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Original Research Article

Analysing the role of caprock
morphology on history matching of
Sleipner CO2 plume using an
optimisation method
Masoud Ahmadinia and Seyed M. Shariatipour, Centre for Fluid and Complex Systems, Coventry,
UK

Abstract: Geological carbon storage is a promising solution to reduce the CO2 concentration in the
atmosphere to ameliorate the effects of global warming from the greenhouse effect. Among feasible
storage options, deep saline aquifers are believed to have the largest storage capacity for the gas
collected from industrial processes. The first CO2 storage project at a commercial scale in a saline
aquifer is in the Sleipner field of the Utsira storage formation in Norway. The long ongoing storage
operation in the Sleipner field has been the subject of several past studies attempting to recreate the
observed injected CO2 plume migration behaviour. History matching is a method to adjust the input
parameters of the model in a way to minimise the mismatch between the simulated and the actual
production data in reservoir engineering and applicable to carbon sequestration. Typical parameters
adjusted in history matching are porosity, absolute and relative permeability data. In this study, we used
an adjoint-based optimisation tool and showed the importance of caprock morphology in finding an
accurate plume match. Using a set of synthetic models, we initially minimised the mismatch between
the observed and simulated CO2 plume outline by modifying the caprock topographical details. After
testing the optimisation tool on the synthetic models, we applied the methodology to the Sleipner
benchmark 2019 model and improved the plume match by locally adjusting caprock elevation within
seismic detection limits. We subsequently improved the match by calibrating porosity, permeability,
CO2 density and injection rate together in an experiment in which we calibrated all the parameters,
including the caprock morphology, to find a better match. The results showed an improvement of
around 8% (compared with the original model) in the plume match resulting from an average absolute
elevation change of 3.23 m in the model while keeping the other parameters constant. Calibrating the
porosity, permeability, CO2 density and injection rate resulted in a 5% improvement in the match, and
once caprock morphology was included in the optimisation process, the match improvement increased
by 16%. We changed the caprock elevation within a range lower than the seismic detection limit, and
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results showed that even a few metres variations in the elevation have significant impacts on the plume
migration and trapping mechanism in the Sleipner model. The method presented in this work results in
a better match than the original seismic data for the Sleipner model. © 2020 The Authors. Greenhouse
Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons,
Ltd.

Keywords: adjoint-based optimisation; CO2 storage; history matching; Sleipner 2019 benchmark;
vertical equilibrium

Introduction

Global warming is mainly caused by
the sudden increase in CO2 concentration in
the atmosphere.1 Carbon capture and storage

(CCS) is one of the practical solutions to tackle this
problem,2 which theoretically has the potential to
decrease greenhouse gas emissions by up to 32% by
2060.3 The idea is to first capture emitted CO2 from
large point sources, such as power plants or industrial
facilities, then transport it to the storage site, and inject
it into deep geological formations (deeper than 800 m)
where it can be securely stored permanently.4 Based on
the estimation from the Intergovernmental Panel on
Climate Change (IPCC), CCS helps reducing the cost
of limiting global temperature rise to 2 °C by 138%.5

Currently CO2 is primarily stored either in saline
aquifers or used as an enhanced oil recovery (EOR)
agent in hydrocarbon reservoirs.6 Over the last decade,
CO2 has been used in more than 70 EOR projects
around the world.7 Some of the largest CO2-EOR
projects are the Cranfield oil and gas field,8–11 Weyburn
Field in Canada,12,13 Changqing Oil Field in China,14

Santos Basin in Brazil15 and Alberta Carbon Trunk
Line project in Canada.16

The Sleipner CCS project is the first storage project
demonstrated on a commercial scale17,18 and is the
longest ongoing CO2 storage project in the world,
storing around one Megaton (Mt) CO2 per year since
1996.19 This has provided researchers with exceptional
insight into CO2 storage process in the saline aquifers.
The site, located off the western coast of Norway, has
been operated by Equinor as a CO2 storage site, to
prevent CO2 emissions associated with natural gas
production from the same region. The CO2 is captured
from the nearby gas processing field and then injected
into the Utsira formation located at a depth of
800–1000 m beneath the North Sea.20–23 The Utsira
formation is late Cenozoic, a 200–250 m thick
sandstone that has stored 17.8 Mt of CO2 by 1 January

2019,24 and the caprock formation is the Nordland
shale with a thickness of 200–300 m.25 The Sleipner
2019 Benchmark Model26 is the most recent reference
dataset from the Sleipner CO2 storage site. Although so
far, nothing suggests the stored CO2 may leak into the
atmosphere in the Sleipner model, it is still important
to monitor the storage process and manage the leakage
risk throughout the project.25 Moreover, monitoring is
important in order to understand the CO2 plume
migration path and speed and trapping mechanism,
which is essential for decision-making purposes.
Numerous researchers27–33 have tried to gain a better
understanding of the plume migration in the Sleipner
and to find a satisfactory history match of the CO2
plume migration. The nature of the caprock has been
suggested to be a source of mismatch between the
observed and simulated plume outline in Sleipner.33–35

