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Abstract 

Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and 

accurate state of charge (SOC) estimation is of paramount importance for the 

EV battery management system. Though a number of methods have been 

proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 bat-

tery, however, faces two key challenges: the flat open circuit voltage (OCV) 

versus SOC relationship for some SOC ranges and the hysteresis effect. To ad-

dress these problems, an integrated approach for real-time model-based SOC 

estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-

regression model is adopted to reproduce the battery terminal behaviour, com-

bined with a non-linear complementary model to capture the hysteresis effect. 

The model parameters, including linear parameters and non-linear parameters, 

are optimized off-line using a hybrid optimization method that combines a meta-

heuristic method (i.e., the teaching learning based optimization method) and 

the least square method. Secondly, using the trained model, two real-time 

model-based SOC estimation methods are presented, one based on the real-

time battery OCV regression model achieved through weighted recursive least 

square method, and the other based on the state estimation using the extended 

Kalman filter method (EKF). To tackle the problem caused by the flat OCV-

versus-SOC segments when the OCV-based SOC estimation method is adopted, 
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a method combining the coulombic counting and the OCV-based method is pro-

posed. Finally, modelling results and SOC estimation results are presented and 

analysed using the data collected from LiFePo4 battery cell. The results con-

firmed the effectiveness of the proposed approach, in particular the joint-EKF 

method. 

Keywords: LiFePo4 battery, Real-time SOC estimation, Hysteresis effect, 

Extended Kalman Filter, Weighted Recursive Least square, Teaching Learning 

Based Optimization (TLBO) method 

1. Introduction 

Due to the imminent challenges of environment protection and the exhaus-

tion of non-renewable fossil fuels, electric vehicles (EVs) and hybrid electric 

vehicles (HEVs) are rapidly gaining popularity worldwide in recent years as an 

5 effort of replacing the internal combustion engine (ICE) vehicles to improve the 

fuel efficiency and reduce the emissions in the transport sector. Many countries 

have proposed their national plans to increase the EV/HEV penetration in the 

coming decades [1]. The battery system is a key component in the EV/HEV 

system. Among different cell types, Lithium-ion batteries, such as LiFePo4 

10 that is under investigation in this paper, are favoured power supplies for EVs 

and HEVs due to their high power and high energy densities, long service life, 

high efficiency and environmental-friendly figures [2]. A battery management 

system (BMS) is essential in EV/HEV applications for safe and efficient op-

eration where hundreds or even thousands of battery cells are connected in 

15 series/parallel configuration to fulfil the high power and high voltage needs of 

the vehicles [3]. One key functionality of the BMS is to estimate the state-of-

charge (SOC) of the battery, which is not directly measurable. SOC indicates 

the charge left in the battery available for further service, which determines the 

remaining range an EV can travel without re-charging the battery. Battery SOC 

20 indicator is similar to the fuel gauge in an ICE vehicle. Therefore accurate real-

time SOC estimation is of great importance to prevent stranding halfway and to 
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relieve the range anxiety. Further, SOC estimation can be used for preventing 

over-charging and over-discharging operations of the battery, thus reducing the 

harm caused to the battery. Some EVs require to cycle the battery within a 

25 specific SOC range, e.g., 20% to 70 %, to achieve higher efficiency and longer 

service life, which again relies on accurate SOC estimation. On the other hand, 

inaccurate SOC estimation will result in an over-sized battery system, therefore 

a significant increase of the overall cost of EVs. 

Another application of SOC estimation is for battery cell balancing. There 

30 are slight differences between different cells within the same pack, such as dif-

ferent cell capacity or internal impedance. As time goes by, this difference will 

become more and more significant [4]. The overall capacity of battery cells 

connected in series is limited by the cell with the least capacity, and without a 

balancing method this cell will be stressed more than other cells under the same 

35 working condition, leading to a deteriorating unbalancing problem. Therefore 

cell balancing is another essential functionality of the BMS, and the cell SOC 

can be used as an indicator for balancing the battery [3]. There are other ad-

vantages brought by accurate SOC estimation, such as accurate available power 

estimation, and battery SOC estimation can also be used for developing power 

40 and energy management strategies, etc. 

Despite the demanding necessity, accurate real-time SOC estimation is not 

easy to acquire. First of all, all the estimation methods in the EV applications 

should be based on the on-board measured signals, such as the battery terminal 

voltage, load current and the temperature. Due to the high-voltage, high-current 

45 and highly dynamic profile of the load, voltage and current measurements are 

often corrupted with noises. Besides, some SOC estimation methods, such as 

the open circuit voltage (OCV) based methods, are sensitive to the voltage mea-

surement error. Secondly, the battery behaviour is highly non-linear and non-

stationary, and some internal chemical reactions, such as the parasitic reaction, 

50 self-discharge and ageing process that affect the battery SOC, are extremely 

difficult to model. 

Over the years, researchers have developed different SOC estimation meth-
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ods [5, 6, 7, 8, 9, 10]. These methods can be generally divided into two groups: 

direct measurement methods and model-based estimation methods. Direct 

55 measurement methods, or model-free methods, estimate battery SOC by a di-

rectly measurable physical property, such as coulombic counting method (or Ah 

method) and OCV based methods. For model-based SOC estimation methods, 

a model is firstly built to reproduce the battery terminal behaviour. Then the 

battery SOC can be linked to one or several of the model parameters. After the 

60 model parameters are identified, the battery SOC can be inferred. Another ap-

proach is to model the battery behaviour using a state-space model with the bat-

tery SOC as one state, then different state estimation methods, such as Kalman 

Filter (KF) and Unscented Kalman Filter (UKF), can be used for SOC esti-

mation. Direct measurement methods are generally open-loop methods. They 

65 are easy to implement, but sensitive to current and voltage measurement errors. 

On the other hand, the model-based methods are generally close-loop methods 

and not sensitive to measurement errors, but they rely on an accurate battery 

model, which is difficult to acquire. 

