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Abstract: Analogue-to-digital converters (ADC) using oversampling technology and the Σ-Δ 
modulation mechanism are widely applied in digital audio systems. This paper presents an audio 
modulator with high accuracy and low power consumption by using a discrete second-order 
feedforward structure. A 5-bit successive approximation register (SAR) quantizer is integrated into 
the chip, which reduces the number of comparators and the power consumption of the quantizer 
compared with fash ADC-type quantizers. An analogue passive adder is used to sum the input 
signals and it is embedded in a SAR ADC composed of a capacitor array and a dynamic comparator 
which has no static power consumption. To validate the design concept, the designed modulator is 
developed in a 180 nm CMOS process. The peak signal to noise distortion ratio (SNDR) is calculated 
as 106 dB and the total power consumption of the chip is recorded as 3.654 mW at the chip supply 
voltage of 1.8 V. The input sine wave of 0 to 25 kHz is sampled at a sampling frequency of 3.2 Ms/s. 
Moreover, the results achieve a 16-bit effective number of bits (ENOB) when the amplitude of the input 
signal is varied between 0.15 and 1.65 V. By comparing with other modulators which were realized 
by a 180 nm CMOS process, the proposed architecture outperforms with lower power consumption. 

Keywords: feedforward modulator; quantizer; SAR; Σ-Δ modulator 

1. Introduction 

The rapid development of the Internet of Things (IoTs) demands sophisticated electronics to 
support the vision of smart cities [1]. High-performance analogue-to-digital converters (ADCs) are 
frequently used in embedded systems such as mobile phones, iPads, interactive multimedia systems 
and so on [2,3]. All of these devices require that the conversion chip has a high signal-to-noise 
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ratio (SNR). There are many types of ADCs [4], and the traditional ones are pipelined, successive 
approximation register (SAR) and Σ-Δ, which have been developed rapidly in recent years. 

A traditional pipelined ADC consists of a resistor divider, comparator, buffer and encoder. 
Its advantage is its high A/D conversion speed; however, it suffers from having a low resolution, 
high power consumption, high cost and less precision. In contrast to a pipelined ADC, a SAR ADC is 
comprised of a comparator, a D/A converter, a comparison register SAR, a clock generator and a control 
logic circuit. Its operating principles are to continuously compare the sampled input signal with a 
known voltage and then convert it into a binary number [5,6]. Due to the matching errors of internal 
components of the SAR ADC, it is widely used in medium and low speed and medium-resolution 
sensor networks. Although the SAR ADC [7] has power consumption efficiency, it is difficult to realize 
high precision due to its structural characteristics and requires additional correction circuits which 
increases the component overhead and power consumption of the ADC [8]. To combat with the above 
defciencies, the core technologies of the sigma-delta modulator which are based on oversampling 
and noise shaping technologies were proposed to achieve high speed and high precision. Moreover, 
a sigma-delta modulator can easily obtain higher performance in low-order quantization, while the 
quantizer of a sigma-delta modulator usually adopts the traditional fash structure, which leads to the 
higher power consumption of the circuit. As the sigma-delta ADC adopts the same technologies as 
the sigma-delta modulator, it reduces the requirements for component matching, saves cost and it is 
relatively easy to realize a conversion accuracy of more than 14 bits, thus being suitable for applications 
in low power consumption modules [9,10]. 

Combining the advantages of SAR and sigma-delta ADCs, this paper proposes an architecture that 
combines SAR and sigma-delta ADCs. That is, the sigma-delta low power consumption, high-precision 
modulator based on a SAR structure quantizer [11]. An ADC of this structure can reduce the 
quantization noise in the required signal frequency band through noise shaping and oversampling 
technology, improving the analogue-to-digital converter signal to noise distortion ratio (SNDR). At the 
same time, due to the use of a SAR quantizer, the modulator power consumption is also reduced 
compared with the traditional sigma-delta modulator [12]. 

The structure of this paper can be summarized as follows. Section 2 provides an overview of the 
improved modulator based on the SAR quantizer. This section is followed by the overall circuit structure 
verifcation. In Section 4, the key circuit design of the modulator is presented, including the circuit 
design and optimization of the quantizer module and the improvement of the amplifer. In Section 5, 
the integrator circuit module analysis is described and it covers the design of the transconductance 
operational amplifer circuit and reference voltage source, while Section 6 discusses the pre-circuit 
simulation and verifcation. The layout of the chip is presented in Section 7 and the feasibility of this 
structure is verifed in Section 8, followed by the conclusion in Section 9. 

