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Abstract

Background: The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior
(eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic
resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this
impacts subsequent behavior.

Objective: Identify regions of the brain activated and examine associations between activation and behavior.

Methods: This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged
30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized
feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants
during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this
personalized feedback.

Results: Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared
with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed.
Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392,
P=.043).

Conclusion: Presenting personalized glucose feedback resulted in significantly more brain activation when compared with
behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback
warrants further investigation.

(J Med Internet Res 2017;19(11):e384)  doi: 10.2196/jmir.8890
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Introduction

Physical inactivity, insufficient levels of physical activity, is
attributable to 9% of premature mortality and 7% of type 2
diabetes cases [1]. In addition, sedentary behavior, defined as
“any waking behavior characterized by an energy expenditure
≤1.5 metabolic equivalents of task (METs) while in a sitting or
reclining posture” [2], has been strongly associated with poor
cardiometabolic health [3]. With adults spending an estimated
7 hours sedentary each day [4] and the prevalence of type 2
diabetes expected to rise to 592 million by 2035 [5], it is critical
to address the prevalence of physical inactivity and time spent
sedentary for the amelioration of type 2 diabetes and other
important chronic, noncommunicable diseases.

Over the last decade, wearable activity monitors have grown in
popularity in consumer markets to help users physically track
their movement behaviors (eg, active minutes, step counts,
distance traveled, time spent sitting) [6,7]. Over this same time,
wearable physiological sensing devices (eg, heart rate monitors,
continuous glucose monitors) have been evolving and are now
venturing beyond the clinical domains and into more
consumer-focused markets [8]. The allure of these wearable
technologies is that they provide users with real-time
personalized health feedback that may act to encourage positive
lifestyle behaviors (eg, moving more, sitting less, eating more
healthily) [9]. However, with 32% of individuals failing to
continue using these devices beyond 6 months following
purchase [10], there is a need to optimize the feedback provided
to the users to maintain adoption and sustain engagement with
the information presented. Patel and colleagues [11] suggest
that providing explanatory feedback in an understandable
manner is important to encourage sustained use. Given that
sustained behavior change is often poorly reported and not often
achieved [12], assessing how people respond to this feedback
at a cortical level (by monitoring changes in brain activation)
could reveal additional insight above traditional routes such as
focus groups or interviews.

Neuroimaging techniques are useful to recognize and identify
the intricate relationships between cognitions, brain functions,
and behavior [13]. There has been growing interest in the
community toward communication neuroscience, research that
provides a deep understanding of attitude and behavior change
[14]. Moreover, communication neuroscience research suggests
that people’s intentions and behavior are largely affected by the
content and format of an advertisement [15]. One key
neuroimaging tool is functional magnetic resonance imaging
(fMRI), which can monitor neural responses as information is
presented [16] (eg, health messages and advertisements
[14,17,18]). Receiving personalized (or self-related) feedback
is often associated with activation within the rostral medial
prefrontal cortex (mPFC), associated with decision making and
mimicry behavior [19,20], and the precuneus/posterior cingulate
region, often associated with personal reflection [21-23]. In
particular, self-relevant messages elucidate more activation
within the mPFC than nontailored messages [24] and can predict
behavior change [25]. Meta-analyses of functional neuroimaging
studies also suggest that the mPFC and precuneus/posterior
cingulate regions mediate self-related processing [26,27].

fMRI can improve our understanding of how cognitive processes
vary between those who do change their behavior following
exposure to a stimulus and those who do not subsequently
change [28]. The mPFC is positioned whereby activation in this
region can predict individual behavior change [14,17,29]. To
date, research has largely focused on identifying neural
responses to antismoking material [17,29,30] rather than diet,
alcohol consumption, physical inactivity, or sedentary behavior
[31]. Investigating how people respond to personalized feedback
relating to these lifestyle behaviors could offer crucial insight
into how best to disseminate feedback to maximize effect and
thus help to design materials that optimize population health
[32]. For instance, observed reductions in smoking rates have
been attributed to a number of influences, in part, by the
dissemination of antismoking materials (eg, cigarette packaging
labels) [33]. Given that the literature to date has largely assessed
how people respond to antismoking materials, fMRI may help
identify how people’s brains respond to information commonly
presented on the screens of wearable devices and associated
smartphone apps. The authors hypothesize that the mPFC and
precuneus/posterior cingulate regions will be activated given
the presentation of personalized or self-relevant feedback
[21-23,26,27]. The aims of this study were to identify regions
of the brain activated in response to personalized behavioral
and physiology feedback messages and examine behavior
change and associations with levels of brain activation.

