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Abstract: Adenosine receptors (ARs), like many otherGprotein-coupledreceptors (GPCRs), are targets 
of primary interest indrug design. However, one of the main limits for the development of drugs for 
this class of GPCRs is the complex selectivity profle usually displayed by ligands. Numerous efforts 
have been madefor clarifying the selectivity of ARs, leading to the development of many ligand-based 
models. The structure of the AR subtype A1 (A1AR) has been recently solved, providing important 
structural insights. In the present work, we rationalized the selectivity profle of two selective A1AR 
and A2AAR antagonists, investigating their recognition trajectories obtained by Supervised Molecular 
Dynamics from an unbound state and monitoring the role of the water molecules in the binding site. 

Keywords: GPCRs; adenosine receptors; selectivity; A1AR; A2AAR; antagonist; moleculardynamics 
(MD); supervised molecular dynamics (SuMD) 

1. Introduction 

Adenosine receptors (ARs) are class A G protein-coupled receptors (GPCRs) that bind the 
endogenous agonist adenosine.ARs are composed of foursubtypes: A1, A2A, A2B, A3. While A1 and 
A3ARs (which share 49% of a sequence identity) are preferentially coupled to Gαiproteinsand therefore 
inhibit the adenylatecyclase, A2A and A2BARs (sharing 59% of a sequence identity) stimulatethis 
enzyme, as being coupled to Gαs proteins [1]. Several ARs antagonists are in clinical trials for various 
diseases. With regards to A2AAR, is tradefylline has been recently approved for Parkinson’sdisease 
(NCT02610231) [2], PBF-509 is in phase I/II trials for non-small cell lung cancer (NCT02403193), 
and CPI-144 is in phase I trials for various cancer types (NTC02655822). PBF-680, on the other hand, 
is the only A1 AR antagonist inclinical phase II, for the treatment of Asthma (NTC02635945) [3]. 

One of the difficulties during the development of ARs agonists and antagonists as therapeutic 
agents is the poor selectivity between differentreceptorssubtypes [4]. For this reason, many efforts have 
been madeto elucidate the molecular basis of ARs ligands selectivity, and several structure-activity 
relationship (SAR) models have been developed for selective ligandsof all the four subtypes [1,2,5–14]. 

With the increasing availability of structural information (mainly from mutagenesis, X-ray, 
and cryo-EM approaches [15]) in the last few years, light has been shed on the origin of selectivity 
onARs.Recently, the A1AR inactive (PDB, Protein Data Bank, code 5UEN [16] and 5N2S [17]) and 
active (PDB code 6D9H [18]) structures have been solved. Interestingly, in [17], Cooke and colleagues 
obtained the X-ray crystal structure of A1 and A2A Ars, in a complex with the same xanthine ligand 
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PSB36, providing insight about the selectivity. There are several structural differences between A1AR 
and A2AAR. The second extracellular loop (ECL2), in particular, is more folded in A1AR and orients 
perpendicularly to the plane of the membrane, while in A2A ARit forms a longer helix, which is parallel 
to the lipid bilayer. This difference is probably due to the presence of two disulfde bondsuniquely 
present in A2AR. Indeed, the bond between Cys71 and Cys159 anchorsECL2 to ECL1,while the bond 
between Cys74 and Cys146 tethers TM3 to ECL2. The class A conserved disulfde bonds between 
Cys80 and Cys169 is present in both the two subtypes. These differences in the disulfde bonds likely 
contribute to the outward movement of the top of transmembrane helix 2 (TM) in the inactive A1AR 
(Figure 1). 

Further divergence involves TM7, which is shifted outward compared to A2AAR, due to the shorter 
ECL3, andTM6 slightly shifted inward in A1AR. These rearrangements, in turn, affect the orthosteric 
site of A1AR, which is wider than A2AAR. Interestingly, the key residues in the orthosteric site of the 
two receptors are conserved and drive the same binding mode of the antagonist PSB36 (Figure 1). 
More precisely, the xanthine scaffold forms two hydrogen bonds with Asn254 (A1AR, Asn253 in A2A 

AR) and a π- π stacking with Phe171 (A1AR, Phe168 in A2AAR). Nevertheless, Asn254 (A1AR) is 
located in the binding site deeper than Asn253 in A2AAR, and the xanthine ligand is consequently 
positioned deeply in the orthosteric site (Figure 1). 
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inactive A1 (orange) and A2A (cyan) adenosine receptors (Ars) (PDB code 5N2S and 5N2R respectively). 
(B) Superposition of the same xanthine ligand PSB36 in the two aforementioned crystal structures. 

