

The structure of the two models have been built in a similar fashion, with the number of nodes
used for the input and output being the same. The only difference between the networks is the
number of layers that were used for the hidden layer. The feed-forward network consists of two
hidden layers with twenty nodes, whereas the recurrent neural network consisted of a single layer
with ten nodes. A further difference between the two networks is the feed-back mechanism that
is used in the recurrent network to feedback the predicted outcome to be used as a historical
prediction. This feedback mechanism is used to determine how supplying the output of a network
can be influence the prediction accuracy when compared to using the known historical movement
of the object that has been used in the feed-forward network. The structure of the two networks
that will be implemented are shown in Figure 3.5.
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(a) Feed-Forward Neural Network
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(b) Recurrent Neural Network

Figure 3.5: The structure of the neural networks that will be implemented for the comparative
study with the traditional and dynamic Markov models.

Each layer of the neural networks have an independent function and use-case in the network.
The input layer consists of two nodes, i1 and i2. The two nodes are respective to the data that
is inserted into the model, with i1 being the historical or predicted data and i2 being the current
movement of the object. The second layer, known as the merge layer, is used to concatenate the
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movements into a single input that will be fed into the hidden layer for computation. The hidden
layer consists of nodes that will use an activation function to make a prediction based upon the
data that is inserted. The chosen activation function for the neural network is the linear function.
A linear combination of the weights and inputs are computed by using the following formula:

net(x) = b+ (x1 · w1) + (x2 · w2) + (xn · wn) = z (3.21)

where b is the bias, x is the input and w the weight of a connection between the nodes. The supplied
output will be a set of binary or bipolar values that are representative of an x and y co-ordinate for
the predicted direction of movement. The outcome will be used to compare against the observed
movement using the same conditional check as shown in Equation 3.23. Depending upon the type
of network that is used to generate the prediction, it will be fed back into the network as an input
in conjunction with the current movement being exhibited by the object.

The type of recurrent network that is implemented will be based upon a LSTM model (Hochre-
iter & Schmidhuber 1997). A LSTM network consists of internal contextual state cells that will act
as a ‘long-term’ or ‘short-term’ memory cell. The output that is obtained by these type of networks
are modulated by the state of the long/short-term cells and is useful for generating predictions
that are dependant upon prior historical movements that have been observed, rather than using
just the last movement. An LSTM network is often used in literature to classify and process a
time-series prediction.

3.2.5 Datasets used for Experimentation

Two different datasets have been used for the experimentation on the Markovian models and neural
networks for generating predictions on the movement of an object. The two datasets are different
in the terms of their construction, the first dataset was used by Yi et al. (2016a) in their work for
building a model to learn the behaviour of pedestrians to predict a trajectory of movement. The
dataset of their work has been collated from surveillance of people moving around the concourse
of a train station. Their data was collected over a one hour interval and captured the locations of
12, 684 pedestrians (the data sampled for every twentieth frame). The collection of data has been
stored in text-files that consist of a list of locations and frame-keys, shown in Listing 3.1.

Listing 3.1: Example of a text file from the dataset provided by Yi et al..
1 525
2 122
3 0
4 530
5 144
6 20

The first and second line of the file represents the location of a pedestrian in pixels, whereas
the third line is the corresponding frame of detection. However, to make this data useful and in a
format that can be used for the Markovian models and neural networks, they need to be converted
into a list of movements. The list of movements is converted by using the pixel displacement from
the current and previous location, as shown in equation 3.5. Once the conversion of the text-files is
completed, they require a validation check to ensure that there are no missing frames or locations.
It can be seen that in some text-files a gap will occur in the detection of a pedestrians location
between one frame and another. Upon investigating the individual pedestrians and frames, it
can be seen that they are stationary (typically within a queue) and therefore their location is not
recorded until a movement has been exhibited. In order to populate the missing data, the following
formula is used,

f =

{
f−1, if (f − f−1) > 20

continue, otherwise
(3.22)
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where f is the frame in question and f−1 is the previous frame. The missing frames and movement
could potentially influence the outcome of the prediction from the neural networks and Markov
models. Therefore, by ensuring all data is available in a text-file it will ensure an accurate prediction
can be made when using this dataset. An example of the type of data supplied by Yi et al. is
shown in Figure 3.6.

Figure 3.6: An example of the dataset provided by Yi et al.. The image shows the path taken
for a pedestrian from the dataset overlaid from a sample image of a frame.

From the sample image, it can be seen that when the movement is collected for every twentieth
frame a gap can be seen between the recorded locations. It could be possible that a pedestrian could
change direction between the two points that have been recorded, albeit momentarily. Therefore,
the video dataset discussed in Section 3.1.3 is also used in this experiment to predict the next
direction of movement when a continuous collection of frames are inserted in the neural networks
and Markov models. The two type of trajectories that have been used in the videos have been
chosen to see how the performance of the predictions generated are influenced by the behaviour of
an object following a simple movement of an object moving left to right, and whilst an object is
following the path of a rectangle. The second trajectory has been included to ensure that at-least
four of nine directions are met and will provide an insight in how the network and models perform
in respect to a more complex movement.

3.2.6 Experimental Plan and Measurable Metrics

To experiment with the task of predicting an objects next direction of movement using the various
neural networks and Markov models a collection of experiments have been formed. For this thesis,
three categories have been formed and are explained:

1. Dynamic Markov Model
The models probabilities are updated by using the adaptation of using a frequency matrix
to count the transitions that occur. Two types of predictions are made using this model due
to the dynamic nature of the probabilities:

• random generation: a prediction os made using a generated random-uniform number
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that is compared against the various values for a selected row from the probability
vector.

• maximum-likelihood: a prediction is made by always selecting the maximum value from
a selected row of the probability vector.

2. Traditional Markov Model
The Markov model is pre-trained using a collection of historical data that has been collated
from the DMM. The predictions for this model have been generated using the traditional
method of prediction by generating a random number to compare against each value within
the selected row of the probability vector.

3. Neural Networks
A feed-forward and recurrent network will be implemented and have been discussed in Section
3.2.4. The experiments will require the networks to be trained as the observation of an objects
movement is made and is done to closely resemble the process of a Markovian model. The
output of the neural network will be considered to be a prediction of the next movement to
occur.

Similar to the experimentation for recognising an object on mobile devices, the experiments for
this section are repeated three times to remove any anomalies that may occur in the collection of
results. During the experiments, a set of metrics are collected to determine the performance of the
neural networks and Markov models. The following metrics are measured:

• computation time of the neural network and Markov models

• the accuracy of the predictions generated

• the similarity of the pedestrian paths using the texture analysis formulas by Haralick (1979)

The modelling is performed upon a variety of different machines to analyse how the varying
hardware can affect the performance of the neural networks and Markov models. A collection
of three machines have been used: a server at Coventry University, a personal computer and a
BeagleBone Black. The BeagleBone hardware has been used to simulate the embedded hardware
that is often found within vehicles and home-security systems. To measure the performance of
the neural networks and Markov models on the prediction accuracy, it can be measured by a
comparison test on the current direction of movement and the prediction generated, using the
following formula,

I =

{
1, Pret = Ct

0, otherwise
(3.23)

where I is an indicator of whether the prediction (Pre) is the same as the current location (C).
The accuracy can then be calculated at the end of a simulation by using the following formula,

acc = 100 ·
∑

Ij
n

(3.24)

where n is the total number of steps made by the pedestrian and If is the indicator for a given
frame.

The amount of time taken for processing the text-file or videos will also be captured. This
captured information will give an indication into whether the framework is able to compute within
a real-time constraint and could also be used to assist in the calculation of the overall frame-rate
for the video that are used in the second dataset. To calculate the time taken it is proposed to
capture a time-stamp at the beginning of the video and then capture a timestamp at the end and
apply the formula shown in Equation 3.7. The overall run-time can then be used to calculate the
frame-rate, which is done by the following formula:

fps = total frames
t

(3.25)
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where total frames are the total number of frames that are within the video, and t is the overall-time
that was taken for processing the video.
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Chapter 4

Results Analysis

In this chapter, a discussion is held on analysis of results for the various experiments that have
been performed. Due to the large amount of data that is to be covered in this chapter, it has been
split into five sections:

1. Results of the Object Recognition Experiment
In this section, the analysis of the results for the task of recognising an object using mobile
devices are discussed. Four different datasets have been used and have each been split into two
categories: low and high resolution images and live-feed data and videos. The sections will
provide the necessary results for the experiments that have been performed on a mixture of
mobile devices and a personal computer. The conclusive study of these results will determine
whether it is feasible to recognise an object in a real-time constraint on mobile devices.

2. Results of the Pedestrian Prediction Experiment
In this section, a discussion is held on the results of the Markov models and neural networks
that have been implemented to generate the prediction of a pedestrians next intended di-
rection of movement. The traditional and dynamic Markov models are discussed in their
respective sections, with a separate section discussing the results of the neural network.
The section also includes the evaluative study of the dynamic Markov models probability
vectors to determine whether any patterns in the vector can indicate the type of movement
being exhibited by a pedestrian. Finally, a section is included to compare the results of the
stochastic models with the implemented neural networks and discusses which out of the two
methodologies are most suitable for predictions in real-time.

3. Results of the Object Trajectory Videos Predictions
In this section, an analysis is performed upon the results of a collection of computer-generated
videos. The videos were generated to understand whether the traditional and dynamic
Markov models are able to be used in conjunction of the recognition algorithm to provide
predictions in a real-time constraint, i.e. without impacting the frame-rate of the video.
The section discusses each of the implemented Markov models along with a section on the
processing time of the models. The latter section will conclude whether the model is able to
make predictions without impacting the frame-rate of a video.

4. Conclusion of the Object Recognition Experiments
This section will critique the experiments that have been performed and their overall effec-
tiveness. The section will discuss whether an appropriate method has been found that can
enable a recognition to be performed within real-time using live-feed data on mobile devices.

5. Conclusion of the Prediction Experiments
This section will critique the key findings from the experiments that have been performed on
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the pedestrian dataset by Yi et al. (2016a) and the computer-generated videos. The section
will determine whether the process of recognising an object and employing a Markov model
for predicting an objects next direction of movement can be employed within a real-time
constraint.

4.1 Results for Recognising an Object

A collection of various datasets have been employed to evaluate the different methodologies that
are used to recognise an object from its environment. In this section, the results of the experiments
performed on the low and high resolution images are discussed, alongside with the results of the
live-feed data and computer-generated videos. Each section will analyse the amount of time that
has been taken to localise key areas of interest to formalise a descriptor. The time taken for
matching these descriptors will also be discussed to provide a ‘total’ amount of time that was
taken to perform the recognition task. This analysis is undertaken on both sets of data that have
been used, images and videos.

4.1.1 Low and High Resolution Images

An observation can be made from the collection of results that have been achieved for these
experiments. The resolution of an image can directly influence the amount of keypoints that have
been detected from the various feature detectors used, with a linear increase being observed on
the Lowe (2004) dataset. For example, SIFT on the smallest resolution image (basmati) is able
to detect 489 keypoints, whereas on the highest resolution image (the scene of all objects) the
detector was able to localise 969 keypoints. The results for the experiment on the low resolution
images for a mobile device can be seen in Table 4.1 and shows results for the SIFT, SURF and
BRISK feature detectors.
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Table 4.1: The collection of results for the Lowe (2004) dataset on the Sony Z3 Tablet Compact
mobile device.

SIFT

Image Keypoint Descriptor Matching Number of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0480 0.0640 0.1250 489
box 0.0850 0.0960 0.1460 604
book 0.0900 0.1190 0.1620 848
scene 0.2530 0.2820 − 969

SURF

Image Keypoint Descriptor Matching Number of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0190 0.0370 0.1410 491
box 0.0300 0.0650 0.1440 803
book 0.0450 0.0720 0.1460 889
scene 0.9480 0.1420 − 1448

BRISK

Image Keypoint Descriptor Matching Number of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0500 0.0240 0.2020 576
box 0.1130 0.0700 0.4500 1662
book 0.1410 0.0870 0.5760 2094
scene 0.1900 0.1240 − 2786

From the results of the experiment, it can be seen that a large number of keypoints can be
detected from a relatively low resolution. The number of keypoints detected using a binary detector
like BRISK provides the most amount in comparison to traditional feature detectors. This can be
seen in the graph shown in Figure 4.1.
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Figure 4.1: The number of detected keypoints from each image of the Lowe (2004) dataset using
the three feature detectors on a mobile device.

The least amount of keypoints that were detected was achieved by SIFT. Between the two
traditional detectors it can be seen that there is a larger number of keypoints detected when using
the SURF detector. For example, the image of a scene achieved 33.08% more keypoints with
SURF than it did with SIFT. The reason behind this could be that SURF is more receptive to
the colour properties of an image, due to the large varying grey colours that are present in the
image. With the increase in the number of pixels in a higher resolution, then the likelihood of a
larger number of keypoints being detected is expected as there are more potential candidates for
selection. However, for this linear increase in the number of keypoints detected, an increase in the
time taken for detection is observed.

The increase in time can be seen for the results of SURF where from the smallest to largest
image an increase of 4889.47% is observed in the amount of processing time taken. However, it
can be seen from the results that BRISK performed optimally with the lowest resolution image
computing within 0.05 seconds and the largest image within 0.19 seconds. It would be expected
to see that BRISK would perform quicker due to the nature of how the detector was built and
the sampling pattern that was used. The graph in Figure 4.2 shows the amount of time taken for
detecting the keypoints for each detector used in the experiment on the mobile device.
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Figure 4.2: The processing time for detecting the keypoints of interest from each image of the
Lowe (2004) dataset on a mobile device.

From the graph, it can be seen that the scene image takes the most amount of time for the
detection of keypoints. The SURF detector is the worse performer in this instance, with the
detection process taking a significant 0.948 seconds. Excluding this result, it can be seen that
SIFT is the slowest detector for keypoints out of the three detectors. Surprisingly, BRISK did
not perform as well on the lower resolution images in comparison to the scene image. This is
interesting as SURF out-performed the detector on these images, but it becomes apparent that
BRISK is better suited for larger resolution images.

The process of extracting a descriptor using the traditional detectors are observed to take longer
than the detection of keypoints. It can be seen between SIFT and SURF that there is a direct
correlation with the number of keypoints detected and the amount of time taken for formalising
the descriptor. Between the two traditional detectors, it can be seen that SURF was the fastest for
formalising a descriptor. However, in comparison to BRISK it can be seen that the two traditional
detectors take a significant amount of more time to formalise a descriptor. This can be seen in the
graph shown in Figure 4.3 where BRISK achieved the lowest time on two out of the four images.
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Figure 4.3: The processing time for formalising a descriptor from each image of the Lowe (2004)
dataset on a mobile device.

Traditional detectors like SIFT take the longest amount of time whilst formalising a descriptor.
However, SURF was considerably better, and in some instances out performed the binary detector.
For example, it can be seen in the graph that the book and box image performed better on
formalising a descriptor with the SURF detector than BRISK. The lower number of keypoints
could of influence the amount of time taking, but it could be seen on the larger resolution that
BRISK performed the best.

The collection of descriptors extracted from the image are used with a matching algorithm.
The algorithm will recognise the three object images from the scene image and two different
matching algorithms were used. The first method used was FLANN for SIFT and SURF, whilst
the BF method was used for BRISK. The graph in Figure 4.4 shows the amount of time taken for
matching the object images with the scene image.
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Figure 4.4: The processing time for matching the descriptors from each object with the scene
image of the Lowe (2004) dataset on a mobile device.

The data for the matching algorithm is shown in Table 4.1 and is applicable to the three
training images that were used. The observed times were faster for SIFT and SURF due to the
algorithm that was used for matching the descriptors. FLANN is fast due to the methodology that
it uses for finding the nearest neighbour. The BF matcher on the other hand is slower due to the
methodology it follows for matching the descriptors by going through each pair and comparing
them against one another.

The results for the Dell XPS laptop are shown in Table 4.2. The experiments are the same
as those performed on the Android operating system and is developed in the C++ language to
ensure that the same code can be used. From the results it can be seen that the same number
of keypoints are extracted for each image, which is to be expected as the same parameters for
the feature detectors are used from the Android experiment. The key motivation of running this
experiment was to determine whether the hardware of a mobile device can match the power of a
laptop for the task of object recognition. Therefore, the important aspect of these results are the
times for detecting the keypoints, extracting descriptors and the matching between the two image
descriptors. From the results it can be seen that the SIFT detector performs significantly quicker
on the laptop compared to the mobile-hardware. For example, on the scene image a reduction
can be seen on the processing time for detecting keypoints of 91.3%, the same was also recorded
for the descriptor extraction on the same image. A reduction on extraction of a descriptor was
recorded at 90.07%. It can be seen across the board of detectors a decrease was achieved on the
times recorded; most notable was a decrease seen in the time taken for localising keypoints and
extracting a descriptor on the scene image, the largest out of all the images.
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Table 4.2: Results of the experiment performed on the Linux operating system using the Dell
XPS laptop, with the images originally used by Lowe (2004) when testing his feature detector.

SIFT

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0330 0.0410 0.0290 489
book 0.0400 0.0470 0.0290 604
box 0.0370 0.0390 0.0280 848
scene 0.0220 0.0280 − 969

SURF

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0265 0.0671 0.0255 491
book 0.0259 0.0639 0.0296 803
box 0.0284 0.0557 0.0283 889
scene 0.0200 0.0493 − 1448

BRISK

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

basmati 0.0300 0.0230 0.0660 576
book 0.0300 0.0240 0.2380 1662
box 0.0300 0.0240 0.1910 2094
scene 0.0300 0.0230 − 2786

To show the contrast between the two sets of results, the graph in Figure 4.5 plots the total
processing time for each image between the two devices used. It can be seen in the figure that
the laptop’s abundance of power is far greater than that of the mobile hardware, especially when
larger resolutions are used. The graphs show that the BRISK detector took the longest amount of
time in total for recognising an object from the scene. A big part of this reason is due to the BF
matching algorithm that is used to match the training descriptors with that of the scene image.
The algorithm is used to find the best match between pair of descriptors to determine a robust
match in the image, unlike the algorithm used for the SIFT an SURF detectors which approximates
the best match between the descriptors.
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Figure 4.5: The total computation time for each image (summed keypoint, descriptor and match-
ing times) between the laptop and mobile hardware for each detector.

From this experiment on the Lowe dataset, it can be concluded that although the mobile
hardware is still not as powerful as a laptop counter-part, it could be theoretically possible to
recognise objects from a scene within a real-time constraint (on low resolution images). However,
these images are not conclusive as they are so fundamentally low in the number of pixels compared
to images that are now captured. Therefore, the second dataset of high definition images could
provide an insight into how these feature detectors perform on images with a greater number of
pixels. The computer-generated videos have a large growth in the number of pixels when the
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resolution is increased, as depicted in Figure 4.6.
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Figure 4.6: The growth in pixels for an increase in the resolution of the image is particularly
significant when reaching 1080p in comparison to the 540p resolution.

It can be seen that by doubling the resolution from 540p to 1080p the pixels inside the im-
age increase three-fold (300%), and it is expected with these significant jump in pixels that the
processing time for this resolution will be significantly longer. The results for the Android experi-
mentation are shown in Table 4.3 and it can be seen that the processing time for high resolution
images for the mobile hardware is significantly impacted. The SIFT detector was the worse per-
former with the times for localising keypoints through the range of images for resolution 720p and
1080p exceeding a second, with the same amount of time also being taken for the extraction of
descriptors. This amount of time taken for determining the key features of an image could severely
impact the process of recognising the object within a real-time constraint. The times observed on
the SIFT detector are to be expected due to the number of pixels that are present within the 720p
and 1080p images. By contrast, when comparing the scene image of the Lowe dataset with the
540p image of the high-resolution dataset, there are 321, 792 more pixels present in the 540p image.
Due to this larger number of pixels present in the image, it is then expected to see an increase of
approximately 0.4 seconds between the scene image of the Lowe dataset (0.535 seconds) and the
540p image (0.927 seconds).
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Table 4.3: Results of the experiment performed on the mobile hardware with the high-resolution
images.

SIFT

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.528 0.399 0.076 291
Visible - 720p 1.268 1.303 0.092 439
Visible - 1080p 2.661 2.559 0.12 682
Occluded - 540p 0.646 0.426 0.07 234
Occluded - 720p 1.217 1.133 0.083 292
Occluded - 1080p 2.621 2.457 0.09 377
ID Card 0.176 0.16 − 639

SURF

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.107 0.224 0.073 584
Visible - 720p 0.188 0.205 0.091 800
Visible - 1080p 0.393 0.318 0.159 1158
Occluded - 540p 0.112 0.115 0.07 515
Occluded - 720p 0.211 0.166 0.074 580
Occluded - 1080p 0.386 0.282 0.09 748
ID Card 0.063 0.082 − 660

BRISK

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.110 0.037 0.109 514
Visible - 720p 0.212 0.054 0.109 742
Visible - 1080p 0.305 0.067 0.174 931
Occluded - 540p 0.115 0.023 0.076 316
Occluded - 720p 0.165 0.039 0.076 361
Occluded - 1080p 0.281 0.038 0.149 391
ID Card 0.098 0.054 − 1090

It has been said the the growth of pixels between the 540p and 1080p image is 300% and
therefore it would be expected to see that the computation time would increase within the same
range. However, the time between the 540p and 1080p images for the SIFT and SURF detectors
detecting keypoints of interest increased by 403.98% and 267.29%, respectively. Although the
times of the BRISK detector were very similar to that of SURF detector, it performed better on
the 1080p image and saw an increase of 177.27% in the computation time. The graph in Figure 4.7
shows the time taken for localising keypoints and extracting the descriptors from each image. The
graph shows that the BRISK detector is most favourable for when extracting descriptors from an
image due to the low processing time that was observed. However, it is not the same for the times
recorded on detecting the keypoints from the image. The amount of time taken for this process is
similar to the times obtained by SURF, with BRISK marginally better on the 1080p images.
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Figure 4.7: The amount of time taken for detecting keypoints of interest and extracting descrip-
tors for each detector.

