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Abstract 

The biomedical feld has witnessed an exponential growth over the past two decades due to 

technological leaps, such as next-generation sequencing, and rising concerns over healthcare 

and food security. Findings in biomedical research are mostly published in research articles, 

which are stored online in open-access databases. In such articles, researchers tend to use 

fgures to illustrate and summarise some of the most important information concerning 

experimental settings and results. This information is often not retrievable from the articles’ 

body of text, and therefore, methods have to be put in place to extract information from those 

fgures. Such information can be later used towards the retrieval of the fgures themselves or 

the articles that contain them. 

This thesis explores the development of deep learning algorithms to facilitate the task 

of information extraction from biomedical fgures. More specifcally, the thesis focuses 

on the visual aspects of biomedical fgures and what information can be extracted from 

the fgure-image. With this goal in mind, this research investigates different aspects of 

representation learning and deep neural networks. 

The thesis presents novel contributions, starting with a supervised deep representation 

learning method for classifcation. The development of this method is aimed at automatically 

extracting features that can enhance the classifcation performance of deep neural networks 

in general, and on biomedical fgures in particular. Following that, a variety of deep learning 

approaches for the automatic extraction of visual features from biomedical fgures were 

developed and put forward towards classifcation. Finally, a novel deep convolutional neural 

network was proposed to simplify the text localisation problem into a reconstruction one. 

With promising results for text localisation, text within biomedical fgures can be extracted 

from the detected text regions and employed for fgure indexing. 
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Chapter 1 

Introduction 

1.1 Motivation 

The corpus of scholarly articles has been exponentially growing and adding upon an already 

large database of published works. This growth has been especially apparent in the biomedical 

feld, where there has also been an increasing push towards open-access online databases. 

This rapid growth has rendered researchers in the feld unable to keep up with its development, 

making it imperative to put systems in place that would enable easier search of relevant 

articles. However, search engines that have been put in place to do this have focused on the 

articles’ bodies of text while ignoring information stored in fgures. Figures are important 

sources of information in all felds of research, however, within the biomedical feld they tend 

to contain some of the most important information surrounding the experimental settings and 

results. Currently, fgure indexing is constrained to the text contained within their captions, 

which often does not provide suffcient information. Therefore, it has become essential for 

retrieval systems to have the ability to function beyond fgure captions, tapping into the visual 

and textual features included within the fgure itself. 
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1.2 Figure Mining 

The Oxford dictionary defnes a fgure as "A diagram or illustrative drawing, especially in a 

book or magazine." [1]. Figures are used extensively in scholarly articles to communicate 

large amounts of complex information that would be diffcult to explain in plain text. This 

makes fgures a unique type of images that contain information with varying complexities, 

where a fgure can simply be an image of a thing or it can get more complex, such as data 

plots. Information within fgures can be stored either in visual form (e.g. CT scan) or in 

textual form (e.g. gene sequence) or in a combination of textual and visual forms (e.g. pie 

chart). Figures in published works are accompanied with captions that try to provide a brief 

description of what the fgure contains. Additionally, the caption includes the index of the 

fgures, which is used to refer to a specifc fgure within the body of text. Furthermore, fgures 

can contain multiple subfgures, each with its own sub-caption, those being referred to as 

compound fgures. 

Indexing scientifc articles is based on keywords that exist within the articles’ body of 

text. On the other hand, indexing fgures has been limited to the caption texts rather the fgure 

content, because of their complex format. The preferred publishing format for scientifc 

articles is the portable document format (PDF) and fgures are mostly included as images 

within those fles. Setting aside the fact that the visual representations contained within 

the fgure are not simply indexable, even the text contained within the fgure is ignored 

because it is often just encoded within the image pixels and not as text within the PDF. As 

the information included within fgures is often not included anywhere else in the published 

work, it becomes imperative to bring forth new methods to extract information from such 

fgures that would provide more effective indexing. 

The fgure mining process starts with extracting the fgure along with its caption from the 

containing document [2, 3]. This step could also involve the extraction of texts associated 

with the fgure from the body of text, where the fgure is mentioned [4]. The type of class is 

then determined through a classifcation process that can use visual or textual features or a 

combination of the two. Finally, optical character recognition (OCR) is used to extract the 

text contained within the fgure. The mining process may also include a compound fgure 

separation stage, if the extracted fgure was a compound fgure [5]. 
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1.2.1 Figure Extraction 

Figure extraction is the initial stage of fgure mining, where the fgure located within the 

containing document is extracted into a useful format. With the current dominance of the 

PDF format over the publication formats of scholarly articles, most of the focus has been 

on extracting fgures from PDF fles [2]. However, recently the rise of open-access online 

publications has signifcantly simplifed the fgure extraction task. 

PDF fles are encoded using a series of operators, with each operator responsible for 

drawing specifc elements in the document. There are three main operators responsible for 

displaying the following objects at specifc coordinates: 

• Characters in specifc styles and fonts; 

• Vector graphics, such as lines and various geometries; 

• Images embedded internally within the document. 

In this manner, fgures within a PDF document can be encoded as follows: 

• Entirely embedded in the fle as a single image; 

• A collection of images arranged together; 

• A collection of vector graphics and text; 

• A combination of the three operators. 

There exist many off-the-shelf tools, such as PDFBox [6], Poppler [7] and Xpdf [8], capable 

of extracting images from PDF fles. However, unlike the fgures composed of text and vector 

graphics, the contents of image encoded fgures require further processing to extract the 

text contained within them. This thesis focuses on the frst two types of fgures, which are 

contained within the published work, either as a single image or as a collection of images. 

These PDF manipulation tools have been used for different approaches to extract fgures 

and their metadata. Xpdf was used by Lopez et al. [3] to develop a system to extract fgures 

from biomedical literature. Using Xpdf to tap into the PDF specifcation, their aim was to 

extract subfgures and captions, while also identifying the fgure that they belong to. They 
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also tried to flter out logo images, which are sometimes included within the PDF documents 

for scholarly articles. Similarly, Choudhury et al. [4] employed PDFBox to create a system 

designed to extract fgure captions and associate them with their fgures. Unlike Lopez et 

al. [3], Choudhury et al. [4] considered vector graphics fgures and incorporated a machine 

learning aspect to their system. With a completely rule-based approach, Clark and Divvala 

[2] developed a similar system to that developed by Lopez et al. [3]. However, they used 

Poppler instead of Xpdf to extract the different elements from the PDF fles. 

This thesis focuses on the tasks following fgure extraction, where the fgure and its 

caption have been extracted from the containing document. This was motivated by the fact 

that more and more publishers are releasing a webpage format as well as a PDF document 

for the scholarly article. 

1.2.2 Compound Figures 

Compound fgures are fgures that contain two or more subfgures, either of the same type of 

different types. Figure 1.1 shows an example of a compound fgure that contains subfgures of 

various types. Separating compound fgures into their constituent subfgures is a crucial task. 

However, to achieve that, we frst have to identify whether a fgure is compound or not. This 

step was ignored by many researchers who have endeavoured the fgure separation task [9]. 

Delving into this problem, Antani et al. [10] attempted both, detection and decomposition 

of compound fgures. However, before starting any of the two tasks, they tried to estimate 

the number of panels within the fgures by processing the fgure captions using natural 

language processing (NLP) methods. This prediction is prone to errors considering that 

fgures might not have captions associated with them or even be associated with the wrong 

caption. Binarizing the image was their next step, which they used to compute both horizontal 

and vertical profles in search for evidence of white or black lines that are less than or equal 

to 5% of the total image width or height. Following a similar model, Lopez et al. [11] also 

tried to predict the number of panels in fgures before segmenting them. Conceptually, this 

would be a good idea to validate the segmentation results, if the method yields accurate 

predictions. However, Lopez et al. did not solely depend on captions for this prediction but 

they also utilised the number of labels, connected components and sub-captions. 
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Fig. 1.1 An example of a compound biomedical fgure [12]. 

1.3 Mining Information from Biomedical Literature 

Biomedical literature has been rapidly growing with thousands of articles published every day, 

thus making it diffcult for researchers to match its pace and keep up with its developments. In 

response to this, many systems have emerged to facilitate researchers’ access to information 

at a matching pace, such as the Yale image fnder [13]. However, such systems are blind to 

some of the most crucial information within biomedical articles surrounding experimental 

settings and results, which is contained within fgures. 

In an effort towards the extraction of information from biomedical fgures that can be 

used for indexing, this thesis addresses the current challenges of biomedical fgure mining. 

This is demonstrated in Figure 1.2, which shows the main stages involved in this research 

towards the mining of information from biomedical fgures. Starting from fgures extracted 

from biomedical research articles and ending with the fgure index. This happens through 

http:researcherstomatchitspaceandkeepupwithitsdevelopments.In
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Fig. 1.2 Flowchart of the various methods developed in this thesis towards fgure mining. 

two different channels, one that addresses the textual features through text localisation and 

recognition and another that addresses visual features through automatic feature extraction 

and image classifcation techniques. 

1.4 Research Aim and Objectives 

With the exponential increase in computing power and GPU processing speeds, the deep 

learning feld has developed quickly to even surpass human abilities on computer vision tasks 

[14] among others [15]. This makes it a logical choice to deal with mining information from 

biomedical fgures, considering their complex formats. Therefore, this thesis aims to develop 

various deep learning approaches towards the extraction of information from biomedical 

fgure images, while setting out to accomplish the following objectives: 

• To develop deep learning approaches to automatically extract features from biomedi-

cal fgures, which could be used towards classifcation or clustering of such fgures 

(Chapter 3). 

• To develop image classifcation methods that would enhance the classifcation of 

biomedical fgures into categories. This is to help search engines with indexing fgure 

contents, and therefore lead to the retrieval of the paper containing the fgure or even 

the fgure itself (Chapter 4). 

• To localise the text within biomedical fgures to facilitate the text extraction process 

(Chapter 5). 
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1.5 Thesis Contributions 

The work presented in this thesis offers the following original contributions: 

• A novel effective representation learning method is proposed (Chapter 3), which is 

used to enhance the classifcation of biomedical fgures in Chapter 4. 

• A new approach to biomedical fgure classifcation is devised to overcome the specifc 

challenges in biomedical fgure classifcation (Chapter 4). 

• A novel deep learning architecture is proposed for text localisation within images in 

general, and within biomedical fgures in particular (Chapter 5). 

1.6 Research Outputs 

As a result of the research conducted for this PhD thesis, the following articles have been 

published: 

• I. Almakky, V. Palade, Y. Hedley, and J. Yang, “A stacked deep autoencoder model 

for biomedical fgure classifcation”, in 2018 IEEE 15th International Symposium on 

Biomedical Imaging (ISBI 2018), 2018, pp. 1134–1138. Apr. 2018. 

• I. Almakky, V. Palade, and A. Ruiz-Garcia, “Deep Convolutional Neural Networks 

for Text Localisation in Biomedical Literature Figures,” in 2019 International Joint 

Conference on Neural Networks (IJCNN), pp. 1–5, IEEE, July 2019. 

1.7 Thesis Overview 

Starting with the background and literature review in Chapter 2, this thesis frst delves 

into the research that has been done in the relevant areas. Chapter 2 also compares and 

critically evaluates the previous approaches to retrieving information from fgure images in 

the biomedical felds as well as other felds. Later in Chapter 3, a novel approach to learning 

data representations effectively is presented. Demonstrating the effectiveness of this method, 
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the chapter then presents experiments on different popular benchmark datasets tested using 

different deep architectures. This method then ties into the next two chapters, where it is 

used to extract meaningful features that are used for classifcation, and it is then compared to 

some other approaches. Chapter 4 then investigates the fgure image classifcation to extract 

the frst piece of information from the puzzle. It looks closely at the specifc challenges with 

the classifcation of biomedical fgure images, while offering different approaches to solving 

them. The chapter also presents and compares the results of the different approaches, and 

fnally concludes with the strengths and weaknesses of each method. Chapter 5 follows with 

acquiring the next piece of the puzzle, the text contained within the fgure images; starting 

with the description of the specifc challenges to extracting text from biomedical fgures 

when compared with documents and natural scene images. Following that, a novel method is 

put forward to localise the text within the fgure image and experiments that demonstrate 

its performance on biomedical fgures. The thesis fnally concludes in Chapter 6, where 

the outcomes of the different chapters are brought together and the future challenges are 

presented. 



Chapter 2 

Background and Literature Review 

2.1 Introduction 

This chapter provides a theoretical background of the underlying research behind the different 

stages of mining information from fgures in biomedical literature. As discussed earlier in 

Chapter 1 and demonstrated in Figure 1.2, mining information from biomedical fgures is 

approached through both the visual and textual aspects of the fgure. More specifcally, image 

classifcation techniques can be used with the visual aspects and OCR techniques can be 

used with the textual ones. 

In such a manner, the chapter frst defnes the fgure classifcation task and discusses the 

traditional methods that have been used to classify biomedical fgures. Following that, the 

chapter delves into more recent deep learning, automatic feature extraction and representation 

learning methods that could be used towards biomedical fgure classifcation. The chapter 

then presents different classifcation methods that form the basis of the approaches developed 

in this thesis. 

Aside from fgure classifcation, the chapter analyses the different text extraction methods 

that have been employed in the past to extract text from biomedical fgures. The chapter also 

discusses more recent deep learning efforts that have been effective in extracting text from 

natural scene images, which have the potential of being used towards extracting text from 

biomedical fgures. Finally, the chapter concludes by identifying the current gaps in research 

that would enable better mining of information from biomedical fgures. 
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2.2 Biomedical Figure Classifcation 

Figure classifcation is the task of determining the category that a fgure belongs to. This task 

is not exclusive to the biomedical feld [16]; however, biomedical fgures have gained extra 

attention due to their ubiquitous nature in biomedical literature, as well as the importance of 

the information contained within them. Figure classifcation in general is aimed at extracting 

an essential piece of information that can help with indexing the fgure and with any further 

steps that need to be carried out to extract additional information. Research into fgure 

classifcation has been focused on supervised learning with hand-crafted features, which 

can be either visual [17, 18], textual [19] or a combination of the two [20–24]. However, 

some more recent attempts have used deep learning approaches to classify biomedical fgures 

[25, 26]. 

2.2.1 Taxonomy of Figures in Biomedical Literature 

Before going into the feature engineering and classifcation methods that have been used to 

classify biomedical fgures, it is important to discuss the taxonomy of fgures in biomedical 

literature. The taxonomy of biomedical fgures has been taking shape over the years and it has 

been getting more and more concise. In 2006, Rafkind et al. [20] frst proposed a taxonomy 

of biomedical fgures that divided biomedical literature fgures into fve classes: gel-image, 

graph, image-of-thing, mix and model. The small number of classes in this taxonomy and 

their broad nature makes them less effective to be used towards fgure indexing. 

This meant that for taxonomies to be more effective, classes had to be further divided 

into sub-classes. In such way Shatkay et al. [17] proposed the frst hierarchical taxonomy 

that divided biomedical fgures frst into three main categories: graphical, experimental and 

other. The frst two classes were then further divided into sub-classes, where the class of 

graphical fgures was split into line charts, bar charts and other diagrams. As for the class of 

experimental fgures, it was divided into gel electrophoresis, fuorescence microscopy and 

other types of microscopy. Later on, Lopez et al. [27] expanded on the hierarchical taxonomy 

suggested by Shatkay et al. [17] through adding another main class for text containing 

fgures. The new text fgures class was then subdivided into sequence and text fgures. In 

addition to line and bar chart fgure classes under the graph class, Lopez et al. also added 3D 
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models. They also substituted the gel electrophoresis with gel/blot/autoradiography, plate 

and microscopy classes. Muller et al. [28] proposed a more comprehensive taxonomy that 

included three levels of hierarchy. This taxonomy was adapted by the ImageCLEF medical 

challenge [29] for biomedical fgure classifcation in 2013, which is described further in 

Chapter 4. 

2.2.2 Differentiating Features 

Prior the rise of deep learning, many efforts into the classifcation of biomedical fgures were 

using hand-engineered features towards classifcation [17–24]. As detailed in this section, 

features were extracted either from the image of the fgure (visual features) or from the text 

contained in the fgure caption (textual features). 

Visual Features 

Due to the visual complexity of biomedical fgures and the wide range of biomedical fgure 

classes, it has been challenging to fnd a set of visual features that are capable of differentiating 

between the different classes. Following are some of the main visual features that were used 

as part of different classifcation approaches: 

• Intensity histograms. Rafkind et al. [20] utilised a normalised 256-bin grey-scale 

intensity histogram to use the entropy, mean, 2nd and 3rd moments as features towards 

classifcation. Similarly, Shatkay et al. [17] used the mean, variance and skewness as 

well as features from grey-level pixel-value histograms. Later, Han and Chen [21] and 

Kim et al. [22] went a step further with adding colour intensity histograms in addition 

to the grey intensity histogram. 

• Edge direction histograms. Rafkind et al. [20] hypothesized that edge direction 

histograms (EDH) can help differentiate fgures that predominately contain straight 

lines, such as charts and graphs. EDH was calculated after convolving the grey-scaled 

image into 3× 3 blocks using the Sobel edge operators. A similar approach using the 

Sobel operators was also carried out by Kim et al. [22]. Han and Chen [21] on the 

other hand, adopted a block-based edge histogram. Shatkay et al. [17] used Canny’s 
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edge detector to detect edges from the fgure images to then formulate a histogram 

from edges that share the same direction. 

• Edge-based axis features. From the same motivation as above, Rafkind et al. [20] 

also explored edge-based axis features by frst extracting Sobel edges from the grey-

scaled fgures. The vertical and horizontal sums were then captured from the resulting 

binary image resulting into two vectors. The vectors were then normalised and the 

entropy, mean, 2nd and 3rd moments were used as features from each axis. 

• Variance histograms. Han and Chen [21] formed block-based variance histograms to 

capture the local variation of the pixel values in the image. 

• Bag of visual words. Han and Chen [21] also used grid-sampling patched and then 

calculated appearance-based descriptors for the different patches. Using a modifed 

Scale Invariant Feature Transform (SIFT) method [30], they represented every patch 

of the image using a set of features. 

• Bag of colours. Based on the bag of visual words representation of images, de Herrera 

et al. [18] proposed a method to extract colour signatures of biomedical fgures. More 

specifcally, each image was visually summarised using the bag of colours from a 

pre-set vocabulary of colours formulated from a subset of the dataset. 

• Skew difference. The skew difference was used by Kim et al. [22] to identify the 

"Model" fgures, which they had defned for their taxonomy. This was motivated by 

the fact that the "Model" fgures had a skew above average, even though it was less 

than the skew for Graph fgures. 

• Gabor flters. Gabor flters are linear flters used for edge detection and texture 

analysis; it was used by Gkoufas et al. [23] to extract a total of 60 features. 

Textual Features 

• Keywords. Han and Chen [21] manually formed a 90-keyword feature vector of the 

most occurring words within captions of the fgures in their training set. In such manner, 

each fgure was represented using a binary vector of size 90, where an element would 

be set to 1 if the keyword related to its index existed in the fgure caption, otherwise it 
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is kept at 0. Similarly, Kim et al. [22] formulated a vector of 568 keywords, but added 

an extra text pre-processing step prior to encoding the caption; the caption text was 

passed through a flter that automatically omitted numbers, special characters and stop 

words (e.g. almost, i.e., etc) and then applied Porter stemming to the remaining words. 

• Bag of words. Bag of words is a common representation for document classifcation 

where the frequency of the word occurrence is taken into account rather than just its 

occurrence. Such representation was used by Rafkind et al. [20] alongside n-grams, 

for fgure classifcation from the fgure captions. 

• Character-based feature vector. Following text extraction using an off-the-shelf tool, 

Ma et al. [19] used the extracted text to formulate a 37-dimensional vector to represent 

the following characters (A-Z, 0-9, Other). The effort by Ma et al. was specifcally 

directed at identifying fgures that contain gene sequences, and thus the frequency of 

A, C, G and T would make a big difference. 

2.2.3 Autoencoders 

Aside from feature engineering, automatic feature extraction methods such as autoencoders 

have been used extensively to automatically extract features from images, which are then 

used for classifcation [31–33]. Therefore, autoencoders could be used for the automatic 

extraction of visual features from the biomedical fgure images, which is done in Chapter 4. 