Methods

Participants
A total of 33 participants (57% female) were recruited from a
university in the United Kingdom via advertisement posters and
email. Participants were aged 30 to 60 years, had no
mobility-related musculoskeletal problems, had no confirmed
diagnosis of diabetes, were willing and able to comply with the
study protocol, met standard fMRI safety criteria (no metal in
body, not claustrophobic, not pregnant), and were right-handed.
All participants completed a physical activity readiness
questionnaire [34] prior to participation with positive responses
assessed by a clinician.

Each participant’s consent was obtained according to
the Declaration of Helsinki, and all experimental procedures
were approved by the Loughborough University Ethics Advisory
Committee (R15-P142).

Procedure
Data were collected between June and September 2016. The
study design is presented in Figure 1. During the first
appointment, participants provided informed consent; answered
questions relating to age, gender, ethnicity, and education; and
completed a selection of health measures (body composition,
blood pressure, and blood sample). Participants were fitted with
3 devices to monitor their physical activity, sedentary behavior,
and glucose levels for 14 days. In addition, participants were
provided an education booklet to read prior to the fMRI
appointment. This booklet included background information
about physical activity (eg, moderate-to-vigorous intensity
[MVPA]) and also offered recommendations (eg, target range
for glucose levels) to help minimize any variations in

J Med Internet Res 2017 | vol. 19 | iss. 11 | e384 | p. 2http://www.jmir.org/2017/11/e384/
(page number not for citation purposes)

Whelan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


knowledge. The fMRI took place at the second appointment
(on average 32.4 [SD 10.5] days following the first
appointment); following this, participants continued to wear 2
devices to monitor physical activity and sedentary behavior for

8 days. At the end of the follow-up period, participants returned
the devices and received a comprehensive personalized health
report.

Figure 1. Study design.

Measures

Physical Health
Weight and body fat percentage were measured using the MC
780 MA scale (Tanita) following the removal of shoes and
socks. Body mass index was calculated as weight (kg) divided

by height (m) squared (weight/height2). Glucose and hemoglobin
A1c (HbA1c) were analyzed using a Cholestech LDX system
and Afinion AS100 Analyzer (both Alere Inc), respectively.
Participants arrived fasted for ≥8 hours prior to the collection
of a capillary blood sample.

Accelerometry
An ActiGraph wGT3x-BT accelerometer (ActiGraph LLC) was
worn on a waistband (on the right anterior axillary line) to
objectively measure physical activity. Participants were asked
to wear the validated device [35] during waking hours and to
remove for any water-based activities (eg, showers or bathing).
The accelerometry data were collected at 100 Hz resolution and
integrated into 60 second epochs using ActiLife version 6.13.2
(ActiGraph LLC) and processed using Kinesoft version 3.3.80
(Kinesoft). Sedentary behavior, light activity, and MVPA were
defined as ≤100 counts per min (cpm), 101 to 2019 cpm, and
>2019 cpm, respectively [36]. Nonwear was identified by an
interval of at least 60 consecutive minutes of zero activity
intensity counts, with allowance for 1 to 2 minutes of counts
between 0 and 100 [36]. Participants who had <4 valid days
were excluded from analyses. A valid day was defined as having
≥10 hours of monitor wear. Accelerometers were initialized to
begin monitoring at the end of appointments, which meant
participants had a variable amount of possible wear on the first
day. As a result, to standardize the opportunity for participants
to adhere to device wear, days 2 through 8 were analyzed for

both baseline and follow-up. A global wear time variable was
calculated as the mean of wear time at baseline and follow-up.

Inclinometry
A Lumo (Lumo Bodytech Inc) posture sensor was worn on a
waistband (in the lumbosacral region) in contact with the skin
to measure sedentary behavior (time spent sitting, driving, lying,
standing, stepping, and number of sit-to-stand transitions) during
baseline and follow-up. Devices were calibrated to the wearer.
Participants were asked to wear the device only during waking
hours, remove it for any water-based activities (eg, showers or
bathing), and place the device on charge overnight each day.
The Lumo has been found to produce valid measurements of
sedentary behavior compared with the ActivPAL (PAL
Technologies Ltd), with a mean error of 9.5% [37]. Data from
the Lumo devices were analyzed in 5-minute epochs (highest
resolution) using Excel (Microsoft Corp). Nonwear was defined
by 1 of 2 criteria: (1) device removal for sleep which was
automatically detected if the device was placed on charge or
(2) prolonged periods of the same posture deemed to be
biologically implausible (ie, ≥60 minutes). Again, the Lumos
were set up to begin monitoring at the end of appointments, and
days 2 through 8 were analyzed for both baseline and follow-up.