2. Improved Σ-Δ Modulator Based on SAR Quantization Structure 

The quantization noise is determined by the bit number of the quantizer. The higher the bit 
number, the smaller the noise [13]. Compared with the single-bit quantization structure, the multi-bit 
quantization structure not only improves the modulator performance but also reduces the total system 
power consumption and improves the stability of the system. However, if the quantization bit is too 
high, the conversion rate will be reduced. 

Choosing a fve-bit quantization structure and multiple bits can also reduce the performance 
requirements of the integrator [14]. For a stable integrator, it adopts a second-order or cascade structure 
as a high-order single-loop structure. Meanwhile, to reduce the power consumption and swing 
requirement of the modulator, the modulator adopts a low swing circuit structure [15], and the 
integrator only processes the residual value between the quantization result of the quantizer and the 
input signal, which has a small amplitude. The noise shaping effect can be achieved by using the 
second-order integrator structure, and the stability of the system also remains good. 

http:amplifier.In
http:verification.In
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Hence, a second-order fve-bit modulator structure is proposed, as shown in Figure 1. 
The integrator in the modulator is formed by a discrete switched capacitor and transconductance 
operational amplifer, and the discrete switched capacitor makes the integrator insensitive to jitter 
caused by the clock [16]. Since the swing of the integrator is affected by the swing of the operational 
amplifer, the transconductance operational amplifer generally adopts a sleeve structure. At the same 
time, the active adder adds the feedforward result of the integrator, and the input signal is replaced by 
the passive adder, which further reduces the power consumption of the system [17]. 
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In order to realize a low power consumption circuit, there are many existing structures and schemes 
for a Σ-Δ modulator module such as [18], where a Σ-Δ modulator based on the SAR quantization 
structure is reported. It adopts a second-order integrator with a 4-bit quantizer architecture and 
conducts post-simulation on the circuit behavior, the circuit itself and at the layout level, which verifes 
the feasibility of the scheme. 

Figure 1 shows a sigma-delta ADC system framework which consists of a reusable 5-bit SAR 
ADC and two integrators. The input signal X(Z) frst enters the quantizer for fve-bit quantization. 
The quantization result of each bit is fed back to the input signal port through the D/A converter, 
and subtraction is performed with it. Therefore, the voltage processed by the quantizer is the difference 
between the quantization result and the input signal, and the power consumption is lower than that 
of the comparator. After fve-bit quantization, the difference between the fnal quantization result 
and the input signal is sent to the integrator. The integrator only deals with the quantization error, 
and the integrated result Y(Z) is sent back and added in the next quantizer sampling to obtain higher 
conversion accuracy. 

In a traditional feedforward modulator, an amplifer is required to form an active analogue 
adder [19] at the ADC input node, which increases the power consumption of the modulator. In this 
paper, a multi-bit feedforward [20] ADC without an active analogue adder is adopted to overcome the 
power issue. The passive adder embedded in the SAR ADC is implemented by using a separate capacitor 
array [21] and a dynamic comparator [22]. The integrator is realized by a ring amplifier without a static 
current. The capacitor array of the SAR ADC samples the input signal, and the capacitor CS samples the 
integrator output. After this sampling operation, the SAR ADC quantizes the sampled signal in a binary 
search mode and outputs it through the Digital to Analogue Converter (DAC)Finally, a residual voltage 
VRES is generated on the top plate of the capacitor array. 

VRES(z) = VIN(z) − VDAC_OUT (z) (1) 

where VIN is the input sample signal, and VDAC_OUT is the output voltage of the DAC. The residual 
voltage is then processed by a two-stage integrator in the integration phase of the ADC. Meanwhile, 
the digital output of the current sample VDAC_OUT (k) can be expressed as 

VDAC_OUT (z) = VIN(z) + VRES ∗ H(z) + Q(z) (2) 
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where H(z) is the transfer function of the integrator, and Q(z) represents the quantization noise and 
comparator noise of the ADC. Substituting VRES of Equation (1) into Equation (2), the following 
system transfer function (3) is obtained. 

VDAC_OUT (z) = VIN(z) + 1/(1 + H(z))Q(z) (3) 

The signal transfer function and noise transfer function can be obtained from Equation (3), 
as shown in Equations (4) and (5). 