Autoencoders are feedforward neural networks designed to be trained in an unsupervised 

manner to reconstruct their inputs x into r. Through this unsupervised training, autoencoders 

are able to learn some representation h of the input data x, specifcally when the representation 

is limited to a smaller size than the input. Autoencoders can be viewed as two components 

[34]: 

1. The encoder function f (x) that takes the inputs x and compresses them down into a 

specifc code h. 

2. The decoder function g(h), which takes that code layer h and tries to reconstruct it 

into r. The decoder aims for r to be as similar to x as possible. 
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Specifc restrictions are usually put on autoencoders to enable them to approximate inputs that 

resemble input data. Through such restrictions, the autoencoder has to adapt by prioritising 

specifc aspects of the input, through which it learns some useful features from the input data. 

Autoencoders are trained to minimise the loss function L(x,g( f (x))) using training methods, 

such as SGD (Section 2.2.4). 

Since the initial introduction of autoencoders, different variations have been put forward 

to serve specifc tasks. Sparse autoencoders, for example, are aimed at classifcation tasks, 

where a sparsity penalty Ω is added to the training criterion for the code layer, thus turning 

the loss into the following: 

L(x,g( f (x))) + Ω(h) (2.1) 

On the other hand, denoising autoencoders are more popular in computer vision tasks. They 

differ from traditional autoencoders by adding some type of noise to x and turning it into x̃. 

The loss is then calculated using the following loss function: 

L(x,g( f (x̃))) (2.2) 

2.2.4 Deep Learning 

Over the past few decades, deep learning (DL) has gained huge momentum through ad-

vancements in statistics, applied mathematics and understanding of the human brain. More 

recently, developments in DL have accelerated not only due to its popularity and usefulness, 

but also due to the fast development of fast computers. DL feedforward neural networks 

approximate a function f ∗ through iteratively learning a parameter θ that leads to the best 

approximation of the following mapping y = f (x,θ). Feedforward neural networks are 

composed of different functions that are chained together to form the most common structure 

of neural networks. For example, a network may have three functions f1, f2, f3 connected 

in a chain that forms f (x) = f3( f2( f1(x))). Deep feedforward models are networks with an 

increasing depth of this chain [34], even though there is no agreed upon number of layers 

that defnes the threshold between shallow and deep networks. 

Prior the rise of DL, researchers sought hard-coded features (Section 2.2.2) that they 

believed would be helpful towards the classifcation or regression problem. However, as 



15 2.2 Biomedical Figure Classifcation 

the problems tackled by artifcial intelligence become more complex, it simultaneously 

becomes more challenging to identify the features that should be extracted. This is the case 

for biomedical fgure classifcation, considering the visual complexity of the fgures as well 

as the subtle differences between some of the classes. One way to solve this issue is by taking 

the machine learning algorithm beyond simply mapping the features to the output space and 

into mapping raw inputs into representations. This has defned an entire research area called 

representation learning, which is concerned with methods to learn representations from input 

data to facilitate classifcation or other types of predictions. 

Feedforward deep models are trained in a similar fashion to that of shallow neural 

networks using backpropagation to fnd the parameters θ . Stochastic gradient descent (SGD) 

is usually used, where given a set of inputs x1, . . .xN , SGD aims to minimise: 

N 
θ = min

1 
∑ L(xi,θ) (2.3)

θ N i=1 

where L is the selected criterion to calculate the learning loss. Such training is done using 

mini-batches, where each mini-batch contains a subset of the training data x1, . . . ,xm. The 

gradients are then calculated using: 

1 ∂ L(xi,θ) (2.4)
m ∂θ 

where m is the mini-batch size, which is pre-selected depending on the dataset with the 

intention that m should be large enough to provide a good representation of the data. 

Residual Networks 

One of the biggest challenges of going deeper with neural networks is error degradation. This 

was refected in the work done by Simonyan and Zisserman [35], in which they noticed a 

saturation level once their deep architecture has more than 19 layers. He et al. [36] proposed 

a skip connection that is employed as a building block for deeper architectures, which can 

overcome training degradation. The residual building block is formally defned as: 

y = F(x,Wi)+ x (2.5) 
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where x, y and Wi are the block input, output vectors and weights respectively, and F + x is 

performed using the skip connection and element-wise addition. Residual networks (ResNet) 

have prevailed in deep architectures because of their ability to reduce training degrada-

tion without adding more parameters to the model and without adding any computational 

complexity. 

Deep Learning for Classifcation 

DL models have prevailed in the last decade with classifcation problems, especially in 

computer vision. This has been largely due to the growth in computational power, allowing 

for much larger and more capable models. This has allowed DL models to catch up with the 

increasing sizes of datasets and learn the necessary representations to differentiate between 

an increasing number of classes. Modern deep networks have built the ability to recognise 

1,000 different classes, as illustrated by contributions made towards one of the largest object 

recognition contest, ImageNet [37]. Similarly, DL can be used for the classifcation of 

biomedical fgures, where the number of classes is comparatively large along with a large 

number of examples from biomedical articles. 

In classifcation, DL feedforward neural networks aim to learn y = f ∗(x) for a set number 

of classes. The number of classes refects the size of the output layer of the feedforward 

network. To make f (x) better at predicting y, the outputs of the network are compared 

at each iteration with the ground truths using a specifc criterion. Cross-entropy is the 

criterion that is used to calculate the error between the outputs of the model and the target 

outputs. Cross-entropy can be closely correlated to Kullback-Leibler (KL) divergence, which 

is considered as a method to measure what is conceptualised as a distance between two 

probability distributions. More formally, cross-entropy is defned as follows: 

N C � �1 ( j) ( j) ( j) ( j) 
i )+(1− yi ) ln(1− oi )∑∑C ln(o (2.6)= − yiN i=1 j=1 

where N is the total number of samples in the training set, C is the number of classes (also 

the number of output neurons), while yi and oi are the target and outputs for sample i [38]. 
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Deep Learning for Biomedical Figure Classifcation 

In a move away from hand-crafted features, DL models were developed for the classifca-

tion of biomedical fgures. Koitka and Friedrich [39] demonstrated how DL methods can 

outperform other machine learning models that use hand-crafted features. More specifcally, 

a ResNet-152 model was able to surpass all other methods based on visual features from 

the fgures. Following that, Kumar et al. [26] used ensembles of different popular DL 

architectures, AlexNet [40] and GoogLeNet [41], to classify biomedical fgures. A novel 

approach was then employed by Zhang et al. [25] using a dual ResNet approach, where two 

fgures are input at the same time and the overall model would make a decision on whether 

the fgures belong to the same class or not. 

2.2.5 Support Vector Machines 

Support vector machine (SVM) is a powerful classifcation method that has been widely used 

for many classifcation tasks in general and for biomedical fgure classifcation in particular 

[18, 24, 39, 42, 43]. This section describes the theoretical background behind multi-class 

SVMs, which are used to classify biomedical fgures in Chapter 4. 

Starting from labelled training data (x1,y1), . . . ,(xN ,yN), where xi ∈ Rd and yi ∈ {−1,1}. 
Assuming that the two classes are separable in Rd , the following inequality will be satisfed 

for a vector w and scalar β : 

yi(w · xi + β ) ≥ 1 ∀i (2.7) 

Support vector classifers [44] aim to fnd the hyperplane f (x) that can separate the data 

in a way that creates the largest possible margin M between class −1 and 1: 

f (x) = w0x+ β0 = 0 (2.8) 

wThis defnes , which has the maximal distance between the projections of the training |w|
vectors of the two classes. The classifcation rule for a sample xi then becomes dependent on 
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which side of the hyperplane the sample falls on, which in this case can be defned as: 

g(xi) = sign( f (xi)) (2.9) 

The optimal margin M can be defned as the distance between the minimum projection of 
w wclass 1 onto |w| take away the maximum projection of class −1 also onto |w| . M can then be 

expressed as: 
x · w x · w

M = min − max (2.10) 
x:y=1 |w| x:y=−1 |w| 

Therefore, fnding the best hyperplane becomes about maximising M, thus the optimal 

hyperplane is one that minimises w.w. This makes the task of fnding an optimal hyperplane 

a quadratic programming problem, which is simplifed by identifying the so called support 

vectors xi, where yi(w.xi + β ) = 1. 

However, in most datasets, the classes overlap in the feature space, making it imperative 

to accept some level of compromise when determining the separating hyperplane. The 

support vector classifer in this case still aims for what is called a soft-margin, where some 

slack variables ξ = (ξ1, . . . ,ξN) are permitted to be within the margin and thus the initial 

constraint in Equation 2.7 becomes: 

yi(w.xi + β ) ≥ 1− ξi ∀i (2.11) 

where ∀i, ξi ≥ 0, ∑N
j=1 ξ j ≤ constant. Minimising the sum errors ∑i

N 
=1 ξi, can lead to a 

minimal subset of training error, which when can be excluded from the overall training set. 

The remaining subset can be separated using an optimal hyperplane as previously done, 

which can be formalised through: 

l 
Tmin 

1 
w w+C ∑ ξi (2.12) 

w,β ,ξ 2 i=1 

where C > 0 is the regularisation parameter. 

Many approaches exist to extend SVM classifers from binary to multi-class classifers, 

such as all-together, one-against-all and one-against one. LIBSVM [45] implements a one-

against-one approach, which was proved as a competitive approach by Hsu and Lin [46] 

following a comprehensive comparison between the different approaches towards multi-
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class SVMs. Given k number of classes, the one-against-one approach requires a total of 

k(k− 1)/2 classifers, where each one is ftted using the training data of two classes. For this 

multi-class problem, fnding the soft margin in Equation 2.12 becomes: 

l1 i j)T i j (ξ i j)zmin (w w +C ∑ (2.13) 
wi j,β i j,ξ i j 2 z=1 

SVMs have been widely used for many classifcation and regression problems in various 

areas. Starting with bioinformatics, where SVMs have been used for cancer classifcation 

from DNA micro-arrays [47], all the way to hand writing recognition [48] and face detection 

[49]. 

Even though SVMs can be defned as a two-layer network [44], DL has gained momentum 

ahead of SVMs in recent years due to many advancements that have allowed for models to 

learn deeper representations. 

2.2.6 Linear Discriminant Analysis 

Linear discriminant analysis (or Fisher linear discriminant analysis) [50] is a fundamental 

tool of multivariate statistics used in machine learning and pattern recognition. It is used to 

linearly classify a number of classes, or more commonly, reduce the dimensionality of the 

feature space for further classifcation. Unlike support vector classifers, the LDA decision 

boundary is calculated through the covariance of the class distributions and the positions of 

the class centroids. LDA is closely related to principal component analysis, as both methods 

are based on linear transformations. However, unlike PCA, LDAs take the classifcation 

of the points into account, while reducing the dimensionality of the data. The focus of the 

transformation process with LDA is to maximise the ratio of the between-class variance over 

the inner-class variance. 

Starting from a labelled set of data {(x1,y1), . . . ,(xN ,yN)}, where xi ∈ Rd and yi ∈ 

{C1, . . . ,Cc}. Multi-class LDA aims to fnd the projection matrix ΘΘΘ∗ that maximises the ratio 

J(W ) between between-class scatter and within-class scatter: 

|S̃B| ΘΘΘ
T SBΘ

J(W ) = = (2.14)
|S̃W | ΘΘΘ

T SW Θ 
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where: 

S̃B = 
|C|

i=1 
∑ Ni(ûi− û)( ̂ui− û)T (2.15) 

|C|

i=1 y∈Ci 

and: 
1 

ûi = 

∑S̃W u)T
∑ (y− û)(y− ˆ (2.16)= 

∑ (2.17)yiNi i∈Ci 

N1 
û = 

N ∑ 
i 

yi (2.18) 

There has been a recent focus on exploiting the powerful aspects of LDA to learn linearly 

separable features using deep neural networks [51, 52]. Stuhlsatz et al. [52] used a linear 

discriminant criterion to fne-tune a pre-trained stack of restricted Boltzmann machines 

(RBMs). Dorfer et al. [51] on the other hand, focused on the entire training procedure of 

deep learning models, where they switched the focus of the training process from maximising 

the likelihood of target classes to an output of feature distribution that adheres to the LDA 

objectives. The objective function was therefore derived from the LDA eigenvalue problem 

and was designed to function with SGD and back propagation. 

2.2.7 Classifcation and Data Imbalance 

Class imbalance is a problem that occurs when one class is insuffciently represented in the 

dataset. This generally leads classifcation models to be biased towards the more represented 

classes. 

SVM tries to deal with this challenge using different penalty parameters in Equation 2.12 

for the different classes in the dataset [53], thus transforming the problem into: 

1 T
∑ ξi +C− ∑w+C+

ξi (2.19)min 
w,β ,ξ 

w
2 yi=1 yi=−1 

where C+ and C− are both greater than 0 and used to regularise the cost for the positive and 

negative classes respectively. 
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The cross-entropy criterion deals with the data imbalance in a similar manner, where the 

error is scaled differently between the classes. The cross-entropy in Equation 2.6 becomes: 

N C � �1 ( j) ( j) ( j) ( j) 
i )+(1− yi ) ln(1− oi )∑∑C = − ln(o (2.20)wj yiN i=1 j=1 

where wj is the weight for class j, which is used to rescale the loss for that class according to 

the intended impact. 

As for LDAs, no negative effects could be empirically linked with class imbalance [54]. 

Xue and Titterington [54] had to make this argument against a previous claim by Xie and Qiu 

[55], who claimed a theoretical negative effect of unbalanced data on LDA performance. Xue 

and Titterington [54] used a more reliable metric to assess the LDA performance empirically, 

where they used the misclassifcation error rate rather than the Area Under the receiver 

operating characteristic Curve (AUC) used by Xie and Qiu [55]. 

2.3 Text Extraction 

Extracting text from digital images is an important task that has been extensively researched, 

whether from scanned documents or from natural scene images. The research that has been 

done involves the different stages of text extraction, starting with text localisation and ending 

with text correction. Text extraction challenges have been established from natural scene 

images [56] and complex documents [57]. Recently, extracting text from biomedical fgures 

has gained attention and a challenge specifc to text extraction from biomedical fgures was 

initiated using the DETEXT dataset [58]. Extracting text from biomedical fgures is a unique 

task because of the nature of the images and the nature of text contained within them. 

2.3.1 Text Extraction from Biomedical Figures 

The different approaches towards extracting text from biomedical fgure images have mostly 

focused on the image pre-processing to enhance the output quality of off-the-shelf OCR tools. 

This section compares many of the different approaches that investigated text extraction 
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from biomedical fgures or tried to utilise the text contained with the fgures for further 

applications. 

Xu et al. [13] identifes elements of text from biomedical fgures and then employs 

OCR techniques to extract their text. The extraction process is carried out in two stages to 

improve the extraction accuracy, one that employs a cross-checking procedure (aimed at 

higher precision) and another that does not (aimed at higher recall). The cross-checking 

procedure involves checking whether the extracted word exists in the article’s body of text, 

including its fgure captions. If the extracted word does not occur in the body of text, the 

word is then discarded. However, this step is counter-productive for the purpose of indexing 

fgures using the text contained within them, because articles are already indexed using words 

contained within them. Targeting vertical texts contained within biomedical fgures, the 

images are also rotated 90° before applying OCR again. The extracted text was incorporated 

as part of their indexing for the Yale Image Finder search engine [13]. 

Xu and Krauthammer [59] proposed an iterative pivoting text region detection method 

that constructs vertical and horizental histograms to locate text regions. After the iterative 

process is done with generating candidate text regions, they assess each region using an 

overall edge density heuristic that removes regions that have a density that is above or 

below specifc thresholds. The iterative nature of their approach was targeted at dealing 

with the distributed nature of text in biomedical fgures. Xu and Krauthammer [60] then 

employed their method with off-the-shelf OCR engines to extract text from biomedical 

fgures, comparing the extraction results before and after localisation. They used two OCR 

engines, the frst was the Microsoft Document Imaging package (from the Microsoft Offce 

2003 suite). The second was Top OCR1, which is a free OCR engine. 

Kim et al. [61] proposed a fgure text extraction tool (FigTExT) to improve the ability 

of OCR tools to extract text from biomedical fgures. The proposed tool focuses on text 

localisation, image pre-processing and text correction to enhance the text extraction accuracy. 

Firstly, Kim et al. employed methods used to localise text in natural scene images to localise 

text in biomedical fgure images. More specifcally, they employed Gatos’s et al. approach 

[62] that is based on connected component analysis. This was repeated for the image and its 

inverse to cope with an unknown grey-level for text regions in the fgures. Kim et al. argued 

1https://www.topocr.com/topocr.html 

https://www.topocr.com/topocr.html
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that Gatos’s et al. method performs well with high contrast text regions such as the ones in 

biomedical fgures. The extracted text regions were then up-sampled to improve upon the 

image quality, where a contrast stretching transformation was done to improve the contrast 

of the image. Following pre-processing, the text regions were input into the SimpleOCR 

API2 to recognise the specifc characters. 

In their proposed framework towards image-based document retrieval, Lopez et al. [11], 

employed ABBYY Finereader3, a commercial OCR software, to localise and extract text 

from biomedical fgures. The same software was also used by Ma et al. [19] to extract text 

towards the classifcation of biomedical fgures. The extracted text was then used to classify 

whether a fgure contains gene sequences based on the occurrence of the A, C, G and T 

characters (see Section 2.2.2). Considering that their ultimate goal was to classify fgures, 

the text extraction performance was not of very high value compared to other applications 

for the text, such as indexing. 

2.3.2 Deep Learning for Text localisation 

Text detection has been approached in various ways, some methods are sliding window based 

[63–65], where the aim is to restrict the search for text to a limited subset of regions. Each 

candidate region from the subset is then input into a classifcation algorithm that determines 

whether the region contains text or not. On the other hand, some text detection methods are 

based on connected components [66–68], which search for text within an image through 

grouping pixels with similar properties together into a single text region. Furthermore, there 

exist hybrid methods that implement connected component analysis alongside sliding window 

methods [69, 70]. 

More recently, and similarly to other areas of computer vision, text detection and localisa-

tion has witnessed rapid advances because of the rapid developments in deep learning. More 

specifcally, deep convolutional neural networks (DCNNs) have been used as a classifcation 

mechanism to identify regions of text from the candidate subset proposed by a sliding window 

[71]. This is conceptually similar to current object detection methods, where DCNNs depend 

on region proposals or sliding windows to fnd objects [72]. However, the YOLO detection 

2https://www.simpleocr.com/ 
3https://www.abbyy.com/en-gb/fnereader/ 

https://www.simpleocr.com/
https://www.abbyy.com/en-gb/finereader/
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system [73] redefned the object detection problem as a single regression problem, thus 

reducing the complexity of the training process. 

2.4 Summary 

The chapter provided a look into the two big themes of this thesis, biomedical fgure classif-

cation and text extraction. Starting by defning the biomedical fgure classifcation task and 

the taxonomy of biomedical fgures. Then moved on to survey the different hand-engineered 

visual and textual features that have been used for the classifcation of biomedical fgures. 

This survey made it abundantly clear that it is important to develop methods to automatically 

extract features from biomedical fgures. Therefore, the chapter then proceeded to automatic 

feature extraction methods such as autoencoders, which were the essence of the feature 

extraction process done in Chapter 4 as well as being the inspiration behind the training 

procedure proposed in Chapter 5 for text localisation. Continuing on with automatic feature 

extraction, deep learning was discussed with a focus on classifcation, including the effects 

on computer vision and the classifcation of biomedical fgures. It was evident that advancing 

deep learning approaches can contribute to further enhance the classifcation of biomedical 

fgures. 

The chapter also covers two important classifcation methods, SVM and LDA. It is 

shown how SVMs have been used in bioinformatics in general and for biomedical fgure 

classifcation in particular. However, SVMs require improvements and adjustments to make 

them more effective for the classifcation of fgures in biomedical literature, especially when 

considering the hierarchical nature of the biomedical fgure taxonomy. Data imbalance was 

discussed with both SVMs and LDAs and it was argued that LDAs are less impacted by class 

imbalance. Therefore, LDAs are used as the base of the methods presented in Chapter 3. 