Further, the SOC estimation for Lithium-ion batteries faces two key chal-

70 lenges. Firstly, batteries like LiFePo4 show a flat OCV-versus-SOC curve within 

some SOC ranges, and therefore a small voltage measurement error can cause a 

large SOC estimation error for the OCV-based SOC estimation methods. An-

other difficulty is that the battery shows a hysteresis effect, i.e., the battery 

OCV depends on the direction of the load current, which needs to be consid-

75 ered during battery modelling and SOC estimation. To address these problems, 

an integrated approach for real-time model-based SOC estimation of Lithium-

ion batteries is proposed in this paper. The contributions of this paper are 

summarized as follows. Firstly, a new battery model is proposed, including 

an auto-regression relaxation model together with a non-linear complementary 

80 model to capture the hysteresis effect. Secondly, the model parameters are di-

vided into two groups, namely the linear parameters and the non-linear parame-

ters, and a hybrid optimization method that combines a meta-heuristic method 

(i.e., the teaching learning based optimization (TLBO) method) and the least 
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square method is used to optimize the two distinctively different sets of param-

85 eters. This leads to a high modelling accuracy. Thirdly, based on the off-line 

trained model, two real-time SOC estimation methods are then proposed us-

ing the weighted recursive least square (WRLS) method and the Kalman Filter 

method, respectively. Finally, to tackle the problem caused by the flat OCV-

versus-SOC curve of Lithium-ion batteries, a new method combining coulombic 

90 counting method and OCV-based method is also proposed. 

The rest of this paper is organized as follows. Section II presents a brief in-

troduction to different SOC estimation methods, including direct measurement 

methods and model-based methods. The battery test system and the test data 

used in this paper are presented in section III. Then the auto-regression model is 

95 presented in section IV, together with the hysteresis model. The model parame-

ters are optimized using TLBO and least square method. The modelling results 

are then presented. The two different model-based SOC estimation methods 

are given in section V, and the SOC estimation results are analysed in section 

VI. Finally, section VII concludes this paper. 

100 2. Different SOC estimation methods 

2.1. Direct measurement methods 

Based on the onboard measurable signals, i.e., battery terminal voltage and 

current, there are two popular direct measurement methods for SOC estimation, 

i.e., coulombic counting method (or Ah method, Ah stands for Ampere-hour, 

105 which is the unit of battery capacity) and OCV-based method. 

2.1.1. Ah method 

The Ah method is to integrate the discharging current to calculate the re-

maining charge in the battery, as follows. Z kT 
SOC(k) = SOC(0) − (η ∗ i(t) − Sd)dt (1)

Cn 0 

where SOC(0) is the initial SOC, Cn the nominal capacity of the battery, T is 

the sampling period, i(t) is the load current at time t, η is coulombic efficiency, 
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and Sd is the self-discharging rate. For LiFePo4 battery used in this experiment, 

110 η > 0.994 under room temperature [11]; according to the manufacturer, the 

battery self-discharging rate is less than 5% per month. Therefore, η = 1 and 

Sd = 0 are assumed in this paper. 

Based on the on-board measured current signals, it seems straightforward to 

apply Ah method for SOC estimation. However, this is an open-loop method, 

115 and is vulnerable to the current measurement error, especially the sensor drift 

error. Therefore, the Ah method needs to be calibrated periodically. Further, 

the initial SOC, SOC(0), has to be determined accurately by other method. If 

the battery is fully charged periodically, then SOC(0) can be calibrated to 100% 

after a fully charging procedure. However, during shadow cycle discharging 

120 when the battery is cycled within a limited SOC range, e.g., 30% – 70%, it is 

not easy to calibrate the initial SOC. 

2.1.2. OCV-based method 

The OCV method relies upon the relationship between battery OCV and 

SOC. Battery OCV is the battery terminal voltage when the battery internal 

125 equilibrium is reached in the absence of load. There exists a stable one-to-one 

relationship between battery OCV and SOC, if the temperature effect and hys-

teresis are not considered [12]. Battery OCV voltage is slightly affected by the 

battery temperature [13]. If the battery is operated under different temperature 

conditions, temperature effect on OCV should be taken into consideration [14]. 

130 However, in this paper, the test is operated under constant temperature, and 

we assume that the battery pack temperature in EV/HEV is well controlled by 

the temperature management system, therefore temperature effect on OCV is 

not considered in this paper. 

The hysteresis effect arises as the battery relaxes to a voltage value higher 

135 than the OCV for a given SOC after charging, and to a lower value than the OCV 

after discharging, even after sufficient relaxation time, as shown in Fig 1. The 

battery OCV is taken as the mean of the charging OCV and discharging OCV, 

while the hysteresis is calculated as half the difference between the charging 

6 



OCV and the discharging OCV [15]. The hysteresis effect in Li-ion batteries 

140 is generated due to the thermodynamic entropic effects, mechanical stress, and 

microscopic distortions within the active electrode materials during Lithium 

insertion/extraction [16]. LiFePo4 batteries show significant hysteresis effect 

[17, 18], as can be seen in Fig 1. Therefore, a hysteresis model is essential for 

accurate SOC estimation for LiFePo4 batteries when OCV based methods are 

145 used. 

Figure 1: Hysteresis effect of the LiFePo4 cell used in this paper 

As mentioned above, the Ah method needs to be calibrated periodically. 