However, the matching process of BRISK is still the slowest between the two algorithm used.
Although the Brute-force matcher is slower as its performing a check for the best match possible
it is the most robust. Although it is slower, the times are still relatively close to the FLANN
matching algorithm (with the difference becoming minimal in the occluded images). Figure 4.8
shows the total amount of computation time for recognising an object from its environment using
the high resolution images on the mobile hardware for the occluded scene image.

From the graph it can be seen that the SIFT detector is the worst for recognising an object
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Figure 4.8: The total computation time for recognising an object from the occluded scene image
for each detector.

from the high-resolution images and could therefore pose to be the worst for when experimenting
on the video dataset. Although it seems on the graph the SURF and BRISK are fairly similar in
terms of computational time, this is not the case as can be seen in the results of Table 4.4. The
difference shown is the percentage difference between the SURF and BRISK detector and it can
be seen that for an increase in the resolution the difference becomes noticeably larger.

Table 4.4: The percentage difference between the computation time for object recognition using
the BRISK and SURF detectors.

Resolution SURF Time (s) BRISK Time (s) Difference
540p 0.297 0.214 −27.95%
720p 0.451 0.280 −37.92%
1080p 0.758 0.468 −38.26%

The results in Table 4.5 show the outcome of running the experiments on the laptop in the
same scenario as the previous experiment on the smaller resolution files. It can be seen that the
results of the SIFT detector are significantly better on the laptop in comparison to the mobile
hardware.
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Table 4.5: Results of the experiment performed on the Linux operating system using the Dell
XPS laptop, with the new high resolution images.

SIFT

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.056 0.053 0.013 291
Visible - 720p 0.102 0.103 0.016 439
Visible - 1080p 0.227 0.191 0.02 682
Occluded - 540p 0.045 0.039 0.012 234
Occluded - 720p 0.087 0.081 0.013 292
Occluded - 1080p 0.195 0.177 0.014 377
ID Card 0.016 0.021 − 639

SURF

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.027 0.043 0.015 584
Visible - 720p 0.047 0.071 0.018 800
Visible - 1080p 0.108 0.108 0.023 1158
Occluded - 540p 0.026 0.039 0.014 515
Occluded - 720p 0.046 0.058 0.015 580
Occluded - 1080p 0.107 0.102 0.017 748
ID Card 0.012 0.027 − 660

BRISK

Image Keypoint Descriptor Matching # of
Detection (s) Extraction (s) Time (s) Keypoints

Visible - 540p 0.0085 0.0051 0.0182 514
Visible - 720p 0.0137 0.0077 0.0253 742
Visible - 1080p 0.0224 0.0107 0.0322 931
Occluded - 540p 0.0071 0.0036 0.0109 316
Occluded - 720p 0.0108 0.0045 0.0124 361
Occluded - 1080p 0.0178 0.0062 0.0134 391
ID Card 0.0136 0.0094 − 1090

The results of the SIFT detector lay within approximately 10% of the original results of the
mobile hardware. For example, the results of the Scene (540p) image on the Android hardware
was recorded to be 0.528 seconds, whereas on the laptop it was recorded at 0.056 seconds which is
approximately within 10% of the mobile hardware time. From the results it can be seen that the
laptop hardware is considerably more powerful than the mobile hardware and is best suited for
the real-time aspect of recognising an object. There is a stark difference in the computation time
between the mobile device and laptop.

From the collection of results, it can be seen that BRISK is the most favourable detector for
the task of object recognition with the computation times all falling below 0.6 seconds. However,
SIFT and SURF both fall within 0.9 and 5.0 seconds, respectively. The BRISK detector has a
significant impact on the processing time in comparison to the SIFT detector, especially when
considering that BRISK is able to detect more keypoints in comparison to SIFT. For example,
the SIFT detector was able to detect 682 keypoints on the image of a scene in a 1080p resolution.
Whereas BRISK was able to detect 931, an increase of 249 keypoints in a similar amount of time.
However, it can be seen that the SURF detector was able to extract even more keypoints than
BRISK (1, 158) in half the amount of time, 0.108 seconds. Therefore, based upon this analysis
it can be seen that although BRISK is computationally least expensive on the extraction of a
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descriptor, the SURF detector performs better with handling the keypoint detection.

4.1.2 Web Camera and Videos

The results in Table 4.6 show the outcome of the first experiment using the SURF detector solely for
detecting an object from its environment using the in-built web-cam of the Dell XPS laptop. It can
be seen from the results the the number of octaves and layers within each octave can negatively
impact the frame-rate of webcam, whereby the larger the number the the lower the frame-rate
becomes.

Table 4.6: The results of using the SURF only detector on a webcam inserting live-feed data.

Experiment 1: SURF Recognition
Parameter Value FPS Object Detected
hessian threshold 100

11 Yes (strong)# of octave 4
# of octave layers 2

hessian threshold 50
17 Yes (weak)# of octave 2

# of octave layers 1

hessian threshold 200
20 Yes (strong)# of octave 2

# of octave layers 2

hessian threshold 400
25 Yes (strong)# of octave 2

# of octave layers 2

By increasing the Hessian threshold of the detector and lowering the octave and octave layers
the frame-rate of the live-feed can be steadied to almost within the original frame-rate of the
webcam. As shown with the final set of parameters and the frame-rate measuring at 25 frames-
per-second, only a five frame drop from the original (30). The results also show that only a strong
detection is made when the number of octave layers within each octave is two and that the Hessian
threshold is above the default level of 100.

Table 4.7: The results of using the BRISK only detector on a webcam inserting live-feed data.

Experiment 2: BRISK Recognition
Parameter Value FPS Object Detected
threshold 30

23 Yes (weak)# of octaves 3
pattern scale 1.0

threshold 60
30 No# of octaves 6

pattern scale 1.0

threshold 50
30 Yes (weak)# of octaves 4

pattern scale 0.5

threshold 30
25 Yes (strong)# of octaves 5

pattern scale 1.0

The results in Table 4.7 shows the outcome of the second experiment for solely using the BRISK
detector. It can be seen that although BRISK was computationally fast at extracting descriptors on
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the high-resolution dataset, when it comes to using the detector in videos it is unable to maintain
a steady frame-rate when being used with a webcam. Although it was able to reach the desired
frame-rate of 30 FPS, the detection of the algorithm was either non-existent or very weak when
the object was moving, as shown in Figure 4.9.

(a) Bad Recognition (b) Good Recognition

Figure 4.9: The detection outcome using the third set of parameters for BRISK. Although a
strong detection can be made as shown on the right, a weak detection can also occur (as shown on
the left).

The weak detection could be due to the number of keypoints detected by the BRISK algorithm,
and therefore the third experiment should be able to apply a strong detection whilst maintaining
the frame-rate. The third experiment will use the best of the previous two experiments parameters
for the BRISK and SURF hybrid and then determine the best parameters that can offer a robust
detection and optimum frame-rate; results of this experiment can be found in Table 4.8.

Table 4.8: The results of using the BRISK only detector on a webcam inserting live-feed data.

Experiment 3: BRISK and SURF Hybrid Recognition
Detector Parameter Value FPS Object Detected

SURF
hessian threshold 400

22 No

# of octaves 2
pattern scale 2

BRISK
threshold 30
# of octaves 3
pattern scale 1.0

SURF
hessian threshold 600

28 Yes (strong)

# of octaves 3
pattern scale 3

BRISK
threshold 20
# of octaves 2
pattern scale 0.35

From the results it can be seen that the two best parameters for each detector did not work
as expected with the object not being able to be detected and the frame-rate below the desired
FPS. However, by adjusting the BRISK and SURF parameters quite significantly a recognition
can be made; albeit with a slightly different matching process used. The previous experiments
used the FLANN-based matching procedure, however for this experiment the Brute-force matcher
was used to find the best match. It was also found to perform quicker than the FLANN-based
method. Based upon the outcomes of the results of the live-feed data, the data in Table 4.9 shows
the results of the hybrid feature detector method for recognising the object in a high definition
video.
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Table 4.9: The results of the experiment on the high-definition video dataset using a hybrid of
detectors to recognise an object.

Video Average FPS Run
Length (s)

Square (540p) 20.90 431.70
Square (720p) 13.59 662.09
Square (1080p) 6.55 1374.78
Straight (540p) 21.08 427.99
Straight (720p) 12.69 721.33
Straight (1080p) 6.88 1307.79

It can be seen from the results that the ability to recognise an object using a hybrid of the
SURF and BRISK detectors is unable to meet the recorded frame-rate of the video (30 FPS).
The best result obtained was on the video of the object moving within a straight line where the
frame-rate reached 21.08 frames-per-second. Due to this drop in frames it extended the run length
of the video to 428 seconds. The performance for each subsequent resolution becomes worse with
the frame continuously dropping significantly. For example, the video of an object moving within
the axes of a square shows that the frame-rate drops from 20.9 FPS to 6.55 when the resolution is
doubled, this is a drop of approximately 68.6% (−14.35 frames). This sort of drop could severely
impact the possibility of being able to predict within a real-time constraint as the prediction is
made on a frame that is fourteen frames behind. The graph in Figure 4.10 shows the linear increase
in the computation time for each resolution and video.
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Figure 4.10: For an increase in the resolution of the video the computation time also increases.
The original time of the video was 300 seconds.

From the graph, it can be clearly seen the exponential growth in the computation time when
the resolution of the video is increased. The original run-length of the video was 300 seconds (five
minutes) an it can be seen that even on the lowest resolution this original run-length was not
met. Interestingly, the movement of an object in a straight line saw a more gradual increase in
the time taken, whereas the more complex movement time saw a larger spike on the 1080p video
file (although marginal). The results in Table 4.10 shows the results of solely using the BRISK
detector for detection of the keypoints and extraction of a descriptor.
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Table 4.10: Results for the experiment using solely the BRISK feature detector on a collection
of high-definition video files.

Video Average FPS Run
Length (s)

Square (540p) 14.29 630.36
Square (720p) 10.41 864.21
Square (1080p) 6.76 1331.37
Straight (540p) 15.05 598.59
Straight (720p) 10.65 846.46
Straight (1080p) 7.17 1255.58

Initially it can be seen that the sole use of the BRISK detector has a further impact upon
the frame-rate of the video, with the 540p videos coming off significantly worse than the previous
experimentation. The FPS achieved using BRISK for this resolution was 14.29 and 15.05 FPS,
respectively; whereas with the previous experiment the FPS was 20.90 and 21.08, this is a delta
of 6.61 and 6.03 frames. The difference in frame-rate was to be expected due to the previous
experiments on static images whereby BRISK is slower for the detection of keypoints from the
image. However, an improvement can be seen on the highest resolution file, 1080p; whereby a
small increase could be seen on the frame-rate using solely just the BRISK detector. Although the
increase was nominal, it does show that there is some advantage to just using a singular detector
for extracting features opposed to using a hybrid. However, the benefits of using the hybrid far
outweighs using a single detector as the overall FPS of the videos were considerably better to that
achieved using the BRISK detector.

4.2 Results of Predicting a Pedestrians Movement

The first dataset used for the experiments consisted of 12, 684 pedestrians. Due to this large num-
ber of experiments that have been performed upon this dataset an expanse collection have been
recorded. Therefore, some of the data can be discarded as they are considered to be redundant.
There are a large amount of pedestrians that have a small number of steps recorded, whilst pedes-
trians with a larger number of steps are a rarity. The collection of data shown in Table 4.11 shows
the mean accuracy of predictions for an imposed limit on the number of steps that have been
observed.

Table 4.11: The mean accuracy of the dynamic stochastic model when applying a threshold to
the number of steps that have been observed by the model.

Step Limit Mean Accuracy (%)
Order One Order Two Order Three Order Four Order Five

4450 85.46 88.48 90.21 91.32 91.85
2225 85.45 88.48 90.21 91.32 91.85
1113 85.45 88.47 90.21 91.32 91.84
556 85.43 88.46 90.19 91.3 91.82
278 85.47 88.45 90.15 91.26 91.77
139 85.6 88.48 90.14 91.22 91.72

From the data in the table, it can be seen that by halving the number of steps each time sees
a minimal decrease in the accuracy of each order. The accuracy range for a first order model
drops from 85.46% to 85.43% (4, 450 to 556 steps). However, when a further drop is made to
278 and 139 steps the accuracy increases (85.47% and 85.60%, respectively). The same increase
occurs on a second order model, whereby decreasing the steps from 278 to 139 saw an increase
of 0.03%. However, the higher-order models remain unaffected with a linear decrease being seen.
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The mean accuracy of each step limit is shown in the graph in Figure 4.11. A linear decrease can
be seen in the graph when decreasing the number of steps, although it is marginal. However, on
the lower orders of the Markov model for a lower step limit an anomaly can be seen. An increase
in the accuracy is observed and these anomalous results could be due to the number of previous
movements that are collected to generate a prediction.
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Figure 4.11: The mean accuracy of the various step thresholds used in Table 4.11.

A first order model only uses the single past movement in order to generate a prediction and
therefore is most effective when trying to predict a simple path of movement. However, this
will not be as accurate for paths that can be described as being complex, i.e numerous changes
in direction. These results are considered to be anomalous as they are not in-keeping with the
progression of change that is seen on the three higher orders. The third order model saw a decrease
in the accuracy of the model, with a difference of 0.07% when applying a threshold from 4, 450 to
139 steps. Similar differences have been observed with the fourth and fifth model (−0.10% and
−0.13%, respectively) and are considered not to impact the overall model significantly. The mean
decrease between the three higher orders is seen to be less than 1% and therefore negligible. Due
to the overall accuracy for each order being high it can be suggested that applying a conditional
threshold of 305 steps will not impact the results detrimentally and can reduce the number of
pedestrians for analysis from 12, 684 to 11, 647 (a reduction of 8.18%). To further back up the
suggestion of applying a threshold, an analysis is performed on the pedestrians by categorising
them into a collection of step ranges, as shown in Table 4.12.

By breaking down the pedestrians into their respective step ranges, it can provide a good
indication where a majority of the pedestrians within the dataset are situated. It can be seen
from the data in Table 4.12, a majority of the pedestrians are falling within the step ranges of
5 − 25 and 25 − 45, approximately 77.82% of the dataset. By including the pedestrians within
ranges 45 − 105 this suddenly increases to 95%. When increasing the order of the model, certain
step ranges can reduce the amount of pedestrians, whereas others see an increase. This would
be due to the number of initial steps that are taken at the beginning of the model to make the
first prediction. These initial steps are trimmed from the file and therefore reduces the amount of
steps used to generate predictions. For example, a fifth order model requires five previous steps
to generate a prediction. Therefore, five steps are removed from the total number and this could
bring a pedestrian from a category it once belonged in an order of one to a lower category in the
fifth order model.
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Table 4.12: The various categories of step ranges and the number of pedestrians that fall within
each step category.

Step Range Number of Pedestrians
Order One Order Two Order Three Order Four Order Five

5− 25 3884 4110 4330 4581 4819
25− 45 5180 5189 5166 5102 5052
45− 65 1803 1580 1402 1230 1052
65− 85 192 187 176 166 160
85− 105 111 104 99 101 100
105− 125 85 86 85 81 82
125− 145 59 60 62 61 63
145− 165 58 58 58 58 54
165− 185 33 33 30 30 31
185− 205 49 47 48 48 47
205− 225 41 44 44 44 44
225− 245 39 37 36 34 34
245− 265 33 37 39 40 40
265− 285 43 42 41 40 40

Although it can be seen that the step ranges that are greater than 105 steps consist of few
pedestrians, they are important for the analysis of this work. Having as many pedestrians as possi-
ble is imperative in this study to determine whether the number of steps expressed by pedestrians
can influence the accuracy of a model. By limiting the steps to 105 could restrict the analysis
and conclusion of the study. A selection of various hardware have been used to determine whether
the difference in the CPU and RAM could impact the time and accurateness of the model. Upon
reviewing the data for the dynamic Markov model whilst reducing the amount of data for analy-
sis it can be seen that the accuracy rates obtained from each device do not deviate significantly.
Although as expected, the computation times for processing do increase and therefore it has been
decided to normalise the prediction accuracies across the three devices to be a singular entity for
analysis. With this further refinement occurring using the steps outlined above, a reduction was
made to the number of steps within a range of 5 to 305 steps.

4.2.1 Dynamic Markov Model

The experiments for the dynamic Markov model have used two different methods for prediction:
random and maximum-likelihood. The results for the random prediction method have been sub-
jected to a statistical descriptive analysis to derive the minimum, mean and maximum of the
prediction accuracy, alongside the standard deviation and delta between the minimum and maxi-
mum. The results of the test are shown in Table 4.13 and it can be seen that the model has a high
accuracy rate for predictions, with the mean of the model ranging between 85.45% and 91.78%,
depending upon the order of the model.

Table 4.13: The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5 to 305 steps.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 41.26 99.56 85.45 10.43 58.31
Two 53.12 100.00 88.44 7.48 46.88
Three 65.74 99.43 90.16 5.83 33.69
Four 70.83 100.00 91.27 4.97 29.17
Five 66.67 99.47 91.78 4.74 32.80

77



The statistics show that the minimum accuracy of the model ranges from 41.26% to 70.83%
for all five orders. It is noted that between the fourth and fifth models the minimum accuracy
decreases from 70.83% to 66.67% which goes against the linear increase that is seen in the mean
accuracy of the model. To determine why this decrease has occurred, the pedestrians with the
minimum accuracy gained for each order is extracted and shown in Table 4.14.

Table 4.14: A selection of pedestrians with a minimum accuracy (highlighted in bold) are anal-
ysed.

Pedestrian Accuracy (%) # of Steps
One Two Three Four Five One Two Three Four Five

5860 41.26 64.19 82.87 94.02 96.61 122 121 120 119 118
6344 48.46 53.12 72.98 80.14 84.95 83 82 81 80 79
8382 79.37 79.49 65.75 77.78 92.22 14 13 12 11 10
6642 73.74 76.67 82.72 70.83 85.71 11 10 9 8 7
1618 84.44 77.78 79.17 77.78 66.67 10 9 8 7 6
2533 84.44 86.42 75 74.6 66.67 10 9 8 7 6
2988 70 80.25 77.78 71.43 66.67 10 9 8 7 6
3300 80 80.25 84.72 74.6 66.67 10 9 8 7 6
5559 83.33 82.72 81.94 74.6 66.67 10 9 8 7 6
6447 86.67 77.78 75 80.95 66.67 10 9 8 7 6
6475 80 77.78 84.72 79.37 66.67 10 9 8 7 6
7602 81.11 85.19 77.78 80.95 66.67 10 9 8 7 6
8192 87.78 81.48 83.33 74.6 66.67 10 9 8 7 6
8481 84.44 80.25 84.72 71.43 66.67 10 9 8 7 6
8602 80 81.48 84.72 71.43 66.67 10 9 8 7 6
9875 80 81.48 77.78 77.78 66.67 10 9 8 7 6

The table shows the range of accuracies gained for each order of the model and the number of
steps that have been recorded. It can be seen from the table that pedestrian #5, 860 gained the
lowest accuracy for a first order model but had a substantial number of steps for analysis (118 to
122). However, the pedestrian did see a subsequent increase in the accuracy of predictions when
the order of the model was increased. The same statistics can be seen seen with pedestrian #6, 344.
Although they gained the lowest accuracy for the second order model there is a linear increase in
the accuracy of predictions. A common denominator can be seen with the fifth order model, and
could explain why such a low accuracy was recorded; the number of steps for this model are all
less than twelve.

Due to the number of steps decreasing when the order of the model is increased, it could
theoretically be possible that the accuracy of the predictions will also decease as there are a fewer
number of steps available to make a prediction on and let the model ‘learn’ as time progresses.
However, the accuracy rate could also potentially decrease due to the complexity of movement that
has been exhibited by the pedestrian. Therefore, to analyse whether the complexity of movement
has impacted the results of the fifth order model, four pedestrians from Table 4.14 have been
selected and their paths drawn and shown in Figure 4.12.

(a) Pedestrian #1, 618 (b) Pedestrian #5, 559

Figure 4.12: Two of the four pedestrians chosen for analysis to determine why they gained the
lowest accuracy for a fifth order model.