Finally, the chapter looked into text extraction from biomedical fgures and the different 

approaches that tried to address the challenge. There is a clear lack of deep learning 

approaches into the extraction of text from biomedical fgures, which is addressed in Chapter 

5. 



Chapter 3 

Effective Representation Learning 

“Generally speaking, a good 

representation is one that makes a 

subsequent learning task easier.” 

Ian Goodfellow 

Yoshua Bengio 

Aaron Courville 

3.1 Introduction 

Effective representation learning is a key factor towards the success of machine learning 

algorithms such as: clustering and classifcation. In such manner, learnt representations can 

make the task at hand either very easy or very diffcult depending on the way the inputs 

are represented. Thus, representations that are to be learned should be dependent on nature 

of the learning task at hand. This chapter offers a fresh look into the supervised training 

of deep neural networks for classifcation. Specifcally proposing a new method to train 

a deep neural network towards the gradual separation of features in a new reduced space. 

Keeping with the theme of this thesis of extracting information from biomedical fgures, this 

chapter is aimed at improving classifcation performance for deep learning models. Thus, 

prior to implementing this method for biomedical fgure classifcation, this chapter presents 

the theoretical background for the proposed method. More specifcally, this method is later 
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employed in Chapter 4 to train deep learning models for the classifcation of biomedical 

fgures. 

The proposed method, named GCS (Gradual Class Separation), is described in this 

chapter; starting with a mathematical formulation of the classifcation task and establishing 

its link with Fisher’s linear discriminant analysis. After that, the chapter discusses how GCS 

functions with deep neural networks, the mean squared error and support vector machines 

towards classifcation. The chapter then briefy describes the experimental settings used to 

compare the performance of GCS with other established methods. The experimental settings 

include details of the deep neural network architectures used as well as the benchmark 

datasets (CIFAR-10 and CIFAR-100). Results from our GCS method are then compared 

to those from similar models trained using the cross-entropy criterion. The results are then 

analysed with a special regard to the method’s generalisation ability and its computational 

complexity. 

3.2 Feature Reduction and Maximization of Inter-Class Dis-

tance 

Starting from the following empirical data: 

(x1,y1),(x2,y2), . . . ,(xn,yn) 

where xi ∈ RD is an input vector that has a single label yi ∈ {C1,C2, ...,Ck}, where k is the 

total number of classes, and each class Cj has Nj number of samples. 

The aim is to train a neural network to learn a transformation function f (xi) = x ′ i, where 

x ′ i ∈ Rd and d ≪ D. Therefore, the new reduced data will be: 

′ ′ ′ (x1,y1),(x2,y2), . . . ,(xn,yn) 

In this reduced space, the neural network has to also maximise the inter-class distance (also 

referred to as between-class scatter), which can be accomplished by increasing the distances 
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between the mean vectors: 

′ ′ ′ d(C1,C2, . . . ,Ck) = d(m1,m2, . . . ,mk) (3.1) 

where: 
Nj1
∑ where yi ∈ Cj (3.2)m j = 

Nj 
xi 

i=1 

Nj1′
∑

′ 
i where yi ∈ Cj (3.3)m x=j Nj i=1 

where Nj is the total number of samples from class Cj. However, maximising the distance 

between classes is not suffcient, and therefore while maximising the inter-class distance, 

the inner-class distances have to be minimised [74]. This is similar to the objective behind 

Fisher’s linear discriminant analysis (LDA) [75], which aims to fnd ΘΘΘ that maximises the 

ratio J(w): 

J(w) = 
ΘΘΘ
′ SBΘΘΘ 

ΘΘΘ
′ SW ΘΘΘ 

(3.4) 

where: 
k Ni 

∑∑
′ ′ (m j− mi)(m j− m i) (3.5)SW = 

i=1 j=1 

k 
= ∑ Ni(mi− m)(m ′ i− m ′ )SB (3.6) 

i=1 

where: 
k1
∑ (3.7)m mi= 

k i=1 

k1′
∑

′ 
i (3.8)m m= 

k i=1 

and mi is the class mean given by Equation 3.3, but in the original space. From the objective 

function J(w) given in Equation 3.4, LDA searches for the projection ΘΘΘ, that maximises the 

ratio between the inter-class scatter and inner-class scatter. However, in this chapter, the aim 

is to get a neural network to learn the transformation that maximises the ratio between the 

inter-class scatter and inner-class scatter in the reduced space Rd . 

Supervised training of feedforward neural networks naturally means that different levels 

of representations of the inputs will be learnt at every hidden layer and more so as we go 
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deeper into the model. Those representations are typically learnt from the error calculated at 

the linear classifer, which usually forms the last layer of the network, and is propagated back 

through the model. In this work, the last linear classifcation layer is removed and the error 

calculation is moved to the model’s penultimate layer, which is expected to obtain linearly 

separable features. 

Neural networks are normally trained towards classifcation using the cross-entropy 

criterion that depends on its two components: the negative log likelihood (NLL) and a log 

Softmax function as follows: 

NLL(oi) = − log(oi) (3.9) 

LogSo f tMax(oi) = 
� �eoi 

log 
∑ j eoi 

(3.10) 

� len(o) � 
oiCrossEntropy(o,c) = −oc + log ∑ e (3.11) 

i=1 

where o is the output vector and c is the target class. Following this, the error is propagated 

back through the neural network layers using back propagation. As a consequence of this, 

the hidden layers start learning varying levels of features that can differentiate between 

the different classes. However, in this work, a question is asked: what if a neural network 

can be directly trained to separate features in a latent space, while maximising the inter-

class distance and minimising the inner-class distance? A gradual separation of features is 

proposed by continuously moving ground truths, which aims to slowly move the classes 

apart from each other in the latent space. Moving ground truths is dependent on the labels, 

making this method a supervised training method. 

Consider a batch (x1,y1), . . . ,(xb,yb) from RD and its reduced counterpart (x ′ 1,y1), . . . , 

(x ′ b,yb) in Rd , where b≥ 1. The features (x ′ 1, . . . ,x ′ b) are mapped out in the reduced space 

Rd using their labels (y1, . . . ,yb), and the batch mean vector m ′ is calculated for every classc 

c using Equation 3.3. The overall mean m ′ is also calculated for the batch using Equation 

3.8. New target mean vectors m ′′ are calculated for each class and for every batch:c 

′′ ′ mmmc = m + ∆∆∆c (3.12)c 
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where: 

∆∆∆c = [δ1, . . . ,δd] (3.13) 

where: 
k � � 

′( j) ′( j)
δ j = λ ∑ v mc − mi f or j = 1, . . . ,d (3.14) 

i=1 

where v is a function that sends a vector component x to |x|−1/2 · sgn(x), and λ is a regulari-

sation parameter. 

∆∆∆c moves each class’s batch mean vector m ′ c in the opposite direction of the other classes 

in every dimension of Rd , and sgn(x) is used to preserve the movement direction, especially 
′( j) ′( j)after taking the absolute value of the different elements (mc − m ) that enables the use ofi 

square root. Through v, it is possible to apply a non-linear relationship between the distances 

between two classes and the resulting movement, which makes it possible to turn smaller 

distances into larger displacements. 

Every input xi from Rd that belongs to class c is assigned the same ground truth in that 

batch, and the error is calculated using the following mean squared error (MSE): 

′ ′ ′′ MSE(xi,c) = (xi− m )2 (3.15)c

As m ′′ is set to be the ground truth for every xi from the same class c (Equation 3.12), thec 

aim becomes about more than just moving the classes apart in the feature space, by also 

focusing on reducing the inner-class sparsity. 

3.3 Classifcation in the Reduced Space 

Following on from the feature extraction process, the focus turns towards using the extracted 

features towards classifcation. Described in Section 2.2.5, an SVM is a powerful classifca-

tion tool that uses non-linear mapping to map input features into a new high-dimensional 

feature space. In this new feature space, the SVM seeks to fnd the hyperplane that provides 

the maximum margin between the classes. Like other classifcation methods, SVMs seek 

the best separation from the training samples, whilst maintaining the model’s generalisation 

capabilities. The classifcation accuracy and computational effciency for SVMs is also 
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impacted by irrelevant features, such as redundant features, outliers and noise. Generally 

in classifcation, reducing the dimensionality of the input feature space overcomes the risk 

of overftting on the training data, and thus enhances the chances for better generalisation. 

Overftting becomes a big problem when the number of training samples is comparatively 

small compared to the number of features [47]. 

In this work, instead of training a Softmax classifer, an SVM is employed to classify the 

outputs of the last layer. In this manner, the classifcation power of the SVM is harnessed, 

while the error is propagated through the model using the proposed method that aims to 

maximise the distances between the classes and reduce the inner-class sparsity for each class. 

This goal indirectly leads to a larger margin between the classes in the latent feature space. 

This is why the choice was made to use an SVM for classifcation, where the separation goal 

of GCS meets with the margin maximisation goal of the SVM. 

To further optimise the performance, and because the training is not dependent on ftting 

the SVM, the classifcation is only done for validation after every specifc number of iterations. 

This approach is motivated by research that has shown signifcant effect of feature selection 

on the SVM classifcation accuracy and computational effciency [47, 76]. 

Hinge loss is a similar approach to GCS, which is used to fnd the soft-margin for SVMs 

and is also used to train neural networks (see Section 2.2.5). Multi-label margin loss (also 

known as margin-based loss) is a similar function that is used to train neural networks towards 

classifcation, where the loss is calculated as follows, for input vector x and target y: 

max(0,1− (xy− xi)) loss(x,y) = ∑ (3.16)
len(x)i j 

Similarly, Elsayed et al. [77] proposed a loss function that depends on the frst-order 

approximation of a margin to separate classes. Their proposed method is similar to ours in 

the manner that it can be used to calculate errors at various depths of the model. However, 

even though their proposed method focuses on separating classes in the latent feature space, 

their method does not account for within-class spread. 
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Parallelism 

Improving the classifcation timing, instead of using a single SVM, an ensemble of SVMs is 

ftted on the reduced features of the input data. In this way, it was possible to ft each SVM 

from the ensemble on a different CPU core. This is achieved by splitting the total number of 

input samples equally among each SVM in the ensemble. 

3.4 Experimental Settings 

3.4.1 Datasets 

Two datasets with varying number of classes have been selected to assess the effectiveness 

of the proposed learning method. Starting with a relatively small number of classes with 

CIFAR-10 (10 classes) and ending with a large number of classes with CIFAR-100 (100 

classes). Both datasets have perfect balance between their classes, so in this chapter we focus 

on establishing the GCS method with (class) balanced datasets. Whereas, in the next chapter, 

the focus will be on dealing with class imbalanced data. 

CIFAR-10 

CIFAR-10 [78] is a dataset that contains 60,000 small coloured images (3× 32× 32) split 

evenly into 10 classes, with 6,000 in each class. Each class in the dataset has 5,000 samples 

for training and another 1,000 for testing. The classes in the dataset: airplane, automobile, 

bird, cat, deer, dog, frog, horse, ship and truck. The classes of CIFAR-10 are entirely 

mutually exclusive, where none of the classes overlaps with another. CIFAR-10 is a popular 

benchmarking dataset due to the nature of its classes and their even distribution. In this 

chapter, the same data split for this dataset has been applied throughout when testing the 

different methods. 
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CIFAR-100 

A similar dataset to CIFAR-10, but with 100 classes instead of 10, where each class contains 

600 samples. The 600 samples for each class are split into 500 training images and 100 

for testing. The 100 classes of the CIFAR-100 dataset belong to 20 different super-classes, 

giving its taxonomy a hierarchical structure. Each sample is made out of a 32×32 sized RGB 

image with two labels, one for the class and another for the superclass. The total number of 

images in the CIFAR-100 dataset is the same as that for CIFAR-10, thus making the dataset 

aimed at assessing a model’s prediction capability with a large number of classes and a much 

lower number of samples per class. 

3.4.2 Models 

To test with a number of benchmark deep models with varying depths, deep residual networks 

and VGG models were used. The choice was frst made to work with the benchmark deep 

residual models, but to ensure that impact of GCS was not limited to models with the skip 

layers, VGG models were also considered. 

Deep Residual Neural Networks 

Deep residual neural networks (ResNets) [36] are feedforward neural networks that use skip 

connections to address the degradation problem in deep models. ResNet models were able 

to push the boundaries of deep learning using their skip connections that allow for better 

error propagation through the model. ResNets utilise two main types of building blocks for 

their network architecture: the frst is the standard residual building block and the other is 

"bottleneck" building block, which is used for deeper models. The different ResNet variations 

can all be divided into three main components: 

1. The input convolution followed by a max-pooling layer. 

2. Four blocks that can be either standard residual blocks or bottleneck blocks, depending 

on the depth of the model. 
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Fig. 3.1 ResNet-18 architecture. 

3. An average pooling layer connected to fully-connected layer that has a number of 

neurons that matches the number of classes to be predicted followed by a Softmax 

activation function. The number of outputs from the average pooling layer is dependent 

of the type of the block used in the second component, if the basic block is used then 

there would be 512 features while there would be 2048 features if the bottleneck block 

was used. 

The Resnet-18 architecture is shown in Figure 3.1, where those different components are 

visible. For our proposed method, only the last component had to be altered, where the 

Softmax function was replaced by ReLU and a 1-dimensional batch normalisation layer. The 

number of neurons in the fully-connected layer was also changed to match the number of 

features rather than the number of classes. 

VGG 

The VGG model [35] is another form of deep feedforward neural network that was around 

before the ResNet model. The VGG model made the improvement over AlexNet [40] by 

replacing large kernel-sized flters with multiple 3× 3 flters one after the other. However, 

unlike ResNet, the VGG model does not use the skip layers and is therefore more prone to 

the degradation problem. In a similar manner to ResNet models, the VGG model also has 

variations depending on the depth of the model. The VGG model architecture also has three 

main components: 

1. The input layer, which is dependent on the input dimensions. 

2. A stack of convolutional layers with different depth depending on the architecture. 
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3. Three fully connected layers, with the frst two having 4096 neurons and the last one 

having a number of neurons that matched the number of classes in the dataset. The 

fnal layer incorporates a Softmax activation function that is responsible for outputting 

the probability for each input belonging to a specifc class. 

In a similar manner to the ResNet architecture, the VGG architecture was altered slightly by 

replacing the Softmax layer with a ReLU function and adding a batch normalisation layer 

after that. The number of neurons in the last layer was also set to the intended number of 

features rather than the number of classes. The VGG-19 was used to provide an architecture 

of a similar depth to the ResNet-18. 

3.4.3 Training 

Similar depths of the ResNet and VGG models were trained to ensure the functionality 

of GCS with and without the use of skip layers in the architecture. Each model was frst 

trained using the cross-entropy criterion and then using our proposed method to compare the 

difference in performance and effciency. Each of the models was frst trained to minimise 

the cross-entropy loss (L) for each sample output (o): 

� len(o) � 
L(o,c) = −oc + log ∑ eo j (3.17) 

j 

where c is the target class. This criterion is a combination of the negative log likelihood and 

log Softmax functions (see Section 3.2). Whereas the loss according to our GCS method is 

based on the mean squared error, where the error is calculated between the outputs and the 

new mean vector for the class: 
′′ L(o,c) = (o− m )2 (3.18)c

where m ′′ is calculated from Equation 3.12. The value for λ was set to a small value at the c 

start of the GCS experiments, and then through the iterations it was increased exponentially, 

setting its value at iteration i to: 

λi = λ i− 1 (3.19) 
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The increase of λ aims to increase the impact of smaller distances between classes, and 

therefore lead to higher error. The exponential growth was to counter the slow-down in 

learning that occurs when using MSE. 

The batch loss was then calculated by taking the average loss (L) over all the batch 

observations. The same batch size of 120 was used when training the models with the cross-

entropy loss and with the proposed method. The error was propagated back through the model 

after every batch, while using two different optimisation algorithms. The frst algorithm used 

with the cross-entropy criterion was stochastic gradient descent (SGD) with a momentum 

of 0.9 and a weight decay of 5× 10−4. The initial learning rate was set to 0.1 with learning 

milestones set to iterations 150, 250 and 350, where the new learning rate was calculated 

lri = lr(i−1) × 0.1 for iteration i. While, the ADADELTA [79] optimisation algorithm was 

used for our proposed method, because of its ability to dynamically adapt during training 

solely using frst order information. Additionally, ADADELTA is robust to noisy gradient 

information, which is very suitable for our evolving ground truths. ADADELTA also does 

not require the manual setting of a learning rate or any type of decay, as it is adaptive. 

The SVM was ftted gradually using the outputs of each batch from the validation iteration. 

After comparison between the performances of different kernel functions for the SVM, the 

linear function prevailed over both polynomial and radial basis. This was also part of the aim, 

which is to check the level of linear separability that has been reached. The cost value for 

the SVM was set to 10 and then it was increased with the same ratio as the class separation, 

which is discussed in more detail in Section 3.5.1. The maximum number of iterations 

was set to 100,000 to avoid stalling on the SVM part during ftting, while the tolerance for 

stopping criterion was set to 10−3. To save on training time, Shrinking technique [80] was 

also employed to eliminate certain points that are unlikely to turn out to be support vectors. 

In addition to the batch normalisation layer, which as the name suggests operates on 

batch level, the output of each batch was used to standardise the features by removing the 

mean and scaling according to the unit variance: 

(x− µ)′ x = (3.20)
σ 
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where µ and σ are the mean and the standard deviation respectively, calculated from the 

training samples. µ and σ are calculated from every training batch of the validation iteration 

and the values are then used to transform the features from the test samples. 

Other than the SVM, a two layer fully-connected neural network was also used for 

classifcation along with GCS. The input size of the classifcation network matches the 

number of output features, while its output Softmax layer has the same number of neurons as 

the number of classes. The output features from each batch were input into the classifcation 

model, which in turn was trained using cross-entropy. ADADELTA was also used as an 

optimiser for this model with an initial learning rate set to 1. 

Choosing the optimal number of dimensions was another challenge, which was tackled 

through experimenting with different number of features. Starting with the number of features 

that was closer to the number of features used by the last feature layer of the ResNet-18 and 

ResNet-34 architectures, which is 512. In this chapter, the number of features was always 

set to 500, whether the model used was the ResNet-18 or VGG-19. It is worth noting that 

experiments showed that it is possible to use a smaller number of features to achieve a similar 

performance. However, it was decided that fnding an "optimal number of features" for each 

of the tackled tasks would be out of the thesis. 

Image Pre-processing 

The means (m(c)) and standard deviations (std(c)) are calculated for each channel (c) of the 

CIFAR datasets from their training sets and the input values for each channel (inp(c)) are 

normalised according to: 
inp(c) − m(c) 

inp(c) = (3.21)
std(c) 

The images were also randomly cropped to 32× 32 after they were padded by 4 from every 

side. 
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3.5 Evaluation 

Because the datasets used in this chapter are multi-class datasets, the average accuracy was 

calculated for all the experiments carried out: 

|C|1 TPi + TNiAverage Accuracy = ∑ (3.22)
|C| TPi + TNi + FPi + TNii=1 

where: 

• TPi is the total number of samples correctly classifed as class i. 

• TNi is the total number of samples correctly classifed as not belonging to class i. 

• FPi is the total number of samples falsely classifed as class i. 

• FNi is the total number of samples falsely classifed as not belonging to class i. 

• C is the set of classes in the dataset. 

3.5.1 Fisher’s Ratio 

It is important here to remember the main aim of the proposed method, which is to separate 

the classes in the latent feature space while also minimising the inner-class scatter. Therefore, 

to evaluate the level of class separation achieved, frstly the following static metric is defned: 

∥SB∥E = (3.23)
∥SW∥ 

with SB and SW being the between and within class scatter matrices, respectively. 

∥SB 
(i)∥/∥S(i) W ∥E(i) = (3.24) 

∥SB 
(1)∥/∥S(1) W ∥ 

where E(i) is a value that shows how the class separation at iteration i compares with that of 

iteration 1. At each iteration the separation is judged compared to the frst separation attempt 

from the frst iteration. 
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The ratio Ei is then treated as a comparison metric between the current state of separation 

in iteration i and between the starting point for the model. From this perspective, it was 

proposed that a link would be made between the ratio Ei and the cost C for the SVM from 

Equation 2.12. Intuitively this means that with a better separation level of the classes in the 

feature space, the penalty for making an error should be higher. Therefore, the cost for the 

current iteration (i) was calculated through: 

C(i) = E(i) ×C(1) (3.25) 

In this way, the SVM is punished more for a false sample as the separation of the classes 

improves. 