Despite the huge help provided from high-resolution structural biology techniques, certain 
selectivity profles cannot be only rationalized by the mere coordinates of bound state or “fnal” state. 
Ligand recognition is an articulated mechanism in which many variables may play a relevant role and 
over the last few years, there has been rising attention in the understanding of binding kinetics at 
GPCRs and its determinant role to successfully target this class of proteins [19]. 

In the present study, we used supervised molecular dynamics (SuMD) simulations toshed light 
on the molecular basis of the selectivity of three different ligands to A1AR and A2AAR, not only 
considering the bound states, but also the possible different recognition mechanism preceding the fnal 
orthosteric site and the role of the solvent. We focus our attention on three antagonists: the A2AAR 
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selective antagonists Z48 (Ki 16.9 nM in A2AAR and 1345.7 nM in A1AR) [20]; the A1AR selective 
antagonist LC4 (Ki 16,800 nM in A2AAR and 89 nM in A1AR) [21]; and the nonselective antagonist 
caffeine (Figure 2). SuMD [22,23] is a molecular dynamics (MD) approach that allows for the study 
of molecular recognition processes in a fully atomistic way, in the nanosecond timescale, without 
introducing any energetic biases. 
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protein preparation (removal of crystallographic water molecules, ions, and other solvent molecules, 
selection of the highest occupancy for each residue, assignment of the correct protonation state at pH 
7.4). Systems preparation for the molecular dynamics simulations was carried out using VMD [25]. 
The protein was explicitly solvated in a water box with the borders placed at a distance of 15 Å from 
any protein atom, the water model used was TIP3P [26]. The system charge was neutralized to a 
concentration of 0.154 M using Na+/Cl−. The lipid bilayer consisted of phosphatidylcholine (POPC) 
units. 

The sodium ionwithin the TMD allosteric site of A2A-AR was retained, andit was also placed by 
superposition in A1-AR. 

2.2. Equilibration of the System 

All the simulations were performed with a CHARMM36 force field [27] and using ACEMD2 
[28]. Ligands parameters were retrieved from Paramchem [29], a web interface for the assignment of 
parameters based on the CGenFF[30] force field. 

The system energy was minimized in 1500 steps using the conjugate-gradient method, then the 
equilibrationof the system was done in four steps. The first one consistedof 5 ns of NPT simulation 
with harmonic positional constraints of 1 kcal mol−1Å−2 on each atom of the protein and the lipid 
bilayer. The second step consisted in 10 ns of NPT simulation with harmonic positional constraints 
of 1 kcal mol−1Å−2only on eachprotein atom and on the phosphorus atom of the POPC units, the third 
step consisted in 5 ns of NPT simulation with harmonic positional constraints of 1 kcal mol−1Å−2only 
on the alpha carbons of the protein, and the last step consisted in 50ns of NVT simulation without 
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For the productive simulations,the temperature wasmaintained at 310 K using the Langevin 
thermostat, with a low dumping of 1 ps−1. The pressure was set at 1 atm using the Berendsen barostat 
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2. Materials and Methods 

2.1. System Setup 

The crystal structures of the two receptors were retrieved from PDB (the PDB code is 5N2S for 
A1-AR and 5NM4 for A2A-AR). Systems preparation was performed using a Molecular Operating 
Environment (MOE)) suite (Chemical Computing Group ULC, Molecular Operating Environment 
(MOE), 2019.01. 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019) [24] for 
protein preparation (removal of crystallographic water molecules, ions, and other solvent molecules, 
selection of the highest occupancy for each residue, assignment of the correct protonation state at pH 
7.4). Systems preparation for the molecular dynamics simulations was carried out using VMD [25]. 
The protein was explicitly solvated in a water box with the borders placed at a distance of 15 Å 
from any protein atom, the water model used was TIP3P [26]. The system charge was neutralized 
to a concentration of 0.154 M using Na+/Cl− . The lipid bilayer consisted of phosphatidylcholine 
(POPC) units. 

The sodium ionwithin the TMD allosteric site of A2A-AR was retained, andit was also placed by 
superposition in A1-AR. 