Flash Glucose Monitoring
The Freestyle Libre flash glucose monitor (Abbott Laboratories)
measures interstitial glucose levels via a minimally invasive 5
mm flexible filament inserted into the posterior upper arm. The
sensor works based on the glucose-oxidase process by measuring
an electrical current proportional to the concentration of glucose.
Tegaderm transparent film dressing (3M Health Care) was
applied on top of the sensor to maintain its position. Participants
were informed not to remove the sensor and to scan at least
once every 7 hours (a conservative decision as the manufacturer
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states 8 hours to avoid data loss). As a result, participants were
able to see their real-time glucose levels during baseline wear.
An indication of how many times participants viewed this
information (level of exposure) was identified by the number
of time they scanned. Missing data were obtained because of a
fault (sensor lasted <14 days) or the participant failed to scan
at least once every 8 hours. The Freestyle Libre has been
previously validated against venous sampling with an overall
mean absolute relative difference of 11.4% with consistent
accuracy throughout the 14 days [38]. Glucose data were
downloaded in 15-minute epochs (highest resolution) using
Freestyle Libre version 1.0. The raw data were used to calculate
the number of high glucose events (defined as ≥8.8 mmol/L)
and identify valid days. Days were defined as valid if they met
the prespecified threshold of ≥90% of data points (96 expected
based on 4 readings each hour across each 24-hour period). All
14 days were analyzed from baseline wear. Area under the curve
was calculated from the mean area of the positive peaks across
the valid days using GraphPad Prism version 7.0.0 (GraphPad
Software), and participants’ fasting glucose levels were used
as the baseline.

Functional Magnetic Resonance Imaging Stimuli
Twenty personalized feedback messages were created for the
purposes of this study and covered 4 topics: MVPA, light
physical activity, sedentary behavior, and glucose levels (all
presented in Figure 2 with example data). They intended to
reflect feedback metrics commonly presented on wearable
technologies. Data obtained via accelerometry, inclinometry,

and flash glucose monitoring were analyzed and then
incorporated into the personalized feedback messages.
Therefore, the values presented on the messages were
personalized so that the numbers varied from 1 participant to
another but the image and text remained consistent. The images
were matched in visual complexity, color, and text font using
Axure RP Pro version 7.0.0.3190 (Axure Software Solutions
Inc) to standardize the stimuli across participants. Picture icons
were identified and downloaded from an icon resource website
(www.flaticon.com).

Stimuli were presented on a monitor located 2.8 m behind the
center of the scanner bore and viewed by a mirror mounted on
the head coil. Adjustments to the positioning of the mirror were
made for participants to ensure that the full monitor screen could
be seen. We examined neural activity while participants were
presented with feedback and were requested to maintain
attention throughout. Prior to the start of the fMRI task, there
was an initial period of 40 seconds of dummy scans which were
immediately discarded. The fMRI task is outlined in Figure 3.
In total, 24 blocks (12 active, 12 rest) were presented during
the protocol. Each active block consisted of stimulus
presentation of 5 back-to-back trials (referred to as images from
this point forward) of 8 seconds each, totaling 40 seconds,
followed by a rest period of 40 seconds, during which
participants viewed a fixation cross and were instructed to clear
their minds. The blocks and back-to-back images (within the
blocks) were not presented in a counterbalanced or randomized
order.

Figure 2. Personalized feedback stimuli.
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Figure 3. Trial setup including 8 of the 24 blocks presented.

Functional Magnetic Resonance Imaging Data
Acquisition
Brain imaging data were acquired on a 3T Discovery MR750w
scanner (General Electric) using a 32-channel head coil at the
National Centre for Sport and Exercise Medicine, Loughborough
University, United Kingdom. Structural images (T1-weighted)
were acquired using a fast spoiled gradient echo (FSPGR) Bravo
sequence (3D volume, FSPGR; TR=8.2 ms; TE=3.1 ms; matrix
size 240×240; 160 sagittal slices; FOV=240 mm; 1 mm thick).
One functional scan lasting 16 minutes (480 volumes) was
acquired during the task (2D gradient echo EPI; TR=2000 ms;
TE=30 ms; flip angle=75 degrees; matrix size 64×64; 35 axial
slices; FOV=205 mm; 3 mm thick). Stimulus presentation and
synchronization to scanner acquisition were performed using
Presentation version 18.1 (Neurobehavioral Systems Inc).