3.5.2 Feature-Space Visualisation 

In this chapter, a variation of the stochastic neighbour embedding (SNE) called "t-SNE" [81] 

is used to visualise the separation of classes in the latent feature space. t-SNE overpowers 

other visualisation techniques that have the tendency to cluster points at the centre of 

the visualisation map. t-SNE also has the ability to unmask a multi-scale structure in a 

single map. t-SNE converts the Euclidean distances between the different data points into 

joint probabilities and then uses gradient descent to minimise the sum of Kullback-Leibler 

divergences between all points. However, this cost function is not convex, which leads to 

different mappings with every run. This is not an issue for the visualisations in this chapter, 

because the focus is simply on the class spread in the latent feature space and not on the 

exact movement of points through the iterations. 

3.6 Results 

For consistency, the results shown in this chapter were all the outcome of tests carried 

out using the same splits of the datasets as described earlier in Section 3.4.1. Further, all 

experiments used the same image pre-processing techniques (Section 3.4.3) without any 

alteration. Also, during the training, and for every iteration, the within-class and between-

class scatter matrices were calculated using Equations 2.15 and 2.16. The within-class SW 
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Fig. 3.2 Comparison between the accuracy on the CIFAR-10 test set between our proposed 
method using the ResNet-18, with SVM classifcation (GCS-SVM) and a two-layer fully 
connected network (GCS-FC), and the cross-entropy criterion. 

and between-class SB scatter matrices are then summarised using the norm for each of them 

∥SW∥, ∥SB∥, those values are shown in Figure 3.5. The ratio defned in Equation 3.24 is 

then calculated and shown in Figure 3.6 for experiments with the cross-entropy criterion and 

others with our proposed method. 

The trained models were tested continuously during the training process (every 10 

iterations) to assess the model’s prediction ability at various stages of the training process. 

With this approach, the test set was input into the model every 10 iterations and then the 

prediction of every sample was determined by the classifcation method specifc to the 

approach. In such manner, the performance of the ResNet-18 and VGG-19 models is tested 

when trained using the following three approaches: 

• The standard approach to classifcation training for neural networks, which uses cross-

entropy and stochastic gradient descent. 

• Our proposed method for gradual class separation with an SVM for classifcation (GCS-

SVM). For this approach, it should be mentioned that test inputs were standardised 

before being passed into the SVM using a Standard Scaler (Equation 3.20), which is 

ftted using the training outputs of the last training iteration. 
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Fig. 3.3 Test accuracy comparison on the CIFAR-10 dataset between our proposed method 
(GCS) and the cross-entropy loss, where both were used to train the VGG-19 model. 

• Our proposed method for gradual class separation but with a two-layer classifcation 

network that is trained independently using the cross-entropy criterion while taking 

the output features from the deep model as inputs (GCS-FC). 

The above-mentioned approaches were tested on the CIFAR-10 dataset with both models, 

ResNet-18 (Figure 3.2) and VGG-19 (Figure 3.3). However, testing on the CIFAR-100 

dataset was only carried out using the ResNet-18 architecture (Figure 3.4). 

3.7 Discussion 

3.7.1 Generalisation 

Despite the ability of deep neural networks to memorise training sets, the aim behind any 

learning algorithm is to generalise. This aim was achieved in this scenario, where the model is 

able to extract features from unseen samples in a manner that is allowing the SVM ensemble 

to achieve state-of-the-art performance. This capability is also evident in the class distribution 

on unseen data produced by t-SNE and visualised in Figure 3.9. 
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Fig. 3.4 Test accuracy comparison on the CIFAR-100 dataset between our proposed method, 
GCS, and the cross-entropy loss, both used to train the same ResNet-18 architecture. 

3.7.2 Classifcation Accuracy 

The effect of the GCS on the classifcation accuracy during the training of a Resnet-18 model 

on the CIFAR-10 dataset is clear from Figure 3.2. The same deep architecture was able to 

reach the benchmark classifcation accuracy in less than a quarter of the iterations it took with 

the cross-entropy criterion. Using the proposed GCS method, the model was able to exceed 

90% accuracy before reaching the 1,000 iteration mark, whereas it took the cross-entropy 

criterion more than 13,000 iterations to exceed the same threshold. The Resnet-18 training 

process using our method was deliberately terminated at 10,000 iterations, because there 

were no noticeable changes to the classifcation accuracy. However, as seen in Figure 3.2, 

the training process using the cross-entropy criterion was allowed to continue until 20,000 

iterations, where the model reached a performance on the same level as the model trained 

using our proposed method. It is worth mentioning that the performance for Resnet-18 

trained using cross-entropy criterion agrees with the performance reported in the original 

paper by He et al. [36]. 

Interestingly, the slowdown in the improvement of the accuracy when training with GCS 

happens more suddenly compared to the cross-entropy criterion. This is exactly meant to 

be the attractive aspect of the cross-entropy criterion, which is to escape the slowdown in 
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training caused by fading gradients. However, it would be more attractive if we can reach 

the "best accuracy" much quicker, or even close to it and follow it with a fne-tuning using 

cross-entropy criterion. 

The best accuracy reported from the Resnet-18 model trained using GCS was 92.09%, 

which is very close to that achieved by the model trained using the cross-entropy criterion, 

92.23%. Also, in a similar manner to cross-entropy, GCS achieves a F1 score that is very 

similar to its average accuracy, which is 92.08% compared to the 92.22% achieved by the 

cross-entropy. This indicated that GCS is not leaving any classes behind when increasing the 

spread of the classes in the latent feature space. This is also visible in Figure 3.7, where the 

confusion in prediction made by both models is similar. The errors are focused between three 

pairs of visually similar classes: (cat, dog), (ship and airplane) and (automobile and truck). 

This confusion is also refected in the class distribution in the latent feature space, as captured 

by the t-SNE in Figures 3.8 and 3.9. As expected, the classes with similar visual features 

are neighbouring each other in feature spaces generated by both methods and intersecting in 

certain cases. 

A question could be asked regarding the impact of replacing SGD with ADADELTA 

on the speed at which the model reaches its benchmarks accuracy. However, from [79], 

even though ADADELTA yielded lower error on the MNIST dataset than both SGD and 

ADAGRAD, the same pattern does not manifest. 

The class separation patterns (Figures 3.5 and 3.6) refect on the test accuracy patterns 

through the iterations (Figure 3.2). However, the exception from this pattern is that even 

though the separation ratio keeps rising for GCS-FC, the accuracy reaches a saturation level 

that it does not exceed. This is different from the pattern can be seen in the cross-entropy 

case, where the improvement in accuracy gradually slows down while the class separation 

ratio increases very slowly. 

Accuracy Variance 

The high variance in the classifcation accuracy of the predictions made by the GCS method 

can be attributed to the lax parameters that are passed to the SVM ensemble, which are used 

to accelerate the experiments. 
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Fig. 3.5 Comparisons between the within-class scatter and between-class scatter of our 
method (left) and the cross-entropy criterion (right), while training the ResNet-18 on the 
CIFAR-10 dataset. 

3.7.3 Computational Cost 

Fitting the SVM ensembles adds no time to the training process, as it can occur in parallel. 

The feedback from the SVM ftting is not required for backpropagation, it is only the output 

features from the model that are needed to ft the SVM. 

The computation overhead to compute the new ground truths in every batch is not 

substantial. The extra computation encompasses the calculation of the class centroids and 

then the distances for each centroid to be moved. The fact that a single ground truth is 

calculated for the entire class reduces the computation overhead signifcantly, while also 

targeting the reduction of the within-class scatter. Even though it might be an insignifcant 

change in certain cases, but this method omits the need for the fully connected output layer 

along with the weights from the penultimate layer. 
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Fig. 3.6 A comparison of the separation ratio achieved during the ResNet-18 training iterations 
between our proposed method (left) and the cross-entropy criterion (right). 

(a) cross-entropy (b) GCS 

Fig. 3.7 Confusion matrices for the test predictions for the CIFAR-10 using Resnet-18. 

3.8 Conclusion 

The chapter has addressed an important research problem and one of the objectives of this 

thesis. It specifcally focused on a new method to train neural networks to effectively learn 

representations towards classifcation. Our proposed method, GCS, was formally defned 

and tested using various deep models and benchmark datasets. Through this, our method 

was capable of achieving high validation accuracies that match the benchmark results in a 

substantially lower number of iterations. The results were compared using multiple models 

and datasets, and an in-depth analysis of the results was carried out. 

From the work done in this chapter, many questions can arise for future works. Some of 

those questions can be concerning the potential behind progressive training of deep neural 

networks. While others can be surrounding the different separation criteria that can be used to 

train a deep model, by assessing the level of class separation at different levels of the model. 
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Additionally, the potential to introduce an unsupervised element to the training process to 

allow for training using unlabelled data. 

The next chapter will explore the use of GCS to train deep neural networks for the 

classifcation of biomedical fgures. The biomedical fgure classifcation task presents some 

unique challenges to any classifcation training method. 

Fig. 3.8 Visualisation of the class separation in the reduced space using t-SNE on the unseen 
test set of CIFAR-10 after using Cross-Entropy. 



46 Effective Representation Learning 

Fig. 3.9 Visualisation of the class separation in the reduced space using t-SNE on the unseen 
test set of CIFAR-10 after using GCS. 



Chapter 4 

Figure Classifcation 

4.1 Introduction 

Figure classifcation is one of the important steps towards mining information from biomedi-

cal fgures [82]. As was detailed earlier in Section 2.2.2, biomedical fgures were previously 

classifed based on visual features, textual features, or a combination of the two. In this Chap-

ter, the focus is the automatic extraction of features from the images (visual) of biomedical 

fgures, moving away from feature engineering and into different aspects of deep representa-

tion learning. 

This chapter discusses the biomedical fgure classifcation task and addresses the different 

challenges that accompany it. Firstly, describing the dataset of biomedical fgures that was 

used for the training and testing of the different models discussed in this chapter. The 

chapter then delves into the challenges specifc to the classifcation of biomedical fgures, 

including data class imbalance and the large number of classes. Addressing those challenges, 

the chapter describes the different models trained to classify biomedical fgures using the 

ImageCLEF dataset, while addressing the arising challenges. Some of the work done in this 

chapter also builds on the gradual class separation method that was established in Chapter 3. 

Finally, the different results from the different proposed models are compared with each other 

and with the state of the art, while providing an in-depth analysis of the different results. 

The following points summarise the contributions of this Chapter: 
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• Unsupervised training of a stacked deep autoencoder to extract visual features from 

biomedical fgures towards classifcation; 

• Introducing a multi-stage fne-tuning technique to enhance the classifcation perfor-

mance, especially on classes that are less represented in the dataset; 

• Developing a novel hierarchical ensemble of SVMs towards a better classifcation of 

biomedical fgures; 

• Supervised training of deep neural networks towards the classifcation of biomedical 

fgures using cross-entropy criterion as well as the novel training method introduced in 

Chapter 3. 

4.2 Dataset 

The ImageCLEF dataset of biomedical subfgures was created as part of the medical fgure 

classifcation task during the ImageCLEF 2016 challenge [82]. The dataset contains 10,942 

biomedical fgures extracted from open-source articles available on PubMed Central1. Each 

fgure in the dataset has been manually classifed by experts from the biomedical feld into 

one of the 30 classes, which are listed in Section 4.2.1. As described in Chapter 2, this 

taxonomy was adapted from the work done by [28], which had 38 classes of which 31 classes 

appear in this dataset. The dataset was randomly split by the challenge organisers into 6,776 

training images and 4,166 testing images. All the models described in this chapter were 

trained using the same data split prescribed by the challenge organisers. 

Image Pre-processing 

Biomedical fgure images are of varying sizes and therefore to ease their input into our fully 

connected autoencoder model, all input images were resized to standard size of 100 × 100. 

This size was chosen to improve upon the training speed while also trying to keep as much 

of the important visual features as possible. The average size of the fgure images in the 

ImageCLEF dataset is 303 × 231, as shown in Figure 4.1. However, it is also visible that the 

1https://www.ncbi.nlm.nih.gov/pmc/ 
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Fig. 4.1 The widths and heights of the training and testing images from the ImageCLEF 
dataset. The red line at 100 shows the size at which the images were resized for the SDAE, 
while the green one shows the sizes for the DCNN inputs. 

average size for the testing set images is higher than the than that of the training set images, 

with 311 × 238 and 298 × 227, respectively. All the fgure images within the ImageCLEF 

dataset are composed of three colour channels. 

4.2.1 Taxonomy 

Each fgure image within the ImageCLEF dataset can belong to one of 30 leaf classes, while 

also belonging to one of 6 parent classes. Each of the 30 leaf classes belong to one and only 

one of the 6 parent classes as shown in Table 4.1. For simplicity, each leaf and parent class 

have been allocated a specifc number of letters, as shown next to each class in Table 4.1. 

Moreover, some of the parent classes, four of them to be exact, belong to another parent 

class, giving the taxonomy a further layer in the hierarchical structure. Figure 4.2 includes 

sample fgure images for some of the classes from the taxonomy. 

4.3 Challenges 

A few characteristics make biomedical fgure classifcation a challenging task: 
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Table 4.1 A breakdown of the taxonomy used for biomedical fgure classifcation [82]. 

Biomedical Subfgures 
Diagnostic Images (D) Generic Biomedical Illustrations (G) 

- Visible light photography (DV): • Tables and forms (GTAB) 
• Dermatology, skin (DVDM) • Program listing (GPLI) 
• Endoscopy (DVEN) • Statistical fgures, graphs, charts (GFIG) 
• Other organs (DVOR) • Screenshots (GSCR) 

- Printed signals, waves (DS): • Flowcharts (GFLO) 
• Electroencephalography (DSEE) • System overviews (GSYS) 
• Electrocardiography (DSEC) • Gene sequence (GGEN) 
• Electromyography (DSEM) • Chromatography, Gel (GGEL) 

- Microscopy (DM): • Chemical structure (GCHE) 
• Light microscopy (DMLI) • Mathematics, formula (GMAT) 
• Electron microscopy (DMEL) • Non-clinical photos (GNCP) 
• Transmission microscopy (DMTR) • Hand-drawn sketches (GHDR) 
• Fluorescence microscopy (DMFL) 

- Radiology (DR): 
• Angiography (DRAN) 
• Combined modalities (DRCO) 
• Computerized tomography (DRCT) 
• Magnetic resonance (DRMR) 
• Positron emission tomography (DRPE) 
• Ultrasound (DRUS) 
• X-ray, 2D radiography (DRXR) 

- 3D reconstructions (D3DR) 
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(a) Statistical fgures, graphs, charts 
(GFIG) (b) Fluorescence microscopy (DMFL) 

(c) Light microscopy (DMLI) (d) Chromatography, Gel (GGEL) 

(e) Transmission microscopy (DMTR) (f) Magnetic resonance (DRMR) 



52 Figure Classifcation 

(g) Electron microscopy (DMEL) (h) 3D reconstructions (D3DR) 

(i) Gene sequence (GGEN) 

Fig. 4.2 Sample training fgures from the biggest classes in the taxonomy. 
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Fig. 4.3 The class distribution within the ImageCLEF 2016 dataset. 

• Huge class imbalance. There is an enormous imbalance between the number of 

instances of the different classes (Figure 4.3). Specifcally in the ImageCLEF dataset, 

the three largest classes (GFIG, DMFL, DMLI) amount for about 67% of the overall 

number of fgures in the dataset, while the other 27 classes amount for the other 33%. 

• Small sample size. The smallest 20 classes have less than a 100 training samples with 

one class having a single training sample (GPLI). 

• Large output space. The large output space that contains 30 classes. 

• Subtle visual features. The visual features that differentiate between some of the 

classes are very subtle, as demonstrated in Figure 4.4. 

• Low resolution. The general poor resolution of fgure images. 

4.4 Feature Extraction 

Prior to the rise of deep learning, many image classifcation problems were dependent on 

hand-crafted features. Such features were also used before for the classifcation of biomedical 
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Fig. 4.4 The visual similarities between some of the different classes within the ImageCLEF 
dataset. 

fgures, which are described in detail in Section 2.2.2. This section describes the different 

methods we followed to automatically extract features from images of biomedical fgures. 

Starting with a stacked deep autoencoder model and then deep convolutional neural networks. 

More details about the development of the Gradual Class Separation, GCS, method used to 

train the deep convolutional networks are described in Chapter 3. 

4.4.1 Stacked Deep Autoencoder 

As was previously discussed in Section 2.2.3, an autoencoder (AE) is a neural network that 

aims to learn a hidden representation h of an input distribution x ∈ RD. Constraining h to 

a smaller space Rd , where d ≪ D, is one of the methods towards obtaining useful features 

in h. The learning of this hidden representation h is achieved through the learning of two 

functions, an encoder h = f (x) and a decoder r = g(h), where r is the reconstruction. The 

encoder f (x) is formally defned as: 

h = f (x) = s f (Wex+ be) (4.1) 
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where s f is the encoder’s activation function, We is its weight matrix and be is its bias. The 

rectifed linear unit (ReLU) is used as s f : 

ReLU(x) = max(0,x) (4.2) 

Due to their similarity to linear units, ReLU units allow for easier optimisation while also 

having large consistent gradients [34]. The decoder g(h) on the other hand is defned as: 

0r = g(h) = sg(Wdh+ bd) (4.3) 

where sg is the decoder’s activation function, Wd is its weight matrix and bd is its bias. In 

this work, sg was a sigmoid function that restricts the outputs to values between 0 and 1, 

which can be compared with the normalised grey-scaled input images. Training the AE is 

then a matter of fnding We, Wd , be and bd that minimise the following loss: 

L(x,g( f (x))) (4.4) 

L being the loss function that measures the dissimilarity between x and g( f (x)). s The 

challenge with constructing a deep autoencoder manifests in the fact that adding a layer to the 

encoder would mean adding another layer to the decoder, making the total number of layers 

grow at a magnitude of two. This growth in the number of parametrised layers makes training 

more challenging. Therefore, a greedy layer-wise approach [83, 84] was taken to train the 

stacked deep autoencoder (SDAE). The aim is to utilise the unsupervised initialisation to 

place parameters in a range of the parameter space that would lead to a good local optimum 

by local descent. Using this approach, both functions, f (x) and g(h), were learnt gradually 

by reducing the deep autoencoder into shallow autoencoders, which are simpler to train. 

Following the gradual training of the shallow autoencoders, the models were combined to 

form a stacked deep autoencoder (SDAE). 

The SDAE model was trained in fve stages in an unsupervised manner. Starting from an 

AE with 10,000 input and output neurons and a hidden layer of 7,500, where the 100× 100 

size images are fattened and fed into the model. In the second stage, the 7,500 output 

neurons for the frst model were used as input and target for a new AE model with a hidden 

layer of 5,000 neurons. This was done in a recursive manner for the next three stages with 
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Fig. 4.5 The proposed SDAE model that was trained to reconstruct biomedical fgures. 

2500, 1000 and 300 hidden neurons, respectively. The encoders of those fve AEs were then 

stacked to form the encoder of the SDAE and their decoders were stacked to form the SDAE 

decoder. The resulting SDAE architecture is shown in Figure 4.5. Each of the fve AEs was 

trained by minimizing the b Binary Cross-Entropy (BCE) loss β between the model output o 

and the target t for N number of input fgure images: 

β = − 
1 

∑ ti log(oi)+(1− ti) log(1− oi) (4.5)
N

Every activation function in the model was followed by a one-dimensional batch normali-

sation layer. Batch normalisation has proven to accelerate the training of neural networks by 

adjusting and scaling its layer activations [85]. 

Fine-tuning 

Fine-tuning the SDAE model involved an initial unsupervised stage followed by a supervised 

one. The unsupervised fne-tuning was aimed at getting the different layers that were trained 

separately to work in cohesion. During which, the fattened fgure images were set as inputs 

and targets for the model, while trying to reduce the same BCE loss β described in Equation 
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Fig. 4.6 The architecture of the model during the supervised fne-tuning stage. 