Based on the onboard measured voltage signals, it is a natural choice to use 

battery OCV for calibration. However, it takes very long time (more than 1 

hours) for the battery terminal voltage to stabilize. To tackle this problem, 

150 researchers have proposed several model-based methods to estimate battery 

OCV in real-time [19]. Another problem is that the LiFePo4 battery used in 

this experiment shows a very flat OCV-SOC curve during two SOC segments, 

one from 70% to 90% SOC and another from 30% to 50% SOC, as shown in 

Fig 1, making it extremely difficult to accurately estimate battery SOC using 

155 OCV-based method during these two SOC ranges. This effect will be detailed 

in the following section. 
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2.1.3. Other direct measurement methods 

There are other battery properties which can be used for SOC estimation, 

such as battery impedance [20, 21] and magnetism measurement [22]. Battery 

160 impedance is measured by generating a small AC current to flow through the 

battery under investigation, and the AC voltage response is recorded. Then the 

complex impedance of the battery can be calculated by a FFT analyser. The 

frequency of the AC current signal sweeps from mHz (sometimes µHz) to several 

kHz [23]. The measured impedance in a range of frequency is referred to as the 

165 electrochemical impedance spectroscopy (EIS). However, specific equipments, 

such as a signal generator or potentiostat, are required by these methods, making 

it impractical for real-time EV applications. 

2.2. Model-based method 

There are different model-based SOC estimation methods that use different 

170 types of battery models. Electrochemical models (or physical model, white-box 

model) adopt physical laws, such as the porous electrode theory that governs 

the battery electrochemical processes, to describe battery behaviour. This is the 

most accurate battery model and can be used to estimate battery SOC [24, 25]. 

However, Electrochemical models are very complex and involve partial differ-

175 ential equations which are difficult to solve and analyse for real-time purposes. 

Besides, the model parameters are related to the electrochemical structure of 

the battery, which can be difficult to obtain. Based on the electrochemical 

model, researchers proposed reduced-order models by introducing more approx-

imations, such as the volume averaging method, for model simplification and 

180 SOC estimation [24, 26, 27]. 

There are also different SOC estimation methods based on a simpler battery 

model, such as a linear equivalent circuit model (ECM) [28, 29]. A linear ECM 

uses a combination of electric elements, such as a voltage source, resistors and 

capacitors, to model the battery behaviour, as shown in Fig 2, where OCV 

185 represents the battery OCV that depends on battery SOC, Ri the internal 

resistance. The RC networks are used to capture the battery relaxation effect. 
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The ECM model enjoys a simple and interpretable structure, thus suitable for 

on-line applications. 

Figure 2: Linear equivalent circuit model 

Many SOC estimation methods based on black-box models have been pro-

190 posed, such as neural networks [30, 31], fuzzy logic [32], support vector machine 

[33], etc. There are also many combined methods for SOC estimation to make 

full use of the advantages of different methods [34]. 

In this paper, we particularly investigate the SOC estimation of Lithium-ion 

batteries for real-time applications. 

195 3. Test Data 

A 5-Ah LiFePo4 battery was tested under room temperature (25 ◦C) with 

Arbin BT2000 battery test system. The voltage and current measurement ac-

curacy are up to 0.02% full scale range (FSR) for low power applications and 

0.05% FSR for high power applications. The temperature is maintained by a 

200 temperature chamber. Three different procedures were tested on the battery, 

namely, the Hybrid Pulse Power Characterization (HPPC) discharging test, 

HPPC charging test and the Federal Urban Drive Schedule (FUDS) test. The 

load current is positive for discharging and negative for charging. 

During the HPPC discharging test, the battery is firstly fully charged to 

205 100% SOC. Then the battery goes through ten discharging segments, as shown 

in Fig 3. One augmented part of the HPPC test data is shown in Fig 4, where 
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the starting two large current pulses, i.e., the first 10-second 25 A discharg-

ing current and the second 10-second 17.5 A charging current, are applied to 

test the battery’s capacity of supporting large discharging and charging power, 

210 respectively. The following 5 A discharging pulse for 360 seconds reduces the 

battery SOC by 10%. 

The HPPC charging test data is shown in Fig 5, with one segment augmented 

in Fig 6. As can be seen in Fig 6, the battery is firstly discharged using a 10-

second 25 A load current, and then charged by a 10-second 17.5 A current. The 

215 following 5 A charging current that lasts for 360 second is applied to increase 

the battery SOC by 10%. 

As can be seen in Fig 4, after the load current disappears, the battery 

terminal voltage relaxes gradually to a stable value, which is referred to as 

the relaxation effect. The battery is rested for one hour after each test segment, 

220 and the voltage at the end of the rest time is taken as the battery discharging 

OCV at that SOC point. The battery charging OCV is calculated in the same 

way using the HPPC charging data shown in Fig 6. Battery OCV is taken as the 

mean value of the charging and discharging OCV, as shown in Fig 1 and in Table 

1. As can be seen in Table 1, from 90% SOC to 70% SOC, the battery OCV is 

225 only reduced by 1.6 mV, while in practical EV/HEV management system, the 

voltage measurement accuracy is usually about 5 mV. Therefore it is extremely 

difficult to achieve reliable SOC estimation using OCV-based methods during 

this SOC range. Therefore, the model-based SOC estimation is only considered 

during 10 - 70% SOC range. 

230 The FUDS test shown in Fig 7 is to simulate the load profile of urban 

city driving, including acceleration and regenerative break, with one augmented 

segment shown in Fig 8. 

The test data under 10-90% SOC range are shown in Fig 3 to Fig 7. 
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Table 1: Battery mean OCV vs SOC 

SOC /% 10 20 30 40 50 

OCV /V 3.2176 3.2663 3.2955 3.3022 3.3056 

SOC /% 60 70 80 90 

OCV /V 3.3226 3.3385 3.3390 3.3401 

Figure 3: HPPC discharging test data 

Figure 4: One segment of the HPPC discharging test data 
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Figure 5: HPPC charging test data 

Figure 6: One segment of the HPPC charging test data 
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Figure 7: FUDS test data 

Figure 8: One segment of the FUDS test data 
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4. Modelling 

235 Before presenting the SOC estimation method, the equations governing the 

model together with the model parameter identification method are given as 

follows. 