2.2. Equilibration of the System 

All the simulations were performed with a CHARMM36 force feld [27] and using ACEMD2 [28]. 
Ligands parameters were retrieved from Paramchem [29], a web interface for the assignment of 
parameters based on the CGenFF [30] force feld. 

The system energy was minimized in 1500 steps using the conjugate-gradient method, then the 
equilibrationof the system was done in four steps. The frst one consistedof 5 ns of NPT simulation 
with harmonic positional constraints of 1 kcal mol−1Å−2 on each atom of the protein and the lipid 
bilayer. The second step consisted in 10 ns of NPT simulation with harmonic positional constraints of 
1 kcal mol−1Å−2 only on eachprotein atom and on the phosphorus atom of the POPC units, the third 
step consisted in 5 ns of NPT simulation with harmonic positional constraints of 1 kcal mol−1Å−2 only 
on the alpha carbons of the protein, and the last step consisted in 50ns of NVT simulation without 
any constraints. 

For the productive simulations, the temperature wasmaintained at 310 K using the Langevin 
thermostat, with a low dumping of 1 ps−1. The pressure was set at 1 atm using the Berendsen 
barostat [31]. The particle-mesh Ewald (PME) method was used to calculate the electrostatic interactions 
with a 1 Å grid [32]. A 9.0 Å cutoff was applied for long-term interactions.The M-SHAKE algorithm 
was applied to constrain the bond lengths involving hydrogen atoms. 
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At the end of the equilibration, several parameterswere calculated to assess the stability of the 
system:theroot mean square deviation (RMSD) of the alpha carbons of the protein, the root mean 
square fuctuation (RMSF) of each protein residue, the volume of the cell (which should tend to a 
plateau in the NPT ensemble), and the area per lipid (APL) for each membrane layer (calculated using 
GridMAT-MD [33]). We also computed the volume of the orthostericsiteduring the equilibration using 
POVME [34]. Figure S1 (A2A-AR) and Figure S2 (A1-AR) report the analysis performed during the 
equilibration of the system. In both the two systems, the protein reached a stable conformation (RMSD 
of the protein Cα (panel A, Figures S1 and S2) stably below 2 Å for A2A-AR and below 3 Å for A1-AR). 
The volume of the orthosteric site reached a plateau in both cases (Panel B, Figures S1 and S2). The most 
fexible parts of the protein, as expected, are the loops. Indeed, the RMSF of these regions is higher 
than the TMs (panels C and D, Figures S1 and S2). 

As shown in Figure S5, the orthosteric site of A1-AR appears to be deeper than A2A-AR, due to a 
cleft between TM5 and TM6. The APL and the volumetric analysis are reported in Figure S3 (A1-AR) 
and Figure S4 (A2A-AR). For both systems, the cell volume reached stable values. 

2.3. Supervised Molecular Dynamics Simulations 

SuMD [22,23] is a molecular dynamics (MD) approach that allows for the investigation of molecular 
recognition processes in a fully atomistic way, in the nanosecond timescale, without introducing any 
energetic bias (Figure 3). Ligands were placed 35 Åaway from the protein. EachSuMD step was 
set to 600 ps. During each SuMD step, the distance between the center of mass of the binding site 
(defned by a series of residues) and the center of mass of the ligand is monitored. These dataare 
thenftted, and if the slope of the interpolating linear function is negative, then the coordinates and 
the velocities are used for the successive time window, otherwise, the last time window is simulated 
again reassigning the velocities (this reassignment of the velocities is intrinsic in the use of Langevin 
thermostat). If the condition fails 30 consecutivetimes, then the simulation is stopped. Otherwise, 
the algorithm continues until the distance between the two centers of mass is below the threshold of 
5 Å; at this point, the supervision is turned off and 30 short classical MD simulations are performed, 
switching on the supervision if the distance between the centroids becomesgreater than 5 Å. At the 
end of the SuMD process, the trajectoryis prolonged for 25 ns of classical MD simulation. 
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Figure 3. Representation of a binding event sampled by a supervised molecular dynamics (SuMD) 
simulation. After each reported step, the distance between the ligand and the binding site decreases. 
In less than (merged) 50 ns, a binding event was sampled. 

