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Stability and periodicity of high-order

Lorenz-Stenflo equations

Junho Park, Beom-Soon Han, Hyunho Lee, Ye-Lim Jeon and

Jong-Jin Baik

School of Earth and Environmental Sciences, Seoul National University, Seoul 08826,

Republic of Korea

Abstract. In this paper, we derive high-order Lorenz-Stenflo equations with 6

variables and investigate periodic behaviors as well as stability of the equations.

The stability of the high-order Lorenz-Stenflo equations is investigated by the linear

stability analysis for various parameters. Periodicity diagram is also computed and

it shows that the high-order Lorenz-Stenflo equations exhibit very different behaviors

from the original Lorenz-Stenflo equations for both periodic and chaotic solutions. For

example, period 3 regime for large parameters and scattered periodic regime are newly

observed, and chaotic regimes exist for smaller values of r but for larger values of s

than the original equations. In contrast, similarities such as the enclosure of the chaotic

regime by the periodic regime or complex periodic regimes inside the chaotic regime

are also observed for both the original and high-order Lorenz-Stenflo equations.
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1. Introduction

Stenflo [1] derived a simple set of nonlinear ordinary differential equations, now known

as the Lorenz-Stenflo equations, from the equations for atmospheric acoustic-gravity

waves. The Lorenz-Stenflo equations consist of the following equations:

Ẋ = σ(Y −X) + sV, (1)

Ẏ = rX −XZ − Y, (2)

Ż = XY − bZ, (3)

V̇ = −X − σV, (4)

where X, Y , Z and V are the dynamical variables, dot denotes the derivative with

respect to the time t, σ is the Prandtl number, r is the generalized Rayleigh parameter,

b is the geometric parameter, and s is the rotation parameter. This set of equations

is regarded as the extended Lorenz equations since it reduces to the Lorenz equations
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[2] when the rotation parameter s is zero, and it also can be derived from the rotating

thermal convection equations. Various dynamic features such as stability [3], bifurcation

[4, 5], or periodic [6] and chaotic behaviors [7] of the Lorenz-Stenflo equations have been

thoroughly studied for decades after Stenflo [1].

Recently, Shen derived the high-order Lorenz equations with 5 variables [8] and 6

variables [9] by including additional terms with higher vertical wavenumbers. In this

way, nonlinear feedback of the high-order terms to the original Lorenz equations can be

investigated. This nonlinear feedback is very important since it can change significantly

the stability and bifurcation properties of nonlinear equations [10]. From analyses of

the linear stability and the Lyapounov exponents, Shen [8] found that stability of the

5 variable Lorenz equations is increased for the parameter r compared to that of the

original Lorenz equations. On the other hand, the 6 variable Lorenz equations are

slightly stabilized [9] compared to the five-dimensional Lorenz equations. This implies

that different small scale processes in additional terms act different roles for the stability

of the system [9].

In this paper, we derive high-order Lorenz-Stenflo equations by adding terms

with higher vertical wavenumbers similar to Shen [8] for the five-dimensional Lorenz

equations. Stability of the high-order Lorenz-Stenflo equations is investigated by

the linear stability analysis for various parameters (section 2). In section 3, we

numerically investigate the high-order Lorenz-Stenflo equations by computing the

periodicity diagram [6] in the parameter space (r, s) for σ = 10 and b = 8/3. Conclusions

are presented in section 4.

2. High-order Lorenz-Stenflo equations

2.1. Derivation of high-order Lorenz-Stenflo equations

We introduce two-dimensional rotating thermal convection equations in x−z directions.

The governing equations in non-dimensional form [2, 11] are

∂∇2ψ

∂τ
=
∂ψ

∂z

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂z
− 2Ω

∂v

∂z
+Raσ

∂T

∂x
+ σ∇4ψ, (5)

∂v

∂τ
=
∂ψ

∂z

∂v

∂x
− ∂ψ

∂x

∂v

∂z
+ 2Ω

∂ψ

∂z
+ σ∇2v, (6)

∂T

∂τ
=
∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
+
∂ψ

∂x
+∇2T, (7)

where ψ is the stream function, v is the velocity in y-direction, T is the temperature

deviated from the mean state, τ is the time, Ω is the angular velocity, ∇2 = ∂2/∂x2 +

∂2/∂z2, Ra is the Rayleigh number, and σ is the Prandtl number. We consider truncated

Galerkin expansions for ψ, v and T as

ψ = ψAX(t) sin(kxx) sin(kzz), (8)

v = vAV (t) sin(kxx) cos(kzz), (9)
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T = yAY (t) cos(kxx) sin(kzz)− zAZ(t) sin(2kzz)