STF(z) = z−2 (4) � �2 
NTF(z) = 1− z−1 (5) 

where STF is a signal transmission function, and NTF is a noise transmission function. It can be seen 
from Equation (5) that an NTF is a high-pass function, and the system suppresses the noise at low 
frequency, thus achieving a higher signal-to-noise ratio in the bandwidth. 

In the proposed architecture, the SAR quantizer is not only used to realize the quantization of the 
modulator but is also used to realize the summation of the input signal and feedback signal in the 
traditional modulator. In this way, the sampling capacitance of the frst integrator in the modulator 
can be multiplexed with the capacitance of the SAR quantizer, thus reducing the power consumption 
and area of the modulator [23]. Another advantage is that the multiplexing technology provides a 
signal feedforward path for the modulator, forming a feedforward modulator structure, which makes 
the output swing of the integrator independent of the input signal of the modulator, thus improving 
the overload rate of the modulator. Therefore, the requirements for amplifers in integrators are 
greatly reduced, allowing a smaller open-loop gain and lower bandwidth. Since the input signal of 
the modulator is directly sampled to the capacitor array of the quantizer without going through the 
integrator, the sum swing of the integrated output is very small, and the analogue adder with a too 
large swing is not needed, which reduces the design difficulty of the modulator. 

Based on the multiplexed SAR quantizer and feedforward technology, the proposed modulator 
can handle the input signal range close to full amplitude. Therefore, the small capacitance can meet 
the requirements of circuit thermal noise [24]. The quantizer only needs half of the clock cycle to 
sample the output of the integrator, and the small CS can greatly reduce the requirements for the 
second-stage integrator. 

3. The Overall Circuit Design of the Modulator 

The circuit schematic diagram of the multi-bit modulator is shown in Figure 2. It consists of an 
integrator, a quantizer, a clock circuit, a capacitor array, a DAC and other units. The main circuit of the 
modulator is composed of a quantization part and integration part. The clocks in the circuit are the 
integrator clock and the SAR quantizer clock. The working timing of the whole modulator is shown in 
Figure 3. In the sampling phase (ϕ1/ϕ1d) which is the sampling clock of the integrator, the quantizer 
is required to complete sampling and digital conversion. In the integration phase (ϕ2/ϕ2d) which 
is the integration clock of the integrator, the quantization result is fed back to the input via the DAC 
and subtracted from the input signal. CLKC is the control clock of the quantizer comparator, which is 
generated by the internal circuit of the quantizer. This scheme focuses on the low power consumption 
design of amplifers and quantizers [25]. In the imaginary frame of Figure 2, VREFP and VREFN 
are positive and negative reference voltages, respectively, while VCM is the common-mode voltage, 
Vin and Vip are input signals and CLKC is the control clock of the comparator. To obtain the required 
VREFP = 1.8 V, the ADC needs 16 cell capacitors. The clock switch ϕs is closed in the sampling stage 
of the quantizer. Meanwhile, ϕ2 is closed during the whole working period of the quantizer and 
is turned off when the integrator results are sampled. ϕ1 is closed when the quantizer samples the 
integrator result. Vfp and Vfn are the integration results of the integrator feedforward to the positive 
and negative terminals of the quantizer. 

http:comparator.To
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4. Quantizer Circuit Module Analysis and Optimization Design 