Analyses

Functional Magnetic Resonance Imaging Data Analysis
Functional data were preprocessed and analyzed using statistical
parametric mapping (SPM12, Wellcome Department of
Cognitive Neurology). All data reported are from scans that
exhibited ≤3 mm in translational movement. Data were
processed using a standard statistical parametric mapping
approach, which consisted of scan realignment, coregistration,
segmentation, normalization, and smoothing. Data were spatially
aligned to the first functional image using 4th degree B-spline
interpolation. Scans were then coregistered (mean functional
image aligned with T1 then parameters applied to all functional
images). Functional images were normalized into the Montreal
Neurological Institute (MNI) standard stereotactic space with
parameters applied to all functional images. A final smoothing
step with a Gaussian Kernel with full width half maximum of
8 mm was applied to improve signal-to-noise ratio. The onsets
and durations of each of the conditions of interest were modeled
according to the block design described in the protocol. For
each participant, brain activation was estimated using a general
linear model (GLM) and included movement parameters (3
translations, 3 rotations) and a session constant as regressors.
All regressors were convolved with SPM12’s canonical
difference of the hemodynamic response function. Data were
high-pass filtered with a cut off of 128 seconds to remove
low-frequency noise and slow drifts in the signal. Family-wise
error (FWE) correction was used to correct for multiple
comparisons at  PFWE. At the first level for each participant,
contrasts were computed using a series of univariate analyses
of covariance (ANCOVAs), averaging activity across the topics
compared with baseline: (1) MVPA>baseline, (2) light physical
activity>baseline, (3) sedentary>baseline, (4) glucose>baseline,
and (5) behavior>baseline. Additional contrasts were computed

using a series of univariate ANCOVAs, averaging activity
between the different blocks of stimuli (ie, MVPA>light physical
activity and glucose>sedentary) and reverse contrasts also
computed (ie, light physical activity>MVPA and
sedentary>glucose).

Second level random effects models for each task were
constructed that averaged across participants and were subjected
to further region of interest (ROI) and between-group analysis
(described below). Exploratory whole brain searches were
conducted for each contrast with a threshold set at P<.001 and
P<.05 for the baseline contrasts and intergroup contrasts,
respectively (cluster threshold of k=0 voxels). Between-group
analyses were conducted to compare gender differences and
differences between those least (<150 minutes of MVPA per
week) and most (≥150 minutes of MVPA per week) active.
Using independent samples t test analysis, brain regions were
labeled according to the MNI anatomic labeling tool
implemented in the Wake Forest University Pickatlas (WFU
Pickatlas) [39]. The average beta parameter estimates of activity
during the presentation of information compared with other
information blocks were extracted using MarsBaR, an ROI
toolbox. All models controlled for centered demographic
variables (centered age and sex). An additional centered variable
(number of daily glucose scans) was included within the
additional contrasts conducted.

Statistical Analysis
To examine demographic and self-report data, we conducted
descriptive analyses using SPSS version 22.0 (IBM Corp). Two
group t tests were conducted to produce descriptive outcomes.
Repeated measures ANCOVAs were conducted to assess
changes in behavior (levels of MVPA, light physical activity,
and sedentary behavior) from baseline to follow-up, controlling
for global wear time (average wear time). Tests of statistical
significance were based on 2-sided probability (P<.05).

Correlation Analysis
Parameter estimates corresponding to each significantly
activated region, identified via fMRI data analysis, were
extracted for each participant. Linear regressions provided
partial correlation coefficients between the parameter estimates
from the significant regions of interest and subsequent behavior
at follow-up (ie, time spent in MVPA, light physical activity,
and sedentary), controlling for wear time. The relationships
between behavior change and activity from the ROIs were
examined in separate models for each ROI, and the analyses
were repeated to assess behavior via both accelerometry and
inclinometry data.
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Results

Participants
A flow chart of individuals through the study and the
characteristics of the study sample are presented in Figure 4
and Table 1, respectively. Four participants were excluded from

fMRI analyses due to incorrect scanner parameter setup, poor
participant vision (without glasses), and presence of an unsafe
magnetic resonance implant. One participant fell asleep, and an
additional participant was excluded due to incorrect
accelerometry initialization. This resulted in a final sample of
28 participants for the full study protocol.

Figure 4. Flowchart of individuals at each stage of the study.

Table 1. Sample characteristics.

Whole sample (n=28)Characteristics

Demographic

44.2 (9.5)Age (years), mean (SD)

42.9Male, %

Baseline

75.2 (15.3)Weight (kg), mean (SD)

25.2 (4.3)Body mass index (kg/m2), mean (SD)

26.7 (9.3)Body fat (%), mean (SD)

5.4 (0.4)HbA1c
a (%), mean (SD)

5.0 (0.6)Glucose (mmol/L), mean (SD)

aHbA1c: hemoglobin A1c.