+ y1AY1(t) cos(kxx) sin(3kzz)− z1AZ1(t) sin(4kzz), (10)

where kx and kz are the wavenumbers in x and z directions, respectively, k2 = k2x + k2z ,

t = k2τ , ψA =
√

2k2/(kxkz), vA = −(2Ωkz/k
2)ψA, yA = y1A =

√
2k6/(Rak2xkz) and

zA = z1A = k6/(k2xkzRa). In these truncations, the high-order terms with non-zero y1A
and z1A are considered only for T following Shen [8]. Note that if y1A = z1A = 0, this

leads to the original Lorenz-Stenflo equations (1)-(4). Applying (8)-(10) to (5)-(7), we

obtain the following high-order Lorenz-Stenflo equations:

Ẋ = σ(Y −X) + sV, (11)

Ẏ = rX −XZ − Y, (12)

Ż = XY −XY1 − bZ, (13)

V̇ = −X − σV, (14)

Ẏ1 = XZ − 2XZ1 − dY1, (15)

Ż1 = 2XY1 − 4bZ1, (16)

where s = 4Ω2k2z/k
6, r = Rak2x/k

6, b = 4k2z/k
2 and d = (k2x + 9k2z)/k2. Note that the

constant d has a relation d = 1 + 2b.

Although the above high-order Lorenz-Stenflo equations are derived from the

rotating thermal convection equations, they can be also derived similarly from the

atmospheric gravity wave equations as done by Stenflo [1]. In the following subsection,

the stability of the high-order Lorenz-Stenflo equations is investigated by the linear

stability analysis.

2.2. Linear stability analysis

To perform the linear stability analysis, we first need to find fixed points X0, Y0, Z0,

V0, Y10 and Z10 which can be obtained by applying Ẋ = Ẏ = Ż = V̇ = Ẏ1 = Ż1 = 0 to

(11)-(16). The fixed points are the origin O = (X, Y, Z, V, Y1, Z1) = (0, 0, 0, 0, 0, 0) and

Pi = (X0i, Y0i, Z0i, V0i, Y10i, Z10i), (i = 1, ..., 4) which satisfy the following relations:

X4
0 +B1X

2
0 +B2 = 0, Y0 =

(
1 +

s

σ2

)
X0, Z0 = r − 1− s

σ2
,

V0 = −X0

σ
, Y10 =

X0Z0

d+X2
0/b

, Z10 =
X2

0Z0

2b (d+X2
0/b)

, (17)

where B1 = b {d− 2Z0/(1 + s/σ2)} and B2 = −b2dZ0/(1 + s/σ2). For convenience, we

denote four fixed points X01 = −X02 =
√

(−B1 +
√
B2

1 − 4B2)/2 and X03 = −X04 =√
(−B1 −

√
B2

1 − 4B2)/2. Around the fixed points, we apply perturbations x′ = X−X0,
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Figure 1. Neutral stability curves of the fixed points O (thick dash-dot line) and P1,2

(thick dashed line) in the parameter space (r, s) for σ = 10 and b = 8/3. Thin dashed

line represents the neutral stability curve on which the Hopf bifurcation occurs for the

original Lorenz-Stenflo equations.

y′ = Y −Y0, z′ = Z−Z0, v
′ = V −V0, y′1 = Y1−Y10 and z′1 = Z1−Z10. Then, we obtain

linearized equations of perturbations ~v = (x′, y′, z′, v′, y′1, z
′
1) as d~v/dt = A~v where

A =



−σ σ 0 s 0 0

r − Z0 −1 −X0 0 0 0

Y0 − Y10 X0 −b 0 −X0 0

−1 0 0 −σ 0 0

Z0 − 2Z10 0 X0 0 −d −2X0

2Y10 0 0 0 2X0 −4b


. (18)

For each fixed point, eigenvalues λ can be obtained by solving the eigenvalue problem

A~v = λ~v, and stability of the high-order Lorenz-Stenflo equations can be determined

by the real part of λ (i.e. stable if Re(λ) < 0 and unstable if Re(λ) > 0). For the fixed

point O, the eigenvalue equation of the matrix A becomes

(λ+ d)(λ+ 4b)(λ+ b)
(
λ3 + A1λ

2 + A2λ+ A3

)
= 0, (19)

where A1 = 1 + 2σ, A2 = s + σ2 + 2σ − rσ and A3 = s − (r − 1)σ2. Note that four

eigenvalues in the last two parentheses are the same as those of the fixed point O for

the original Lorenz-Stenflo equations [5] and λ = −d and λ = −4b are new eigenvalues

which appear due to inclusion of the high-order variables Y1 and Z1. Since b and d are

positive, this implies that stability around the fixed point O for the high-order Lorenz-

Stenflo equations is determined by the eigenvalues in the last parentheses thus is the

same as that for the original Lorenz-Stenflo equations.