While a portion of the CO2 that is injected into
storage site will be securely stored through various
processes, including dissolution, residual and mineral
trapping, a large part will remain as a free phase in
short to medium term.2 If there is no proper barrier,
such as anticline, the free phase will move upslope
along the caprock. For storage safety and conformance
purposes, it is important to improve the understanding
of this migration process and develop confidence in
long-term carbon storage performance.2 CO2 is
generally injected in a supercritical state to achieve a
higher density and consequently occupy less volume
within the storage formation,36 and depending on local
storage condition, will remain in gas, liquid or
supercritical phase.37 Regardless of the phase, the
injected CO2 has a lower density than the formation
water in practically all relevant scenarios.
Consequently, shortly after the end of the injection
period, most of the free phase CO2 will migrate
upwards due to buoyancy to lie beneath the caprock if
not trapped below the low permeability formations in
middle layers.38 Therefore, the caprock morphology
plays an important role with respect to the plume
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migration and storage security. Most caprocks are
sedimentary rocks, mainly deposited horizontally.39

They may, however, become tilted over the long term,
after the imposition of various tectonic forces. Caprock
morphology refers to the structures, such as tilts, folds,
and so on, that are observed in the caprock and are
controlled by several processes including pressure and
temperature changes during the deformation of
sedimentary rocks.40 Sinusoidal structures are formed
throughout the deformation of strata and the
deposition of sediments.40 They are common in
sedimentary rocks and are observed in various scales
from microscopic to regional, of which the main types
are folds and bedform.40 Formation dip has proven to
have a significant influence on the storage process
including residual and dissolution trapping,41 up-dip
migration and plume stabilisation.42 In some
demonstration storage sites, the formation has
preserved various dip angles from high ranges, such as
Nagaoka in Japan43 and Ketzin in Germany with 15°
dip,44 Frio in Texas with 16° dip,45 to low ranges
including Vedder formation in California with 7° dip.46

Several researchers investigated the impact of caprock
morphology on the CO2 plume migration through
numerical and analytical methods using realistic31,47

and synthetic38,48-51 models. The impacts of the top
surface morphology and geological heterogeneities on
CO2 storage capacity were investigated in a previous
study.47 The structural trapping capacity was calculated
through a spill-point (the structurally lowest point of
the trap that can retain CO2) approach and geometric
analysis. CO2lab module of the MATLAB Reservoir
Simulation Toolbox (MRST) which is a set of
open-source simulation and workflow tools was used
to study the long-term, large-scale storage of CO2.52,53

While a simple volume analysis provided a good
estimation of structural trapping, the study showed
that residual trapping must be calculated through
detailed flow simulation. The impact of rugosity, that
is, the topography variation below 10 m,54 on plume
migration, was discussed in another study.55 The work
showed that neglecting surface roughness in geological
models generally leads to an overestimation of the
migration speed and the roughness provides additional
storage capacity for the CO2. In a later work,56 the
importance of key structural parameters (including
amplitude and wavelength of small scale structural
traps) in controlling the CO2 plume migration and
trapping were evaluated. While amplitude plays a
significant role in the amount of structural trapping,

the work showed that the dynamics of the plume are
mainly affected by the trap spacing, spill-points and
formation dip angle.

Aquifer permeability and formation dip were shown
to be the main parameters affecting the storage
efficiency.57 Later in another study,58 the effect of tilt,
rugosity and permeability anisotropy on CO2 storage
migration and trapping in a saline aquifer was
investigated. The effect of the domain between the
aquifer and the caprock (transition zone) on the CO2
dissolution and movement was considered in the study.
The results showed an enhancement in the dissolution
due to the increased contact between the CO2 with the
brine as a result of the shale dispersing the plume over
a wider area. Moreover, CO2 was trapped beneath the
shales which increased its storage security. Later, a
systematic analysis of the impact of the formation slope
on the CO2 storage process in the Liujiagou formation
in China was performed in another study.59 According
to the results, the plume will be symmetrical around
the injection well. Moreover, the impact of dip on the
CO2 plume migration was seen to be negligible during
the injection phase. Another work60 focused on the
impact of rugosity on the CO2 storage process. The
results showed that residual and dissolution trapping
reduce the plume thickness, while caprock rugosity
retards the plume migration. The majority of the CO2
near the tip of the plume was seen to be structurally
trapped inside the small-scale structures.

The observed plume outline from seismic data was
matched with one from the simulation in a study for
the Sleipner model.33 The results suggested that the
plume outline shape is mainly controlled by the
caprock morphology and that the CO2-brine contact
was governed by the CO2 density. Later in another
work,31 a one-factor-at-a-time (OFAT) approach was
employed to study the sensitivity of estimating the
storage to changes in porosity, permeability, caprock
elevation and aquifer conditions (pressure and
temperature) in the Utsira aquifer. The results showed
that caprock elevation and permeability have the
greatest impact on plume dynamics, which was also
partially confirmed by a previous research.33 A
sensitivity analysis on the impact of caprock rugosity
on CO2 trapping mechanisms was performed48 using
sinusoidal geological models. The results, similar to the
previous studies,61,62 showed that higher dip angles
result in a higher dissolution and residual trapping but
lower structural trapping. The results also indicated
that in models with the highest rugosity values, in
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which the plume is less mobile, residual trapping is
minimum. In another work,38 the results from the
vertical equilibrium (VE) tool in MRST−CO2lab were
compared against a number of simulators, including
the ECLIPSE-black-oil, ECLIPSE-compositional and
ECLIPSE-VE in a CO2 storage study in an aquifer. The
results showed a good agreement between the
approaches in terms of plume shape, although the
amount of dissolved CO2 in brine was different. While
previous studies59,63 showed that by increasing the tilt
angle, the plume migrates further, which consequently
results in a higher dissolution, the work38 showed that
in tilted models, however, with limited vertical
permeability, more CO2 becomes trapped residually in
the bottom layers which eventually results in a lower
dissolution. Regarding the computational cost,
MRST−CO2lab significantly outperformed the rest.