The fash ADC is usually used as a quantizer in multi-bit quantization modulators. The fash 
ADC requires multiple comparators and also has the problems of a matching circuit and large dynamic 
power consumption [27]. If a pre-amplifer is added at the front end of the comparator, static power 
consumption will be increased. In order to address the above-mentioned problems, a scheme of the 
modulator using a 5-bit SAR ADC as the quantizer is proposed. The SAR ADC has no static power 
consumption, and the precision is 5 bits, which has no problem of a matching circuit. The sampling 
frequency of the designed Δ-Σ modulator is 3.2 Ms/s. At this sampling rate, the 5-bit SAR ADC has 
lower power consumption compared with the fash ADC. In addition, the SAR quantizer structure is 
used to implement the addition of the adder output signal and the input signal. The adder adds the 
feedforward signals of the integrator. The output swing of the integrators is very small, which leads to 
a very small output swing of the adder and therefore greatly reduces the requirements for the amplifer. 
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The working process of the quantizer is divided into sampling [28] and digital conversion. Both 
of these two processes are completed in the sampling phase (ϕ1/ϕ1d) of the integrator. To avoid using 
an external high-frequency clock, the comparator clock within the SAR quantizer is generated by the 
SAR internal circuit, and the specifc operation timing is shown in Figure 3. In the sampling phase 
(ϕs), the MSB (Most Signifcant Bit) sampling capacitor is connected to the VREFP, and the lower plate 
of the other capacitors is connected to the VREPN. The SAR capacitor array samples the output of the 
integrator while the input signal is sampled to a capacitance equivalent to the entire SAR capacitor 
array. After the sampling is completed, the sampling switch is turned off to start digital conversion. 
The capacitor upper plate sampling the input signal is connected to the common-mode VCM, and the 
SAR quantizer obtains the conversion result through successive comparisons [29]. At the same time as 
completing the conversion, the SAR quantizer receives the addition of the adder output signal and 
the input signal. After the digital conversion process is completed, the SAR quantizer outputs the 
conversion result through control logic. 

4.1. Sampling Module 

Input signal sampling is mainly realized by the gate voltage bootstrap switch circuit, capacitor 
array and sampling common-mode voltage. Compared with the transmission gate and MOS switch, 
the gate voltage bootstrap switch is more stable and has lower transmission loss, but the chip area is 
large, so it is only used in sampling. There is no need for 32 unit capacitors, but only 16 unit capacitors. 

In the quantizer sampling input signal and conversion stage, S1 is always open and S2 is always 
closed. Samp and the gate voltage bootstrap switch are switched off after completing sampling. 
When sampling the output of the integrator, switch S1 is closed and switch S2 is open, the upper 
plate of the capacitor CS is connected to a common-mode voltage and the lower plate is connected to 
the integrator output voltages outp and outn. After sampling the integrator, switch S1 is turned off, 
and the input signal is sampled by the quantizer. Switch S2 is closed, and the voltage value of the 
upper plate of the capacitor CS becomes the sampled voltage values Vin and Vip, and the lower plate 
is suspended. By combining the sampling structure of the input signal with the sampling structure of 
the output of the integrator, the quantizer sampling circuit is formed as shown in Figure 4. 

This part mainly optimizes the circuit structure in the following two aspects. First, in order to 
reduce the power consumption and chip area of the whole circuit, a capacitance multiplexing circuit is 
adopted. Its structure can reduce the number of capacitors and by choosing a relatively large capacitor 
size, the capacitor matching gets better. In the second aspect, a proper logic control circuit is adopted 
in the logic control of the quantizer. As shown in Figure 4, the logic levels of the two points on the 
left side of the CS capacitor are controlled to maintain a constant common-mode level in the whole 
quantization process, thus reducing errors caused by inconsistent common-mode levels. 

4.2. SAR Comparator Module 

The SAR comparator adopts a differential structure. It compares the analogue signal obtained 
by the sampling capacitor with the analogue signal obtained by adding the integrator output and 
input signal, to fnally obtain a digital signal. At the same time, the comparator adopts a dynamic 
latch structure, which further reduces the power consumption of the system [30]. The latch structure 
saves the comparison result every time and then resets the comparator state to realize multiplexing. 
The multiplexing function is completed by the output of the comparator itself cooperating with the 
external clock circuit. After the output of the comparator is generated, the comparator stops working 
and resets to prepare for the next comparison. The latch function is realized by the SAR logic control 
structure, and the quantized values obtained by fve comparisons are saved one by one and output in 
parallel [31]. Compared with the traditional comparator, the SAR comparator adopts a PMOS design 
and achieves the multiplexing function, and its corresponding schematic diagram is shown in Figure 5. 

http:integrator.To


Sensors 2020, 20, 5309 7 of 17 

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

using an external high-frequency clock, the comparator clock within the SAR quantizer is generated 
by the SAR internal circuit, and the specific operation timing is shown in Figure 3. In the sampling 
phase (φs), the MSB (Most Significant Bit) sampling capacitor is connected to the VREFP, and the 
lower plate of the other capacitors is connected to the VREPN. The SAR capacitor array samples the 
output of the integrator while the input signal is sampled to a capacitance equivalent to the entire 
SAR capacitor array. After the sampling is completed, the sampling switch is turned off to start 
digital conversion. The capacitor upper plate sampling the input signal is connected to the 
common-mode VCM, and the SAR quantizer obtains the conversion result through successive 
comparisons [29]. At the same time as completing the conversion, the SAR quantizer receives the 
addition of the adder output signal and the input signal. After the digital conversion process is 
completed, the SAR quantizer outputs the conversion result through control logic. 