4.5. The enormous class imbalance, described earlier in Section 4.3, was then tackled through 

detaching the decoder from the SDAE and replacing it with two fully-connected layers, with 

the second of the two having two output neurons. A different copy of the model was then 

trained to classify each class against the rest (Figure 4.6). The same one-vs-all training was 

done for all 30 classes from the ImageCLEF dataset. The classifcation fne-tuning was 

carried out by minimising the following cost function C, which combines the negative log 

likelihood criterion with a log Softmax function: 

N � N � 
C = ∑ wc pi + log(∑ ep j) (4.6) 

i=1 j=1 

where N is the total number of training samples, wc is the weight for class c, c is the target 

class for input sample i and p is the probability of sample j belonging to class c. Weights 

were automatically assigned to each class depending on the class it is classifed against to 

further enhance the model’s ability to identify smaller classes. Finally, the last two layers 

were detached from the SDAE’s encoder and the outputs from the 300 code neurons were 

used for classifcation as described later in Section 4.5. 
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4.5 Hierarchical Support Vector Machine 

At a reasonable computational cost, SVMs can be ftted to compute the probabilities of each 

sample xi belonging to any of the classes in the dataset. Thus, given k number of classes, the 

goal is to predict: 

pi = P(y = i|x), i = 1, . . . ,k (4.7) 

This is done following the estimation of the one-against-one pairwise class probabilities: 

ri j ≈ P(y = i | y = i or j,x) (4.8) 

Chang and Lin [45], in their LIBSVM implementation improved upon the work done by Lin 

et al. [86] to estimate this probability. More specifcally, if f (x) is the decision function that 

calculates the signed distance between x and the separation hyperplane, then it is assumed 

that: 
1 

ri j ≈ (4.9)
1+(eA f (x)+B) 

while A and B are estimated using the negative log likelihood (NLL) calculated from the 

labels and values of the training data. Also, as per the LIBSVM implementation a fve-fold 

cross-validation is carried out to obtain the decision values before minimising the NLL. 

Cross-validation is used to avoid overftting the model on the training values. 

Following the calculation of ri j for every pair of classes, a new objective is arrived at by 

Chan and Lin [45] using the second approach that is put forward by Wu et al. [87]: 

k k1
∑∑ (r jipi− ri jp j)

2min (4.10)
2p i=1 j: j≠ i 

where: 
k 

pi ≥ 0,∀i, ∑ pi = 1 (4.11) 
i=1 

This was reformulated by Chang and Lin [45] to: 

1 T Qpmin p (4.12)
p 2
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where:  
∑s:s≠i rsi 

2 i f i = j
Qi j = (4.13)−ri jr ji i f i ̸ j= 

Chang and Lin [45] then uses the Lagrange multiplier β from the constraint ∑k
i=1 pi = 1 

to establish the following:       
Q 1 p 0   .  =   (4.14) 
1T 0 β 1 

Rather than going for a direct solution for Equation 4.14, Wu et al. devised an iterative 

method: 

Algorithm 1: SVM probability estimates 

Initialise p where pi ≥ 0, ∀i and ∑k
i=1 pi = 1 

while Equation 4.14 is not satisfed do 
t ← 1 
while t < k do � � 

1pt ← pt + Qtt 
− (Qp)t + pT Qp 

norm(p) 
t ← t + 1 

end 
end 
return p 

The features extracted using the fne-tuned encoder from the SDAE model (Section 4.4.1) 

are used as training data to ft an ensemble of one-vs-all SVMs to output class probabilities 

[88]. Firstly, 30 SVMs were ftted, each tasked with one of the classifcation of one of the 

classes against the rest. Following that, and taking advantage of the hierarchical structure 

of the taxonomy (Table 4.1), a higher level ensemble of SVMs was ftted using encoders 

fne-tuned on the classifcation of those classes. This approach was aimed at dealing with 

the class imbalance, where the combined number of classes from the Diagnostic Images (D) 

parent class would potentially have a closer number of samples to the Generic Biomedical 

Illustrations class (G). The two-tier hierarchical structure of SVMs was then put to work 

together, where the class of an input image is determined by the maximum product of 

probabilities: 
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� � 
max (p1× p2×·· ·× pl) × pn (4.15)

1≤n≤m 

m being the total number of leaf classes in the dataset, and l is the number of parent classes 

that class n belongs to. 

4.6 Deep Convolutional Neural Networks 

DCNN models have been widely used in computer vision for applications that range from 

object detection to medical diagnosis. The power of convolutional neural networks comes 

from their ability to retain spatial features, making them very suitable for such tasks. This 

is done through various stacks of flter kernels that are able to learn the most salient visual 

features. This is an important feature for the case of biomedical fgure classifcation, where 

the various types of shapes may defne a specifc class of fgures. For instance, it could be 

easy to identify charts, if the lines of the axes are identifed. 

Architecture 

The ResNet architectures were chosen for this task as they have proven their ability on many 

classifcation problems in computer vision, which was also part of the tests in Chapter 3. The 

power of the residual networks originates from their skip layers, which were described with 

greater detail in Section 3.4.2. The feature extraction part of the ResNet model is made out 

of four main blocks. The number of blocks does not grow with the growth of the model, but 

the depth of each of the blocks increases. 

More specifcally, the ResNet-18 and ResNet-34 variations were chosen and their fnal 

layers were altered to accommodate the 2 class and 30 class problems respectively. It was 

deemed that the Resnet-18 is more than suffcient to carry out the binary classifcation between 

the Generic Biomedical Illustrations and the Diagnostic images parent classes. However, the 

ResNet-18 does not have the capacity to learn the features necessary to differentiate between 

all 30 classes of the ImageCLEF dataset. Therefore, the ResNet-34 mode was used for the 

classifcation of the 30 child classes. 



61 4.6 Deep Convolutional Neural Networks 

Training 

The frst step to tackle the class imbalance was to calculate weights w for each class from 

the training set [89]. Thus during training, the aim was to minimise the following weighted 

cross-entropy (CE) loss for the output vector o: 

� � �� 
o[ j]loss(o,c) = w[c] − o[c]+ log ∑e (4.16) 

j 

where c is the target class. Stochastic gradient descent was used during training with a 

momentum set to 0.9 and a weight decay of 5× 10−4. The initial learning rate was set to 0.1 

with milestones set at iterations 150, 250 and 350. At each milestone iteration i, the learning 

rate was changed to lri = lr(i−1) × 0.1. 

The second attempt to strike a balance between the classes in each batch, a stratifed 

sampler was used. The sampler combines random permutation generation with a stratifed 

k-folds generator to ensure the variance between the batches during training. 

Different data augmentation techniques were used to prevent overftting on the training 

data and to provide an infated number of samples of each class for the model, specifcally 

aimed towards the smaller classes. The input training images were augmented using a 

combination of the following techniques: random horizontal fip, random rotation and 

random crop. When the random crop was not used, bilinear interpolation was used to resize 

the image down to the pre-defned input size. Resizing is the only function that was used for 

the input images of both the training and testing sets. 

Gradual Class Separation 

Our classifcation method proposed in Chapter 3, GCS, is put for another test in this chapter 

with a hugely unbalanced dataset. The GCS method is used to separate the features in the 

latent feature space, using the ResNet-18 and ResNet-34 architectures that were also trained 

using the CE criterion. 

Minor alterations to the ResNet architectures were applied when training using GCS 

(Similar to changes done in Section 3.4.2); starting with changing the number of neurons 

in the output layers from the number of classes to the number of features to be extracted. 



62 Figure Classifcation 

Consistent with the number of features in the penultimate layer of the ResNet architecture, 

500 features were used while training the GCS method. This number was not changed from 

Chapter 3, where the ResNet-18 was used to classify the CIFAR-10 and CIFAR-100. The 

fact that 500 features were enough to distinguish between the 100 classes in the CIFAR-100 

dataset indicates that the same number of features should be able to distinguish between the 

30 classes of biomedical fgures. Secondly, the Softmax functions are replaced with ReLU 

ones to allow for more freedom in the feature space. Finally, batch normalisation was applied 

at the output of the fnal layer to regularise the outputs. While training using GCS, the aim 

was to minimise the following loss function: 

′′ L(o,c) = (o− m )2 (4.17)c

where m ′′ is the target mean for class c that is calculated through Equation 3.12. The error is c 

propagated back through the model at every batch, where the average of the batch losses. The 

regularisation parameter λ is initially set to 1.01 and then increased exponentially, setting 

the value of λ at iteration i to: 

λi = λ i− 1 (4.18) 

While training with GCS, ADADELTA [79] was used for optimisation with an initial 

learning rate of 0.999. The stratifed sampler was also used in this case. However, unlike 

training for CIFAR-10 in Chapter 3, a single SVM was used instead of ensemble and the 

ftting of this SVM was done following the extraction of the features for the entire training 

set. This technique of ftting ensured that the SVM will get at least one sample from each 

class. The SVM used a second-degree polynomial kernel with a variable cost calculated 

through Equation 3.25. The kernel coeffcient γ was set to 0.001, with a maximum number 

of iterations set to 106. 
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4.7 Evaluation Metrics 

Accuracy is a simple metric that can be easily calculated to understand the performance of 

the classifcation model: 

TPi+TNi
∑

C 
i=1 TPi+TNi+FPi+TNiAverage Accuracy = (4.19)

C 

where: 

• TPi is the total number of samples from class i correctly classifed as class i. 

• TNi is the total number of samples from other classes correctly classifed as not 

belonging to class i. 

• FPi is the total number of samples from other classes falsely classifed as class i. 

• FNi is the total number of samples from class i falsely classifed as not belonging to 

class i. 

However, with highly imbalanced classes, the accuracy metric can become misleading 

because it does not accurately refect the performance on the minority classes. On the other 

hand, the harmonic mean of precision and recall provides a better insight into the performance 

on such unbalanced classifcation problems, and is called F1 score. Therefore, the results 

shown in this chapter are focused more on the F1 score, but still show the overall classifcation 

accuracy. 

F̄1 = 2× 
1 

(4.20) 
P
1
¯ + R 

1 
¯

where: 
∑

C TPi 
i=1 TPi+FPiP̄ = (4.21)

C 

and: 
TPi

∑
C 
i=1 TPi+FNiR̄ = (4.22)

C 
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4.8 Results 

All the models were tested using the same test set provided as part of the ImageCLEF dataset 

[82] without any alteration. In a similar manner to training, all images were resized to 

200 × 200 before being input into any of the models, except for the case of the SDAE. Due 

to computational constraints at the time, it was infeasible to train the SDAE model with an 

input image larger than 100 × 100. 

During training, all deep models were validated on unseen data every 10 iterations. 

ResNet-18 was tested on the two upper classes of the biomedical fgure hierarchy, the 

Generic Biomedical Illustrations (G) and Diagnostic Images (D), for which results are shown 

in Table 4.2. Following that the testing was done on all 30 classes of the dataset, for which 

Table 4.3 summarises the results for the tested models, with a focus on the F1 score (Equation 

4.20). The results shown are the best performances captured from the model after being 

assessed using the same evaluation metrics described in Section 4.7. 

• E-SVM. An ensemble of one-vs-all SVMs were ftted using the features extracted 

using the encoder from the SDAE. Features extracted through the same encoder were 

then used to extract features from the test samples and then classifed using the SVMs 

ensemble. 

• FE-SVM. An ensemble of SVMs was ftted and then tested using the features extracted 

from the fne-tuned encoder. 

• HFE-SVM. A hierarchical ensemble of SVMs was ftted and then tested using the 

features extracted using the same fne-tuned encoder. The class of each test sample 

was determined using Equation 4.15. 

• ResNet34. After passing the fgure images through the model, the class of the images 

was determined by the neuron returning the highest probability from the Soft-max 

layer. 

• ResNet34-GCS. After passing the fgure images through the model trained using GCS, 

the class of the images was determined by a two-layer classifcation network that is 

trained independently using the cross-entropy criterion while taking the output features 

from the deep model as inputs. 
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Table 4.2 Summary of results for binary classifcation between Diagnostic Images (D) and 
Generic Biomedical Illustrations (G). 

Class # Samples 
Train Test ResNet-18 ResNet-18-GCS 

G 2775 1494 0.96 0.97 
D 4001 2672 0.92 0.95 

F̄1 0.94 0.96 
Overall accuracy (%) 94.65 96.35 

4.9 Discussion 

4.9.1 Stacked Deep Autoencoder Features 

It is clear from Table 4.3 that the ensemble of SVMs (E-SVM) was not able to classify any 

further than three largest classes (GFIG, DMLI and DMFL), even when using weights so the 

SVM would incur higher cost for misclassifying the smaller classes. The confusion matrix in 

Figure 4.7 reveals more about this, where the E-SVM is simply opting to classify all the test 

samples as GFIG, DMLI and DMFL classes, except for a single test sample that was falsely 

classifed as DRMR. The imbalance in this dataset is also mixed with a large output space, 

which makes this a unique problem. However, the model was still able to achieve 62.65% 

overall average accuracy, but the clearer picture is given by the F1 score, where the model 

was only able to achieve 0.07. 

Introducing a classifcation fne-tuning stage (FE-SVM) on top of the unsupervised fne-

tuning, managed to marginally improve the accuracy of some of the other classes. This did 

not just raise the overall accuracy to 63.62%, but also increased the F1 score to 0.12. The 

one-vs-all classifcation fne-tuning stage for different copies of the encoder adds minimal 

computational overhead to the training process, because the combined unsupervised training 

contributes to the bulk of the learning. From Figure 4.8, it is apparent that the SVM ensemble 

started making predictions beyond the three largest classes (GFIG, DMLI and DMFL). 

Through this fne-tuning stage, each of the feature encoders was able to learn features capable 

of identifying a specifc class against the rest, which fts in with the one-vs-all framework of 

the SVM. However, this fne-tuning stage was still not suffcient for the SVM ensemble to 

raise the performance on smaller classes, particularly GGEL and GGEN when considering 

that each of them has more than a 100 training samples. 

http:achieve0.07


66 Figure Classifcation 

Table 4.3 Detailed results (F1 scores) on the different classes of the ImageCLEF 2016 test 
set, where the performance of the different proposed approaches is compared. 

Class # Samples 
Train Test E-SVM FE-SVM HFE-SVM ResNet34 ResNet34 

-GCS 
D3DR 201 96 0.00 0.15 0.11 0.53 0.63 
DMFL 906 284 0.47 0.65 0.62 0.83 0.82 
DMTR 300 96 0.00 0.06 0.06 0.49 0.54 
DRCO 33 17 0.00 0.00 0.00 0.00 0.06 
DRMR 139 144 0.00 0.44 0.39 0.73 0.75 
DRUS 26 129 0.00 0.00 0.00 0.00 0.85 
DSEC 10 8 0.00 0.00 0.00 0.00 0.00 
DSEM 5 6 0.00 0.00 0.00 0.00 0.00 
DVEN 16 8 0.00 0.00 0.00 0.00 0.23 
GCHE 61 14 0.00 0.00 0.00 0.73 0.80 
GFLO 20 31 0.00 0.00 0.00 0.00 0.23 
GGEN 179 150 0.00 0.00 0.05 0.42 0.40 
GMAT 15 3 0.00 0.00 0.00 0.00 0.00 
GPLI 1 2 0.00 0.00 0.00 0.00 0.00 
GSYS 91 75 0.00 0.00 0.00 0.33 0.37 
DMEL 208 88 0.00 0.19 0.2 0.52 0.48 
DMLI 696 405 0.57 0.52 0.55 0.88 0.82 
DRAN 17 76 0.00 0.00 0.00 0.00 0.56 
DRCT 61 71 0.00 0.26 0.29 0.00 0.73 
DRPE 14 15 0.00 0.00 0.00 0.00 0.00 
DRXR 51 18 0.00 0.00 0.00 0.22 0.19 
DSEE 8 3 0.00 0.00 0.00 0.00 0.00 
DVDM 29 9 0.00 0.00 0.00 0.00 0.17 
DVOR 55 21 0.00 0.00 0.00 0.54 0.26 
GFIG 2964 2085 0.86 0.87 0.87 0.94 0.94 
GGEL 344 224 0.00 0.00 0.21 0.76 0.70 
GHDR 136 49 0.00 0.09 0.13 0.14 0.32 
GNCP 88 20 0.00 0.05 0.00 0.00 0.38 
GSCR 33 6 0.00 0.00 0.00 0.00 0.35 
GTAB 79 13 0.00 0.00 0.00 0.19 0.27 

F̄1 score 0.07 0.12 0.13 0.27 0.40 
Overall accuracy (%) 62.65 63.61 64.30 78.27 78.99 
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Taking advantage of the hierarchical structure of the biomedical fgure taxonomy, the 

hierarchical ensemble of SVMs (HFE-SVM) was able to raise the overall accuracy further, 

while improving on the accuracy of the smaller classes. The effect of the hierarchical structure 

is evident in Table 4.3, specifcally with GGEL and GGEN fgures. In combination, the 

different fne-tuning stages and the hierarchical SVM ensemble were able to almost double 

the F1 score while also improving on the overall accuracy. The HFE-SVM was able to 

improve on the accuracy of classes with over 100 training samples, while it struggled to 

improve upon the accuracy of smaller classes. The only class that did not follow the same 

pattern was the computerized tomography class (DRCT), which we hypothesize is due to the 

very similar visual features shared by the different images in both the training and testing 

sets (Figure 4.9). 

Clearly, the training procedure for this hierarchical classifer is a complex one, which in-

cludes many fne-tuning stages. However, the initial unsupervised fne-tuning stage simplifes 

the one-vs-all hierarchical structure. 

Fig. 4.7 The confusion matrix for the predictions made by the ensemble of SVMs (E-SVM) 
ftted using features extracted from the encoder prior to the fne-tuning stage. 
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Fig. 4.8 The confusion matrix for the predictions made by the ensemble of SVMs (FE-SVM) 
ftted using features extracted from the fne-tuned encoder. 

4.9.2 Deep Convolutional Neural Networks 

A high accuracy along with a matching F̄1 score was achieved on the classifcation task 

between Diagnostic images (D) and Generic Biomedical Illustrations (G), as shown in 

Table 4.2. Those results also show the GCS training method proposed earlier in Chapter 

3 surpassing the performance achieved by the same ResNet-18 architecture trained using 

CE with a considerable margin. Also, in a similar manner to the CIFAR-10 classifcation in 

Chapter 3, GCS was considerably faster to achieve higher accuracies. The model was able to 

reach an accuracy over 95% in under 200 iteration, whereas the CE criterion was only able 

to pass the 94% accuracy mark after 700 iterations. 

Obviously, the ResNet-18 architecture used for binary classifcation (between Generic 

and Diagnostic fgures) was not suffcient to perform the classifcation on the full taxonomy. 

Thus, ResNet-34 was chosen to perform the classifcation, while also comparing between 

models trained using CE and ones that are trained using GCS. This comparison is shown in 

the two rightmost columns of Table 4.3. A substantial difference is immediately noticeable 

between the results from the SDAE and the results from the ResNet-34 architecture. This is 
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Fig. 4.9 The confusion matrix for the predictions made by the hierarchical ensemble of SVMs 
(HFE-SVM) using features extracted through the fne-tuned encoder. 

due to the difference in the number of layers between the models, in addition to the effect of 

the spatial representations learnt by the convolutional flters. The convolutional layers also 

allowed to extend the input size of the fgures from 100 × 100 to 200 × 200, as seen in Figure 

4.1. Aside from the fact that 200 × 200 doubled the numbered of inputs, it is also closer to 

the average image dimensions and thus could retain more features from the original images. 

Many classes previously unnoticed by the ensembles of SVMs trained using encoders’ 

features were recognised with high accuracies, such as: GCHE, GSYS, DRXR and GTAB. 

Surprisingly, the hierarchical SVM was able to surpass the residual model, trained using 

CE, in identifying the computerised tomography class (DRCT). FE-SVM was also able to 

identify one of the test samples from the class for non-clinical photos (GNCP), where the 

different wrong attempts are also clear in the confusion matrix from Figure 4.8. 