General seismic surveys are proficient in detecting
large-scale features in the caprock, including domes,
traps and spill points. Their detection level, however,
does not cover rugosity. Light Detection and Ranging
(LiDAR) is a technique for determining the distance to
an object by transmitting a laser beam at it and
measuring the time the light takes to return to the
transmitter.54 LiDAR scanning of outcrops with a
typical resolution between 0.1 and 1 m, can provide
evidence of geological features not evident in the
seismic investigation.64,65 It is necessary to quantify and
find the sources of uncertainty in the data representing
the geological model as if this is not undertaken, it
introduces errors into the simulation process. A
popular method to mitigate the model uncertainty in
reservoir engineering problems is history matching
where different parameters, such as pressure and
production data, are calibrated to decrease the
mismatch between simulated and observed data.66

Typical uncertain parameters considered in history
matching problems are porosity, absolute and relative
permeability data.67 The focus of the current work is to
find the importance of caprock morphology in
comparison to other typical parameters in decreasing
the mismatch between the observed and simulated
plume outline in Sleipner model. The work continues
with the following sections. In the second section, we
introduce the characteristics of the synthetic models,
which will later be used to test the adjoint-based
optimisation tool by recreating a given CO2 plume
shape in the model. Later in this section, the Sleipner
2019 benchmark model is introduced. We performed
simulations with a vertical-equilibrium assumption

using the CO2lab module in the MRST.68 The
numerical simulator together with the optimisation
framework and the methodology used to compare the
plume outlines, are described in the third section. The
simulator was coupled to an adjoint-based
optimisation tool33 to minimise the mismatch between
the observed and simulated plume shape. The results
for both synthetic and the Sleipner models are
discussed in detail in the fourth section followed by a
summary and conclusion in the fifth section.

Model input
Synthetic model description
Here we first tested the optimisation tool in a problem
with a known answer. Five sets of plume outlines have
been created using specific slope and caprock
topography variations and are referred to as the
‘observed’ plume. Using our approach, we recreated the
‘observed’ plume outline through systematic
optimisation of uncertain parameters, that is, aquifer
slope and caprock topography. Since the answer is
already known, this step helps to test the approach
before applying it to a real field model which is more
complex. The contact boundary between the caprock
and aquifer of the synthetic models in the first part of
the study is represented by Eqn (1). The z-axis is
oriented downwards.

z
(
x, y

) = B[sin (ω1x) + sin
(
ω1y

)
] + Ax sin (ω2x)

+Ay sin
(
ω2y

) + x tan (Sx) + y tan
(
Sy

)
(1)

where

ω = 2π
λ

: angular frequency of the sine wave function,
x, y and z: directional coordinate of the caprock surface,
A and B: amplitude of the sine wave function,
S: model dip angle.

The first two terms (with ‘B’ as a multiplier) represent
the main structural traps. The rugosities in the x and y
directions are presented by the next two terms, with a
higher angular frequency than the main traps
(ω2 > ω1). The last two terms represent the model
slope.

B, ω1 and ω2 are constant in Eqn (1) at values of 35
(m), 15 (rad m−1) and 100 (rad m−1), respectively. The
model parameters are the rugosity amplitude and
model slope in the x and y directions, presented by Ax,
Ay, Sx and Sy, respectively, which are subjected to
change in order to find the best match. A schematic of
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Figure 1. A schematic of the synthetic model (not to scale).

Table 1. Synthetic model parameters.

Parameter Value

Reservoir grid resolution (NX × NY × NZ) 101 × 101 × 4

Reservoir size (km) (LX × LY × LZ) 15 × 15 × 0.1

Rock compressibility (Pa−1) 10−10

Water density (kg m−3) 1020

CO2 density (kg m−3) 760

Residual water saturation (Srw) 0.27

Residual CO2 saturation (Src) 0.20

Permeability (mD) 500

Porosity 0.2

Simulation period (years) 12

Brine viscosity (Pa.s) 8.0 × 10−4

CO2 viscosity (Pa.s) 6.0 × 10−5

Caprock depth (m) 1500

the caprock with no rugosity and slope ( Ax =
Ay = Sx = Sy = 0) aquifer is shown in Fig. 1. The
amplitude of the dome (B) is 40 m, and the z-axis is
vertically exaggerated by a factor of 25.

A single CO2 injector is considered at the centre of
the model (i.e., cell (50,50)), injecting CO2 for 12 years
(starting from 1999) with a constant flow rate of 0.5 Mt
year−1 (assumed), equivalent to 20% of the CO2
emission of a 500 MW coal-based power plant.69

Further information about the model is presented in
Table 1. The model is homogenous with a permeability
of 500 mD in the lateral direction. Note that vertical
heterogeneity in permeability is ignored in VE models.
Therefore, the intra-layer flow in the simulation is not
considered and by permeability in this study, we are
referring to horizontal permeability only. The errors
resulting from VE modelling can in many cases be
smaller than the errors resulting from low lateral
resolution used to make the 3D simulations
computationally feasible.70 More information about the

Figure 2. Relative permeability curves.

VE models is provided in the section on numerical
simulation.

The relative permeability curves (kr) for CO2 and
brine are taken from a previous work71 and are shown
in Fig. 2.