4.1. Hysteresis model 

As mentioned above, a hysteresis model is essential for the SOC estimation 

of LiFePo4 batteries using OCV based method, yet a model that explains the 

electrochemical causes of the hysteresis effect is too complex to use. Plett [28] 

proposed a first-order hysteresis model, as follows, 

Vh(k + 1) =exp(−|γ ∗ i(k)|) ∗ Vh(k)+ 
(2) 

(1 − exp(−|γ ∗ i(k)|)) ∗ sign(i(k)) ∗ Mh 

where Vh(k) is the hysteresis voltage, i(k) is the current, γ a coefficient, and Mh 

is the maximum hysteresis voltage which depends on battery SOC and current 

rate, and ⎧ 
1, if i(k) > �⎪⎪⎪⎨ 

sign(i(k)) = −1, if i(k) < −�⎪⎪⎪⎩ sign(i(k − 1)), otherwise 

where � is a small threshold value. 

240 According to Eq (2), the battery hysteresis voltage is limited between −Mh 

and Mh, and reaches the limit faster under a larger load current. A constant 

Mh is adopted in this paper. 

4.2. AR model to capture the relaxation effect 

Several equivalent circuit models (ECMs) using a series of RC networks as 

shown in Fig 2 are widely adopted for capturing the battery relaxation effect, 

and the model parameters bear certain physical interpretations. For example, 

the resister Ri stands for the battery internal resistance. While ECMs enjoy 

high interpret-ability, on the other hand, it is this physical interpretation that 

imposes restrictions on the choice of values for these model parameters. For 
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245 

example, all the model parameters for an ECM, e.g., Ri, Ci, have to be positive 

(i.e., it is unreasonable to assume a negative resistor or negative capacitor in an 

electric circuit model). This restriction on model parameters will however lead 

to a limited model fitting performance. Further, some model parameters, such 

as these RC network time constants, e.g., t = Ri ∗ Ci, are nonlinear parameters 

that have to be optimized using complex optimization methods, such as genetic 

algorithm [29], which will inevitably increase the computational expense. To 

overcome this limitation and improve the model fitting accuracy, a more general 

auto-regression AR(m, n) model is adopted in this paper, as shown in Fig 9. The 

governing equation of the relaxation model is 

Vr(k) = Σ
m (k − i) + Σn

i=1bi ∗ i(k − i) + e(t) (3)i=1ai ∗ Vr

where Vr is the battery relaxation voltage, i.e., the over-potential across the 

AR model, and e(k) is the error term. Although the interpret-ability of the RC 

networks in the ECM in Fig 2 is lost and the parameters in the AR model, i.e., 

ai, bi bear no physical meanings, yet on the other hand the generic AR model 

is capable of capturing unmodelled dynamics of the battery terminal behaviour 

by the RC networks model. 

Figure 9: Battery model with AR(m, n) instead of RC networks 

4.3. Model identification 

According to the model in Fig. 9, 

Vr(k) = OCV (SOC(k)) − Vh(k) − v(k) − Ri ∗ i(k) (4) 

15 
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where v(k) is the measured battery terminal voltage, and Ri stands for the 

battery internal resistance. 

Let 

va(k) = OCV (SOC(k)) − Vh(k) − v(k) (5) 

and substitute Eq (5) and Eq (4) into Eq (3), we have 

va(k) =Σ
m (k − i) + Ri ∗ i(k)i=1ai ∗ va

(6) 
+Σn

i=1(bi − ai ∗ Ri) ∗ i(k − i) + e(t) 

The objective function that is to be optimized is 

SSE = ΣN
i=1e 2(t) (7) 

while N is the number of data samples used for model training. 

255 Once the measurements of battery terminal voltage and current, i.e.,v(k), i(k), 

become available, SOC(k) can be calculated by Ah method under the labora-

tory testing conditions, then OCV (SOC(k)) by linear interpolation method 

using the OCV vs SOC curve recorded in Table 1; Vh can be calculated by Eq 

(2) after Mh, γ are determined. The initial hysteresis voltage, Vh(1), depends 

260 on the previous load history. In another word, Vh(1) = Mh if the battery was 

discharged previously, and Vh(1) = −Mh if the battery was charged previously. 

The model parameters that need to be optimized include 

θ = [a, b, γ, Mh, Ri] (8) 

where 

a = [a1, a2, ..., am] 

b = [b1, b2, ..., bn] 

This is a non-linear optimization problem, as the γ and Mh in Eq (2) are 

non-linear parameters. The Gradient or Hessian information are very difficult 

to calculate, therefore a heuristic method, namely teaching-learning-based op-

265 timization (TLBO) proposed by Rao et al [35], is adopted in this paper for 

model parameter optimization. TLBO method is a population based method 
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that simulates the teaching and learning process in a class. The optimization 

procedure includes two phases: teacher phase when all the students learn from 

the teacher (elect the the best student as the teacher), and student phase when 

270 the students learn from each other. This optimization algorithm is easy to im-

plement as there is no specific tuning parameters that need to be adjusted by 

the user. 

Note that after γ and Mh are determined, va can be calculated as in Eq 

(5), then according to Eq (6), the rest parameters, i.e., Ri, a, b, can be opti-

275 mized using least square method. Therefore, to improve the parameter training 

efficiency, a hybrid parameter optimization method, namely TLBO plus least 

square, is used for model training. In another word, the TLBO method is used 

for non-linear parameter optimization, while the linear parameters are optimzed 

by the least square method, and the least square method is nested in the TLBO 

280 optimization procedure. Therefore, only the two non-linear parameters γ and 

Mh need to be optimized by the TLBO method, and the searching space is sig-

nificantly reduced. Beside, the linear parameters Ri, a, b are always kept optimal 

by using the least square method during the whole model training procedure, 

which is another advantage of adopting this AR(m, n) model other than the 

285 conventional RC circuit model. 

The model order selection, i.e, m, n, is a trade-off between model complexity 

and accuracy. The HPPC discharging and charging test data are used for model 

training, and the FUDS test data are used for model validation. The modelling 

root mean square error with respect to the model order is shown in Fig 10. As 

290 can be seen, as the model order increases from one to three, both the training 

error and the validation error are reduced noticeably. However, further increas-

ing the model order does not bring about any significant improvement on the 

model accuracy. Accordingly, m = n = 3 is selected. 

