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Abstract   13 

The ability to predict forest fire risk at monthly, seasonal, and above-annual time scales is critical to 14 

mitigate its impacts, including fire-driven dynamics of ecosystem and socio-economic services. Fire is the 15 

primary driving factor of the ecosystem dynamics in the boreal forest, directly affecting global carbon 16 

balance and atmospheric concentrations of the trace gases including carbon dioxide. Resilience of the 17 

ocean-atmosphere system provides potential for advanced detection of upcoming fire season intensity.  18 

Here, we report on the development of a probabilistic empirical prediction system for forest fire risk on 19 

monthly-to-seasonal timescales across the circumboreal region. Quasi-operational ensemble forecasts are 20 

generated for monthly drought code (MDC), an established indicator for seasonal fire activity in the 21 

Boreal biome based on monthly maximum temperature and precipitation values. Historical MDC forecasts 22 

are validated against observations, with good skill is found in across northern Eurasia and North America. 23 

In addition, we show that the MDC forecasts are an excellent indicator for satellite-derived observations 24 

of burned area in large parts of the Boreal region. 25 
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Our discussion considers the relative value of forecast information to a range of stakeholders when 26 

disseminated before and during the fire season. We also discuss the wider role of empirical predictions in 27 

benchmarking dynamical forecast systems and in conveying forecast information in a simple and 28 

digestible manner. 29 

Key words: Forecasting (methods); Seasonal prediction; Forest fire; Empirical  modelling. 30 

 31 

1. Introduction  32 

Wildfire constitutes an important natural hazard associated with a diverse set of environmental, social and 33 

economic impacts. The provision of forecast information about fire risk at monthly to seasonal timescales 34 

is critical to the mitigation of these impacts. Weather and climate play a key role in governing fire occurrence 35 

throughout the world (e.g. Flannigan et al., 2009); the extent to which fire risk may be predictable at these 36 

timescales is dependent on so-called teleconnections that describe the links between large-scale modes of 37 

variability in the climate system and local- or regional-scale anomalies. While seasonal climate forecasting 38 

is a regular service provided by many centres across the globe, the practice of forecasting fire risk at similar 39 

time scales is still relatively novel (e.g. Marcos et al., 2015; Bedía et al., 2018; Turco et al., 2018). As many 40 

forecasting efforts are often limited to specific regions there are large areas of the globe where the link of 41 

regional fire risk to large-scale climate, and therefore the potential for useful fire forecasts, is not yet clear. 42 

The boreal biome spanning Eurasia and North America is one of such regions.  43 

Boreal fire activity accounts for approximately 12% of the total annual biomass burned globally (McRae et 44 

al., 2006) and is the main driving factor of ecosystem dynamics, directly affecting the global carbon balance 45 

in addition to atmospheric concentrations of carbon dioxide and other trace gases (Bond-Lamberty et al., 46 

2007; Bowman et al., 2013). Changes in fire regimes impact significantly on forest composition, 47 

regeneration and growth conditions (Bergeron et al., 2004) and subsequently on carbon storage, biodiversity 48 

preservation and other ecosystem services (Bergeron et al., 2001; Bradshaw and Hannon, 2004; Adams, 49 

2013). Additionally, the economies of local communities are dependent on the availability of forest 50 

products, including harvested softwood that accounts for 60% of the global total (Burton et al., 2010). Given 51 

that this region comprises one third of the world's forests and is potentially vulnerable to anthropogenic 52 

climate change, efforts to quantify the actual and potential limits of forecast skill is particularly important 53 

in understanding their usefulness for mitigation strategies. 54 

Direct connections have previously been made between fire occurrence and sea surface temperature (SST) 55 
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anomalies in the Pacific, Indian and Atlantic oceans during the preceding months (e.g. Chen et al., 2016; 56 