The numerical simulation of CO2 injection and
migration was initially performed on a synthetic model
with a known slope (Sx and Sy) and rugosity (Ax and
Ay). The resulting plume outline was recorded and
subsequently reinterpreted as ‘observed’ data. New
models were synthesised with a different set of inputs
for the investigated parameters (slope and rugosity in
the x and y directions). Simulations were then
performed on individual synthetic models using a
non-linear optimisation framework. The investigated
parameters were calibrated within predefined limits
with a view to match the original ‘observed’ data.

Sleipner 2019 benchmark model
The Sleipner CO2 storage site has been extensively
monitored from its inception, and a series of time-lapse
seismic datasets that documents the migration of the
injected CO2 has been established and (along with
associated well logs and baseline seismic) has served as
an input to the creation of the benchmark model. The
2019 benchmark model is the first complete 3D model
of the Sleipner covering eight reservoir zones
interbedded with eight continuous shale layers. The
geological model used in this part of the study consists
of the caprock, sand wedge (L9, highlighted in red in

© 2020 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
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Figure 3. Depth data for Sleipner 2019 benchmark model.

Table 2. CO2 reservoir volume entry rates.

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Rate (m3) × 106 0.03 0.08 0.14 0.21 0.31 0.44 0.62 0.87 1.18 1.57 2.06 2.65

Fig. 3). Other layers are ignored as we focused on the
behaviour at the top surface. The horizontal and
vertical seismic resolutions in the Sleipner site are 8
and 12.5 m, respectively.26

CO2 is injected through a well (15/9-A-16) with
coordinates (x: 436 137.42, y: 6 470 282.86)26 for 12
years (1999–2010). The well is operating with rates as
in a previous study (Table 2)72 in which the authors
measured the values of the rates based on the injected
volumes and plume growth rates observed from the
seismic data.72 The injection rate is representative of
the volume of the CO2 entering Layer 9, therefore it is
smaller than the real CO2 rate in the field. Since the
internal layers are not considered, once injected, the
whole CO2 plume will reach the top-surface
immediately, whereas in reality, the plume encounters
and passes through eight shale layers and part of it
becomes trapped before reaching Layer 9.

Dissolution and mineralisation are important factors,
which nevertheless had to be left out of the study due
to computational considerations. Relative permeability
data have been taken from a previous work72 with a
residual saturation of 0.11 and 0.21 allocated to the
brine and CO2, respectively. The temperature impact
on density (and viscosity) is modelled with sampled
tables of density and viscosity as functions of pressure
and temperature using the CoolProps open-source
package.73 Further information about the model can be
found in Table 3.

Permeability values are generated using the
lognormal distribution approach within the reported
range. Porosity is then generated from permeability
data using the Kozeny–Carman correlation.79 Figure 4
shows the porosity and permeability map used for the
Sleipner model.

Simulation and optimisation
approach
Numerical simulation
The numerical simulations are performed using the
CO2lab module in MRST,80 which uses a simplified
version of flow equations and is based on the
assumption of VE. Brine and CO2 are assumed to be in
hydrostatic equilibrium throughout the simulation and
vertical flow migration is considered negligible
compared to lateral migration.81 Due to the significant
difference between CO2 and brine densities,
segregation is considered to occur instantly and the
fluids form two separate layers. For typical operational
conditions and formation thickness in geological CO2
storage projects, the VE assumption is likely to be valid
for horizontal permeabilities above 100 mD.82 Note
that Sleipner Layer 9’s permeability is between
1100–5000 mD and is characterised by gravity
segregation.33 By using the VE method, it is possible to
model most relevant physical aspects of long-term CO2
storage. Its feasibility in the CO2 storage problem has
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Table 3. Sleipner model information.

Parameter Value Reference

Porosity 0.27–0.4 74,75

Permeability (mD) (1.1 − − 5) × 103 76

Number of cells (NX∗NY∗NZ) 64 × 118 × 47 26

Cell dimensions (DX∗DY) 50 × 50 m 26

Area (km2) 18 (6 × 3) Seismic depth map

Layer 9 thickness (m) ∼ 40 Seismic depth map

Seafloor temperature (°C) 7 33

Brine viscosity (Pa.s) 8.0 × 10−4 33,72

CO2 viscosity (Pa.s) 6.0 × 10−5 33,72

Brine density (kg m−3) 1020 77

CO2 density (kg m−3) 760 78

Brine compressibility (Pa−1) 4.37 × 10−10 33

CO2 compressibility (Pa−1) 4.37 × 10−9 33

Rock compressibility (Pa−1) 10−10 33

Thermal gradient (°C km−1) 35.6 33

Figure 4. Porosity and permeability distribution
map in the Sleipner model.

been investigated in previous studies38,70,82-85 and was
also employed to model the Sleipner
benchmark.33,34,68,72 Strong segregation occurs in the
Sleipner, and the plume migration is strongly affected
by the caprock morphology.72 In the VE model, the
problem dimension is reduced from 3D to 2D. This
significant reduction in the number of unknowns also
significantly reduces the computational cost and allows
the modeller to consider a higher lateral grid resolution
beyond what would be practical in full 3D simulations.
It is then possible to reconstruct the full 3D model
from the 2D one as a post-processing step.70 The VE
simulation results were compared with a full 3D
black-oil simulator, and the results showed that the VE
model could capture the main flow physics of Sleipner

benchmark.68 The CO2 plume behaviour on Sleipner
observed in the VE model was observed to be the same
as the one from a full 3D simulation model.34

Equation 2 represents the mass conservation in a 3D
simulation on the fine-scale.