4.1. Sampling Module 

Input signal sampling is mainly realized by the gate voltage bootstrap switch circuit, capacitor 
array and sampling common-mode voltage. Compared with the transmission gate and MOS switch, 
the gate voltage bootstrap switch is more stable and has lower transmission loss, but the chip area is 
large, so it is only used in sampling. There is no need for 32 unit capacitors, but only 16 unit 
capacitors. 

In the quantizer sampling input signal and conversion stage, S1 is always open and S2 is 
always closed. Samp and the gate voltage bootstrap switch are switched off after completing 
sampling. When sampling the output of the integrator, switch S1 is closed and switch S2 is open, 
the upper plate of the capacitor CS is connected to a common-mode voltage and the lower plate is 
connected to the integrator output voltages outp and outn. After sampling the integrator, switch S1 
is turned off, and the input signal is sampled by the quantizer. Switch S2 is closed, and the voltage 
value of the upper plate of the capacitor CS becomes the sampled voltage values Vin and Vip, and 
the lower plate is suspended. By combining the sampling structure of the input signal with the 
sampling structure of the output of the integrator, the quantizer sampling circuit is formed as 
shown in Figure 4. 

Vin

SAR

Vip

Samp

S2

Vcm

Vcm
S1

CS

S1
outp

CS

S1
outn

S2

Vcm

S1

Vcm

Samp

8C 4C 2C C C

8C 4C 2C C C

Gate voltage 
bootstrap switch

Gate voltage 
bootstrap switch

 
Figure 4. Quantizer sampling circuit. 

Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 

 

Figure 4. Quantizer sampling circuit. 

This part mainly optimizes the circuit structure in the following two aspects. First, in order to 
reduce the power consumption and chip area of the whole circuit, a capacitance multiplexing 
circuit is adopted. Its structure can reduce the number of capacitors and by choosing a relatively 
large capacitor size, the capacitor matching gets better. In the second aspect, a proper logic control 
circuit is adopted in the logic control of the quantizer. As shown in Figure 4, the logic levels of the 
two points on the left side of the CS capacitor are controlled to maintain a constant common-mode 
level in the whole quantization process, thus reducing errors caused by inconsistent common-mode 
levels. 

4.2. SAR Comparator Module 

The SAR comparator adopts a differential structure. It compares the analogue signal obtained 
by the sampling capacitor with the analogue signal obtained by adding the integrator output and 
input signal, to finally obtain a digital signal. At the same time, the comparator adopts a dynamic 
latch structure, which further reduces the power consumption of the system [30]. The latch 
structure saves the comparison result every time and then resets the comparator state to realize 
multiplexing. The multiplexing function is completed by the output of the comparator itself 
cooperating with the external clock circuit. After the output of the comparator is generated, the 
comparator stops working and resets to prepare for the next comparison. The latch function is 
realized by the SAR logic control structure, and the quantized values obtained by five comparisons 
are saved one by one and output in parallel [31]. Compared with the traditional comparator, the 
SAR comparator adopts a PMOS design and achieves the multiplexing function, and its 
corresponding schematic diagram is shown in Figure 5. 

Vop

vdd

VinVip

clk

clk

Von

M10 M8 M6 M7 M9 M11

M1

M2 M3

M4 M5

 
Figure 5. SAR comparator structure. 

In Figure 5, Vin and Vip are the positive and negative input ports of the comparator, and Von 
and Vop are the positive and negative output ports of the comparator. PMOS transistors M2 and 
M3 are differential input stages connected with input signals. PMOS transistors M4 and M5 have a 
positive feedback structure, M6 and M7 realize a common source amplification and NMOS 
transistors M8, M9, M10 and M11 are used for resetting. When the clk signal is at a high level, it is 
reset. At this time, NMOS transistors M8, M9, M10 and M11 are turned on, and M8 and M9 
discharge the output ports, i.e., Von and Vop at the same potential and turn on the PMOS 
transistors M4 and M5. M10 and M11 make the drain potentials of M2 and M3 which are equal to 
realize a reset. This can be achieved by comparing M2 and M3 when the clk signal is low which is 
equivalent to the terminal voltage of Vip greater than the terminal voltage of Vin. At this time, the 

Figure 5. SAR comparator structure. 