From the figure of the pedestrians path it can be seen that the two pedestrians have a similar
path. Pedestrian #1, 618 is recorded to see a decrease in the accuracy of predictions made, going
from 84.44% to 66.67% when the order of the model is increased. The path of the pedestrian is
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fairly linear, with it moving in a diagonal straight line from the north-west to south-east; therefore,
it is expected to see the accuracy rate improve as order of the model increases. To understand
why the accuracy rate decreases, the probability matrix for the pedestrian is analysed. It can be
seen for the first order only a single row of the matrix was re-calculated, as shown in Equation 4.1,
whereas the fifth order matrix had multiple rows adjusted, as shown in Equation 4.2.

[ [−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

... ... ... ... ... ... ... ... ... ...
[(1,1)] 0 0 0 0 0 0 0.11̇ 0 0.89

]
(4.1)

[ [−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

... ... ... ... ... ... ... ... ... ...
[(1,1)·5] 0 0 0 0 0 0 0.2 0 0.8

]
(4.2)

Due to the larger selection of rows to chose from within a fifth order model, it is expected to
see the accuracy to decrease; and due to the larger selection of states to transition. For example,
the first order model has one of two states it could transition to: (1,−1) or (1, 1). Whereas in the
fifth order model the pedestrian has one of two states that the pedestrian could transition to; with
a slight variation in the probabilities. Because the past movements recorded only take into account
the direction (1, 1) it can be seen that the path does not always exhibit this type of movement;
and therefore at the end when the pedestrian is moving east for a short while it will always think
it is going south-east, as the probability of this transition is 80%.

Pedestrian #5, 559 has a similar path to #1, 618, with a small elongation at the beginning
of the journey where they are momentarily going towards the south. However, the majority of
their path is them moving towards the north west. A similar behaviour was exhibited with the
model whereby the accuracy of the predictions were decreasing from relatively high (83.33%) to
the lowest accuracy for the fifth order (66.67%), a difference of −16.66%. As aforementioned it
is expected to see the accuracy rate of the predictions to drop due to the increased complexity of
the matrices. For any pedestrian where a sudden change in direction is exhibited it is most likely
that this change can be captured with the first order model. However, the fifth order model is
unlikely to do so due to the number of past movements that have been taken into consideration,
and is more likely to give the wrong prediction. The pedestrian paths shown in Figure 4.13 are
for pedestrians #8, 192 and #9, 875 and similar to the previous pedestrians they both exhibit the
same path and a low number of steps.

(a) Pedestrian #8, 192 (b) Pedestrian #9, 875

Figure 4.13: Two of the four pedestrians chosen for analysis to determine why they gained the
lowest accuracy for a fifth order model.

The pedestrians are moving within a similar direction; with their path beginning in the south
and moving towards a north-west direction, before a change in direction to the north-east. Pedes-
trian #8, 192 sees a decrease in the accuracy of predictions for an increase in the order of the model
(similar to the previous pedestrians); however, the second pedestrian has a different pattern. It can
be seen that pedestrian #9, 875 sees an increase in the accuracy from a first to second order model.
The third and fourth models stagnated (the same accuracy was recorded) and the accuracy then
decreased with the fifth. The stagnation of the prediction accuracy could be due to the change of
direction towards the end of the pedestrian’s path. It can be seen that pedestrian #9, 875 has a
longer path going towards a north-east direction and therefore there was more time for the model
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to adjust to this new change of direction. The lowest accuracy overall from the dynamic stochastic
model was achieved in the first order, by pedestrian #5, 860. The accuracy rate for the first order
model was 41.26% but increased rather significantly for the second order and subsequent models.
To determine why a low accuracy was recorded for the first model and higher on the other models
the path will be analysed, and is shown in Figure 4.14.

Figure 4.14: The path of pedestrian #5, 860 to be analysed and determine why a low accuracy
rate was gained for the first order but a significant progress was made on the latter orders.

Between the first and second order and increase of 22.93% was achieved in accuracy for this
model and by observing the path of movement by the pedestrian it can be seen that the path is
fairly straight in parts but rather chaotic in others (as highlighted in the yellow). The chaotic
movement can be quite difficult to predict due to the constant changes of direction that is being
exhibited by the pedestrian and therefore would be inherently difficult for a first order model to
predict. Due to the constant changes in direction and the model constantly being updated for each
movement observed it can alter the probability matrix to a point where it would require significant
movement in one direction to rectify. However, this problem is not present with the fifth order
model due to the increased number of past movements that are taken into consideration to make
a prediction. The higher order models are not adjusted as much as the first order model due to
the larger selection of rows. Therefore, the probabilities will not need as much ‘learning’ in order
to re-correct themselves and this would be the reason as to why the higher order models see a
significant increase in the accuracy of the model.

The pedestrian shown in Figure 4.15 saw an anomalous result for their third order model.
Pedestrian #8, 382 saw an increase between the first and second order (+0.12%) and a sudden
decrease to 65.75% (−13.74%).

Figure 4.15: The path of pedestrian #8, 382 to be analysed and determine why a low accuracy
rate was gained for the third order, when the previous and latter two orders saw a linear increase.

The path of the pedestrian is akin to the letter ‘s’, however the overall length is relatively short
with the pedestrian only moving between 10 to 14 steps. The range of movements made are within
three different directions: left, down and up. The actual states of transition that were visited are:
(−1,−1), (1,−1) and (1, 1). The three types of movement collected could impact the accuracy
for a first order mode as three rows within the matrix are adjusted to account for each direction.
However, for a third order model the number of rows adjusted in the probability matrix are six,
as shown in equation 4.3.
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[−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

... ... ... ... ... ... ... ... ... ...
[(1,−1),(1,−1),(1,1)] 0 0 0 0 0 0 1 0 0
[(1,1),(1,−1),(1,−1)] 0 0 0 0 0 0 1 0 0
[(−1,−1),(1,−1),(1,−1)] 0 0 0 0 0 0 1 0 0
[(1,−1),(1,−1),(−1,−1)] 0 0 0 0 0 0 1 0 0
[(1,−1),(−1,−1),(1,−1)] 0 0 0 0 0 0 1 0 0
[(1,−1),(1,−1),(1,−1)] 0.167 0 0 0 0 0 0.667 0 0.167


(4.3)

As it can be seen, there is a fair few more rows that the previous direction have movement has
populated and therefore this would account for the dip in accuracy for the third order model.
When analysing the matrix of the fourth and fifth model it can be seen that these two matrices
saw an increase in the number of rows to select (7 and 8, respectively) and the probabilities were
similar. With the larger number of past movements that are used to generate a prediction, it is
expected to see a difference in the number of rows that are adjusted in the matrix. However, due
to the lower number of steps that are exhibited by the pedestrian then the low accuracy gained
is to be expected. However, if the number of steps observed were to grow, it is known that the
model will be able to alter the probabilities suitably and therefore the accuracy will increase. It
can be seen from the results in Table 4.14 that the models order can influence the accuracy of
prediction, depending upon the type of movement that has been exhibited and the number of
steps. For example, pedestrian #1, 618 had a large number of steps observed and saw a significant
linear increase in the accuracy of predictions when the order was adjusted respectively. Therefore,
to determine whether there is a correlation between the number of steps and the accuracy of the
model a correlation test was performed using the Pearson’s (Pearson 1896) correlation test, shown
in Table 4.15.

Table 4.15: The statistics for the Pearson’s correlation test using the IBM SPSS statistics soft-
ware.

Order One Two Three Four Five

Steps

One −0.158 −0.040 0.089 0.216 0.340
Two −0.158 −0.040 0.089 0.216 0.340

Three −0.158 −0.040 0.089 0.216 0.340
Four −0.158 −0.040 0.089 0.216 0.340
Five −0.158 −0.040 0.089 0.216 0.340

Accuracy

The results from the correlation test are weak and show that the number of steps observed
by the pedestrians do not impact the accuracy rates of the predictions generated. It is assumed
that instead of the steps affecting the accuracy rate of the model it is the general path of the
pedestrian that can influence the outcome of the model. As it has been mentioned previously with
the several pedestrians, it can be seen their path have a direct influence on the accuracy of the
model; with some orders being weaker at predicting a particular path opposed to the other. For
example, a pedestrian with a simple, straight path will perform better when using a lower order
model (typically a first order) whereas more complex paths work better with a higher order model.
Overall, it can be seen that by increasing the accuracy of the model does have a positive impact
on the accuracy as a linear growth can be seen across the mean accuracy of the model, as shown
in Table 4.13. To determine whether the categories of step ranges have any influence upon the
accuracy of the predictions, the graph in Figure 4.16 has been created to show how the mean
accuracy can fluctuate depending upon the range of steps that have been exhibited.
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Figure 4.16: The mean accuracy for pedestrians within their respective category of step ranges
for the dynamic stochastic model using the random prediction method.

It can be seen from the graph that there is no straight linear increase when the step ranges
increase. There is a degree of instability with the model as there are numerous peaks and troughs
within the lower orders. The first and second order models are significantly the worse for stability
with the prediction rate dropping significantly between ranges 5 to 85, with it then increasing until
it reaches 205 steps. The peaks and troughs within the graph would be attributed to the number of
pedestrians within each category; with a lower number of pedestrians having a far greater influence
on the mean accuracy in comparison to a step range that has a larger number of pedestrians. The
instability of the predictions for orders one to three could be due the complexity of the paths that
fall within the lower step-ranges. It can become less and the line becomes straighter and a small
linear increase can be seen.

The results for the maximum-likelihood method have been subjected to a statistical descriptive
analysis, similar to that was performed within the random prediction method section. The results
of this test can be found in Table 4.16, and it can be seen that the maximum accuracy achieved was
100%, whilst the minimum accuracy rate saw an increase in comparison to the random prediction
method.

Table 4.16: The descriptive statistics of the dynamic stochastic model using the maximum-
likelihood prediction generation method for pedestrians within 5− 305 steps.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 50.00 88.81 100.00 8.27 50.00
Two 58.82 90.76 100.00 6.29 41.18
Three 63.64 91.98 100.00 5.03 36.36
Four 62.50 92.73 100.00 4.52 37.50
Five 66.67 93.09 100.00 4.47 33.33

The minimum accuracy of the model was recorded to be between 50% and 66.67%. A linear
increase can be seen across the five orders of the model with the minimum and mean. It can be
seen that the delta (the difference between the mean and maximum) decreases between orders one
and three, with a small increase on the fourth order model. To determine why this anomaly occurs
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within the results, the pedestrians that gained the minimum accuracy recorded for the model are
analysed; the pedestrians for this order are shown in Table 4.17.

Table 4.17: The pedestrians that gained the minimum accuracy for the fourth order model when
using the maximum-likelihood prediction method.

Pedestrian Accuracy (%) Number of Steps
One Two Three Four Five One Two Three Four Five

3098 72.73 70.0 77.78 62.5 85.71 11.0 10.0 9.0 8.0 7.0
8512 72.73 70.0 77.78 62.5 100.0 11.0 10.0 9.0 8.0 7.0

Two pedestrians gained the lowest accuracy for this order, and they both had the same number
of steps observed. The paths for each pedestrian are shown in Figure 4.17 and it can be seen that
they both have different paths; with the path by #3, 098 moving north-east and pedestrian #8, 512
moving north-west and then deviating towards the north-east.

(a) Pedestrian #3, 098 (b) Pedestrian #8, 512

Figure 4.17: The two pedestrians that gained the lowest accuracy for the fourth order model
using the maximum-likelihood method.

The number of steps exhibited by the pedestrian range between 7 and 11 steps, depending
upon the order of the model. It can be seen that both of the pedestrians follow a similar path
of progression for the accuracy rates with orders one to four having the same rate. The drop in
accuracy from the third order to the fourth was measured to be −15.28% and this large drop in
accuracy could be due to the matrices. Analysis of the matrices show that the third order model
has had its probabilities adjusted on four rows, whereas the fourth order model had five rows
adjusted for pedestrian #3, 098. Pedestrian #8, 512 on the other hand saw the same number of
rows adjusted, respective to the order of the model. Therefore, the complexity of the path must
have an implication on the accuracy of the order for the fourth order. It could be said that not
enough data is present within the matrices for a fourth order to be able to make an accurate
prediction. Although the fifth order is able to make a reliable (and strong) prediction with the
same number of steps.

The highest accuracy gained from the model was 100% and it is expected to see this prediction
method gain 100% accuracy due to it always choosing the most probable outcome and not randomly
selecting a state of transition. The pedestrians that gained 100% accuracy across all orders of the
stochastic model using the maximum-likelihood method. A total of 386 pedestrians gained this
accuracy across all of the orders. Therefore, ten samples have been picked at random to analyse
why these pedestrians gained 100% accuracy and are shown in Table 4.18.
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Table 4.18: The pedestrians that gained the maximum accuracy for each stochastic model order.

Pedestrian Accuracy (%) Number of Steps
One Two Three Four Five One Two Three Four Five

7043 100.0 100.0 100.0 100.0 100.0 23.0 22.0 21.0 20.0 19.0
2070 100.0 100.0 100.0 100.0 100.0 15.0 14.0 13.0 12.0 11.0
12555 100.0 100.0 100.0 100.0 100.0 14.0 13.0 12.0 11.0 10.0
12095 100.0 100.0 100.0 100.0 100.0 35.0 34.0 33.0 32.0 31.0
3308 100.0 100.0 100.0 100.0 100.0 12.0 11.0 10.0 9.0 8.0
6099 100.0 100.0 100.0 100.0 100.0 11.0 10.0 9.0 8.0 7.0
2217 100.0 100.0 100.0 100.0 100.0 26.0 25.0 24.0 23.0 22.0
7085 100.0 100.0 100.0 100.0 100.0 24.0 23.0 22.0 21.0 20.0
11269 100.0 100.0 100.0 100.0 100.0 34.0 33.0 32.0 31.0 30.0
10022 100.0 100.0 100.0 100.0 100.0 33.0 32.0 31.0 30.0 29.0

It can be seen that the selection of pedestrians that the number of steps achieved are all less than
forty. To determine whether the complexity of their paths influence the accuracy of predictions.
Four pedestrians have been chosen for their paths to be generated and analysed. The pedestrians
chosen to have their paths analysed have been chosen based upon the number of steps that have
been observed, ranging from the smallest to the largest number of steps. The first two pedestrians
with the lower end of steps are shown in Figure 4.18.

(a) Pedestrian #6, 099 (b) Pedestrian #2, 070

Figure 4.18: Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the dynamic stochastic model.

It can be seen from the images that the two pedestrians have a similar path whereby they are
both heading in a direction towards the north-west. Pedestrian #2, 070 has a slightly longer range
when moving diagonally towards the north-east. This is to be expected as that pedestrian has 14
steps, opposed to the 11 steps of pedestrian #6, 099. It can be seen that both paths are fairly
straight, and can be seen as to why the accuracy rate recorded for these models were observed
to be 100%. It can be seen with the second pedestrian there is a kink in the path of movement
(highlighted in green). Although this kink is relatively different in the angle of movement, it is
still considered to be the same course of direction and therefore is classed as the same direction of
movement. The second batch of pedestrians are shown on Figure 4.19 and both of these pedestrians
had the large collection of steps observed, ranging between 26 and 35 steps. The two pedestrians
consist of a similar path with them both heading towards the north-west again from a south-east
location. They both looked different due to the angle of change. As aforementioned, with how the
model works they are both classified as moving towards the same direction.

(a) Pedestrian #2, 217 (b) Pedestrian #12, 905

Figure 4.19: Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the dynamic stochastic model.
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Due to the large number of steps and the direction of movement being the same throughout, it
is easily seen as to why the maximum accuracy limit has been achieved. Therefore, it can be from
these results that simple paths (such as moving in a diagonal line) can achieve a 100% prediction
rate. This would be expected from the deterministic model as it is always choosing the most
probable prediction and because the last few movements have been the same direction it is always
going to re-select that as the next movement. Had there been a level of deviation and the method
being used a random prediction then the 100% figure would have not been met.

The lowest accuracy gained for this method of prediction was achieved by pedestrian #7675
on the first order model, with an accuracy of 50%. The statistics of the pedestrians accuracy for
the other orders and observed steps are shown in Table 4.19.

Table 4.19: The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the order of five dynamic stochastic model using the maximum-likelihood prediction
method.

Pedestrian Accuracy (%) Number of Steps
One Two Three Four Five One Two Three Four Five

7675 50.0 59.46 80.56 94.29 94.12 38.0 37.0 36.0 35.0 34.0

It can be seen that although the pedestrian gained the lowest accuracy for the first order, a
significant difference can be seen with orders two to four. Whereby the fifth order stagnates and
sees only a small increase. To see why the lowest accuracy of the model was achieved on this
pedestrian, the path is analysed and shown in Figure 4.20.

Figure 4.20: The path of pedestrian #7, 675 that gained the lowest accuracy for the first order
dynamic stochastic model using the maximum-likelihood prediction method.

The rather horizontal line of the pedestrian means that it would be expected a first order model
will perform rather well. However, there are a few peaks and troughs within the path and these
could easily be registered in the first-order model as a change in direction. To ensure that this was
the case the matrix of the pedestrian was analysed for the first order model. The matrix shows
that three different directions have been observed and used to update the probability matrix. The
updated rows of the matrix are shown in Equation 4.4.


[−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

[(−1,−1)] 0.4375 0.125 0.4375 0 0 0 0 0 0
[(−1,0)] 0.2 0.4 0.4 0 0 0 0 0 0
[(−1,1)] 0.5 0.0625 0.4375 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ...

 (4.4)

It can be seen from the matrix that the path of movement is directly expressed within the
matrix through the first three states. For example, (−1,−1) is the object moving towards the
north-west, (−1, 0) is the object moving west and (−1, 1) is the object moving south west. All of
these movements can be seen in Figure 4.20 showing the pedestrians path. Because the probability
values within the matrix are close to 50% for each direction. It is understandable why the first
order model gained such a low accuracy rate.

To understand why the third order gained such a high accuracy (80.56%) the matrix is also
analysed, and it can be seen that the matrix had six rows that were adjusted. Therefore, this would
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explain why the accuracy of the model is increased. The accuracy would be increased due to the
past history of movements ensuring that the right state prediction is made, and as the path of the
pedestrian is repeatable in some aspects it is understandable as to why the accuracy rate would be
higher. In order to determine which of the two predictions works the best, the delta between the
two methods are calculated for the mean, maximum and minimum results and is shown in Table
4.20.

Table 4.20: The descriptive statistics of the random and maximum-likelihood methods, with the
delta between the two shown.

Model Order Difference
Minimum Mean Maximum

One +8.74 +3.36 +0.44
Two +5.7 +2.32 0
Three −2.1 +1.82 +0.57
Four −8.33 +1.46 0
Five 0 +1.31 +0.53

The results show a mixed collection of results with the fluctuation of positive and negative
values in the column for the minimum accuracy. It can be seen that the maximum-likelihood
method performs better for orders one and two. However, orders three and four were worse off
with a decrease in the minimum accuracy that was obtained. However, it can be seen that overall
the mean accuracy of the model is better using the maximum-likelihood method, especially when
considering the first two orders whereby a +2% increase can be seen on the prediction accuracy.
The graph in Figure 4.21 shows the mean accuracy for both the random and maximum-likelihood
generation methods.
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(b) Maximum-likelihood Predictions

Figure 4.21: The mean accuracy of the predictions generated using the dynamic Markov model
with the two prediction methods.
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The graph shows that the maximum-likelihood method is marginally better than that of the
random prediction method and closely mimics the peaks and troughs of the method. However, by
using the maximum-likelihood method it removes a condition which makes it a Markovian model.
The key property of a Markov model is the generation of a prediction using the random number
to select the next possible transition; by always selecting the highest probability from the matrix
makes the model deterministic. Similar to the random prediction method analysis, a correlation
test was performed upon the results of the maximum-likelihood method to determine whether the
number of steps can influence the prediction accuracy of the model. The chosen correlation test
was the Pearson’s test, and the results are shown in Table 4.21.

Table 4.21: The statistics for the Pearson’s correlation test using the IBM SPSS statistics software
for the maximum-likelihood prediction method.

Order One Two Three Four Five

Steps

One −0.088 0.002 0.095 0.171 0.225
Two −0.088 0.002 0.095 0.171 0.225

Three −0.088 0.002 0.095 0.171 0.225
Four −0.088 0.002 0.095 0.171 0.225
Five −0.088 0.002 0.095 0.171 0.225

Accuracy

As to be expected, the results of the correlation show that there is no correlation between the
number of steps and the accuracy of the model. Therefore, it suggests that the although some of
the pedestrians have a greater number of steps, due to the complexity of the path the accuracy
could be affected. As there is no correlation between the number of steps and the accuracy, it is
necessarily not a bad thing. The model has been experimented with data that has been collected
from real pedestrians moving around a train station. If the same model is applied upon a simulation
of pedestrians walking within a straight line and a fluctuation in the number of steps for the same
path of movement then it is expected to possibly see a correlation between the two values.