∂ (ϕραsα )
∂t

+ ∇.ρα uα = ρα qα (2)

where

α : fluid phase (w or g),
ϕ : porosity,
ρα : phase density,
sα : phase saturation,
qα : phase volumetric flux caused by any source or sink,
uα : fluid velocity, which based on Darcy’s equation is

given by Eqn ((3)).

uα = − kλα

(∇ pα − ραg
)

(3)

where

– k : rock absolute permeability,
– λα : fluid mobility.
λα = λα (sw ) = krα (sw )

μα
,

where

– g : gravitational constant,
– pα : phase pressure.

Here, capillary pressure that is a function of water
saturation can be expressed as: Pc = pg − pw.

© 2020 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
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By assuming vertical hydrostatic equilibrium and
fluid segregations, it is possible to derive VE model
equations from Eqn 2. The up-scaled parameters in VE
formulations are calculated by integrating the
fine-scale ones across the thickness of the aquifer with
respect to the z-axis. The up-scaled mass conversation
is represented in Eqn (4), which is achieved by
replacing each variable in Eqn (2) with its vertically
averaged counterpart. Readers are referred to a
previous work33 for the full derivation. The equation is
presented in fractional form by using the plume
thickness as a variable.

	
∂h
∂t

+ ∇ fg (h)
(
Ut − k

(

w − 
g

)
�g (h) �w

× (H − h) g∇ (zt + h)
) = qg (4)

where

h: plume thickness,
H = aquifer thickness,
	 : porosity,

α : phase density,
zt : top surface depth,
Ut : total volume flux, which is given by Darcy’s equation

(Eqn (5)).

Ut = −k�t (h)

× (∇ pi − [
ρw − (

ρw − ρg
)

fg (h)
]

g∇ (zt + h)
)

(5)

where

pi : pressure at the interface of gas and water,
fg : fractional flow function for the gas phase, which is
given by Eqn (6).

fg = �g (h) /
[
�w (H − h) + �g (h)

]
(6)

It is important to note that the up-scaled mobility (�t
in Eqn (5)) is different from the fine scale (λα in
Eqn (3)) and is defined as81:

�α ≡
ξI∫

ξB

λα,||k||dzK−1 (7)

where

ξB= elevation of the bottom of the formation (surface),
ξI= elevation at which two fluids are separated (sur-
face),

K = integrated permeability.

Note that fine-scale mobility (λα) depends on
saturation (which is a 3D model), whereas up-scaled
mobility (�α) depends on vertical plume thickness, h,
(which depends only on ‘x’ and ‘y’). The sharp interface
assumption, which is valid in models with negligible
capillary pressure effect, is employed for the
reconstruction of fine-scale saturation and mobility
based on the up-scaled saturation. More details can be
found in Andersen et al.86

Optimisation framework
The optimisation tool employed in this study is
implemented in the MRST. It can be used for solving
optimal control problems with forward and adjoint
solvers, and implements a quasi-Newton optimisation
routine using Broyden–Fletcher–Goldfarb–Shanno
(BFGS) updated Hessians.53

In the first part of the study (synthetic model), model
parameters are Ax, Ay, Sx and Sy, which are scalar
values representing the rugosity amplitude and aquifer
slope in the x and y directions, respectively (Eqn (1)).
In the second part of the study, the model parameter is
dz, which represents the absolute local elevation
changes in caprock depth, and whose number of scalar
values equals to the number of cells in the top row of
Sleipner layer 9 (64 × 118 = 7552).

Note that the objective function in this study only
depends on plume thickness (h). The upscaled (VE)
saturation is the fraction of CO2 in a total vertical
column (disregarding the residual saturation); in other
words, h divided by the aquifer thickness.38 The
optimisation framework aims to find a set of model
parameters and minimise the misfit function in form of
J = ∑

Jm where Jm is described by the following
equation:

Jm (hm) =
∑
cells

V
(
hm − hobs

m
)2 +

∑
cells

αdz2V (8)

where

m = time-instance of the set of observed CO2 plume
thickness (hobs). We have four sets of observed data
(2001, 2004, 2006 and 2010) in both parts of this study,

h = Simulated plume thickness given the model param-
eters,

V = Aquifer volume found below each cell in the 2D top
surface grid,

α = Regularisation term (equals to 0.1).

While adjusting dz in the second part of the study, we
have a very large degree of freedom in the optimisation
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problem (equivalent to the z-value of all caprock cells
in Sleipner model). The regulation term (α) is
introduced to reduce the ability to overfit the data. See
Sections 2.3–2.6 in the study performed by Nilsen
et al.33 for more information about the implemented
adjoint-based optimisation framework in the MRST
and Jansen’s87 work for more details about formulating
adjoint equations for simulating multiphase flow in
porous media.