Drobyshev et al., 2019). However, the response of fire activity to such teleconnections is complex and 57 

inherently dependent on locally-varying factors (e.g. Moron et al., 2013). Additionally, calibration of 58 

forecast models of fire activity on historical fire records assumes that its dynamics are driven predominately 59 

by natural (climatic) factors. While the identification of regions with consistent fire-climate relationships is 60 

important, potentially of most use to stakeholders is the provision of a geographically-complete forecast 61 

alongside a clear indication of forecast skill, enabling the end user to interpret and act upon the forecast on 62 

a case-by-case basis. The use of global forecasts of seasonal climate, following both dynamical and 63 

empirical approaches, not only provides forecast information in a physically-consistent way but is also likely 64 

to be more applicable in a changing climate. 65 

Dynamical (process-based) forecast systems continue to provide the most important platform for making 66 

predictions of seasonal climate at continental and regional scales. The numerical models that underpin such 67 

systems are able to, in principle, represent dynamical processes in and feedbacks between the atmosphere, 68 

ocean and land surface. The complexity of numerical climate models and the computational resources 69 

required to conduct the quantity of simulations necessary for reliable forecasting means that the 70 

development of dynamical systems is a continuous challenge (e.g. Doblas-Reyes et al., 2013). Even the 71 

most state-of-the-art models are associated with systematic errors and biases, with forecast skill severely 72 

limited in some regions of the globe. Empirical models, which seek to describe a known physical 73 

relationship between large-scale climate phenomena and local variations in a target variable, such as 74 

temperature or precipitation, can offer a credible alternative to their dynamical counterparts. Empirical 75 

models may range in complexity, from simply taking the value of a given variable at a given lead time as 76 

the forecast for the same variable (known as persistence) to analog- and regression-based methods that may 77 

in turn use sophisticated statistical techniques to decompose the predictive power of spatial patterns in 78 

climate fields. 79 

Historically, application of empirical methods to seasonal forecasting has been done on an ad hoc basis, 80 

with focus given to a particular region or time scale. While this flexibility is a key benefit of empirical 81 

models in general, a global forecast system is required if the empirical approach is to either support or act 82 

as a credible alternative to dynamical forecast systems. To address this, Eden et al (2015) developed a 83 

prototype empirical system for generating probabilistic forecasts of temperature and precipitation across the 84 

globe. Since its development, monthly forecasts have been produced quasi-operationally and disseminated 85 

via the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer (http://climexp.knmi.nl). In 86 

general, the empirical forecasts perform well in areas that are strongly teleconnected to well-known large-87 

scale modes of variability in the climate system, including the El Nino Southern Oscillation (ENSO), the 88 
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Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). While there are 89 

regions and seasons for which empirical forecasts are not skilful, there are numerous examples during the 90 

quasi-operational phase where the empirical forecasts have been closer to observations than dynamical 91 

forecasts. The key benefit of empirical forecasts is the significantly lower computational complexity. By 92 

maximising this benefit there is considerable potential to generate forecasts for a variety of applications.  93 

Here, we present an empirical approach to probabilistic prediction of monthly-to-seasonal forest fire risk in 94 

the circumboreal region. A variant of the empirical prediction system introduced by Eden et al. (2015)  is 95 

used to generate ensemble forecasts of monthly drought code (MDC), an established indicator for seasonal 96 

fire activity in the Boreal biome based on maximum temperature and precipitation values (Girardin et al., 97 

2009; van den Kamp et al., 2013). MDC forecasts are compared with corresponding observations of fire 98 

activity across North America and Eurasia, with correlation and probabilistic verification statistics used to 99 

identify regions of strong forecast performance. In the same way that empirical forecasts of seasonal climate 100 

provide a benchmark upon which to evaluate dynamical forecast products, the forecasts produced here may 101 

perform a similar role in respect to fire risk predictions produced by established forecast centres around the 102 

world. 103 

Our analysis focuses first on the skill of the MDC forecasts across the circumboreal region. Secondly, we 104 

make comparisons between historical fire activity and corresponding MDC forecasts. In our conclusion we 105 

outline the benefits of such a system for the boreal region and other parts of the world. 106 

 107 

2. Methods 108 

2.1 Monthly Drought Code (MDC) 109 

The MDC was developed by (Girardin and Wotton, 2009) as a monthly version of the Drought Code (DC), 110 

a daily moisture index used in forest management activities across Canada, northern Europe and northern 111 