Following a similar pattern to previous experiments in Chapter 3, the model trained 

using GCS method was able to outperform the CE trained model, in terms of classifcation 

accuracy and effciency. At the end of the training process for both models, trained using 

GCS and CE, GCS was able to achieve an overall accuracy of 78.99%, while the CE model 

performed slightly lower with 78.72%. ResNet-34-GCS was able to achieve this performance 
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much faster, where the ResNet-34-GCS was able to exceed 70% accuracy in 310 iterations 

compared to the 830 iterations it took for the CE ResNet-34. On individual classes, ResNet-

34-GCS was able to surpass the ResNet-34-CE on most individual class metrics, except 

for: DMFL, GGEN, DMEL, DRXR, DVOR and GGEL. The ResNet-34-CE was able to 

marginally surpass the ResNet-34-GCS on the classifcation of those six classes with mid-

range number of training samples. However, the standard ResNet-34 model was still unable 

to classify any samples of classes with lower than 50 training samples, which make up half of 

the total number of classes in the taxonomy (DRCO, DRUS, DSEC, DSEM, DVEN, GFLO, 

GMAT, GPLI, DRAN, DRCT, DRPE, DSEE, DVDM, GNCP and GSCR). ResNet-34-GCS 

still struggled with classes that have 15 or lower training samples, which is obviously due to 

the insuffcient number of training examples to learn meaningful features to distinguish those 

classes (Figure 4.11). 

The results achieved by the GCS are promising and show the potential to train deeper 

models for the biomedical fgure classifcation task, similarly to what was done in [25, 26]. 

With GCS however, the training of such models can be done in a fraction of the time that it 

takes to train using SGD and CE criterion. 

4.9.3 Class Imbalance 

As anticipated, it is clear that class GFIG was a major cause of problems in the classifcation, 

especially with E-SVM, FE-SVM and HFE-SVM. However, given the depth of the ResNet-34 

models, more representations could be learnt to differentiate between the large number of 

classes (Figures 4.10 and 4.11). It is also interesting to see that most of the confusion is 

happening between the GFIG class and other classes from the group of generic biomedical 

illustrations (G). This is mostly due to the more unique visual features differentiating the 

images of diagnostic images. As for the generic fgures, as the name suggests, the images are 

of a wider variety and thus a classifcation model will go for the largest class aiming for a 

lower penalty. 

The experiments on this dataset have proved that GCS is capable of dealing with class 

imbalance without the need to apply any weighting for the different classes. The GCS 

was also able of substantially improving upon the F̄1 score, which reached 0.4 when using 

GCS compared to 0.27 when using CE. This is consistent with the LDAs’ resilience to 
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class imbalance [54], which was discussed earlier in Section 2.2.7. This further adds to the 

similarity between GCS and LDAs’ underlying principles of maximising the between-class 

scatter while minimising the within-class scatter. 

Fig. 4.10 The confusion matrix for the predictions made by the Softmax layer of the ResNet-
34 model. 

4.10 Conclusions 

In this chapter, the task of biomedical fgure classifcation was tackled through a variety of 

classifcation techniques. Novel classifcation techniques were proposed, some of which 

making use of the nature of the task at hand. Different approaches were also discussed, 

addressing the specifc challenges with the biomedical fgure classifcation task, such as class 

imbalance. 

Firstly, a stacked deep autoencoder model was trained in an unsupervised greedy layer-

wise manner to automatically extract features from biomedical fgures. Different fne-tuning 

stages for the SDAE were proposed to tackle the imbalance between the classes in the 

dataset. Making use of the SDAE’s encoders’ features, a hierarchical ensemble of SVMs was 

proposed, benefting of the hierarchy in the taxonomy of biomedical fgures. The performance 
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Fig. 4.11 The confusion matrix for the predictions made by the two layer neural network 
ftted using the features extracted through a ResNet-34 model that was trained using our GCS 
method proposed in Chapter 3. 

of this model was compared to its standard counterpart as well as the fne-tuned models, but 

without the hierarchical SVM structure. The hierarchical model showed promising results 

with improvements on the classifcation performance, especially on certain classes that were 

entirely unnoticed by the other two models. 

Deep convolutional models were then introduced, specifcally a deep residual neural 

network (ResNet-18 and ResNet-34), which were frst trained using the cross-entropy crite-

rion. Unsurprisingly, the deep model was able to surpass the performance of the ensembles 

of SVMs ftted using a substantially shallower fully-connected neural network. Following 

that, the gradual class separation method, which was previously proposed in Chapter 3, was 

used to train a similar architecture to that of ResNet-34. The results achieved using the GCS 

trained ResNet-34 further support the results shown in Chapter 3, especially when dealing 

with data class imbalance. 

The resultant classifcation of biomedical fgures can be put towards an indexing engine, 

where the class of the fgure would be part of the fgure index. As mentioned in Chapter 

1, this is the frst step towards indexing using fgures’ visual features. The next step, in 
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Chapter 5, is for the localisation of text within biomedical fgures towards extracting further 

information for fgure indexing. 





Chapter 5 

Text Localisation 

5.1 Introduction 

This chapter delves into another stage from the process to extract information from biomedical 

fgures, and that is to extract the text contained within the fgure images. Extracting text 

from images is not a new task, however, the nature of biomedical images introduces new 

challenges that are discussed in this chapter. The chapter also proposes specifc solutions that 

tackle those challenges, presenting a novel approach to localise the text within biomedical 

fgure images. 

Text localisation is an essential task towards the end-to-end extraction of text from images. 

Approaches to text localisation vary depending on the nature of the images containing the text. 

There exist two main categories of images from which text is extracted, scanned documents 

and natural scene images. However, biomedical fgure images are different as they contain 

both types of images, where some categories of fgures exhibit similar features to natural 

scene images and others exhibit features closer to scanned documents (Figure 5.1). More 

specifcally, categories such as fow charts, tables and forms are closer to scanned documents 

with simpler backgrounds and higher contrast. While other categories, such as magnetic 

resonance, are closer to natural scene images with more complex backgrounds, smaller fonts 

and lower contrast. 

Deep convolutional neural networks (DCNNs) have been widely used for computer vision 

applications, whether it is for classifcation or object detection. Many DCNN architectures 
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have been proposed to detect text from natural scene images and from scanned documents. 

Some DCNN models are dependent on proposal generation methods that elect specifc 

regions from the input image for the DCNN to classify into two classes, one containing text 

and the other not. Proposal generation forms a performance bottleneck for text detection 

models, and therefore, the YOLO (You only look once) model [73] was proposed. The 

YOLO model is based on the idea of a single pass detection, thus saving on the performance 

needed for generating proposals and for the multiple classifcation tasks. In this chapter, a 

similar model is proposed that is also based on the single pass idea. However, to simplify the 

text localisation task and to make for fner detection that is required for the text detection 

task, the localisation task is simplifed into a reconstruction one. 

Dealing with the challenges posed by the nature of biomedical fgures and the text regions 

they contain; specifc training methods were utilised to overcome such challenges. A pre-

training stage for the model was the frst thing to be introduced using a large dataset of 

natural scene images with synthetic text. The second measure to deal with the challenges 

was introducing specifc data augmentation techniques that target the different challenges 

ranging from random rotation to colour inversion. 

The results from the proposed model are thoroughly analysed to determine the model’s 

ability to deal with the different text detection challenges in biomedical fgures. The analysis 

is then used to draw a discussion, aided with the reconstruction samples, while future works 

are identifed. 

5.2 Datasets 

5.2.1 DETEXT Dataset 

Released in 2015, the DETEXT dataset [58] of biomedical fgures was the frst, and still is, 

the only publicly available fgure-text dataset. It was adopted by the ICDAR2017 robust 

reading challenge on the end-to-end extraction of text from biomedical fgures [90]. Collected 

from 288 open-access scholarly articles randomly selected from PubMed Central1, DETEXT 

contains 500 biomedical fgure images encompassing 9,308 text regions. Following the data 

1https://www.ncbi.nlm.nih.gov/pmc/ 

https://www.ncbi.nlm.nih.gov/pmc/
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(a) Magnetic resonance 
biomedical fgure with 
complex background. 

Fig. 5.1 Comparison between types of backgrounds for biomedical fgures. 

split proposed by [58], 100 fgures were allocated for training, 100 for validation and the last 

300 for testing. Each fgure in the dataset is accompanied by a ground truth fle that contains 

the different text regions in the image, with the following details for each text region: 

• The anticipated diffculty of extracting the text from the region, which is based on the 

image quality and the type of text. Each region can be labelled as one or a combination 

of the following: normal, small, blurry, colour, short, complex background, complex 

symbol and specifc text. 

• The bounding box for the text region defned by the coordinates of its four corners. 

• The text-string contained within the text region. 

• A Boolean that is true when the region’s bounding box is oriented (i.e. not horizontal) 

and false otherwise. 

5.2.2 SynthText in the Wild Dataset 

SynthText in the Wild [91] contains 800,000 synthetically generated images, each having a 

number of differently styled words embedded into a set of background images in a manner 

that accounts for the 3-dimensional scene geometry. Due to the substantial size of this dataset, 

it has been used for pre-training deep models towards end-to-end text extraction. Every 

(b) A fow chart fgure with a 
simple white background. 
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image in the dataset has an accompanying ground truth fle that contains the text instances in 

the image, each with its text-string and bounding boxes at both word and character levels. 

5.3 Challenges 

Using the statistics gathered by Yin et al [58] for the different categories from the DETEXT 

dataset, the challenge is clear with only 37.8% of the collected text regions classifed as 

"normal". The remainder 62.2% of the "abnormal" text regions were classifed as one or a 

mix of the following challenges: 

1. Small text size. Due to the limited space available for fgure-text, authors often tend 

to make the font smaller if they need to insert text into a fgure. 26% of the text regions 

from the DETEXT dataset were classifed as small text regions. 

2. Short text. Oftentimes, short text is used in fgures, which is usually a character or two. 

It is mostly used to either split the fgure into subfgures that can be easily mentioned 

in the body of text, or in the axis of charts to represent numerical values. 

3. Complex symbols. Chemical and molecular formulae and abbreviations are not rare 

in biomedical fgures. Complex symbols are occasionally contained within short text 

regions. 

4. Specifc text. This can be either a gene sequence or a linked term. End-to-end 

extraction of gene sequences is especially diffcult due to the variable spacing between 

the different characters and the different colours used in certain cases. 

5. Oriented text. Any text region that is not horizontal is considered to be oriented. Over 

9% of the text regions in the DETEXT dataset are oriented, which are contained within 

53.6% of the collected fgures. The fact that oriented text rarely occurs in a fgure 

without horizontal text regions increases the challenge. 

6. Coloured text. Coloured text is usually used in fgures to try to highlight the text and 

make it visible, especially on complex backgrounds. The association between coloured 

text and complex backgrounds can be clearly noticed in Figure 5.2. 
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Fig. 5.2 The associations between the different categories of text regions within the DETEXT 
dataset. 

7. Complex background. In biomedical images, text is sometimes intertwined with 

images when experimental results or objects are described. 

8. Blurry image. Caused by fle size limitations, compression and fgure mishandling, 

12% of the text regions in the DETEXT dataset are blurry. 

A single text region can have one or more of the above-mentioned challenges at the same 

time. The relationship between the occurrence of the different challenges for the same text 

regions is laid out in Figure 5.2. 

5.4 Proposed Method 

5.4.1 Architecture 

Autoencoder models [31] have been an attractive choice for unsupervised pre-training for 

classifcation. However, the text localisation task does not require any dimensionality reduc-

tion, therefore, a model was developed (see Figure 5.3) that maintains the size of the inputs 
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Fig. 5.3 The proposed model architecture for text localisation. 

throughout. Such architecture decreases the chance of losing features during dimensionality 

reduction. In turn, this simplifes the text detection problem into a reconstruction one, where 

each input image is reconstructed into a single channel image. The reconstructed image 

would simply be an all-black image except for white areas covering predicted regions of text. 

The proposed model maintains the input image size through the layers by following 

a few strategies. Firstly, padding was used for each convolutional layer starting with a 

padding of 5, and then reducing along with the flter size towards the output layer, where it 

fnally becomes 1. Secondly, pooling layers were omitted from our architecture, because as 

stated, our goal is to maintain the dimensionality of the data through the model. The model 

employs eight convolutional blocks, each containing a convolutional layer proceeded by a 

Rectifed Linear Unit (ReLU, Equation 5.1) and a 2-dimensional batch normalisation layer 

[85]. The model’s eight convolutional layers can be broken down into four "twin" layers, as 

every two consecutive layers have exactly the same parameters. Instead of ReLU and batch 

normalisation, the model’s output layer uses a sigmoid activation function to output values 

between 0 and 1, which is the probability of each pixel belonging to a text region [92]. 

ReLU(x) = max(0,x) (5.1) 
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5.4.2 Data Augmentation 

Data augmentation was used to deal with the comparatively small number of biomedical 

fgure images available in the DETEXT dataset. An array A, containing sets of transformation 

functions T , was used to augment input images during the pre-training and fne-tuning 

stages. For each image in any given batch during both training stages, a set of transformation 

functions T was picked at random from A. Once the set T was selected, the transformation 

functions contained within T were applied to the input image in the exact order. The transfor-

mation functions used were: random scaling, colour inverse, random rotation, random crop 

and random sized crop. Following the transformation of input images, some transformations 

required the changes to also be applied to the target, random scaling and random cropping 

are examples of this. 

The transformation functions were especially selected to address specifc challenges 

posed by text localisation from biomedical fgure images (Section 5.3): 

• Random scaling and random sized crop. Random sized crops and random scaling 

of input images were targeted at dealing with the diverse range of text sizes that exists 

in biomedical fgures. 

• Random rotation. By randomly rotating training images, it is possible to deal better 

with the localisation of oriented text regions. 

• Colour inverse. This was aimed at dealing better with the variation of background 

colours and more complex backgrounds. 

5.4.3 Training 

The proposed model was frst trained using the SynthText dataset (Section 5.2.2), which 

contains a very large number of training samples. Considering the nature of the images in this 

dataset, which is closer to natural scene images, the model could learn features that would 

ease the learning on biomedical fgure images. The model was pre-trained for 3 iterations 

through minimising the following pixel level binary cross-entropy loss (C): 

http:dataset.An
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C(o, t) = − 
1 

∑ ti log(oi)+(1− ti) log(1− oi) (5.2)
N

where N is the total number of pixels, oi is the model’s prediction for pixel i and ti is the 

target for that pixel i. Adagrad [93] algorithm was used for optimisation with the initial 

learning rate set to 0.1 and learning rate decay of 10−4. Batch training was used with a batch 

size of 20. 

During training, ground truth images were generated on the fy, in the manner shown 

in Figure 5.4b, using the ground truths provided in the datasets (Figure 5.4a). All training 

images were resized to 200 × 200 using to ft into the input convolutional layer. Bicubic 

interpolation was used for scaling to preserve as much smoothness in the resized image. 

While resizing the input images, the aspect ratio was preserved from the original image 

through using the following combination of resizing and scaling: 

• If both dimensions are larger than 200, each is resized according to the relevant ratio. 

• If one of the dimensions is larger than 200, the larger dimension is resized to 200, 

while the smaller dimension is padded to reach 200. 

• If both dimensions are smaller than 200, both dimensions are padded to 200. 

Following pre-training, the model was fne-tuned using the DETEXT training set for 

5× 104 iterations. In a similar manner to the pre-training stage, the fne-tuning was aimed 

at reducing C from Equation 5.2. Adagrad [93] was also used for this stage, however, and 

considering it is a fne-tuning stage, the learning rate was initialised to 10−3, with a lower 

learning rate decay of 10−7. The same on-the-fy data augmentation techniques were used 

during both stages of the training process, which are described in detail in Section 5.3. 

5.4.4 Image Processing 

During testing, input images are treated differently, where they are not simply resized or 

padded in the same way used for training. Two main strategies are followed for test images: 

• The frst addresses images smaller than a threshold that was set to 600 × 600, which 

were sliced into 200 × 200 sized images. This meant that each input images larger 
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(a) Input image (b) Generated target image (c) Model output 

Fig. 5.4 Training sample from DETEXT dataset. 

than the specifed threshold would be sliced into n = ⌈W ⌉×⌈H
h ⌉ slices, with W andw 

H being the width and height of the input image respectively, while w and h are the 

predefned slice dimensions that were set to 200 × 200. To utilise the overlap area for 

better predictions, the remainder area is distributed over the n slices to allow for a vote 

between the slice predictions. 

• The second strategy was set to deal with images that are larger than the 600 × 600 

threshold. In this case, and in a similar manner to the pre-processing done on the 

training images, a combination of bicubic interpolation and padding were employed 

to get the image dimensions below the threshold. Following this reduction, the frst 

strategy is used to slice the image into n slices and input it into the model. 

The resulting slices of the test image are then batched together and passed through the model 

in a single go. The specifed maximum size of 600 × 600 was chosen to ensure that the test 

batch size cannot exceed 9. Once the test batch is put through the model, the different output 

slices are stitched back using a simple mapping method that keeps track of the location of 

each slice. As for the overlapping areas between the different slices, the values are averaged 

out to gain a more informed decision. 

As the output layer of the proposed model uses a sigmoid layer with outputs between 0 

and 1, the output reconstructed image is a single channel image (Figure 5.4c). Therefore, the 

regions containing values closer to 1 are text regions, while other regions containing lower 

values are text-free. Following that, experiments were carried out to identify a good threshold 

point that can distinguish between text regions and noise. This led us to set a threshold value 
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of 0.3, under which the values are considered noise and above which it is considered to be a 

text region. Using a simple thresholding function, the reconstructed image is transformed 

into a binary image. The next step was to fnd the contours that separate the contrasting black 

and white regions using the method proposed by Suzuki and Abe [94] for border following. 

Finally, a simple noise fltering technique was employed by setting a minimum size for the 

detected text regions to 3× 3. Even though biomedical fgures contain a substantial number 

of text regions that contain only "short" text, which is normally a character or two, those are 

still normally of a size larger than 3 × 3. 

5.5 Evaluation Metrics 

Assessing the text detection task is similar to the assessment of a binary classifcation problem, 

one class being the actual text regions and the other being non-text regions. However, there 

have been different metrics that differ in terms of the defnition of a truly detected text region. 

This is due to the fact that the text detection problem is fuzzier than just a simple true or false, 

where the overlap region between the detected and ground truth regions determines whether 

a text region has been detected or not. Therefore, the Intersection over Union (IoU) metric 

is defned as a ratio between 0 and 1 to determine the percentage at which the detected text 

region, or text regions, overlap with the ground truth text region: 

area(Bp∩ Bgt)IoU = (5.3)
area(Bp∪ Bgt) 

While the precision P and recall R are defned as follows: 

|TP| |TP|
P = , R = (5.4)

|D| |G| 

where G and D are the sets of ground truth and detected text regions, respectively. As for the 

defnition of TP, that is were different approaches have been taken. In this chapter two main 

performance measures were adopted to assess the performance of the various models on the 

DETEXT test set: 

• The ICDAR 2003 [95] performance measure, which was used to evaluate the differ-

ent methods submitted to the International Conference on Document Analysis and 
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Recognition (ICDAR) 2003. This metric matches each text region from one of the two 

sets with its best match from the other set, giving a different defnition for TP between 

precision P and recall R: 

|G|

i=1 (5.5)
|D|

∑

∑ 

TPP(G,D) = 

TPR(G,D) = 

BestMatchG(Gi,D) 

BestMatchD(Di,G) 
i=1 

2× Area(Gi∩ Dj)BestMatchG(Gi,D) = max 
j=1...|D| Area(Gi)+ Area(Dj) 

(5.6)
2× Area(Di∩ Gj)BestMatchG(Di,G) = max 

j=1...|G| Area(Di)+ Area(Gj) 

In the ICDAR 2003 metric, only one-to-one matches were considered in the BestMatch 

functions, which might disadvantage some methods that are capable of making a more 

precise predication. For instance, a ground truth text region could contain an entire 

sentence, but the detection method was able to generate more precise text regions that 

would surround each word in the sentence. 

• DetEval [96] on the other hand, considers not only one-to-one matches but also 

one-to-many (splits) and many-to-one (merges) matches. 