Sørensen–Dice coefficient
Several approaches are available to quantify the
similarity of the plume migration resulting from two
different geological models. One method used in
previous studies88–90 is to compare the plume centre of
mass with a reference point, such as the injection point.
Here we employed the Sørensen–Dice coefficient
(SDC), a statistic used to quantify the similarity of two
discrete samples.91,92 The approach showed promising
results when applied to the Ketzin93 and Sleipner30,31

CO2 storage sites to compare the similarity of the
simulated and observed CO2 footprint. SDC ranges
between 0 and 1, where an SDC equal to 1 corresponds
to identical samples. Note that the SDC coefficient is
not implemented into the optimisation framework and
as mentioned in the section on optimisation
framework, the objective function in this study is solely
a function of plume thickness and plume outline refers
to the plume thickness profile. Once the model
parameters are optimised, the SDC coefficient is
calculated after running a forward simulation using the
optimised parameters. The SDC coefficient is defined
as:

SDC = 2 |X ∩ Y |
|X | + |Y | (9)

where

X: the plume outline from the simulation at the desired
time,

Y: the observed footprint generated from the seismic
data at the same time as X.

Results and discussion
Synthetic model
We tested our approach on a synthetic model first
intending to recreate a set of model parameters used to
generate simulated ‘observations’. The adjoint-based
optimisation tool is employed to effectively minimise
the mismatch between the observed and simulated

Table 4. Input parameters for the observed
plume outlines.

Case Ax (m) Ay (m) Sx (o) Sy (o)

A 7 3 4 2

B 18 16 11 17

C 5 19 6 3

D 13 9 3 8

E 6 4 −2 −5

Figure 5. Observed CO2 plume thickness
profile for all the cases.

plume thickness profile, by changing the rugosity
amplitude (Ax and Ay in Eqn (1)) and aquifer slope (Sx
and Sy in Eqn (1)). Five sets of observed plume outlines
(Cases A–E) are considered which are achieved with
the following set of inputs listed in Table 4.

Figure 5 shows the observed CO2 Plume thickness
profile at the end of the simulation for the synthetic
models which are achieved using different sets of input
parameters listed in Table 4.

Six sets of initial guesses (Cases 1–6) are considered
for all the cases and are listed in Table 5. Two sets of
limits to optimise the variables are considered:
scenarios ‘a’ and ‘b’ in which the optimised parameters
could be any value within (0–10) and (0–20) (degrees
or metres, based on the parameter), respectively.

© 2020 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
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Table 5. Initial guesses and search range for
each of the model parameters.

Model parameter limit

Scenario Ax (m) Ay (m) Sx (o) Sy (o)

A 0–10 0–10 0–10 0–10

B 0–20 0–20 0–20 0–20

Initial model parameters

Case Ax (m) Ay (m) Sx (o) Sy (o)

1 0 0 0 0

2 10 10 10 10

3 10 10 0 0

4 0 0 10 10

5 0 10 0 10

6 10 0 10 0

Assigning the initial guess values listed in Table 4 to
the uncertain parameters results in different plume
thickness outlines in 2001, 2004, 2006 and 2010, which
are shown in Fig. 6.

The optimisation has been performed for 60 cases
which is a combination of five sets of observed plume
outline, six sets of initial guesses for the parameter with
two sets of assigned limits. Figure 4 shows the number
of iterations for each optimisation run (x-axis), where
the letters A–E on y-axis show the name of the five
cases with a different observed plume outline (as in
Table 3 and Fig. 2) and legends 1–6 indicates the six

Figure 6. Initial CO2 Plume thickness profile for the
synthetic models in 2001, 2004, 2006 and 2010.

sets of data used as an initial guess (as in Table 4).
Figure 7(a) and (b) shows the results for scenario ‘a’,
that is, small parameter limit of (0–10) and the results
for scenario ‘b’ that is, larger parameter limit of (0–20),
respectively.

Figure 7. Number of iterations for each optimisation run.
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Table 6. Dice coefficient of the initial guess
model for Case A.

Dice coefficient

Case 2001 2004 2006 2010

1 0.81 0.74 0.74 0.75

2 0.69 0.66 0.68 0.71

3 0.71 0.62 0.62 0.61

4 0.68 0.65 0.68 0.71

5 0.36 0.31 0.29 0.29

6 0.55 0.55 0.58 0.59

While it is difficult to find a relationship between the
shape of observed plume outline (Cases A–E) and the
number of iteration, the results clearly show that
optimisation requires a higher number of iterations in
scenarios ‘b’ than ‘a’. Therefore, the narrower range can
decrease the computational cost, although this could
introduce the risk of missing the optimum points.

The resulting plume outline for all the cases resulted
in an SDC ∼1 at all four time steps, that is, the
observed and simulated plume outline had a complete
match throughout the simulation. Here, we show the
results of the plume outline match for Case A. The
corresponding SDC for plume outlines using the initial
model parameters (Ax = 7, Ay = 3, Sx = 4 and Sy = 2)
are listed in Table 6.

Calibrated CO2 plume thickness profile for Case A
using smaller parameter limit (scenario ‘a’) is
presented in Fig. 8. Similar plume outline was achieved
for scenario ‘b’ and the results indicate that a
satisfactory plume match is achieved regardless of the
starting point (Cases 1–6) and ranges (scenarios ‘a’ or
‘b’) used in this study.

Here we also compare the results based on the
calibrated values for the model parameters. Figure 9
shows the optimised values for all the optimisation
runs in Case A. As mentioned earlier, the observed
plume outline in Case A is achieved setting Ax= 7 m,
Ay= 3 m, Sx= 4o and Sy= 2o in Eqn (1). For this study,
we observe no significant dependence on the initial
guess for the final solution obtained. A similar degree
of accuracy was achieved for Cases B–E. Note that in
more complex optimisation settings, the choice of the
start point would be important and here we are dealing
with a simple problem.