Asia (de Groot et al., 2007). The DC is a simple approximation of the day-to-day changes in the moisture 112 

content of the deep organic layer derived from daily observations of maximum temperature, to estimate 113 

potential evapotranspiration, and cumulative precipitation. The DC may be used to characterise seasonal 114 

drought episodes but its derivation requires the availability of daily meteorological input data. Given that 115 

the relationships between the temperature and evapotranspiration and precipitation and soil moisture 116 

respectively are linear, Girardin and Wotton (2009) proposed a generalisation of the DC using monthly 117 

means. Both indices parameterise the moisture content of burnable organic matter. The MDC formulation, 118 
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following Girardin and Wootton (2009), is summarised as follows. Potential evapotranspiration 𝐸𝑚 during 119 

month m is given by: 120 

𝐸𝑚 = 𝑁(0.36(𝑇max) + 𝐿𝑓 121 

where 𝑇max is the monthly mean of daily maximum temperatures (°C) and N is the number of days in the 122 

month. The day adjustment factor 𝐿𝑓  varies by month and represents the difference between noon and 123 

maximum temperature (van Wagner, 1987). The formulation assumes that total monthly precipitation occurs 124 

during the middle of the month and so first an estimation is made for the effect of precipitation on overall 125 

drying, DCHALF, calculated thus: 126 

DCHALF = 𝑀𝐷𝐶0 + 0.25𝐸𝑚 127 

where MDC0 is the MDC from the end of the previous month. The moisture equivalent 𝑄𝑚𝑟 following 128 

precipitation is calculated: 129 

𝑄𝑚𝑟 = 800𝑒(−
DCHALF

400 ) + 3.9397RMEFF 130 

where RMEFF  is the effective precipitation, calculated by reducing total monthly rainfall 𝑟𝑚 to account for 131 

canopy and surface interception (RMEFF = 0.83𝑟𝑚). The estimate for MDC at the end of month m is given 132 

by: 133 

MDC𝑚 = 400ln (
800

𝑄𝑚𝑟
) + 0.25𝐸𝑚 134 

The final MDC quantity is the average of the MDC values at the end of the current month MDC𝑚 and 135 

previous month MDC0:  136 

MDC = (MDC0 + MDC𝑚)/2 137 

The quantities expressed by both the MDC and 𝑄𝑚𝑟 are unitless and there is no physical interpretation of 138 

the MDC value. Some experimental work indicates that DC values may be considered low when smaller 139 

than 200 and moderate when around 300 (e.g. de Groot et al., 2009; van der Kamp et al., 2013). Values 140 

greater than 400 are associated with the most intense burning (Girardin and Wotton, 2009). Such peaks tend 141 

to occur between mid-August and early September (van der Kamp, 2013). 142 

2.2 Empirical forecasts 143 
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Some efforts have been made to forecast fire activity itself. Such an approach is complicated by the role of 144 

external factors in fire ignition, continuity and spread. This is particularly relevant at the local to regional 145 

scale. By contrast, in estimating fire risk indices such as MDC, it is possible to take forecasts of the 146 

constituent meteorological variables. As there is a degree of uncertainty with the forecast of each variable, 147 

this approach is potentially problematic for an index that relies on several variables. The MDC provides a 148 

robust solution as only two variables, maximum temperature and precipitation, are required thus reducing 149 

the cumulative forecast uncertainty.  150 

Forecasts of maximum temperature and precipitation are taken from an established global empirical 151 

prediction system developed at the Royal Netherlands Meteorological Institute (KNMI). The system was 152 

designed with two purposes in mind: (a) to act as a benchmark for forecasts from dynamical systems, and 153 

(b) to serve as a forecast system in its own right. The system is used to generate monthly forecasts for the 154 

forthcoming three-month season which are then disseminated via the KNMI Climate Explorer. A detailed 155 

overview of the empirical prediction system and verification of its forecasts was given by Eden et al. (2015). 156 

Here, we provide a brief summary of the system and its application in the context of MDC forecasting. 157 

The empirical prediction system is based on multiple linear regression and was designed to produce seasonal 158 

forecasts of temperature and precipitation using a number of predictors based on well-understood physical 159 

relationships. There is a growing acknowledgement that the temporal evolution of seasonal climate is 160 

governed not only by the internal variability of the climate system but also by the influence of anthropogenic 161 

climate change (Doblas-Reyes et al., 2013). A key component of the empirical prediction system was 162 

therefore to incorporate the long-term climate change signal as a source of skill. Additional predictors 163 

describing large scale modes of variability, including the El Nino Southern Oscillation (ENSO), local-scale 164 

information were included on the basis of their potential to add predictive power. The predictand time series 165 

x is therefore modelled as a function of a set of predictors thus: 166 

𝑥 = 𝛼 + 𝛽𝐶 + ∑(Φ𝑖𝐹𝑖) + 𝜖

𝑛

𝑖=1

 167 

where C at a given lead time is the global CO2 equivalent concentration a representation of the net forcing 168 

of greenhouse gases, aerosols and other anthropogenic emissions according to observations (until 2005) and 169 

the Representative Concentration Pathway (RCP) 4.5 (2005 onwards) (Meinshausen et al., 2011). F is a set 170 

of n additional predictors at the same lead time with regression parameters 𝛽 and Φ required to transform 171 