TPP(G,D, tp) = ∑MatchD(Di,G, tp) 
i (5.7) 

TPR(G,D, tr) = ∑MatchG(Gi,D, tr) 
i 
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0, if Gi does not match any text region from D 

MatchG(Gi,D, tr) = 1, if Gi matches a single text region from D 

fsc(k), if Gi matches with k number of text regions from D 
(5.8) 

0, if Di does not match any text region from G 
   

MatchD(Di,G, tp) = 1, if Di matches a single text region from G 

fsc(k), if Di matches with k number of text regions from G 
(5.9) 

fsc(k) being a parameter function that controls the punishment for splits and merges. If 

it is set to 1, no punishment is applied, and the lower the value the more the punishment. 

The DetEval results in this chapter have all been assessed with fsc(k) = 0.8. 

• COCO [86] This evaluation metric is borrowed from object detection and is used in 

this chapter to evaluate the performance of the proposed text localisation methods. The 

COCO evaluation metric is closer to the ICDAR one, where only the best matched 

region is considered to be the correct one. However, the COCO metric takes the average 

measures over a range of IoU thresholds. In this work, the average performance was 

taken over two IoU thresholds {0.5,0.8}, which provides a middle ground between 

the 0.5 and 0.8 thresholds. 

Using the above-mentioned metrics, a better insight can be acquired by comparing the 

three performance measures. Particularly because the DetEval metric considers splits and 

merges, while the other two measures do not, it is possible to get an idea about the degree 

of splits and merges produced by the predictor. Unfortunately, even though the COCO 

evaluation API supports the evaluation of oriented text regions, due to the ground truths of 

the DETEXT dataset, an accurate assessment of this prediction was not possible (more details 

in Section 5.7.3). 
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Table 5.1 Overall results achieved by the proposed model on the DETEXT test set [92]. 

Metric Recall Precision F-measure 
COCO 0.84 0.52 0.64 

ICDAR2003 0.8 0.57 0.66 
DetEval 0.68 0.48 0.56 

5.6 Results 

Using the test set from DETEXT, this section captures the performance of the proposed 

text localisation model. The model achieves an overall performance of 84% recall and 52% 

precision when assessed using the COCO performance measure. Table 5.1 shows the recall, 

precision and their harmonic mean (F-measure) when the model’s output was evaluated using 

the three main metrics discussed in Section 5.5. The fact that evaluation metrics based on 

best match regions (ICDAR and COCO) show a higher performance than DetEval, implies 

that the proposed model is not generating many splits and merges that should be punished 

less by DetEval’s parameter function fsc(k). 

This section also breaks down the performance measure on the different challenge-

categories discussed in Section 5.3. After acquiring the overall recall and precision for the 

model using the three different performance metrics, the recall for each challenge-category 

was calculated. This was possible only for recall and not for precision, because unlike 

classifcation or object detection tasks that include the prediction of the object class, the 

model was not classifying the type of text region. However, it is benefcial to calculate the 

recall for each challenge-category to understand the strengths and weaknesses of the model. 

In this case the classes specifc recall (Rc) would be: 

|TPc|Rc = (5.10)
|Gc| 

where TPc is the set of text regions that were correctly detected from the challenge-category 

c, and Gc is the set of ground truth text regions from the c challenge-category. Calculating 

the class specifc precision on the other hand would not be possible, because the set Dc 

of text regions detected as the challenge-category c does not exist, as the model is not 

classifying the text regions. Table 5.2 shows the recall for each challenge-category c from the 

DETEXT test set. Following that, Table 5.3 shows the recall for the different combinations 
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Table 5.2 Performance breakdown on the different text regions categories from the DETEXT 
dataset. 

Category # Regions 
Training Testing 

# Figures 
Training Testing Recall 

Normal 1328 2191 159 256 0.87 
Small 1186 1233 73 78 0.92 
Blurry 646 472 29 36 0.65 
Colour 63 230 10 29 0.84 
Short 1744 2610 144 235 0.9 

Complex Background 396 294 39 47 0.8 
Complex Symbol 132 128 38 42 0.78 

Specifc Text 18 56 7 7 0.84 

of challenge categories from the test set. When calculating the recall for the combination 

challenge-categories, each unique set of challenge-categories is treated as a single category c 

and the recall is calculated using Equation 5.10. 

5.7 Discussion 

5.7.1 Strengths 

As shown in Table 5.2, the proposed model was able to achieve state-of-the-art recall rates 

on the different types of challenges. This proves the model’s ability in dealing with the 

challenges posed by the nature of text regions in biomedical fgures. To focus on those 

challenges, the model did not have to compromise on the recall for the normal text regions, 

where the model achieved a recall of 0.87. 

The biggest two challenges faced when detecting text in biomedical fgures are small 

and short text regions. Transforming the localisation problem into a reconstruction one, 

which operates on pixel level, allows for better detection of those types of text regions 

as demonstrated by the results in Table 5.2. Other models such as YOLO [73] and the 

different variations of the Region-based Convolutional Network (R-CNN) model [97, 98] 

try to classify images at a grid level, which is more suitable for object detection with larger 

objects. 

http:recallof0.87
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Table 5.3 Performance breakdown on the different combined text region categories from the 
DETEXT dataset. 

Category # Regions # Figures Recall 
Small and short 1786 126 0.85 
Small and blurry 858 47 0.83 
Small and colour 28 7 1.0 
Small and complex background 106 13 0.33 
Small and complex symbol 19 9 0.00 
Small, colour and complex background 15 2 0.86 
Small, blurry and short 485 33 0.65 
Small, short and complex background 47 8 1.0 
Small, colour and short 10 4 0.89 
Small, blurry and complex symbol 7 5 1.0 
Small, blurry and complex background 43 4 0.17 
Blurry and short 603 44 0.9 
Short and complex background 279 48 0.5 
Short and colour 96 22 0.75 
Short and complex symbol 71 18 0.77 
Colour and complex symbol 2 1 1.0 
Colour and specifc text 35 2 0.11 
Colour and complex background 81 16 0.89 
Colour, short and complex background 24 9 0.5 
Complex background and specifc text 3 2 0.0 
Complex background and complex symbol 23 9 1.0 
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Through pre-training and data augmentation, the model was able to achieve high recall 

on text regions with complex backgrounds and those with coloured text. Considering the fact 

that the training data only had 52 coloured text regions, the SythText in the wild dataset and 

the colour inverse function that was implemented were able to introduce suffcient variability 

for the model to cope with the test data. The pre-training stage was also able to enhance the 

model’s ability to deal with complex backgrounds, where the text in the SynthText dataset 

was generated over complex images. 

5.7.2 Noise 

Figure 5.6 shows sample outputs of the different challenge-categories. It is clear from Figure 

5.6c that the model was struggling with blurry text, which is also clear from the results in 

Table 5.2. This was likely due to the lack of blurry text in the pre-training stage, where 

the synthetically generated texts are all quite clear. In the future, a function that introduces 

blurry text to the image, or perhaps blurs the entire image, could enhance the performance 

on this category. Looking at the same Figure 5.6c, some noise is visible in the place of some 

portions of the circles from the original fgure. Such noise is also visible in place of some of 

the dashes in Figure 5.6a. This noise was mostly caused by shapes similar to text characters 

such as dashes (Figure 5.6a), circles and rectangles (Figure 5.7). Circles are particularity 

challenging because of their visual resemblance to the number zero "0" and to the letter "O". 

Making this a bigger challenge, the occurrence of such shapes is limited in the training data 

and does not exist in the pre-training dataset. 

Complex symbols posed a signifcant challenge for the model, where the model achieved 

the second lowest recall. This was particularly challenging when the complex symbols were 

also in small font, making the recall for small text regions containing complex symbols 0 

(Table 5.3). 

Even though the model was able to achieve a recall of 0.84 on text regions with specifc 

text, it performed poorly when specifc text was coloured or over a complex background. 

This is because the model’s ability to deal with coloured and complex backgrounds was 

mostly gained from the pre-training stage, where the SynthText dataset did not contain any 

specifc text. 
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Table 5.4 Performance comparison between horizontal and oriented text regions from the 
DETEXT dataset. 

Category # Regions # Figures Recall 
Horizontal 8461 492 0.87 
Oriented 847 268 0.66 

5.7.3 Oriented Text Regions 

In Table 5.4, the performance of the proposed model is compared between horizontal and 

oriented text regions. The model showed a better recall on horizontal text regions, which is 

the more represented class in this case. As mentioned earlier in Section 5.3, oriented text 

regions account for over 9% of the total text regions in the DeTEXT dataset. Therefore, 

random rotation was one of the data augmentation techniques that was implemented to 

counter the effect of this imbalance. Surprisingly, the random rotations and the pre-training 

using the synthetic dataset was not suffcient to make the model identify oriented texts as 

well as horizontal ones. When comparing this result with the performance of the model on 

the different categories of text regions in Table 5.2, it is apparent that model’s performance is 

close to that for blurry text regions. 

Figure 5.5 helps to explain the comparably low performance of the model on oriented 

text regions, especially when looking at the ground truth in Figure 5.5c. It becomes clear 

that the issue was with the dataset ground truths that depend on four points to defne a text 

region. From Figure 5.5b, more noise is visible surrounding the oriented text regions, which 

is caused by the low confdence of the model in those areas being text regions. 

This caused by a confict between the training on the SynthText in the Wild dataset and 

that done using the DETEXT dataset. Using the ground truths from the SynthText in the 

Wild dataset, the model was able to learn to detect oriented texts. However, in the next 

training stage using the DETEXT dataset, this skill was overridden. This issue also explains 

more about the overall low precision achieved by the model, where the oriented text regions 

detected by our proposed model are counted as false positives. 
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(a) Original (b) Reconstruction (c) Ground truth 

Fig. 5.5 A fgure containing oriented text regions. 

5.8 Conclusions 

Localising text from biomedical fgures images was addressed in this chapter, where a novel 

deep convolutional neural network was proposed. The deep model was designed and trained 

to resolve some of the specifc challenges that are faced when localising text from biomedical 

fgures. The novel architecture allowed for the simplifcation of the text extraction problem 

into a reconstruction one, where the output of the model is a black image with white regions 

where text is predicted to be. The chapter then discussed a pre-training stage for the model on 

a huge synthetic dataset of natural scene images. Different data augmentation techniques are 

then introduced to improve the prediction on specifc categories of text regions. The chapter 

then delves into the results and in-depth analysis of the results achieved by the model, along 

with the strengths and weaknesses. 

The outputs of the model proposed in this chapter would be used towards the end-to-end 

extraction of text not only from biomedical fgures, but other contexts as well. Additionally, 

the reconstructed images could potentially be put as another feature towards the classifcation 

of biomedical fgures, adding upon the work done in Chapter 4. Such feature could improve 

upon the classifcation performance, which would make the method proposed in this chapter 

a method for supervised representation learning. Furthermore, the text that could be easily 

extracted using an off-the-shelf OCR tool, such as the work done by Ma et al. [19], could be 

used as further indexing terms for fgures beyond the fgure class from Chapter 4. Such text 

could also be used to classify biomedical fgures as an addition to visual features extracted 

using methods developed in Chapter 4. 
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(a) Normal text (b) Short text 

(c) Blurry text 

(d) Colour text 

(e) Small text 

Fig. 5.6 Examples of fgures containing the main text localisation challenges. 
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(a) Input fgures (b) Output reconstructions 

Fig. 5.7 An example of chart plots with high impact from patterns similar to text. 



Chapter 6 

Conclusions 

6.1 Thesis Contributions 

The aim of this thesis is to develop various deep learning methods to pave the way for the 

effective extraction of information from fgures in biomedical literature. It offers original 

approaches that add to the scientifc works within the deep and representation learning areas. 

Through the use of those approaches, the thesis offers new ways of extracting information 

from biomedical fgures, and thus contributing to the biomedical imaging feld in general. 

The contributions of this thesis are distributed across Chapters 3, 4 and 5. Those contri-

butions can be summarised as follows: 

• An effective representation learning training method that is aimed towards classifcation 

tasks in general, and towards the biomedical fgure classifcation task in particular. 

• A stacked deep autoencoder model for the automatic extraction of visual features from 

biomedical fgures. 

• An effective hierarchical ensemble of SVMs for biomedical fgure classifcation. 

• Deep convolutional models for biomedical fgure classifcation, trained using our 

state-of-the-art representation learning method. 

• A novel deep convolutional model to simplify the text localisation task into a recon-

struction one. 
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The thesis offered comprehensive experimentation and discussion in support of the 

above-mentioned contributions. The novelty of this work is also supported through the 

following aspects: a) Identifying a link between the class separation ratio and the SVM 

cost value. b) Devising a multi-stage fne-tuning process to tackle the data class imbalance. 

c) Implementing different pre-training and data augmentation techniques to tackle the text 

localisation challenges in biomedical fgures. The next sections of this chapter will shed light 

on the specifc conclusions of each of the chapters and how they relate to the contributions 

mentioned above. Following from the introduction chapter, which provides the context for 

the thesis, comes the following chapters: 

Chapter 2 – Background and literature review explores the backgrounds and the nec-

essary knowledge behind the main methods that were developed in the later chapter of the 

thesis. The chapter also provides an idea of some of the work that has been previously 

done towards: 1) the classifcation of biomedical fgures 2) text localisation from biomedical 

fgures. 

Chapter 3 – Effective representation learning. From the motivation to automatically 

extract features from biomedical fgures, the chapter sought to establish a method to separate 

classes in a latent feature space, while also reducing the scatter within the classes themselves. 

The chapter details the different aspects of the method as well as the experimental settings 

followed to provide it with a solid ground. The method, called gradual class separation (GCS), 

is tested on two popular benchmark datasets and compared to the ubiquitous classifcation 

training techniques. Meanwhile, a link was established between the separation ratio and 

the SVM cost, which changed the SVM cost from a constant set at the beginning of an 

experiment to a variable that fuctuates depending on the current separation state of the 

classes in the latent feature space. An in-depth analysis was then carried out assessing the 

method’s generalisation ability, accuracy and computational cost. In this chapter, GCS was 

tested on perfectly balanced datasets, CIFAR-10 and CIFAR-100, making the task of the 

next chapter to test the method’s ability in dealing with (class) unbalanced datasets and the 

classifcation of biomedical fgures. 

Chapter 4 – Figure classifcation presents several methods for the classifcation of 

fgures in biomedical literature, which is the frst piece of information that could be extracted 

from fgures’ visual features. However, before delving into the methodology, the chapter 
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starts with an introduction to the dataset and taxonomies that are used, as well as the specifc 

challenges that are faced when it comes to the classifcation of biomedical fgures. Following 

that, the frst method is introduced, which is a stacked deep autoencoder for the automatic 

extraction of features from biomedical fgures [88]. Then, the training of deep residual 

neural networks for biomedical fgure classifcation is described using the proposed method, 

GCS, and compared to the same architecture trained using cross-entropy and stochastic 

gradient descent. The chapter then looks at detailed results from the different models on the 

dataset of biomedical fgures. Furthermore, the chapter analyses the performance difference 

between the models, with an in-depth discussion regarding the class imbalance problem and 

its effect on the proposed methods. The models described in this chapter gradually improve 

the classifcation accuracy of biomedical fgures, while introducing the GCS method allows 

for the training of deeper models in faster times. 

Chapter 5 – Text localisation. The work presented in this chapter is, to the best of our 

knowledge, the frst deep learning effort into the localisation of text in biomedical fgure 

images. In a similar manner to the previous chapter, it starts with an introduction to the 

adopted dataset, along with identifying the challenges that make the text localisation task 

from biomedical fgures a unique task. Afterwards, a model inspired by autoencoders was 

proposed, where the localisation task was simplifed into a reconstruction one. A pre-training 

stage is also introduced using a very large dataset of synthetic text in natural scene images to 

further improve the model’s generalisation ability. Additionally, a novel data augmentation 

strategy is introduced to target the specifc challenges of text extraction from biomedical 

fgures. In addition to the data augmentation strategy, a novel splitting and stitching technique 

is used to enhance the model’s performance on smaller texts. The performance of the model 

is then broken down using a variety of well-established metrics for text localisation. This 

chapter paves the way for the use of an off-the-shelf OCR tool to extract text from biomedical 

fgures to be used towards indexing the fgures and the articles they belong to. 

6.2 Future Prospects and Research Constraints 

Finding ways to identify an "optimal number of dimensions" to represent some input data is 

an interesting and promising problem that was encountered during the work on Chapter 3. 

http:figures.In
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Another area that Chapter 3 could lead to is semi-supervised learning, where unlabelled data 

could be introduced as well as labelled ones into every input batch. 

The biggest constraint that has faced this research was the shortage of labelled data, even 

though there is an enormous number of open-access biomedical articles available. This lack 

of labelled data had an effect on both the fgure classifcation and text localisation tasks. 

Semi-supervised learning would also be benefcial for the fgure classifcation task as a way 

of dealing with the small amount of labelled data available, especially for the smaller classes 

within the taxonomy. 

As for text extraction, training a model for the localisation and extraction of text simul-

taneously would be an avenue to explore with biomedical fgures. For the time being, this 

is restricted by the availability of character level annotation of a biomedical fgure dataset. 

Furthermore, formulating a biomedical text-fgure dataset with text region defnitions that 

support oriented texts would help with improving the performance of any developed model 

and it would also help with the assessment of its true performance. 

Text correction is another avenue to be developed following the extraction of text from 

fgures. Such models could be more dependent on the context of the paper or even the fgure, 

using specialised biomedical lexicons. However, this would require a dataset that links each 

fgure with its source paper to provide the necessary context. This context could also be 

assisted by the classifcation task that determines the nature of the fgure containing the text. 

Finally, this thesis has been a great journey, through which I have found myself in the 

feld of representation learning. I sincerely hope that the work done in this thesis will provide 

useful grounds for upcoming work on the extraction of information from biomedical fgures. 



References 

[1] Oxford University Press, “Figure | Defnition of fgure in English by Oxford Dictionar-
ies.” https://en.oxforddictionaries.com/defnition/fgure. 

[2] C. Clark and S. Divvala, “Looking beyond text: Extracting fgures, tables and captions 
from computer science papers,” in AAAI 2015 Workshop on Scholarly Big Data, 2015. 

[3] L. D. Lopez, J. Yu, C. N. Arighi, H. Huang, H. Shatkay, and C. Wu, “An Automatic 
System for Extracting Figures and Captions in Biomedical PDF Documents,” pp. 578– 
581, IEEE, Nov. 2011. 

[4] S. R. Choudhury, P. Mitra, A. Kirk, S. Szep, D. Pellegrino, S. Jones, and C. L. Giles, 
“Figure Metadata Extraction from Digital Documents,” in 2013 12th International 
Conference on Document Analysis and Recognition, pp. 135–139, Aug. 2013. 

[5] M. Taschwer and O. Marques, “Compound Figure Separation Combining Edge and 
Band Separator Detection,” in MultiMedia Modeling (Q. Tian, N. Sebe, G.-J. Qi, 
B. Huet, R. Hong, and X. Liu, eds.), vol. 9516, pp. 162–173, Cham: Springer Interna-
tional Publishing, 2016. 

[6] Apache, “Apache PDFBox | A Java PDF Library.” https://pdfbox.apache.org/. 

[7] freedesktop.org, “Poppler.” https://poppler.freedesktop.org/. 

[8] Glyph & Cog, “XpdfReader.” https://www.xpdfreader.com/. 

[9] R. F. Murphy, M. Velliste, J. Yao, and G. Porreca, “Searching online journals for 
fuorescence microscope images depicting protein subcellular location patterns,” in 
Bioinformatics and Bioengineering Conference, 2001. Proceedings of the IEEE 2nd 
International Symposium On, pp. 119–128, IEEE, 2001. 

[10] S. Antani, D. Demner-Fushman, J. Li, B. V. Srinivasan, and G. R. Thoma, “Exploring 
use of images in clinical articles for decision support in evidence-based medicine,” 
in Electronic Imaging 2008 (B. A. Yanikoglu and K. Berkner, eds.), (San Jose, CA), 
pp. 68150Q–68150Q–10, Jan. 2008. 