Twenty simulations were performed for each of the six systems (Z48/A1AR, Z48/A2AAR, LC4/A1AR, 
LC4/A2AAR, Caffeine/A1AR, Caffeine/A2AAR). Only the simulationsthat sampled the ligand reaching 
the orthosteric site and interacting with the classic fngerprint of these class of ligands (Figure S6) 
were here reported (e.g., one replica for each system, excepted LC4/A1AR for which two replicas were 
analyzed). For each system, the reasonsfor failure are similar. In most cases, the ligands interact 
strongly with the residues of the ECLs, and do not reach the binding site. In a few cases, the ligands 
only partially reach the orthosteric site. Finally, in other rare cases, the ligands get stuck between the 
protein and the membrane. 
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2.4. Trajectories Analysis 

The SuMD trajectories were analyzed using anin-house python tool (described in [35]) that 
provides information on the geometry and the energetic of the system. The output consists of 
a per-residue analysis of the electrostatic and van Der Waals contributions to the protein-ligand 
interactions; a representation of the distance between the center of mass of the ligand and the center of 
mass of the binding site as a function of time; a global energetic evaluation of the system as a function of 
the aforementioned distance. This analysis allowscomparing the energetic profle of two systemsboth 
in a general way and, through the per-residue analysis (i.e., it is possible to evaluate which ligand has 
better interaction with some specifc amino acids of interestover the time). 

Three replicas of 50 ns were performed on the apo form of A1-AR and A2A-AR, after the equilibration 
stage described before. These three replicas were merged and analyzed by AquaMMapS [36]. 

3. Results 

3.1. SuMD Binding of the A1AR Nonselective Antagonist Caffeine 

According to the SuMD simulations (Figures S7 and S8; Video S1 for A1AR and Video S2 
for AA2AAR in the Supplementary Information), the nonselective antagonist caffeineestablishes 
intermediate interactions with the extracellular vestibule of A1AR and A2AAR, before reaching 
the orthosteric site. The most stable bound confgurations sampled on A1AR and A2AAR differed 
for theorientation of the xanthine ring (Figure S9). On A2AAR, caffeine pointed the N7-methyl 
toward Asn253, while in A1AR it was rotated by 180◦, with the N3 methylinthe proximity of 
Asn254. Notably, both these two conformations have been experimentally observed in X-ray crystal 
structuresofA2AAR [17]. Fluctuations of the ligand in both orthosteric sites and the transient nature of 
the interactions are easily depicted in the energy interaction landscapes (Panels A,S7,S8) in which the 
points are particularly scattered over the distance between the centers of mass of the ligand and the 
orthosteric site. 

3.2. SuMD Binding of the A2AAR Selective Antagonist Z48 

Figures S10 and S11 reportthe analysis of Z48/A1ARand Z48/A2AAR, including 25 ns of classic MD 
simulations performed at the end of each SuMD simulation (Videos S3 and S4 in the Supplementary 
Information). 

For what concerns the SuMD trajectory of Z48 on A1AR, notable electrostatic repulsion took place 
between the ligand and Lys168, Lys173, and Lys265, before the ligand reached the orthosteric site, 
as clearly observable in the per-residue electrostatic interaction energy plot (Panel C,S10). These residues 
are positioned on the ECLs (Lys168 and Lys173 on ECL2, andLys265 on ECL3). As a result, in A1AR, 
Z48 did not adopt the binding fngerprint of the ARs antagonists (e.g., only one hydrogen bond with 
Asn254 out of two was formed). Moreover, this binding mode wasunstable over the 25 ns of classic 
MD simulations.Interestingly, the terminal amine group of the ligand strongly interacts with Glu170 
(Leu167 in A2AAR). Figure 4 reports the binding modes of Z48 at the end of the SuMD simulation on 
A1AR (the binding mode at the end of the 25 ns of classic MD simulation is shown in Figure S12) and 
A2A-AR (at the end of the 25 ns of classic MD simulation), respectively. 

Moving to the binding simulations of Z48 toA2AAR, two SuMDreplicas led to the classic binding 
mode of the ARs antagonists. The π-π stacking with Phe168 was present, along with the hydrogen bonds 
with Asn253 and with Glu169. Both binding modeswere stable during 25 ns of classic MD simulations 
(Figure S11, Panel C,D, Figure 4). No signifcantprotein-ligand electrostatic repulsionswereobserved. 
The narrow funnel-like interaction energy profle of the ligand in the orthostatic also suggested a good 
complementarity of the ligand in the pocket, and a rapid reaching of a stable bound state. 
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receptor (Figure 5). A hydrogen bond with Asn254 and hydrophobic contacts with Phe171 occurred 
(Figure 6A). Interestingly, the LC4 oxygen atom in the N8 substituent interacted with and stabilized 
water molecules in the proximity of the Phe171 backbone, a hydrated spot on ECL3, according to the 
AquaMMapS analysis (Figure 6A). 