Figure 8. Calibrated CO2 plume thickness
profile for Case A using smaller parameter
limit (scenario ‘a’) in 2001, 2004, 2006 and
2010.

We define averaged error to quantify the mismatch
between the calibrated and observed model parameters
as:

Averaged error = X + Y
2

(10)

where X and Y are described by Eqns (11) and (12),
respectively,

X =
⎛
⎝ 4∑

n=1

|Acal
x − Aobs

x
∣∣+|Scal

x − Sobs
x

∣∣ + |Acal
y − Aobs

y

∣∣∣+|Scal
y − Sobs

y

∣∣∣
n

⎞
⎠

scenario a

(11)

where ‘cal’ and ‘sim’ denote calibrated and simulated,
respectively.

Y =
⎛
⎝ 4∑

n=1

|Acal
x − Aobs

x
∣∣+|Scal

x − Sobs
x

∣∣ + |Acal
y − Aobs

y

∣∣∣+|Scal
y − Sobs

y

∣∣∣
n

⎞
⎠

scenario b

(12)
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Figure 9. Optimised values for all the cases.

Figure 10. The averaged percentage error in the match between the calibrated and
observed models.

The averaged error helps to provide a better
understanding of the performance of the optimisation
tool. The results for all the optimisation cases of
scenarios ‘a’ and ‘b’ are shown in Fig. 10(a) and (b),
respectively. The results show an average error of less
than 2.5% for all the cases. Although setting tighter
bounds (scenarios ‘a’) for the parameter ranges resulted
in a relatively lower computational cost (lower number
of iterations as shown in Fig. 7), however, it does not
guarantee a more accurate result, as the averaged errors

for this scenario is fairly the same as for scenario ‘b’.
While there is a small ‘wiggle room’ in calibrated

parameter values, results clearly show that the
optimisation tool employed in this study can identify
precisely a single set of model parameters to match the
plume extension at different time steps. In the next
section, we discuss the results from applying the tool to
the recent Sleipner model to calibrate its caprock
morphology to improve the match between the
observed and simulated plume outline.
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Figure 11. Plume outline from seismic (first row), results from the original model (second
row), comparison of the plume outlines (third row; dark blue: seismic, yellow: simulated,
green: overlapped) in 2001, 2004, 2006 and 2010. The legend shows the plume thickness
(m).

Sleipner model
The plume outline resulting from the original Sleipner
model is compared with the one from seismic data in
2001, 2004, 2006 and 2010 (Fig. 11). The plume shows
a better match in the early years (SDC ∼70%) than in
2010 (SDC ∼60%).

Various researchers addressed the different source of
uncertainties, such as temperature,30,32,94 CO2 plume
impurities,30 CO2 density,35,78,94,95 injection rate,33,35

porosity and permeability33 affecting the plume match
in Sleipner model. The focus of the current study is to
show the role of caprock morphology in improving the
match between observed and simulated plume

outlines. We have defined three experiments
considering different sets of parameters to calibrate
during the optimisation run. The history matching
parameters for each of the cases are as follows:

– First experiment. Caprock morphology, that is, eleva-
tion of the 7552 cells on the top surface.

– Second experiment. Porosity, permeability, injection
rate, CO2 density.

– Third experiment. Caprock morphology, porosity,
permeability, injection rate, CO2 density.

First, the mismatch between the observed and
simulated plume outline is minimised by only

© 2020 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
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Figure 12. Plume outline from seismic (first row), results from the calibrated model in the
first experiment (second row), comparison of the plume outlines (third row; dark blue:
seismic, yellow: simulated, green: overlapped) in 2001, 2004, 2006 and 2010. The legend
shows the plume thickness (m).

modifying the caprock morphology. To avoid an
unrealistically large plume, we calibrated the injection
rate before the main optimisation. The results showed
that using a rate multiplier of 0.7, which is in
agreement with the range reported in a previous
study,33 improved the plume match (9% improvement
in plume match in 2010, for instance). The resulting
plume therefore roughly represents the fraction of CO2
that has reached the upper layer based on the
time-lapse seismic data. The resulting plume outline
from the calibrated model is compared with the
seismic data in Fig. 12. The result shows an increase in
the average SDC in the four studied time steps from

65% (original model) to 73% (calibrated model) which
is significant. Note that we are not expecting to find a
perfect match as other parameters affect the Sleipner
plume match. Calibrating the caprock morphology
alone seems to especially improve the match in the
middle of the plume, where the CO2 plume is thickest
and forms a reverse ‘L’ shape. This improvement
cannot be observed by SDC as the plume thickness is
not considered in the similarity measurement which is
a limitation of this approach. Moreover, SDC considers
the difference in the uncommon elements which is
another limitation. In other words, if circle X and Y
have an area equivalent to 75% and 125% of circle Z,
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Figure 13. Caprock elevation
change for the first experiment.

respectively, then SDCX & Z = SDCY & Z = 0.75. Note,
as mentioned in the Sørensen–Dice coefficient section,
the SDC coefficient is not implemented into the
objective function and is calculated for the model once
the parameters are optimised, therefore, its limitation
does not affect the optimisation process.

While the optimisation tool was allowed to modify
the caprock morphology within ±10 m, the results
presented in Fig. 13 are achieved by an average absolute
elevation change of ±3.23 m. Figure 10 shows the

elevation change applied to the original geological
model. The algorithm seems to decrease the elevation
in the region outside the observed plume outline.
Therefore, the lower caprock outside the observed
plume area encourages the plume to move inward.