C and F respectively. 𝛼 is the constant regression parameter and 𝜖 is the set of residuals specific to the 172 

regression fit. An independent regression model is calibrated at each grid point and for each three-month 173 
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season. Whereas C is always included as a predictor, the predictors in F are selected following a predictor 174 

selection procedure prior to model fitting. 175 

The empirical prediction system uses a two-step predictor selection process to determine the fewest 176 

predictors necessary to provide greatest predictive power. The first step is undertaken prior to model fitting 177 

to determine which predictors exhibit good potential without collinearity with others. In a second step, 178 

predictors with potential are included in the model fitting. Again, a full description is given in (Eden et al., 179 

2015). 180 

Here, the same set of predictors used by Eden et al. (2015) to forecast mean temperature are used to forecast 181 

maximum temperature. These include a set of indices describing modes of variability in the climate system: 182 

NINO3.4 (which describes the phase and strength of ENSO), Pacific Decadal Oscillation (PDO), Atlantic 183 

Multidecadal Oscillation (AMO), Indian Ocean Dipole (IOD). Additionally, a set of locally-varying 184 

predictors are included: the previous month's value of the predictand, known as persistence (PERS), 185 

cumulative precipitation (CPREC) and the local sea surface temperature (LSST; defined as the average sea 186 

surface temperature in the five nearest-neighbour maritime gridcells). The relative contribution of each 187 

predictor, which differs both temporally and spatially, is very similar to that in the empirical models used 188 

to predict mean temperature; we direct the reader to Eden et al. (2015) for a full discussion. For summertime 189 

forecasts in the circumboreal region, the importance of NINO3.4 and PDO is limited at short lead times 190 

despite these being the most important predictors globally. AMO and IOD play a more important role in 191 

boreal Eurasia and both PERS and CPREC add considerable value in several regions. For precipitation, the 192 

same set of predictors agreed by Eden et al. (2015) are again used: NINO3.4, AMO, PERS and LSST. The 193 

relative contribution of NINO3.4 and AMO is strongest in North America and Eurasia respectively. Again, 194 

we direct the reader to Eden et al. (2015) for more detail. 195 

The provision of probabilistic output was an important and novel component in the original system 196 

development and was achieved by randomly sampling the residuals  of the original model fit. Whereas this 197 

has previously been done separately for each predictand, a key challenge here is to ensure a physical 198 

consistency between the two variables that will be used to calculate the MDC. To ensure a temporal 199 

alignment between residuals of temperature and precipitation, the residuals are therefore sampled in pairs.   200 

2.3 Fire activity observations 201 

In comparing historical forecasts with observations of fire activity, we first of all take monthly burned area 202 

data from the fourth version of the Global Fire Emissions Database (GFED), which contains estimates of 203 

monthly burned areas at 0.25° spatial resolution from mid-1995 to present. The GFED (van der Werf et al., 204 
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2006; 2010) is one of several global data sources of large-scale fire emissions based on satellite-derived fire 205 

activity and vegetation productivity information. Specifically, the fourth version (GFED4), which is fully 206 

described by Giglio et al. (2013), combines 500m MODIS maps of burned area with active fire data from 207 

the Along-Track Scanning Radiometer (ATSR) World Fire Atlas (Arino and Rosaz, 1999) and the Visible 208 

and Infrared Scanner (VIRS) (Giglio et al., 2003). GFED4 has been used regularly to link fire activity with 209 

large-scale modes of atmospheric-oceanic variability (e.g. Chen et al., 2016) and to verify forecasts of fire 210 

danger (Di Giuseppe et al., 2016). Secondly, we focus on specific large fires using data from the boreal 211 

burned area (BBA) dataset, a satellite-based fire scar product developed and described by Lehsten et al. 212 