4.2.2 Traditional Markov Model

The traditional Markov model uses the probability matrices that have been exported from the
dynamic Markov model (random prediction method) to provide a level of historical data. This
experiment has discarded the fifth order model due to the large redundancy the model had when
loading the matrices into the model. Therefore, the analysis for this model will be undertaken on
orders one to four only. The experiments performed used the random prediction method, and the
results have been subjected to a statistical descriptives test. The results of the test are shown in
Table 4.22.

Table 4.22: The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5− 305 steps.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 30.25 83.72 100.00 14.16 69.75
Two 41.88 86.84 100.00 11.27 58.12
Three 44.44 88.99 100.00 9.14 55.56
Four 50.00 90.51 100.00 7.82 50.00

From the results, it can be seen that the minimum accuracy gained is far lower than what was
registered when using the dynamic stochastic model (on both the random and maximum-likelihood
prediction methods). The minimum accuracy sees a linear increase for an increase in the order
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of the model with it ranging between 30.25% and 50%. The pedestrian that gained the lowest
accuracy for the first order was #9, 842. The details of this pedestrian can be found in Table 4.23.

Table 4.23: The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the first order of the traditional stochastic model.

Pedestrian Accuracy (%) # of Steps
One Two Three Four One Two Three Four

9842 30.25 54.78 68.69 82.99 101.0 100.0 99.0 98.0

From the results, it can be seen that the accuracy of the model for this pedestrian jumps from
30.25% to 82.99% for a range of steps from 98 − 101. To understand why the pedestrian gained
such a low accuracy for the first order model a path of the pedestrian was formed and is shown
in Figure 4.22. It can be seen from the image that the path of the image is rather chaotic with it
moving around the train station and coming back upon itself and stopping within the centre.

Figure 4.22: The path for pedestrian #9, 842 to analyse why such a low accuracy was gained
using the traditional stochastic model for the first order.

By observing the path of the pedestrian, it can be seen why the accuracy rate for the first
order is considerably low. As the probability matrix is a static vector the model is unable to learn
the directional movements of the pedestrian and therefore a prediction is generated based upon
the overall movements exhibited by the pedestrian based upon the dynamic stochastic model. To
understand how this model fairs against the dynamic stochastic model the data in Table 4.24
displays a comparison of the accuracy gained for the first order model in each stochastic model
that has been experimented with for the pedestrian.

Table 4.24: The accuracy of predictions using a first order model for the dynamic and traditional
stochastic models. The pedestrian in question is #9, 842 and compares the low accuracy gained
on the traditional model against the dynamic models.

Model Order Accuracy (%)
Dynamic - Maximum

One
53.46

Dynamic - Random 48.62
Traditional 30.25

The dynamic stochastic model performed better with an increase in accuracy for the random
and maximum-likelihood methods achieving an additional 18.37% and 23.21% in accuracy. This
gain in accuracy is to be expected as the dynamic model is able to learn for each step made by
the pedestrian and therefore the chance of making an incorrect prediction is lower. However, the
traditional model does have some positives and it can be seen from the statistical descriptives that
the maximum accuracy gained for each order was 100%. Table 4.25 shows the pedestrians that
gained the maximum accuracy for orders one to four. The number of pedestrians that gained this
maximum accuracy was 2, 332. A reduction is applied to the number of pedestrians for analysis
with a random selection chosen.
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Table 4.25: The accuracy rates and number of steps for the pedestrian that gained the lowest
accuracy in the first order of the traditional stochastic model.

Pedestrian Accuracy (%) # of Steps
One Two Three Four One Two Three Four

5482 100.0 100.0 100.0 100.0 26.0 25.0 24.0 23.0
7603 100.0 100.0 100.0 100.0 19.0 18.0 17.0 16.0
2051 100.0 100.0 100.0 100.0 12.0 11.0 10.0 9.0
12290 100.0 100.0 100.0 100.0 15.0 14.0 13.0 12.0
4663 100.0 100.0 100.0 100.0 10.0 9.0 8.0 7.0
7014 100.0 100.0 100.0 100.0 26.0 25.0 24.0 23.0
1218 100.0 100.0 100.0 100.0 19.0 18.0 17.0 16.0
10028 100.0 100.0 100.0 100.0 17.0 16.0 15.0 14.0
4109 100.0 100.0 100.0 100.0 20.0 19.0 18.0 17.0
11840 100.0 100.0 100.0 100.0 41.0 40.0 39.0 38.0

The collection of ten pedestrians show that the number of steps that were observed were
relatively low and were between the range of 10 and 41 steps. To analyse as to why these pedestrians
gained the maximum value of 100%. Four of them have been selected to draw their paths for
analysis. The paths of the first two pedestrians with the lower number of steps are found in Figure
4.23. From the images, it can be seen that the two pedestrians have a path that is running from
the south to the north in a diagonal. As mentioned beforehand, the diagonal line is a simple path
and can be relatively simple to predict; therefore the 100% accuracy rate is to be expected.

(a) Pedestrian #2, 051 (b) Pedestrian #7, 014

Figure 4.23: Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the traditional stochastic model.

The second two pedestrians have a higher number of steps; pedestrian #5, 482 and #11, 840
have 26 and 41 steps, respectively. The paths of the two pedestrians are shown in Figure 4.24.
The two paths are similar to the previous collection of paths, the pedestrians are travelling from
the south towards the north.

(a) Pedestrian #5, 482 (b) Pedestrian #11, 840

Figure 4.24: Two of the four pedestrians chosen for analysis to determine why they gained the
maximum accuracy of 100% for all orders of the traditional stochastic model.
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It can be seen that pedestrian #5, 482 has a small dent in its path, but as previously explained
the direction of movement is still travelling within a north-east direction and therefore is classified
as the same direction as the previous movements. To determine whether the number of steps
can influence the accuracy of the predictions a correlation test is performed using the Pearson’s
technique. The results of the test are shown in Table 4.26 and the results show that the correlation
is very weak between the two attributes.

Table 4.26: The statistics for the Pearson’s correlation test using the IBM SPSS statistics software
for the traditional stochastic model.

Order One Two Three Four Steps

One −0.155 −0.105 −0.048 0.001
Two −0.155 −0.105 −0.048 0.001

Three −0.155 −0.105 −0.048 0.001
Four −0.155 −0.105 −0.048 0.001

Accuracy

The correlation is worse off in comparison to the dynamic stochastic model with the fourth
order of the traditional model being negligible. The results are not surprising, as the correlation
on the previous model with the two prediction methods is low. To determine whether there is any
relationship within the results could potentially be obtained by categorising the types of movements
together and then doing a correlation between the type of movement and the accuracy of the model.
For example, do all straight paths see a linear increase when the order of the model increases? In
order to do this, the matrices of the pedestrians will be scored to determine whether there is any
similarity. This analysis is discussed in Section 4.2.3.

4.2.3 Pattern Analysis of the Dynamic Markov Model

Analysis of the matrices for the pedestrian dataset supplied by Yi et al. (2016b) uses the formulas
proposed by Haralick (1979) to calculate the dissimilarity, entropy and homogeneity. The scoring
function has been applied to the first-order model of the dynamic stochastic model. The different
scores supplied by each calculation will be used to determine whether there is a particular selection
of categories that can be created and used to organise the pedestrians based upon their movement.
The scores that consisted of pedestrians over forty that were obtained for the dissimilarity, entropy
and homogeneity are shown in Table 4.27.

Table 4.27: The different scores that have been obtained by using the Haralick (1979) formula’s
on the pedestrian matrices for the first order dynamic stochastic model.

Dissimilarity Count Entropy Count Homogeneity Count
90.667 55 1.5360313058225554 679 3.2454624760507107 679
91.167 47 1.5360313058225603 551 3.1716163222045544 551
91.810 63 1.5360313058225572 980 3.171616322204556 980
97.333 1065 1.5360313058225599 386 3.2454624760507085 386
109.333 1552 1.995426246616357 41 3.8148761042878663 61
122.667 52 1.9803517391735688 60 2.9808992703110335 52

2.123817970724675 54

By applying a threshold to the number of pedestrians within each scoring function removes the
outliers where not enough pedestrians are categorised to provide a meaningful data for analysis. In
this section, each scoring function is split into a relative section and discussed in detail regarding
what the scoring represents in terms of movement by the pedestrian and the type of path that has
been observed. It can be seen from the table of scores that the six different dissimilarity scores
have been recorded whereby the number of pedestrians with each score is over 40.
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The dissimilarity scoring function is designed to determine the distance between the points
within the matrix. The further the points lay away from each other then the higher the number
becomes within the matrix. It can be seen from Table 4.27 that the majority of pedestrians fell
within scores of 109.333 and 97.333. In order to determine the types of movement exhibited by the
pedestrians with this scoring metric, the direction and path of movement are analysed. A sample
of twenty pedestrians are taken for the first scoring metric, 109.333 and is shown in Table 4.28 and
displays the accuracy and direction of movement that has been observed for the pedestrian.

Table 4.28: A sample of twenty pedestrians that scored 109.333 using the dissimilarity scoring
function.

Pedestrian Accuracy (%) Direction of Pedestrian Accuracy (%) Direction of
Movement Movement

10866.0 98.19 (−1 1) 242.0 95.68 (1 − 1)
2639.0 97.9 (−1 1) 7344.0 94.12 (1 − 1)
8922.0 98.26 (1 − 1) 8065.0 96.11 (1 − 1)
11277.0 94.44 (1 − 1) 8879.0 93.75 (1 − 1)
2061.0 96.49 (1 − 1) 6301.0 95.65 (1 − 1)
11027.0 95.24 (1 − 1) 2238.0 97.04 (1 − 1)
3265.0 94.74 (1 − 1) 5204.0 97.95 (−1 1)
1224.0 94.12 (1 − 1) 4228.0 94.44 (1 − 1)
7876.0 94.74 (1 − 1) 8143.0 93.75 (1 − 1)
2001.0 94.81 (1 − 1) 2674.0 98.06 (−1 1)

From the table of pedestrians, it can be seen that the mean accuracy is 95.77% and that 80% of
the pedestrians move in the direction of (1,−1) which is a south-west direction. Two pedestrians
have been selected from the table and their path of movement is shown in Figure 4.25.

(a) Pedestrian #10, 866 (b) Pedestrian #8, 879

Figure 4.25: The paths of pedestrian #10, 866 and #8, 879 that scored 109.333 using the dissim-
ilarity score function.

It can be seen that the paths of the pedestrian generally follow the direction of the movement
that has been recorded. For example, the movement (1,−1) is a south-west direction as shown by
pedestrian #8, 879, whilst (−1, 1) is a north-east direction of movement as exhibited by pedestrian
#10, 866. The reason these types of movements have gained a relatively high accuracy is due to
the probability values that are found within the matrices of each pedestrian. It can be seen that
each matrix of the pedestrians shown in the table have only their relative direction of movement
updated and the probability of transitioning to the same state is 100%. The matrix of pedestrian
#6, 301 is shown:
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[−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

[−1,−1] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[−1,0] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[−1,1] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[0,−1] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[0,0] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[0,1] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[1,−1] 0 0 0 0 0 0 1 0 0
[1,0] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇
[1,1] 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇ 0.1̇


(4.5)

As it can be seen from the matrix, the pedestrian has a 100% probability of moving towards
the same direction as previously. However, with this sort of probability it could be expected a
100% accuracy rate is gained for predictions; but this is not the case. The initial prediction is
based upon a uniform distributed probability across the entire matrix; and therefore the chance
of the first being correct is approximately 1.23%. This would account as to why the pedestrian
gained an accuracy of 95.65%, as the number of steps observed for predictions was 23 and only 22
of these predictions were correct (if taking into account the first prediction being incorrect).

Based upon the initial prediction being a random selection from the matrix, it is expected
(and seen) that with the traditional stochastic model that a 100% accuracy rate is gained. To
see if a relationship exists between the number of steps and the overall accuracy of predictions a
correlation test is performed upon the pedestrians and the results are shown in Table 4.29.

Table 4.29: The statistical test performed upon the pedestrians that gained a dissimilarity score
of 109.333̇.

Accuracy
Order One Two Three Four Five

Steps

One 0.777 0.800 0.800 0.787 0.778
Two 0.777 0.800 0.800 0.787 0.778

Three 0.777 0.800 0.800 0.787 0.778
Four 0.777 0.800 0.800 0.787 0.778
Five 0.777 0.800 0.800 0.787 0.778

The relationship between the steps and accuracy is positive, however, mixed. It can be seen
that the strongest relationship is with the second and third order model which was recorded as
0.800. The sample of pedestrians that gained the dissimilarity score 97.333 is shown in Table 4.30.

Table 4.30: A sample of twenty pedestrians that scored 97.333 using the dissimilarity scoring
function.

Pedestrian Accuracy (%) Direction of Pedestrian Accuracy (%) Direction of
Movement Movement

11582 98.1 (1 1) 1973 98.1 (−1 − 1)
4552 93.52 (1 1) 8364 96.77 (1 1)
5308 90.0 (−1 − 1) 1142 95.83 (1 1)
10022 96.97 (−1 − 1) 11892 97.08 (1 1)
1483 95.42 (1 1) 4499 97.06 (1 1)
9613 95.83 (1 1) 326 98.23 (−1 − 1)
7388 90.0 (1 1) 10909 92.93 (1 1)
11018 97.83 (1 1) 6834 97.3 (−1 − 1)
7507 96.83 (−1 − 1) 3289 97.12 (−1 − 1)
5104 97.98 (−1 − 1) 11269 98.04 (−1 − 1)
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It can be seen that the accuracy rates recorded for these pedestrians are above 90%. The
main direction of movement exhibited by the pedestrian is (1, 1) which accounts for 55% of the
pedestrians in the table. The dissimilarity score of 97.333 represents movements of a pedestrian
that is moving within a diagonal, either towards the south-east or north-west, represented by (1, 1)
and (−1,−1) respectively. The mean accuracy of the pedestrians within this sample set is 96.05%
and similar to the previous scoring metric the matrices show that the pedestrians have a 100%
chance of transitioning to their next movement. Sample paths of two of the pedestrians from the
table is shown in Figure 4.26 and it can be seen that their path of movement is a fairly straight
diagonal. There is a small difference within the two lines of the pedestrians, whereby the angle of
gradient is different between the two.

(a) Pedestrian #4, 552 (b) Pedestrian #11, 269

Figure 4.26: The paths of pedestrian #4, 552 and #11, 269 that scored 97.333 using the dissim-
ilarity score function.

The difference of the two angles of the paths could affect the accuracy of the results had the
movement of the pedestrian been calculated in a different method, rather than the pixel displace-
ment; or had the pixel-displacement not been adjusted to a only a bipolar or binary difference. If
the adjustment of the pixel displacement had not been taken into account then the results of the
matrix calculations would have been different and in-turn the accuracy of the results may have
been difference. The relationship between the steps and accuracy for this score are shown in Table
4.31 and a strong relationship between the two variables can be seen.

Table 4.31: The statistical test performed upon the pedestrians that gained a dissimilarity score
of 97.333̇.

Accuracy
Order One Two Three Four Five

Steps

One 0.840 0.836 0.838 0.827 0.829
Two 0.840 0.836 0.838 0.827 0.829

Three 0.840 0.836 0.838 0.827 0.829
Four 0.840 0.836 0.838 0.827 0.829
Five 0.840 0.836 0.838 0.827 0.829

The relationship between the two are stronger with this type of movement than it is with the
previous dissimilarity score. This could be due to the smaller number of pedestrians that have
been categorised into this scoring function; however the mean number of steps for the score 97.333
is 26 and 109.333 is 22. The difference in the number of steps could impact the overall accuracy
of the predictions and this can be seen in the correlation results. With the relationship between
the steps and accuracy being strong for the score 97.333 than it was for 109.333.

The third highest dissimilarity score suddenly drops from a collection of 1, 065 to 63 pedestrians;
the score value achieved was 91.810 and the sample of pedestrians for this range are shown in Table
4.32. The mean accuracy gained for these sample of pedestrians was 83.89% and their direction of
movement consisted of multiple types of paths
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Table 4.32: A sample of ten pedestrians that scored 91.810 using the dissimilarity scoring function.

Pedestrian # Accuracy (%) Direction of Movement
9075 80.0 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
5264 81.82 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
4350 86.87 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
8579 90.28 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
6475 80.0 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
12056 83.84 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
1944 86.67 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
9227 81.82 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
5983 81.82 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
8192 87.78 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]

The collection of sample pedestrians are shown to exhibit only one type of potential paths
the pedestrian may take; however, upon analysing the data individually it can be seen a second
collection of paths also exist. The path shown in Table 4.32 is broken down to mean the following,

• (−1 − 1) to (−1 − 1): move from north-west to north-west

• (−1 − 1) to (1 − 1): move from north-west to north-east

• (1 − 1) to (1 − 1): move from north-east to north-east

This type of path is easily seen and understood when observing the path of pedestrian #9, 075
which is shown in Figure 4.27.

Figure 4.27: The path of pedestrian #9, 075 that shows the different directions the pedestrian
was heading towards at points within their path.

It can be seen that the pedestrian exhibits the movements as shown in the path list. As
explained in the methodology chapter, the dissimilarity score is relatively low due to a larger
number of values changing within the matrix to represent the transitions between each state. This
type of movement is fairly easy to predict when using the dynamic stochastic model due to a large
majority of the steps that are heading towards the north-west. However, as soon as the change
occurs in the direction of movement towards the north-east the model needs to re-learn the new
type of continuous movement and therefore initially a number of incorrect predictions will be made;
hence why the model only gained an 80% accuracy rate for this pedestrian. However, the second
collection of paths are: (−1 1) to (−1 1) or (1 1) or (1 1) to (1 1), which when broken down is the
following types of movement:

• (-1 1) to (-1 1): move from south-west to south-west

• (-1 1) to (1 1): move from south-west to south-east

• (1 -) to (1 1): move from south-east to south-east
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This type of movement is the exact opposite to that of the previous collection of paths and
an example if shown in the path of pedestrian #5, 327 shown in Figure 4.28. The path of this
pedestrian is similar to the one shown in Figure 4.27 but flipped so the pedestrian is walking in
the opposite direction (towards the south-east).

Figure 4.28: The path of pedestrian #5, 327, which is similar to the path of pedestrian #9, 075
shown in Figure 4.27 but flipped.

The pedestrian within this figure gained an accuracy of 90.90% which was higher than that
of the previous pedestrian due to the longer amount of time the pedestrian had spent walking in
a south-west direction and then a further amount of time walking towards the south-east. The
complexity of these paths are not that great and the prediction accuracy can increase if the duration
of steps heading in that one direction is excessive. A correlation test has been performed upon
the data to determine whether a positive relationship exists between the number of steps and the
accuracy. The results are shown in Table 4.33.

Table 4.33: The statistical test performed upon the pedestrians that gained a dissimilarity score
of 91.810.

Accuracy
Order One Two Three Four Five

Steps

One 0.772 0.829 0.741 0.786 0.687
Two 0.772 0.829 0.741 0.786 0.687

Three 0.772 0.829 0.741 0.786 0.687
Four 0.772 0.829 0.741 0.786 0.687
Five 0.772 0.829 0.741 0.786 0.687

As to be expected, the relationship between the number of steps and the accuracy of the
predictions for this type of movement is fairly weak due to the lower accuracy rate that was gained
with the model for each pedestrian. Therefore, to determine whether any disorder have occurred
within the matrices the entropy score is used. The larger the value then the elements within the
matrix are considered to be the same. However, when the value is small the elements are unequal
and could be considered to be chaotic. The various entropy scores extracted from the matrices
whereby the number of pedestrians over 40 with the same score is shown in Table 4.27. It can be
seen that the largest number of pedestrians grouped within a score of 1.5360313058225572 and a
sample of five pedestrians are shown in Table 4.34.

The entropy score of 1.5360313058225572 is representative of pedestrians that are moving in a
north-east direction, and solely within this direction. Although only five pedestrians are shown in
the tablet, a further few more pedestrians were analysed by hand to determine whether this was
the case. Upon viewing the matrices of a selected few more pedestrians it can be seen that this
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Table 4.34: A sample of ten pedestrians that scored 91.810 using the dissimilarity scoring function.

Pedestrian Accuracy (%) Direction of
Movement

4672 92.31 (1 − 1)
6146 90.91 (1 − 1)
4222 96.08 (1 − 1)
3652 95.45 (1 − 1)
4356 93.75 (1 − 1)

score is representative of pedestrians moving north-east. A couple of the pedestrians paths from
Table 4.34 is shown in Figure 4.29 and it can be seen that the pedestrians do follow a direction
heading towards the north-east.

(a) Pedestrian #4, 672 (b) Pedestrian #6, 146

Figure 4.29: The paths of pedestrian #4, 672 and #6, 146 that scored 1.5360313058225572 using
the entropy score function.

The paths show that the pedestrians are moving towards the direction as shown in the table.
However, it can be seen that pedestrian #4, 672 has a slight straight incline towards the north, but
it is ever-so slightly leaning towards the east and therefore the direction of movement is classified
as (1,−1). To determine whether a relationship can be seen between the steps and accuracy of
this score; the Pearson’s correlation test has been applied to the data. The results of the test is
shown in Table 4.35 and it can be seen that a correlation is seen between the two variables.