In Figure 5, Vin and Vip are the positive and negative input ports of the comparator, and Von and 
Vop are the positive and negative output ports of the comparator. PMOS transistors M2 and M3 are 
differential input stages connected with input signals. PMOS transistors M4 and M5 have a positive 
feedback structure, M6 and M7 realize a common source amplifcation and NMOS transistors M8, M9, 
M10 and M11 are used for resetting. When the clk signal is at a high level, it is reset. At this time, 
NMOS transistors M8, M9, M10 and M11 are turned on, and M8 and M9 discharge the output ports, 
i.e., Von and Vop at the same potential and turn on the PMOS transistors M4 and M5. M10 and M11 
make the drain potentials of M2 and M3 which are equal to realize a reset. This can be achieved by 



Sensors 2020, 20, 5309 8 of 17 

comparing M2 and M3 when the clk signal is low which is equivalent to the terminal voltage of Vip 
greater than the terminal voltage of Vin. At this time, the channel width is opened by M2 which is 
smaller than M3, and the drain potential of M3 is pulled up quickly, reaching a high level frst, so that 
M4 is turned off and the drain potential of M2 is no longer changed. Then, Vop outputs a high level 
and Von outputs a low level to complete the comparison [32]. 

5. Integrator Circuit Module Analysis and Optimization Design 

Combining the designed transconductance operational amplifer with the switched capacitor, the 
circuit structure outside the imaginary frame in Figure 2 is obtained. Under the control of the clock 
switch, the sampling and integration of the integrator are completed. In the fgure, ϕ 2/ϕ 2d is an 
integral switch, and ϕ1/ϕ1d is a sampling switch, both of which are transmission gates controlled by 
two clocks that do not overlap each other, in which ϕ1/ϕ1d is closed and ϕ2/ϕ2d is open. During 
this period, the quantizer performs sampling and conversion, that is, sampling by the frst integrator. 
Meanwhile, the second-stage integrator samples the results of the frst-stage integrator where ϕ2/ϕ2d 
is closed and ϕ1/ϕ1d is open. During this period, the quantization result of the quantizer is fed back to 
the input terminal through the DAC and subtracted from the input signal and sent to the integrator. 
The frst-stage integrator integrates the difference signal, and the second-stage integrator integrates 
the frst-stage result, that is, the output of the integrator is delayed from the input signal by the input 
signals of two quantizers. 

The main components of the integrator are the transconductance operational amplifer and the 
discrete switched capacitor. Traditional integrators generally adopt a feedback structure, and input 
signals need to be added before each stage of the integrator input, resulting in a complex circuit 
structure. In order to further reduce the power consumption of the integrator, a feedforward structure 
is adopted. This architecture only needs to add the input signal before the frst stage input of the 
integrator and is insensitive to the distortion of the operational amplifer in the integrator. As the 
swing is small, where the swing of each operational amplifer is about 200 MV, it optimizes the current 
demand of the amplifer and hence reduces power consumption. Since the SAR ADC is used as the 
quantizer and the integrator processes the residual difference between the quantization result and the 
input signal, the frst integrator needs no sampling capacitor, which further saves the chip area and 
hence elaborates the optimization of this part of the circuit. 

5.1. Design of Transconductance Operational Amplifer Circuit 

According to the principle explanation of the transconductance operational amplifer, the circuit 
result shown in Figure 6 is designed. In the fgure, except for M3, M4, M12 and M13 are NMOS 
transistors, and the others are PMOS transistors. MOS transistors M1 and M2 are used as differential 
pairs, M3 and M4 are used as active loads and M5 provides a constant current source to complete the 
differential input stage. The source follower is composed of M6 and M8, and M7 and M9, and provides 
a static bias for M10 and M11 at the same time. The VGS of M6 and M7 determines the DC voltage 
difference between the gates of output stages M10 and M12 and M11 and M13. by adjusting the 
width/length ratio of M6 and M7, the output offset can be guaranteed to be zero. Resistors and capacitors 
form a frequency compensation network, which is bridged between the input and output ends of the 
output amplifer stage. 
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6. Pre-Circuit Simulation and Verifcation 