(2014) that identifies spatiotemporal fire occurrence at daily timescales for the period 2001-2011. The BBA 213 

data is generated using several Moderate Resolution Imaging Spectroradiometer products with burned areas 214 

dated using thermal anomalies. 215 

 216 

3. Results 217 

3.1 MDC forecasts and verification 218 

Efficiency of fire suppression relies, to a considerable degree, on the advance prediction of fire risk for the 219 

upcoming fire season in support of the optimal allocation of suppression resources over potentially vast 220 

geographic areas.  Keeping this consideration in mind we use two prediction modes to generate MDC 221 

forecasts for each month in the northern hemisphere fire season (April to September). Mode 1 forecasts are 222 

generated during March for the entire fire season, and in doing so use a common predictor period of 223 

December-February. The three-month predictor period is consistent with that approach taken in the 224 

empirical prediction system’s original development. Mode 2 forecasts are generated for each month 225 

independently at a one month lead time (e.g. the forecast for July is made during June using predictor data 226 

for March, April and May). Forecasts under the two modes are compared in order to understand, not only 227 

the degree of added value in updating forecasts each month, but also of the potential use of advance forecast 228 

information and the point at which the quality of that information may does not provide additional 229 

information relative to climatology.  230 

Figure 1 shows the correlation between observed and forecasted MDC under modes 1 and 2 respectively 231 

for each month between 1961-2016. Correlation during April (for which the prediction period is identical 232 

in both prediction modes) is high across the Boreal zone, and greater than 0.6 in much of western Eurasia 233 

and eastern Canada. Under prediction mode 2, during May and June correlation generally remains similar 234 

across almost all of the Boreal zone, increasing slightly in July. August is associated with marginally 235 
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stronger correlation in central and eastern Siberia. During September correlation is again stronger and up to 236 

0.9 in parts of central Eurasia. Under prediction mode 1, correlation is sufficiently comparable to prediction 237 

mode 2 during May and June to suggest that skilful forecasts are possible at a lead time of up to three months 238 

and that subsequent planning activities would not benefit hugely from updated forecasts. During the later 239 

summer months, particularly August and September, forecast skill is far more dependent on a realistic 240 

representation of conditions throughout the earlier part of the fire season. For these months, the added value 241 

given by mode 2 in updating forecasts each month is clear. While the two-mode comparison is suitable for 242 

an analysis of the entire circumboreal region, the results suggest that forecast performance may be further 243 

improved at the regional scale by optimising lead times; for June in particular, skill in many areas is actually 244 

greater under the longer lead times in mode 1 than in mode 2. 245 

3.2 Regional predictability of burned area 246 

In this section, we explore the extent to which the MDC forecasts correspond with historical episodes of 247 

fire activity defined by burned area. We primarily use monthly burned areas values from the GFED4 dataset, 248 

described in Section 2.3. Burned area values are taken for each month at 1° x 1° resolution, which allows, 249 

in principle, for comparison between MDC and burned area to be made at each grid point throughout the 250 

Boreal domain. However, it is necessary to consider that fires are low frequency events, particularly when 251 

considering their occurrence within an area defined by a 1° x 1° grid box. In practice, the precise location 252 

of a fire event may not be so crucial to planning procedures and resource allocation. Rather, a forecast of 253 

anomalous fire risk within the proximity of an observed fire event may still constitute valuable forecast 254 

information (Di Giuseppe et al., 2016). Here, our forecast-fire activity comparison at a given point is made 255 

between spatial means of MDC and burned area within a 7° x 7° domain centred on the point of interest. 256 

Firstly, we assess the degree of correspondence between observed MDC and burned area. MDC derived 257 

purely from contemporaneous observations has previously been shown to be strong predictor for burned 258 

area in the boreal region. For instance, van der Kamp et al. (2013) found MDC to be strongly correlated 259 

with regional burned area during the summer months (June-August) in southeast British Columbia (R2  = 260 

0.61). In an extension of this analysis across the circumboreal region, we consistently observed strong 261 

correlation (r > 0.7) throughout Eurasia and western and central Canada, particularly during June-August 262 

(not shown). From the perspective of seasonal prediction, the key question is, “Can we produce useful MDC 263 

forecasts up to several months in advance?” Figure 2 shows correlation between forecasted MDC and burned 264 

area from GFED4. Under mode 1, correlation > 0.5 during April is limited to the Russian far east; the general 265 

increase in fire activity during April is associated with correlations up to 0.6 in several parts of the North 266 