The 28 participants (43% male) had a mean age of 44.2 (SD
9.5) years (range 30 to 59 years). Three (11%) participants
completed secondary school, 5 (18%) completed some additional
training, and 20 (71%) received a bachelor’s degree or higher.
Twenty-five (89%) were white, 2 (7%) were Chinese, and 1
(4%) was Asian or Asian British. Males were significantly taller
(178.7 versus 167.5 cm), had a lower body fat percentage
(18.8% versus 32.6%), and scanned the Freestyle Libre more
frequently (9.5 versus 5.7 scans per day).

Activated Regions of the Brain
First, we contrasted each of the 4 topics with a fixation cross.
The brain regions significantly activated in response to the initial
contrasts of interest are presented in Table 2. Regions include
the middle and inferior occipital gyrus, middle frontal gyrus,

lingual gyrus, subgyral, and thalamus (P<.001). No significant
voxels were identified between those most and least active or
between males and females.

We then proceeded to the main analysis that contrasted the
topics between themselves. The brain regions identified as
significantly activated are presented in Table 3. Of the additional
contrasts of interest, the glucose>behavior contrast highlighted
significant activation in the middle frontal gyrus (–32, 36, –12,
z=5.60) and left subgyral (–26, 48, 4, z=5.33). The
glucose>sedentary contrast revealed significant activation in
the cuneus (–2, –80, 4, z=5.05), middle frontal gyrus (–32, 36,
–12, z=4.95; –20, 34, 42, z=4.94), superior frontal gyrus (–26,
50, 4, z=4.79), and right subgyral (28, –52, 24, z=4.66) (Figure
5, Table 3).
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Table 2. Average contrasting differences (thresholded at P<.001, cluster threshold of k=0 voxels).

MNIa coordinatesRegion

P FWE
c

tZVoxelszyxHemb

MVPAd>baseline

<.0019.996.29178–14–74–38LMiddle occipital gyrus

<.0019.896.25—–10–94–14LLingual gyrus

<.0019.766.21—–14–90–22LInferior occipital gyrus

<.0019.296.0611–16–6236RSubgyral

<.0019.035.979–16–54–36LFusiform gyrus

<.0018.975.9593–6–8434RSubgyral

<.0018.745.86—–10–9224RLingual gyrus

.0018.115.63—–8–9016RLingual gyrus

.0018.095.622–12–7644RInferior occipital gyrus

.0017.975.5714–8830RMiddle occipital gyrus

Light PA e >baseline

<.00110.616.47101–2–96–16LCuneus

<.0019.806.23119–14–84–32LMiddle occipital gyrus

<.0019.286.05—–14–72–38LMiddle occipital gyrus

<.0019.266.0583–6–8434RSubgyral

.0018.245.68—–14–8430RMiddle occipital gyrus

<.0019.146.0123–10–7646RMiddle occipital gyrus

<.0018.835.9023–16–6236RSubgyral

<.0018.485.77196–9828RMiddle occipital gyrus

<.0018.475.773–16–54–36LFusiform gyrus

<.0018.305.702–18–50–34LFusiform gyrus

<.0018.275.6942018–54LInferior frontal gyrus

.0018.185.6510–10–9016RLingual gyrus

Sedentary>baseline

<.0019.115.9919–16–72–36LMiddle occipital gyrus

<.0018.985.9546–10–82–38LInferior occipital gyrus

<.0018.775.8736–6–94–20LSubgyral

<.0018.505.784–4–8436RMiddle occipital gyrus

.0018.165.6532214–48LInferior frontal gyrus

.0018.025.593–10–7648RMiddle occipital gyrus

.0017.975.571–6–8828RSubgyral

Glucose>baseline

<.00111.386.69218–6–96–16LCuneus

<.0019.506.13—–16–74–36LMiddle occipital gyrus

<.0018.835.90—–14–90–20LMiddle occipital gyrus

<.0019.105.9913–16–6236RSubgyral

<.0019.055.9728–8–9014RLingual gyral

<.0018.785.8856–6–8428RSubgyral

<.0018.275.6963010–40LMiddle frontal gyrus
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MNIa coordinatesRegion