For the second and third experiments, the values of
porosity, permeability, injection rate and CO2 density
are modified using a multiplier for each of the
parameters. The results are listed in Table 7. While
adjusting the caprock morphology only in the first
experiments increased the SDC to 73%, changing
porosity, permeability, injection rate and CO2 density
(second experiment) resulted in an SDC of 70% which
shows the significant of caprock morphology in
controlling the plume migration. The results also show
that calibrating all the parameters together (third
experiment) can decrease the mismatch between
observed and simulated plume outlines significantly
and results in an SDC of 81%. It is, however, important
to note that the calibrated permeability average in the
second and third experiments is noticeably above the
reported range for Layer 9 in the literature, which is
1.1–5 Darcy. Calibrated densities in both experiments,
however, are close to the proposed value by Cavanagh
and Haszeldine, that is, 355 kg m−3.

The pressure distribution in the models at the end of
the simulation is also shown in Fig. 14.

The resulting plume outlines for the second and third
experiments are shown in Figs. 15 and 16, respectively.
While the previous results showed that calibrating the
caprock morphology alone improves the plume match
in the middle regions of the plume, as we can see in
Fig. 15 calibrating porosity, permeability, injection rate

Table 7. Results of the optimisation for the Sleipner model.

Parameter Original First Exp. Second Exp. Third Exp.

Avg. porosity 0.360 0.360 0.389 0.468

Porosity multiplier – – 1.08 1.30

Avg. permeability (Darcy) 1.950 1.950 12.862 14.700

Permeability multiplier – – 6.60 7.54

Avg. CO2 density (kg m−1) 760.0 760.0 372.7 348.8

Density multiplier – – 0.49 0.46

Avg. CO2 entry rate (m3 s−1) 0.0070 0.0049 0.0058 0.0077

Rate multiplier – 0.7 0.83 1.10

Avg. SDC (%) 65 73 70 81

Avg. elevation change (m) – 0.56 – 0.33

Avg. absolute elevation change (m) – 3.23 – 2.61
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Figure 14. Pressure distribution in the models at the end of the simulation.

Figure 15. Plume outline from seismic (first row), results from the calibrated model in the
second experiment (second row), comparison of the plume outlines (third row; dark blue:
seismic, yellow: simulated, green: overlapped) in 2001, 2004, 2006 and 2010. The
legend shows the plume thickness (m).
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Figure 16. Plume outline from seismic (first row), results from the calibrated model in the
third experiment (second row), comparison of the plume outlines (third row; dark blue:
seismic, yellow: simulated, green: overlapped) in 2001, 2004, 2006 and 2010. The legend
shows the plume thickness (m).

and CO2 density has a similar impact and helps to
improve the match in the centre of the plume.
However, adding the caprock morphology to the
history matching parameters results in a better match
in the upper and lower part of the plume. This can be
seen in Fig. 17 as increasing the elevation in both sides
of the model (red area in Fig. 17), helps the plume in
becoming trapped within these regions.

Conclusion
This work is focused on the impact of caprock
morphology on CO2 plume migration and footprint in
the Sleipner model. We employed an optimisation code

to systematically change the model parameters to
minimise the mismatch between the observed and
simulated plume outlines. First, we used our method to
predict the CO2 plume shape in a synthetic model. We
found a set of parameters representing the slope and
rugosity in the x and y directions using a non-linear
simulation-based optimisation tool implemented in
MRST and successfully reproduced the observed
plume footprint. The method was robust, and the
results were satisfactory using different initial starting
points and calibration limits for each parameter. We
then employed the optimisation tool to improve the
plume match in the Sleipner 2019 benchmark model by
modifying the caprock morphology within a range
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Figure 17. Caprock elevation
change for the third
experiment.

smaller than the seismic detection limit. The results
showed an average improvement of about 8% in the
plume match in comparison to the original model,
resulting from an average absolute elevation change of
3.23 m in the caprock.

In order to compare the importance of caprock
morphology with other parameters in improving the
plume match in Sleipner model, we defined two
additional experiments. First, we performed the
optimisation by calibrating porosity, permeability, CO2
density and injection rate and later we added the
caprock morphology to the history matching
parameters. When excluding the caprock morphology,
modifying the porosity, permeability, CO2 density and
injection rate, the optimisation resulted in an
improvement of 5%. Calibrating the caprock
morphology together with other parameters, however,
resulted in an improvement of 16% compared to the
original model. The results clearly show the impact of
caprock morphology in controlling the plume
migration and trapping mechanism in the Sleipner
model.

Calibrating the caprock morphology in the presence
of other parameters improved the match in the bottom
and upper part of the plume, while when calibrated

alone, it was more effective in the middle where the
CO2 has the highest saturation. This work
demonstrates the importance of accurately
implementing topographic variations in the geological
models for CO2 storage studies. Moreover, it helps in
developing a better insight on the plume migration in
the saline aquifer and shows how a few metres elevation
change in the top surface, which cannot be detected in
seismic surveys, can control the CO2 migration path.
Similar optimisation tool can be implemented in any
storage site to improve the geological model by
modifying the caprock morphology within the range
lower than the seismic detection limit.

The internal layers of the Sleipner model were
disregarded in this study, and the focus was on Layer 9
only. A more detailed study would involve applying the
VE model to each layer and use a stacked VE model
instead where shale layers could be represented by
modified transmissibility.
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