America and Eurasian sectors. Highest correlation is found during June (r  > 0.8) and July (r > 0.7) in central 267 
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Eurasia. The performance of the MDC forecasts falls during August and September. Under mode 2, 268 

correlation patterns are broadly similar during April and May, suggesting there is little additional skill to be 269 

gained by updating forecasts each month.  This situation begins to change from June when we observe 270 

correlation > 0.6 in more areas. During July and August, the performance is much improved under mode 2 271 

in comparison to mode 1. High correlation during June persists into July and August, particularly in Siberia 272 

and the Russian far east. During September, for which there is minimal performance under mode 1, mode 2 273 

forecasts produce correlation up to 0.9 in parts of eastern Siberia but offer little additional skill in western 274 

Eurasia.  275 

It is clear that forecast mode 2 offers stronger performance overall, and particularly during the second half 276 

of the fire season. We therefore take mode 2 forecasts for use in subsequent analysis. However, we note that 277 

results for modes 1 and 2 are comparable during the April-June period, suggesting that it is possible to 278 

produce useful forecasts in advance of the entire first three months of the fire season across large parts of 279 

the circumboreal region. Only from July onwards do we see a marked benefit in running updated (mode 2) 280 

forecasts a month in advance.  281 

Secondly, we seek to quantify forecast performance (mode 2) at the regional scale. To account for 282 

differences in the response of the natural environment to fire activity and consequent management strategies, 283 

our regional distinction is made between areas of land with broadly homogeneous vegetation and ecological 284 

characteristics within the boreal biome. These areas are defined by the World Wildlife Fund’s Terrestrial 285 

Ecoregions of the World (TEOW) following Olson et al. (2001). Figure 3 details spatial means in observed 286 

and forecasted MDC for the full length fire season (April-September) alongside regionally-averaged burned 287 

area for a number of key ecoregions within the North American and Eurasian sectors of the wider 288 

circumboreal region. In boreal Eurasia, correlation between observed and forecasted MDC varies between 289 

0.6 and 0.9 across most zones and is strongest in the Siberian ecoregions. Only in the West Siberian taiga 290 

region do we find a significant relationship between forecasted MDC and burned area (r = 0.40); increased 291 

fire activity during the 2001, 2006 and, particularly, 2013 seasons is associated with MDC anomalies that 292 

are well-captured by the forecasts.  In boreal North America, correlation between ecoregion observed and 293 

forecasted MDC is consistently high (r > 0.7). In the Mid-Continental Canadian forests, where we observe 294 

a significant correlation (r = 0.41) between ecoregion-specific MDC and burned area, we again find that 295 

years with regionally increased fire activity (1999, 2003, 2011 and 2016) correspond with forecasts of 296 

anomalous MDC value (r = 0.41). There is less consistency across the other North American ecoregions but 297 

still some evidence that years of greatest burning are associated with forecasts of above-average MDC 298 

values (e.g. during 1999 and 2005 in the Muskwa-Slave Lake forests zone). 299 



 11 

In general, the MDC forecasts show decent potential as a predictive tool for fire risk in large parts of the 300 

circumboreal region, particularly when updated at one-month lead times throughout the fire season. In some 301 

areas, strong forecast performance is consistent with previous work showing a high degree of predictability 302 

on the basis of established teleconnections. This includes, for instance, the link between ENSO-related SST 303 

anomalies and fire activity in north-east Eurasia (Chen et al., 2016). Key to the findings presented here are 304 

the examples of predictive skill in other parts of Eurasia and North America that have not previously been 305 

identified. 306 

3.3 Forecasts and individual fires 307 

We now assess the capacity of the MDC forecasts to predict increased fire risk coinciding with large fires. 308 

In other words, to what extent can the empirical prediction system have been used to predict the occurrence 309 

of the largest circumboreal fires during a particular historical period? Here, we use the BBA dataset (Lehsten 310 

et al., 2014) with detailed information on the location, timing and duration of individual fires for the period 311 

2001-2011. We focus on the largest 10% of fires (defined by estimated burned area) only. Figure 4 illustrates 312 

the spatial distribution of this set of fires, again during the six component months of the fire season. Each 313 

fire episode is compared with the corresponding MDC forecast for the same location, month and year. As 314 

expected, the largest fires are associated with anomalous MDC forecasts; in many areas, the forecast falls 315 

above the observed 75th percentile. These include large parts of eastern and central Eurasia and, between 316 