Table 4.35: The statistical test performed upon the pedestrians that gained an entropy core of
1.5360313058225572.

Accuracy
Order One Two Three Four Five

Steps

One 0.687 0.729 0.750 0.725 0.716
Two 0.687 0.729 0.750 0.725 0.716

Three 0.687 0.729 0.750 0.725 0.716
Four 0.687 0.729 0.750 0.725 0.716
Five 0.687 0.729 0.750 0.725 0.716

The relationship between the two variables are not strong, but it can be seen there is a rela-
tionship between the two. The strongest relationship can be seen in the third order model and can
be seen in the results shown in Table 4.36 which shows the range of accuracies that were gained
for each pedestrian.
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Table 4.36: The accuracy of predictions for each pedestrian shown in Table 4.35. The accuracy
for each order of the dynamic stochastic model is shown where the random prediction method was
used.

Pedestrian Model Order Accuracy (%)
One Two Three Four Five

4672 92.31 91.67 93.94 92.22 91.36
6146 90.91 93.33 88.89 87.5 85.71
4222 96.08 93.75 96.3 92.86 92.31
3652 95.45 96.3 95.0 94.74 94.44
4356 93.75 93.33 92.86 94.02 91.67

The table shows the accuracy of each pedestrian is different with no clear line of progression
through the various orders of the model. For example, with pedestrian #3, 652 there was an
observed drop in the accuracy between orders two and three, with it continuously beginning to
drop. However, between the first and second order an increase was recorded. To see why a drop
was recorded for this pedestrian after an order of two, the path is analysed and is shown in Figure
4.30.

Figure 4.30: The path of pedestrian #3, 652 to determine why a drop was seen in the accuracy
rates after a second order model.

The path of the pedestrian is fairly straight and follows a direction of movement towards the
north east; in-keeping with the results shown in Table 4.34. It would be expected with this type of
movement that the prediction would be fairly high and follow a pattern where the first prediction
is incorrect and all further predictions are correct due to the matrix having a 100% probability of
transitioning to the same state. This is true for orders one, three, four and five; but the anomalous
result of order two does not follow this method.

Upon analysing the individual hardware machines, it can be seen that the Beagle Bone and
university server both follow the pattern of the first prediction being wrong and all subsequent
predictions being correct. The laptop has an anomalous result with the second order, which drives
up the accuracy for this model. The accuracy gained on the laptop was 96.82% and in order to
achieve this number, then the number of correct predictions made would have to be 20.333. The
number of iterations that was run on the laptop was three, and the average was taken across each
of run of the experiment to gain one batch of results. This could account for the reason as to why
20.333 steps could have occurred as one run of the laptop may have obtained a 100% accuracy rate
on the predictions for this order. This would explain why no progression is seen within Table 4.36.
However, if the results were being analysed for the dynamic stochastic model with the maximum-
likelihood prediction method then a linear progression would be seen through the results. A sample
of pedestrians for the entropy score 1.5360313058225554 is shown in Table 4.37.
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Table 4.37: The sample of five pedestrians that gained the entropy score of 1.5360313058225554
when analysing the first order matrices of the dynamic stochastic model with the random prediction
method.

Pedestrian Accuracy (%) Direction of
Movement

9361 97.9 (1 1)
1452 96.43 (1 1)
12192 96.77 (1 1)
7098 96.0 (1 1)
1653 97.44 (1 1)

The total number of pedestrians that fell within this score was 679 and it can be seen that their
direction of movement was towards the north-east. The path of pedestrian #9, 361 and #1, 452
are shown in Figure 4.31 and it can be seen that each pedestrian follows a path heading towards
the south-east although the angle of path is different.

(a) Pedestrian #9, 361 (b) Pedestrian #1, 452

Figure 4.31: The paths of pedestrian #9, 361 and #1, 452 that scored 1.5360313058225554 using
the entropy score function.

The accuracy for this model for a first order is fairly high and is in-keeping with a pattern that
is observed when only one direction of movement is present in the matrix. The pattern follows the
convention that the first prediction is always wrong; and subsequent predictions are always correct
due to the high probability of transition to the same state of direction. This observation has been
made across the previous entropy score and the paths exhibited by the pedestrian and some of
the dissimilarity scores whereby a single direction of movement has been observed. The sample
of pedestrians with a score of 1.5360313058225603 is shown in Table 4.38 and it can be seen that
their direction of movement is (−1, 1) which is a south-west direction.

Table 4.38: The sample of five pedestrians that gained the entropy score of 1.5360313058225603
when analysing the first order matrices of the dynamic stochastic model with the random prediction
method.

Pedestrian Accuracy (%) Direction of
Movement

9816 97.44 (−1 1)
2598 95.91 (−1 1)
11618 97.01 (−1 1)
7501 96.62 (−1 1)
5097 97.56 (−1 1)

It can be seen from the various scores achieved with this formula that they all show a single
direction of movement within the matrices. For example, the score 1.5360313058225603 depicts a
pedestrians direction of movement is heading towards the south-west, whilst 1.5360313058225554
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and 1.5360313058225572 show pedestrians moving towards the south-east and north-east, respec-
tively. Similarly to the dissimilarity scores, there was far more scores that were calculated for the
entropy; however, a selection of scores were chosen for analysis and it can be seen that each score
can describe a direction of movement exhibited by the pedestrian.

The homogeneity scores are calculated to determine whether the elements of a matrix are
situated near the diagonal of the matrix. For a first-order model, it can be seen that any number
that sits on the diagonal of a matrix is a transition to the same state, i.e. a stationary to stationary
movement is recorded. Therefore, if the scoring of this function is low it is expected to see a
number is laying on the diagonal of the matrix which can represent a stationary pedestrian, or
pedestrians walking within a straight line. The selection of homogeneity scores chosen for analysis
are shown in Table 4.27. It can be seen the largest number of pedestrians fell within the score of
3.171616322204556, whereby a total of 980 pedestrians were allocated this score. It can be seen
that this score has a similarity with the entropy score of 1.5360313058225572 whereby the direction
of movement was recorded as (1,−1). With the same number of pedestrians categorised with this
score. Analysis of the score 2.9808992703110335 shows that only 52 pedestrians were allocated
with this score, and a sample of the pedestrians are shown in Table 4.39.

Table 4.39: The sample of ten pedestrians that gained the homogeneity score of
2.9808992703110335 when analysing the first order matrices of the dynamic stochastic model with
the random prediction method.

Pedestrian Accuracy (%) Direction of
Movement

7712 93.75 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
1158 97.22 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
7266 93.52 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
4450 96.3 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
11641 93.94 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
7904 96.08 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
7027 97.22 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
6775 97.57 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
2391 98.04 [(−1 1)to(1 1)]or[(1 1)to(1 1)]
7020 96.97 [(−1 1)to(1 1)]or[(1 1)to(1 1)]

It can be seen that the path of this score is different to the previous scores that have been
analysed for the dissimilarity and entropy. The path of movement can either be the pedestrian
moving from south-west to south-east, to contentiously moving towards the south-east. It can
be seen that the path shows that there is no transition back to the south-west state. Therefore,
the pedestrian may have started moving towards the south-west before changing their mind and
heading south-east. To determine whether this was the case, the paths of pedestrian #7, 712 and
#2, 391 are shown in Figure 4.32.

(a) Pedestrian #7, 712 (b) Pedestrian #2, 391

Figure 4.32: The paths of pedestrian #7, 712 and #2, 391 that scored 2.9808992703110335 using
the homogeneity score function.
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It can be seen from the paths of the pedestrians that the direction of movement towards the
south-west is relatively small; and may have only occurred once within the frequency matrix which
is used to calculate the probabilities. Which is why there is no transition back into this direction
of movement once the user begins to head towards the south-east direction. To see if this was
the case, the frequency matrix of each pedestrian in the table is analysed, and an example of the
matrix for pedestrian #2, 391 is shown,



[−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

[−1,−1] 0 0 0 0 0 0 0 0 0
[−1,0] 0 0 0 0 0 0 0 0 0
[−1,1] 0 0 0 0 0 0 0 0 1
[0,−1] 0 0 0 0 0 0 0 0 0
[0,0] 0 0 0 0 0 0 0 0 0
[0,1] 0 0 0 0 0 0 0 0 0
[1,−1] 0 0 0 0 0 0 0 0 0
[1,0] 0 0 0 0 0 0 0 0 0
[1,1] 0 0 0 0 0 0 0 0 32


(4.6)

From the matrix, it can be seen that the pedestrian was observed for one moment where
they were heading in the south-west direction. A majority of the steps were taken when heading
towards the south-east and this was seen in all the matrices for the pedestrians in Table 4.39.
The third score for analysis is the homogeneity score 3.8148761042878663. whereby the pattern of
movement exhibited is similar to the dissimilarity score of 91.810. However, it can be seen that
the dissimilarity score had two more pedestrians within in when compared to the homogeneity
category.

Table 4.40: The sample of ten pedestrians that gained the homogeneity score of
3.8148761042878663 when analysing the first order matrices of the dynamic stochastic model with
the random prediction method.

Pedestrian Accuracy (%) Direction of
Movement

1275 88.89 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
9274 84.62 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
4350 86.87 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
2582 81.82 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
10035 95.0 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
1003 81.82 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
2380 85.19 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
8192 87.78 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
8579 90.28 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]
12056 83.84 [[(−1 − 1)to[(−1 − 1)or(1 − 1)]]or[(1 − 1)to(1 − 1)]]

The two pedestrians that are missing from the collection of results are pedestrians #1, 225 and
#5, 327. It can be seen by analysing their matrices that the path of movement is different to that
expressed in Table 4.32. The path of movement for these two pedestrians are: (−1, 1) to (−1, 1)
or (1, 1), or (1, 1) to (1, 1). Therefore, the path is different to that which has been recorded for the
homogeneity and the samples of pedestrians that were originally shown for the dissimilarity score.
This is understandable, as it has been seen through the analysis of these scoring functions that
the dissimilarity score shows the path of movements that are in the same direction, but also the
flipped direction (so two types of movements that are essentially the same). Whereas, the entropy
and homogeneity are functions that only select single paths of movement (and does not consider
the flipped version).
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4.2.4 Processing Times of the Markov Models

The accuracy of the predictions obtained with the stochastic models are fairly high and within the
expectations. However, the accuracy of the predictions is not the only important aspect of this
study; the time taken to make these predictions is also of significant importance. Three pieces of
hardware have been used with contrasting specification between them to gain an understanding on
the amount of computational resources required by the stochastic model. The recorded times from
the experiments for the stochastic models are shown in Table 4.41. The results of the dynamic
Markov model with the maximum-likelihood prediction method are denoted by the column with the
heading ‘Dynamic1’, whereas the model with the random method are denoted by the ‘Dynamic2’
heading.

Table 4.41: The processing time of each hardware for the respective stochastic model. ‘Dynamic1’
are the results of the dynamic Markov model with the maximum-likelihood predictions and
‘Dynamic2’ are the times of the random prediction method.

Hardware Processing Time (s)
Type of Model Model Order Embedded Laptop Server

Dynamic1

1 0.14 0.049 0.006
2 0.153 0.07 0.008
3 0.174 0.084 0.009
4 0.197 0.096 0.01
5 0.217 0.097 0.011

Dynamic2

1 0.127 0.047 0.012
2 0.154 0.068 0.015
3 0.183 0.078 0.018
4 0.195 0.087 0.02
5 0.218 0.093 0.015

Traditional

1 0.028 0.003 0.000511
2 0.02 0.007 0.000618
3 0.038 0.008 0.000705
4 0.031 0.007 0.000809
5 - - -

From the collection of results it can be seen that the server gained the best results for the
amount of processing time that was taken. The results of the experiment are less than half-a-
second and these results are to be expected due to the hardware that is found within the server. It
can be seen from the table that the traditional model experiment was only executed up to a fourth
order model and this was due to limitations that were imposed from the embedded hardware. To
ensure that a fair comparison is made between the three pieces of hardware for this model, the
results of the fifth order have been omitted from the analysis for the server and laptop. However,
it is noted that the hardware found within the server and laptop are capable of computing a fourth
and fifth order model.

The results of the dynamic Markov model (using the random prediction method) on the univer-
sity server show that the model is able to compute within 0.02 seconds. A linear growth is seen for
an increase in the order of the model, with the difference between a second and first order model
being observed to be 0.003 seconds. There seems to be a pattern with the increase across the first
three orders whereby the increase between them is 0.003 seconds until the fourth order is reached
and this decreases slightly to 0.002 seconds. Interestingly, it can be seen that with the fifth order
model a decrease is observed when compared to the fourth order model. The amount of time taken
decreases from 0.020 to 0.015 seconds. When comparing the random prediction method with the
maximum-likelihood it can be seen that the times recorded with the latter are better, and this
could be due to the methodology behind selecting a prediction. The random prediction method
involves the generating of a number between zero and one, and then comparing this number against
each probability value within the selected row of the matrix. This process can add time to the
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prediction process. Unlike the maximum-likelihood method whereby a probability is chosen based
upon the maximum value within the selected row. Therefore, the process is able to save some time
on the comparison of two values for each index in the matrices row. The graph in Figure 4.33
shows the times plotted for each dynamic and traditional stochastic model.
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Figure 4.33: The mean processing time for each of the various models and prediction methods
used on the university server.

The graph shows the difference that can be seen in the recorded times for each type of model
that is used on the server, with the various prediction methods of the dynamic model. The fastest
model for computation was the traditional stochastic model, and it can be seen that the growth
in the time for each order of the model is fairly flat. The other two methods on the hand see a
linear increase in the computation time, with the random prediction method growing faster when
compared the maximum-likelihood method. The drop in time can be observed on the fifth order
with the random prediction method; the reasoning behind this drop is unknown. The results of
the laptop on the other hand faired well in comparison to the server, although it can be seen that
the computation time was slower with the laptop. The recorded times of the laptop are all below a
tenth of a second; and are therefore still well within the realms of being able to generate a prediction
within a real-time constraint. Out of the three models, the traditional mode was observed to have
the best time recorded; with the times coming in under 0.009 seconds. The lower time recorded
for the traditional model is to be expected due to the nature of how the model is built. The model
has a fixed probability matrix and therefore is not required to be adjusted each time a movement
is made by the pedestrian. This saves having to search through the matrix (which can be time
consuming for a larger model) and adjusting the probability values. Due to the lack of needing to
update the probabilities it would explain as to why the low values were recorded. The graph in
Figure 4.34 shows the times of the traditional stochastic model for each piece of hardware tested.
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Figure 4.34: The mean processing time for the traditional Markov model on each of the devices
used for the experiments.

It can be seen in the graph that the results of the embedded network are mixed, with a decrease
in the times between the first and second order traditional model. The computation time then
suddenly increases for a third order and then subsequently decreases once again for the fifth order.
The mean time could be affected by the pedestrians and the hardware being unable to process
pedestrians with a high step-count within a timely manner. To determine whether this was the
case, two pedestrians have been chosen at random from the embedded data and their times are
analysed against the number of steps exhibited. The data is shown in Table 4.42 and a selection
of random pedestrians have been chosen for analysis.

Table 4.42: Two pedestrians from the collection of results for the embedded hardware and the
traditional stochastic model to determine why a difference in the times for each order was recorded.

Pedestrian Time (s) Number of Steps
One Two Three Four One Two Three Four

2485 0.01 0.01 0.03 0.01 17.0 16.0 15.0 14.0
8182 0.01 0.02 0.06 0.02 30.0 29.0 28.0 27.0

From the table it can be seen that the range of steps are relatively low for the two pedestrians
and there does not seem to be a relationship between the number of steps and the total time taken
for processing. For example, pedestrian #8, 182 was observed for 30 steps and the results for an
order of one model and the time for processing was 0.01 seconds. However, pedestrian #2, 485 took
almost half the amount of steps but was processed within the same amount of time. However, a
similar pattern that is observed in the graph is present within the table. For example, pedestrian
#8, 182 saw an increase in the computation time between orders one and three, then a decrease
on the fourth order. There was a similar pattern that can be seen in pedestrian #2, 485. The
pedestrian saw a stagnation on the processing time for orders one and two, with an increase for
the third order before decreasing again on the fourth.
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4.2.5 Neural Networks

The Neural Network experiments have been implemented to provide a comparative study against
the performance of the dynamic stochastic model and the most popular method of prediction,
neural networks. Two differing methods of a neural network have been implemented, a simple feed-
forward network and a more complex recurrent neural network. The results of the neural networks
have been obtained by using the server located at Coventry University due to the large amount of
resources required to run the experiment. The experiment was attempted to be performed upon
the Dell XPS laptop, but unfortunately due to hardware limitations the networks were unable
to compute. Due to this, the experiments were not attempted to be performed upon the Beagle
Bone Black. The results for the feed-forward and recurrent neural networks are discussed in their
respective sections; and due to the limit of hardware resources, the models are constrained to a
third order model whereby just three past movements are used to generate a prediction.

The feed-forward neural network is a simple network, whereby the data is pushed forward
through the nodes of the network and the weights are adjusted accordingly. The outcome from the
network is a prediction of the pedestrians intended next direction. The results of the network have
been subjected to a statistical descriptives analysis for the accuracy of the neural network and is
shown in Table 4.43.

Table 4.43: The descriptive statistical analysis of the feed-forward neural network for the accuracy
of predictions made.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 0.00 78.51 100.00 19.25 100.00
Two 0.00 69.43 100.00 24.45 100.00
Three 0.00 77.09 100.00 20.28 100.00

It can be seen from the table that the minimum accuracy gained was zero and due to this the
delta (difference between the maximum and minimum) will be recorded as 100% and therefore,
the minimum and delta are retracted from the analysis of the results. It can be seen from the
descriptives that the results of the neural network are not in-line with the expectation. It was
expected to see that a linear growth would occur with the accuracy rates for an increase in the
number of past movements that are fed into the network. However, the mean accuracy of the
results have no linearity and are a mixed collection of results with the first order gaining a mean
accuracy of 78.51%, the second order 69.43% and the third 77.09%. To understand why these
results are not as expected; a selection of pedestrians are chosen for analysis and are shown in
Table 4.44.

Table 4.44: The accuracy rate and number of steps observed by the feed-forward neural network
for generating predictions using the pedestrian dataset.

Pedestrian Accuracy (%) # of Steps
One Two Three One Two Three

1896 67.57 80.56 71.43 37.0 36.0 35.0
2497 100.0 69.57 100.0 24.0 23.0 22.0
3774 40.74 88.46 64.0 27.0 26.0 25.0
5390 36.67 37.93 14.29 30.0 29.0 28.0

The results show that the accuracy rates for each order are fluctuating and that there is no
linear growth in the accuracy for when the order of the network is increased. This sort of pattern
is to be expected as the feed-forward neural networks do not necessarily need to have a collection
of past movement introduced to affect the accuracy of the predictions. Instead, the network is
trained over a length of epochs to ensure that the input can match the target variable as close as
possible. To determine why the neural network behaved in this particular fashion, the paths of
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each pedestrian are examined. The first two pedestrian (#1, 896 and #2, 497) paths are shown in
Figure 4.35 and it can be seen that the two paths are similar, with the pedestrian taking a path
that is going towards the north. However, there is a slight difference in the path with them both
going off in a different direction, one west and one east. The two paths are classified as moving
within a diagonal, and therefore the movement for each pedestrian would be (−1,−1) and (1,−1),
respectively.

(a) Pedestrian #1, 896 (b) Pedestrian #2, 497

Figure 4.35: Two of the four pedestrians chosen for analysis to determine why the difference in
accuracy rates were achieved for each order of the feed-forward neural network.

By analysing the paths of the pedestrian, it cannot be seen as to why the feed-forward network
would gain different rates of accuracy for each order and it could be attributed towards the training
phase of the network. The training phase of the network is undertaken for one epoch which would
hinder the impact of getting the correct target value. Therefore, it could be the fact that there
was not enough ‘training’ allocated to ensure that the accuracy could follow a linear progression.
The paths of pedestrians #3, 774 and #5, 390 is shown in Figure 4.36.

(a) Pedestrian #3, 774 (b) Pedestrian #5, 390

Figure 4.36: Two of the four pedestrians chosen for analysis to determine why the difference in
accuracy rates were achieved for each order of the feed-forward neural network. From right to left,
pedestrian #3774 and #5390.

It can be seen that the two paths for these pedestrians are rather different, with the path of
pedestrian #3, 774 following an albeit straight line, and pedestrian #5, 390 is more of a ’s-shape’
path. The accuracy of pedestrian #3, 774 is relatively low with the order of one model seeing an
accuracy rate of 40.74%, that is approximately a reduction of 27% when compared to pedestrian
#1, 806 who exhibited a similar sort of path. The only difference between the two paths is that
ones vertical and the other horizontal. It has been mentioned that the difference between these
two pedestrians could be due to the amount of training that has been applied and also the number
of steps that have been observed. The number of steps exhibited by pedestrian #1, 806 is between
35 and 37, depending on the order of the model. Whereas, pedestrian #3, 774 saw fewer steps
observed with the range of steps being 25 to 27. The second pedestrian (#5, 390) faired the worse
in terms of accuracy, with a low value of 14.29% being observed for the third order model. The
low accuracy gained on this order could be due to the training mechanism and the pattern of
movement not fitting well with the chosen activation function of the hidden neurons. It could also
be due to the low number of training epochs that were present within the training phase and even
the type of activation function that was used for the hidden neurons.