P FWE
c

tZVoxelszyxHemb

.0018.055.601–14–7644RMiddle occipital gyrus

.0018.005.582–14–8430RMiddle occipital gyrus

Behavior>baseline

<.00110.496.44272–16–72–38LMiddle occipital gyrus

<.00110.126.33—–6–96–16LCuneus

<.0019.336.07—–14–84–32LMiddle occipital gyrus

<.0019.616.1627–16–6236RSubgyral

<.0019.536.14135–6–8434RSubgyral

<.0018.695.85—–10–9222RLingual gyral

<.0018.425.75—–14–8430RMiddle occipital gyrus

<.0019.286.06558–62–32LSuperior parietal lobule

<.0019.005.9624–12–7646RMiddle occipital gyrus

<.0018.795.88—–14–6648RMiddle occipital gyrus

<.0018.985.958–16–54–36LFusiform gyrus

<.0018.385.7392626–52LMiddle frontal gyrus

.0018.275.692–2–2822RThalamus

aMNI: Montreal Neurological Institute.
bhem: hemisphere.
cFWE: family-wise error.
dMVPA: moderate-to-vigorous physical activity.

Table 3. Average contrasting differences controlling for age, gender, and average daily number of glucose scans (thresholded at P<.05, cluster threshold
of k=0 voxels).

MNIa coordinatesRegion

P FWE
c

tZVoxelszyxHemb

Glucose>behavior

<.0018.175.6025–1236–32LMiddle frontalgyrus

<.0017.485.3316448–26LSubgyral

Glucose>sedentary

<.0016.855.05344–80–2LCuneus

<.0016.634.958–1236–32LMiddle frontal gyrus

<.0016.614.94114234–20LMiddle frontal gyrus

<.0016.294.793450–26LSuperior frontal gyrus

<.0016.044.66124–5228RSubgyral

aMNI: Montreal Neurological Institute.
bHem: hemisphere.
cFWE: family-wise error.

J Med Internet Res 2017 | vol. 19 | iss. 11 | e384 | p. 8http://www.jmir.org/2017/11/e384/
(page number not for citation purposes)

Whelan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Group level significant activation pattern for the contrast glucose>behavior at the MNI coordinates (a) –32, 36, –12 and (b) –26, 48, 4.

Table 4. Behavioral characteristics derived from accelerometry and inclinometry.

Inclinometryb, mean (SD)Accelerometrya, mean (SD)

P valueFollow-upBaselineP valueFollow-upBaseline

—5.5 (1.7)4.2 (2.1)—7.0 (1.0)7.0 (0.0)Number of valid days

.001884.0 (61.6)924.3 (61.9).002868.2 (70.4)903.5 (67.7)Wear time

—9580.3 (4326.0)8660.9 (2995.7)—9634.0 (3699.3)9065.2 (3456.2)Step count

———<.001410.0194.0 (82.0Counts per minute

.001554.5 (89.4)602.2 (91.1).014560.0 (75.6)589.0 (84.7)Sedentary (min)

————254.2 (71.1)265.0 (69.0)Light PAc (min)

————50.7 (33.2)45.8 (31.0)Moderate (min)

————3.2 (6.2)3.6 (6.6)Vigorous (min)

————53.9 (35.5)49.4 (34.2)MVPAd (min)

————308.1 (72.1)314.4 (66.4)LVPAe (min)

—103.2 (44.1)93.5 (26.7)———Stepping (min)

—226.5 (67.8)228.5 (98.5)———Standing (min)

a≥4 valid days, n=28 (100% compliance to ≥600 mins of accelerometer wear).
b≥1 valid day, n=23, (100% compliance to ≥600 mins of inclinometry wear).
cPA: physical activity.
dMVPA: moderate-to-vigorous physical activity.
eLVPA: light-to-vigorous physical activity.

Behavior Change
The behavioral characteristics obtained via accelerometry and
inclinometry are presented in Table 4. Among the 28
participants, 100% provided ≥4 days for accelerometry during
baseline and follow-up. In contrast, only 15 (54%) and 20 (71%)
participants provided ≥4 valid days at baseline and follow-up
with the inclinometer, respectively, revealing a reduced sample
(13 vs 28). As a result, the criteria for the Lumo was adjusted
to ≥1 valid days. From baseline to follow-up, wear time and
sedentary time reduced while minutes of MVPA and counts per
minute increased. After controlling for global wear time, only
time spent sedentary remained significant for both the
accelerometry and inclinometry (589.0 [SD 13.9] minutes vs

560.0 [SD 11.7] minutes, P=.014 and 602.2 [SD 19.4] minutes
vs 554.5 [SD 18.1] minutes, P=.001, respectively). Despite a
lack of change at the whole sample level for time spent in light
physical activity, MVPA, and step count, 9 (32%), 17 (61%),
and 16 (57%) participants, respectively, positively increased
the amount of steps, light physical activity, and MVPA at
follow-up (unadjusted for global wear time). Males accumulated
significantly more vigorous physical activity compared with
females at baseline and follow-up (P=.029 and P=.026,
respectively) and also significantly more minutes of MVPA
(P=.033) at follow-up. No significant associations were observed
between number of scans and changes in behavior via
accelerometry or inclinometry (controlling for global wear time).
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Functional Magnetic Resonance Imaging Correlations
To investigate the relationship between brain activation and
subsequent behavior, parameter estimates were calculated for
the patterns of neural activation. Of these, only glucose feedback
was positively associated with subsequent minutes of MVPA
(r=0.392, P=.043). No significant associations were observed
for the inclinometry data.