For the fixed points Pi, it is very cumbersome to obtain analytic expressions of

eigenvalues so the eigenvalue problem of the matrix A is numerically solved. Figure 1

shows neutral stability curves, where the real part of λ becomes zero, of the fixed points

O and P1,2 in the parameter space (r, s) for σ = 10 and b = 8/3. For these parameters,
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(σ, b) = (8, 8/3)
(10, 8/3)
(12, 8/3)
(10, 1)
(10, 3)

Figure 2. Neutral stability curves of the fixed points P1,2 in the parameter space

(r, s) for (σ, b): (8, 8/3) (black solid line), (10, 8/3) (black dashed line), (12, 8/3) (black

dash-dot line), (10, 1) (blue dashed line) and (10, 3) (red dashed line)

it is found that the fixed points P3 and P4 lie in the complex plane so only the stability

of the fixed points P1,2 is investigated. It is found that the neutral stability curves of P1

and P2 are identical. Also, it is found that the neutral stability curve for the fixed points

P1,2 is very different from that of the Hopf bifurcation, where all the fixed points become

unstable, for the original Lorenz-Stenflo equations (1)-(4). For s = 0, the fixed points

P1,2 become unstable when r > 45.94, a larger value than the value for the original

Lorenz equations r > 24.74 [8]. But interestingly, the critical value r on the neutral

stability curve decreases as s increases, and it reaches the minimum r ≈ 38.23 at s ≈ 37.

Then, the critical value r on the stability curve increases with s when s > 37. Moreover,

it is clearly shown that the high-order Lorenz-Stenflo equations become more unstable

for the parameter r than the original Lorenz-Stenflo equations when s > 89.3. This

is remarkable because the previous study on the high-order Lorenz equations by Shen

[8] reveals that the nonlinear feedback is negative so the stability is increased for the

parameter r while for the high-order Lorenz-Stenflo equations, inclusion of the rotation

parameter s gives the positive nonlinear feedback to the equations as a decrease of the

stability.

Figure 2 shows neutral stability curves of the fixed points P1,2 in the parameter

space (r, s) for different values of the parameters σ and b. It is clearly shown that when

σ < 12 for b = 8/3 or when b > 1 for σ = 10, there is a range of s where the critical value

r decreases as s increases. However, for all values of the parameters, the critical value

r on the stability curve increases with s when s is sufficiently large. This implies that

the parameter s for the high-order Lorenz-Stenflo equations acts a role of stabilization

when s is sufficiently large, similar to that for the original Lorenz-Stenflo equations. In

the next section, numerical investigations on the high-order Lorenz-Stenflo equations

(11)-(16) are made.
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Figure 3. Time series plots of the variable X for σ = 10 and b = 8/3, and for (r, s):

(a) (28, 0), (b) (40, 0), (c) (40, 120), (d) (60, 0), (e) (40, 50) and (f) (60, 150).

3. Numerical results

We perform numerical integrations of (11)-(16) using the 4th order Runge-Kutta method

with a time resolution ∆t = 10−4. Figure 3 shows time series plots of the variable X

for different values of the parameters r and s for σ = 10 and b = 8/3. The initial

condition (X, Y, Z, V, Y1, Z1) = (1, 0, 0, 0, 0, 0) is used. For r = 28 and s = 0 (figure

3a), the high-order Lorenz-Stenflo equations are stable, and the variable X converges

to the fixed point X02 ≈ −11.66 as time goes to infinity. The convergence of X is also

observed for other stable cases in figure 3(b) and (c) such that X converges to the fixed

points X02 ≈ −14.14 and X01 ≈ 9.16 for (b) and (c), respectively. When the high-order

Lorenz-Stenflo equations are unstable (figure 3d-f), the variable X does not converge to

a fixed point but it shows either chaotic behaviors (figure 3d and e) or periodic behaviors

(figure 3f) around the fixed points.

For unstable solutions, we obtain the periodicity diagram [6, 12, 13] to investigate

periodic and chaotic behaviors in wide ranges of the parameters r and s. We mainly

focus on the parameters r and s, and other parameters are fixed as σ = 10 and b = 8/3.