Based upon the accuracy achieved for each of the models, it can be seen that the feed-forward
network is not best suited for dealing with predictions where the pedestrians movement could be
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considered to be complex. There were also numerous instances where an accuracy rate of zero was
achieved, and this was most likely due to not enough training epochs being allocated to ensure
that a robust prediction is made. However, the single training epoch was allocated to ensure that
the network closely resembles the process that a Markovian model follows. By only training the
network by one epoch it ensures that the prediction is generated within the first instance and not
based upon a method of further learning. The stochastic model is able to generate predictions
on the fly based upon a single recalculation of the probabilities and therefore, a single epoch of
training will recalculate the weightings of the neural network once and then a prediction is made.
However, it can be seen that by following this method is not the most accurate method, and that
feed-forward neural networks require a certain level of training before it could match the prediction
aspect of the stochastic model.

Table 4.45: The times taken for each pedestrian when using the feed-forward neural network to
make a prediction.

Pedestrian Times (s)
One Two Three

1896 33.75 137.48 318.56
2497 15.79 81.21 276.3
3774 28.96 115.65 291.46
5390 11.5 73.81 212.15

Overall, it can be seen that by using a feed-forward network the accuracy rates are not what
were expected; especially with the large amount of computation time that was taken. The time
undertaken for generating the predictions are shown in Table 4.45 and it can be seen that the
amount of time taken for each neural network is not the most efficient method for generating a
prediction. Pedestrian #1, 896 took almost 34 seconds to compute, that is almost a second per
step that was taken and was achieved on a first order model. The recorded timings only got worse,
with the order of two network taking 137.5 seconds and the third order network taking almost 320
seconds. The graph in Figure 4.37 displays the mean time for each order across every pedestrian
within the dataset.
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Figure 4.37: The mean time for each order of the feed-forward network for all pedestrians within
the dataset.
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As expected, there is a linear increase when the order of the network progresses. The growth in
time can be considered to be exponential due to the steep increase in the line; with the difference
between the first order and second order being 233 seconds, an increase of 1, 344.19%. Based
upon the analysis of the feed-forward network, it is expected that the recurrent neural network
should perform better due to the nature of the output variable being fed back into the network.
This could provide further machine learning to the model to ensure that the correct prediction is
made on the next instance. The recurrent neural network model has been developed to provide
a comparison between the dynamic stochastic model and the feed-forward neural network. It has
been seen from the analysis of the feed-forward network that is particularly weak and in some cases
is unable to provide a prediction at all. To determine how well the recurrent network performs
against the other models and networks a descriptive analysis has been performed using the IBM
SPSS software and is shown in Table 4.46.

Table 4.46: The descriptive statistical analysis of the feed-forward neural network for the accuracy
of predictions made.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 0.00 67.06 98.08 22.84 98.08
Two 0.00 72.82 100.00 19.44 100.00
Three 0.00 76.27 100.00 18.13 100.00

Similar to the feed-forward network the minimum accuracy was measured to be zero, this could
be due to the level of training the network went under. For this network, it was decided to use
fifteen epochs as the initial testing showed that using just one epoch garnered too many incorrect
predictions and the accuracy rate was recorded as zero. However, unlike the feed-forward neural
network, a linear increase can be seen across the mean accuracy of the network for an increase in
the order. This is a positive sign that the recurrent neural network is an appropriate model for
predicting a pedestrians next movement based upon the history of past movements. To analyse
the performance of the recurrent neural network, four pedestrians have been chosen at random
from the list and are shown in Table 4.47.

Table 4.47: The accuracy rate and number of steps observed by the recurrent neural network for
generating predictions using the pedestrian dataset.

Pedestrian Accuracy (%) # of Steps
One Two Three One Two Three

567 0.0 25.0 57.14 9.0 8.0 7.0
3815 58.82 63.64 50.0 34.0 33.0 32.0
4461 0.0 12.5 28.57 9.0 8.0 7.0
8580 50.0 57.14 33.33 8.0 7.0 6.0

Pedestrian #567 saw an accuracy rate of zero achieved for an order of one model. However,
the pedestrian saw a linear increase across orders two and three. By observing the amount of steps
that have been exhibited by the pedestrian it can be seen that the accuracy is not affected by
the number of steps. This is because the higher accuracy rates were gained on fewer steps than
previously. To see whether this was the case, and whether a relationship can be seen between
the steps and accuracy a correlation test is performed upon the results of the dataset using the
Pearson’s method. The results of the correlation test can be seen in Table 4.48.
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Table 4.48: The correlation test for the recurrent neural network to find a relationship between
the steps and accuracy.

Accuracy
Order One Two Three Steps

One 0.246 0.203 0.151
Two 0.246 0.203 0.151

Three 0.246 0.203 0.151

From the correlation test it can be seen that there is a weak relationship between the number
of steps and the accuracy. These results are to be expected due to the inconsistency of some of
the results that are shown in Table 4.47. For example, pedestrian #3, 815 saw an increase in the
accuracy between the first and second order, and then it decreased again for the third order. To
determine why the pedestrian saw a decrease in the accuracy rate for the third order model the
path is displayed in Figure 4.38 and is analysed.

Figure 4.38: The path of pedestrian #3815 to determine as to why a lower accuracy was gained
on the third order; when an increase could be seen on the first and second orders.

It can be seen that the path of the pedestrian is travelling within a fairly straight line, hori-
zontally from east to west. The path has a linear progression towards the north and therefore the
movement would be described as [1,−1] within the network. To make a prediction, the network
is trained upon the data of previous movement that is inserted into the model and the next move
is used as a target in-order to train the weights of the network before a prediction is made. The
reason for the drop in the accuracy of the third order model is unexplained due to the nature of
the movement exhibited by the pedestrian. Therefore, it is assumed that the lack of training on
the recurrent neural network inadvertently affected the accuracy of the overall predictions. To see
whether this was a anomalous result, the paths of pedestrian #4, 461 and #8, 580 are analysed;
and are shown in Figure 4.39.

(a) Pedestrian #4, 461 (b) Pedestrian #8, 850

Figure 4.39: Two of the four pedestrians chosen for analysis to determine why the difference in
accuracy rates were achieved for each order of the recurrent neural network.

It can be seen from the images that the two paths are rather different in terms of the direction
the pedestrian is heading and the length of the path. Pedestrian #4, 461 can be seen to have
travelled from the east, towards the south-west and make a small change in direction (highlighted
in pink) before resuming their journey towards the south. The type of movement that is highlighted
in pink can be fairly difficult to predict, especially if the movement is only made for a couple of
steps. This ‘change-of-mind’ in their direction of movement could contribute towards the low
accuracy rates that were achieved with this pedestrian. It can be seen that on the first order
model the accuracy of predictions was zero, whilst the second and third orders performed better
(12.50% and 28.57%, respectively). The second pedestrian (#8, 850) faired better in the accuracy
rates, which saw an increase between the first and second orders (50% and 57.14%). However, it
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can be seen that on the third model the accuracy rate dropped to 33.33%. A pattern can be seen
within these results, and that for a lower number of steps there is a possibility that the accuracy
rate of a first order model could be zero and then subsequent low prediction accuracies obtained
on the other orders. The times gained by these pedestrians are shown in Table 4.49 and it can
be seen that the times are far worse in comparison to the feed-forward neural network (shown in
Table 4.45).

Table 4.49: The times taken for each pedestrian when using the feed-forward neural network to
make a prediction.

Pedestrian Times (s)
One Two Three

567 84.91 284.29 701.13
3815 124.74 449.83 1144.1
4461 72.77 258.28 600.93
8580 71.34 333.98 711.0

The times of the feed-forward network and the recurrent network are displayed in Figure 4.40
and when comparing the times of the two networks together it can be seen that there is a significant
difference between the feed-forward network times and the recurrent network.
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Figure 4.40: The mean accuracy time for the feed forward and recurrent networks compared
against each other.

Based upon the significant difference in the computation times of the neural networks and a
small difference between the two for prediction accuracy it can be considered that the recurrent
network is redundant due to the amount of computational time taken. Both models have been
executed on a server at the university which consists of a large number of cores and a significant
amount of memory and if the hardware of this server takes a considerable amount of time then
the the neural network is not the best option to be used within a in-car vehicle system, or an
embedded system.
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4.2.6 Comparison of the Neural Networks and Markov Models

The analysis of the neural network shows that the results are not favourable for use in a real-
time constraint when compared to the results of the dynamic stochastic model with the random
prediction or maximum-likelihood method. When comparing the mean processing time of the
first order feed-forward neural network, it can be seen that the processing time was 17.38 seconds,
whereas with a dynamic stochastic model with the random prediction method obtained a relatively
low score of 0.0117 seconds (processing times are from the university server). The recurrent neural
network came across the worse out of the two neural networks, with the mean time for a first
order network being observed at 73.07 seconds. There is a reasonable explanation as to why the
recurrent neural network took approximately four times as much time for processing, and that
would be due to the number of epochs that have been selected to train the recurrent network. The
number of epochs for training the feed-forward network was set to one; to ensure it was in-line with
how the dynamic stochastic model works. However, the recurrent neural network was increased to
15 epochs due to the relatively low accuracy results that were gained when using only one epoch.
The processing time for the first three orders of the Markov model and neural networks are shown
in Figure 4.41.

111



0

0.005

0.01

0.015

0.02

0.025

One Two Three

Ti
m

e
 (s
ec
on

ds
)

Model Order

Mean Processing Time for Predictions

Dynamic - Random

Dynamic - Maximum

Traditional

(a) Markov Models

0

100

200

300

400

500

600

700

800

900

One Two Three

Ti
m

e
 (s
ec
on

ds
)

Network Order

Mean Processing Time for Predictions

Feed-Forward

Recurrent

(b) Neural Networks

Figure 4.41: The comparison of mean processing times for the various neural networks and
stochastic models that have been used in the experimentation for the pedestrian dataset.

From the graph it can be seen that the overall processing time of the neural networks is far
greater in comparison to the all three of the stochastic models when combined. Although, it can be
seen that the feed-forward neural network performs better than the recurrent network counterpart
and this is most likely due to the simplicity of how the network performs and the number of epochs
that have been chosen for the training phase. The graph shows that the best performing stochastic
model was the traditional model; whereby the probability matrix has been pre-computed using the
data that has been learnt by the dynamic stochastic model with the random prediction method.

112



The reason the traditional stochastic model is able to compute in a quicker manner is due to the
reliance on not requiring to recalculate the probabilities each time a transition occurs within the
model. This requires searching the entire matrix (which can be a costly process when a higher
order is used) and then re-calculating the probabilities. This is then followed by performing the
same search across the matrix rows for the prediction process. Therefore, the searching process
is repeated twice which can add to the time of processing. Although this repetition exists on the
dynamic stochastic model, it is seen that the two models performed within 0.02 seconds. Whilst
the feed-forward network for a first order was not close to this figure with the network taking
approximately 80 seconds. The data in Table 4.50 shows the mean accuracy for the stochastic
models and the neural networks up-to a third order model.

Table 4.50: The mean accuracy of the stochastic models and neural networks for models of an
order up to three. ‘Dynamic1’ is the random prediction method and ‘Dynamic2’ is the maximum-
likelihood prediction method.

Order Stochastic Model Accuracy (%) Neural Network Accuracy (%)
Dynamic1 Dynamic2 Traditional Feed-Forward Recurrent

One 85.43 88.81 83.64 78.51 67.06
Two 88.48 90.76 86.79 69.43 72.82
Three 90.18 91.98 89.01 77.09 76.27

The table of results show that the stochastic model performed the best for the prediction
accuracy, with the the range of results all ranging between 85% and 92%. On the other hand,
the neural network did not perform as expected with the results ranging between 67% and 79%,
approximately 6% less on the lower end of the range when compared to the stochastic models.
The poor performance of the neural network could be attributed towards the lack of training that
has been used to ensure that an accurate prediction is made; however, it was purposely chosen to
have a low training rate to mimic the process of a stochastic model closely with an exception made
on the recurrent network to stabilise the predictions. As initial testing of the network shown that
a sufficient level of training was required in order to make predictions that were correct and not
counting at 0%. A comparative graph of the results from Table 4.50 is shown in Figure 4.42.
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Figure 4.42: The comparison of mean processing times for the various neural networks and
stochastic models that have been used in the experimentation for the pedestrian dataset.
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From the graph it can be observed that there is a significant difference between the accuracy
of the stochastic models and the neural networks. A delta of 21.75% is recorded between the
recurrent neural network and the dynamic Markov model (with maximum-likelihood predictions).
This shows that the implemented dynamic stochastic model is statistically better in comparison
to the neural networks.

4.3 Results of Predicting an Objects Movement

With the ability to recognise an object from an image or video, the extracted features can be used
to determine the position of the object within its environment. Using this data can assist in the
prediction of an objects next direction of movement. In this section, the results of the various
Markovian models and neural networks to make these predictions are discussed and analysed. The
section will cover the various different methodologies employed to make a prediction and determine
which of the methodologies are best suited for making a prediction within a real-time constraint.
This section has been split into three key areas: the discussion on the dynamic and traditional
Markovian models, and a third section on the processing time of the stochastic models.

4.3.1 Dynamic Markov Model

The results of the random prediction method for the video dataset have been subjected to a
statistical descriptives test. The test will show the minimum, mean and maximum accuracy that
was gained for the model and method. The data also includes the range (the difference between
the minimum and maximum) and the standard deviation of the results. The statistical data is
shown in Table 4.51.

Table 4.51: The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for the various videos.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 62.91 86.34 96.11 12.38 33.20
Two 73.35 90.81 97.52 9.18 24.17
Three 80.49 92.87 98.14 6.74 17.65
Four 82.21 93.60 98.34 6.21 16.13
Five 84.66 94.42 98.61 5.42 13.96

From the results it can be seen that the minimum accuracy ranges from 62.91% for the first
order, up to 84.66% for the fifth order. The progression through each order is linear, with no
anomalous results in comparison to the stochastic models of the pedestrian dataset. It can be seen
from the descriptives that the range of results are in-line to the outcomes that were expected of the
model with a linear increase observed in the minimum, mean and maximum values for an increase
in the order. Although it can be seen that for an increase in the order the difference between the
minimum and maximum becomes smaller in size. The minimum, mean and maximum values are
plotted and shown in Figure 4.43.
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Figure 4.43: The minimum, maximum and mean values for each order of the dynamic stochastic
model using the random method. The values are based upon the video dataset and shows the
difference between the range of results.

It can be seen from the graph that the mean and maximum results are fairly close within
proximity, especially as the order of the model increases towards the higher end. The minimum
range of the accuracy saw a greater increase, especially in th range of orders one to three where the
growth in prediction accuracy was 18.42%. The growth in accuracy then plateaus slightly between
orders four and five, before a a slightly larger increase is made between orders four and five. It can
be seen from minimum accuracy that the videos gained a fairly high accuracy across the various
resolutions and different paths. The data in Table 4.52 shows the results of the experiment for the
video of an object moving in the shape of a square.

Table 4.52: The results of the video where the object is moving within the shape of a square for
the dynamic stochastic model with the random prediction method.

Accuracy (%) FPS
540p 720p 1080p 540p 720p 1080p

O
rd

er

One 62.91 82.93 93.04 36.60 21.86 12.99
Two 73.35 88.31 96.58 35.98 21.78 12.82
Three 80.49 90.16 97.45 33.51 22.84 13.02
Four 82.21 91.12 97.93 33.70 23.11 12.98
Five 84.66 91.79 98.13 32.80 23.01 12.88

It can be seen from the results that the minimum accuracy gained for an order of one model
from both sets of videos was achieved in this video. It can be seen that by increasing the resolution
of the video the accuracy of the predictions become better. However, there is a trade off with
the FPS of the video decreasing. The decrease in the FPS for an increase in the resolution of
the video is to be expected due to the larger collection of pixels that are within each frame that
requires analysis. However, it can be seen that for a 540p (960 x 540) resolution, the videos can
run obtained the desired frame rate. The desired frame rate is the frame rate at which the video
was recorded in, for this instance the desired rate is thirty. Although some of the recorded FPS
is over the desired number, the frame rate can be adjusted to ensure it does not overshoot the
recorded FPS; but this is outside the scope of the research. Interestingly, it can be seen on the
720p resolution that the frame-rate of the video increases linearly for an increase in the order of
the model. This goes against the recorded FPS of the 540p video where a decrease was seen. The
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graph in Figure 4.44 plots the decrease of the FPS against the increase of the accuracy for a second
order model.
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Figure 4.44: The graph shows a plot for the accuracy against the FPS of the video with an object
moving in a trajectory shape of a rectangle.

To determine whether there is any relationship between the resolution of the video and the
accuracy a correlation test is performed upon the data of the video using the Pearson’s correlation
method. The results of the test are shown in Table 4.53 and it can be seen that there is a
relationship between the resolution of the video file and the accuracy of the predictions made.

Table 4.53: The statistics for the Pearson’s correlation test using the IBM SPSS statistics software
for the dynamic stochastic model using the random prediction method on the square videos.

Accuracy
Order One Two Three Four Five

Resolution 0.929 0.938 0.963 0.965 0.975

This can be seen clearly within the descriptive statistics that are shown in Table 4.51. It can
be seen on the fifth order that it gained the strongest relationship; and this can be seen in the
accuracy that was gained for these videos, just over 98%. It is expected to see a similar result with
the video that consists of the object moving within a straight line, but with a minor small increase
in the prediction accuracy due to the simple path of movement. The results of the individual
experiment on the straight line videos are shown in Table 4.54.

Table 4.54: The results of the video where the object is moving along a straight line for the
dynamic stochastic model with the random prediction method.

Accuracy (%) FPS
540p 720p 1080p 540p 720p 1080p

O
rd

er

One 89.06 93.99 96.11 36.75 23.28 13.27
Two 93.21 95.88 97.52 36.36 23.42 13.20
Three 94.07 96.88 98.14 36.66 23.48 13.30
Four 94.59 97.43 98.34 35.43 23.44 13.15
Five 95.30 97.99 98.61 35.97 23.49 13.22

It can be seen from the results that they are significantly higher than that of the square video,
as expected. The reason for the results being higher than that of the square video is due to the

116



simple nature of the movement that is being exhibited. The object is moving between the left and
right and this is being repeated with intervals of pausing (stationary) movement on the extremes
of the straight line. It can be seen across the minimum, maximum and mean values that there is
linear increase across the different orders of the model. Similar to the square video, the increase in
the order of a model sees a decrease in the FPS of the 540p video, but the 720p video was observed
to see an increase in the accuracy. The 1080p video on the other hand saw a decrease between
the first two orders of the model and then an increase in FPS for the third order, whilst again it
decreased and then increased for the fourth and fifth orders. The alternating FPS of the videos
can be seen in the graph in Figure 4.45.Video Resolution
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Figure 4.45: The graph shows how the FPS can decrease for each order of the dynamic stochastic
model depending upon the resolution of the video.

It can be seen from the graph that between the 540p and 1080p video the frame rate of the
video drops by over half the value that was achieved in the 540p video. It can also be seen on the
720p video the increase in the FPS for each order. Although they are all around a similar range
(albeit the first order). To determine whether there is a relationship between the video resolution
and the frame-rate a correlation test is performed upon the data using the Pearson’s correlation
test. The results of the text are found in Table 4.55 and it can be seen that there is a negative
correlation between the resolution of the images and the frame-rate. The negative correlation is
to be expected as the frame-rate decreases for an increase in the resolution of the video. It can be
seen with the two videos that the random prediction method gains a fairly high accuracy between
a simple movement such as moving in a straight line and something a little more complex such as
travelling around in a square.

Table 4.55: The relationship values between the resolution of the video and the frame-rate
recorded.

FPS
Order One Two Three Four Five

Resolution −0.962 −0.967 −0.965 −0.973 −0.970

From the results of the pedestrian dataset it is expected that the maximum-likelihood prediction
method will also see an increase in the accuracy rate for the two videos in comparison to the random
prediction method. The results of the experiment have been subjected to statistical descriptive
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analysis; and the results are shown in Table 4.56.

Table 4.56: The descriptive statistics of the dynamic stochastic model using the maximum-
likelihood prediction generation method for the various videos.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 66.67 89.18 97.29 11.56 30.62
Two 78.73 93.04 98.13 7.39 19.41
Three 84.55 94.58 98.61 5.34 14.06
Four 85.80 95.14 98.83 4.99 13.03
Five 87.89 95.79 99.00 4.28 11.11

From the initial analysis of the results, it can be seen that the minimum accuracy rate from the
first order sees an increase of approximately 3% in comparison to the random prediction method.
The progression in the accuracy can be seen across all the orders of the stochastic model and a
linear increase can be seen for the minimum, maximum and mean values. The range of difference
between the minimum and maximum values start off to be fairly high at 30.62% but minimises
rather drastically to 11.11% on the fifth order. The minimum accuracy achieved in the maximum-
likelihood was 66.6% and was achieved on the video of the object moving within a square shape.
The resolution of the video this was achieved on was 540p (the lowest out of the three resolutions
used). The results of the square video and its varying orders are shown in Table 4.57.