The model parameter optimization procedure is illustrated in Fig 11. 

17 



Figure 10: modelling training and validation error with respect to model order 

295 4.4. Modelling results 

Two test data sets, the HPPC discharging and HPPC charging data, were 

used for model training, and the FUDS test data was used for model validation. 

Note that only the test data within 10% - 70% SOC range were used for battery 

model training and validation. The model training results are shown in Fig 12 

300 using HPPC discharging data and Fig 13 using HPPC charging data. 

As can be seen, the model outputs match the measured data closely except 

for a couple of error spikes. The root mean square error is 2.16 mV for HPPC 

discharging data, and 2.05 mV for HPPC charging data. Consider that the 

battery voltage changes between 3.0 V and 3.4 V, the modelling error is less 

305 than 0.1% of the battery voltage. 

The FUDS data were used for model validation. The root mean square error 

is 6.1 mV, about 0.2% of the battery voltage. For illustration purpose, only a 

part of the validation result is shown in Fig 14. As can be seen, the validation 

error reminds small except for several spikes. 

310 Those error spikes occur when the load current changes suddenly, or when 

the load current changes from charging to discharging. These error spikes can 

be caused by that the simple battery model is not sufficient to capture all the 

non-linearity of the battery behaviour. 

Finally, the model parameters are listed in Table 2. 
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Figure 11: Flowchart of the hybrid parameter optimization method 
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Table 2: Identified AR model parameters 

Parameter Value 

γ 8.12 E-4 

Mh 0.0307 

Ri 0.0143 

a1 0.4091 

a2 0.3104 

a3 0.2356 

b1 5.965 E-4 

b2 2.061 E-4 

b3 -2.098 E-4 

Figure 12: Modelling results using HPPC discharging data 
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Figure 13: Modelling results using HPPC charging data 

Figure 14: Model validation results using FUDS test data 
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315 5. Real-time model-based SOC estimation 

Based on the trained model, two types of real-time SOC estimation methods 

are presented in this section. The first method takes battery OCV as a model 

parameter which is identified in real-time using WRLS method, then battery 

SOC is inferred by a lookup table, i.e., Table 1. This method is combined with 

320 the Ah method to provide a weighted SOC estimation result. The second one 

formulates the ECM into a state-space model, and the battery SOC is taken as 

a state. Then EKF and joint-EKF method are adopted for SOC estimation. 

5.1. Parameter identification based SOC estimation 

The aim of this method is for real-time estimation of the battery OCV. As 

325 mentioned before, based on the on-board measured voltage and current signals, 

Ah method can be used to estimate the SOC; on the other hand, based on the 

identified model, battery OCV can be inferred in real-time, which will be used 

to compensate the Ah method. 

By substituting Eq (4) into Eq (3) we have 

OCV (SOC(k)) − Σm
i=1ai ∗ OCV (SOC(k − i)) = 

v(k) + Vh(k) + Ri ∗ i(k) + Σn (9)
i=1bi ∗ i(k − i) 

− Σm
i=1ai ∗ (v(k − i) + Vh(k − i) + Ri ∗ i(k − i)) + e(k) 

Now take OCV (SOC) as a time varying parameter, as θocv = OCV (SOC(k)). 

Apparently, θocv changes as the discharging continues. If a 5 A discharging 

current is applied to a 5 Ah battery, it takes one hour (3600 seconds) for 

the battery to evolve from fully charged to fully discharged, i.e., for θocv to 

change from about 3.4 V to 3.0 V. Consider that the sampling period used 

in the test is T = 1s, therefore θocv varies slowly with time. Assumed that 

θocv = OCV (SOC(k)) ' OCV (SOC(k − i)), i = 1, 2, ..., m, then Eq (9) can be 

reformulate as 

(1 − Σm
i=1ai) ∗ θocv = u(k) + e(k) (10) 
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Table 3: Procedure of WRLS 

Problem formulation: 

y(k) = ϕ(k) ∗ θ + η(k) 

where ϕ(k) is the regressing vector, and θ the parameter 

vector to be identified,η(k) the modelling error 

Initialize 

θ(0), P (0) = E{(θ(0) − θ)(θ(0) − θ)T }; 

determine the forgetting factor λ 

For k = 1,2,3 ..., 

1) prediction error: 

e(k) = y(k) − ϕT (k) ∗ θ(k − 1) 

2) gain: 
P (k−1)∗ϕ(k)K = 

λ+ϕ(k)T ∗P (k−1)∗ϕ(k) 

3) update 

θ(k) = θ(k − 1) + K ∗ e(k) 

P (k) = 1 (P (k − 1) − K ∗ ϕ(k)T ∗ P (k − 1))λ 

where u(k) stands for all the right hand side terms in Eq (9) excluding e(k). 

330 After the battery terminal voltage and current measurement become available, 

u(k) can be calculated, then θocv can be deduced in real-time. 

Since θocv is a time-varying parameter, the WRLS method is adopted for 

this parameter estimation. Refer to [36] for details of WRLS method and [37] 

for a generalize recursive least square parameter identification method. The 

335 implementation of WRLS is detailed in Table 3. In this case, there is only one 

constant regressor, i.e., ϕ = i=1ai) and one parameter, i.e., θocv(1 − Σm to be 

estimated. 

The procedure of SOC estimation using WRLS method is shown in Fig 15 

and summarized as follows, 
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350 

340 1. Initialize SOCe(0), the initial estimated SOC; then initialize the WRLS 

parameters θocv and P (0) in Table 3, 

2. For k = 1,2,3,..., after new measurements, v(k), i(k) become available: 

a) Use Ah method to update battery SOC as follows, 

SOCi(k + 1) = SOCe(k) − i(k) ∗ T/Cn 

Note that SOCi is updated based on previously estimated SOC, SOCe(k), 

not SOCi(k). 