According to the proposed design concept, each module of the modulator is designed separately. 
In this section, the functional simulation of the designed circuit is carried out by using Cadence spectre 
simulation software to verify the design scheme and the feasibility of the circuit. The designed clock 
circuit is integrated and packaged, and the whole clock signal is generated by an external clock, and the 
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clock control timing of the modulator is simulated. The full simulation circuit is shown in Figure 8. 
As can be seen, the voltage amplitude of CLK is set to 1.8 V, the period is 312.5 ns, the rising and falling 
times are both 900 ps and the pulse width is 155 ns. The clock signal label in the fgure corresponds to 
the design. 
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The simulation results can be divided into two parts, the frst part is the quantizer sampling clock, 
quantizer switching clock and circuit switching clock signal, as shown in Figure 9. The second part is 
the integrator clock, quantizer sampling clock and DAC transmission clock, as depicted in Figure 10. 
Through the simulation results of the clock circuit, it can be concluded that the clock unit design of 
each module of the modulator is reasonable, and the clock control signal meets the timing function of 
each module of the modulator. 
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Through the simulation and analysis of the modulator clock unit, the correctness of the overall 
timing logic of the designed modulator is verifed. After each module unit of the circuit is designed, 
the overall circuit of the modulator circuit is simulated. The simulation circuit is shown in Figure 11, 
and the signal label in the fgure is given in Table 1. Since CLK2p and CLK1p are the integrator 
integration phase and sampling phase clocks, respectively, only one of them will be explained below. 
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Table 1. Description table of the modulator structure diagram. 

Name Representative Signifcance Name Representative Signifcance 

RESET Modulator reset signal CLK Total clock input signal 
outn0 Negative feedforward of integrator VREFP Voltage reference 
outp0 Integrator forward feed VCM Common-mode voltage 
VIN Negative input signal VREFN Terminal voltage at ground 
VIP Positive input signal Von1 DAC negative feedback 

B0~B4 Five-bit quantization Vop1 DAC positive feedback 
DATA Quantization result output clock vip0 Negative input of integrator 
SARIN Comparator negative signal vin0 Positive input of integrator 

SAROUT Positive signal of comparator clk2p Integrator integrated phase clock 

As Cadence spectre takes a long time to simulate the time above microsecond level and cannot 
simulate the RESET signal in a short time, the RESET is not verifed here, so that its grounding has no 
effect on the circuit. This simulation mainly verifes the logic output of the main signal of the modulator 
and further confrms the logic function of the modulator. The overall simulation is shown in Figure 12. 
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By analyzing the simulation results, it can be concluded that after being processed by an integrator, 
the voltage amplitude of the comparator entering the quantizer is increased to a certain extent, and the 
voltage applied at both ends of the comparator is appropriately increased, which makes the comparator 
more stable and also improves the accuracy. The quantizer also works normally under the action of 
the clock circuit, and the fve-bit quantization output of the quantizer and the sampling clock of the 
quantizer output meet the predetermined output result. The main input/output signals and working 
clocks of the quantizer and integrator in the simulation diagram correspond to the working principle of 
the modulator described in the previous section, which verifes the rationality of the proposed working 
principle of the modulator. 

7. Layout Design 

The layout drawing and verifcation are completed using a SMIC 180 nm process. A bootstrap 
switch is used at the input of the ADC to reduce the nonlinearity of on-resistance. The chip makes use 
of several capacitor units to form capacitors and achieves accurate proportional matching of coefficients. 
The differential structure of the capacitor array is completely symmetrically distributed on both sides of 
the comparator, which is used to improve the overall anti-noise capability of the circuit [33]. The digital 
control logic is uniformly placed at the back end of the chip, and the digital part and the analogue part 
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are effectively isolated to reduce the interference of digital noise on the front-end analogue module. 
The overall design structure ensures the symmetrical arrangement of analogue parts of the ADC. 