Table 4.57: The results of the video where the object is moving in a square shape for the dynamic
stochastic model with the maximum-likelihood prediction method.

Accuracy (%) FPS
540p 720p 1080p 540p 720p 1080p

O
rd

er

One 66.67 87.47 95.07 41.91 24.84 13.96
Two 78.73 91.71 97.40 41.51 24.77 13.89
Three 84.55 92.91 98.04 39.04 25.71 13.84
Four 85.80 93.51 98.41 39.14 26.11 13.78
Five 87.89 94.08 98.61 38.83 26.03 13.84

From the results it can be seen that the video sees a linear increase for when both the resolution
of the video and order of the dynamic stochastic model increases. It is also noted that by using
this method a higher frame rate can also be achieved with the FPS of the 540p video on a first
order being recorded at 41.91%, whereas the same video on the random prediction method gained
a frame rate of 36.60% a difference of 5.31%. It can be seen from the results that the FPS for the
540p image is over-running the desired frame rate between a range of 8.83% to 11.91% depending
upon the order of the image. Processes can be put into place to control the over-running of the
frame-rate for latter work. However, it is noted by previous experimentation that when using live-
feed data such as web-cameras they do not suffer from this issue. The graph in Figure 4.46 shows
the comparison between the mean accuracy of the random and maximum-likelihood methods.
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Figure 4.46: The difference between the random and maximum-likelihood prediction methods
for the dynamic stochastic model on the square video.

It can be seen from the graph that the hypothesis of seeing an increase in the accuracy using
the maximum-likelihood method was correct; although the increase was marginal, as displayed by
the close gap between the two lines on the graph. Observing the graph it can be seen that the
delta between the two methods becomes smaller as the order of the model is increased. With the
difference becoming negligible when reaching the fifth order. Overall a linear increase can be seen
between the two models with the increase being fairly smaller. However, this small increase is
expected due to the nature of how the videos were generated. As the videos were digitally created
using the Blender application, they have been generated that the paths are followed precisely by
the object with no deviation of the object moving from the path. To determine whether there
was a relationship between the accuracy and resolution of the square video a correlation test is
performed using the Pearon’s method and the results are shown in Table 4.58.

Table 4.58: The results of the Pearon’s correlation test for a relationship between the resolution
and accuracy of the dynamic stochastic model using the maximum-likelihood method.

Accuracy
Order One Two Three Four Five

Resolution 0.899 0.916 0.947 0.950 0.961

From the correlation test it can be seen that there is a strong correlation between the resolution
and the accuracy of the model. However, the correlation is not as strong in comparison to the
random prediction method. To determine whether there is any difference with the FPS relationship
with the resolution the Pearson’s correlation test was performed, and the results are shown in Table
4.59.

Table 4.59: The correlation results of the Pearson’s test showing how the resolution has a rela-
tionship with the FPS of the video.

FPS
Order One Two Three Four Five

Resolution -0.950 -0.952 -0.975 -0.979 -0.979
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The results show that there is a similar relationship between the fourth and fifth order with the
same value achieved. There is a negative relationship between the two values though. This is to
be expected due to the nature of the decreasing FPS in relation to the size of the video. To check
whether the FPS has any relationship to the accuracy rate of the model, a final correlation test is
performed on the data, the results of this test is shown in Table 4.60. From the correlation test, it
can be seen that the frame rate of the video can have a negative relationship with the accuracy.

Table 4.60: The results of the correlation test between the FPS and the accuracy of the dynamic
stochastic model using the maximum-likelihood method.

Accuracy
Order One Two Three Four Five

One −0.991 −0.996 −1.000 −1.000 −0.999

FPS
Two −0.990 −0.995 −1.000 −1.000 −0.999

Three −0.974 −0.982 −0.995 −0.996 −0.998
Four −0.970 −0.979 −0.993 −0.994 −0.997
Five −0.959 −0.978 −0.992 −0.993 −0.997

4.3.2 Traditional Markov Model

The traditional stochastic model uses the data exported from the dynamic model to provide a
level of pre-training to the model to adjust the probability values. The purpose of this experiment
was to determine whether the accuracy of the predictions made differ greatly to a model that can
make learn the probability values whilst analysing the movements of an object. The results of the
traditional stochastic model are subjected to a descriptives statistical analysis and the results are
shown in Table 4.61.

Table 4.61: The descriptive statistics of the dynamic stochastic model using the random predic-
tion generation method for pedestrians within 5 to 305 steps.

Model Order Accuracy (%) Standard Deviation DeltaMinimum Mean Maximum
One 63.71 87.10 96.38 12.23 32.67
Two 74.54 91.33 97.69 8.77 23.15
Three 81.45 93.24 98.22 6.41 16.77
Four 83.01 93.93 98.49 5.95 15.48
Five 85.33 94.69 98.68 5.17 13.35

From the results it can be seen that the minimum accuracy of the first order model was 63.71%.
It can be seen through the minimum accuracy rates a linear growth, with a delta between an order
of one and five model being +11.52%. The results of the traditional model are similar to those of the
dynamic stochastic model with a small deviation between the two results. This is to be expected
as the probability matrices from the dynamic stochastic model has been used as historical data
as prior ‘learning’. With the results of the two models being close, it could be assumed that the
dynamic stochastic model has no value or use when the data is simulated. The mean accuracy of
the models are high and in-line with the expected results of the model. The mean accuracy for
each order is above 87% for the first order model, whereas the fifth order model was recorded as
94.68%. The mean accuracy for the traditional stochastic model is plotted and shown in Figure
4.47 and shows the mean accuracy for the traditional model for both the square and straight video.
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Figure 4.47: The mean accuracy plotted for the straight and square videos using the traditional
stochastic model.

From the graph it can be seen that the square path video on the 720p resolution for orders
three to five are very close within the accuracy rate of each other. The fifth order models shows
a fairly straight growth in the accuracy of the model. However, the video with the straight line
sees a similar growth, but plateaus between the 720p and 1080p resolution as it can be seen on
the fifth order that the gain in accuracy is not as high. It is noticeable from the graph that the
first order model is significantly lower than that of the other models that have been used in the
model. This could be due to the number of previous movements that are being used for generating
a prediction. Due to the first order model only using one single movement to make a prediction
then the likelihood of selecting the incorrect transition state is more likely to handsome. This is
more likely to happen when using the random prediction method too. The results of the object
travelling within a straight line is shown in Table 4.62.

Table 4.62: Results of the experiment using the traditional stochastic model of an object travelling
within a straight line for various resolutions.

Accuracy (%) FPS
540p 720p 1080p 540p 720p 1080p

O
rd

er

One 90.11 94.53 96.38 41.91 26.56 14.05
Two 93.61 96.32 97.69 41.82 26.65 13.94
Three 94.37 97.14 98.22 41.19 26.37 14.28
Four 94.87 97.64 98.49 41.86 26.15 13.94
Five 95.53 98.08 98.68 42.70 26.05 14.05

From the table of results, it can be seen that the accuracy rates of each resolution and order was
greater than 90%. Due to the simplicity of the path of motion that was chosen for implementation
it is expected to see such a high accuracy rate be gained using the traditional model. The object
can move in one of three movements (left, right and stationary) and therefore this limits predictions
that can be made. It can be seen by looking at the probability matrix of this video that only three
states are ever visited for the first order, as shown in matrix 4.7.
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[−1,−1] [−1,0] [−1,1] [0,−1] [0,0] [0,1] [1,−1] [1,0] [1,1]

[(0,0)] 0 0 0.33̇ 0 0 0.33̇ 0 0 0.33̇
[(−1,1)] 0 0 0.999 0 0 0.001 0 0 0
[(1,1)] 0 0 0 0 0 0.001 0 0 0.999

 (4.7)

It can be seen from the matrices that the object moved within one of three directions; and that
the chance of moving left or right had the highest probability. This would make sense as the amount
of time that the object spent stationary within the video was minimal. It can also be seen from
the matrix that there is an equal chance of transitioning from a stationary movement to either left,
right or being stationary again. To determine whether there is any difference between the matrices
for the accuracy rate to be higher in the third order. By observing the matrix of a third order
model, it can be seen from the third order matrix that nine rows have been adjusted out of 729. It
can be seen that the rows of the matrix that have been adjusted follow the same movement path
as the first order but adjusted to include the past history of movement. For example, an object
may follow the path whereby its last three transitions were stationary for two and then moving left
would look like: [(0, 0), (0, 0), (−1, 0)]. The third order matrix shows that 25 rows were adjusted
when tracking the movement of the object. The number of rows have increased due to the various
states that the objects previous movement has been classified as. For example, one state would
be stationary with three past movements, whilst a second state would consist of two stationary
movements and a movement to the left. This will continue where there is only one stationary
movement and then two movements to the left. However, with this increase in the number of rows
being updated; it in-turn will provide a more accurate prediction.

4.3.3 Processing Times of the Markov Models

Previous experimentation with feature detectors in the methodology chapter shows that the amount
of time taken for detecting an object from a video for higher resolutions greater than 540p takes
a significant amount of time. This results in the video taking a longer time to compute than the
intended run-length. The results in Table 4.63 are the mean times for the object travelling within
a straight line for the stochastic models.

122



Table 4.63: The processing time of each hardware for the respective stochastic model for the
video of an object travelling within a straight line for the various resolutions. ‘Dynamic1’ are the
results of the dynamic stochastic model with random predictions and ‘Dynamic2’ are the times of
the maximum-likelihood prediction method.

Straight Video: 540p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 642.87 488.83 488.83 413.27 403.67 417.57
Two 649.37 489.33 489.33 419.03 402.73 419.57
Three 641.93 490.93 490.93 417.1 402.5 436.73
Four 648.53 488.8 488.8 445.2 402.93 421.17
Five 645.93 485.83 485.83 429.27 405.33 401.47

Straight Video: 720p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 942.7 770.43 770.43 713.37 655.2 664.37
Two 948.3 755.87 755.87 697.07 657.3 668.93
Three 937.0 766.6 766.6 702.8 664.8 676.83
Four 956.13 768.8 768.8 689.07 660.93 689.27
Five 957.27 775.37 775.37 687.37 663.9 694.73

Straight Video: 1080p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 1621.2 1437.03 1437.03 1330.73 1326.1 1340.8
Two 1657.87 1459.53 1459.53 1329.53 1306.27 1338.1
Three 1658.63 1427.23 1427.23 1336.17 1278.7 1312.2
Four 1661.4 1451.63 1451.63 1353.43 1287.0 1337.87
Five 1662.0 1474.67 1474.67 1324.5 1313.93 1329.5

From the results, it can be seen that the laptop performed the best whilst processing the video
across the three different media resolutions that have been used. For example, on the 540p video,
the order of one model for the dynamic stochastic model with random predictions was able to
compute the video in 413.27 seconds (approximately six minutes), which was a reduction of 230
seconds in comparison to the server model. The difference can be seen across the various models
for the same resolution and the increase in the amount of time taken on the server could be due
to the lack of libraries required to ensure that the video processing libraries of OpenCV are not
available and thus the libraries have not been optimised. However, it can be seen that this large
difference is only seen on the model with random predictions. All the other models and the varying
resolutions see a comparable time when compared to each other. For example, it can be see on
the server and laptop that the times of processing for the dynamic (with maximum-likelihood
prediction method) and the traditional stochastic models are both comparable (within the same
time stamp) of processing for each order of the models, i.e an order of two model was 1, 459.53 and
1, 459.53 seconds, for both the dynamic and traditional model.

Excluding the results of the dynamic model with random predictions from the results of the
540p video; it can be seen that the resolution performed the best for computation time. The
recorded times are within two minutes of the original run-length of the video; whereby the original
length of the video was five minutes. On the laptop the best performing model was the dynamic
stochastic mode with maximum-likelihood prediction method of which computed within 403.67
seconds (approximately seven minutes). The worse performance was the random prediction method
which was recorded at 642.76 seconds for a first order model. However, a significant increase was
not observed when the orders of the model was increase. This can be seen across the collection of
the result and the graph in Figure 4.48 shows the times of the video for the traditional stochastic
model for each resolution on the laptop.
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Figure 4.48: The observed computation times for the an object moving in a straight line for the
traditional stochastic model on a Dell XPS laptop.

It can be seen from the graph that the recorded times for the 540p and 720p vary between the
orders of the model. However, it is seen that the 720p follows a linear progression, whereby the
time increases in-line with the order of the model. The varying times that were recorded for the
different orders of the model for the same resolution could be due to other processes running in the
background that is taking a larger portion of the system resources and therefore affecting the times
of the model. The results of the square video processing time is shown in Table 4.64. The results
of the object moving within the contours of a square are similar to those of the object travelling
within a straight line. This is to be expected as the run-length of the videos were the same, and
the feature detection method has been fine-tuned to ensure that the same parameters are used
across both videos to provide a robust detection method. Using a hybrid of feature detectors to
recognise the object from the scene has provided results that can ensure the stochastic models and
feature detection process can be computed within real-time for a resolution of 960-by-540 pixels,
with an achieved FPS of 41.98. However, it can be seen that with the higher resolutions that the
prospects of achieving a real-time recognition and prediction is unfavourable. The FPS for the
720p video on the Dell XPS laptop averaged to be 26.12, whilst the 1080p FPS was recorded to be
14.29. It can be clearly seen that the 720p was within the realms of possibly meeting the real-time
constraint. On the other hand, the 1080p video was far from it, with the frame-rate being over
half of the intended rate.
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Table 4.64: The processing time of each hardware for the respective stochastic model for the
video of an object travelling within the shape of a square for the various resolutions. ‘Dynamic1’
are the results of the dynamic stochastic model with random predictions and ‘Dynamic2’ are the
times of the maximum-likelihood prediction method.

Square Video: 540p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 646.6 497.33 497.33 414.37 408.63 432.03
Two 654.33 506.93 506.93 424.97 409.8 431.97
Three 656.57 584.33 584.33 502.3 411.3 424.33
Four 648.73 576.67 576.67 496.4 411.47 417.57
Five 654.7 593.47 593.47 524.6 413.13 421.7

Square Video: 720p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 967.5 915.27 915.27 818.4 664.27 725.23
Two 968.87 929.7 929.7 833.33 664.67 727.0
Three 962.67 833.13 833.13 734.87 665.83 698.97
Four 964.93 802.63 802.63 712.0 666.73 705.3
Five 973.43 801.2 801.2 712.43 672.83 704.13

Square Video: 1080p Resolution

Model Order Server Laptop
Dynamic1 Dynamic2 Traditional Dynamic1 Dynamic2 Traditional

One 1667.63 1505.5 1505.5 1369.43 1293.6 1333.0
Two 1678.5 1499.33 1499.33 1416.63 1313.07 1356.87
Three 1666.5 1460.83 1460.83 1337.33 1316.5 1322.4
Four 1672.07 1481.13 1481.13 1340.33 1317.57 1360.27
Five 1684.57 1498.37 1498.37 1366.6 1297.4 1361.67

The recorded frame-rate of the server did not match that of the Dell XPS laptop, which is
surprising considering the power of the hardware that is found within the unit. The mean frame-
rate of the server for the 540p video was recorded to be 28.76 which was a reduction of 13.22 to the
figure that was observed on the laptop. The drop in FPS for the server could be due to a limitation
with the correct codecs required for the video libraries of the OpenCV framework. Therefore, it
affected the overall processing of the video.
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Figure 4.49: The mean FPS of the two videos for each order of the varying stochastic models
used for the experimentation

.

The mean FPS of the two videos are shown in Figure 4.49 and it can be seen that there is a
steep drop with the FPS of each video between the 540p resolution and 720p, with the same drop
also recorded for the 720p and 1080p resolutions. The mean FPS of the random and maximum-
likelihood prediction methods were consistent between the two videos, with a similar value recorded.
This can be seen in Table 4.64, where the same times were recorded for the dynamic (with maximum
predictions) and traditional stochastic models.

4.4 Conclusion of the Object Recognition Experiment

Based upon the experiments performed, it can be seen that although the BRISK detector is com-
putationally efficient and able to detect an object from its environment it is unable to do so within
a real-time constraint. However, when using the detector in a hybrid form with the SURF detector
the possibility of this constraint is within reach. Based upon the experiments performed, it can be
seen that there are limitations to using the BRISK and SURF detectors:

• misdetection whilst moving: the detector can often incorrectly detect the object from
the environment when its moving too fast within its environment

• misdetection based upon colour: the detector can incorrectly detect the object when the
wrong training image is used, especially when the only property changed is the colour

• frame-rate fluctuations: the frame-rate of a video can easily fluctuate to either over-
processing a video (the FPS is higher than the recorded FPS) or where the FPS is below
that of the desired number

• poor performance on high-resolutions: the frame-rate for videos where a resolution
exceeds 540p is below the desired frame-rate
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To overcome these limitations several methods have been proposed and can be implemented
to reduce the number of misdetection that occur and ensure that a steady frame-rate can be
maintained. Although these methodologies do not remove the limitations entirely, it can minimise
them to a degree where the accuracy of predictions made are not affected inadvertently, and the
processing of videos or live-feed data does not fall below a certain threshold. In order to minimise
the misdetection of an object when it is moving in an environment, adjust the parameters of
BRISK can be applied that will in-turn adjust the sampling pattern of the detector to ensure
that a more robust detection can be made. From the experiments it can be seen that BRISK is
a robust detector and maintains a fairly adequate frame-rate when processing a high-definition
video. However, by adjusting the parameters of BRISK it can impact the frame-rate of a video
and therefore by adjusting them too much it could severely impact the FPS of the recorded video,
which is an important constraint when trying to predict a direction of movement in real-time. The
data in Table 4.65 shows how adjusting just one parameter of BRISK can affect the frame-rate of
the video rather significantly.

Table 4.65: The data in the table shows how by adjusting the threshold of the BRISK detector
can increase the number of keypoints detected but can also inadvertently affect the frame-rate
rather significantly.

Parameter # of Average
Threshold # of Octaves Pattern Scale Keypoints Detected Frame-Rate

50
5 0.5

715 33.19
60 528 42.62
70 376 52.32

Due to the influence of changing a threshold that it can have on the frame-rate of a video and
the number of keypoints detected, a medium is required to be found. Having a large number of
keypoints could provide an ample fix to the misdetection of an object whilst it is moving through the
scene, but it is fundamental that the frame-rate is not negatively impacted. However, adjusting
the threshold too much to increase the frame-rate could increase the chances of a misdetection
happening and thus affecting the calculation of the boundaries for the detected object within the
environment as shown in Figure 4.50. Based upon the findings in Table 4.65 it can be seen that the
optimum threshold value is 50, whilst retaining the previous number of octaves and pattern scale of
the experimentation performed. However, it can be seen that by using this threshold the frame-rate
of the video is over the recorded frame rate of the video (approximately +9.6%). However, when
using live-feed data (such as web-cams) the frame-rate will not go over the desired frame-rate, and
therefore this would not be a major impact when using live-feed data for real-time analysis. It
could be an issue when the frame-rate of the video is below the desired number, whereby the data
being predicted is based upon previous movement and not the current.
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Figure 4.50: The miscalculated boundaries of a detected object. This can occur due to the lower
number of keypoints detected when the object is moving; or when the incorrect training image is
used.

The chance of a misdetection still arising is slimmer than previously, but it could still happened
and therefore a secondary process is applied to the calculation of the central point. The secondary
process will ensure that the central point does not deviate too sporadically and is achieved by using
the exponentially weighted moving average (EWMA) formulae,

St =

{
Y1, t = 1

α · Yt + (1− α) · St−1, t < 1
(4.8)

where α is a user-defined weighting between the values of zero and one, Yt the objects location for
a given time period and St the smoothed value for the given time period t. The formulae applied
to the central point should ensure that a smoothed value is given if a large difference between the
current value and the next is present due to a misdetection. Using the EWMA value should ensure
that the accuracy of the model remaining high for any misdetection that may occur due to the
limitation of the BRISK detector.

The second issue with the BRISK detector is the misdetection of an object when the incorrect
training image has been used. Although this is a relatively small issue and could be easily fixed by
ensuring the correct training image is used, it is something that could be inadvertently overlooked.
BRISK works by localises keypoints of interesting upon the corners of an image and therefore does
not take into account any underlying properties such as colour. Similar objects, whereby only the
colour changes, can pose an interesting issue when using the BRISK detector, i.e. identification
cards. Coventry University employ the use of identification cards to identify students based upon
their profile within the university: student, postgraduate student or staff member; and each card
has a different colour associated to it (as shown in Figure 4.51.
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(a) Research ID (b) Staff ID

Figure 4.51: Two of the identification cards that are used at Coventry University with the two
cards being very similar apart from a major difference in the colour.