May and July, the boreal forests of northern Europe. In North America, the majority of corresponding 317 

forecasts are above the 50th percentile but there are fewer above the 75th percentile. Likewise, September 318 

fires across Eurasia are rarely associated with strongly anomalous MDC forecasts. 319 

Figure 4 provides clear evidence that historical MDC forecasts may have been useful as a predictive tool 320 

for circumboreal fire risk during the study period, particularly in the Eurasian sector. Our focus now shifts 321 

to the peak-summer months (June-August) and to the largest and most damaging individual fires. The MDC 322 

forecasts for this period show greatest overall skill as a predictor for burned area (Figure 2b). Peak-summer 323 

fires associated with burned areas larger than 500 ha are categorised into three levels of severity: 500-1000 324 

ha, 1000-2000 ha and > 2000 ha. Figure 5 details the spatial distribution of fire episodes in these three 325 

categories and the associated MDC forecast. Large fire years throughout eastern Eurasia were associated 326 

with values above 300; by contrast, the largest fires in North American are rarely associated with MDC 327 

forecasts that exceed 200. We present MDC values as anomalies with respect to the climatology given the 328 

substantial regional variation exhibited. MDC forecasts fall above the climatological 75th percentile in 60-329 

70% of cases. However, it would be dangerous to place faith in MDC forecasts without considering regional 330 

variation in skill. 331 
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The largest circumboreal fire episodes are found to be frequently associated with anomalous MDC values, 332 

suggesting that such forecasts have the potential to correctly inform fire management authorities of 333 

increased likelihood of fire activity. However, as the MDC forecasts clearly do not resolve sub-monthly 334 

variations that facilitate fire spread, the largest fires are not always linked to the highest MDC values. While 335 

this forecast approach has the capacity to provide information to support the distribution of resources, 336 

additional information from meteorological (i.e. daily) forecasts is required to explicitly predict fire severity. 337 

4.  Discussion and outlook 338 

The links between fire risk and the natural variability of the atmosphere-ocean system, while complex, are 339 

a pathway to predictability. Many studies have previously explored patterns in area burned by fire activity 340 

and the relationship with, for instance, global SST anomalies (e.g. Chen et al., 2016). In general, areas of 341 

significant fire-SST relationships are limited to regions where temperature and precipitation exhibit strong 342 

teleconnections with ENSO, PDO and other modes of variability. Outside the tropics, such teleconnections 343 

are not as persistent, leaving us with large gaps in our understanding of fire-climate relationships, potential 344 

for predictability and development of early warning systems. The boreal region, with a third of the world’s 345 

forested area, is one such gap where an improved understanding and forecasting capabilities is potentially 346 

very useful to fire management strategies. 347 

Here, the capacity for monthly-to-seasonal prediction of circumboreal fire risk has been assessed using an 348 

empirical prediction system built to the fullest extent on physical principles. Monthly drought code (MDC), 349 

an established metric for meteorological conditions conducive to the spread and prevalence of circumboreal 350 

fires, was derived from forecasts of maximum temperature and precipitation using predictor information 351 

from a variety of climate indices. We found, first of all, that MDC estimates derived from empirical forecasts 352 

compare favourably with those derived from observations in large parts of the circumboreal region, 353 

particularly when generated no more than a month in advance. Secondly, we found MDC forecasts to be a 354 

reliable indicator for burned area metrics in large parts of the circumboreal region. This included areas where 355 

there exists little prior evidence of strong relationship between fire risk and modes of variability within the 356 

climate system.  357 

These results are sufficiently encouraging to suggest scope for the empirical system to act, not only as a 358 

benchmark to judge the effectiveness of dynamical forecast system based on numerical models, but also as 359 

a forecast tool in its own right. Concerning the second purpose, it is important to consider the limitations of 360 

dynamical forecast systems and where an empirical approach may add value. In general, strong performance 361 

in dynamical forecasts is limited to regions of the tropics where well-established teleconnections are 362 
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captured by the underpinning numerical models. Outside these regions, and particularly in the globe’s 363 

northern latitudes, the random variability of the climate system exerts a far greater governance on seasonal 364 

variations in temperature and precipitation (Kumar et al., 2007; Arribas et al., 2011). The empirical forecasts 365 

produced here are sufficiently promising to act both as a benchmarking tool and, crucially, as a supplement 366 

to dynamical forecasts. 367 

As discussed in the introduction, the practice of predicting seasonal fire risk is still in its infancy and further 368 

development should seek to expand on existing approaches to forecasting on shorter timescales. We 369 

recognise that the DC, for which the MDC is an extension, is just one component of the Fire Weather Index 370 