The initial condition with X0 = 10−2, Y0 = V0 = Y10 = Z10 = 0 and Z0 = r is used

for numerical integrations, and the data are truncated from t = 0 to t = 100 in order

to ignore transient behaviors by the initial condition [4, 6, 14]. Many different initial

conditions were also tested, and all the results confirmed that solutions lie on periodic



7

−40 −20 0
30

40

50

60

70

80

Y

Z

−50 0 50

10

20

30

40

50

60

Y

Z

−100 0 100

100

150

200

250

Y

Z

−100 0 100

100

150

200

250

Y

Z

(b)

(c)

(a)

(d)

Figure 4. Trajectories on the Y −Z plane for σ = 10 and b = 8/3, and for (a) chaotic

solution (r = 40, s = 50), (b) period 1 solution (r = 60, s = 150), (c) period 2 solution

(r = 180, s = 0) and (d) period 4 solution (r = 180, s = 10).

trajectories or chaotic attractors. After t = 100, additional numerical integrations are

performed from t = 100 to t = 120. This time range is sufficient to capture periodic

or chaotic behaviors of solutions in the parameter space of our interest. We define the

periodicity as the number of local maximums of the variable Z (Zmax) [6, 14]. The local

maximums Zmax are picked in the time range 100 ≤ t ≤ 120, and they are regarded as

different maximums if they differ with a relative tolerance greater than 0.1% [6, 14].

In figure 4, trajectories on the Y − Z plane for σ = 10 and b = 8/3, and for

different values of r and s are displayed. Figure 4(a) shows an example of chaotic

solutions. The period cannot be defined for the chaotic solutions since it increases as

more time integrations are performed. An example of period 1 solutions is shown in

figure 4(b) where there is one local maximum Zmax = 78.15. The trajectory in figure

4(c) has a period 2 since it has two local maximums Zmax = 256.01 and Zmax = 235.35.

Similarly, figure 4(d) shows an example of solutions with period 4.

Figure 5 shows the periodicity diagram in the r-s parameter space for σ = 10

and b = 8/3. The periodicity diagram is computed with resolutions ∆r = ∆s = 1.

These resolutions are not sufficient to capture very narrow regimes like narrow periodic

windows [15], but they are sufficient to see the overall structures of periodic and chaotic

regimes in wide ranges of the parameters r and s. The black regime represents the

regime of stable solutions and is separated from the unstable regime by a blue dashed

line which is the neutral stability curve of P1,2 in figure 1. In the unstable regime,

solutions with periods from 1 to 16 are distinguished by different colors, and chaotic

solutions or solutions with periods higher than 16 are colored by white. As seen in

figure 5, regimes with periods from 9 to 16 colored by yellow cover very small areas.
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Figure 5. Periodicity diagram in the r-s parameter space (0 ≤ r ≤ 5000 and

0 ≤ s ≤ 5000) for σ = 10 and b = 8/3. Colors indicate the periodicity of solutions:

fixed solutions (black), period 1 (dark red), period 2 (red), period 3 (blue), period 4

(pink), period 5 (green), period 6 (cyan), period 7 (light green), period 8 (light pink),

period 9-16 (yellow). White regions represent solutions with period higher than 16 or

chaotic solutions. Blue dash-dot and dashed lines represent curves on which the fixed

points O and P1,2 become unstable, respectively.

This implies that regimes with periods higher than 16 cover even smaller areas and the

white regime can be regarded almost as the chaotic regime [6].

Compared to the periodicity diagram of the original Lorenz-Stenflo equations [6],

the periodicity diagram of the high-order Lorenz-Stenflo equations shows quite different

structures. Firstly, a period 3 regime which extends for large values of r is observed for

the high-order Lorenz-Stenflo equations. Secondly, periodic regimes are less observed

inside the chaotic regime for the high-order Lorenz-Stenflo equations. Moreover, there

are new interesting features such as scattered periodic regime (1250 . r . 1500,

2000 . s . 2500), discontinuous changes of periodic regimes (2350 . r . 2450,

3200 . s . 3600), etc. These are not observable for the original Lorenz-Stenflo

equations. For the high-order Lorenz-Stenflo equations, the chaotic solutions exist for

r < rmax = 2515 and s < smax = 3336, and all the solutions outside these ranges

are either periodic or fixed. For the original Lorenz-Stenflo equations, rmax = 2975

and smax = 2340 [6]. This implies that the stability of the high-order Lorenz-Stenflo

equations is increased for the parameter r while it is decreased for the parameter s.