The test chip is fabricated with a 180 nm CMOS process. The design does not require any 
high-precision capacitance and low threshold voltage process. Figure 13 shows a micrograph of the 

2chip. The overall chip area is 1360 × 1360 µm2 and the core area is 966 × 748 µm . 
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in Table 2. As can be seen, the designed modulator chip has lower power consumption and better 
performance against others. By measuring the voltage and current on the PCB of the chip, the test 
power consumption of this design chip is found to be 3.654 mW. However, there are some losses 
from the auxiliary devices and power supply on the testing board, which result from the high test 
data. If other device losses and power losses are not considered, the actual power consumption of the 
chip is less than 2.5 mW. Reference [18] adopts a second-order 4-bit quantizer structure which has a 
simulated power consumption of 69 µW and lower than the proposed architecture. However, it adopts 
a 65 nm process and the simulated data does not consider the power and circuit loss, so it cannot be 
compared at the same level. Meanwhile, the SNDR value of the proposed architecture is 106 dB which 
demonstrates the obvious advantages of the proposed architecture. 

By using a 3.2 MS/s sampling rate, the output power spectrums with the oversampling ratio of 128 
of the delta-sigma ADC at three selected differential input sine waves, i.e., 5.1, 12 and 23 K, are shown 
in Figure 14. In the current architecture, when the signal bandwidth (25 K) is fxed, the oversampling 
ratio (OSR) is determined by the expected precision of the modulator and the highest sampling rate 
of the sampling circuit. For quantization noise, the higher the oversampling ratio is, the higher the 
signal-to-noise ratio (SNR) that can be achieved by the modulator. However, the fnal accuracy of the 
modulator depends on the upper limit of the accuracy that can be realized by the sampling circuit, 
thus limiting the sampling rate of the modulator and ultimately affecting the oversampling ratio of 
the modulator. 
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Table 2. Parameter comparison. 

Power Consumption 
(mW) 

Frequency 
(MHz) 

FOMs 
(dB) 

CMOS Technology 
(µm) 

SNDR 
(dB) OSR AREA 

(mm2) 

[34] 14.7 8.0 172.2 0.18 105.9 128 -
[35] 8.1 - - 0.18 81.0 - -
[36] 6.65 960 150.7 0.028 - 48 0.015625 
[37] 12.7 0.64 165.0 0.35 - 320 11.48 
[38] 475 2.5 - 0.25 100.0 - -
[39] 18.5 - - 0.65 72.3 - 0.25 
[40] 5 256 160.4 0.13 74.4 64 0.33 
[41] 16 600 166.0 0.090 78 30 0.36 
[42] 3.2 1 165.6 0.35 100.2 250 3.8 

This work 3.65 3.2 169.4 0.18 106 128 0.56 
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The results confrmed the consistent performance of the output power spectrums across the 
desired operating input sine wave frequency band from 0 to 25 KHz. To evaluate the corresponding 
SNDR performance, Figure 15 illustrates the measured SNDR against the input signal frequency. It can 
be seen that the peak SNDR is 106 dB at 3 kHz and the lowest SNDR is 101 dB at 25 KHz. Figure 15 
shows the SNDR point connection diagram of different integer signal frequencies under the same 
signal amplitude in the actual test. As can be seen, SNDR decreases with the increase in the signal 
frequency due to the presence of clock jitter and nonlinear factors. Data weighted averaging (DWA) 
is used in the feedback capacitor array, which reduces the harmonic components such as a second 
harmonic and third harmonic caused by capacitor array mismatch, thus improving the overall dynamic 
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range. The test results show that the dynamic range can exceed 100 dB. The total power consumption 
of the chip is 3.654 mW. The supply voltage of both analogue and digital circuits is 1.8 V and the Figure 
of Merit (FOM) is 169.4 dB. 
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9. Conclusions 

Employing a second-order 5-bit quantization structure, a Σ-Δ modulator with low power 
consumption and a high-resolution modulator scheme was proposed for analogue-to-digital converters. 
Through optimizing the circuit structure, a reusable quantizer sigma-delta modulator based on the SAR 
structure was presented. Under the condition of a 128 oversampling rate, it demonstrates a resolution of 
16 bits, power consumption of 3.654 mW and FOMs of 169.4 dB for 0 to 25 kHz analogue signals, showing 
it has higher data conversion efficiency and a higher optimal value. These results confrmed that the 
modulator of this structure meets the requirements of low power consumption and high precision for 
audio applications. The whole modulator was realized by a SMIC single-layer polysilicon six-layer 
metal 180 nm CMOS process where the working power supply voltage was 1.8 V. In comparison 
with other reported modulators realized by a 180 nm CMOS process, the proposed architecture offers 
several advantages and is far superior retrospectively with lower power consumption. 
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