[11] L. D. Lopez, J. Yu, C. Arighi, C. O. Tudor, M. Torii, H. Huang, K. Vijay-Shanker, 
and C. Wu, “A framework for biomedical fgure segmentation towards image-based 
document retrieval,” BMC Systems Biology, vol. 7, p. S8, Oct. 2013. 

http:https://www.xpdfreader.com
http:https://poppler.freedesktop.org
http:freedesktop.org
http:https://pdfbox.apache.org
https://en.oxforddictionaries.com/definition/figure


100 References 

[12] L. T. Lam, O. K. Pickeral, A. C. Peng, A. Rosenwald, E. M. Hurt, J. M. Giltnane, 
L. M. Averett, H. Zhao, R. E. Davis, M. Sathyamoorthy, L. M. Wahl, E. D. Harris, 
J. A. Mikovits, A. P. Monks, M. G. Hollingshead, E. A. Sausville, and L. M. Staudt, 
“Genomic-scale measurement of mRNA turnover and the mechanisms of action of the 
anti-cancer drug favopiridol,” Genome Biology, vol. 2, p. research0041.1, Sept. 2001. 

[13] S. Xu, J. McCusker, and M. Krauthammer, “Yale Image Finder (YIF): A new search 
engine for retrieving biomedical images,” Bioinformatics, vol. 24, pp. 1968–1970, Sept. 
2008. 

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifers: Surpassing 
Human-Level Performance on ImageNet Classifcation,” in 2015 IEEE International 
Conference on Computer Vision (ICCV), (Santiago, Chile), pp. 1026–1034, IEEE, Dec. 
2015. 

[15] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, 
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, 
T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,” 
Nature, vol. 550, pp. 354–359, Oct. 2017. 

[16] V. S. N. Prasad, B. Siddiquie, J. Golbeck, and L. S. Davis, “Classifying Computer 
Generated Charts,” in 2007 International Workshop on Content-Based Multimedia 
Indexing, pp. 85–92, June 2007. 

[17] H. Shatkay, N. Chen, and D. Blostein, “Integrating image data into biomedical text 
categorization,” Bioinformatics, vol. 22, pp. e446–e453, July 2006. 

[18] A. G. S. de Herrera, D. Markonis, and H. Müller, “Bag–of–colors for biomedical docu-
ment image classifcation,” in Medical Content-Based Retrieval for Clinical Decision 
Support, pp. 110–121, Springer, 2012. 

[19] K. Ma, H. Jeong, M. V. Rohith, G. Somanath, R. Tarpine, K. Schutter, D. Blostein, 
S. Istrail, C. Kambhamettu, and H. Shatkay, “Utilizing image-based features in biomed-
ical document classifcation,” in Image Processing (ICIP), 2015 IEEE International 
Conference On, pp. 4451–4455, IEEE, 2015. 

[20] B. Rafkind, M. Lee, S.-F. Chang, and H. Yu, “Exploring text and image features to 
classify images in bioscience literature,” in Proceedings of the Workshop on Linking 
Natural Language Processing and Biology: Towards Deeper Biological Literature 
Analysis, pp. 73–80, Association for Computational Linguistics, 2006. 

[21] X.-H. Han and Y.-W. Chen, “Biomedical Imaging Modality Classifcation Using Com-
bined Visual Features and Textual Terms,” International Journal of Biomedical Imaging, 
vol. 2011, pp. 1–7, 2011. 

[22] D. Kim, B. P. Ramesh, and H. Yu, “Automatic fgure classifcation in bioscience 
literature,” Journal of Biomedical Informatics, vol. 44, pp. 848–858, Oct. 2011. 

[23] Y. Gkoufas, A. Morou, and T. Kalamboukis, “Combining textual and visual information 
for image retrieval in the medical domain,” The Open Medical Informatics Journal, 
vol. 5, pp. 50–57, 2011. 



References 101 

[24] M. S. Simpson, D. You, M. M. Rahman, Z. Xue, D. Demner-Fushman, S. Antani, and 
G. Thoma, “Literature-based biomedical image classifcation and retrieval,” Computer-
ized Medical Imaging and Graphics, vol. 39, pp. 3–13, Jan. 2015. 

[25] J. Zhang, Y. Xia, Q. Wu, and Y. Xie, “Classifcation of Medical Images and Illus-
trations in the Biomedical Literature Using Synergic Deep Learning,” arXiv preprint 
arXiv:1706.09092, 2017. 

[26] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, “An Ensemble of Fine-Tuned 
Convolutional Neural Networks for Medical Image Classifcation,” IEEE Journal of 
Biomedical and Health Informatics, vol. 21, pp. 31–40, Jan. 2017. 

[27] L. D. Lopez, J. Yu, C. N. Arighi, M. Torii, K. Vijay-Shanker, H. Huang, and C. H. Wu, 
“An Image-Text Approach for Extracting Experimental Evidence of Protein-Protein In-
teractions in the Biomedical Literature,” in Proceedings of the International Conference 
on Bioinformatics, Computational Biology and Biomedical Informatics, p. 412, ACM, 
2013. 

[28] H. Müller, J. Kalpathy-Cramer, D. Demner-Fushman, and S. Antani, “Creating a 
classifcation of image types in the medical literature for visual categorization,” in SPIE 
Medical Imaging (W. W. Boonn and B. J. Liu, eds.), vol. 8319, Feb. 2012. 

[29] A. G. S. de Herrera, J. Kalpathy-Cramer, D. Demner-Fushman, S. K. Antani, and 
H. Müller, “Overview of the ImageCLEF 2013 Medical Tasks.,” in CLEF (Working 
Notes), 2013. 

[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International 
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004. 

[31] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural 
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. 

[32] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for content-based 
image retrieval.,” in ESANN, vol. 1, p. 2, Citeseer, 2011. 

[33] J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, “High-Resolution SAR Image 
Classifcation via Deep Convolutional Autoencoders,” IEEE Geoscience and Remote 
Sensing Letters, vol. 12, pp. 2351–2355, Nov. 2015. Conference Name: IEEE Geo-
science and Remote Sensing Letters. 

[34] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, vol. 1. MIT 
press Cambridge, 2016. 

[35] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale 
Image Recognition,” arXiv:1409.1556 [cs], Sept. 2014. 

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 
arXiv:1512.03385 [cs], Dec. 2015. 

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale 
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, (Miami, FL), pp. 248–255, IEEE, June 2009. 

http:andC.H.Wu
http:Xia,Q.Wu


102 References 

[38] M. A. Nielsen, Neural Networks and Deep Learning. 2015. 

[39] S. Koitka and C. M. Friedrich, “Traditional Feature Engineering and Deep Learning 
Approaches at Medical Classifcation Task of ImageCLEF 2016.,” in CLEF (Working 
Notes), pp. 304–317, 2016. 

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifcation with deep 
convolutional neural networks,” in Advances in Neural Information Processing Systems, 
pp. 1097–1105, 2012. 

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015. 

[42] A. Koike and T. Takagi, “Classifying Biomedical Figures Using Combination of Bag of 
Keypoints and Bag of Words,” pp. 848–853, IEEE, Mar. 2009. 

[43] R. Rodriguez-Esteban and I. Iossifov, “Figure mining for biomedical research,” Bioin-
formatics, vol. 25, pp. 2082–2084, Aug. 2009. 

[44] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, 
pp. 273–297, Sept. 1995. 

[45] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM 
Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, Apr. 2011. 

[46] Chih-Wei Hsu and Chih-Jen Lin, “A comparison of methods for multiclass support 
vector machines,” IEEE Transactions on Neural Networks, vol. 13, pp. 415–425, Mar. 
2002. 

[47] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Cancer Classif-
cation using Support Vector Machines,” Machine Learning, vol. 46, pp. 389–422, Jan. 
2002. 

[48] Abdul Rahim Ahmad, M. Khalia, C. Viard-Gaudin, and E. Poisson, “Online handwrit-
ing recognition using support vector machine,” in 2004 IEEE Region 10 Conference 
TENCON 2004., vol. A, pp. 311–314 Vol. 1, Nov. 2004. 

[49] E. Osuna, R. Freund, and F. Girosit, “Training support vector machines: An application 
to face detection,” in Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, (San Juan, Puerto Rico), pp. 130–136, IEEE Comput. 
Soc, 1997. 

[50] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of 
Eugenics, vol. 7, pp. 179–188, Sept. 1936. 

[51] M. Dorfer, R. Kelz, and G. Widmer, “Deep Linear Discriminant Analysis,” 
arXiv:1511.04707 [cs], Nov. 2015. 

[52] A. Stuhlsatz, J. Lippel, and T. Zielke, “Feature Extraction With Deep Neural Networks 
by a Generalized Discriminant Analysis,” IEEE Transactions on Neural Networks and 
Learning Systems, vol. 23, pp. 596–608, Apr. 2012. 



References 103 

[53] E. Osuna, R. Freund, and F. Girosi, “Support Vector Machines: Training and Appli-
cations,” tech. rep., Massachusetts Institute of Technology, Cambridge, MA, USA, 
1997. 

[54] J.-H. Xue and D. M. Titterington, “Do unbalanced data have a negative effect on LDA?,” 
Pattern Recognition, vol. 41, pp. 1558–1571, May 2008. 

[55] J. Xie and Z. Qiu, “The effect of imbalanced data sets on LDA: A theoretical and 
empirical analysis,” Pattern Recognition, vol. 40, pp. 557–562, Feb. 2007. 

[56] A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie, “COCO-Text: Dataset and 
Benchmark for Text Detection and Recognition in Natural Images,” arXiv:1601.07140 
[cs], Jan. 2016. 

[57] A. Antonacopoulos, D. Bridson, C. Papadopoulos, and S. Pletschacher, “A Realistic 
Dataset for Performance Evaluation of Document Layout Analysis,” in 2009 10th 
International Conference on Document Analysis and Recognition, (Barcelona, Spain), 
pp. 296–300, IEEE, 2009. 

[58] X.-C. Yin, C. Yang, W.-Y. Pei, H. Man, J. Zhang, E. Learned-Miller, and H. Yu, 
“DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature 
Figures,” PLOS ONE, vol. 10, p. e0126200, May 2015. 

[59] S. Xu and M. Krauthammer, “A new pivoting and iterative text detection algorithm 
for biomedical images,” Journal of Biomedical Informatics, vol. 43, pp. 924–931, Dec. 
2010. 

[60] S. Xu and M. Krauthammer, “Boosting text extraction from biomedical images using 
text region detection,” in Biomedical Sciences and Engineering Conference (BSEC), 
2011, pp. 1–4, IEEE, 2011. 

[61] D. Kim and H. Yu, “Figure Text Extraction in Biomedical Literature,” PLoS ONE, 
vol. 6, p. e15338, Jan. 2011. 

[62] B. Gatos, I. Pratikakis, and S. Perantonis, “Text Detection in Indoor/Outdoor Scene 
Images,” in Proceedings of the 1st International Workshop on Camera-Based Document 
Analysis and Recognition, CBDAR 2005, Jan. 2005. 

[63] Kwang In Kim, Keechul Jung, and Jin Hyung Kim, “Texture-based approach for text 
detection in images using support vector machines and continuously adaptive mean 
shift algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
vol. 25, pp. 1631–1639, Dec. 2003. 

[64] X. Chen and A. L. Yuille, “Detecting and reading text in natural scenes,” in In Proc. of 
the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 366–373, 2004. 

[65] A. Mishra, K. Alahari, and C. V. Jawahar, “Top-down and bottom-up cues for scene text 
recognition,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 
(Providence, RI), pp. 2687–2694, IEEE, June 2012. 



104 References 

[66] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes with stroke 
width transform,” in 2010 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, (San Francisco, CA, USA), pp. 2963–2970, IEEE, June 2010. 

[67] C. Yi and Y. Tian, “Text String Detection from Natural Scenes by Structure-based 
Partition and Grouping,” Ieee Transactions on Image Processing, vol. 20, pp. 2594– 
2605, Sept. 2011. 

[68] H. I. Koo and D. H. Kim, “Scene Text Detection via Connected Component Clustering 
and Nontext Filtering,” IEEE Transactions on Image Processing, vol. 22, pp. 2296– 
2305, June 2013. 

[69] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu, “A Hybrid Approach to Detect and 
Localize Texts in Natural Scene Images,” IEEE Transactions on Image Processing, 
vol. 20, pp. 800–813, Mar. 2011. 

[70] L. Neumann and J. Matas, “Scene Text Localization and Recognition with Oriented 
Stroke Detection,” in 2013 IEEE International Conference on Computer Vision, (Sydney, 
Australia), pp. 97–104, IEEE, Dec. 2013. 

[71] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-End Text Recognition with 
Convolutional Neural Networks,” p. 5. 

[72] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate 
object detection and semantic segmentation,” arXiv:1311.2524 [cs], Nov. 2013. 

[73] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unifed, 
Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), (Las Vegas, NV, USA), pp. 779–788, IEEE, June 2016. 

[74] H. Li, T. Jiang, and K. Zhang, “Effcient and robust feature extraction by maximum 
margin criterion,” in Advances in Neural Information Processing Systems, pp. 97–104, 
2004. 

[75] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers, “Fisher discriminant 
analysis with kernels,” in Neural Networks for Signal Processing IX: Proceedings of 
the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), (Madison, 
WI, USA), pp. 41–48, IEEE, 1999. 

[76] M. H. Nguyen and F. de la Torre, “Optimal feature selection for support vector ma-
chines,” Pattern Recognition, vol. 43, pp. 584–591, Mar. 2010. 

[77] G. F. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large Margin Deep 
Networks for Classifcation,” arXiv:1803.05598 [cs, stat], Mar. 2018. 

[78] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images. PhD thesis. 

[79] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” arXiv:1212.5701 
[cs], Dec. 2012. 

[80] T. Joachims, “Making large-scale SVM learning practical,” Working Paper 1998,28, 
Technical Report, 1998. 

http:andA.Y.Ng


References 105 

[81] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine 
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008. 

[82] H. Müller, A. García Seco de Herrera, and S. Bromuri, “Overview of the ImageCLEF 
2015 medical classifcation task.” https://hesso.tind.io/record/1025, 2015. 

[83] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine 
Learning, vol. 2, no. 1, pp. 1–127, 2009. 

[84] G. E. Hinton, “To recognize shapes, frst learn to generate images,” in Progress in Brain 
Research, vol. 165, pp. 535–547, Elsevier, 2007. 

[85] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training 
by Reducing Internal Covariate Shift,” in Proceedings of Machine Learning Research 
(F. Bach and D. Blei, eds.), vol. 37, (Proceedings of Machine Learning Research), 
pp. 448–456, PMLR, 2015. 

[86] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s probabilistic outputs for support 
vector machines,” Machine Learning, vol. 68, pp. 267–276, Aug. 2007. 

[87] T.-f. Wu, C.-j. Lin, and R. C. Weng, “Probability Estimates for Multi-Class Classifca-
tion by Pairwise Coupling,” in Advances in Neural Information Processing Systems 16 
(S. Thrun, L. K. Saul, and B. Schölkopf, eds.), pp. 529–536, MIT Press, 2004. 

[88] I. Almakky, V. Palade, Y. Hedley, and J. Yang, “A stacked deep autoencoder model 
for biomedical fgure classifcation,” in 2018 IEEE 15th International Symposium on 
Biomedical Imaging (ISBI 2018), pp. 1134–1138, Apr. 2018. 

[89] G. King and L. Zeng, “Logistic Regression in Rare Events Data,” SSRN Scholarly 
Paper ID 1083726, Social Science Research Network, Rochester, NY, 2001. 

[90] C. Yang, X. Yin, H. Yu, D. Karatzas, and Y. Cao, “ICDAR2017 Robust Reading 
Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT),” in 2017 
14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 
vol. 01, pp. 1444–1447, Nov. 2017. 

[91] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data for Text Localisation in 
Natural Images,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), (Las Vegas, NV, USA), pp. 2315–2324, IEEE, June 2016. 

[92] I. Almakky, V. Palade, and A. Ruiz-Garcia, “Deep Convolutional Neural Networks 
for Text Localisation in Biomedical Literature Figures,” in 2019 International Joint 
Conference on Neural Networks (IJCNN), pp. 1–5, IEEE, July 2019. 

[93] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online Learning 
and Stochastic Optimization,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, July 2011. 

[94] S. Suzuki and K. be, “Topological structural analysis of digitized binary images by 
border following,” Computer Vision, Graphics, and Image Processing, vol. 30, pp. 32– 
46, Apr. 1985. 

http:87]T.-f.Wu
http:eds.),vol.37
https://hesso.tind.io/record/1025


106 References 

[95] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, R. Young, K. Ashida, H. Nagai, 
M. Okamoto, H. Yamamoto, H. Miyao, J. Zhu, W. Ou, C. Wolf, J.-m. Jolion, L. Todoran, 
M. Worring, and X. Lin, “ICDAR 2003 robust reading competitions: Entries, results 
and future directions,” in International Journal on Document Analysis and Recognition 
- Special Issue on Camera-Based Text and Document Recognition 7(2–3, pp. 105–122, 
2005. 

[96] C. Wolf and J.-M. Jolion, “Object count/area graphs for the evaluation of object detec-
tion and segmentation algorithms,” International Journal of Document Analysis and 
Recognition (IJDAR), vol. 8, no. 4, pp. 280–296, 2006. 

[97] X. Wang, A. Shrivastava, and A. Gupta, “A-Fast-RCNN: Hard Positive Generation via 
Adversary for Object Detection,” in 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 3039–3048, July 2017. 

[98] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” arXiv:1703.06870 [cs], 
Mar. 2017. 


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Figure Mining
	1.2.1 Figure Extraction
	1.2.2 Compound Figures

	1.3 Mining Information from Biomedical Literature
	1.4 Research Aim and Objectives
	1.5 Thesis Contributions
	1.6 Research Outputs
	1.7 Thesis Overview

	2 Background and Literature Review
	2.1 Introduction
	2.2 Biomedical Figure Classification
	2.2.1 Taxonomy of Figures in Biomedical Literature
	2.2.2 Differentiating Features
	2.2.3 Autoencoders
	2.2.4 Deep Learning
	2.2.5 Support Vector Machines
	2.2.6 Linear Discriminant Analysis
	2.2.7 Classification and Data Imbalance

	2.3 Text Extraction
	2.3.1 Text Extraction from Biomedical Figures
	2.3.2 Deep Learning for Text localisation

	2.4 Summary

	3 Effective Representation Learning
	3.1 Introduction
	3.2 Feature Reduction and Maximization of Inter-Class Distance
	3.3 Classification in the Reduced Space
	3.4 Experimental Settings
	3.4.1 Datasets
	3.4.2 Models
	3.4.3 Training

	3.5 Evaluation
	3.5.1 Fisher's Ratio
	3.5.2 Feature-Space Visualisation

	3.6 Results
	3.7 Discussion
	3.7.1 Generalisation
	3.7.2 Classification Accuracy
	3.7.3 Computational Cost

	3.8 Conclusion

	4 Figure Classification
	4.1 Introduction
	4.2 Dataset
	4.2.1 Taxonomy

	4.3 Challenges
	4.4 Feature Extraction
	4.4.1 Stacked Deep Autoencoder

	4.5 Hierarchical Support Vector Machine
	4.6 Deep Convolutional Neural Networks
	4.7 Evaluation Metrics
	4.8 Results
	4.9 Discussion
	4.9.1 Stacked Deep Autoencoder Features
	4.9.2 Deep Convolutional Neural Networks
	4.9.3 Class Imbalance

	4.10 Conclusions

	5 Text Localisation
	5.1 Introduction
	5.2 Datasets
	5.2.1 DETEXT Dataset
	5.2.2 SynthText in the Wild Dataset

	5.3 Challenges
	5.4 Proposed Method
	5.4.1 Architecture
	5.4.2 Data Augmentation
	5.4.3 Training
	5.4.4 Image Processing

	5.5 Evaluation Metrics
	5.6 Results
	5.7 Discussion
	5.7.1 Strengths
	5.7.2 Noise
	5.7.3 Oriented Text Regions

	5.8 Conclusions

	6 Conclusions
	6.1 Thesis Contributions
	6.2 Future Prospects and Research Constraints

	References