345 b) Update battery hysteresis voltage Vh(k) in Eq (2), then u(k) as in Eq 

(9). Then apply WRLS method to estimate θocv(k+1) (thus OCV (SOCk+1)) 

using Eq (10). 

c) Based on this estimated OCV (SOCk+1), a SOC value can be obtained, 

i.e., SOCv(k + 1), by linear interpolation method using Table 1. 

3) The weighted average between SOCi(k + 1) and SOCv(k + 1) is used 

to update battery SOC estimation as follows, 

SOCe(k + 1) = w ∗ SOCi(k + 1) + (1 − w) ∗ SOCv(k + 1) (11) 

Figure 15: SOC estimation method using WRLS method 

5.2. State-spcae based SOC estimation method 

The transfer function that governs the AR(m, n) model, i.e., Eq (3), can be 

converted into a state-space formulation as follows, 

xar(k + 1) =Aar ∗ xar(k) + Bar ∗ i(k) 
(12) 

Vr(k) =Car ∗ xar(k) 

where 

xar(k) = [x1(k), x2(k), x3(k)]
T 
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⎤⎡ ⎢⎢⎢⎣ 

0 1 0 ⎥⎥⎥⎦ 
Aar = 0 0 1 

a3 a2 a1 

Bar = [0, 0, 1]T 

Car = [b3, b2, b1]
T 

Combining Eq (2), and Eq (1), and Eq (4), the overall equations governing 

the model in Fig (9) can be formed into a state-space representation as follows, 

x(k + 1) = A(k) ∗ x(k) + B(k) (13) 

v(k) = OCV (SOC(k)) − Car ∗ xar(k) − Vh(k) − Ri ∗ i(k) (14) 

where 

x(k) = [SOC(k), xar(k), Vh(k)]
T ⎤⎡ 

A(k) = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 a3 a2 a1 0 

0 0 0 0 a5,5 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

B(k) = [−T/Cn ∗ i(k), 0, 0, i(k), b5] 

a5,5 = exp(−γ ∗ abs(i(k))), and b5 = (1 − exp(−γ ∗ abs(i(k)))) ∗ sign(i(k)) ∗ Mh. 

This is a standard state space formulation, with Eq (13) as the state equa-

355 tion, Eq (14) as the output equation, and the battery SOC is one of the model 

states. 

Here,different state estimation methods can be applied for real-time battery 

SOC estimation, such as extended Kalman filter (EKF) [38], unscented Kalman 

Filter (UKF) [15], adaptive Kalman filter [39], slide mode observer [40] and H∞ 

360 filter [41], etc. 
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Kalman filter has been widely applied for on-line state estimation of linear 

system in various applications. Kalman Filter works in a prediction-correction 

way. The state is firstly predicted using the state equation. Once a new mea-

surement becomes available, the prediction error is used to correct the state 

365 prediction. To extend its application to non-linear systems, extended Kalman 

filter (EKF) is proposed which firstly linearises the system at the current oper-

ating point using first-order Taylor series, then KF can be applied. 

As mentioned above, battery internal resistance, Ri, varies with battery 

SOC, therefore Ri can be taken as a time-varying parameter, or an extra state. 

Plett [38, 15] proposed using two different methods, joint state estimation or 

dual state and parameter estimation, to track both battery state and time-

varying model parameters in real-time. The joint state estimation method is 

adopted in this paper, i.e., to treat Ri as another state as follows, 

Ri(k) = Ri(k − 1) + nr 

Twhere nr is assumed to be independent white Gaussian noise, and E{nr ∗n } = r 

QR. 

It is straightforward to add Ri into the state equation in Eq (13) to form an 

augmented state vector. Then the system parameters will change as follows, 

x a(k) =[x T (k), Ri(k)]
T 

Aa =blkdiag(A, 1) (15) 

Ba =[B, 0]T 

370 Note that the output equation in Eq (14) keeps unchanged. 

In this paper, the OCV (SOC(k)) in Eq (14) is a linear-interpolation func-

tion using the data recorded in Table 1. To apply EKF and joint-EKF for state 

estimation, the derivative of OCV (SOC(k)) with respect to SOC(k) is calcu-

lated as follows. The derivative at 15%, 25%,..., and 65% are calculated as the 

375 slope of the corresponding segment of the OCV vs SOC curve recorded in Table 

1, and the results are listed in Table 4. For example, the derivative at 15% SOC 

is calculated as the slope of the OCV vs SOC curve during 10% to 20% SOC 
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Table 4: Calculate of d(OCV (SOC(k))/dSOC(k) 

SOC % 15 25 35 45 55 65 

dOCV/dSOC 0.484 0.293 0.0671 0.0331 0.170 0.159 

range. The derivative of OCV (SOC(k)) with respect to SOC(k) at other SOC 

points are defined as the linear interpolation of Table 4. 

380 The implementation procedure of EKF is depicted in Table 5. 

6. Results and discussions 

In total, three different SOC estimation methods are compared in this sec-

tion, one parameter identification based method, i.e., WRLS method, and two 

state estimation based methods, i.e., EKF and joint-EKF methods. Two differ-

385 ent situations are considered, one with correct SOC initial value and the other 

with 20% initial error. 

6.1. WRLS based method 

The WRLS-based SOC estimation method is applied to the FUDS test data. 

Generally speaking, the choice of the forgetting factor in WRLS depends on the 

390 change rate of the estimated variables or state. If the variables change slowly 

with time, a large forgetting factor should be applied as more data samples can 

be used for generating the estimations. In this study, the average load current of 

the FUDS test data is about 1 amps, and the sampling time interval is 1 second. 

So it takes about 900 data samples to reduce the battery SOC by 5%. Thus, the 

395 battery OCV, i.e, the estimated parameter changes slowly with time. On the 

other hand, the weight w in Eq (11) determines the correction rate of the OCV 

based SOC estimation to the Ah method. Therefore, when the OCV based SOC 

estimation is reliable, larger weight should be adopted on the OCV estimation. 