Similar features between the original and high-order Lorenz-Stenflo equations are

also observed. First of all, inside the chaotic regime which is enclosed by periodic

regimes for large parameters r and s, periodic regimes such as narrow periodic windows,

shrimp-shape islands or long bands are well observed similar as the original Lorenz-

Stenflo equations [6, 7]. These periodic regimes are frequently observed in other chaotic

systems such as the Ehrhard-Müller system [14], modulated CO2 laser [16], the Hénon
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Figure 6. Bifurcation diagram of Zmax as a function of s for r = 3000, σ = 10 and

b = 8/3. Dashed lines represent locations where the periodicity changes. The interval

∆s = 0.25 is used in this diagram.

map [17], or the Chua’s circuit [18]. Periodicity changes from 2 → 4 → 3 → 2 → 1 as

s increases in the range 2600 . r . 3000 are also observed for both the original and

high-order Lorenz-Stenflo equations.

To understand why the period 3 regime is present for large r, we show in figure 6

the bifurcation diagram of Zmax as a function of s for r = 3000, σ = 10 and b = 8/3.

Dashed lines represent locations where period of the solutions changes. Interestingly,

new bifurcation appears in the range 716 < s < 805, and this leads to the period 3.

This new bifurcation occurs as the trajectories on the Y − Z plane changes, and new

maximums around Z ≈ 2740 appear as s increases. Figure 7 clearly shows how the

period of solutions changes and how the symmetry of the trajectory on Y = 0 breaks

down as s increases. The period changes from 2 to 3 as the new local maximum around

Zmax ≈ 2760 appears (figure b and c), and it changes from 3 to 4 as the symmetry of

the trajectory on Y = 0 breaks down (figure c and d). Then, the period becomes 2 as

the local maximum around Zmax ≈ 2690 disappears (figure e and f).

4. Conclusions

This paper investigated the high-order Lorenz-Stenflo equations derived from the

rotating thermal convection equations by considering two additional Fourier modes with

two higher vertical wavenumbers. From the linear stability analysis, it was found that

the stability of the high-order Lorenz-Stenflo equations is very different from that of

the original Lorenz-Stenflo equations. For the parameters σ = 10 and b = 8/3, the

high-order Lorenz-Stenflo equations are more stable than the original Lorenz-Stenflo

equations when s < 89.3 while they are more unstable when s > 89.3. Linear stability

of the high-order Lorenz-Stenflo equations is also investigated for different values of

the parameters σ and b. In the unstable regime, periodic and chaotic behaviors of the
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Figure 7. Trajectories on the Y − Z plane for σ = 10, b = 8/3 and r = 3000, and for

(a) period 1 solution (s = 700), (b) period 2 solution (s = 740), (c) period 3 solution

(s = 770), (d) period 4 solution (s = 775), (e) period 3 solution (s = 790) and (f)

period 2 solution (s = 820).

solutions are investigated by the periodicity diagram in wide ranges of the parameters

r and s. Similarities with the original Lorenz-Stenflo equations are that there are both

chaotic and periodic regimes and the chaotic regime is enclosed by the periodic regimes.

Periodic regimes such as narrow periodic windows, shrimp-shape islands or long bands

are also observed inside the chaotic regime for the high-order Lorenz-Stenflo equations.

Differences from the original Lorenz-Stenflo equations are that new interesting regimes

such as scattered periodic regime, discontinuous period changes or period 3 regime for

large r appear in the high-order Lorenz-Stenflo equations. Moreover, the high-order

Lorenz-Stenflo equations can be chaotic for smaller values of r (r < 2515) but for larger

values of s (s < 3336) than the original Lorenz-Stenflo equations. This implies that the

inclusion of high-order nonlinear terms can lead to different stability of the equations.

This paper also investigated in detail the new period 3 regime which appears due to the

transition of trajectories as s increases.

While this study focuses mainly on the periodic behaviors, chaotic behaviors of the

high-order Lorenz-Stenflo equations should be investigated as done by Rech [7] for the
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original Lorenz-Stenflo equations. Theoretical studies such as hyper-chaotic properties

[19] or boundedness [20] for the high-order Lorenz-Stenflo equations should also be

performed. Moreover, the Lorenz-Stenflo equations with even higher order terms should

be investigated since more generalized equations with high order terms can improve the

stability or predictability [8, 10] which will be of great interest for people who research

on atmospheric gravity waves or thermal convection.
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