It can be seen from the image shown in Figure 4.51 that the two cards are very similar with
only a subtle differences being the text that is present on the card, but a major difference being the
colour of each card (one being red and the other blue). The BRISK detector will localise keypoints
upon the text of the identification cards and therefore disposing the detail of the backgrounds
colour; this could provide a ramification upon the detection of the object as the two cards have a
major similarity in the background pattern, logo and placement of the students photograph. Due
to the high similarity between the cards a false-positive could occur in the matching process and
therefore lead to the misdetection of the object and its boundaries (as shown in Figure 4.50. A
process could be put in place to overcome this issue by using the k-means clustering algorithm to
split an image into its base colours, as discussed by Chen et al. (2008). The simplification of an
image to its base colours will enable a comparison to be a made between the two images using the
RGB colour-space. In order to ensure that this process works, the colour model of both images
are required to be the same; otherwise the base colour values for each image would differ. If this
instance was to occur, then a check could be made to ensure that the two values fall within a
defined range. However, the process of segmenting the image by its colour is a process that relies
heavily upon computational resources and could increase the overall processing time of the video
(in-turn affecting the frame-rate of the video). To ensure that this method does not affect the
frame-rate a check could be performed every nth frame, or the scene of the objects environment
could be cropped to a small subsection of an area where the object was detected to compare the
colours.

Another issue that arose during the experimentation with the videos on the Dell XPS laptop was
with the inconsistent fluctuation of the frame-rate (along with the poor performance of the high-
resolution videos). The inconsistency of the frame-rate on the videos with the BRISK detection
could hinder the applicability of being able to predict the direction of movement for an object within
the real-time constraint. However, as the purpose of this study is to evaluate the stochastic model
with a newly implemented quirk it is decided that trying to implement a feature to overcome this
limitation is not required. However, it is proposed that to ensure that videos of a high-resolution
(more notably greater than 960x540 pixels) are able to be computed within an appropriate time,
they are downscaled to 540p. Based upon the experimentation it can be seen that the BRISK
detector is highly favourable when computing high-resolution images, a decrease was recorded of
−80% when comparing against SIFT on the 1080p video. Although previous work has shown
that SIFT is a highly-robust feature detector when considering photo-geometric transformations it
unfortunately has a large redundancy on computation resources. Therefore, the high computational
cost of the detector out-weighed the benefits. The overall time of execution for the detectors on
the high-definition videos is shown in Table 4.66.
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Table 4.66: The times taken for localising keypoints and extracting descriptors using the three
feature detectors for the high-definition video dataset.

Image Resolution Descriptor Extraction Time (ms)
BRISK SIFT SURF

540p 0.030 0.115 0.160
720p 0.047 0.187 0.285
1080p 0.080 0.405 0.489

From the table, it can be seen that the SIFT detector was recorded to take 0.405 milliseconds to
process the 540p image, whereas BRISK took significantly less time and computed the image within
0.080 seconds for the experiment performed upon the Dell XPS laptop. The SURF detector on the
other hand performed the worse with the results unexpected when compared to the performance
of the detector on the dataset by Lowe (2004). Overall, it can be seen that the results show
that SIFT and SURF (the traditional descriptors) are not optimised for the task of recognising
an object within a real-time constraint. Although BRISK was unable to meed the criteria of
performing within this constraint due to fluctuations being recorded in the frame-rate it is a much
better contender when compared to the other detectors. This could be attributed towards the fact
that BRISK uses binary descriptors and is based upon a comparison of the light intensity within
the images and is far quicker to computer compared to a conventional descriptor.

4.5 Conclusion of the Prediction Experiments

From the analysis of the results it can be seen that the traditional stochastic model performs the
best with regards of prediction accuracy and the amount of time that was observed for generating
the predictions. However, this type of model requires the prior learning of data to re-adjust
the probability matrix of the model and it is not always readily available for use. However, in a
comparable process the introduction of a second matrix to count the transitions between states and
just the probabilities based upon the transitions can result in an accuracy that is accurate with a
traditional stochastic model. However, a trade off with the dynamic stochastic model is the method
of recalculating the probabilities which can add time to the overall processing and generating of
the prediction method. It has been touched upon that in order to update the probabilities the
algorithm searches the matrix for the specific row that is allocated to the tracked movement and
then this row is updated with the new probability value. The searching process is then repeated
to find the appropriate row to make a prediction. Therefore, this could add a redundancy to the
dynamic model and in comparison to the traditional model. This is why it can be seen that the
traditional model has a far lower computation time in comparison to the dynamic model with a
random prediction method, as shown in Figure 4.52.
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Figure 4.52: The mean processing time of the 540p video of an object moving in a square
trajectory.

It can be seen from the graph that the growth in the computation time between a traditional
model and the dynamic mode with the random prediction method grows largely. For example the
difference for the first order model sees an increase of 130%, whilst the third order model sees a
growth of 112.36%. However, the traditional model requires the model to be pre-loaded with the
data that was obtained from the learning that was undertaken in the dynamic stochastic model.
Therefore, it does not have this method of updating matrices ‘on-the-fly’. It can be seen that the
accuracy of the dynamic stochastic model is similar to the traditional model but the traditional
made sees a larger abundance of pedestrians that gain an accuracy of 100%. There was a total of
2, 332 pedestrians that gained this accuracy rate with the traditional model. Whereas the dynamic
stochastic model with the random and maximum-likelihood prediction methods saw none and 386
pedestrians, respectively. The results of the random prediction method are not surprising, to not
see any pedestrians gain a 100% accuracy is expected due to the nature of prediction method
works.

Overall, it can be seen that the dynamic stochastic models can provide an accuracy that is
accurate and can be computed within a time that is respectable for the use in the machine vision
systems that require predictions to be computed within a real-time constraint. However, the
traditional model would be the ideal selection if a hybrid was to be created between the two
models that have been implemented; as discussed in Section 5.2. It can be seen that the dynamic
stochastic model provides a good balance between the accuracy of the predictions and the amount
of processing time that is required. Based upon the analysis of results, it can be seen that the
stochastic model works best when the pedestrian is travelling within a path that is not too complex.
However, the complexer paths do obtain a relatively high accuracy in comparison to a traditional
stochastic model that requires a priori data.

The outcome of the neural network were relatively weak with the accuracy of the predictions
that were gained and the amount of time that was taken for processing. It can be seen from the
graph in Figure 4.53 that the amount of time taken for the recurrent neural network is significantly
greater than that of the feed-forward neural network.
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Figure 4.53: The mean processing time of the pedestrian dataset on the university server using
a neural network.

As explained earlier, this is due to the amount of epochs that have been chosen for the model to
learn the data that is being inserted into the network. It can be seen for an increase in the number
of past movements that are feed into the network an increase is observed in the recorded times.
The worst performing models were the third order, whereby the feed-forward and recurrent neural
network were both recorded to have a mean processing time of 251 and 785 seconds, respectively.
Although the feed-forward network performed better due to the simplicity of the networks nature.
The mean accuracy for each order of the recurrent network were better and saw a linear progression.
The details of the mean accuracy for the neural networks can be seen in Table 4.67 and it can
be seen that although the feed-forward neural network performed the best it did not have any
linearity in the progression when the number of past movements were increased. The highest
accuracy gained for the feed-forward network was 78.50% whereas the highest on the recurrent
network was 76.27%. Both of which were obtained on a different order model.

Table 4.67: The mean accuracy that was achieved for each of the neural networks that were used
within the study.

Order Neural Network Prediction Accuracy (%)
Feed-forward Recurrent

One 78.50 67.06
Two 69.43 72.81
Three 77.09 76.27

The accuracy of the neural networks are similar to that of the stochastic model, but take far
more computational resources that it does not make it applicable for the purpose of this study.
It is worth noting that the neural network was implemented to provide a comparative study with
the stochastic model due to the popularity that neural networks have in literature for predicting
time-series events.
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Chapter 5

Conclusion

The work undertaken in this thesis is vast and can be split into two key areas:

• a hybrid approach to the recognition of an object using two feature detectors

• the adaptation of a pre-existing stochastic model to ensure highly accurate predictions in
real-time

The first half of the work has been developed to ensure that a robust recognition of an object can
be performed on mobile devices without impacting the flow of data. The work has primarily been
designed to take into account the evolving nature of hardware that can be found within mobile
devices. It can be seen in literature that traditional feature detectors such as SIFT and SURF are
computationally expensive to run and require a large amount of processing power (Mikolajczyk
& Schmid 2005, Leutenegger et al. 2011). The introduction of BRISK has enabled developers to
extract feature representations of an image within a time constraint that can be deemed to be
run in a real-time constraint (Leutenegger et al. 2011). Therefore, the work undertaken in this
thesis has taken each individual feature detector to determine the amount of time that is taken to
detect an object from high-resolution images and video datasets. The results have shown that the
traditional detectors, as expected, faired the worse with the average computation time of SIFT
and SURF polling at xx and xx seconds, respectively. Using a mixture of SURF and BRISK has
shown that this method of detection can be performed within 0.048 seconds on a 540p video of
an object travelling in a straight line, whilst the sole use of BRISK on a static image in the same
resolution was computed within 0.214 seconds. From the collection of results, it can be seen that
the hybrid approach to feature detection not only keeps the robustness of a traditional detector,
but maintains a speedy method of detection from the binary detector.

The new approach that has been introduced in this thesis is useful for applications that require a
recognition to be computed in a real-time constraint. This can ideally be used on applications that
are built on mobile hardware such as mobile phones and tablets, or used on embedded systems that
are naturally limited/constrained on the hardware that is used, most notably in-vehicle systems.
The work undertaken in this area has been used in the second body of work that has been studied,
the adaptation of a stochastic model to generate predictions in a real-time constraint. The latter
half of the thesis is considered to be the main contribution of the thesis with the use of hybrid
detection framework previously being used within the works by Coltin et al. (2016). The stochastic
model of choice, a Markov Model (Markov 1906), has been adapted to account for the transitions
that occur between states. This has been implemented by including a secondary vector that takes
into account these transitions that occur and is termed as a ‘frequency’ vector. The recorded
state transitions are used to refine the values that are stored in the probability vector and are
continuously updated for the run-length of the simulation/modelling. Results of the study have
shown that the prediction accuracy for this new method of modelling is between 65% and 95%,
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dependant upon the type of prediction method that is utilised and the type of data that is being
inserted. To ensure that the model is fairly compared with the traditional implementation of a
Markov model, two types of prediction methods have been used: randomly generated, and the
maximum-likelihood method. It can be seen that the two methods have performed exceptionally
well, with a respective accuracy ranging between 85.45% − 91.78% and 88.81% − 93.09% for the
pedestrian dataset by Yi et al. (2016a). Comparing the results of the DMM with the traditional
model employed by Krumm (2008) and Nižetić et al. (2009) it can be seen that the implemented
model provides a higher accuracy overall.

This process does not require a high-level of machine learning or priori data to gain the level of
accuracy that is often required for the likes of neural networks and the traditional Markov models.
It is often seen with these methods that a lot of the time is spent on training the model to ensure
that a high accuracy can be achieved on the predictions. Whilst these methods have been proven
to be useful in previous applications, their use for models that require to be computed within
real-time is not suitable. The results of the neural networks show that amount of computation
time that has been used to ensure an accurate prediction can impact the real-time applicability of
the network. It can be seen that a dynamic Markov model is able to be computed 31, 600 times in
substitute of the neural network. Therefore, it can be seen that the model introduced in the body
of this work is better suited for applicability in models that require a prediction to be generated
in real-time.

However, there are some caveats to the work that have been proposed in this thesis. For ex-
ample, the movement of an object has been calculated in the pixel difference between the last
recorded and the current occupied location by an object. This difference has further been condi-
tionally adjusted to a bipolar/binary integer, ±1. Although this method works well for the body
of this work and the various datasets that have been used, the applicability of this method would
potentially not be suitable for applications that would prefer to take into account at which the
speed the object is travelling. Therefore, there are improvements and amendments that could be
made to the work to ensure that predictions can take into account the speed at which an object
is moving along with the angular change in direction. Further amendments and improvements to
this project have been discussed in Section 5.1.

5.1 Further Improvements to the Study

This section will discuss the various improvements that can be made to this study to increase the
prediction accuracy of the stochastic models and neural networks, alongside the different method-
ologies that can be imposted to track the movement of an object. The various improvements can
range from the alternative methods of tracking an object as it moves through its scene by measur-
ing its velocity and rotation, or the prospect of finding a new detection method to ensure that the
predictions can be made in a real-time constraint for higher-resolution files such as 720p or Ultra
High Definition (UHD) video footage.

5.1.1 Object Recognition and Tracking

The recognition and tracking of an object with the computer-generated videos uses a hybrid of
the SURF and BRISK algorithms. It can be seen this method provides a reliable recognition
rate and the desired frame-rate of 30 frames-per-second can be achieved on a 540p resolution.
However, with the popularity of cameras within mobile devices and vehicles able to shoot footage
with a resolution up to 4K or UHD (4096x3160). The prospects of analysing video data at a 540p
resolution is pretty redundant and a new method of being able to extract features from videos
with a ultra high-definition (UHD) resolution needs to be sought in order to progress with the
advancement of technology. It has been proposed in this study that downscaling the recorded
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video to a resolution of 540p and then up-scaling the boundaries to be shown on the UHD frame
can be implemented. However, by resizing the video to a 540p scale, it could discard some of the
key data that may be useful in the UHD image and therefore is not a very practical solution.

Further improvements can be made to the tracking of an object whilst it is moving through
the frames of a video The chosen method for this study is the pixel displacement which is then
simplified to a binary/bipolar value. However, it can be seen that this type of method does
not provide enough information, especially when considering the movement of a pedestrian. The
simplification of a pedestrians movement to one of eight compass directions could hinder the the
information such as the angle of movement and the velocity of movement that is exhibited by
the pedestrian. Although the pixel displacement process can be used to determine the speed at
which an object is moving; the values are discarded and limited to a difference of one or zero;
therefore no indication of speed is present. Using this information could influence the accuracy
of the predictions; they could improve or hinder performance depending upon the complexity of
the movement. Finally, the calculation of the objects movement can be influence based upon the
placement of the camera and the distance at which the object is located from the object. For
example; an object that is closer towards the lens of a camera then the difference in movement
between locations A and B will be smaller, than it would have been if the pedestrian is further in
the background. Therefore, a process of normalising this type of difference would be required.

5.1.2 Stochastic Model

The stochastic model is not perfect, and improvements can be made to the model to increase the
performance and also the tracking of a pedestrian or object through its scene. The first method of
improving the model would be the consolidation of the process that is used to update the matrices
when a transition occurs and the prediction method. By consolidating these two methods within
one function (and albeit one search of a matrix) it could provide a reduction in the amount of
time it takes to make a prediction using the dynamic stochastic model. The processing time of
the traditional model is relatively low due to the searching of the matrix to find an appropriate
row for generating a prediction only occurring once as the probabilities have been pre-adjusted at
the beginning of the process; and is not updated for each transition seen. Therefore by applying
this method to the dynamic stochastic model could provide a reduction within the amount of time
it takes to generate a prediction; especially when considering the higher-order models whereby a
large portion of the time is spent searching.

A further improvement could be made to the calculation of an objects movement that is used to
update the stochastic model. In this work, the pixel difference is computed between two locations
and then a conditional threshold is applied to a binary/bipolar value of ±1. There are various
other solutions that can be utilised to measure the movement of an object, such as the velocity of
movement which would in turn also consider the angular difference of an object’s movement. Using
these metrics could increase the complexity of the overall model, but with the previous suggested
improvement it could be seen that a decrease in computation processing is achievable.

5.1.3 Neural Network

The neural network was implemented using a pre-built Python module; and it can be see that
the outcome of the results and processing times were significantly worse off in comparison to the
stochastic model. The stochastic model is far simpler in complexity of structure in comparison to
a neural network that functions with multiple neurons and layers opposed to a handful of states
that are used in the stochastic model. However, with that being said the number of states can
grow exponentially with a stochastic model when increasing the order of the model and taking
into consideration a number of previous movements. To reduce the computation time of the
neural network it could be implemented by hand (similar to the stochastic model) and this would

135



ensure that full control can be taken over the processes of a neural network, such as updating the
weightings or the feedback mechanism of the recurrent neural network.

5.2 Future Work and Expansion of the Study

The foundations that have been laid by this study is the ability to be able to make predictions that
are highly accurate using a variant of a traditional stochastic model and adjusting the probability
values dynamically by counting the number of transitions that occur between states. There are
several extensions that can be implemented to this underlying work:

• hybrid modelling

• future location prediction

• usability for different datasets

5.2.1 Hybrid Stochastic Modelling

The amalgamation of two feature detectors has been discussed in Chapter 3 and it can be seen
that the combined use of the two algorithms can provide a stronger recognition of the object
from its environment instead of using a single detector. Therefore, it is proposed that the same
methodology should be applied to the traditional and dynamic stochastic models; otherwise known
as a hybrid model. The proposed methodology of the hybrid model would follow the introduced
dynamic stochastic model by counting the transitions that occur between states; and when the
probabilities of the model are recalculated a scoring function is applied; the same process used for
the pattern analysis of the pedestrian matrices. An activity diagram for the outline of the proposed
method is shown in Figure 5.1.

Figure 5.1: The proposed future work of using a hybrid stochastic model to generate predictions.

As it can be seen, the proposed method follows the beginning stages of the dynamic stochastic
model but once the probabilities of the model have been recalculated it is proposed that a score is
generated and a check is made against a database to load a pre-defined model that has a similar
score but with model that is more accurate for predicting the types of movements that have already
been observed.
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5.2.2 Future Location Prediction

The purpose of this study was to determine a method that could be used to generate a prediction
for an objects intended next direction of movement. The type of model that has been developed
is able to accurately determine the direction of movement for an object and return a prediction
with a model accuracy rating over 80%. The model could be used to determine the future location
of an object or pedestrian based upon the last direction of movement that has been observed and
could be most useful for when the object is occluded (hidden from view). This could be useful
if the pedestrian was walking towards the vicinity where suddenly the camera is obscured by a
wall or tree. The algorithm could continue to predict that the pedestrian was going in x direction
and continue tracking as they move behind the wall and come back within the vicinity of the
camera (or another camera). However, there is the chance that with this method the pedestrian
could suddenly change direction and fool the algorithm and therefore the expected location of the
pedestrian would become false and the pedestrian has been ‘lost’. If the pedestrian becomes lost
then it is proposed that the model returns to a state of equal probability whereby a prediction is
made in any of the eight directions until the pedestrian has been found again.

5.2.3 Applicability to Different Data Sources

The experiments within this study has been applied to a text file of pedestrians moving within
a train station, and the prediction of an object moving within a computer-generated video. The
study shows that the model has a high accuracy for prediction on both datasets, with the accuracy
getting better for the various orders that have been experimented with. To determine whether the
same results could be achieved on a different dataset, then future work could look at the use of
different use-cases to determine how the dynamic stochastic model works. For example, a dataset
consisting of animals that are roaming freely within a field could be introduced; due to the sporadic
and sometimes limited movements the animals would exhibit. Another study could look at the
prediction of the football from clips of football matches to determine whether a prediction could be
made on who will score the next goal based upon the placement of the football within the scene.
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Appendix A

Thesis Results

The results from the experiments are too large to be able to include within the appendix of the
thesis. Therefore, the results have been shared via the GitHub repository web-site for easy access
and sharing.

A.1 Yi et al.’s Pedestrian Dataset

The collection of files are stored in a CSV file-format and consist of the results from the stochastic
models and neural networks that have been used in this study.

URL: https://bit.ly/2M5R4Wx

A.2 Thesis Video Dataset

The collection of files are stored in a CSV file-format and consist of the results from the stochastic
models that have been used in this study.

URL: https://bit.ly/2O38W5k
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Appendix B

Feature Detection: Source Code

The full collection of source-code can be found within three repositories on the GitHub website.
Each repository is for an experiment that has been performed within the thesis and can be accessed
by e-mailing the author: cornelii@uni.coventry.ac.uk

Access will be provided upon receipt of the e-mail.

B.1 Linux Experiment

The experiment performed on the Linux operating system for detecting an object from its scene
using a mixture of images and videos.

URL: https://bit.ly/2w3Rjvo

B.2 Android Experiment

The experiment performed on the Android operating system using a mixture of images for detect-
ing an object from its environment.

URL: https://bit.ly/2MKXLB0
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Appendix C

Thesis Study: Source Code

The full collection of the source code used for the study within the thesis for the prediction of an
objects movement is split within two repositories. Each repository is for an experiment that has
been performed within the thesis and can be accessed by e-mailing the author: cornelii@uni.coven-
try.ac.uk

Access will be provided upon receipt of the e-mail.

C.1 Pedestrian Dataset

The source-code for the experiment that was performed upon the dataset that was sourced from
Yi et al. (2016b).

URL: https://bit.ly/2nZfVB2

C.2 Video Dataset

The source-code for the experiment that was performed upon the dataset that was newly created
by the author to determine whether predictions can be made in real-time using high-resolution
video files.

URL: https://bit.ly/2wkT6vg
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