(FWI), a metric widely-used to estimate fire risk. The DC, and consequently the MDC, do not include a 371 

quantification of wind speed, which is considered a major control on fire spread. Our results show generally 372 

high predictive skill despite the omission of wind, possibly due to the association of large fires with the 373 

persistent blocking episodes common to much of the study region during the summer months. But the 374 

adaptation of the FWI and other wind-inclusive indices from daily to seasonal timescales may add value to 375 

overall forecast skill, particularly outside the circumboreal region. In addition, such adaptation is likely to 376 

support the complementarity of forecasts on different timescales in order to prepare for and explicitly predict 377 

fire activity. 378 

Research into understanding and predicting present and future changes in wildfire activity is an expanding 379 

subfield that bridges the climate, biological and social sciences. The true test of any forecast product with 380 

regard to its usefulness is to facilitate its application to real world scenarios. It is intended for the forecast 381 

system presented here to be implemented in a quasi-operational framework. Alongside the existing set of 382 

forecasts and verification metrics, monthly MDC forecasts for the circumboreal region will be generated 383 

and publicly disseminated via the KNMI Climate Explorer. We anticipate that future development of the 384 

forecast system will be supported by two-way dialogue with forest management authorities and other 385 

relevant stakeholders. 386 
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Figure 1: Correlation of (a) mode 1 and (b) mode 2 empirical forecast-derived MDC with observation-463 
derived MDC within the circumboreal region for April to September (1961-2016). 464 
 465 
Figure 2: Correlation of (a) mode 1 and (b) mode 2 empirical forecast-derived MDC with GFED-derived 466 
average area burned within the circumboreal region for  April to September (1996-2016). 467 
 468 
Figure 3: Spatial mean observed (black) and mode 2 forecasted (green) MDC (1961-2016) alongside 469 
average area burned per month per month (AAB; red; 1996-2016) in eight homogenous terrestrial 470 
ecosystems across the circumboreal region. Means calculated for April-September. Correlation (and p 471 
value) between observed and forecasted MDC shown in top left corner of each panel (black); correlation 472 
(and p value) between forecasted MDC and observed burned area shown in bottom left corner of each 473 
panel (red). 474 
 475 
Figure 4: Spatial and intra-seasonal distribution of the largest 10% of observed fires (in terms of area 476 
burned) between 2000-2011 and the magnitude of each corresponding MDC forecast; colour at each point 477 
illustrates the MDC forecast terms of which quartile it falls each into (e.g. Q4 is the case when the forecast 478 
is above the historical 75th percentile at that particular location). 479 

Figure 5: Spatial distribution of fires associated with a total burned area larger than 500 hectares; the size 480 
and colour of the bubble indicates the size of the burned area and the corresponding MDC forecast 481 
respectively.  The lower-left insert in each panel indicates the proportion of MDC forecasts falling in one 482 
of four quartiles during a fire occurrence. 483 
 484 
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Figure 2: Correlation of (a) mode 1 and (b) mode 2 empirical forecast-derived MDC with GFED-

derived average area burned within the circumboreal region for  April to September (1996-2016). 
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Figure 3: Spatial mean observed (black) and mode 2 forecasted (green) MDC (1961-2016) alongside 

average area burned (AAB; red; 1996-2016) in eight homogenous terrestrial ecosystems across the 

circumboreal region. Correlation (and p value) between observed and forecasted MDC shown in top 

left corner of each panel (black); correlation (and p value) between forecasted MDC and observed 

AAB shown in bottom left corner of each panel (red). 

 

 





Figure 4: Spatial and intra-seasonal distribution of the largest 10% of observed fires (in terms of area 

burned) between 2000-2011 and the magnitude of each corresponding MDC forecast; colour at each 

point illustrates the MDC forecast terms of which quartile it falls each into (e.g. Q4 is the case when 
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Figure 5: Spatial distribution of fires associated with a total burned area larger than 500 hectares; the 

size and colour of the bubble indicates the size of the burned area and the corresponding MDC 

forecast respectively. 
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