Discussion

Summary
As recent neuroimaging work has highlighted value in analyzing
individual responses to feedback relating to lifestyle behaviors
[14], we used fMRI to examine neural responses to personalized
feedback relating to physical activity, sedentary behavior, and
interstitial glucose levels. We also investigated associations
between neural activity and subsequent behavior. This study
lies at the intersection of 3 rapidly evolving areas of interest:
wearables, lifestyle behaviors, and neuroimaging. Our study
identified that presenting people with personalized feedback
relating to interstitial glucose levels resulted in significantly
more brain activation when compared with personalized
behavioral feedback.

Activated Regions of the Brain
Our findings identified activations within regions of the
prefrontal cortex, in particular the middle frontal gyrus, subgyral,
cuneus, and superior frontal gyrus upon comparison of
personalized glucose feedback with behavioral feedback.
Previous studies have also identified regions within the
prefrontal cortex following exposure to antismoking images
[29], messages encouraging sunscreen use [14], and informative
nutritional labels [40]. The authors hypothesized that the mPFC
and precuneus/posterior cingulate regions would be activated
in our study given the presentation of personalized and
self-relevant feedback [21-23,26,27]. Other fMRI studies have
identified alternate activated regions including the ventromedial
prefrontal cortex, inferior frontal gyrus, and amygdala when
presented information about other lifestyle behaviors (eg,
smoking) [30,41,42]. The findings suggest that the personalized
feedback did not offer identical regions of interest when
compared with the literature; however, some activation did
overlap with the mPFC. Neuroimaging studies impose additional
complexity because identical neural patterns can result after
exposure to different stimuli [43]. However, the identified
regions of brain activation may also differ because the stimuli
differs between fMRI studies. Our study used a combination of
text and images to inform participants about their physical
activity, sedentary behavior, and interstitial glucose levels. In
comparison, Falk and colleagues [41] presented images with
text and numbers in a sentence (multiple lines of text) format.
Overall, our findings suggest that it is possible to identify what
brain regions are activated in response to personalized feedback
and that glucose-related feedback evoked more brain activation.
As a result, wearable technologies presenting personalized
glucose feedback may be useful to employ in future
interventions.

Investigating how individuals responded to personalized
health-related feedback was an important component of this
study as it has been well documented that receiving tailored
feedback can result in greater resonance and consequently result
in desirable health behaviors [44-46]. Our study demonstrated
that presenting feedback pertaining to an individual’s glucose
levels elicited significantly more brain activation within the
middle frontal gyrus and subgyral compared with the behavioral
feedback. These regions, anatomically positioned within
Brodmann areas 9/10 and 47, respectively, have previously been
associated with the actions of making personal moral judgments
[47] and working memory [48], respectively. Previous studies
have investigated messages promoting child vaccinations against
measles-mumps-rubella and identified that highlighting the
dangers of not vaccinating may actually be counterproductive
[49]; therefore, findings are often highly dependent on the topic
investigated. Future studies could investigate the role of
self-affirmation, a construct suggested to increase individual
sensitivity to health-risk information and incorporated in prior
neuroimaging studies [29,41]. Self-affirmation essentially
investigates how neural activity patterns vary to information
after being exposed to personally important values (eg, friends,
family, and religion). Given that the desirable outcome is for
people to positively respond to health-related information,
exposing a person to their personal values may provoke attention
and enhance the importance of the information being given.
Therefore, future investigation into whether self-affirmation
could contribute to increasing the level of resonance toward
personalized feedback and encourage positive behaviors may
be crucial.