In the case of A2AR, the xanthine scaffold reached the orthostericsite rotated by 180° compared 
to the binding mode adopted in A1AR (Figure 6B) and with an unfavorable geometry for hydrogen 
bonding with Asn253. In both of these two binding modes (Figures S13 and S14), LC4 did not 
interactwithconserved glutamate Glu172 (A1AR) or Glu169 (A2AAR). 
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Figure 4. Binding mode of Z48 within the binding site of A1-AR on the left-hand side, and within 
the binding site of A2A-AR on the right-hand side (superposition of the two simulations analyzed). 
For A1AR, the binding mode is reported at the end of the SuMD simulation. For A2AAR, the two poses 
at the end of the classic MD simulation are reported. 

3.3. SuMD Binding of the A1AR Selective Antagonist LC4 

With regards to LC4, two SuMDreplicas led to different binding modes of LC4 into the A1AR 
orthosteric site. During Replica 1, the ligand formed a complex characterized by the xanthine scaffold 
positioned in the orthosteric binding site, and the N8-substituent pointed outward the receptor 
(Figure 5). A hydrogen bond with Asn254 and hydrophobic contacts with Phe171 occurred (Figure 6A). 
Interestingly, the LC4 oxygen atom in the N8 substituent interacted with and stabilized water molecules 
in the proximity of the Phe171 backbone, a hydrated spot on ECL3, according to the AquaMMapS 
analysis (Figure 6A). 

In the case of A2AR, the xanthine scaffold reached the orthostericsite rotated by 180◦ compared 
to the binding mode adopted in A1AR (Figure 6B) and with an unfavorable geometry for hydrogen 
bonding with Asn253. In both of these two binding modes (Figures S13 and S14), LC4 did not 
interactwithconserved glutamate Glu172 (A1AR) or Glu169 (A2AAR). 

During SuMDReplica 2 on A1A, LC4 experienced a two-step binding (Figure 6). First, the antagonist 
entered the orthosteric site pointing the methylphenyl group into a hydrophobic pocket located between 
TM2 and TM3. This cryptic pocket is not present in A2AR in light of bulkier residues and a higher 
degree of packing between the helixes (Figure 6B). From this metastable confguration, LC4 moved 
deeper into the orthosteric site and engagedAsn254 and Glu172 in hydrogen bonds (Figure 6). In this 
binding mode, the ligand inserted the N8-substituent inside a further cryptic pocket between TM5 and 
TM6 (Figure 6C,D), which is delimited by the “toggle switch” residue W247 [15], and the residues Ile95 
and Phe253, being part of the conserved class A structural motif PIF [37]. Notably, this hydrophobic 
sub-pocket was occupied by likely “unhappy” water molecules during simulations of the apo-A1R 
(Figure 6A). 

The video of these three simulations can be found in Supplementary Materials Video S5 and Video 
S6 for the two simulations of LC4/A1AR, and Video S7 for the simulation of LC4/AA2AAR. 
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4. Discussion 

Here we present results from SuMD simulations performed to shed light on the selectivity 
displayed by LC4 and Z48, two antagonists of A1AR and A2AAR, respectively. The nonselective 
antagonist caffeine was also dynamically docked to the two ARs subtype.Caffeine, which is in a weak 
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binder(micromolar range [38]) of all the ARs, experienced more than one binding mode, in line with 
our previous simulations [22] and experimental observation [17]. 

SuMD binding of the selective A2AAR antagonistZ48 on A1-AR and A2AAR suggested different 
interaction patterns along the pathways. Z48 experienced unfavorable electrostatic interactions between 
positively charged A1AR residues Lys168, Lys173 (ECL2), and Lys265 (ECL3), and the ligand charged 
amine on the N8-substituent. Such transitory states did not take place during binding to A2AAR, 
as no signifcant electrostatic repulsions were computed at the extracellular vestibule. Interestingly, 
A2AAR bears Ala265 instead of Lys265 on the ECL3, while Lys168 and Lys173 (ECL2) are farther from 
the binding site, compared to A1AR. This is consistent with mutagenesis studies that demonstrated 
the importance of these lysine residues forthe binding of several A1AR ligands [39–41]. On A2AAR, 
Z48 reachedthe orthosteric site producing the classic interactions fngerprint of the ARs antagonists. 
On A1AR, on the other hand, the ligand sampled a different binding mode. Moreover, the A1AR 
residue Glu170 (Val167 in A2AAR) strongly interacted with the charged terminal amine of the ligand, 
stabilizing this alternative binding mode. Z48 was proposed to bind to A2AR overcoming low enthalpy 
transition state(s) [40]. From this standpoint, the unfavorable electrostatic interactions with ECL2 
could implicate a slower binding toA1AR, and therefore a kinetic selectivity for A2AR. 