On the other hand, for ranges where the OCV based SOC estimation is not very 

400 reliable, e.g., during the flat OCV range, smaller weight should be put on the 

OCV based SOC correction. Given this above consideration, a variable weight 
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Table 5: Procedure of EKF 

Problem formulation: 

state equation: 

x(k + 1) = f(x(k), u(k)) + w(k) 

output equation: 

y(k) = g(x(k), u(k)) + v(k) 

w(k) and v(k) are assumed to be independent Gaussian noise, and 

E(w(k)wT (k)) = Q(k), E(v(k)vT (k)) = R(k) 

Calculate: 
∂f(x, u)

A(k) = |x=xb(k)
∂x 

∂g(x, u)
C(k) = |x=xbp (k)∂x 

Initialize 

xb(0), Σ(0) = E{(x(0) − xb(0))(x(0) − xb(0))T } 

For k = 1,2,3,... 

1) prediction: 

xbp(k + 1) = f(xb(k), u(k)) 
prediction covariance: 

Σp(k + 1) = A(k) ∗ P (k) ∗ AT (k) + Q(k) 

2)correction: 

prediction error: 

e(k + 1) = y(k + 1) − g(xbp(k + 1), u(k + 1)) 

gain: 

K = Σp(k + 1) ∗ CT (k + 1)∗ 

(C(k + 1) ∗ Σp(k + 1) ∗ CT (k + 1) + R(k))−1 

update: 

xb(k + 1) = xbp(k + 1) + K ∗ e(k + 1) 

Σ(k + 1) = (I − K ∗ C(k + 1)) ∗ Σp(k + 1) 
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405 

is preferable for the method combining both Ah method with OCV based SOC 

estimation. In the following section, we first choose w=0.95, and then discuss 

the impact of variable weight w on the estimation performance. 

The estimation results with a 20% initial SOC estimation error are depicted 

in Fig 16, and with correct initial SOC estimation in Fig 17. 

Figure 16: SOC estimation results using WRLS with 20% initial estimation error 

Figure 17: SOC estimation results using WRLS with correct initial SOC 

As can be seen in Fig 16, the SOC estimation error converges from 20% to 

within 5% in about five minutes, which proved the effectiveness of this OCV-

based compensation method. The error at the starting stage in Fig 17 might be 

caused by the incorrect initial guess of the hysteresis voltage, i.e., Vh(0), which 

faded away in couple of minutes. 

However, in both Fig 16 and Fig 17, large SOC estimation errors occur 
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during 50% - 30% SOC range. It is because the battery OCV vs SOC curve is 

so flat during this SOC range that it is very difficult to provide correct SOC 

415 estimation using the noisy estimated battery OCV value. As can be seen in 

Table 1, battery OCV only drops 3.4 mV and 6.7 mV when battery SOC is 

reduced from 50% to 40%, and from 40% to 30 %, respectively. 

Under the laboratory test condition, the battery SOC can be directly cal-

culated by the Ah method, then the battery OCV can be obtained by linear 

420 interpolation method using the OCV vs SOC relation as listed in Table 1, and 

the resultant OCV data is called ’real OCV ’ in this paper. Note that the ’real 

OCV ’ is calculated using the average of the charging and discharging battery 

OCV values. The difference between the estimated battery OCV using WRLS 

method and the ’real OCV ’ is depicted in Fig. 18. The battery SOC is correctly 

425 initialized. 

As it is shown in Fig 18, the estimated battery OCV is very close to the 

’real OCV ’. As a matter of fact, the estimated OCV error keeps below 5 mV 

for most of the time. However, because of the flat slope of the OCV vs SOC 

curve, 5 mV error in the estimated OCV can cause up to 7.5% SOC estimation 

430 error during the 30% -40% SOC range, and more than 10% SOC estimation 

error during 40% - 50% SOC range using linear interpolation of Table 1. On 

the other hand, 5 mV OCV estimation error can only cause about 1% SOC 

estimation error during 10% - 20% SOC range. 

A practical way to tackle this problem is to reduce the weight of SOCv in Eq 

435 (11) when SOCv lies between 30% and 50 % SOC, i.e., reduce the compensation 

effect when the OCV-based correction is not so reliable. Let w = 1 in Eq (11) 

when 30% < SOCv < 50%, which means that when the estimated OCV falls 

between 30% and 50% SOC range (i.e., SOCv is not reliable), the OCV-based 

correction is avoided. Note that a constant estimation error is expected when 

440 w = 1. The new SOC estimation results are depicted in Fig 19 with 20% 

initial SOC estimation error and in Fig 20 where the estimated SOC is correctly 

initialized. As can be seen, the large SOC estimation errors during 30% to 50% 

SOC range in Fig 16 and Fig 17 are successfully removed and replaced with 
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constant estimation error as shown in Fig 19 and Fig 20. 

Figure 18: Estimated OCV using WRLS and the ’real OCV ’ with correct initial SOC 

Figure 19: SOC estimation results using WRLS after changing the weight during 30% to 50% 

SOC range with 20% initial SOC estimation error 

445 6.2. EKF 

The SOC estimation results using the EKF method are shown in Fig 21 and 

Fig 22. In Fig 21 the initial SOC estimation error is 20%. As can be seen, the 

estimated SOC converges to within 5% SOC error in about 5 minutes, and the 

error remains within 5% SOC afterwards. The large estimation errors caused by 

450 the flat OCV vs SOC curve during 50% to 30% SOC range, as shown in Fig 16 

and Fig 17, are greatly suppressed. The reason is that the estimated SOC has 

already converged to the corrected SOC before reaching 50% SOC level. The 
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Figure 20: SOC estimation results using WRLS after changing the weight during 30% to 50% 

SOC range with correct initial SOC estimation 

change of the gain K in the EKF algorithm shown in Table 5, i.e., kKk2 which 

determines the correction weight, is depicted in Fig 23. As can be seen, after 

the estimation error converges, the amplitude of K falls quickly to a very low 

value. 