Behavior Change and Associations With Brain
Activation
Our study identified a significant reduction of 29 minutes (or
47 minutes using inclinometry) in time spent sedentary from
baseline to follow-up. Previous findings support this finding,
having observed a 39.6 minute per day reduction in time spent
sedentary [50]. However, no significant differences were
observed for time spent in MVPA, light physical activity, or
step count. Wearable technologies research to date has offered
the suggestion that people can increase their activity levels
having received feedback about behavior [51,52]. However, it
must be acknowledged that physical activity, for example, has
been categorized as a very complex behavior and no single
metric can encapsulate a person’s level of physical activity [53].
According to the literature, changes in behavior most likely
occur when personalized health messages are presented in
moments when action can be taken (eg, at midday to promote
a walk following the consumption of lunch) [11]. Despite
participants being presented personalized feedback, there are a
multitude of reasons as to why they may or may not have
changed their behavior during the follow-up period. Therefore,
determining whether their behavior (change or no change) was
because of the exposure to health-related information is truly
unknown. However, emphasizing that the feedback was only
briefly presented and within an unusual situation (ie, inside an
MRI scanner) is warranted when comparing how people
normally receive personalized feedback through wearable
technologies. Further investigation could quantify or
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contextualize the follow-up period to try and account for
extraneous variables (eg, weather, holiday, illness) or consider
the inclusion of a control group to provide more definitive
findings.

In regard to the relationship of activation and subsequent
behavior during the follow-up period, findings identified a
positive partial correlation with minutes of MVPA. Previous
studies have investigated behavior change subsequent to fMRI
and have demonstrated positive associations between neural
response (eg, to aversive smoking-related images) and smoking
cessation [17,54]. For example, Falk and colleagues [41]
identified that greater reductions in sedentary behavior aligned
with greater activity in the ventromedial prefrontal cortex,
suggesting that if people exhibited greater levels of activation
in response to the visual stimuli, those individuals were
subsequently more likely to be less sedentary. On a larger scale,
identifying what stimuli (ie, health messages) evoke a positive
prediction of behavior (eg, being less sedentary or more active)
can inform the provision of effective public health messages.
It could be suggested that, despite the observed association,
being presented personalized feedback about health and behavior
while inside an MRI scanner is not a normal environment.
Consequently, alternate neuroimaging tools could be useful for
future investigation within a free-living setting. For instance,
individuals could obtain personalized feedback via a wearable
device or a smartphone app while their neural activity is
recorded by a portable electroencephalogram system via
functional near infrared spectroscopy or by eye tracking (to
monitor gaze patterns and fixations). Interestingly, eye tracking
has previously been conducted on various health communication
materials including both cigarette advertising [55] and nutrition
labels [56].

Strengths and Limitations
Positioned at the intersection of a number of evolving interest
areas, this interdisciplinary study offers a number of strengths.
One strength was presenting the personalized feedback
pertaining to both movement behaviors and physiology to
participants. These components were objectively measured
during baseline and follow-up using novel self-monitoring
technologies, obtaining data to directly inform the feedback. In
addition, the information that was presented in the fMRI tasks
were designed based on feedback commonly presented via

wearable devices or smartphone apps, reflecting what could be
received in real-time in a real-world setting. Objective
quantification of behavior at follow-up permitted the assessment
of behavior following exposure and associations between neural
activation and behavior.

Limitations of our study include the situation that participants
viewed their glucose levels during baseline wear, an unavoidable
situation given intentions to minimize data loss. This protocol
confirms that participants had prior exposure to the
glucose-related feedback subsequently presented during fMRI.
However, to help try and account for this, analysis included the
number of scans as a covariate because we thought the number
of scans suggested the frequency with which participants viewed
their glucose levels (eg, more scans equaled more exposure and
so a greater awareness of their glucose levels). In addition, a
lack of behavior change could be attributable to the sample that
we recruited (ie, well educated and relatively healthy) and as
such they could be profiled as a highly motivated audience who
may not have viewed their behavior as in need of improvement.
Furthermore, our unpowered sample size was another limitation,
as we are unable to offer definitive interpretation of the findings.
In addition, because of the number of people as active and
inactive, we were unable to make any comparisons between
groups of participants (eg, patterns of brain activation between
those most active and least active). Finally, the pattern of neural
activity observed and related psychological processes should
be interpreted with caution due to the nature of reverse inference
[57]. Future studies could investigate neural activity in polar
groups of people classified by activity or time spent sedentary
and repeat fMRI so patterns of brain activation are quantified
before and after exposure to the feedback.

Conclusion
This multidisciplinary study highlighted that fMRI can be used
to assess the neural response to personalized health feedback.
In particular, greater activation in the prefrontal cortex during
exposure to glucose compared with behavioral feedback was
observed. A reduction in time spent sedentary and a negative
association between the parameter estimates and subsequent
minutes of MVPA were observed. Future research deploying
behavioral feedback in parallel with physiological feedback to
encourage positive behavior change is warranted.
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