SuMD simulations of the antagonist LC4 proposed two possible binding modes that could 
drive selectivity. It is possible that the ligand binds A1AR and A2AAR with the same conformation, 
but differently interacting with water molecules nearby ECL3. From this standpoint, and in analogy 
with [41], we propose these “happy” water molecules contribute to the ligand stabilization in A1AR 
(Figure S16), but not in A2AR (Figure S17). An alternative and unique LC4 binding mechanism was 
sampled only on A1AR, with a metastable state before the fnal complex formation. Along this pathway, 
two cryptic hydrophobic pockets (between TM2 and TM3 and between TM5 and TM6) allowed the 
N8-substituent of the ligand to correctly orient frst, and then engage key residues for the receptor 
activation (the “toggle switch” Trp247, Ile95, and Phe253, which are part of the conserved class A motif 
PIF). Notably, the cryptic pocket between TM2 and TM3 has recently been proposed as a determinant 
for A1AR selectivity displayed by the triazolotriazine antagonist LUF5452 [42,43]. 

5. Conclusions 

Understanding the selectivity of GPCRs ligands is an important task in drug design. This study 
supports the emerging idea that selectivity is driven by a plethora of phenomena, other than the 
protein-ligand interactions in the bound state. Receptor-ligands recognitions are multistep events 
modulated by intermediate interaction along withthe (un)binding paths. This picture may be further 
complicated by the presence of stable water molecules, whichcan have a tremendous impact on 
stabilizing or destabilizing an orthosteric complex. To consider different aspects that may affect the 
selectivity on A1AR and A2AAR, we used SuMD simulations to investigate the recognition of thee 
different antagonists. Overall, our results suggest that kinetic selectivity may favor the binding of 
Z48 to A2AAR over LC4. A different scenario was observed for A1AR, the recognition trajectories 
highlighted the key role of water molecules in the binding mode of LC4, which is favored by two 
hidden sub pockets within A1AR. 

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/732/s1, 
Figure S1: A2AAR, protein analysis during the equilibration stage, Figure S2: A1AR, protein analysis during the 
equilibration stage. Figure S3: A1AR system, cell volume analysis and membrane analysis. Figure S4: A2AAR 
system, cell volume analysis and membrane analysis. Figure S5: Volumetric analysis (using POVME) of the 
orthosteric site of A1AR and A2AAR. Figure S6: X-Ray structure of A2AAR in complex with caffeine and with 
ZMA. Figure S7: Analysis of the SuMD trajectory of binding for caffeine on A1AR. Figure S8: Analysis of the 
SuMD trajectory of binding for caffeine on A2AAR. Figure S9: Caffeine binding mode of caffeine within the 
binding site of A1AR and A2AAR. Figure S10: Analysis of the Z48 SuMD binding trajectoryto A1AR. Figure S11: 
Analysis of the SuMD trajectory of binding for Z48 on A2AAR. Figure S12: Binding mode of Z48 in A1AR at the 
end of the 25ns of classic MD. Figure S13 Analysis of the SuMD trajectory of binding for LC4 on A1AR. Figure S14 
Analysis of the SuMD trajectory of binding for LC4 on A2AAR. Figure S15 Analysis of the SuMD trajectory of the 
alternative binding for LC4 on A1AR. Figure S16: Interaction between LC4 and water molecules inA1AR. Figure 
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S17: Interaction between LC4 and water molecules in A1AR and A2AAR. Video S1: Caffeine binding pathway 
against A1-AR., Video S2: Caffeine binding pathway against A2A-AR, Video S3: Z48 binding pathway against 
A1-AR. Video S4: Z48 binding pathway against A2A-AR. Video S5: LC4 binding pathway against A1-AR, binding 
mode 1. Video S6: LC4 binding pathway against A1-AR, binding mode 2. Video S7: LC4 binding pathway against 
A2A-AR. 
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