In Fig 22, the estimated SOC is correctly initialized. It shows that the SOC 

estimation error remains quite small, except for one segment at the end of the 

discharging period. This problem will be tackled using the joint-EKF method. 

Figure 21: SOC estimation results using EKF with 20% initial estimation error 
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Figure 22: SOC estimation results using EKF with correct initial SOC 

Figure 23: Amplitude of the gain K 
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460 6.3. joint-EKF 

As discussed in the previous section, the battery internal resistance, Ri can 

be taken as another state, thus forming the augmented state vector as shown in 

(15). Then the EKF method can be applied for SOC estimation. The results are 

depicted in Fig 24 with 20% initial SOC estimation error and in Fig 25 where 

465 the estimated SOC is correctly initialized. It shows that with a 20% initial 

SOC estimation error, it takes less than one minute for the estimated error to 

fall below 5% and remain within 5% afterwards. In both cases, the estimation 

errors are very small. 

The large SOC estimation error at the end of discharge in Fig 22 is suc-

470 cessfully suppressed in Fig 25 by introducing Ri as another state. Besides, the 

convergence speed using joint-EKF method (about one minute) is much faster 

than EKF method (about 5 minutes). The identified battery internal resistance, 

Ri, as an extra state is shown in Fig 26. It shown that Ri increased notably at 

the end of discharging when the battery SOC is reduced to less than 30%, which 

475 coincides with laboratory observations that the battery internal resistance will 

increase as it approaches the end of discharging. 

Figure 24: SOC estimation results using joint-EKF with incorrect initial SOC 

6.4. Summary of the results 

Finally, the above SOC estimation results using different methods are sum-

marized in Table 6. As can be seen, the joint-EKF method prevails at both 
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Figure 25: SOC estimation results using joint-EKF with correct initial SOC 

Figure 26: The identified battery internal resistance 
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Table 6: Root mean square of SOC estimation error of different methods 

WRLS WRLS EKF joint 

changing EKF 

weight 

20% ini-

tial error 

3.67% 2.78% 2.81% 1.63% 

no initial 

error 

3.51% 2.36% 2.17% 1.48% 

480 cases, i.e., with and without initial SOC estimation error. The performance of 

the WRLS method with changing weight is close to that of the EKF method. 

The WRLS method alone achieved the worse performance in both cases. Since 

the OCV-based method is used to compensate for the Ah method, it is natural 

to avoid using it for certain SOC ranges where the OCV-based SOC estimation 

485 is not so reliable, i.e., where the slope of the OCV vs SOC curve is very flat. 

The SOC estimation accuracy of the proposed methods are comparable to 

or better than the published results on various Lithium batteries (e.g., LiB, 

LiFePo4 batteries), for most of which the SOC estimation errors are around 2% 

[15, 38, 12, 14, 34, 39]. Higher SOC estimation accuracy can also be achieved 

490 by using a more detailed battery model, such as by taking into consideration of 

the temperature effect and the rate-dependent columbic efficiency [11], which 

are however not considered in this paper. 

It should be noted that although the results presented in this study are 

obtained from simulations using experimentally measured data, however, once 

495 the battery model is trained off-line using experimental data, the computational 

complexity of the SOC estimation methods proposed in this paper is quite low, 

and in this paper both the extended Kalman Filter method and the WRLS 

method are presented in a recursive formula, which are designed for on-line 

applications. Further, the methods presented in this paper depend only on the 

500 on-board measurable signals, such as voltage and current signals. Therefore, 
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the methods proposed in this paper are for real-time on-board applications. 

7. Conclusions 

Real-time accurate SOC estimation is of great importance for the battery 

management system in EV/HEV applications. Different SOC estimation meth-

505 ods are firstly presented in this paper, including direct measurement methods 

and model-based estimation methods. An auto-regression battery model is then 

proposed to reproduce the battery terminal behaviour together with a non-linear 

complementary model to capture the battery hysteresis effect. The model pa-

rameters are optimized using a hybrid optimization method combining TLBO 

510 and least square method. Based on the off-line trained model, two different 

real-time model-based SOC estimation methods for Lithium-ion batteries are 

presented, one based on model parameter identification using WRLS method 

and another based on state estimation using EKF method. Considering that 

the battery internal resistance changes with battery SOC, joint-EKF method is 

515 adopted for both parameter and state estimation to improve the SOC estimation 

performance. The proposed methods are compared using test data collected on 

a LiFePo4 battery cell. Two different cases are considered, with and without 

initial SOC estimation error. The estimation results confirmed the effective-

ness of the modelling method and the model-based SOC estimation methods, 

520 in particular the joint-EKF method. 

Note that the modelling and SOC estimation methods proposed in this paper 

are data-driven methods using on-board measured signals such as terminal volt-

age and current, and involve no specific battery chemistries, therefore they are 

generic for wide applications. In particular, this paper addresses the two most 

525 challenging issues in estimating the SOC of these battery types, i.e. flat OCV-

versus-SOC curve for some SOC ranges, and the hysteresis nonlinearity during 

the charging and discharging phases. Therefore, although only the LiFePo4 bat-

tery is tested in this paper, the methods can be applied to other types of lithium 

batteries as well as other cathode-based batteries, such as NMP and LiCoO2 
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530 batteries. 

In this paper only one battery cell is investigated. We assumed that the bat-

tery pack is well-balanced by the battery management system, therefore it can 

be taken as one large battery cell. In the future research, the battery pack SOC 

estimation under imbalance condition will be studied. Further, the temperature 

535 change of the battery system, which will affect the battery behaviour and thus 

affecting the battery model identification, is not considered in this paper. The 

temperature effect on the battery SOC estimation is another research topic in 

the future. 
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